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ABSTRACT 

In this study, surveys were conducted in pea and potato fields in North Dakota and 

Central Minnesota to investigate the incidence and abundance of plant-parasitic nematodes in 

these fields. Moreover, the effect of the pin nematode, Paratylenchus nanus, on plant growth and 

yield of six field pea cultivars was determined under greenhouse conditions. Similarly, the 

influence of lesion nematode, Pratylenchus penetrans, and wilt fungi, Fusarium oxysporum 

alone and together on growth and yield of potato cultivar ‘Red Norland’, was evaluated in 

microplots under field conditions. The results indicate Paratylenchus spp. and Pratylenchus spp. 

are the most frequent nematodes, respectively, in pea and potato fields. Pin nematodes 

reproduced on field pea cultivars and caused up to 37% reduction in plant height and 40% 

reduction in yield. Additionally, both P. penetrans and F. oxysporum alone, and together had 

significant negative effect on growth and yield of potato.              
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CHAPTER 1. INTRODUCTION 

Plant-parasitic nematodes of economic importance can have detrimental effects on plant 

growth and yield potential of food crops. Plant-parasitic nematodes are reported to cause an 

estimated annual crop loss of $10 billion in the United States (US) (Chitwood 2003) and up to 

$157 billion globally (Singh et al. 2013). The damage caused by plant-parasitic nematodes under 

field conditions is often difficult to diagnose, above ground symptoms like yellowing, necrosis, 

stunting and patchy growth can be confused with symptoms of nutrient deficiencies or other soil 

problems and pathogens. Field peas and potatoes are among the important crops in temperate 

climate and North Dakota is a major producer of field peas in the US (United States Department 

of Agriculture National Agriculture Statistics Service [USDA-NASS 2017]). Similarly, North 

Dakota and Minnesota together contribute greatly to potato production in the USA (USDA-

NASS 2017). Soil borne pathogens are among the major production constraints of both field peas 

and potatoes. There is limited information on incidence, densities and potential impact of soil 

borne, plant-parasitic nematodes on field peas and potatoes in the region.  

The type and abundance of plant-parasitic nematodes are influenced by several factors 

such as crop type, soil physical and chemical properties, management practices and sampling 

time of the year (Yeates et al. 1999). Soil factors including soil texture, soil pH, soil structure, 

organic matter, aeration, and soil moisture affect the survival and pathogenicity of plant-parasitic 

nematodes (Norton 1989). To design effective nematode management strategies it is very crucial 

to have adequate information on soil-environmental factors influencing nematode reproduction 

and development.  

Nematode surveys in pea fields in Canada indicated Paratylenchus spp., 

Tylenchorhynchus spp., and Helicotylenchus spp. as frequently occurring parasitic nematodes 
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(Sanwal 1971). In North Dakota-Minnesota potato fields, Pratylenchus spp. were identified as 

common parasitic nematodes (Yan et al. 2016; Baidoo et al. 2017). Plant-parasitic nematodes 

were reported to cause yield losses in potatoes (Castillo and Vovlas 2007) and field peas (Riga et 

al. 2008) in temperate regions. Root lesion nematode, Pratylenchus penetrans was reported to 

cause yield losses of 25 to 73% on potato cultivars (Olthof 1986). Similarly, P. neglectus and P. 

thornei along with Paratylenchus hamatus caused 75 to 90% yield losses in a pea field in Idaho 

(Riga et al. 2008).  

Plant-parasitic nematodes can also interact with other organisms like fungui, bacteria, and 

viruses to increase damage to crops (Singh et al. 2013). Most reported nematode-fungal 

interactions are in crops such as cotton, potato, tobacco, banana, and tomato (Ravichandra 2013). 

In potato, the interaction of P. penetrans and Verticillium dahliae resulted in severe yield losses 

and increased potato early dying disease severity (Rowe and Powelson 2002).  

In spite of the key role North Dakota and Minnesota play in potato and North Dakota plays in 

field pea production in the USA, limited knowledge exists on incidence and population densities 

of plant-parasitic nematodes and their impact on plant growth and yield of these crops. In 

addition, there is no information on the potential interaction of these nematodes with soil borne 

pathogens on crop growth and yield. Hence, the objectives of this study were: 

1) To determine the occurrence and distribution of vermiform plant-parasitic nematodes and 

the relationship with soil factors in field pea (Pisum sativum L.) in North Dakota. 

2) To determine the reproduction ability and impact of pin nematode, Paratylenchus nanus 

on field pea cultivars. 
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3) To determine the incidence of the plant-parasitic nematodes in potato (Solanum 

tuberosum L.) fields in central Minnesota. 

4) To determine the effects of inoculation with Pratylenchus penetrans and Fusarium 

oxysporum alone or together on potato growth and yield.    
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CHAPTER 2. LITERATURE REVIEW 

Field pea (Pisum sativum L.) 

Background of field pea 

Field pea (Pisum sativum L.) is a cool season legume crop cultivated in temperate 

regions, worldwide. Pea is one of the oldest food crop originated in the Near East and 

Mediterranean regions. It was domesticated over 9000 years ago since Neolithic period (Zohary 

and Hopf 1973: McPhee 2003). Field pea is used for both human consumption and livestock 

feed. Field pea contains 18-30 % protein, 35-50% starch, and 4-7 % fiber (McPhee 2003). It also 

has high amount of amino acids, lysine and tryptophan compared to cereal crops (McKay et al. 

2003). It is frequently used as a rotational crop in temperate regions with cereal grain like wheat 

and has been reported to increase the yield of subsequent cereal crop by breaking the cereal pest 

cycles and improving the soil nitrogen (Carr et al. 2006; USDA-AMS 2009; Pavek 2012). Field 

pea was reported to increase the protein concentration of mixed forage by two to four percentage 

in forage crop mixture with small grains (McKay et al. 2003). Use of field pea as green manure 

improved the physical, chemical and biological properties of soil and productivity of successive 

crop (Fageria 2007).      

Status of field pea production in the world, United States and North Dakota 

Worldwide, field pea is the fourth highest produced food legumes after soybeans, 

peanuts, and dry beans (USDA Agriculture Marketing Service [USDA-AMS 2009]). In 2016 

global production of field pea was 14.36 million tons (FAOSTAT 2018). Canada is the leading 

producer of field pea followed by Russia, China, and the United States of America (FAOSTAT 

2018). The United States produced 1.37 million tons during 2016. In the United States, Montana, 

North Dakota, Washington, Idaho and Oregon are the important field pea producing states. 
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Among these States, North Dakota is one of the major producer of field pea with 560, 000 acres 

and production of 0.68 million tons with a monetary value of $ 131 million USD (United States 

Department of Agriculture National Agriculture Statistics Service [USDA-NASS 2017]). In 

2016, 44% of total dry peas in the USA were produced in North Dakota (USDA-NASS 2017). In 

North Dakota, more than 70% of the field pea acreage is concentrated in the west-central 

counties (USDA-NASS 2017). Generally, two classes of field peas, green cotyledon type and 

yellow cotyledon type are grown in North Dakota (Table 2.1).   

Table 2.1. Field pea cultivars commonly grown in North Dakota. 

Cultivar Market class Days to maturity 

Arcadia Green Early/Medium 

Cruiser Green Medium 

CDC Striker Green Medium 

Majoret Green Medium 

Aragorn Green Early 

Bridger Yellow Early 

Salamanca Yellow Medium 

Agassiz Yellow Medium 

CDC Meadow Yellow Medium 

DS Admiral Yellow Early/Medium 

Spider Yellow Medium 

    

Biotic constraints of field pea production 

Field pea is susceptible to more than 32 diseases including those caused by bacteria, 

fungi, and viruses (Hagedom and Kraft 2000). In the Northern great plains, major diseases and 

pests of field peas include blights (Aschochyta blight and bacterial blight), root rots (Ascochyta 

foot rot, Aphanomyces root rot, Fusarium root rot), stem rot (Sclerotinia stem rot), powdery 

mildew, Fusarium wilt, seed and seedling rot (Pythium and Rhizoctonia rot), pea seedborne 

mosaic virus, pea aphids, lygus bug, grasshoppers and nematodes. Among these diseases, root 
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rots are the most damaging in North Dakota field peas (Chittem et al. 2015). There have been 

limited studies on the plant-parasitic nematodes in North Dakota and their potential damage to 

field peas alone, or in association with other pathogens.                 

Nematode pests of field pea 

Plant-parasitic nematodes are reported to cause an estimated annual crop loss of 10 

billion USD in the USA (Chitwood 2003) and up to 157 billion USD globally (Singh et al. 

2013).  In Washington State, yield losses caused by Heterodera goettingiana were estimated to 

be 5 to 10% in green pea, whereas 1 to 5% losses were attributed to Meloidogyne chitwoodi, M. 

hapla, and Pratylenchus spp.  during 1994 (Koenning et al. 1999). In Idaho, two species of 

lesion nematodes, P. neglectus and P. thornei, and one species of pin nematode, Paratylenchus 

hamatus, caused 75 to 90% yield losses to field peas under field conditions. Similarly, in a 

greenhouse study in Idaho, P. neglectus, P. thornei, and P. hamatus reduced plant height by 50 

to 70% in field pea cultivars Columbian and Small Sieve (Riga et al. 2008). Stem and bulb 

nematode, Ditylenchus dipsaci reduced the biomass of yellow pea cultivars in greenhouse studies 

in Canada (Hajihassani et al. 2016). Helicotylenchus vulgaris together with Heterodera 

goettingiana and P. thornei affected pea crop growth in Worcestershire, England (Green and 

Dennis 1981). Similarly, Helicotylenchus dihystera was reported to reduce the yield of peas in 

Federal district, Brazil (Sharma et al. 1993). In India, field pea cultivars were observed to have 

susceptible to resistant reactions to M. incognita (Sharma et al. 2006). Charchar et al. (2008) 

reported M. pisi to be parasitic to field peas in Brazil. In Australia, field pea cultivars were 

reported to be susceptible to P. penetrans while resistant to P. neglectus (Vanstone 2007). 

Similarly, Smiley et al. (2014) observed that some cultivars of field pea were good hosts of P. 

thornei. During a survey in Idaho pea fields, Pratylenchus spp. and Paratylenchus spp. were 
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considered damaging and of economic importance to pea crop (Riga et al. 2008). Similarly, in 

pea fields of Eastern Ontario, Canada, Helicotylenchus spp., Tylenchorhynchus spp, 

Pratylenchus spp., and Paratylenchus spp. were found to be the predominant plant-parasitic 

nematodes while Xiphinema spp., Criconemoides spp., Meloidogyne spp and Heterodera spp. 

were less dominant (Sanwal 1971). Moreover, during a survey in Alberta, Canada, 

Paratylenchus spp., Tylenchorhynchus spp. and Ditylenchus spp. were determined as prominent 

nematodes in field peas (Hawn 1973). However, Tylenchorhynchus spp., Longidorus spp., 

Rotylenchus spp., and Helicotylenchus spp. occurred in lower densities in pea and bean fields in 

Scotland, hence, were considered of no economic importance (Boag 1980). Cyst nematode 

infection was reported to have negative impact on nodulation on peas (Taha and Raski 1969; 

Green 1985). 

Nematode interactions with other pathogens of field pea 

Nematodes interact with other organisms like fungi, bacteria and viruses to form a 

disease complex (Singh et al. 2013). Celetti et al. (1990) reported a significant positive 

relationship in incidence of Fusarium solani root infections and plant-parasitic nematodes: 

Tylenchorhynhus spp., Helicotylenchus spp., and Paratylenchus spp. in field pea soils on Prince 

Edward Island, Canada. Oyekan and Mitchell (1971) reported that F. oxysporum resistant field 

pea cultivars became susceptible with increased damage due to P. penetrans infection. Pea early-

browning virus (B) was reported to be transmitted to pea seedlings by Stubby root nematode, 

Trichodorus primitivus (de Man) in Britain (Harrison 1966).  

Nematode association with soil factors 

The type and abundance of plant-parasitic nematodes were determined to be influenced 

by crop type, soil physical and chemical properties, management practices and sampling time of 



 

8 

 

 

the year (Yeates at al. 1999). Many soil factors including soil texture, soil pH, soil structure, 

organic matter, aeration, and soil moisture affected the survival and pathogenicity of plant- 

parasitic nematodes (Norton 1989). Plant-parasitic nematode genera or species were also 

reported to be correlated with different soil properties. H. pseudorobustus was positively 

correlated with % clay and pH while negatively with % silt and organic matter. Similarly, 

Hoplolaimus galeatus, Tylenchorhynchus nudus and Xiphinema americanum were negatively 

associated with soil pH in soybean fields in Iowa (Norton et al. 1971). However, 

Tylenchorhynchus spp. had a positive correlation with soil pH within a range of 5.0 to 6.5 in a 

native Iowa prairie (Schmitt 1969). Workneh et al. (1999) reported a significant negative 

correlation between H. glycines and % clay in no-tilled soil. P. projectus were reported to have 

negative correlation with soil pH (Thomas 1980). In organically farmed soil, only Pratylenchus 

spp. and Xiphinema spp. were correlated with soil factors (Chen et al. 2012). 

Management of plant-parasitic nematodes 

The best way to manage plant-parasitic nematodes is to prevent the infestation of non-

infested fields. Nematode dissemination occurs during the movement of soil, plant tissue, farm 

machinery and equipment, water, animal, and wind from infested to non-infested field. Cultural 

practices to prevent nematode movement from one place to another include sanitation, use of 

certified clean plant material, quarantine and nematode free soil or planting media (Bird 1981). 

In a nematode infested field, an integrated nematode management approach can help to reduce 

nematode populations below damage threshold levels. Such an approach relies on combination 

of control tactics rather than using a single control measure. Integration of cultural practices such 

as crop rotation, cover crops, planting date, trap crops, rogueing or weed management may help 

to reduce the population densities of nematodes (Bird 1981; Brown 1978). Other nematode 
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management measures include use of organic soil amendments (Akhtar and Malik 2000), 

biological control agents (Siddiqui and Mahmood 1999) or host resistance (Williamson and 

Hussey 1996). Organic soil amendments such as crop residues and green manure may release 

compounds with nematicidal properties upon the decomposition of organic matter in soil and 

help in nematode reduction (Akhtar and Malik 2000). Similarly, biological control agents such as 

bacteria and fungi provide hostile environments for nematode reproduction or development 

through parasitism or trapping mechanism. Although biological control agents are 

environmentally safe and have been effective in controlling nematodes under laboratory 

conditions, their use in fields is limited due to lack of large scale production (Siddiqui and 

Mahmood 1999). Alternatively, Chemical nematicides can help to manage plant-parasitic 

nematodes, however, they have environmental issues (Fairbairn et al. 2007). In such scenario, 

use of host resistance can be an effective tool to manage parasitic nematodes. Recently, 

nematode resistance genes have been characterized which confer resistance to different plant-

parasitic nematodes. Resistance gene mediated resistance provides hostile environments to 

nematode reproduction or development after infection. For instance, Mi-mediated resistance 

prevents the formation of giant cell in host plants, required for nematode infection and 

development, upon the invasion by Meloidogyne incognita (Williamson and Hussey 1996).   

Potato (Solanum tuberosum L.) 

Background of potato crop  

Potato (Solanum tuberosum L.) originated about 8,000 years ago in South America was 

introduced into Europe around sixteenth century and spread to other parts of the world from 

Europe (Hawkes 1992; FAO 2009). Potatoes were introduced into the United States around 1621 

A.D (National Potato Council 2018).  It is the fourth important food crop worldwide after maize, 
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wheat, and rice (FAO 2018). Potatoes are grown in more than 100 countries worldwide under 

temperate, subtropical and tropical conditions, however, they are considered as cool temperature 

crop. Potatoes are good source of carbohydrate, vitamin C, potassium, phosphorus, and 

magnesium along with dietary antioxidants (FAO 2009). The United States ranked fifth in potato 

production worldwide with total production of 19.9 million tons in 2016 (FAO 2018). In the 

United States, Idaho, Washington, Wisconsin, North Dakota, Colorado, Oregon, Michigan, 

Minnesota, Maine, and California are the top ten potato producing states. North Dakota and 

Minnesota together produced 2.15 million tons in 2016 (USDA-NASS 2017).  

 Biotic constraints of potato production 

Potato crops are severely affected by approximately forty soil borne diseases worldwide 

including those caused by soil inhabiting fungi, bacteria and nematodes (Fiers et al. 2012). Soil 

borne diseases of potato are important in the United States since many of them cause damage to 

tuber and roots (Gudmestad et al. 2007). Plant-parasitic nematodes are among the important 

pests of potato production, they can cause serious yield losses but remain unnoticed, in most 

cases. Above ground symptoms of nematode damage are rarely observed since most nematodes 

cause damage on roots and tubers (Hooker 1981). Seventy species of plant-parasitic nematodes 

belonging to twenty-four genera have been associated with potato crops (Jensen et al. 1979). 

Important plant-parasitic nematodes of potato crop in temperate region include potato cyst 

nematode (Globodera rostochiensis and G. pallida), Root knot nematode (Meloidogyne hapla 

and M. chitwoodi), false root knot nematode (Nacobbus aberrans), root lesion nematode 

(Pratylenchus penetrans), tuber rot nematode (Ditylenchus destructor), stem nematode 

(Ditylenchus dipsaci), and stubby root nematodes (Trichodorus spp. and Paratrichodorus spp.). 
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Many other plant-parasitic nematode species are also associated with potato crop, however, they 

are of less economic importance (Evans et al. 1992).  

Lesion nematode (Pratylenchus spp.) in potato 

Pratylenchus spp. are distributed worldwide and are important pests of potato in 

temperate, tropical and subtropical regions (Castillo and Vovlas 2007).  Brown et al. (1980) 

reported six species of root lesion nematodes from potato roots including P. crenatus, P. 

penetrans, P. scribneri, P. alleni, P. thornei, and P. neglectus in Ohio. Yan et al. (2016) reported 

P. scribneri infestation in potato fields of North Dakota. Similarly, Baidoo et al. (2017) reported 

P. penetrans from potato fields in Minnesota. Kimpinski (1979) reported P. penetrans and P. 

crenatus as the dominant nematodes of potato crop in Prince Edward Island, Canada. In light 

sandy soil of Wisconsin, P. penetrans were reported to be the most damaging nematodes of 

potato crop (Dickerson et al. 1964). Pratylenchus spp. are migratory in nature and can feed both 

as ectoparasite and endoparasite. However, Feeding as endoparasite inside root tissue cells 

caused more damage than feeding from outside as ectoparasite (Castillo and Vovlas 2007).  

Pratylenchus penetrans  

P. penetrans is one of the economically important nematode in temperate regions. P. 

penetrans has a wide host range of over 350 plant species distributed in temperate regions in 

Europe, North America, Central and South America, Africa, Asia and Australia (Corbett 1973). 

P. penetrans are reported to cause serious damage of cereals, vegetables, fruits, grasses, and 

ornamental crops (Castillo and Vovlas 2007). P. penetrans completed its life cycle in 34-35 days 

at 24o C on carrot callus (Wu et al. 2002). In clover root, single generation of P. penetrans was 

accomplished in 22 to 46 days at different temperature regimes. Temperature was an important 

factor determining the generation time of P. penetrans (Mizukubo and Adachi 1997). P. 
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penetrans was reported to be the most damaging nematode species of potato in a temperate 

climate (Castillo and Vovlas 2007). P. penetrans can infect roots, underground stems, stolons, 

and tubers. Symptoms of P. penetrans on roots involve brown necrotic lesions while on tubers 

are cross-lesions like those of common scab. P. penetrans infection leads to stunting and 

yellowing of potato crop and patchy growth of plants in heavily infested fields. In a heavily 

infested field in Norway, P. penetrans caused up to 50% yield losses (Holgado et al. 2009). 

Similarly, Olthof (1986) reported yield losses of 25 to 73% in Canada depending, upon potato 

cultivars. On cv. Superior of potato 30% yield losses was reported in Michigan (Bernard and 

Laughlin 1976). Moreover, P. penetrans was reported to suppress top growth and root mass of 

potato crop (Martin et al. 1982). Damage threshold of P. penetrans on potato was reported to be 

1-2 P. penetrans/ cm3 of soil (Castillo and Vovlas 2007). Bernard and Laughlin (1976) observed 

yield losses at 0.38 P. penetrans/ cm3 of soil on cv. Superior cultivars. Similarly, Martin et al. 

(1982) reported that 0.56 P. penetrans/ cm3 of soil could cause damage on potato growth.                                       

Nematode fungal interactions 

Atkinson (1892) was the first person to report the interaction of Meloidogyne spp. and 

Fusarium spp. causing severe Fusarium wilt of cotton. Considerable number of nematode fungal 

interactions have been reported in crops such as banana, cotton, potato, tobacco, cowpea, brinjal, 

and tomato. In okra and tomato crop, infection with M. incognita resulted high susceptibility to 

Rhizoctonia solani and root decay. In winter wheat, combined infection of P. minyus and R. 

solani lead to root rot, yellowing, stunting, and yield reduction. A disease complex, vascular wilt 

of cotton was caused by concomitant infection of F. oxysporum and M. incognita, Rotylenchulus 

reniformis or Belonolaimus longicaudatus. Similarly, vascular wilt of banana was caused due to 

combined infection of Radopholus similis and F. oxysporum f. spp. cubense. Moreover, 
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Pratylenchus spp. and F. oxysporum f. spp. pisi together resulted in vascular wilts of pea 

(Ravichandra 2013).   

Potato early dying disease was reported to be more severe when P. penetrans and 

Verticillium dahliae were present together than when V. dahliae was alone (Rowe and Powelson 

2002; Marin et al. 1982; MacGuidwin and Rouse 1990). Low levels of P. penetrans or V. 

dahliae, which caused little to damage when alone significantly increased disease severity and 

significantly lower tuber yield when present together. Nematode densities of 15, 50, and 150 P. 

penetrans/ 100 cm3 of soil together with V. dahliae resulted in 36, 60 and 75% reduction in tuber 

yield (Martin et al. 1982). Under field conditions, 44 P. penetrans/ 100 cm3 of soil did not reduce 

yield when acting alone, but reduced yield by 36% in the presence of V. dahliae (MacGuidwin 

and Rouse 1990). Similarly, 0.8 P. penetrans/ cm3 of soil did not reduce tuber yield, but same 

density in combination with V. dahliae reduced the tuber yield by 51%. However, Burpee and 

Bloom (1978) did not find significant interactive effect of P. penetrans and V. alboatrum on 

plant growth and disease severity of Katahdin, Kennebec and Abnaki cultivars of potato. 

Nematode fungal interaction was observed to be species specific. P. penetrans and V. dahliae 

had significant interaction and were responsible for up to 39% yield loss while P. crenatus was 

not found to interact with V. dahliae (Riedel et al. 1985). 

Ravichandra (2013) described the potential role of the nematode in the nematode fungal 

interaction as a wounding agent, host modifier, rhizosphere modifier and resistance breaker. He 

explained that nematode feeding leads to mechanical injury to roots, increases the root exudate 

production or creates galls/ lesions in roots or breaks the normal resistance of plant to other 

pathogens. Rowe and Powelson (2002) explained that nematode feeding and entry into root 

tissues increased root exudate production and the size of rhizosphere zone, leading to a change in 
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host physiology. Increased rhizosphere allows more fungal spores to attach to roots. Bowers et 

al. (1996) disproved earlier research indicating that nematode feeding injury provides direct 

pathway for fungal spores. In his observations, P. pentrans feeding on root tissues was not 

spatially related to entry of V. dahliae. Although exact mechanism of nematode fungal 

interactions are not clear, nematode attack increases stress on plant as well as changes host 

physiology making plants prone to infection by fungal pathogens (Rowe and Powelson 2002). 

Management of nematodes in potato fields  

Exclusion is the best approach for nematode management. Once the field is infested with 

economically important plant-parasitic nematodes it is difficult to completely eradicate them. 

Hence, sustainable and safe measures should be applied to suppress nematode populations below 

damage thresholds. Moreover, before applying any control measures, accurate identification of 

nematode to species level is desirable, some species within a genus can be more damaging than 

others (Castillo and Vovlas 2007). 

Cultural practices such as crop rotation can help to suppress the population of lesion 

nematode, Pratylenchus penetrans, in potato fields. Chen et al. (1995) reported the suppression 

of P. penetrans in potato fields after a two-year rotation with alfalfa or clover. Similarly, in 

Canada, one-year rotation of potato with forage and grain pearl millet (Pennisetum glaucum L.) 

reduced P. penetrans populations and also increased potato yield in subsequent years (Belair et 

al. 2005). Organic amendments also can be used to control economically important nematodes in 

potato fields. Organic amendments such as green manure, crop residues, and farmyard manure 

provide conducive environment to micro-organisms which can parasitize plant-parasitic 

nematodes. Moreover, decomposition of organic matter can also produce compounds or 

chemicals toxic to nematodes (Castillo and Vovlas 2007). Conn and Lazarovitis (1999) observed 
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the reduction of P. penetrans populations in potato fields upon the application of poultry manure 

at 1,573 kg total N per hectare. Soil solarisation can also suppress parasitic nematodes in potato 

fields by heating soils under transparent plastic tarps. In Australia and Japan, P. penetrans 

populations were reduced using soil solarisation (Forter and Merriman 1985; Minagawa et al. 

2004). In major potato producing states of the USA, farmers also use various chemical products 

to control nematodes and other pests in the potato crop. Various types of soil fumigants and non-

fumigant nematicides can suppress nematode populations depending upon the application 

method and field condition. Pre-plant nematicides applied in soil should target the future root 

zone for effective nematode control. In Florida, non-fumigant nematicides of organo-carbamate 

group (product name – Vydate) in combination with fumigants have been more effective in 

lowering the incidence of stubby root nematode populations which vector tobacco rattle viruses 

causing corky ringspot disease of potato (Noling 2016). Resistant potato cultivars also can 

suppress the populations of parasitic nematodes present in infested fields (Castillo and Vovlas 

2007). In conclusion, different management tactics are available for the control of plant-parasitic 

nematodes in potato crop, hence, selection of a method or combination of methods should be 

done after assessing the damage potential of nematodes present in field.  

References 

Akhtar, M., and Malik, A. 2000. Roles of organic soil amendments and soil organisms in the 

biological control of plant-parasitic nematodes: a review. Bioresource Technology 74:35-

47. 

Atkinson, G. F. 1892. Some diseases of cotton. Alabama Agricultural Experiment Station 

Bulletin 41. 65 pp.  

 



 

16 

 

 

Baidoo, R., Yan, G., Nagachandrabose, S., and Skantar, A. M. 2017. Developing a real-time 

PCR assay for direct identification and quantification of Pratylenchus penetrans in 

soil. Plant Disease 101:1432-1441.  

Bélair, G., Dauphinais, N., Fournier, Y., Dangi, O. P., and Clément, M. F. 2005. Effect of forage 

and grain pearl millet on Pratylenchus penetrans and potato yields in Quebec. Journal of 

Nematology 37:78-82. 

Bernard, E. C., and Laughlin, C. W. 1976. Relative susceptibility of selected cultivars, of potato 

to Pratylenchus penetrans. Journal of Nematology 8:239-242.  

Bird, G. W. 1981. Integrated nematode management for plant protection. Pages 355-370 in: Plant 

Parasitic Nematodes. Vol. 3. B. M. Zuckerman and R. A. Rohde, eds. Academic Press, 

Inc., New York. 

Boag, B. 1980. Nematodes associated with peas and beans in Scotland. Annals of Applied 

Biology 95:125-128. 

Bowers, J. H., Nameth, S. T., Riedel, R. M., and Rowe, R. C. 1996. Infection and colonization of 

potato roots by Verticillium dahliae as affected by Pratylenchus penetrans and P. 

crenatus. Phytopathology 86:614-621. 

Brown, E. B. 1978. Cultural and biological control methods. Pages 269-282 in: Plant 

Nematology. J. F. Southey, ed. Her Majesty’s Stationery Office, London. 

Brown, M. J., Riedel, R. M., and Rowe, R. C. 1980. Species of Pratylenchus associated with 

Solanum tuberosum cv Superior in Ohio. Journal of Nematology 12:189-192.  

Burpee, L. L., and Bloom, J. R. 1978. The influence of Pratylenchus penetrans on the incidence 

and severity of Verticillium wilt of potato. Journal of Nematology 10:95-99. 



 

17 

 

 

Carr, P. M., G. B. Martin, and R. D. Horsley. 2006. Impact of tillage and crop rotation on spring 

wheat yield: II. Rotation effect. Crop Management 5. doi:10.1094/CM-2006-1018-02-RS. 

Castillo, P., and Vovlas, N. 2007. Pratylenchus (Nematoda: Pratylenchidae): Diagnosis, Biology, 

Pathogenicity and Management. Pages 1-530 in :Nematology Monographs and 

Perspectives. Vol. 6. D. J. Hunt and R. N. Perry, eds. Brill, Leiden. 

Celetti, M. J., Johnston, H. W., Kimpinski, J., and Platt, H. W. 1990. Plant-parasitic nematodes 

and fungi associated with root rot of peas on Prince Edward Island. Journal of 

Nematology 22:676-680.  

Charchar, J. M., Eisenback, J. D., Charchar, M. J., and Boiteux, M. E. N. 2008. Meloidogyne pisi 

n. sp. (Nematoda: Meloidogynidae), a root-knot nematode parasitizing pea in Brazil. 

Nematology 10:479-493. 

Chen, J., Bird, G. W., and Mather, R. L. 1995. Impact of multi-year cropping regimes on 

Solanum tuberosum tuber yields in the presence of Pratylenchus penetrans and 

Verticillium dahliae. Journal of Nematology 27:654-660. 

Chen, S. Y., Sheaffer, C. C., Wyse, D. L., Nickel, P., and Kandel, H. 2012. Plant-parasitic 

nematode communities and their associations with soil factors in organically farmed 

fields in Minnesota. Journal of Nematology 44:361-369. 

Chitwood, D. J. 2003. Research on plant‐parasitic nematode biology conducted by the United 

States Department of Agriculture–Agricultural Research Service. Pest Management 

Science 59:748-753. 

Chittem, K., Mathew, F. M., Gregoire, M., Lamppa, R. S., Chang, Y. W., Markell, S. G., 

Bradley, C.A., Barasubiye, T., and Goswami, R. S. 2015. Identification and 



 

18 

 

 

characterization of Fusarium spp. associated with root rots of field pea in North Dakota. 

European Journal of Plant Pathology 143:641-649. 

Conn, K. L., and Lazarovits, G. 1999. Impact of animal manures on verticillium wilt, potato 

scab, and soil microbial populations. Canadian Journal of Plant Pathology 21:81-92. 

Corbett, D. C. M. 1973. Pratylenchus penetrans. C. H. I. Description of plant-parasitic 

nematodes. 2, No 25. Commonwealth Institute of Helminthology, St. Albans, Herts, 

England. 

Dickerson, O. J., Darling, H. M., and Griffin, G. D. 1964. Pathogenicity and population trends of 

Pratylenchus penetrans on potato and corn. Phytopathology 54:317-322. 

Evans, K., and Trudgill, D. L. 1978. Pest aspects of potato production. Pages 440-469 in: The 

Potato Crop. P. M. Harris, ed. Springer Science and Business Media, Berlin, Germany. 

Fageria, N. K. 2007. Green manuring in crop production. Journal of Plant Nutrition 30: 691-719. 

Fairbairn, D. J., Cavallaro, A. S., Bernard, M., Mahalinga-Iyer, J., Graham, M. W., and Botella, 

J. R. 2007. Host-delivered RNAi: an effective strategy to silence genes in plant parasitic 

nematodes. Planta 226:1525-1533. 

FAO 2009. Food and Agriculture Organization. Online, accessed on 28 February 2018. 

http://www.fao.org/potato-2008/en/potato/cultivation.html  

FAOSTAT 2018. Food and Agriculture Organization Statistics. Online, accessed on 28 January 

2018. http://www.fao.org/faostat/en/#data. 

Fiers, M., Edel-Hermann, V., Chatot, C., Le Hingrat, Y., Alabouvette, C., and Steinberg, C. 

2012. Potato soil-borne diseases. A review. Agronomy for Sustainable Development 

32:93-132. 



 

19 

 

 

Florini, D. A., Loria, R., and Kotcon, J. B. 1987. Influence of edaphic factors and previous crop 

on Pratylenchus spp. population densities in potato. Journal of Nematology 19:85-92. 

Forter, I., and Merriman, P. R. 1985. Evaluation of soil solarization for control of root diseases 

of row crops in Victoria. Plant Pathology 34:108-118. 

Green, C. D. 1985. Interactions between nematodes and Rhizobium in relation to root nodulation 

of pea plants. Pages 413-420 in: The Pea Crop: A Basis for Improvement. Hebblethwaite, 

P. D. Hebblethwaite, M. C. Heath, T. C. K. Dawkins, eds. Proceedings of the University 

of Nottingham 40th Easter School in Agriculture Science, Nottinghamshire, UK.  

Green, C. D., and Dennis, E. B. 1981. An analysis of the variability in yield of pea crops attacked 

by Heterodem goettingiana, Helicotylenchus vulgaris and Pratylenchus thomei. Plant 

Pathology 30:65-71. 

Gudmestad, N. C., Taylor, R. J. and Pasche, J. S. 2007. Management of soil borne diseases of 

potato. Australasian Plant Pathology 36:109-115. 

Hagedom and Kraft 2000. American phytopathological society. Online, accessed on 2 February 

2018. http://www.apsnet.org/publications/commonnames/Pages/Pea.aspx     

Hajihassani, A., Tenuta, M., and Gulden, R. H. 2016. Host preference and seedborne 

transmission of Ditylenchus weischeri and D. dipsaci on select pulse and non-pulse crops 

grown in the Canadian Prairies. Plant Disease 100:1087-1092. 

Harrison, B. D. 1966. Further studies on a British form of pea early‐browning virus. Annals of 

Applied Biology 57:121-129. 

Hawkes J. G. 1992. History of the potato. Pages 1-13 in: The Potato Crop. P. M. Harris, ed. 

Springer Science and Business Media, Berlin, Germany.  



 

20 

 

 

Hawn, E. J. 1973. Plant-parasitic nematodes in irrigated soils of Alberta. Canadian Plant Disease 

Survey 53:29-30. 

Holgado, R., Skau, K. O., and Magnusson, C. 2009. Field damage in potato by lesion nematode 

Pratylenchus penetrans, its association with tuber symptoms and its survival in storage. 

Nematologia Mediterranea 37:25-29. 

Hooker, W. J. 1981. Compendium of Potato Disease. The American Phytopathological Society, 

St. Paul, MN. 

Jensen, H. J., Armstrong, J., and Jatala, P. 1979. Annotated bibliography of nematode pests of 

potato. International Potato Center, Lima, Peru.  

Kimpinski, J. 1979. Root lesion nematodes in potatoes. American Journal of Potato Research 

56:79-86. 

Koenning, S. R., Overstreet, C., Noling, J. W., Donald, P. A., Becker, J. O., and Fortnum, B. A. 

1999. Survey of crop losses in response to phytoparasitic nematodes in the United States 

for 1994. Journal of Nematology 31:587-618.  

MacGuidwin, A. E., and Rouse, D. I. 1990. Role of Pratylenchus penetrans in potato early dying 

disease of Russet Burbank potato. Phytopathology 80:1077-1082. 

Martin, M. J., Riedel, R. M., and Rowe, R. C. 1982. Verticillium dahliae and Pratylenchus 

penetrans: Interactions in the early dying complex of potato in Ohio. Phytopathology 

72:640-644. 

McKay, K., Schatz, B. G., and Endres, G. 2003. Field pea production. NDSU Extension Service, 

Fargo, ND. 

McPhee, K. 2003. Dry pea production and breeding – A mini-review. Journal of Food, 

Agriculture, and the Environment 1:64-69. 



 

21 

 

 

Minagawa, N., Aiba, S., Katayama, K., and Miura, K. 2004. Effect of field solarization on 

control of soil nematodes. Bulletin of the National Agricultural Research Center 4:25-34. 

Mizukubo, T., and Adachi, H. 1997. Effect of temperature on Pratylenchus penetrans 

development. Journal of Nematology 29:306-314. 

National Potato Council. 2018. Online, accessed on 28 February 2018. 

http://www.nationalpotatocouncil.org/. 

Noling, J. W. 2016. Nematode management in potatoes (Irish or White). University of Florida 

Extension. Online accessed on April 25, 2018. 

http://edis.ifas.ufl.edu/pdffiles/NG/NG02900.pdf.  

Norton, D. C. 1989. Abiotic soil factors and plant-parasitic nematode communities. Journal of 

Nematology 21:299-307. 

Norton, D. C., Frederick, L. R., Ponchillia, P. E., and Nyhan, J. W. 1971. Correlations of 

nematodes and soil properties in soybean fields. Journal of Nematology 3:154-163.  

Olthof, T. H. 1986. Reaction of six Solanum tuberosum cultivars to Pratylenchus penetrans. 

Journal of Nematology 18:54-58. 

Oyekan, P. O., and Mitchell, J. E. 1971. Effect of Pratylenchus penetrans on the resistance of a 

pea variety to Fusarium wilt. Plant Disease Reporter 55:1032-1035.  

Pavek, P. L. 2012. Plant fact sheet for pea (Pisum sativum L.). USDA-Natural Resources 

Conservation Service, Pullman, Washington. On-line, accessed on 5 October 2017. 

https://www.nrcs.usda.gov/Internet/FSE_PLANTMATERIALS/publications/wapmcfs11

388.pdf. 

Ravichandra, N. G. 2013. Plant nematology. IK International Pvt Ltd., New Delhi, India. 



 

22 

 

 

Riedel, R. M., Rowe, R. C., and Martin, M. J. 1985. Differential interactions of Pratylenchus 

crenatus, P. penetrans, and P. scribneri with Verticillium dahliae in potato early dying 

disease. Phytopathology 75:419-422. 

Riga, E., Porter, L. D., Mojtahedi, H., and Erickson, D. 2008. Pratylenchus neglectus, P. thornei, 

and Paratylenchus hamatus nematodes causing yield reduction to dryland peas and lentils 

in Idaho. Plant Disease 92:979.  

Rowe, R. C., and Powelson, M. L. 2002. Potato early dying: management challenges in a 

changing production environment. Plant Disease 86:1184-1193. 

Sanwal, K. C. 1971. Economically important nematodes in contracted acreage of processing peas 

in Eastern Ontario. Canadian Plant Disease Survey 51:80-82. 

Sharma, A., Haseeb, A., and Abuzar, S. 2006. Screening of field pea (Pisum sativum) selections 

for their reactions to root-knot nematode (Meloidogyne incognita). Journal of Zhejiang 

University 7:209-214. 

Sharma, R. D., Da Silva, D. B., and Castro, L. H. R. 1993. Effect of spiral nematode on the 

growth of wheat and peas grown in soils collected from three different tillage systems. 

Nematologia Brasileira 17:85-95. 

Siddiqui, Z. A., and Mahmood, I. 1999. Role of bacteria in the management of plant parasitic 

nematodes: a review. Bioresource Technology 69:167-179. 

Singh, S. K., Hodda, M., and Ash, G. J. 2013. Plant‐parasitic nematodes of potential 

phytosanitary importance, their main hosts and reported yield losses. Eppo Bulletin 

43:334-374.  

Smiley, R. W., Yan, G., and Gourlie, J. A. 2014. Selected Pacific Northwest crops as hosts of 

Pratylenchus neglectus and P. thornei. Plant Disease 98:1341-1348.  



 

23 

 

 

Taha, A. H. Y., and Raski, D. J. 1969. Interrelationships between root-nodule bacteria, plant-

parasitic nematodes and their leguminous host. Journal of Nematology 1:201-211. 

Thomas, S. H. 1980. Effects of corn varieties and edaphic factors on populations of plant-

parasitic nematodes. Online, accessed on 11 November 2017. http: //lib.dr.iastate,edu/rtd. 

Iowa, USA.  

USDA-AMS. 2009. United States Department of Agriculture- Agricultural Marketing Service. 

Online, accessed on 10 October 2017. https://www.ams.usda.gov/. Moscow, Idaho. 

USDA-NASS. 2017. United States Department of Agriculture-National Agricultural Statistics 

Service news release. Online, accessed on 30 October 2017. 

https://www.nass.usda.gov/Statistics_by_State/North_Dakota/Publications/Miscellaneous

/Top_Commodities/2017/rank0517.pdf. Fargo, ND.  

Vanstone, V. 2007. Root lesion and burrowing Nematodes in Western Australian cropping 

systems. Department of Agriculture and Food, Western Australia, Perth, Bulletin 4698. 

Williamson, V. M., and Hussey, R. S. 1996. Nematode pathogenesis and resistance in plants. 

The Plant Cell 8:1735-1745. 

Workneh, F., Yang, X. B., and Tylka, G. L. 1999. Soybean brown stem rot, Phytophthora sojae, 

and Heterodera glycines affected by soil texture and tillage relations. Phytopathology 

89:844-850. 

Wu, H. Y., Tsay, T. T., and Lin, Y. Y. 2002. Identification and biological study of Pratylenchus 

spp. isolated from the crops in Taiwan. Plant Pathology Bulletin 11:123-136.  

Yan, G. P., Plaisance, A., Huang, D., Gudmestad, N. C., and Handoo, Z. A. 2016. First report of 

the root-lesion nematode Pratylenchus scribneri infecting potato in North Dakota. Plant 

Disease 100:1023-1023. 

https://www.ams.usda.gov/.%20Moscow


 

24 

 

 

Yeates, G. W., and Bongers, T. 1999. Nematode diversity in agroecosystems. Invertebrate 

Biodiversity as Bioindicators of Sustainable Landscapes 74:113-135. 

Zohary, D. and Hopf, M. 1973. Domestication of pluses in the old world. Science 182:887-894. 

  



 

25 

 

 

CHAPTER 3. OCCURRENCE AND DISTRIBUTION OF VERMIFORM PLANT-

PARASITIC NEMATODES AND THE RELATIONSHIP WITH SOIL FACTORS IN 

FIELD PEA (PISUM SATIVUM L.) IN NORTH DAKOTA 

Abstract 

Plant-parasitic nematodes restrict crop growth and cause yield losses of field peas. 

Nematode surveys were conducted in pea fields of North Dakota, a leading producer in the 

United States, from 2014 to 2017 to investigate their distribution, prevalence, abundance, and 

association with soil properties. A total of 243 soil samples were collected from 16 counties, and 

soil properties of 115 samples were analyzed to determine the association of nematode 

populations with soil factors (texture, organic matter, nutrients). Plant-parasitic nematodes, 

Paratylenchus (Absolute Frequency = 58 to 100%; Average densities = 470 to 1,558/ 200 g of 

soil; Highest Density = 7,114/ 200 g of soil) and Tylenchorhynchus (30 to 80%; 61 to 261; 

1,980), were the most frequent and widely distributed. Pratylenchus and Helicotylenchus were 

identified in one-third counties and the average densities ranged from 43 to 224/ 200g of soil and 

36 to 206/200 g of soil, respectively. Among the remaining nematodes identified, Xiphinema was 

found relatively frequently, but at low densities. Hoplolaimus and Paratrichodorus were rarely 

detected at lower densities in one or two counties. Canonical correspondence analysis revealed 

that soil factors explained 19% of the total variance of nematode genera abundance. The 

relationship between nematode abundance and soil factors such as sand and pH were significant 

(P < 0.05) while clay, silt, organic matter, and nutrients were not significant. This multi-year 

study conducted for the first time on nematodes associated with field peas and their relationship 

with soil factors in a major field pea production region of the U.S. serves as a guideline in 

designing effective nematode management strategies for this region.  
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Introduction 

Field pea (Pisum sativum L.) is an important pulse crop with economic, nutritional, and 

agronomic benefits (McPhee 2003). It is commonly grown in rotation with cereal grains in 

temperate region of the United States (McPhee 2003; Carr et al. 2006). The U.S. is the fourth 

largest producer of field pea after Canada, Russia, and China (FAOSTAT 2018). The major field 

pea producing states in the U.S. include North Dakota, Montana, Washington, and Idaho. Two 

north central states, North Dakota and Montana together contributed 79 to 87% to the total 

national field pea production during 2014 to 2017 (USDA-NASS 2017).  

Plant-parasitic nematodes (PPNs) have caused an estimated annual crop loss of 10 billion 

USD in the U.S. (Chitwood 2003) and 100 to 157 billion USD globally (Koenning et al. 1999; 

Chitwood 2003; Singh et al. 2013). Several morphological groups of PPNs are known to be 

present in pea fields in different parts of the world. Goodey et al. (1965) listed 32 species of 

PPNs associated with pea crop. Plant parasitic nematodes such as Belonolaimus spp., 

Ditylenchus spp., Longidorus spp., Meloidogyne spp., Tylenchorhynchus spp. (Goodey et al. 

1965), Heterodera goettingiana (Handoo et al. 1994), Hoplolaimus spp. (Bridge and Starr 2007), 

Helicotylenchus spp., Trichodorus spp. (Green 1985), Paratylenchus spp. (Celetti et al. 1990; 

Riga et al. 2008), Pratylenchus spp. (Goodey et al. 1965; Celetti et al. 1990; Riga et al. 2008), 

and Xiphinema spp. (Lamberti et al. 1982) have been reported to be associated with field peas. In 

Eastern Ontario, Canada, Helicotylenchus, Tylenchorhynchus, Pratylenchus, and Paratylenchus 

were identified as frequently occurring nematode genera in pea fields (Sanwal 1971) while in 

Southern Alberta, Ditylenchus, Tylenchorhynchus, Aphelenchus, and Paratylenchus were 

predominant (Hawn 1973). The information on incidence and abundance of important PPNs in 

field pea is very limited in the field pea growing regions of the U.S. Nevertheless, Pratylenchus 
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and Paratylenchus were the common genera of PPNs in dryland pea in Latah and Nez Perce 

counties, Idaho, U.S (Riga et al. 2008) while Heterodera, Meloidogyne, and Pratylenchus were 

considered important to field pea production in Washington State, U.S (Koenning et al. 1999).  

Many plant-parasitic nematodes are known to be associated with field pea but only a few reports 

of nematode damage have been recorded around the world. In Washington, yield losses caused 

by Heterodera goettingiana were predicted to be 5 to 10% in green pea, whereas 1 to 5% losses 

were attributed to Meloidogyne chitwoodi, M. hapla, and Pratylenchus spp. in field pea during 

1994 (Koenning et al. 1999). Similarly, Pratylenchus neglectus, Pratylenchus thornei, and 

Paratylenchus hamatus were responsible for stunting, chlorosis, and yield losses of 75 to 90% in 

two dryland pea fields in Latah County, Idaho. In addition, in greenhouse experiments, same 

three species reduced plant height of field pea cultivars by 50 to 70% (Riga et al. 2008). Besides, 

direct damage to a crop by feeding, nematodes can also cause indirect damage by interacting 

with other organisms like fungi and viruses (Green 1985; Singh et al. 2013).  

The composition of nematode community is greatly influenced by host plant (Norton 

1989). However, soil environmental variables such as soil texture, soil pH, organic matter, 

aeration, moisture, cation exchange capacity (Norton et al. 1971), soil nutrients, and soil 

temperature (Karuri et al. 2017) can also affect the type and population densities of PPNs. 

Among these soil factors, soil texture affects prevalence (Norton 1989; Yeates 1999; Workneh et 

al. 1999), population densities (Norton et al. 1971; Koenning et al. 1996; Workneh et al. 1999), 

reproduction (Griffin 1996; Koenning et al. 1996), migration, penetration capacity (Prot and Van 

Gundy 1981), and nematode pathogenicity (Griffin 1996). Yeates (1984) and Neher (1999) 

explained that soil properties including texture had more effect on nematodes than farming 

practice, either conventional or organic. However, it has also been suggested that cultivation 
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practice like tillage can change the structure of same textured soil and can influence the 

nematode population dynamics (Koenning et al. 1996; Workneh et al. 1999). Hence, in 

agricultural system, in addition to soil factors, some other factors such as cultivation practices 

and cropping history can also affect nematode community (Workneh et al. 1999). 

In the U.S., farmers concern about PPNs and their potential impact in crop production is 

increasing because of huge investment in production activities. However, very less work has 

been done to identify the important group of PPNs and the threat posed by them in field pea. 

Currently, there is paucity of information on PPNs associated with field pea in the U.S. The 

existing knowledge on parasitic nematodes of this crop is solely based on small survey works 

covering few fields. Among the field pea producing states in the U.S., North Dakota is a 

principal producer in the nation; however, it is largely unknown about plant-parasitic nematodes 

associated with this crop in the state. Therefore, intensive nematode surveys are indispensable 

and the information obtained from such surveys on the type, distribution and abundance of 

nematode genera and species will be the guidelines essential to assess the damage potential on 

field pea and develop effective management strategies. Hence, the objectives of this study were- 

to 1) identify  plant-parasitic nematodes associated with pea fields of North Dakota, 2) determine 

the incidence (occurrence frequency), abundance (population densities), and distribution of 

plant-parasitic nematodes in field pea growing regions of North Dakota, and 3) determine the 

relationship between nematode population densities and soil factors in pea fields. To our 

knowledge this is the first study describing the plant-parasitic nematodes in field peas in a region 

of the Northern Great Plains, and ascertaining their association with soil properties. 
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Materials and Methods 

Soil sample collection 

Nematode soil surveys were conducted in North Dakota pea fields encompassing North 

West, North Central, Central, and West Central regions where more than 70% of North Dakota 

pea production occurs (Fig. 3.1). Some fields were also surveyed in north eastern region of the 

state. A total of 243 soil samples were collected from 151 fields in 16 counties during 2014, 

2015, 2016, and 2017 (Table 3.1). In general, one to three samples were collected from a field 

depending upon its size. Sampling was completed during the cropping season and immediately 

after harvest in the fall. Soil sampling was done arbitrarily for 58 samples during 2014 and for 91 

samples during 2015 (Table 3.1). In 2016, 22 of 44 samples were taken from the previously 

sampled fields of the preceding years whereas in 2017, 40 of 50 samples were collected from 

fields not previously sampled.  
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Table 3.1. Total number of samples collected and counties covered during four years of sampling in pea fields in North Dakota 

Yeara Number 

of 

samples 

 Number 

of fields 

Countiesb Number of 

counties 

2014 58 27 Burke, Divide, Williams, McHenry, Foster, Mountrail, Ward, Sheridan, 

McLean 

9 

2015 91 42 Mountrail, McLean, Renville, Ward, Burke, Divide, Williams, Foster, 

Sheridan, McHenry, Wells 

11 

2016 44 32 McLean, Mountrail, Wells, McHenry, Sheridan, Ward, Foster, McKenzie 8 

2017 50 50 Divide, Williams, McKenzie, Mountrail, Ward, Renville, Bottineau, McLean, 

McHenry, Wells, Ramsey, Cavalier, Pembina 

 

13 

Total 243 151  16 

(unique) 
aYears in which samples were collected 
bName of counties from which samples were collected 
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Fig.3.1. Map of North Dakota state showing counties sampled for vermiform plant-parasitic 

nematodes in field pea during 2014 to 2017. Sampled counties are represented by highlighted 

rose color. 

 

Global Positioning System (GPS) co-ordinates were recorded for each sampling field 

using GPS navigator system (Garmin Drive 51 USA LM GPS Navigator System, OR, USA). 

Standard soil probes (2.5 cm diameter and 30 cm depth) were used to collect the representative 

soil sample from each sampling area in each field. Soil samples were collected in a zig-zag 

pattern with a distance of 5 m between two successive sample cores. For some of the larger fields 

more than one sample was collected from different directions of the field. In each sampling spot, 

the top soil of about 1-2 cm was removed and soil was collected up to a depth of 30 cm. Each 

soil sample consisted of 20 to 25 soil cores mixed together to obtain a composite sample. Soil 
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samples were sealed in a plastic bag, placed in a cooler during sampling and shipping and kept in 

a cold room at 4oC. Nematode extractions were performed within two weeks of sampling to 

prevent changes in nematode populations. 

Nematode extraction 

 Soil samples collected in 2014 were analyzed by Western Laboratories (Parma, Idaho) 

using standard procedures. Soil samples collected in other years were processed and analyzed in 

the Nematology Laboratory at North Dakota State University. Each of the soil samples was 

spread in a tray (36 cm x 27 cm) by breaking up large clumps of soil and removing crop residue 

and rocks, and mixed thoroughly. A sub-sample of 200 g was taken from each composite sample 

from which nematodes were extracted using sieving and decanting and sugar centrifugal-

floatation technique (Jenkins 1964). Nematodes were collected in 20 to 25 ml tap water in a 50 

ml suspension tube.  

Plant-parasitic nematode identification and quantification 

PPNs were identified to genus level based on the morphological characteristics: body 

shape and size, stylet type, stylet length, mouth type, lip region, esophageal overlap, vulva 

position, and tail type (Mai et al. 1996). Nematodes were categorized by genera and counted 

under an inverted transmitted light microscope at 100x magnification (Zeiss Axiovert 25, Carl 

Zeiss Microscopy, NY, USA). Finally, the number of PPN was expressed as the total number of 

individual nematodes of a genus in 200 g of soil. 

Six genera of PPN either frequently occurring or rarely detected were further identified to 

species through molecular methods using nematode samples from 1 to 5 fields for each genus. 

For molecular identification, adult nematodes belonging to different genera were separately 

picked, and placed on concave glass slide with water, based on morphological features (Thorne 
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and Smolik 1971; Decramer 1980; Handoo and Golden 1992; Handoo 2000; Castillo and Vovlas 

2007; Subbotin et al. 2015). Then, nematode DNA extraction was carried out according to the 

procedure described by Huang and Yan (2017). A single nematode was chopped in a concave 

glass slide, and nematode suspension (10 µl) was pipetted into a 0.5-ml sterile Eppendorf tube 

containing 10 µl of worm lysis buffer solution [2 µl of 10x PCR buffer, 2 µl of Proteinase K 

(600 µg/ml), and 6 µl of double-distilled water]. Eppendorf tubes holding chopped nematodes 

and lysis solution were incubated at -20ºC for 30 mins followed by 65ºC for 1 hour and then 

95ºC for 10 mins. For each nematode genus, DNA was extracted individually from chopped 

pieces of single nematodes (n = 4 per field). The resulting DNA was then used immediately for 

PCR amplification using polymerase chain reaction (PCR) assays.  

Molecular identification of nematodes to species level was achieved either by using 

species-specific PCR or by direct sequencing method (Table 3.2). Species-specific PCR was 

used to identify the species of lesion, stubby root, and lance nematode while direct sequencing 

was used to identify pin, spiral, dagger, and stunt nematode species. Species specific PCR was 

performed using Pratylenchus neglectus (primer set, Pn-ITS-F2/Pn-ITS-R2) (Yan et al. 2013), P. 

scribneri (PsF7/PsR7) (Huang and Yan 2017), Paratrichodorus allius (PaF11/PaR12) (Huang et 

al. 2017), and Hoplolaimus stephanus (Hs-1f/Hs-1r) (Ma et al. 2011) specific primer sets 

targeting the ITS region of rDNA. For direct sequencing technique, nematode DNA from two 

genomic regions D2-D3 region of 28S rRNA and ITS region of rDNA were amplified. The D2-

D3 expansion region of 28S rRNA was amplified using primers D2A (5´-

ACAAGTACCGTGAGGGAAAGTTG-3´) and D3B (5´-TCGGAAGGAACCAGCTACTA-3´) 

(Courtright et al. 2000) while the ITS region of rDNA amplified by primer set, rDNA1 (5´-

ACGAGCCGAGTGATCCACCG-3´) and rDNA2 (5´-TTGATTACGTTCCCTGCCCTTT-3´) 



 

34 

 

 

(Cherry et al. 1997). For PCR reaction, template DNA (2 µl) was transferred into PCR tubes 

containing 18 µl of the PCR mixture consisting of 0.8 µl of each primer (10 µM), 0.4 µl dNTP, 

1.2 µl MgCl2, 4.0 µl 5x PCR buffer, and 0.15 U of Taq DNA Polymerase (Promega Corp., 

Madison, WI). PCR amplification was conducted with the following protocol: initial 

denaturation (94ºC for 3 min), followed by 40 cycles of denaturation at 94ºC for 45 s, annealing 

at 55ºC for 1 min, and extension at 72ºC for 1 min, and a final extension for 10 min at 72ºC. 

After amplification, 2 µl of PCR product was mixed with 3 µl of 2x loading dye and a total of 

5µl of the mixture was loaded in 2 % agarose gel for gel electrophoresis at 100 V for 25 min. 

The gel was visualized under UV light and images were taken using an AlphaImager Gel 

Documentation System (Proteinsimple Inc., Santa Clara, CA). After confirmation of the PCR 

amplification, amplified DNA was purified from the remaining PCR product using E.Z.N.A. 

Cycle Pure Kit (Omega BIO-TEK, Norcross, Georgia). Purified DNA was sent for DNA 

sequencing by GenScript (GenScript, Piscataway, NJ). DNA sequences were aligned using the 

sequence alignment tool, ClustalX, and the BLAST tool in NCBI (www.ncbi.nlm.nih.gov) was 

used to compare and identify similarity with the known nematode species sequences previously 

deposited in the GenBank database. 

Soil property analysis 

Soil property analysis was done for 115 soil samples, including 35 samples from 2014, 48 

samples from 2015 and 2016, and 32 samples from 2017. A sub-sample of 500 g was prepared 

from each composite sample and were sent to Agvise Laboratory (Northwood, ND, USA) for 

soil property analysis. The soil pH, % organic matter, % sand, % silt, % clay particles, soil 

nitrogen, soil phosphorus and soil potassium of each sample were determined and reported from 

the laboratory. 

http://www.ncbi.nlm.nih.gov/
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Data analysis 

 Ecological parameters including Frequency, mean population density, relative density, 

and highest density were calculated to determine the incidence and abundance of plant-parasitic 

nematode genera in pea fields (Chen et al. 2012). Frequency of a nematode genus was expressed 

as number of samples containing a genus, divided by total number of samples collected, 

multiplied by 100. Mean population density of a nematode genus was calculated as average 

population density of a nematode genus in 200 g of soil. Relative density was expressed as 

average number of individuals of a genus divided by average number of individuals of all 

nematode genera, multiplied by 100 (Chen et al. 2012). Highest density was defined as the 

highest value from the range of population density of a nematode genus. Also, the Bray-Curtis 

dissimilarity indices/coefficients (Bray and Curtis 1957) were calculated to determine the 

dissimilarity/similarity of total plant-parasitic nematode genus abundance between counties in a 

sampling year. The formula for calculation is as follows: 

Similarity (C2) = 2W/ A + B, 

Dissimilarity = 1- Similarity, 

Where C2 = similarity index with a range of 0 to 1. A value of zero means no similarity between 

two sites and one means complete similarity between two sites for nematode abundance. 

Similarly, dissimilarity values also range from 0 to 1. However, a value of zero means no 

dissimilarity between two sites and one means complete dissimilarity between two sites. 

A is the sum of nematode population densities of all the genera at site A, 

B is the sum of nematode population densities of all the genera at site B, and  

W is the sum of the lower nematode measures of each genus for the two compared sites.  
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The raw data for abundance of nematode genera were transformed using log (1+X) to 

maintain the homogeneity of variance between sites. Bray-Curtis dissimilarity matrix was 

generated based on dissimilarity indices. Then, hierarchical agglomerative cluster analysis using 

average linkage clustering algorithm (UPGMA) was done based on Bray-Curtis dissimilarity 

matrix for creating dendrogram to visualize the proximity of different sampled counties for 

nematode population structure using ‘hclust’ function of stats package of R (R Development 

Core Team 2017). Heat maps were also produced separately to visualize the abundance of each 

nematode genera in sampled counties for each sampling year using ‘heatmap.2’ function of 

gplots package of R (R Development Core Team 2017).  

 The Canonical Correspondence Analysis (CCA) was performed to determine the 

relationship between edaphic variables and abundance of nematode genera by using vegan 

package in R software (R Development Core Team 2017). Edaphic variables used for CCA 

included  soil pH, % organic matter, % sand, % silt, % clay, soil nitrogen (ppm), soil phosphorus 

(ppm) and soil potassium (ppm) whereas nematode variables consisted of different nematode 

genera. Nematode genus rarely occurring in less than 5 soil samples were discarded prior to 

analysis. During analysis, Monte Carlo Permutation tests with 999 unrestricted permutations 

were performed to assess the statistical significance of CCA model and axes. Both model and 

axes were considered significant if the permutation test value was below 0.05. Moreover, in 

order to evaluate which edaphic variables significantly contributed to composition of nematode 

community a Monte Carlo test was performed. A CCA bi plot was produced where edaphic 

variables were represented by arrows with names and nematode variables by first three letters of 

nematode genus name (Fig. 3.4).    
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Results 

Vermiform plant-parasitic nematodes in pea fields in North Dakota 

Genus and species 

Seven genera of plant-parasitic nematodes were detected in pea fields during the survey 

period. These genera include Paratylenchus (pin nematode), Tylenchorhunchus (stunt 

nematode), Pratylenchus (lesion nematode), Xiphinema (dagger nematode), Helicotylenchus 

(spiral nematode), Hoplolaimus (lance nematode), and Paratrichodorus (stubby root nematode). 

Based on the characteristics of DNA sequences, the species of pin, stunt, and spiral nematodes 

were identified as Paratylenchus nanus, Tylenchorhynchus annulatus, and Helicotylenchus 

digonicus, respectively (Table 3.2). The ITS region of pin nematodes showed 100% similarity to 

P. nanus upon sequence BLAST in NCBI (Table 3.2). Similarly, ITS region of stunt nematodes 

showed 99% affinity to T. annulatus (Table 3.2). The D2-D3 expansion region of spiral 

nematodes showed 99% identity to H. digonicus (Table 3.2). The species of lesion nematodes 

were identified as Pratylenchus neglectus and P. scribneri upon successful amplification of ITS 

region of rDNA with species specific primers Pn-ITS-F2/Pn-ITS-R2 (Yan et al., 2013) and 

PsF7/PsR7 (Huang and Yan 2017), respectively (Table 3.2). Lance nematodes and stubby root 

nematodes were identified as Hololaimus stephanus and Paratrichodorus allius, respectively 

upon positive amplification of ITS region of rDNA with species specific primers Hs-1f/Hs-1r 

(Ma et al. 2011) and PaF11/PaR12 (Huang et al. 2017), respectively (Table 3.2).  
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Table 3.2. Molecular identification methods, accession numbers (GenBank deposited and compared), E value, and percent 

homogeneity for plant-parasitic nematode species identified from pea fields in North Dakotaa  

Nematode group Identification 

method 

Nematode species Deposited 

accession no. 

Compared 

accession no. 

E value Homogeneity 

Pin Direct sequencing Paratylenchus 

nanus 

MH236098 KF242264 0.0 100 

Stunt Direct sequencing Tylenchorhynchus 

annulatus 

MH379768 KJ461572 0.0 99 

Spiral Direct sequencing Helicotylenchus 

digonicus 

MH444651 KM347963 0.0 99 

Lesion Species-specific 

PCR 

Pratylenchus 

neglectus 

- - - - 

 Species-specific 

PCR 

P. scribneri - - - - 

Lance Species-specific 

PCR 

Hoplolaimus 

stephanus 

- - - - 

Stubby root Species-specific 

PCR 

Paratrichodorus 

allius 

- - - - 

aDeposited accession numbers and compared accession numbers denote to the  distinct  identification  number of query sequence and 

the comparison sequence, respectively; E-value is the expect value and  homogeneity refers to the percent similarity between query  

sequence and comparison sequence upon sequence BLAST in the NCBI database.
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Frequencies and densities of PPN genera 

Paratylenchus were the most frequent nematodes with highest abundance in all years of 

the survey. They were identified in 100% of the samples in 2016 followed by 92% in 2017, 79% 

in 2014, and 58% in 2015 (Table 3.3). The abundance or mean population density of 

Paratylenchus for positive samples in survey years was between 470 to 1,557 individuals/ 200 g 

of soil (Table 3.3). However, across the survey period, population density of Paratylenchus 

ranged from 17 to 7,114 individuals/ 200 g of soil in positive samples (Table 3.3). In 2016 and 

2017, thirty four percent of the positive samples for Paratylenchus had higher nematode numbers 

than the mean population density of Paratylenchus in those years. Similarly, 32% and 30% of 

the positive samples were identified with higher nematode numbers than the average population 

density of Paratylenchus in 2014 and 2015, respectively. The contribution of Paratylenchus to 

plant-parasitic nematode communities in pea fields based on relative density was higher (59% to 

76%) than any other plant-parasitic nematodes detected (Table 3.3).  

Tylenchorhynchus were the second most frequent nematodes identified in all survey 

years. They were most frequent (78 to 80%) during 2016 and 2017 compared to other years: 40% 

and 30% for 2014 and 2015, respectively (Table 3.3). The abundance or mean population density 

of Tylenchorhynchus was highest during 2014 (261/ 200 g of soil) and lowest for 2015 (61/ 200 

g of soil) (Table 3.3). Nevertheless, the population density of this nematode ranged from 17 to 

1,980/ 200 g of soil across the survey. In general, 25% to 43% of the positive samples for 

Tylenchorhynchus had higher nematode numbers than the average population density of this 

nematode. Based on the relative density, Tylenchorhynchus contribution to PPN communities in 

field pea was second to Paratylenchus in most survey years (Table 3.3).  
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Helicotylenchus, Pratylenchus, and Xiphinema were the commonly detected genera of 

PPNs after Paratylenchus and Tylenchorhynchus during the survey. Helicotylenchus were 

common in 34% of the samples in 2017, followed by 23% in 2016, 22% in 2015, and 9% in 2014 

(Table 3.3). Density of Helicotylenchus ranged from 16 to 1,100/ 200 g of soil in positive 

samples. Pratylenchus were identified in 28% of the samples in 2017, followed by 23% in 2016, 

10% in 2014, and 2% in 2015 (Table 3.3). Density of this nematode was in range of 17 to 1,980/ 

200 g of soil. Xiphinema were detected in 23% to 24% of the samples in 2016 and 2017 while 

6% to 8% of the samples in 2014 and 2015 (Table 3.3). Density of Xiphinema reached as high as 

130/ 200 g of soil (Table 3.3).   

Rest of the plant parasitic nematodes: Hoplolaimus and Paratrichodorus nematodes were 

detected least frequently and not observed in all the survey years, contributing least to nematode 

faunae in field peas. Hoplolaimus was observed only during 2016 in 11% of the samples with a 

density reaching up to 106/ 200 g of soil (Table 3.3). Likewise, Paratrichodorus was observed 

only in 1 of 44 samples during 2016 at a density up to 22/ 200 g soil (Table 3.3).  
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Table 3.3. Frequencies and densities of nematode genera during sampling years, 2014 to 2017 in 

pea fields of North Dakotaa 

Nematode genus No. of 

positive 
samples 

Frequency (%) Mean population 

density or abundance 
(#/200 g) 

Relative density 

(%) 

Highest population density 

(#/200 g) 

2014 (N = 58) 

 

Paratylenchus 46 79.31 908.69 68.69 6,840 

Tylenchorhynchus 23 39.65 260.86 19.71 1,980 

Pratylenchus 6 10.34 43.33 3.27 100 

Xiphinema 5 8.60 26.00 1.96 60 

Helicotylenchus 5 8.62 64.00 4.83 120 

2015 (N = 91) 
 

Paratylenchus 53 58.24 470.45 73.16 4,294 

Tylenchorhynchus 27 29.67 60.59 9.42 207 

Helicotylenchus 20 21.97 35.80 5.56 173 

Xiphinema 9 9.89 22.66 3.52 52 

Pratylenchus 2 2.19 53.50 8.32 88 

2016 (N = 44) 

 
Paratylenchus 44 100.00 1557.52 76.22 7,114 

Tylenchorhynchus 35 79.50 149.22 7.30 685 

Helicotylenchus 10 22.70 144.10 7.05 739 

Pratylenchus 10 22.70 104.50 5.11 559 

Xiphinema 10 22.70 24.70 1.20 70 

Hoplolaimus 5 11.40 41.20 2.01 106 

Paratrichodorus 1 2.30 22.00 1.07 22 

2017 (N = 50) 

 

Paratylenchus 46 92 835.02 58.80 3,666 

Tylenchorhynchus 39 78 114.25 8.02 780 

Pratylenchus 14 28 223.64 15.77 1,980 

Xiphinema 12 24 40.50 2.88 130 

Helicotylenchus 27 34 205.52 14.50 1,100 

All years (N = 243) 
 

Paratylenchus 189 77.77 918.91 64.58 7,114 

Tylenchorhynchus 124 51.02 139.63 9.81 1,980 

Helicotylenchus 62 25.51 129.45 9.09 1,110 

Xiphinema 36 14.81 29.63 2.08 130 

Pratylenchus 32 13.11 141.9 9.97 1,980 

Hoplolaimus 5 2.05 41.20 2.89 106 

Paratrichodorus 1 0.41 22 1.54 22 
aFrequency = (number of samples positive for a genus) / (total number of samples collected during that period) x 100; Mean population density / 
abundance = average population density of a genus in 200 g of soil; Relative density = (Mean population density of a genus) / (sum of measures 

of mean population densities of all genera) x 100; Highest density = highest value from the range of population density of a nematode genus 

(Chen et al., 2012).  
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Nematode distribution and abundance in counties over the four years survey 

Paratylenchus were widely distributed in all sampled counties (N=16) followed by 

Tylenchorhynchus (15), Helicotylenchus (13), Pratylenchus (12), Xiphinema (11), Hoplolaimus 

(2), and Paratrichodorus (1) (Fig. 2.2). The heatmap shows the high abundance of 

Paratylenchus and Tylenchorhynchus nematodes in most of the sampled counties (Fig. 2.2). 

Helicotylenchus were detected at higher densities in Mountrail, Sheridan, Bottineau, and Ward 

County (Fig. 2.2). The abundance of Pratylenchus were higher in counties such as Bottineau, 

Wells, and McHenry (Fig. 2.2). Among the commonly identified genera, Xiphinema were 

present at lower densities in all the detected counties. Similarly, rarely detected nematodes, 

Hoplolaimus and Paratrichodorus were also present at lower densities in the detected counties. 

Hoplolaimus were found in Ward and McHenry County whereas Paratrichodorus in only Ward 

County (Fig. 2.2). The most nematode genera (7) were identified in Ward County (Fig. 2.2). 

There was an average detection of five nematode genera in all surveyed counties. Counties of 

Bottineau, Divide, McHenry, McKenzie, McLean, Mountrail, Sheridan, Wells and Ward had five 

or more nematode genera detected. 

Sampled counties were grouped into clusters in the dendrogram based on similarity for 

type and abundance of PPN genera. A cut-off was arbitrarily determined so that counties with 

higher affinity for PPN genera could be considered as a cluster (cut line not physically drawn in 

dendrograms of Fig. 3.3) (Jackson et al. 2010). Three major clusters were generated in 

dendrogram at a dissimilarity coefficient of 0.5 (Fig. 3.3). The first cluster in the dendrogram had 

three counties which shared approximately 55% similarity for PPNs genera (Fig. 3.3). The 

second cluster was the largest with nine counties and they had approximately 70% affinity for 

genera of PPNs (Fig. 3.3). Moreover, there were three sub-groups in this largest cluster and the 
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counties in sub-group of third cluster, Bottineau, Wells, Sheridan, McLean, and Mountrail, had 

highest level of similarity (approximately 93 to 95%) for type and abundance of PPNs genera 

(Fig. 3.3). The third and last cluster had four counties with approximately 70% identity for PPNs 

genera (Fig. 3.3).  
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Fig. 3.2. Heatmap showing the abundance of individual plant-parasitic nematode genera in 

different sampled counties during entire survey period. Dendrogram on the top of heat map 

represents the clustering of  nematode genera based on their abundance in sampled counties. On 

the right hand side and in the  bottom of the heat maps are the names of the counties sampled and 

the genera of nematodes found in the sampling period. Color key indicates the normalized 

nematode abundances in 200 g of soil. Dark red color represents the highest abundance of a 

genera in the corresponding county and with decreasing nematode number the color intensity 

decreases to light whittish yellow color indicating absence of a nematode genus. 
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Fig. 3.3. Dendrogram showing clustering of counties based on Bray-Curtis dissimilarity values 

for type and abundance of nematode genera in each of the sampled counties during the entire 

survey period. Height bar on the left hand side of each dendrogram represents dissimilarity 

values from 0 to 1. A value of 0 means no dissimilarity or complete similarity between two 

compared sites (counties or group of counties) and 1 means complete dissimilarity or no 

similarity between two compared sites.  
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Relationship of nematode genera abundance with edaphic variables 

Soil texture analysis identified five classes of soils in assayed pea field samples: clay, 

clay loam, loam, sandy loam and sandy clay loam. The predominant type of soil were sandy 

loam, sandy clay loam and loam. Soil pH ranged from 4.5 to 8.4 where 14.0% of the assayed soil 

samples had pH less than 5.5, 41.7% had between 5.5 to 7.0 and 44.3% had more than 7.0. 

Organic matter contents in the tested soil samples had a range of 1.1 to 6.3. The percentage of 

sand, silt, and clay ranged from 13 to 84%, 10 to 59%, and 6 to 42%, respectively.  

Canonical correspondence analysis was used to measure the relative importance of 

edaphic factors in explaining the variation in nematode genera abundance. Edaphic variables 

considered in this study explained 19% of total variation in nematode genus abundance whereas 

remaining 81% of the variation remained unexplainable. The first two canonical axes were 

statistically significant (CCA1, P = 0.001; CCA2, P = 0.02) and the cumulative percentage of 

variance explained by these axes in the nematode genera-soil data was 83.8%. Among two axis, 

the first axis accounted for 56.1 % of the variance and the second axis accounted for 27.7% of 

the variance (Fig. 3.4). Two edaphic variables, % sand (P = 0.001), and pH (P = 0.001) were 

only significantly related to the abundance of PPNs genera in field pea soil which is also 

indicated by the length of  arrows (longer) pointing these variables in the CCA bi-plot (Fig. 3.4). 

In the CCA bi-plot, % sand was related to positive side of axis 2 while pH was related to positive 

side of axis 1 (Fig. 3.4). There was a positive correlation for the abundance of nematode genera 

such as Pratylenchus, Tylenchorhynchus and Xiphinema with sand. Similarly, Helicotylenchus 

and Tylenchorhynchus were positively correlated with pH. However, densities of Paratylenchus 

were negatively associated with sand and pH (Fig. 3.4). 
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Fig. 3.4. Canonical correspondence analysis (CCA) bi-plot showing the relationship between 

nematode genera abundance and soil variables. Soil variables are represented by blue colored 

arrows. Nematode genera are represented by first three letters of genera name with red color: 

Pratylenchus (Pra), Tylenchorhynchus (Tyl), Xiphinema (Xip), Helicotylenchus (Hel), 

Paratylenchus (Par), and Hoplolaimus (Hop). The first axis (CCA1) explains 56.1% of the 

variance while the second axis (CCA2) explains 27.6% of the variance. 

Discussion  

This is the first comprehensive work done to study the distribution, occurrence, and 

abundance of PPNs in pea fields in North Dakota, principal producer of field pea in the U.S. A 

total of seven genera of PPNs were identified in this study, encompassing the endoparasite 

(Pratylenchus), ectoparasites (Paratylenchus, Tylenchorhynchus, Helicotylenchus, Xiphinema, 

Paratrichodorus) and semi-endoparasite (Hoplolaimus). Nematode genera identified in this 

study are also known to be pathogenic to peas elsewhere in the world (Goodey et al. 1965; Green 
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1985; Riga et al. 2008). In the current work, seven species were characterized for six genera, 

including Pratylenchus neglectus, P. scribneri, Paratylenchus nanus, Tylenchorhynchus 

annulatus, Helicotylenchus digonicus, Hoplolaimus stephanus, and Paratrichodorus allius. The 

pathogenicity of most of the identified species is unknown to field pea, however, P. neglectus 

has been previously reported to be economically important to field pea in the Pacific Northwest 

region of the U.S. (Riga et al. 2008). In North Dakota, some of the species identified during this 

survey have been reported as important pathogens in crops such as wheat, soybean, and potato. 

(Yan et al. 2016a; 2016b; 2016c). However, to our knowledge, P. nanus, H. stephanus, and P. 

allius identified during this survey are the first detection in field pea in the U.S. while all the 

identified species are the first record in pea fields in North Dakota. Moreover, stunt nematodes 

identified in this study, Tylenchorhynchus annulatus (accession number MH379668) is the first 

report in the state of North Dakota.  

Pin nematodes, Paratylenchus were identified as the dominant plant-parasitic nematodes 

in terms of frequency and density in pea fields. The mean population density and incidence of 

these nematodes reached as high as 1,558/ 200 g of soil and 100%, respectively. In previously 

conducted surveys in Canadian pea fields, Paratylenchus were reported as predominant 

nematodes, however, the incidence was comparatively lesser than in present survey, 57% 

incidence in Alberta (Hawn 1973) and 55% in Eastern Ontario (Sanwal 1971). In general, 

Paratylenchus nematodes are considered as minor pathogens (Berry and Coop 2000), however, 

at higher densities and in the presence of susceptible host they can be damaging (Coursen and 

Jenkins 1958; Braun and Lownsbery 1975). For instance, in Missouri, soybean yields were 

negatively correlated with pre-plant P. projectus populations of approximately 400/ 200 g of soil 

(Niblack 1992). Moreover, in a previous greenhouse assay, P. hamatus was reported to impact 



 

49 

 

 

growth of field pea cultivars, Columbian and Small Sieve at the initial density of 400/ 200 g of 

soil (Riga et al. 2008). In the absence of ND region specific economic damage threshold for 

Paratylenchus nematodes, it is difficult to determine what population levels are damaging in 

field pea, however based on previous studies Paratylenchus population at higher densities should 

be considered seriously. In a preliminary greenhouse study, P. nanus identified in this survey 

increased by 10-fold and 5-fold in Columbian and Cooper cultivars, respectively (Upadhaya et 

al. unpublished). Hence, further research will be needed to determine the pathogenicity of this 

species to field pea cultivars.  

Tylenchorhynchus nematodes, with huge potential to cause economic losses in crops, 

were the second most prevailing nematodes. Tylenchornhynchus nematodes were found in 30 to 

78% of the samples with mean population density reaching up to 261/ 200 g of soil and a high 

density up to 1,980/200 g of soil. Previously, high incidence of the Tylenchorhynchus were also 

reported in pea fields in Eastern Ontario, Canada (80%) (Sanwal 1971) and Alberta, Canada 

(68%) (Hawn 1973). In addition, Tylenchorhynchus nematodes were also frequent (73%) in 

Syrian legume crops (Greco et al. 1984). Although, Tylenchorhynchus nematodes were present at 

higher densities in present survey the level of risk posed by them to field pea is unknown. Stunt 

nematode species, T. annulatus, identified in this survey has been previously reported in wheat 

and corn in Idaho State, U.S (Hafez et al. 2010) while in legumes like pigeon pea and cowpea in 

Trindad (Bala 1984). This suggests that this species is associated with both cereal crops and 

leguminous crops, and this justifies the presence of T. annulatus in field peas in this region 

where cereals and legumes are frequently grown in rotation.     

Helicotylenchus and Pratylenchus nematodes which are considered to be economically 

important nematodes in many crops were relatively less frequent compared to Paratylenchus and 
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Tylenchorhynchus. Moreover, if compared to a similar survey in Eastern Ontario, Canada, with 

90% incidence of Helicotylenchus and 70%  occurrence of Pratylenchus (Sanwal 1971), 

detection frequency of  these nematodes (<35 %) in the present survey can be considered low. 

However, during survey years, mean population density of Helicotylenchus and Pratylenchus 

reached as high as 206 and 224/ 200 g of soil, respectively. Moreover, some fields were also 

identified with very high density of Helicotylenchus nematodes reaching up to 1,100/200 g of 

soil and Pratylenchus nematodes up to 1,980/ 200 g of soil. Considering these facts, both of 

these nematodes can be considered important to field pea in North Dakota. Previously, species of 

Helicotylenchus such as H. vulgaris (Green and Dennis 1981) and H. dihystera (Sharma et al. 

1993) were reported to be pathogens of pea crop in England and Brazil, respectively. However, 

in field pea in North Dakota different species of Helicotylenchus, H. digonicus, was identified. 

This particular species has been reported in pea (Sanwal 1971) and forage legumes like alfa 

alfalfa and clover (Townshed 1973).  Species of Pratylenchus, P. neglectus identified in present 

study, has previously reported as pathogen of field pea based on greenhouse assays and field 

evaluations (Riga et al. 2008). In North Dakota, this species has been previously reported in 

wheat crop (Yan et al. 2016a). In a preliminary greenhouse assays, P. neglectus from pea fields, 

were also observed to successfully reproduce in field pea cultivars such as Columbian and 

Arcadia, multiplying up to six times at the end of a crop cycle (Upadhaya et al. unpublished).          

Xiphinema nematodes with several species known to vector plant viruses, were detected 

at lower average densities compared to most detected nematodes during this survey. The 

densities of Xiphinema with more than 100 nematodes/100 cm3 soil has been shown to cause 

considerable losses to some crops in organically farmed fields (Chen et al. 2012). In our survey, 

the highest density of Xiphinema was 130/ 200 g of soil in a field in Williams County. Several 
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species of Xiphinema are known to vector different plant viruses (Brown et al. 1995), however, 

there are no available reports of viral transmission by this nematode in field pea in the U.S. 

Paratrichodorus, which can also transmit plant virus, was detected only once in Ward County 

during 2016 at a low density of 22/ 200 g soil. P. allius identified in this study, is commonly 

known to transmit Tobacco rattle virus (TRV) causing corky ringspot disease of potato in North 

Dakota (Yan et al. 2016b). Hoplolaimus nematodes, responsible for crop losses in the U.S., were 

detected at lower incidence level and in only one of the survey years. The species of 

Hoplolaimus, H. stephanus identified in pea crop, was previously reported in soybean crop in 

North Dakota (Yan et al. 2016c).  

Paratylenchus and Tylenchorhynchus nematodes were widespread in sampled counties. 

Helicotylenchus, Pratylenchus, and Xiphinema occurred approximately in one-third of the 

sampled counties while others were detected rarely in one or two counties. Counties such as 

Cavalier, Pembina, and Ramsey were separately clustered together because only three genera 

were identified in each of these counties as well as the densities of dominant nematodes such as 

Paratylenchus and Tylenchorhynchus were lower. Similarly, a separate cluster was generated for 

Counties like Divide, Williams, Burke, and Foster since they had higher densities of 

Paratylenchus but lower densities of other genera. Remaining nine counties were clustered 

together because they had almost comparable densities for five commonly identified nematode 

genera in this survey. In North Dakota, legumes such as field peas are frequently grown in 

rotation with cereal crops (McPhee 2003). However, due to absence of information on some 

other factors affecting nematode community in fields it is hard to explain about variability in 

nematode type and number among the counties. Previously, Chen et al. (2012) reported higher 

similarity for nematode abundance among the physically closer regions. However, in this survey 
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distantly located counties such as Bottineau, located in northern side of the state, and Wells, in 

central region, were observed to have more than 95% similarity for type and densities of 

nematode genera.  

The role of soil environmental factors comes second to host plant in determining the 

nematode population dynamics (Norton 1989; Cadet et al. 2004). Previously, researchers 

identified edaphic factors such as soil texture, organic matter, pH (Norton et al. 1971; Kimpinski 

and Willis 1981), and nutrients (Cadet et al. 2004) as important variables influencing the 

densities of nematodes in soil. Although, soil characteristics influence the densities of PPNs, 

selected soil variables in this study were successful in explaining 19% of total variance in 

abundance of nematode genera whereas huge amount of variance remained unexplainable. This 

suggests that besides the selected explanatory variables, some other factors could be crucial for 

the nematode genera abundance. Hence, identification of such factors is indispensable to 

understand more about population dynamics of PPN genera in field peas. In Northern Great 

Plains, factors such as type of farming practice, cultivar type, and climatic variables could add to 

variation in nematode communities.   

In general, there is some agreement that coarse textured soil favor the reproduction and 

movement of nematodes in soil (Koenning et al. 1996). In line with this fact, in the current work, 

% sand was statistically associated with the abundance of nematode genera. We observed the 

positive correlation of Pratylenchus, Tylenchorhynchus, and Xiphinema numbers with % sand. 

Similar to our observation, densities of Pratylenchus and Xiphinema were positively correlated 

with % sand in sugarcane fields in South Africa (Cadet et al. 2004). In current work, 

Helicotylenchus and Tylenchorhynchus were also positively correlated with pH. Likewise, earlier 

works also have reported similar correlation of Helicotylenchus (Cadet et al. 2004) and 
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Tylenchorhnychus with soil pH (Schmitt 1969). In the present study, smaller sized nematodes, 

Paratylenchus were only negatively correlated with % sand and pH. Similar to this observation, 

Thomas (1980) also reported the negative correlation between numbers of P. projectus and soil 

pH. Results indicating negative correlation of smaller sized nematodes while positive correlation 

of comparatively larger sized nematodes with % sand warrant future studies on finding the role 

of particle sizes to movement, feeding, and reproduction of different sized nematodes.  

This study for the first time identified the genera and species of PPNs in pea fields of 

North Dakota, a major field pea production state, through a multi-year survey. Incidence and 

population density of nematodes varied among the genus, counties, and samples. The mean 

population density of some economically important genera were lower, however, some field 

samples were identified with higher densities of those nematodes. Higher incidence and 

abundance of some genera in survey years warrants further research to evaluate the damage 

potential and develop damage threshold level of these nematode populations in field pea. 

Description on nematodes associated with field pea, their incidence and population density in 

this region can also serve as important guideline to other field pea producing states in the 

northern region of the U.S. Furthermore, results of relationship between soil properties and 

genera abundance demonstrated that sand and pH are the important soil parameters describing 

variation in nematode population.   
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CHAPTER 4. REPRODUCTION AND EFFECT OF PIN NEMATODE, 

PARATYLENCHUS NANUS ON SELECTED FIELD PEA CULTIVARS 

Abstract 

Greenhouse experiments were conducted to determine reproduction ability and effect of 

Paratylenchus nanus from North Dakota on field pea cultivars. Reproduction of P. nanus was 

determined on seven field pea cultivars using naturally infested field soils at low (1,500/kg of 

soil) and high (4,500/ kg soil) initial pin nematode densities. Nematode effect was evaluated at 

4,500 P. nanus/kg of soil by artificially inoculating P. nanus on six field pea cultivars. 

Reproduction of P. nanus was observed higher at low density compared to high density. At low 

density, Reproductive Factor (RF) ranged from 1.10 to 11.20. However, at high density, RF 

ranged from 1.20 to 2.50. The results with high density in naturally infested soil were 

comparable to those from artificially inoculated experiment at the same level. Moreover, in first 

repetition of effect experiment, P. nanus caused reduction (P < 0.05) of plant height in Arcadia, 

Cruiser, and Bridger and seed yield in Arcadia and Cruiser. Plant height and yield were reduced 

most in Arcadia by 18 and 28%, respectively. In second repetition, plant height, shoot weight, 

and yield were significantly reduced for most tested cultivars. Plant height and shoot weight 

reductions were the highest in Arcadia by 37% and 53%, respectively, while yield was reduced 

most by 40% in Columbia. This research shows the damage potential of P. nanus on field peas, 

and is the important step towards developing effective management strategies to improve the 

productivity of this leguminous crop.  

Introduction 

Pin nematodes, Paratylenchus spp. are smaller plant parasitic nematodes (Raski 1975; 

Geraert 1965) associated with diverse plant species worldwide (Van Den Berg et al. 2014). They 



 

62 

 

 

are migratory in nature and feed ectoparasitically in root epidermis, root hairs (Rhoades and 

Linford 1961) and as deep as root cortex (Braun and Lownsbery 1975). Paratylenchus spp. can 

parasitize on plant roots and cause detrimental effect on plant growth: P. hamatus on wheat, pea 

(Riga et al. 2008), and celery (Lownsbery et al. 1952); P. neoambycephalus on myrobalan plum 

seedlings (Braun and Lownsberry 1975), apple and apricot seedlings (Fisher 1967); P. projectus 

on tobacco and tall fescue (Coursen and Jenkins 1958); and P. nanus on perennial rye grass (Bell 

1999). Soil surveys in pea fields of North Dakota from 2014 to 2017 identified Paratylenchus 

spp. as the dominant plant parasitic nematodes based on the frequency of occurrence and 

population densities (Upadhaya et al. 2018, unpublished). The average population density of 

Paratylenchus spp. was 4,595/ kg of soil during 2014 to 2017 survey period. Pin nematode 

populations on some farms of North Dakota were identified as P. nanus based on the 

morphometric and molecular examinations (Upadhaya et al. 2016). 

Paratylenchus nanus Cobb, 1923 was reported in Europe (Brzeski 1995), North America 

(Raski 1975), Australia (Fisher 1966), Africa (Van den Berg et al. 2014), Asia (Esmaeili and 

Heydari 2017), and even in Antartica (Ryss et al. 2005). P. nanus has a strikingly different 

Juvenile-4 stage, devoid of a prominent stylet, while other larval stages have a clear feeding 

stylet (Ghaderi et al. 2014). J-4 is a non-feeding resistant stage like in some other Paratylenchus 

spp. which can be explained as a form of self-regulation to unfavorable environmental conditions 

(Bell and Watson 2001a; Rhoades and Linford 1961). P. nanus is known to be associated with 

grasses, fruits, vegetables, and cereals (Fisher 1965; Raski 1975; Knight et al. 1997; Bell and 

Watson 2001a; Esmaeili and Heydari 2017). Grasses such as Italian rye grass, perennial rye 

grass, and cocksfoot are good hosts of P. nanus (Bell and Watson 2001b). Moreover, apple and 

apricot seedlings were known to be hosts of P. nanus population in Australia (Fisher 1965). 
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Previous studies have shown the negative effect of P. nanus on grasses and fruits but their 

impact on food legumes is largely unknown.  

North Dakota is the major producer of field peas in the United States (USDA-NASS 

2018). Many plant-parasitic nematodes are associated with field peas in ND, and pin nematodes 

are the common and dominant nematodes which were identified as Paratylenchus nanus 

(Upadhaya et al. 2016). However, the role of pin nematode populations to field peas in North 

Dakota is not known. Hence, the objectives of this study were to 1) evaluate the reproduction 

ability of P. nanus in field pea cultivars, using naturally infested pea field soil in greenhouse 

conditions and 2) evaluate the effect of P. nanus on plant growth and yield of field pea cultivars 

through artificial inoculation in greenhouse conditions.  

Materials and Methods 

Pin nematode species identification and confirmation 

Morphological identification 

In fall of 2015, twenty-seven soil samples were collected from eleven pea fields in North 

Dakota. Sixty-three percent of these soil samples had only pin nematodes as the plant-parasitic 

nematodes (Upadhaya et al. 2018, unpublished). Morphometric measurements of pin nematode 

adult females (total: n = 32) from four pea fields, in North Dakota were taken. Morphological 

measurements included total body length (µm), stylet length (µm), esophagus length (µm), body 

diameter (µm), tail length (µm), V% (vulva position from anterior end in % of body length), a 

[body length/greatest body width], b [body length/ distance from anterior end to junction of 

esophagus and intestine], and c [body length/ tail length] (Thorne and Smolik 1971; Raski 1975). 

Nematodes were kept in glass slides under a modular microscope (Zeiss Axio Scope.A1; Zeiss, 

Oberkochen, Germany) and images were taken at different magnifications (200X, 400X and 
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800X) depending upon the body parts. Measurements were made on those images using a 

software program, ZEN 2 lite (Carl Zeiss Microscopy, Germany). These measurements were 

then compared with those of pin nematode species in published papers (Thorne and Smolik 

1971; Raski 1975).  

Molecular confirmation 

In order to confirm the species identity of the pin nematodes, molecular examination was 

also performed. Adult female pin nematodes were handpicked based on their morphological 

features (Raski 1975). A single nematode was chopped in a concave glass slide and nematode 

suspension (10 µl) was pipetted into a 0.5-ml sterile Eppendorf tube containing 10 µl of worm 

lysis buffer solution [2 µl of 10x PCR buffer, 2 µl of Proteinase K (600 µg/ml), and 6 µl of 

double-distilled water]. Tubes containing chopped nematodes and lysis solution were incubated 

at -20ºC for 30 mins followed by 65ºC for 1 hour and then 95ºC for 10 min (Huang and Yan 

2017). DNA was extracted individually from chopped pieces of single nematodes (n = 4).  

The ITS region of rDNA was amplified by a universal primer set, rDNA1 (5´-

ACGAGCCGAGTGATCCACCG-3´) and rDNA2 (5´-TTGATTACGTTCCCTGCCCTTT-3´) 

(Cherry et al. 1997). Template DNA (2 µl) was transferred into 18 µl of the polymerase chain 

reaction (PCR) mixture consisting of 0.8 µl of each primer (10 µM), 0.4 µl dNTP, 1.2 µl MgCl2, 

4.0 µl 5x PCR buffer, 0.15 U of Taq DNA Polymerase (Promega Corp., Madison, WI). PCR 

cycle conditions consisted of initial denaturation (94ºC for 3 min), followed by 40 cycles of 

denaturation at 94ºC for 45 s, annealing at 55ºC for 1 min, and extension at 72ºC for 1 min, and a 

final extension for at 72ºC for 10 min. After completion of PCR cycles, 2 µl of PCR product was 

mixed with 3 µl of 2x loading dye and a total of 5µl of the mixture was loaded in 2 % agarose 

gel. Gel electrophoresis was done at 100 V for 25 min. The gel was visualized under UV light 
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and images were taken using an AlphaImager Gel Documentation System (Proteinsimple Inc., 

Santa Clara, CA). After confirmation of the PCR amplification, amplified DNA was purified 

from the remaining PCR product using E.Z.N.A. Cycle Pure Kit (Omega BIO-TEK, Norcross, 

Georgia). Purified DNA was sent for DNA sequencing by GenScript (GenScript, Piscataway, 

NJ). DNA sequences were aligned using sequence alignment tool, ClustalX, and the BLAST tool 

in NCBI (www.ncbi.nlm.nih.gov) was used to compare and identify similarity with the known 

nematode species sequences previously deposited in the GenBank database. 

Reproduction ability of P. nanus using infested field soil 

Soil collection and processing 

Naturally infested soil with pin nematode, P. nanus was collected from a pea field to 

determine the reproduction ability of this nematode using field pea cultivars in greenhouse 

conditions. Infested soil was mixed thoroughly for hours so that uniformity for initial nematode 

densities could be maintained in each experimental pot or unit. Three sub-samples of 0.2 kg were 

prepared from the mixed soil. Average of nematode densities in those sub-samples was 

determined after nematode extraction using Sugar Centrifugal-floatation technique (Jenkins 

1964). The average nematode densities per kg of soil were calculated which were used as initial 

nematode densities for reproduction ability experiments. 

Greenhouse experiments 

Two greenhouse experiments were conducted using naturally infested soils at different 

starting densities of P. nanus with 16 hours day light and average temperature of 22 oC. In the 

first experiment the initial density of P. nanus was low (1,500/ kg of soil) while in the second 

experiment it was high (4,500/ kg of soil). Both of these experiments were repeated (Table 4.1).  

http://www.ncbi.nlm.nih.gov/
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Table 4.1. Experimental details (experiment type, soil, initial population densities and 

experimental period) for pin nematode, P. nanus reproduction and effect in greenhouse 

experiments. 

aIn reproduction ability experiments, the reproductive factor (final population/ initial population 

per kg of soil) of P. nanus was calculated. In effect experiments, plant growth parameters (plant 

height, dry root weights, and dry shoot weights), yield and final nematode populations were 

recorded. 
bNaturally infested soil indicates the use of field soil positive for P. nanus  as inoculum in 

reproduction experiments. On the other hand, nematodes were artificially inoculated to sterilized 

soil, which was then used as inoculum for effect experiments. 
cPi refers to initial population of P. nanus at the time of planting. 

A total of seven field pea cultivars: Columbia, Cooper, Bridger, Arcadia, Cruiser, 

Aragorn, and Salamanca were used in these experiments. Seeds of these cultivars were pre-

germinated for 4-5 days by placing them in petri-dishes with wet paper. Clay pots (15 cm x 15 

cm) were filled with naturally infested soil with the initial nematode populations as explained 

earlier. Each pot with soil was fertilized with one tea spoon of slow release formulation 14-14-16 

NPK and mixed thoroughly. After fertilizer application, a single pre-germinated seed of a 

cultivar was placed at a depth of 3-4 cm in each of the filled pots. Each cultivar was replicated 

four times during both experiments. Experiments were completely randomized in blocks and 

placed in greenhouse benches. Plants were allowed to grow in the greenhouse for 12 weeks and 

the experiments were terminated on 13th week. Plant tops were cut near to soil surface and the 

Experiment 

typea 

Soilb Level Pi/ kg 

of soilc 

Repetition 

(trial) 

Planting 

date 

Harvesting 

date 

Reproduction 

ability 

Naturally 

infested soil 

Low  1,500  1 4/23/2016 7/19/2016 

 1,500  2 12/29/2016 3/24/2017 

High  4,500  1 4/23/2016 7/19/2016 

 4,500  2 12/29/2016 3/24/2017 

       

Nematode 

effect 

Sterilized soil High  4,500  1 3/18/2016 5/31/2016 

 4,500  2 12/5/2016 2/19/2017 
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soils with roots were placed in plastic bags which were stored at 4oC until nematode extractions 

within a week. 

Nematode extraction 

Each soil plus root sample collected from a single pot with a plant was placed in a tray 

(36 cm x 27 cm), and mixed thoroughly keeping the roots separately. A sub-sample of 0.2 kg 

was taken from each sample from which nematodes were extracted using Sugar Centrifugal-

floatation technique (Jenkins 1964). During extraction process roots were also rinsed with water 

to get all the nematodes from the soil around the roots. Nematodes were collected in 20 to 25 ml 

tap water in 50 ml suspension tube. All the P. nanus juvenile-4 without prominent stylet and 

other life stages with stylet were counted together under an inverted transmitted light microscope 

at 100X magnification. (Zeiss Axiovert 25, Carl Zeiss Microscopy, NY, USA). Finally, number 

of P. nanus nematodes was expressed as total number of individuals in 1 kg of soil.  

Reproductive factor and ratings 

Nematode reproductive factor (RF) on each experimental unit, individual pot with a pea 

plant, was calculated by dividing the final population by initial population of P. nanus in kg of 

soil. Average RF of nematodes on a treatment, cultivar, is a mean RF of four replications of each 

cultivar. In order to determine the preference of vermiform nematode on pulse crops including 

peas, Hajihassani et al. (2016) have used four host groups: non-host (RF < 1), poor host (RF = 1 

to 2), good host (RF = 2 to 4), and excellent host (RF > 4). In this study, four 

susceptible/resistant groups were designated to simplify the interpretation of reproductive factor 

on different cultivars: Resistance (RF = 0 to 0.9), moderately resistance (RF = 1.0 to 1.9), 

moderately susceptible (RF = 2.0 to 3.9) and susceptible (RF = 4). 
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Data analysis 

Levene’s test of homogeneity of variance was performed using PROC GLM of SAS to 

determine whether the data from repeated trials could be combined for further analysis (SAS 

Institute Inc., Cary, NC). Repeated trials for both low and high nematode densities were 

confirmed to be homogenous (P > 0.05) and therefore combined analysis on reproductive factors 

of P. nanus were performed using PROC GLM of SAS 9.4. Mean separations were performed 

using F-protected least significant difference (LSD) at P < 0.05 to determine the significant 

differences in reproductive factors of nematodes in tested pea cultivars. Furthermore, simple t-

test was performed to compare reproductive factors of nematodes across cultivars in two 

experiments with different initial densities at 95% confidence interval using SAS 9.4. 

Effect of pin nematodes on plant growth and yield 

Inoculum preparation and experiment set up 

 P. nanus population collected from the same field as described earlier in reproduction 

ability experiment, were reared and increased on field pea cultivars Columbian and Cooper in 

greenhouse conditions. After 11-week incubation period, P. nanus was extracted from soil with 

plants using a Whitehead tray method (Whitehead and Hemming 1965). Whitehead tray method 

was preferred for extracting nematodes to be used as inoculum because extracted nematodes do 

not suffer stress like those obtained by Sugar Centrifugal-floatation technique, which involves 

use of sugar and multiple centrifugations steps. After nematode extraction, P. nanus population 

was concentrated to 300 nematodes/ ml with all vermiform life stages and stored at 4oC as 

inoculum. 
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Two rounds of experiments were conducted to determine the effect of P. nanus on 

growth and yield of field pea cultivars using sterilized soil. Field pea cultivars used in these 

experiments are described in detail in Table 4.2.  

Table 4.2. Field pea cultivars used in this study.  

Genotypes Market 

classa 

Days to 

maturity 

Originatorb  Growing regionsc 

Columbia Green Medium Campbell Soup Co. PNW (ID, WA) 

Cooper Green Late Innoseeds B.V. Co. ND 

Arcadia Green Early/Medium Lantmannen SW Seed 

Co. 

MT, ND 

Cruiser Green Medium ProGene PNW (WA), MT, ND 

Aragorn Green Early ProGene PNW (ID, WA), MT, 

ND 

Bridger Yellow Early Legume Logic MT, ND, SD 

Salamanca Yellow Medium Legume Logic ND  
aGreen and yellow field pea cultivars are categorized based on seed cotyledon color. 
bOriginator refers to the developer of those field pea cultivars. 
cPNW refers to the states of Pacific North West region (Washington, Idaho, and Oregon). ND, 

MT and SD indicates the states of North Dakota, Montana, and South Dakota, respectively. 

These data were obtained from field pea varietal trial extension bulletins from North Dakota 

State University (Kandel et al. 2016), South Dakota State University (Graham et al. 2017), 

Montana State University (Mohammed and Chen 2017), University of Idaho, Washington State 

University, and USDA-ARS Pullman, Washington (USA Dry Pea and Lentil Council 2012). 

Clay pots were filled with 1 kg of sterilized soil and one tea spoon of slow release 

formulation 14-14-14 N-P-K was put in each pot and mixed well. A single pre-germinated seed 

of a field pea cultivar was placed in the center of a filled pot at 3-4 cm depth. Nematode 

suspension of 15 ml, approximately 4,500 P. nanus/ kg of soil, were pipetted in holes around the 

pre-germinated seeds to facilitate nematode invasion. Holes were covered with appropriate 

amounts of sterilized soil after inoculation. Staking was done in each pot after 3 weeks of 

planting to prevent the lodging of plants. Both nematode inoculated and non-inoculated control 
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of all cultivars were replicated four times and were completely randomized in blocks in a 

greenhouse bench. Plants were allowed to grow in greenhouse for 10 weeks and the experiments 

were terminated on 11th week.  

Data collection 

 Data on plant parameters and final nematode populations were collected to determine the 

effect of P. nanus on field pea cultivars. Plant height was measured at the end of experimental 

period. Other plant parameters: shoots, roots and seed yield were determined after drying these 

parts at 80oC for 48 hours in an incubator (VWR International, PA 19087 USA). Nematodes 

were extracted from a sub-sample of 0.2 kg from each pot using Sugar Centrifugal-floatation 

technique (Jenkins 1964). P. nanus was collected and counted using the same method described 

in the reproduction ability experiment. Final population of P. nanus was expressed as total 

number of individuals in 1 kg of soil. 

Data analysis 

Data obtained from the first and second round of nematode effect experiments were 

analyzed separately because they were found to be heterogeneous after Levene’s test of 

homogeneity of variance (P < 0.05). Simple t-tests were performed to compare the average plant 

parameters: height, dry shoot weight, dry root weight and dry seed yield of nematode inoculated 

cultivars with non-inoculated control of corresponding cultivar at P < 0.05 using SAS 9.4 (SAS 

Institute Inc., Cary, NC).  Plant parameters of each nematode treated cultivar treatment was only 

compared with respective non-inoculated control to ascertain the significant difference in those 

parameters. 
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Results 

P. nanus identification and confirmation 

Morphometric measurements of  individuals (n = 32) included body length (range = 300 

to 395 µm, average = 350 µm), stylet (24.80 to 31.30, 27.50), esophagus length (63.90 to 82.10, 

74.06),  body diameter (14.30 to 23.40, 17.90), tail length (20.10 to 28.20, 24.70), a (16.80 to 

23.50, 19.75), b (3.13 to 4.52, 3.64), c (13.17 to 15.43, 14.16), and V% (83.30 to 86, 84.80). The 

head region was round and tail terminus was subacute and blunt but not digitate. These 

characters are important to separate them from morphologically closely related species, P. 

projectus which has truncated head and often digitate tail (Ghaderi et al. 2014). Males were not 

observed in our populations, however, Raski (1975) reported males for this species and claimed 

to be rarely observed. These morphometrics are within the range of those described for 

Paratylenchus nanus by Thorne and Smolik (1971). Molecular analysis of Internal Transcribed 

Spacer (ITS) region of rDNA showed that sequence (MH236098, 828 bp) was 100% identical 

with one population of P. nanus from South Africa (KF242264), 99% identical with two 

populations of P. nanus from South Africa (KF242263 and KF242266) and two from South 

Korea (KY468906 and KY468910). Moreover, this sequence shared 87% sequence identity with 

other pin nematode species, P. hamatus. The molecular examination and morphological 

measurements confirmed the species of pin nematode from the ND pea fields as P. nanus. 

Reproduction ability of P. nanus on field pea cultivars using naturally infested soil 

P. nanus reproduction was the highest (RF = 11.20) on Columbia cultivar with 

significantly high (P < 0.05) reproductive factor value compared to other tested field pea 

cultivars at initial density of 1,500 P. nanus/kg of soil. (Fig. 4.1). Similarly, P. nanus 

reproduction on Arcadia (RF = 4.80) and Cooper (4.30) was greater than 4, indicating that these 
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two cultivars were susceptible. Other cultivars including Cruiser (3.80), Bridger (3.40), and 

Aragorn (2.50) had RF values between 2 to 3.90 suggesting a moderately susceptible reaction 

(Fig. 4.1). Among all the tested cultivars, P. nanus reproduced least in Salamanca (RF = 1.10) 

(Fig. 4.1). Statistical analysis showed that the RF of P. nanus was not significantly (P > 0.05) 

different among Arcadia, Cooper, Cruiser and Bridger. (Fig. 4.1). Similarly, RF of P. nanus was 

not significantly (P > 0.05) different between Aragorn and Salamanca (Fig. 4.1).  

Reproductive factor of P. nanus averaged across cultivars was statistically lower (P = 0.0001) at 

high initial inoculum density compared to low inoculum density. P. nanus reproduction was 

reduced by 5-fold in Columbia cultivar at high initial inoculum density of 4,500 P. nanus/ kg of 

soil compared to low initial density of 1,500 P. nanus/ kg of soil. Similarly, approximately 2-fold 

reduction was observed in Arcadia, Cooper, Bridger, and cruiser. However, Salamanca, which 

favored least reproduction at lower density, behaved in almost similar way at higher initial 

density. P. nanus reproductive factor was between 2 to 3.90 on Arcadia (RF = 2.50), Cruiser 

(2.50), and Columbia (2) with a moderately susceptible reaction while other cultivars, Cooper 

(1.90), Bridger (1.90), Aragorn (1.60), and Salamanca (1.20), were moderately resistance with 

RF between 1 to 1.90 (Fig. 4.2). Reproductive factor values of Arcadia, Cruiser, Columbia, 

Cooper, and Bridger were significantly higher (P < 0.05) than Salamanca while significant 

difference was not observed in RF values of Aragorn and Salamanca (Fig. 4.2). 
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Fig. 4.1. Average reproductive factor (RF) values (final nematode density divided by initial 

density) of P. nanus on field pea cultivars grown in naturally infested field soil with 1,500 P. 

nanus/ kg of soil at the time of planting in greenhouse conditions. RF values are the mean of two 

trials for each cultivar (n = 8). Mean RF values with same letter are not significantly different 

according to F-protected least significant different test (P = 0.05). Final nematode density in each 

pot with a single plant was determined after harvesting the trial on 13th week after planting. 



 

74 

 

 

Fig. 4.2. Average reproductive factor (RF) values (final nematode density divided by initial 

density) of P. nanus on field pea cultivars grown in naturally infested field soil with 4,500 P. 

nanus/ kg of soil at the time of planting in greenhouse conditions. RF values are the mean of two 

trials for each cultivar (n = 8). Mean RF values with same letter are not significantly different 

according to F-protected least significant different test (P = 0.05). Final nematode density in each 

pot with a single plant was determined after harvesting the trial on 13th week after planting. 

Effect of P. nanus on plant growth and yield using artificially inoculated soil 

In first repetition of experiment, plant parameters, plant height and dry seed yield, were 

reduced for some field pea cultivars at inoculation density of 4,500 P. nanus/ kg of soil. Both 

plant height and dry seed yield were significantly lower (P < 0.05) in Arcadia and Cruiser while 

only plant height in Bridger compared to corresponding non-inoculated cultivar (Table 4.3). The 

highest reduction of plant height and dry seed yield was by 18 and 28%, respectively in Arcadia 

(Table 4.5). The average final population of P. nanus reached as high as 9,656/ kg of soil for 

Cruiser and least for Aragorn (2,938/ kg of soil) (Table 4.6). The highest reproductive factor was 
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slightly above two for Cruiser (RF = 2.14) and the lowest was below one for Aragorn (Table 

4.6). 

In second repetition of experiment, nematode inoculation resulted in statistically lower (P 

< 0.05) plant height, dry shoot weight, and dry seed yield for Columbia, Arcadia, and Aragorn 

compared to their respective non-inoculated controls (Table 4.4). Similarly, for Cruiser 

statistically lower (P < 0.05) plant height and dry seed yield was observed (Table 4.4). 

Moreover, all the plant parameters were statistically reduced (P < 0.05) for Bridger compared to 

its control while only the plant height was reduced for Salamanca (Table 4.4). The highest 

reduction of plant height, stem weight, root weight, and yield was by 37, 53, 50, and 40%, 

respectively, across all the tested cultivars (Table 4.5). Average final population of P. nanus was 

the highest for Columbian (9,428/ kg of soil) and least for Aragorn (3,892) (Table 4.6). Similar 

to first round of experiment, the highest reproductive factor was slightly more than two for 

Columbian and the lowest was less than one for Aragorn (Table 4.6). 
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Table 4.3. Average plant growth (plant height, dry shoot weight, dry root weight) and average dry seed yield of five field pea 

cultivars, inoculated with P. nanus (4,500/ kg of soil) and corresponding non-inoculated control in the first repetition of nematode 

effect experimenta. 

Cultivars Height (cm) Dry shoot wt. (g) Dry root wt. (g) Dry seed yield (g) 

Inoculated Control Inoculated Control Inoculated Control Inoculated Control 

Arcadia 39.81** 48.57 2.16 2.54 0.23 0.23 2.82** 3.90 

Cruiser 38.54* 45.33 2.43 2.38 0.21 0.23 2.74* 3.53 

Bridger 40.95* 46.79 1.62 2.02 0.18 0.20 3.32 3.03 

Aragorn 30.16 32.82 1.51 2.02 0.14 0.13 1.87 2.56 

Salamanca 42.22 45.40 1.55 1.86 0.20 0.21 2.41 3.02 
aT-test was done to compare the nematode inoculated treatment of each cultivar (n = 4) with corresponding non-inoculated treatment 

of the same cultivar (n = 4). Symbols,* and **, represent the significant difference for plant parameters between nematode inoculated 

and non- inoculated treatments of each cultivar at P = 0.05 and 0.01, respectively. 
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Table 4.4. Average plant growth (plant height, dry shoot weight, dry root weight) and average dry seed yield of six field pea cultivars, 

inoculated with P. nanus (4,500/ kg of soil) and corresponding non-inoculated control in the second repetition of nematode effect 

experimenta. 

Cultivars Height (cm) Dry shoot wt. (g) Dry root wt. (g) Dry seed yield (g) 

Inoculated Control Inoculated Control Inoculated Control Inoculated Control 

Columbia 57.78* 90.17 1.06* 1.83 0.18 0.26 2.34* 3.91 

Arcadia 26.67** 42.54 0.99** 2.12 0.07 0.10 2.06* 3.01 

Cruiser 32.38* 41.27 1.34** 1.83 0.08 0.11 2.98* 4.14 

Bridger 31.11* 43.81 1.17* 1.91 0.10* 0.20 2.24* 3.39 

Aragorn 30.48* 37.46 1.28*** 1.86 0.08 0.14 2.17* 3.29 

Salamanca 42.54* 53.34 2.08 2.68 0.11 0.17 3.24 3.48 

aT-test was done to compare the nematode inoculated treatment of each cultivar (n = 4) with corresponding non-inoculated treatment 

(n = 4) of the same cultivar. Symbols,*, ** and ***, represent the significant difference for plant parameters between nematode 

inoculated and non-inoculated treatments of each cultivar at P = 0.05, 0.01, and 0.001, respectively. 
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Table 4.5. Percentage reduction of measured plant parameters of field pea cultivars inoculated 

with 4,500 P. nanus/ kg of soil in the two nematode effect trials. 

Cultivar 

Reduction in plant parameters (in percentage)a 

Height (%) Dry stem wt. (%) Dry root wt. (%) Dry seed yield (%) 

Trial 1 Trial 2 Trial 1 Trial 2 Trial 1 Trial 2 Trial 1 Trial 2 

Columbia - 36 - 42 - 31 - 40 

Arcadia 18 37 15 53 0 30 28 32 

Cruiser 15 22 0 27 9 27 22 28 

Bridger 12 29 20 39 8 50 0 34 

Aragorn 8 19 25 31 0 43 27 34 

Salamanca 7 20 17 22 1 35 20 7 
aPlant growth of each cultivar inoculated with 4,500 P. nanus/ kg of soils was compared with 

corresponding non-inoculated control of each cultivar in two respective trials. 

Table 4.6. Average final populations and average reproductive factors of P. nanus at the time of 

harvest in the two nematode effect trials, artificially inoculated with 4,500 P. nanus/kg of soil at 

the time of plantingy. 

Cultivars Trial 1 Trial 2 

Final population/ 

kg of soil  

Reproductive 

factor (RF) 

Final population/ 

kg of soil  

Reproductive 

factor (RF) 

Columbia - - 9,428a 2.09a 

Cruiser 9,656a 2.14a 6,742b 1.49b 

Arcadia 9,073a 2.01a 4,325bc 0.96bc 

Bridger 6,779ab 1.50ab 6,403bc 1.42 bc 

Salamanca 5,163ab 1.14ab 4,138c 0.91c 

Aragorn 2,938b 0.65b 3,892c 0.86c 
yFinal nematode populations are the mean of P. nanus population per kg of soil in each cultivar 

within a trial (n = 4 reps) at the time of harvest. Similarly, reproductive factor values are the 

mean of four replicates of each nematode inoculated cultivar within a trial. Final P. nanus 

populations and reproductive factor values with same letter within a column are not significantly 

different according to F-protected least significant different test (P = 0.05). Nematodes were 

inoculated at the root zone of a single pea seedling in a soil filled clay pot during planting. Both 

greenhouse trials were harvested on 11th week after planting and inoculation. Nematode 

extraction was done using Sugar Centrifugal-floatation technique (Jenkins 1964). 
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Fig 4.3. Plant growth comparison of field pea cultivar, Arcadia at 40 days after planting and pin 

nematode, P. nanus inoculation. A) Pea plants without P. nanus inoculation, while (B) pea plants 

were artificially inoculated with 4,500 P. nanus/kg of soil. 

Discussion 

This study describes the preference and effect of pin nematode, Paratylenchus nanus on 

field pea cultivars commonly grown in major field pea producing states of the USA. P. nanus 
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was confirmed to be able to reproduce on some field pea cultivars and have negative impact on 

plant growth and seed yield in controlled greenhouse conditions. 

 Reproduction ability experiments using naturally infested soils showed that P. nanus 

could survive and propagate in field pea cultivars. This comes in agreement with the association 

of P. nanus with cereals, grasses, and fruits (Raski 1975). Bell and Watson (2001b) also 

indicated the reproduction of P. nanus on grasses such as Dactylis glomerata, Lolium perenne, 

and Lolium multiflorum in pot experiments. Moreover, other species of pin nematodes such as P. 

hamatus and P. projectus reproduced in cereals (Riga et al. 2008; Niblack 1992) while P. 

neoambycephalus in Prunus cerasifera and Malus domestica (Braun and Lownsbery 1975; 

Fisher 1967). Based on the results of reproduction ability experiments, P. nanus reproduction 

potential varied with cultivar type. Variable response of field pea cultivars to P. nanus infection 

could be due to differences in genotypes. In line with these results, differential hosting abilities 

of field pea cultivars to Ditylenchus dipsaci was observed in greenhouse studies in Canada 

(Hajihassani et al. 2016). 

Reproductive factor (RF) of P. nanus was observed to be influenced by the initial 

nematode density at the time of planting. In this study, RF values at the low starting density 

(1,500 P. nanus/ kg of naturally infested soil) were generally higher compared to those at high 

densities (4,500 P. nanus/ kg of same soil). Such variation in reproduction rate could be due to 

more intraspecific competition for food at the high starting density than at the low density. 

Nematode competition for feeding sites/ food can limit their reproduction (Duncan and Ferris 

1983). Brinkman et al. (2005) observed the intraspecific competition of Pratylenchus penetrans 

leading to lower females than males at high inoculation densities. Our results agree with different 

reproduction rate and rapid multiplication rate of P. projectus at lower initial density 
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(1,000/plant) compared to higher (5,000 or 10,000/plant) on tobacco (Coursen and Jenkins 

1958). Moreover, Braun and Lownsbery (1975) detected statistically higher RF of P. 

neoambycephalus on Myrobalan plum seedlings at lower starting densities compared to higher 

ones (Braun and Lownsbery 1975). Results from our study including others in different parts of 

the world indicate that Paratylenchus spp. have potential to multiply quickly at lower starting 

populations compared to higher starting populations. 

In the present study, P. nanus caused detrimental effect on plant growth and seed yield of 

pea cultivars during artificial inoculation. Pea plant stunting was observed from early growth till 

harvest as indicated in Fig. 3 and Fig. 4 in the P. nanus inoculated pots. Similar stunting was 

caused by other species of pin nematode, Paratylenchus projectus on tobacco and tall fescue 

plants (Coursen and Jenkins 1958). P. nanus caused reduction of dry shoot weight of some pea 

cultivars. In agreement with such reduction, in a greenhouse study in Australia, P. nanus caused 

decrease in shoot dry matter of perennial rye grass at an initial inoculation density of 950 P. 

nanus/ tube of 20 x 2.5 cm with two plants (Bell 1999). Moreover, seed yield of field pea 

cultivars were also reduced in this study. Niblack (1992) also reported yield reduction of soybean 

cultivars due to pin nematode, P. projectus at an initial nematode density of 2,000/kg of soil in 

Missouri. In Idaho, pin nematode, P. hamatus was able to negatively impact plant growth and 

yield of Columbian and Small Sieve cultivars of field pea in greenhouse conditions at the initial 

density of 400/ 200 g of soil (Riga et al. 2008). 

In this study, plant growth and yield were observed to be reduced during artificial 

inoculation but the nematode reproductive factor (RF) in both trials could reach only up to two or 

slightly more. Similar observations were made in Canada, where the RF of D. dispsaci in field 

pea cultivars (Admiral and Bronco) and bean cultivars (Windbreaker and Envoy) reached up to 
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2.5 and less than 2, respectively. However, aboveground biomass of both crops were 

significantly reduced by D. dipsaci (Hajihassani et al. 2016). No any reason was given for such 

observations (Hajihassani et al. 2016). These lower RF values of P. nanus during harvest time 

could be due to decline of nematode population because of intraspecific competition for food. 

This explanation was actually supported by lower RF values of P. nanus in both naturally 

infested soil and artificial inoculation at the same high nematode density (4,500 P. nanus/ kg of 

soil). Nematode competition could play a negative role in their development and propagation 

(Duncan and Ferris 1983; Brinkman et al. 2005).  In nematode effect experiments, high number 

of P. nanus (4,500/ kg of soil) were inoculated directly around the root zone of seedlings. Based 

on the images of pea plants in Fig. 3, nematode damage started from early growth stage. Pin 

nematodes feed on roots and started to multiply but by the time population started to increase a 

single pea plant was not able to support the increased nematode numbers. Eventually, with poor 

plant growth and availability of less food at the latter half of growing period, nematode 

population could not increase to the maximum as expected and then decreased by the end of 

harvest. This assumption was supported by increase of P. projectus during mid growing season 

and again reduction to more than half at the end of harvest (Niblack 1992). 

In conclusion, this study provides the evidence that P. nanus populations from pea fields 

in North Dakota can reproduce well in some field pea cultivars such as Columbia, Arcadia, 

Cooper, and Cruiser. However, the reproduction rate of P. nanus was dependent upon initial 

density at the time of planting. Hence, further research may be required to confirm this 

differential rate of reproduction in field pea cultivars. Moreover, P. nanus populations caused 

harmful impact on plant growth and seed yield of field pea cultivars. In future, screening of more 
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diverse cultivars is required considering the effect of P. nanus on plant growth even with slow 

reproduction of P. nanus at the high inoculation density used in this study. 
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CHAPTER 5. PLANT-PARASITIC NEMATODES IN POTATO FIELDS AND THE 

EFFECTS OF CO-INOCULATION WITH PRATYLENCHUS PENETRANS AND 

FUSARIUM OXYSPORUM ON POTATO GROWTH AND YIELD 

Abstract 

Plant-parasitic nematode surveys were conducted on potato fields of Central Minnesota 

where 43 soil and root samples were collected from 11 fields during 2015 and 2016 growing 

seasons. Root lesion nematode, Pratylenchus spp. were the most frequent (incidence = 57% in 

soil) and their density reached up to 204/ 200 g of soil and 1100/ g of fresh roots. During the 

survey, Pratylenchus penetrans (Pp) and Fusarium oxysporum (Fo) were present in some fields 

showing stunted and patchy growth. Therefore, a micro-plot study was carried out during 2016 

and 2017 growing season at the Sand Plain Research Farm in Becker, Minnesota to evaluate the 

effects of these pathogens individually or co-inoculation on growth and yield of potato. P. 

penetrans at 200 (low), 800 (medium), 2,000 (high) or 3,000 (very high) nematodes per 5 kg of 

soil and F. oxysporum  at 5 (low), 10 (medium), 20 (high) or 30 (very high) colonized barley 

seeds per 5 kg soil were either inoculated individually or together at same level. Nematode or 

fungus alone or co-inoculation at ‘high’ and ‘very high’ densities significantly (P<0.05) reduced 

all parameters of plant growth and yield in both years.  However, co-inoculation at ‘medium’ 

density significantly (P<0.05) reduced yield, plant height, and dry stem weight in both years. 

Nevertheless, in most cases, the effect (P<0.05) of co-inoculation on plant growth, yield was not 

significantly higher than individual pathogens. Similarly, plant health as assessed by % wilting, 

necrosis, chlorosis; and nematode reproduction were not significantly (P<0.05) different between 

co-inoculation and lone pathogens in most cases. In conclusion, both pathogens have significant 

negative effects on potato growth and yield; however, in most cases, the presence of both 
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pathogens together did not significantly (P<0.05) increase damage than lone pathogens. This 

study demonstrates that both pathogens can significantly reduce growth and yield of potato in 

this region. Hence, management of these pathogens would help to improve potato production in 

this region. 

Introduction 

Potato crop is the fourth important food crop worldwide after maize, wheat, and rice 

(FAO 2018). Potato crops are severely affected by approximately forty soil borne diseases 

worldwide including soil inhabiting fungi, bacteria, and nematodes (Fiers et al. 2012). Seventy 

species of plant-parasitic nematodes belonging to twenty four genera are reported to be 

associated with potato crops (Jensen et al. 1979). Depending upon the environmental conditions, 

the economically important nematode species in potato include Globodera spp., Pratylenchus 

spp., Paratrichodorus spp., Trichodorus spp., Ditylenchus spp., Meloidogyne spp., and 

Belonolaimus spp. (Holgado and Magnusson 2012; Brodie et al. 1993; Crow et al. 2000). In 

temperate regions, Pratylenchus spp. are the most common nematode pests of potato (Florini and 

Loria 1990; Brown et al. 1980; Castillo and Vovlas 2007). Similarly, among the soil borne 

fungal pathogens, Fusarium spp. are one of the important pathogens of potato crop (Secor and 

Salas 2001; Gachango et al. 2012; Fiers et al. 2012). 

Many species of Pratylenchus are reported to be associated with potato crop worldwide 

(Castillo and Vovlas 2007). In the state of Ohio,USA, up to six species of Pratylenchus including 

P. crenatus, P. penetrans, P. scribneri, P. alleni, P. thornei, and P. neglectus were isolated from 

field potato root samples (Brown et al. 1980). Similarly, in North Dakota, P. scribneri was 

reported to occur in potato crop (Yan et al. 2016). Likewise, in Minnesota (Baidoo et al. 2017), 

Wisconsin (MacGuidwin and Rouse 1990), Washington (Ingham et al. 2005), and Idaho (Hafez 
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et al. 2010), P. penetrans is an important plant-parasitic nematode of potato crop. Several species 

of Pratylenchus can cause negative impact to potato (Mahran et al. 2010; Castillo and Vovlas 

2007). Among the Pratylenchus spp., Pratylenchus penetrans is the most damaging in potato 

crop (Waeyenberge et al. 2009; Castillo and Vovlas 2007). This nematode has a wide host range 

and is distributed throughout the temperate regions (Castillo and Vovlas 2007; Corbett 1973; 

Loof 1991). P. penetrans aused significant damage on growth and yield of potato crops (Castillo 

and Vovlas 2007; Bernard and Laughlin 1976), and was responsible for yield losses up to 50% in 

an affected potato field in Norway (Holgado et al. 2009). P. penetrans penetrates on root tissue 

and migrates in root cells feeding cell contents, ultimately reducing the ability of infected roots 

to absorb water and nutrients normally (Castillo and Vovlas 2007).  

In North Eastern United States, the most prevalent and pathogenic Fusarium species 

infecting potato crop include F. sambucinum, F. solani, and F. oxysporum (Hanson et al. 1996). 

In North Dakota, F. graminearum was reported to be frequently occurring and responsible for 

dry rot of potato tubers (Ali et al. 2005). However, in Michigan, F. oxysporum was the most 

dominant in seed potato tubers and was pathogenic to potato cultivar, Dark Red Norland 

(Gachango et al. 2012). Similarly, F. oxysporum was the most serious pathogen of potato causing 

Fusarium wilt disease and significant yield losses in Tunisia (Trabelsi et al. 2016; Ammar et al. 

2017). Wilt causing pathogens invade the growing roots at early crop growth and move through 

the water conducting tissues of roots and stem. Finally, infection leads to symptoms such as 

wilting, yellowing, necrosis, vascular discoloration and ultimate death of vines and plant (Rowe 

and Powelson 2002; Hwang and Evans 1985). F. oxysporum can result in wilting of potato plant, 

loss of tuber yield (McKay 1926; Bibsy 1919) and tuber dry rot in field or storage (Secor and 

Salas 2001; Gachango et al. 2012). Moreover, it also caused collapse of plants near the end of 
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growing season (Bisby 1919). Fusarium spp. can also lead to reduction in plant height of potato 

crop (Hwang and Evans 1985). Fusarium spp. were reported to cause up to 25% yield losses in 

potato fields and occasionally up to 60% tuber losses in storage condition (Desjardins 2006; 

Secor and Salas 2001). 

Nematodes and fungi interactions have been reported in many crops including cotton, 

banana, tobacco, cowpea, brinjal, tomato, and potato (Ravichandra 2013). The mechanism of 

nematode and fungus interaction is complex and largely unknown. However, nematode and 

fungus interactions were demonstrated to be species-specific (Bowers et al. 1996; Rowe and 

Powelson 2002). Many researchers have described the interaction between plant-parasitic 

nematodes and soil borne fungal pathogens resulting in synergistic or additive or antagonistic 

reactions on growth, yield and disease development (Martin et al. 1982; Jorgenson 1970; Rowe 

et al. 1987). Most frequently reported one was lesion nematode, P. penetrans and wilt fungi, 

Verticillium dahliae interaction on causing potato early dying symptoms along with reduction of 

tuber quality and yield (Rowe et. al 1987; Martin et al. 1982). 

In some potato fields of Central Minnesota, growers observed poor growth or no growth 

of potatoes in patchy patterns. Those fields were detected to have higher occurrence frequencies 

and densities of plant-parasitic nematode, P. penetrans and fungal pathogen, F. oxysporum. 

Hence, the objectives of this study were to 1) determine the incidence or occurrence frequency of 

plant-parasitic nematodes in some potato fields of Central Minnesota and 2) determine the effect 

of two soil borne pathogens, P. penetrans and F. oxysporum individually and together on growth 

and yield of the potato cultivar Red Norland through micro-plot experiments in field conditions. 

This research will help to identifying important parasitic nematodes of potato crop in Central 
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Minnesota. Moreover, the micro-plot study will evaluate the damage potential of P. penetrans 

and F. oxysporum on potato crop in infested fields in this region. 

Materials and Methods 

Plant-parasitic nematodes in potato fields 

Field sampling 

Nematode surveys were conducted in potato fields of Central Minnesota upon the request 

of growers. A total of 43 soil plus root samples were collected from 11 potato fields during 2015 

and 2016 growing seasons. In general, four samples were collected from each field because the 

fields were large in size.  Standard soil probes (2.5 cm diameter and 30 cm depth) were used to 

collect the representative soil sample from each sampling area in each field. Soil samples were 

collected in a zig-zig pattern with 5 m distance between two successive sample cores. In each 

sampling spot, a sample core was probed along the root zone up to a depth of 30 cm discarding 

the top dry soil of about 1-2 cm. A single composite sample from each sampling area consisted 

of 20 to 25 soil cores mixed together.  Root samples were collected by uprooting the potato plant 

along with tops. Both soil and root samples were sealed in a plastic bag, placed in a cooler during 

sampling and shipping, and kept in a cold room at 4ºC before nematode extraction. 

Nematode assays 

 Before extracting nematodes from soil, each composite sample was mixed thoroughly 

discarding dried crop residues and rocks. After soil mixing, nematodes were extracted from a 

sub-sample of 200 g from each composite sample using sieving and decanting and sugar 

centrifugal-floatation technique (Jenkins 1964). Nematodes from root samples were extracted 

separately using Whitehead tray method (Whitehead and Hemming 1965). Roots were rinsed 

gently to remove soil particles around the root zone. Then, roots were chopped into 1- cm pieces 
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and spread in paper towels placed over mesh on coated metallic frame. Metallic frame (coated) 

holding mesh, paper towels and chopped roots were placed in a plastic tray (45 cm x 35 cm). 

Approximately 1 liter water was poured into the plastic tray just enough to submerge the 

chopped roots. After 48 hours, nematodes were collected from the water. Nematodes from soil 

and roots were separately collected in 20 to 25 ml tap water in a 50 ml suspension tube. Plant-

parasitic nematodes were identified to genus level based on the morphological characteristics 

(Mai et al. 1996) and counted under an inverted transmitted light microscope at 100x 

magnification (Zeiss Axiovert 25, Carl Zeiss Microscopy, NY, USA). Finally, nematode 

numbers were expressed as the total number of nematodes of a genus in 200 g of soil or 1 g of 

fresh roots. 

Effects of co-inoculation with P. penetrans and F. oxysporum on potato growth and yield 

Micro-plot establishment  

Two micro-plot trials were conducted during Mid-May to Mid-August of 2016 and 2017 

in field conditions at the Sandplain Research Farm, Becker, Minnesota. The Sandplain Research 

Farm is the research station of University of Minnesota. Monthly mean precipitation at Becker 

was 4.0 and 2.8 mm during May to August of 2016 and 2017, respectively. Mean monthly high 

temperature exceeded 27ºC during the peak growing month of July in both years. Experiments 

were performed using terracotta clay pots holding approximately 5 kg of steam sterilized light 

sandy loam soil. Clay pots were installed below soil surface leaving 5 cm above the ground after 

planting and pathogen inoculation in the micro-plot site. Distance between column to column in 

the micro plot was 1.5 m and pot to pot in a column was kept 0.75 m apart. Mico-plot was fenced 

after experiment set up to prevent the damage due to rabbits and deer. 
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Pathogen identification and inoculum preparation 

Lesion nematodes, Pratylenchus spp. were identified to species level using species-

specific polymerase chain reaction (PCR). Nematodes isolated from soil and root samples were 

handpicked based on morphological characters (Mai et al. 1996). Nematode DNA was extracted 

independently from chopped pieces of single nematodes (n = 12) using Proteinase K method as 

described by Huang and Yan (2017). The D2-D3 expansion region of 28S rRNA was amplified 

using a P. penetrans specific primer set, PP5 forward primer (5´-

ACATGGTCGACACGGTGATA-3´) and PP5 reverse primer (5´-

TGTTGCGCAAATCCTGTTTA ) which produces an amplified fragment of approximately 520 

bp (Mekete et al. 2011). Template DNA (1.50 µl) was transferred into 14.50 µl of the PCR 

mixture [0.64 µl of each primer (10 µM), 0.32 µl dNTP, 0.96 µl MgCl2, 3.2 µl 5 x Green GoTaq 

Flexi buffer, 0.12 U of GoTaq Flexi DNA polymerase (Promega Corp., Madison, WI)]. 

Amplification conditions were initial denaturation (94ºC for 3 min), followed by 40 cycles of 

denaturation at 94ºC for 30 s, annealing at 57ºC for 1.5 min, and extension at 72ºC for 1.5 min, 

and a final extension at 72ºC for 10 min. After amplification, PCR products were run in 2% 

agarose gel at 100V for 25 min. Finally, the gel was visualized under UV light and images were 

captured using an AlphaImager Gel Documentation System (Proteinsimple Inc., Santa Clara, 

CA). 

Identification of fungal pathogen to species level was done using molecular techniques 

and colony morphology characters. For molecular identification, fungal DNA was extracted from 

soil and fungal mycelia isolated from infected tissue grown on potato-dextrose agar. DNA from 

soil was extracted using the MoBio PowerSoil DNA Isolation Kit (MOBIO Laboratories Inc, 

Carlsbad, CA) based on the manufacturer’s protocol. Total fungal DNA from mycelium was 
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extracted using the MP Biomedical FASTDNA Kit (MP Biomedical, California, USA) according 

to the manufacturer’s protocol. F. oxysporum specific primer set, FOF1 forward primer (5´-

ACATACCACTTGTTGCCTCG-3´) and FOF2 reverse primer (5´-

CGCCAATCAATTTGAGGAACG-3´) were used to amplify the ITS region of rDNA (Mishra et 

al. 2003). Each PCR tube consisted of 1.0 µl  template DNA, 12.8 µl double distilled water, 0.6 

µl of each primer (10 µM), 0.4 µl dNTP, 1.2 µl Mgcl2, 3.2 µl 5x Green GoTaq Flexi buffer, 0.2 

U of GoTaq Flexi DNA polymerase (Promega Corp., Madison, WI). PCR cycles consisted of 

initial denaturation at 94ºC for 3 min,  40 cycles of denaturation at 94ºC for 1 min, annealing at 

57ºC for 50 s and extension at 72ºC for 1 min, and a final extension at 72ºC for 7 min. Finally, 

PCR products were run in agarose gel and visualized under UV light as described earlier. 

In order to identify the fungal pathogen using morphological characters fungal pathogens 

were isolated from infected stem tissues and cultures were established. For pathogen isolation, 

first stem tissues were thoroughly washed in sterilized water. Then, infected tissues were cut into 

small pieces (5 mm squares) and surface sterilized using 10% Clorox (Narayanasamy 2011). 

Surface sterilized tissues (1-2) were then aseptically transferred into half-PDA medium [Potato 

Dextrose (9.75 g), Agar (3.75 g), and Deionized water (500 ml)]. Culture plates with infected 

tissues were then incubated at room temperature (22-27ºC) to facilitate pathogen growth. After 

mycelium growth, in order to obtain the pure culture, fungal hyphae at the edge of colony were 

transferred into half-PDA media using hyphal tipping technique (Narayanasamy 2011). Then, the 

fungal pathogen was characterized based on both macroscopic and microscopic characters. 

Macroscopic characters included colony color and colony growth whereas microscopic 

characters included micro conidia shape and septa number (Leslie and Summerell 2008). For 

microscopic characterization, a small section of agar with fungal parts was picked up and 
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crushed in slides. Fungal parts including micro and macro conidia developed were then 

visualized under the compound microscope microscope (Zeiss Axio Scope A1; Zeiss, 

Oberkochen, Germany). 

Nematode inoculum was prepared by rearing P. penetrans in sterilized carrot disks in 

laboratory conditions and also in susceptible potato cultivars in greenhouse conditions which 

were originally obtained from a potato field in Becker, Minnesota. Sterilized carrot disks were 

inoculated with 3 to 6 P. penetrans individuals per disk including both males and females. After 

inoculation, these carrot disks were kept in incubator at 22ºC for about 5 to 6 months to allow 

enough time to increase in number. After 5-6 months all the carrot disks were harvested and 

0.001% final concentration of streptomycin was used to inhibit bacterial growth in nematode 

suspension. Collected nematodes were stored at 4ºC until using within 2-3 days. P. penetrans 

were also reared in susceptible potato cultivar, Red Norland in the greenhouse with 16 hrs day 

light at an average temperature of 22ºC. Potato plants were harvested after a crop cycle at 90 

days after planting. P. penetrans was recovered from root tissues using the Whitehead tray 

method. Nematodes recovered from roots were also stored in similar way as described earlier for 

nematodes from carrot disks. Nematodes from carrot cultures and root tissues were mixed 

together and P. penetrans densities were determined from 1 ml of aliquots. Dilutions were made 

appropriately to get 200, 800, 2,000 and 3,000 P. penetrans/ pot/ plant in 20 ml of nematode 

suspension. F. oxysporum inoculum was provided by Dr. Gary Secor (Professor and Plant 

pathologist, NDSU) as fully infected barley seeds. 

Preparation of tubers for planting 

Red potato cultivar, Red Norland was selected for the entire experiment based on their 

susceptibility to P. penetrans and F. oxysporum (personal communication with Dr. Gary Secor, 
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Plant Pathology, NDSU). Seed potato tubers were provided by potato research facilities at the 

North Dakota State University, obtained from seed potato farms. In order to facilitate the 

sprouting, tubers were spread in plastic trays with moist paper towels in the bottom for 15-20 

days at room temperature of 22ºC. This practice of pre-sprouting allows quick plant growth with 

roots available for nematodes to feed after inoculation. Sprouted tubers were cut into 2 to 3 

halves each with at least a single sprout. Cutting of tubers was done 3-4 days before planting in 

order to provide adequate time for healing of cut sections. 

Treatments and experimental design 

In first year, ten treatments including a non-inoculated control were selected while in 

second year three more treatment with very high pathogen levels were added. Each treatment 

was replicated ten times and experiments were randomized in complete block design in both 

years. In order to interpret the results easily, treatments were also categorized as follows: Control 

[no pathogen inoculated], low pathogens [200 P. penetrans (Pp) or 5 F. oxysporum infected 

barley seeds (FOBS) or 200 Pp + 5 FOBS], medium pathogens [800 Pp or 10 FOBS or 800 Pp + 

10 FOBS], high pathogens [2,000 Pp or 20 FOBS or 2,000 Pp + 20 FOBS], and very high 

pathogens [3,000 Pp or 30 FOBS or 3,000 Pp + 30 FOBS] per pot per plant as indicated in Table 

5.1. In order to simplify the interpretations, pre-plant densities of P. penetrans can also be 

expressed as follows: 8 Pp (low), 32 Pp (medium), 80 Pp (high), and 120 Pp (very high) per 200 

g of soil considering a total of 5,000 g of soil in each pot. In addition, 200 g of the light sandy 

loam soil used in this experiment was approximately equal to 100 cubic centimeter of soil.  
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Table 5.1. Pathogen levels and treatments used in micro-plot studies conducted in Becker, 

Minnesota during 2016 and 2017 growing seasons. 

aThree pathogen levels including low, medium and high were used in first year of mico-plot 

trials while very high level was added in second year along with those used in the first year. 
bP. penetrans and F. oxysporum alone or together were inoculated in terracotta clay pots holding 

5 kg of soil. The soil type used during entire experiment was light sandy loam soil. Each pot had 

a single potato plant. Pp represents for P. penetrans and FOBS represents F. oxysporum infected 

barley seeds. 

 

Pathogen inoculation 

Before pathogen inoculation, Clay pots were filled two third (3 kg of soil), with 

autoclaved light sandy loam soil. For treatments involving both fungal and nematode infestation, 

first, F. oxysporum infected barley seeds were spread in center over which sprouted cut tuber 

pieces were placed with a thin layer of soil in between. Then, soil holes were created around the 

tuber piece where nematode inoculum was added and finally tuber piece was covered with an 

appropriate amount of sterilized soil with sprouts barely visible from soil layer. In order to infest 

Soil type Pathogen 

levela 

Treatments Pratylenchus penetrans or Fusarium 

oxysporum per pot per plantb 

Steam 

autoclaved 

field soil 

Low level Low P. penetrans 

(Pp) 

200 individuals of Pp per pot or 8 Pp 

per 200 g of soil 

 Low F. Oxysporum 

(Fo) 

5 F. oxysporum  infected barley seed 

per pot (FOBS) 

 Low Pp + Low Fo 200 Pp (8 Pp/ 200 g) + 5 FOBS 

Medium level Medium Pp 800 Pp or 32 Pp/ 200 g 

 Medium Fo 10 FOBS 

 Medium Pp + 

Medium Fo 

800 Pp (32 Pp/ 200 g) + 10 FOBS 

High level High Pp 2,000 Pp or 80 Pp/ 200 g 

 High Po 20 FOBS 

 High Pp + High Fo 2,000 Pp (80 Pp/ 200 g) + 20 FOBS 

Very high 

level 

Very high Pp 3,000 Pp or 120 Pp/ 200 g 

 Very high Fo 30 FOBS 

 Very high Pp + Very 

High Fo 

3,000 Pp (120 Pp/ 200 g) + 30 FOBS 

Control Non-inoculated 

control 

None 
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soil with only one pathogen the same process described above was followed discarding the step 

for infestation with other pathogen. 

Irrigation, fertilization, weeding and harvesting 

 Sprinkle irrigation was done twice a week. Recommended dose of fertilizers per plant 

was put in split dose at the time of planting and 45 days after planting. At the time of planting 

fertilizer was put in soil filled pot and mixed thoroughly with soil. While during second 

fertilization, fertilizer was placed on the top soil in the pot. Weeding of micro-plot was done 

manually for three times at different time periods depending upon weed growth. Experiments 

were terminated on 14th week after planting. 

 Soil and plant sample processing after harvest 

Soils in individual pots along with plant parts were placed in separate plastic bags and 

brought to the Nematology Laboratory at the North Dakota State University. Soil and plant parts 

were processed for further plant parameter measurements and nematode extractions. Soil from 

each experimental unit, single pot, was mixed thoroughly and 200 g of sub-sample was prepared 

for nematode assays. Similarly, roots were also collected for nematode extraction. Other plant 

parts, tuber and stem were collected separately to measure fresh tuber yield and dry stem weight. 

Nematode extraction from soil and roots after harvest 

Nematodes were extracted from a sub-sample of 200 g from each individual pot sample 

using sieving and decanting and sugar centrifugal-floatation technique (Jenkins 1964). 

Nematodes from root samples were extracted separately. Roots were rinsed gently to remove soil 

particles around the root zone. Then, roots were chopped into 1-cm pieces and nematodes from 

roots were extracted using Whitehead tray method (Whitehead and Hemming 1965) after 48 

hours. Nematodes from soil and roots were separately collected in 20 to 25 ml tap water in a 50 
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ml suspension tube. P. penetrans was counted under an inverted transmitted light microscope at 

100x magnification (Zeiss Axiovert 25, Carl Zeiss Microscopy, NY, USA). Nematode numbers 

from soil were expressed as the total number of P. penetrans in 5 kg of total soil. Finally, 

nematode numbers from total soil were added with those from roots to calculate the final 

population of P. penetrans reproduced in individual plant per pot. 

Data collection 

 Plant height (cm) and plant health were measured after 12 weeks of planting. Plant 

health based on percentage of wilting, chlorosis and necrosis of a plant was determined using 0 

to 5 rating scale based on percentage of wilting, chlorosis and necrosis symptom on plant 

(Kotcon et al. 1985). A value of 0 = no symptoms, 1 = < 25% of foliage with wilting, chlorosis 

and necrosis, 2 = 25 to 49%, 3 = 50 to 74%, 4 = 75 to 100% of foliage with the above symptoms, 

and 5 = complete death of plant. Dry root weight was measured for all the treatments by 

collecting the roots after nematode extraction from roots. Roots and stems were dried at 80ºC for 

48 hours before measuring dry weight while tubers were measured as fresh tuber weights. 

Nematode reproduction expressed as reproductive factor (Rf) was calculated by dividing the 

final nematode population (total in 5 kg soil plus all roots) by the initial nematode population 

during inoculation. 

Data analysis 

Analysis on different parameters (plant height, dry root weight, dry stem weight, yield, 

plant health, nematode reproductive factor) of treatments (average of replications, N = 10) were 

performed using PROC GLM of SAS 9.4 (SAS Institute Inc., Cary, NC). Mean separation was 

performed using F-protected least significant difference (LSD) at P<0.05 to determine the 

significant differences in plant parameters among treatments. 
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Results 

Pathogen identification 

Based on the species specific primers (PP5F/PP5R), root lesion nematodes were 

identified as P. penetrans with the amplified fragment size of approximately 520 bp from the 

D2-D3 region of the 28S rRNA. This band size matched with that of P. penetrans, produced 

using the same primer set (PP5F/PP5R) as described originally by Mekete et al. (2011). 

Similarly, fungal pathogen was identified as F. oxysporum using species specific primers 

(FOF1/FOR1) producing the fragment size of approximately 340 bp. The amplified bands from 

ITS region of rDNA of the fungal pathogen had the same fragment sizes as described by Mishra 

et al. (2003). Moreover, fungal colonies in pure culture plates had dark violet pigmentation. 

Microconidia were abundant compared to macroconidia. Macroconidia were usually two to three 

septate, straight to slightly curved while microconidia were usually zero to one septate, oval or 

elliptical. These morphological features of fungal pathogen were similar to those described for F. 

oxysporum by Leslie and Summerell (2008). 

Occurrence and population density of vermiform plant-parasitic nematode genera in 

potato fields of Becker, Minnesota 

A total of eight genera of plant-parasitic nematodes were detected in soil and root 

samples in potato fields. These genera include Pratylenchus (lesion nematode), Helicotylenchus 

(spiral nematode), Heterodera (cyst nematode), Tylenchorhynchus (stunt nematode), 

Paratrichodorus (stubby root nematode), Hoplolaimus (lance nematode), Mesocriconema (ring 

nematode), and Paratylenchus (pin nematode) (Table 5.2). 

Pratylenchus nematodes were the most frequent among all the plant-parasitic nematodes. 

They occurred in 57% of the soil samples and 100% of the root samples (Table 5.2). They were 
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the only plant-parasitic nematode species found in root samples. The density of Pratylenchus 

reached up to 204/ 200 g of soil and 1,100/ g of fresh roots (Table 5.2). Helicotylenchus was 

detected in 30% of the soil samples with a density as high as 218/ 200 g of soil. The vermiform 

stage of soybean cyst nematode was identified in 23% of the soil samples where the density 

reached up to 64/ 200 g of soil. The remaining five nematode genera, Tylenchorhynchus, 

Paratrichodorus, Hoplolaimus, Mesocriconema, and Paratylenchus, were rarely detected at 

lower densities, except Mesocriconema (Table 5.2). The density of Mesocriconema reached 267/ 

200 g of soil in a soil sample (Table 5.2). 
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Table 5.2. Plant-parasitic nematode genera in soil and root samples collected from potato fields during 2015 and 2016 growing 

seasons in Becker, Minnesotaa. 

Sample 

# 

Soil  

or 

root  

Number of plant-parasitic nematodesb 

Pratylenchus Heterodera Helicotylenchus Tylenchorhynchus Paratrichodorus Hoplolaimus Mesocriconema Paratylenchus 

1 Soil 47 0 0 0 0 0 0 0 

2 Soil 0 0 0 0 0 0 0 0 

3 Soil 76 0 0 0 0 0 0 0 

4 Soil 0 0 16 0 0 0 0 0 

5 Soil 122 0 0 0 0 0 0 0 

6 Soil 121 15 15 0 0 0 0 15 

7 Soil 62 0 0 16 0 0 0 0 

8 Soil 48 0 0 0 0 0 0 0 

9 Soil 0 0 0 0 0 0 0 0 

10 Soil 0 0 0 0 0 0 0 0 

11 Soil 16 0 0 0 0 0 0 0 

12 Soil 0 0 0 31 0 0 0 0 

13 Soil 0 0 0 0 0 0 0 0 

14 Soil 49 0 0 0 0 0 0 0 

15 Soil 204 0 0 0  0 15 0 0 

16 Soil 0 0 50 0 0 0 267 0 

17 Soil 0 0 50 0 0 0 133 0 

18 Soil 0 0 0 0 17 0 0 0 

19 Soil 16 0 0 0 0 33 0 0 

20 Soil 0 0 15 0 0 0 0 0 

21 Soil 0 0 204 16 0 0 0 0 

22 Soil 0 0 218 0 

 

0 0 0 0 
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Table 5.2. Plant-parasitic nematode genera in soil and root samples collected from potato fields during 2015 and 2016 growing 

seasons in Becker, Minnesotaa (continued) 

Sample 

# 

Soil  

or 

root  

Number of plant-parasitic nematodesb 

Pratylenchus Heterodera Helicotylenchus Tylenchorhynchus Paratrichodorus Hoplolaimus Mesocriconema Paratylenchus 

23 Soil 15 0 0 0 0 0 0 0 

24 Soil 176 64 0 0 0 0 0 0 

25 Soil 39 52 0 0 0 0 0 0 

26 Soil 13 53 13 0 0 0 0 0 

27 Soil 12 25 12 0 37 0 0 0 

28 Soil 25 0 0 0 0 0 0 0 

29 Soil 0 57 0 0 0 0 0 0 

30 Soil 11 56 0 0 0 0 0 0 

31 Root 60 0 0 0 0 0 0 0 

32 Root 84 0 0 0 0 0 0 0 

33 Root 173 0 0 0 0 0 0 0 

34 Root 32 0 0 0 0 0 0 0 

35 Root 25 0 0 0 0 0 0 0 

36 Root 18 0 0 0 0 0 0 0 

37 Root 904 0 0 0 0 0 0 0 

38 Root 213 0 0 0 0 0 0 0 

39 Root 179 0 0 0 0 0 0 0 

40 Root 58 0 0 0 0 0 0 0 

41 Root 1,100 0 0 0 0 0 0 0 

42 Root 1,018 0 0 0 0 0 0 0 

43 Root 484 0 0 0 0 0 0 0 

aA total of 25 soil samples were collected in 2015 whereas 18 soil and root samples in 2016. 
bDensity of different plant-parasitic nematode genera per 200 g of soil or 1 g of fresh roots. 
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Effect of pathogens on plant growth and yield - first year experiment 

Inoculation with either P. penetrans or F. oxysporum alone, or both, at ‘low’ densities 

[(8Pp per 200 g of soil) / 200 P. penetrans (Pp) or 5 F. oxysporum infected barley seeds (FOBS) 

per pot per plant] did not significantly reduce any of the plant parameters compared to non-

inoculated control (Table 5.3). However, at ‘medium’ pathogen density [ (32 Pp per 200 g of 

soil) / 800 Pp or 10 FOBS], P. penetrans significantly (P < 0.05) decreased plant height (19%), 

whereas F. oxysporum significantly reduced root (35%) and stem (30%) weights (Table 5.3 and 

Table 5.4). But, co-inoculation of both pathogens reduced (P < 0.05) plant height (12%), stem 

weight (28%), and tuber yield (35%) when compared to non-inoculated control (Table 5.3, Table 

5.4, and Fig. 5.1). Moreover, at ‘high’ nematode density [(80 Pp per 200 g of soil) / 2,000 Pp] 

plant parameters: height, root weight, stem weight and yield were reduced (P < 0.05) by 27, 42, 

28, and 29%, respectively, while the reduction (P < 0.05) of the same parameters were by 21, 38, 

36, 35%, respectively, due to ‘high’ fungal density (20 FOBS). Similarly, co-inoculation resulted 

in 26, 43, 44 and 43 % reduction (P < 0.05) in height, root weight, stem weight and yield, 

respectively (Table 5.3, Table 5.4, and Fig. 5.1). Increasing the initial inoculum level of P. 

penetrans from ‘low’ to ‘high’ level result in a statistically significant reduction of plant height 

and root weight (Table 5.3). Similarly, the effect of F. oxysporum on plant height and stem 

weight significantly increased (P < 0.05) with increasing fungal density (Table 5.3). 

Effect of pathogens on plant health and nematode reproduction - first year experiment 

Pathogen effects on the plant health was assessed based on chlorosis, necrosis, and 

wilting of plants using 0-5 rating scale. Disease severity on plant was only significantly greater 

(P < 0.05) on plants co-inoculated with both pathogens at ‘high’ level compared to non-

inoculated plants (Table 5.5). Nonetheless, there was no significant difference between the 
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effects of co-inoculation of pathogens and the individual pathogens in terms of disease severity. 

Nematode reproduction rates ranged from 1.5 to 3.6 (Table 5.5). High density (20 FOBS) of F. 

oxysporum significantly increased (P < 0.05) P. penetrans final population in co-inoculated 

treatment compared to the treatment with P. penetrans alone (Table 5.5). However, P. penetrans 

final populations were not significantly influenced by F. oxysporum at low and medium 

pathogen co-inoculation densities. 

Effect of pathogens on plant growth and yield - second year experiment 

Likewise to year one, treatments at ‘low’ pathogen inoculations either alone or together 

did not significantly reduce the plant parameters except the co-inoculation level on root weight 

(18%) (Table 5.3 and Table 5.4). But, at ‘medium’ pathogen level, P. penetrans reduced (P < 

0.05) the plant height and root weight by 15% and 17%, respectively, whereas F. oxysporum did 

not reduce any plant parameter (Table 5.3 and Table 5.4). Nevertheless, co-inoculation caused 

decline (P < 0.05) of plant height, root weight, stem weight, and tuber yield by 21%, 31%, 27%, 

and 25%, respectively, compared to control (Table 5.3, Table 5.4 and Fig. 5.2). Similarly, plant 

parameters: plant height, root weight, stem weight, and tuber yield were reduced by 33, 35, 33 

and 34%, respectively by ‘high’ nematode while 13, 23, 28, and 22%, respectively by ‘high’ 

fungus. Moreover, co-inoculation caused significant reduction of the same parameters by 30, 37, 

38, and 44%, respectively (Table 5.3, Table 5.4, and Fig. 5.2). However, there were no 

significant differences in the plant growth parameters and yield between ‘high’ and ‘very high’ 

levels (Table 5.3). At ‘very high’ pathogen densities, nematode caused 23, 35, 30 and 33% 

reduction of plant height, root weight, stem weight, and tuber yield, respectively while the same 

parameters were reduced by 15, 24, 29 and 23%, respectively by fungus. Likewise, co-

inoculation reduced those parameters by 32, 37, 42 and 42%, respectively (Table 5.3, Table 5.4, 
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and Fig. 5.2). Increase in initial inoculum level of P. penetrans alone from ‘low’ level to ‘very 

high’ progressively increased the effect on plant growth and yield (Table 5.3). Similarly, 

increasing fungal inoculum density to ‘very high’ level led to a significant reduction (P < 0.05) 

in plant height and stem weight whereas co-inoculation caused significant reduction (P < 0.05) 

of plant height, root weight, and tuber yield (Table 5.3). 

  Effect of pathogens on plant health and nematode reproduction – second year experiment 

In year two, compared to non-inoculated control, there was significantly (P < 0.05) 

higher disease effect at all co-inoculation levels except the ‘low’ level. Similarly, individual 

pathogens at ‘high’ and ‘very high’ densities significantly (P < 0.05) increased disease 

symptoms. However, no significant differences were observed among the treatments at a 

particular level just as recorded in the previous year. In second year, nematode multiplication 

rates ranged from 3.1 to 4.8 (Table 5.5). There were no statistically significant differences 

between P. penetrans alone or co-inoculation of both pathogens in the multiplication of P. 

penetrans within a particular level. Moreover, nematode multiplication rates were not 

significantly different among the different P. penetrans inoculation levels.  
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Table 5.3. Average plant growth (plant height, dry root weight, and dry stem weight) of Red Norland potato for thirteen treatments 

with non-inoculated control, low, medium, high and very high pathogen densities of P. penetrans, F. oxysporum or both during 2016 

and 2017 micro-plot trialsy. 

Treatmentsz Plant growth parameters 

Plant height (cm) Dry root weight (g) Dry stem weight (g) 

 2016 2017 2016 2017 2016 2017 

Non-inoculated control 52.06 a 46.86 a 1.85 a 1.73 a 9.23 a 6.89 a 

Low Pp 50.50 ab 44.19 abc 1.86 a 1.51 ab 8.31 ab 6.25 ab 

Low Fo 48.90 ab 45.84 ab 1.67 ab 1.52 ab 8.05 abc 6.92 a 

Low Pp + Low Fo 47.74 ab 43.30 abc 1.56 abc 1.42 bc 7.85 abc 5.97 abc 

Med. Pp 42.05 cd 39.87 cd 1.49 abc 1.43 bc 7.95 abc 6.27 ab 

Med. Fo 48.26 ab 43.05 abc 1.21 bc 1.50 ab 6.46 cd 6.01 ab 

Med. Pp + Med. Fo 45.70 bc 36.83 de 1.33 abc 1.20 cd 6.06 d 5.01 bc 

High Pp 38.23 d 31.38 e 1.07 c 1.12 d 6.69 bcd 4.61 bc 

High Fo 41.02 cd 40.66 bcd 1.14 bc 1.33 bcd 5.87 d 4.98 bc 

High Pp + High Fo 38.34 d 32.68 e 1.05 c 1.09 d 5.13 d 4.29 bc 

V. High Pp - 35.93 de - 1.12 d - 4.81 bc 

V. High Fo - 39.96 cd - 1.31 bcd - 4.87 bc 

V. High Pp + V. High Fo - 31.97 e - 1.09 d - 4.00 c 
y Data on plant height of potato plants were recorded during the crop growing period at 12 weeks after planting while dry root weight 

and dry stem weight were collected after plant/ soil processing and nematode extractions. All the parameters are the average of ten 

replication for each treatments. Means of different parameters followed by same letter within a column are not significantly different 

according to F- protected least significant different test (P < 0.05). 
z Pathogen densities for each treatments are provided in table 5.1. Pp represents P. penetrans and Fo represents F. oxysporum. Three 

treatments with very high pathogen densities were added in second year experiment. 
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Table 5.4. Percent reduction of plant growth parameters and tuber yield of Red Norland potato in pathogen inoculated treatments 

compared to non-inoculated control during 2016 and 2017 micro plot trialsa. 

Treatmentsb Reduction of plant growth parameters Reduction of yield  

Plant height (%) Dry root weight (%) Dry stem weight (%) Tuber weight (%) 

 2016 2017 2016 2017 2016 2017 2016 2017 

Non-inoculated 

control 

0 0 0 0 0 0 0 0 

Low Pp 3 6 0 13 10 9 13 6 

Low Fo 6 2 10 12 13 0 12 3 

Low Pp + Low 

Fo 

8 8 16 18 15 13 20 10 

Med. Pp 19 15 19 17 14 9 27 13 

Med. Fo 7 8 35 13 30 13 23 10 

Med Pp + Med. 

Fo 

12 21 28 31 34 27 35 25 

High Pp 27 33 42 35 28 33 29 34 

High Fo 21 13 38 23 36 28 35 22 

High Pp + High 

Fo 

26 30 43 37 44 38 43 44 

V. High Pp - 23 - 35 - 30 - 33 

V. High Fo - 15 - 24 - 29 - 23 

V. High Pp + V. 

High Fo 

- 32 - 37 - 42 - 42 

a Plant height data were collected during harvesting while others after harvest of trial. 
 b Pathogen densities in ten different treatments are provided in table 5.1. Pp represents P. penetrans and Fo represents F. oxysporum.  
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Table 5.5. Disease severity, nematode final population and nematode reproductive factor for different treatments during 2016 and 

2017 micro plot trialsx. 

Treatment Disease severityy Final nematode population per pot per 

plant 

Nematode Reproductive factor (RF)z 

2016 2017 2016 2017 2016 2017 

Non-inoculated 

control 

1.50 bc 0.90 d -  - - 

Low Pp 1.00 c 1.30 bcd 308 d 750 d 1.50 b 3.75 a 

Low Fo 1.60 bc 1.40 bcd - - - - 

Low Pp + Low 

Fo 

1.70 abc 1.20 cd 729 d 626 d 3.60 a 3.13 a 

Med. Pp 1.30 bc 1.30 bcd 2,708 c 3,870 c 3.30 a 4.83 a 

Med. Fo 1.90 ab 1.60 abcd - - - - 

Med. Pp + Med. 

Fo 

1.80 ab 1.80 abc 2,373 c 3,836 c 2.90 ab 4.79 a 

High Pp 1.80 ab 2.08 abc 4,569 b 6,668 b 2.20 ab 3.28 a 

High Fo 1.90 ab 2.14 ab - - - - 

High Pp + High 

Fo 

2.40 a 2.13 ab 5,464 a 8,268 ab 2.70 ab 3.98 a 

V. High Pp - 2.10 abc - 8,771 ab - 3.11 a 

V. High Fo - 2.48 a - - - - 

V. High Pp + V. 

High Fo 

- 2.42 a - 9,690 a - 3.31 a 

xDisease severity, final nematode population and nematode reproductive factor values for each treatment are the mean of ten 

replications of each treatment. 
y Disease severity is based on 0 to 5 rating scale ( Kotcon et al. 1985). A value of 0 = no symptoms, 1 = < 25% of foliage with wilting, 

chlorosis, necrosis, 2 = 25 to 49%, 3 = 50 to 74%, 4 = 75 to 100%, and 5 = complete death of plant. 
z Nematode Reproductive factor (RF) is calculated by dividing the final nematode population per pot per plant by initial nematode 

population inoculated during planting. Initial nematode populations for different treatments are mentioned in detail in Table 5.1.  
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Fig.5.1. Tuber yield (in gram) per pot per plant of Red Norland potato in ten treatments of micro-plot trial during 2016 growing 

season. Yield is the average of ten replications for each treatment. Yields with same letters are not significantly different according to 

F-protected least significant different test (P < 0.05). Pp represents the root lesion nematode, P. penetrans and Fo represents the fungal 

pathogen, F. oxysporum. The density of pathogen for each treatment was provided in Table 5.1. 
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Fig.5.2. Tuber yield (in gram) per pot per plant of Red Norland potato in thirteen treatments of micro-plot trial during 2017 growing 

season. Yield is the average of ten replications for each treatment. Yields with same letters are not significantly different according to 

F-protected least significant different test (P < 0.05). Pp represents the root lesion nematode, P. penetrans and Fo represents the fungal 

pathogen, F. oxysporum. The density of pathogen for each treatment was provided in Table 5.1.
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Discussion 

Eight genera of plant-parasitic nematodes including Pratylenchus spp., Helicotylenchus 

spp., Heterodera spp., Tylenchorhynchus spp., Paratrichodorus spp., Hoplolaimus spp., 

Mesocriconema spp., and Paratylenchus spp. were detected in potato fields of Becker, 

Minnesota. Previous study in Ohio potato fields also reported eight genera of plant-parasitic 

nematodes (Brown et al. 1980). However, we detected Heterodera spp., Hoplolaimus spp., and 

Mesocriconema spp. which were not reported during their survey. Both surveys suggest 

Pratylenchus spp. are the most frequent and dominant nematodes in potato fields.  In our survey, 

Pratylenchus spp. were present in 57% of soil samples while in Ohio survey they were observed 

in 65% of the soil and 85% of the root samples. We also identified Pratylenchus spp. in 100% of 

the root samples but these included those obtained from the problematic areas of the fields with 

stunted plant growth. Other plant-parasitic nematode genera were detected infrequently in both 

surveys. Moreover, P. penetrans was considered to be the most damaging nematode in light 

sandy soil of Wisconsin potato fields (Dickerson et al. 1964). Additionally, P. penetrans and P. 

crenatus appeared to be the dominant nematodes of potato crop in Prince Edward Island, Canada 

(Kimpinski 1979). Our results, including those from other researchers from Northeastern United 

States and Canada, suggest that Pratylenchus spp. are an important pest of potato crop in these 

regions. In Scandinavian regions, Pratylenchus spp. including a few other nematodes such as 

Globodera spp., Trichodorus spp., Paratrichodorus spp., and Ditylenchus spp. were considered 

important nematodes of potato crop (Holgado and Magnusson 2012). 

The effect of root lesion nematode, P. penetrans or wilt fungus, F. oxysporum 

individually or combination was evaluated on growth and yield of red skinned potato cultivar, 

Red Norland in micro-plots in field conditions. The effect of these pathogens individually on 
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potato crop and together on other crop hosts has been studied. However, to our knowledge the 

effect of both pathogens together on potato cultivar, Red Norland has not been reported in the 

United States. In this study, either P. penetrans or F. oxysporum or together reduced growth and 

yield of potato crop, in light sandy loam soil at most pathogen densities. The negative effect on 

plant growth and yield increased with increasing density of pathogens individually or together. In 

most cases, co-inoculation of both pathogens caused comparatively more harmful effect on 

growth parameters and yield than individual pathogen alone. However, there was no significant 

interactive effect of co-inoculation on plant growth, tuber yield, and plant health.  

In this study, significant effect of nematode on plant growth started to appear at pre-plant 

density of 32 P. penetrans/ 200 g of soil (approx. 32/100 cc soil or 800 Pp per pot). We only 

observed the effect on plant height at 32 Pp/ 200 g of soil. Similar, to our findings Martin et al. 

(1982) observed the reduction on top growth at 56 Pp/ 100 cc soil.  However, Bernard and 

Laughlin (1976) found the suppression of other growth attributes such as root weights and tuber 

yield at pre plant density of 38 Pp/ 100 cc soil. In present study, negative effect on all growth 

parameter (plant height, stem weight, root weight) and yield was observed at pre-plant densities 

equal to or higher than 80 Pp / 200 g of soil (approx. 80 Pp/ 100 cc soil) or 2000 Pp per pot. We 

report 27 to 33% and 35 to 42% reduction of plant height and root weight respectively in Red 

Norland cv. at 80 Pp/ 200 g of soil. In contrast, at similar inoculum density (81 Pp/ 100 cc soil) 

Bernard and Laughlin (1976) observed no reduction of top growth but 54% and 45% reduction 

of root weight in Superior and Kennebec, cultivars respectively in Michigan. However, in Ohio 

on same Superior cv., Martin et al. (1982) observed both top growth and root reduction at 

densities both lower and higher than 80 Pp/ 200 g of soil in this study. In their study, P. 

penetrans suppressed top growth and root by 37% and 38% at 56 Pp / 100 cc of soil and 48% 
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and 35% at 151 Pp/ 100 cc of soil. These differences observed on effect of P. penetrans on plant 

growth might be due to differences in virulence of P. penetrans or growing conditions in 

Minnesota, Michigan and Ohio considering all being micro-plot studies in fields. 

In this study, yield losses ranged from 29 to 34% at ‘high’ density of P. penetrans (80 Pp/ 

200 g of soil or approx. 80 Pp/ 100 cc of soil). However, in micro-plot studies in Canada, yield 

losses were even higher and ranged from 25 to 73% depending upon potato cultivars (Olthof 

1986). Similar to our study, 30% yield loss was reported on Superior cv. while no losses on 

Russet Burbank at similar inoculation density (81 Pp/ 100 cc of soil) (Bernard and Laughlin 

1976). Moreover, in infected fields of Norway, up to 50% yield losses were observed (Holgado 

et al. 2009). All these previous findings provided more evidence to yield reduction of certain of 

certain potato cultivars due to P. penetrans. Our results also suggest that in a suitable condition, 

effect of P. penetrans on yield of potato could vary depending upon the pre-plant densities. 

Moreover, pre-plant densities of P. penetrans (80 or 120 Pp/ 200 g of soil) which caused  yield 

losses in micro-plot studies were within the range of those densities (60 to 160 Pp/ 200 g of soil) 

found in some problematic fields with stunted plant growth. This suggests that P. penetrans in 

some potato fields in Becker, Minnesota might be causing serious yield damage. Decline in 

growth and yield due to P. penetrans infection may be due to loss of normal ability of infected 

roots to uptake water and nutrients as required by crop. It was suggested that feeding by 

Pratylenchus spp. inside root tissues could collapse infected cells and tissues increasing stress on 

crops (Rowe and Powelson 2002; Smiley and Machado 2009). 

F. oxysporum at ‘high’ and ‘very high’ inoculation densities caused significant reduction 

of plant growth and yield losses. However, at ‘low’ and ‘medium’ level significant reductions 

were not observed in most cases. This could simply be explained that lower inoculum levels 
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were not enough to cause damage to potato crop. In field conditions, up to 25% yield losses were 

reported to be caused by Fusarium spp. while in storage damage to tubers can reach up to 60% 

(Desjardins 2006; Secor and Salas 2001). While in our micro-plot studies we found 22 to 35% 

yield losses, similar to those reported for field conditions. Dry conditions of Becker, Minnesota 

with relatively low precipitations during the growing period might have helped to increase the 

damage caused by P. penetrans or F. oxysporum individually on potato crop. 

In present study, we did not observe significant interactive effect of co-inoculation at any 

level compared to individual pathogen alone at the same level of inoculation. This contrasts with 

the suggestion that nematode and fungus interaction effects were observed at the pathogen level 

where individual pathogens caused no effect or very little effect when acting alone ( Rowe and 

Powelson 2002; Martin et al. 1982). Nevertheless, in most cases of this study pathogens during 

co-inoculation were producing more negative effect than individual pathogens. Like our 

observation, Burpee and Bloom (1978), did not found significant interactive effect of V. 

alboatrum and P. penetrans on potato crop. But, he also observed slightly higher effect on tuber 

yield during co-inoculation of V. alboatrum and P. penetrans than individual pathogens. In 

contrast, Jorgenson (1970) observed negative role of F. oxysporum during co-inoculation with H. 

schachtii leading to lesser damage on sugarbeet crop than H. schachtii alone. 

In this study, plant health assessed as wilting, chlorosis and necrosis were not correlated 

with reduction of plant parameters for some treatments. Similar observations were made during 

nematode-fungus interaction studies in potato by Martin et al. (1982) and Burpee and Bloom 

(1978). It is questionable for such observation in our study. In addition, in this study, plant health 

assessment was done only one time at the later end of growing season. Hence, we suggest that in 
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future plant health assessment should be done at least one more time from early growth stage 

rather than only one time at the later end of growing season. 

There was no significant interactive effect of co-inoculation on plant health or disease 

development and nematode multiplication in the present study. Consistent with our result, 

Burpee and Bloom (1978) did not observe significant interaction of P. penetrans and V. albo-

atrum on potato early dying disease development in Katahdin, Kennebec and Abnaki cultivars. 

However, significant interaction of P. penetrans and V. dahliae was observed in development of 

potato early dying symptoms on Russet Burbank and Superior cultivar of potato (Riedel et al. 

1985; Rowe and Powelson 2002; MacGuidwin and Rouse 1990; Martin et al. 1982). Therefore, it 

could be inferred that interactive effect on disease development may be influenced by type of 

cultivar grown since many researchers observed interaction on specific potato cultivars. In this 

study, in most of the cases the reproduction of P. penetrans was not significantly affected due to 

presence of F. oxysporum during co-inoculation compared to P. penetrans alone. Conversely, 

reproduction rate of P. penetrans was reduced in nematode species mixture of P. scribneri and P. 

penetrans in the presence of V. dahliae on Superior cv. of potato in Ohio (Wheeler and Riedel 

1994). Similarly, F. oxysporum inhibited the reproduction of H. schachtii in sugarbeet 

(Jorgenson 1970). However, we neither observed significant reduction nor increment but only 

slight numeric increment in reproduction rate of P. penetrans in the presence of F. oxysporum. 

However, Mountain and McKeen (1962) noticed significantly positive role V. dahliae in 

reproduction rate of P. penetrans in eggplant and tomato.  Although the mechanism of 

interaction between nematode and fungus is not clearly understood till now, researchers have 

agreed that either pathogen infection increases stress on plant changing host physiology and 

making more prone to infection by another pathogen. Moreover, it was also claimed that root 
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lesion nematode feeding led to higher root exudate production and increased rhizosphere zone, 

facilitating germination of more fungal spores (Rowe and Powelson 2002). 

We conclude that P. penetrans and F. oxysporum both individually and together can 

cause effect on plant growth, yield and plant health. However, in most cases, presence of both 

pathogens were not observed to have significant increment in damage compared to lone 

pathogen on Red Norland cultivar of potato. Considering slightly higher negative effect of co-

inoculation than individual pathogen in micro-plot studies using autoclaved field soil, future 

research should be carried out in field conditions using more crop cultivars where both pathogens 

are present. Based on the findings of this research management of these pathogens would be 

considered worthy in order to improve potato production in this region. 
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CHAPTER 6. SUMMARY 

In North Dakota pea field soils, eight genera of plant-parasitic nematodes including 

Paratylenchus, Tylenchorhynchus, Pratylenchus, Helicotylenchus, Xiphinema, Hoplolaimus, 

Meliodogyne, and Paratrichodorus were identified during the surveys from 2014 to 2017. 

Among eight group of parasitic nematodes, Paratylenchus and Tylenchorhynchus were the top 

two dominant nematodes based on incidence, distribution and population densities. Moreover, 

greenhouse experiment indicated that the dominant parasitic nematode, pin nematode, 

Paratylenchus nanus could reproduce in selected field pea cultivars with a differential rate of 

reproduction at two initial population densities. P. nanus was also demonstrated to cause 

reduction on growth and yield of some field pea cultivars. 

Nematode soil surveys conducted in potato fields of Central Minnesota during 2015 to 

2016 indicated Pratylenchus as the dominant nematode based on incidence and population 

densities. Other genera of plant-parasitic nematodes identified in potato fields included 

Heterodera, Helicotylenchus, Tylenchorhynchus, Paratrichodorus, Hoplolaimus, 

Mesocriconema, and Paratylenchus. Micro-plot trials conducted to examine the effect of lesion 

nematode, Pratylenchus penetrans and wilt fungi, Fusarium oxysporum on potato growth and 

yield showed that these pathogens have ability to cause detrimental effect on potato crop when 

acting alone or together. However, these pathogens were not observed to have significant 

interactive effect on potato growth and yield when present together compared to present alone. 
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APPENDIX. ACTIVITIES DURING AND AFTER HARVEST OF MICRO-PLOT 

TRIALS 

 

 

Fig A1. Drilling holes using an automated driller at the micro-plot trial site. 
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Fig. A2. Potato plants in micro-plot trial at the Sandplain Research Farm, Becker, Minnesota. 
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Fig. A3. A) A plant with no obvious visual symptom under the non-inoculated treatment (A) and wilting, necrosis, and chlorosis of 

potato plants inoculated with both P. penetrans and F. oxysporum at the ‘high’ pathogen density (B and C). 

A B C 
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Fig. A4. Images (A and B) showing browning and necrosis of roots inoculated with both P. 

penetrans and F. oxysporum at the ‘very high’ pathogen density. 
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Fig. A5. An image showing necrotic areas, with red arrows, in a single root fiber due to P. 

penetrans infection in root tissues. 
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Fig. A6. An image showing macro and microconidia of F. oxysporum. Blue arrow shows 

microconidia while red arrow indicates macroconidia. 
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Fig. A7. A) Male of P. penetrans. Red arrow shows the spicules which is the diagnostic 

character of male. B) Female of P. penetrans. Dark Blue arrow indicates the vulva slit, 

diagnostic character of female. 
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Fig. A8. Identification of P. penetrans from DNA extracted from single individuals by conventional polymerase chain reaction using 

species-specific primers. DNAs were amplified with the P. penetrans-specific primer set PP5F/PP5R (approx. 520 bp). M indicates 

100-bp DNA ladder (Promega Corp.). Lanes 1 to 12 indicates amplified DNA from single lesion nematode individuals, Pp represents 

P. penetrans DNA, and NC represents non-template control with sterilized double-distilled water instead of DNA in PCR mixture. 
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 Fig. A9. Identification of F. oxysporum from DNA extracted from soil and mycelium grown on potato dextrose agar medium by 

conventional polymerase chain reaction using species-specific primers. DNAs were amplified with the F. oxysporum specific primer 

set FOF1/FOR1 (340 bp). M indicates 100-bp DNA ladder (Promega Corp.). Lanes 1 to 9 indicates amplified DNA from soil, lane 10 

to 15 represents amplified DNA from mycelium, PC represents positive control for F. oxysporum DNA, and NC represents non-

template control with sterilized double-distilled water instead of DNA in PCR mixture. 
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