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ABSTRACT 

Wang, Yunli, M.S., Department of Statistics, College of Science and Mathematics, North 
Dakota State University, June 2011. Mass Spectrum Analysis of a Substance Sample 
Placed into Liquid Solution. Major Professor: Dr. Volodymyr Melnykov. 

Mass spectrometry is an analytical technique commonly used for determining 

elemental composition in a substance sample. For this purpose, the sample is placed into 

some liquid solution called liquid matrix. Unfortunately, the spectrum of the sample is not 

observable separate from that of the solution. Thus, it is desired to distinguish the sample 

spectrum. The analysis is usually based on the comparison of the mixed spectrum with the 

one of the sole solution. Introducing the missing information about the origin of observed 

spectrum peaks, the author obtains a classic set up for the Expectation-Maximization (EM) 

algorithm. The author proposed a mixture modeling the spectrum of the liquid solution as 

well as that of the sample. A bell-shaped probability mass function obtained by 

discretization of the univariate Gaussian probability density function was proposed or 

serving as a mixture component. The E- and M- steps were derived under the proposed 

model. The corresponding R program is written and tested on a small but challenging 

simulation example. Varying the number of mixture components for the liquid matrix and 

sample, the author found the correct model according to Bayesian Information Criterion. 

The initialization of the EM algorithm is a difficult standalone problem that was 

successfully resolved for this case. The author presents the findings and provides results 

from the simulation example as well as corresponding illustrations supporting the 

conclusions. 
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CHAPTER 1. INTRODUCTION 

Statistics is a field of science with many applications in business, agriculture, 

chemistry and other areas. This paper presents a statistical methodology applicable 

in chemistry. It can be used to find the mass spectrum of a substance sample placed 

into a liquid solution. Mass Spectrometry (MS) is a technique commonly used in 

analytical laboratories that study chemical, biochemical or physical properties of a 

wide variety of compounds for determining elemental composition in a substance 

sample. For this purpose, the sample is usually placed into some liquid solution 

called liquid matrix. Unfortunately, the spectrum of the sample is not observable 

separately from the spectrum of the liquid solution. Thus, it is desired to separate 

the sample spectrum from the spectrum of the liquid solution. There arc special tools 

and methods to identify unknown composition of elements in a molecule or chemical 

solution. To learn more about these and other methods, we refer the readers to [l, 17]. 

In literature [2,3,22,30], there are detailed introductions about the principle of MS and 

the application of MS instruments. These im,truments are widely used in chemistry 

and physics. However, they are not flexible enough to be used out of laboratory or 

during a short period. There are various methods of mass spectrum investigating the 

peaks. However, there is a lack of procedures for extracting the entire mass spectrum 

of the substance. Therefore, it is necessary to find inexpensive and flexible methods 

which can be simply applied to separate the spectrum of the substance sample from 

the spectrum of the liquid solution. 

The purpose of this paper is to derive a procedure which can find the mass 

spectrum of a sample placed into a liquid solution. Here, the author present the 

methodology executed in the research to find the spectrum of the sample from the 

spectrum of the liquid solution. The analysis is based on the comparison of the mixed 

spectrum with the spectrum of the sole liquid solution. However, the origins of all 
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spectrum peaks are unknown. Therefore, by introducing the mrnsmg information 

about the origin of observed spectrum peaks, the author obtain a classic set up for 

the Expectation-Maximization (EM) algorithm. A mixture model of the spectrum 

of the liquid solution as well as that of the sample is proposed. According to 

the pattern of the spectrum, a bell-shaped probability mass function obtained by 

discretization of the univariate Gaussian probability density function was designed 

for serving as a mixture component. The author have tested the methodology in 

a challenging simulation example in R environment. In Chapter 2, the author will 

consider necessary background and present the derivations for the technique. Chapter 

3 presents a simulation study. Finally, in Chapter 4, the author conclude the paper 

and discuss the future directions of this research. 
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CHAPTER 2. METHODOLOGY 

2.1. Finite Mixture Models 

Since nineteenth century, finite mixture models are applied frequently in modern 

statistics. More and more scholars in science noticed that finite mixture models bring 

great flexibility and convenience when multivariate datasets are met in their research. 

Furthermore, a wide variety of probability distribution functions are learned and used 

as mixture components in finite mixture models. Diverse algorithms and methods arc 

developed to estimate the unknown parameters. An increasing number of books and 

research papers [16, 18, 31] have come out introducing and iuterpretiug the definition 

and application of finite mixture models. 

In statistical literature, the first appearance of finite mixture models, which 

was used for the purpose of modeling outlier, was in paper [27] in 1886. Iu the 

paper, however, there was no complete definition and interpretation of finite mixture 

models. [26] includes the comprehensive explanation and summary of the application 

and development of finite mixture models. In literature, the mixtures of Gaussian 

densities are most commonly used and popular [10]. Now, we provide a definition of 

a finite mixture models. 

Definition: Let X 1 , X 2 , X 3 , ... , Xn to be independent and identically distributed 

random variables from a distribution with probability density fuuction J(x; n) given 

by 
K 

J(x; n) = L 1rkfk(x) (1) 
k=l 

Then, this probability density function represents a distribution of a finite 

mixture model with K components. This is the most general form of mixture 

models. Here, K represents the total number of components contained in the mixture. 

n = ( n1 , n2 , ... , 7rk )' is the vector of mixing proportions; the k - th mixing proportion 
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7rk is the prior probability that an observation belongs to the k - th component. 

The sum of all mixing proportions from different components must be equal to 1. 

Therefore, for mixing proportions 1rks, the restrictions arc O < 7rk :S 1, k = 1, 2, ... , K 
K 

and L 7rk = 1. Here, the proportions of distinct components in the sample can be 
k==l 

equal or completely different. In the form given in equation (1), fk(x) is called 

the k - th mixture component or mixing density. fk(x) represents the probability 

density function of the k - th component. Mixing densities are usually assumed to 

have a parametric form. The functional form of f k can be different or the same for 

different components and is assumed to be known. In the parametric form, unknown 

parameters of each mixture component need to be estimated to define the probability 

density function. For this reason, we refer to f (:r; B) given by 

K 

J(x; e) = ~ 1rdk(x; ek) (2) 
k==l 

where, e is the parameter vector, e = (1r 1,e;,e;, ... ,e~)', with ek representing the 

unknown parameters corresponding to the k - th functional form of fk- Here, the 

mixing proportions are also included into the vector of unknown parameters. For the 

future derivation and computation, it is convenient to use one vector e to represent 

all unknown parameters in the form of probability density function. 

Finite mixture models can be applied to various problems. In particular, it 

provides a convenient formal setting for model-based clustering whose purpose 1s 

to classify homogeneous observations into groups. In model-based clustering, each 

of the observations is assigned to different groups according to some pre-specified 

rule. Let sample X 1, X 2 , ... , Xn be drawn from the parametric mixture model (2). 

Observations from the k - th group have the mixture component fk(x; (h) with the 

corresponding mixing proportion 7rk- To assign observations to dusters, the author 

use Bayes rule based on their obtained posterior probabilities. 
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In form (2), when the number of components I< is unknown, it has to be 

estimated. In many applications of finite mixture models, the author assume that the 

probability density function of mixture components is the same for all clusters. In 

this paper, the author also relay on this assumption. Estimating unknown parameters 

of mixture components is an important statistical problem. the author discusses how 

to find posterior probabilities and estimate unknown parameters in the next section. 

2.2. Expectation-Maximization (EM) Algorithm 

In order to estimate the unknown parameters of the mixture components, the 

author needs to maximize the likelihood function which is constructed based on 

the probability density function (2). The estimates are called maximum likelihood 

estimates (MLEs). However, in finite mixture models, maximum likelihood (ML) 

estimation is difficult to implement because the form of the likelihood function form 

(2) is typically complicated and multi-modal. Obtaining the closed-form solution or 

conducting numerical optimization of the direct likelihood function is impossible or 

troublesome. Fortunately, ML estimation can be implemented via the EM algorithm 

[4, 15]. The EM algorithm is an efficient method for estimation in finite mixture model 

setting. The EM algorithm assumes that there are missing observations called group 

identifiers. It is an iterative procedure that allows estimating unknown parameters e. 

It iteratively alternates between the expectation step called E-step and the maximiza

tion step called M-step. In finite mixture models, the corresponding complete-data 

log likelihood function usually can be easily maximized. Then, at E-step, the EM 

algorithm computes the expected log likelihood for the complete data, denoted as Q

function, and obtains the posterior probabilities 'Trih· 

(r-l)J( . g(r-1)) 
cluster I xi; e( r- l l} = _1r""'k ___ x_,_, _k"-----

~ (r-l)j( .· g(r-1)) w 7rh x,, h 

(3) 

h==l 
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., 

Here, r is the number of iteration. At the M-step, the algorithm max1m1zes the 

Q- function Q(8;(/(r-l),X1,X2, ... ,Xn) with respect to the parameter vector(/ to 

re-estimate all parameters. Once the author has new parameter values, the author 

repeats E and M-steps until the likelihood converges. In this paper, the EM algorithm 

is implemented in the proposed model. The author obtained the closed-form solutions 

for the majority of unknown parameters. The means and variances of different 

mixture components need to be optimized numerically. In section 2.3, the author 

discusses an appropriate model for the spectrum modeling. In section 2.4, the 

solutions for the estimates of parameters are presented. 

2.3. Proposed Model 

In the research, the author wants to separate the spectrum of the sample from 

the spectrum of liquid. This can be clone by comparing the spectrum of the sole 

liquid with the mixed spectrum. However, the author docs not know the number 

of components needed to model both spectrum. The functional form of mixture 

component has to be proposed based on the pattern in the spectrum. As mentioned 

before, the author assumes that the functional form of mixture components is the 

same for all components in the paper. 

In Figure 1., the X-axis represents the location of observations, while Y-axis 

represents the height of peaks which means the number of observations at each 

location. For instance, at location 8, there are almost 100 observations located at 

the same point. 

After taking a look at the mass spectrum in Figure 1., the author can notice some 

unusual patterns and multiple local modes. Thus, standard distributions cannot be 

applied as mixture components for modeling mass spectrums. The observations in the 

spectrum are discrete. For the purpose of finding an appropriate probability mass 

function for mixture components, the author considered several standard discrete 
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Figure 1. Example of mass spectrum 

distributions such as Poisson, Binomial and negative Binomial distribution. Neither 

of them is appropriate for modeling the mixture components in the case of study. 

The bell-shaped patterns in spectrum remind a Gaussian distribution. Furthermore, 

mixtures of Gaussian densities are the most commonly used in finite mixture models. 

the author proposes the discretization of the univariate Gaussian probability density 

function to obtain a bell-shaped probability mass function J (x; µk, ak) given by 

( 
2 ) x+0.5-µk) (x-0.5-µk J x;µk,ak =<P( -<P ),x=O,±l,±2, .... 

ak ak 
(4) 

Here, /-Lkand ak represent the mean and also the standard deviation in the k - th 

component from univariate Gaussian distribution, and <I> represents the cumulative 

distribution function of the standard normal distribution. Figure 2. shows how 

Gaussian density is used to produce a bell-shaped probability mass function. 
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Figure 2. Illustrations of how to use univariate Gaussian probability density function 
to obtain the discrete probability mass function 

Since the author compares the spectrum of the liquid and mixed spectrum, 

the author must work with two independent samples simultaneously. The author 

also needs to estimate the number of components in both specified spectrums. The 

following mixture models are proposed for the spectrum of liquid and mixed spectrum, 

respectively. 

(5) 

K M 

Yi, Y2, ... , Yny "'iid g(y) =CL 7rkf(yj; µk, aD + L 1rrJ(yj; Vm, T7;J (6) 
k=l m=l 

Expression (5) represents the proposed model for the spectrum of the liquid. 

nx is the number of observations in the spectrum of liquid , while ny is the number 

of observations in the mixed spectrum. Unknown parameters /1,k, ai are mean and 

variance of the k - th mixture component of the liquid from the univariate Gaussian 

distribution. The expression ( 6) is the proposed model for the mixed spectrum 

when the substance is placed into the liquid. Unknown parameters V711 , T;
1 

represent 
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the mean and variance of m - th mixing component of the substance in the mixed 

spectrum. In section 2.1, the author has mentioned that, in finite mixture models, 
K 

the sum of all mixing proportions should be equal to 1, L 7rk = l. For (6), a 
k=l 

similar condition has to be implemented. The constant c is introduced to guarantee 
K M 

that c L 7rk + L tm = 1 . Thus, the sum of all mixing proportions in the mixed 
k=l m=l 

spectrum is restricted to be 1. Then, the author can derive the expression for the 
M 

constant c: c = 1 - L rm . Now, the bell-shaped probability mass function for 
rn=l 

the mixture component is proposed, and the unknown parameters and number of 

components are estimated. 

2.4. Parameter Estimation 

The unknown parameters need to be estimated from the likelihood function 

based on the functional form of both proposed models. The likelihood function is ob

tained by considering the spectrum of liquid and the mixed spectrum simultaneously. 

Thus, the likelihood function is given by: 

nx K ny K M 

L(e) = IT L 7rkf(x;; µk, ak) x IllI: C7rkf(yj; µk, ak) + L ,,,J(yj; Vm, T,2,,)] (7) 
i=l k=l j==l k=l m=l 

The log-likelihood function obtained from equation (7) is multi-modal. Also, it is hard 

to take partial derivatives of the maximum log-likelihood function directly. Usually, 

deriving the closed-form solutions for unknown parameters is complicated or not 

possible. I3ecause the EM algorithm is flexible and available for treating complicated, 

multi-modal incomplete data, by introducing the missing information about the group 
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identifiers, the complete-data likelihood function Le can be obtained: 

i=l k=l 

ny K 

x IT {Il[cnd'(yj; µk, oDf(YjEk'h) 

j=l k=I 

M 

X rr brrJ(yj; Vm, T,;,)V(YjEm'")} 
m=l 

(8) 

where the author assume that the origin of each peak is known. I(xi E kt/') is 

the indicator function that the i - th peak belongs to tbe k - th component in the 

spectrum of the sole liquid and I(yJ E kth) indicates that the j - th peak is from 

the k - th component of the model for the mixed spectrum. Similarly, J(yj E mt/') 

indicates that the j - th peak belongs to the m - th component of the spectrum of 

the model for the mixed spectrum. 

Next, the author can obtain the corresponding complete-data log-likelihood 

function le(()): 

nx K 

le(())= logLc(()) =LL I(xi E k0 ')[lognk + logf(xi; µk, CTk)] 
i=l k=l 

ny K 

+ L{LI(yj E kth)[logcnk +logf(yj;µk,O"rn (9) 
j=l k=l 

/If 

+ L I(yj E m 1h)[log'Ym + logf(yj; Vm, T1;,)]} 

m=l 

From EM algorithm, the expectation of the conditional complete-data log

likelihood function given observed data is obtained at the E-step. Thus, the Q-
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function is given by 

1'I J{ 

Q( e) = E( le( e) lx1, ... , XnI,; Yi, ... , Y1tu) = LL 1r;k[log1r1.; + log f (:r;; /lk, aD] 
i=l k=l 

ny }( ny Al 
(10) 

+LL ,}f [logrnk + logf(yj; /Lk, o-i}] +LL ,j;~, [log,m + logf(yj; v,,,, T/,)] 
j=l k=l j=l m=l 

where 1r;1.: is the posterior probability that observation x; belongs to the k -

th component of the spectrum of the sole liquid. ,}1 is the posterior probability 

that observation yj originates from the k - th component of the liquid in the mixed 

spectrum, and ,J,~
1 

is the posterior probability that observation Yj belongs to the 

m - th component of the sample in the mixed spectrum. 

The posterior probabilities can be estimated assuming that the parameters 

from the functional form of the proposed models arc known. Below, r represents 

the iteration number of the EM algorithm. fJ(r-l) is the parameter vector estimates 

calculated at the r - th iteration. 

g(r) b{Y k I fjk = Pro J E - t i component!Yy; g(r-l)} (11) 

,J,;i') = Prob{Yy E 7/l - th componcnt!Yy; g(r-l)} 

The E-step consists of updating the posterior probabilities 1rf:l, ,}tJ and ,f,~,<,J 
given the current parameter estimate e(r-l) for all r = 1, 2, 3, .... 

The posterior probabilities can be calculated as follows: 

(r-1)/(,. (r-1) :2,r-I)) 
(r) lr1.; X;, µk , CJk 

7r ·1. = -----"'----'----'---"C----:.::..__--'-

1. ~ f(" . (r-1) 2(,-l)) w X;, /11.;1 , ak' 

(12) 

k'=I 
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( 13) 
K A! 
~ .(r-1) (r-l)f( . (r-1) 2(r-l)) + ~ j(· . (r-1) 2(,-l)) 
LJ C 7f k' !}j' µk, '(J k' LJ Tm' Yj' v"', ' Tm' 

k'=l m'=l 

(,·-])1·( . (r-1) z(,-1)) 
rm YJ, µ,,, , a"' ( 14) 

K M 
~ (r-1) (r-l)J( . (r-1) 2(,-l)) + ~ (r-l)j(· . (r-1) 2(1·-l)) 
LJ C 7f k' YJ' /le '(J k' LJ ,,,,, YJ' VT/l, 'Tm, 

k'=l m'=l 

At the IVl-step, Q- function is maximized with respect to the parameters. 

Then, the author can consider several simpler versions of the Q- function depending 

2 2 on parameters 7rk, "Im, c, µk, ak, Vm and Tm , with respect to the which the author 

maximizes the function. 

First, the author derives the closed--form solution for parameters Hk, '"'' and 

c. Since the author has two restrictions 011 mixing proportions, the author needs to 

introduce two Lagrange multipliers: )'l and ,\2 . After the author finds the expression 
M 

for nk, "Im, and c can be obtained by c = 1 - L Im· 
m=l 

Therefore, the Q* - function of the interest that needs to be maximized over 

7rk, "Im and c is given by 

nI K ny K n 11 A! 

Q*(e) =LL n;klognk +LL 1f,.logrnk +LL ,;,~,log"fn, 
i=I k=l j=l k=l j=l m=l 

K Al 
(15) 

-A1 (L 7rk - 1) - A2(L "Im - 1 + c) + constant 
k=l m=l 

Here, the constant docs not affect the derivation for 7rk, "lm,and c. I3asccl on 

this Q*- function, the author continuess taking partial derivatives with respect to 

nk, "Im, mule., separately. First, ,\ 1 and ,\2 need to be estimated to help us achieve the 

closed-form solutions for Hk, "Im, and c. The derivations is shown as below: 
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, 

(lG) 

n,. K ny I( 

Thus, >-1 = L L 1r;1.; + L L 1ijf. Next, the author obtains the solution for 1r1.; 
i=lk=I j=lk=I 

Substituting the expression for ,\ 1 into the equation (lG), the following expression 

can be obtained: 

( 17) 

In the spectrum of the liquid, the sum of probabilities that each peak assigned 

to different com poueuts is equal to 1. So, the author can find the followi11g equation: 
K I< K n, I( 

L 1r11.; = L 1r21c = ... L 7r;k = 1 . Then, the author cau conclude that L L 1r;1.; = 
k=l k=l k=l i=l k=l 

nx. For this reason, the equation (17) can be simplified to: 

ll.r Hy 

L -rr;k L >-)i "v I( 

i=l j=l ~~ I( -- + --- - nx - L- L- ljk = 0 
'Tri.; 'Tri.; 

j=l k=l 

Finally, the convenient closed-form solution for -rrtJ can be obtained: 

n:r.· ny 
"""' (r) + """' [(I•) w 'Tr;k w ljk 

(r) i=l j=l 
Jrk = ny K 

"""' """' I( ( r ) nx + w w ljk 
j=lk=l 

( 18) 

( 19) 

By taking partial derivatives of Q* - function with respect to ~fm, c, ,\2 and 

setting the derivatives equal to zero, two cquation8 are given by 
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1ly 

DQ* 
'f:. rf!n 
j=I - >-2 = 0 

Drm rm (20) 
Hy ]( 

r:. r:. '' 
DQ* 

ljk 
J=lk=I - >-2 = 0 

fJc C 

For these equations, the author goes further to simplify them and obtain the 

following results: 

ny 

'"""' M wljm 
j=I 

rm= >-2 

c= 

ny K 

'"""' '"""' ]( w w ljk 
j=I k=I 

>-2 

(21) 

The author derived the closed-form solutions for 1111 , c and >-2 by c:ombiniug the 

above equations together. The author can find that .>-2 is the 111m1ber of peaks in the 

mixed spectrum. Thus, the solution for .>- 2 is given by 

ny I{ ny M 

>-2 = LL r}f + L L rJ,~, = 1ly (22) 
j=I k=I j=1 rn=I 

Then, the parameters c(r) and 1f;;l can be estimated by the following expressions: 

ny K 
'"""' '"""' J{(r) w wrk . J 

(r) J=l k=I 
C = 

(23) 

As we can see, the :.I-step can provide us with convenient closed-form solutions 

for 7rk, rm and c: 

The unknown parameters that still have to be estimated are /Lk, aL v111 , and T,~,. 
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However, for maximizing Q- fuuctiou with respect to µk, al, aud Vm, T,;, separately, 

we can consider two versions of Q, given by the following forms: 

n.c /( ny /( 

Q~(e) =LL 1r;,Jogf(x;; Jlk, af) +LL ,Jilogf(yj; 111.;, ai} + constant (24) 
i==l k==l j=l k==l 

ny M 

Q;(e) =LL ,J,;,togf(yJ; v,,,, T,~,) + constant (25) 
j=l rn=l 

Unfortunately, the closed-form solutions for the parameters /1,k, o"i, v"'awl T,~, 

cannot be obtained. These two Q* - functions need to be maximized 11111nerically. 

The author used an R-function optim( ) to conduct numerical optimization. 

2.5. Spectrum Estimation 

How can we pick the peaks which belong to the spectrum of the sample out of 

the mixed spectrum? We do not know the number of componeuts in the model. We 

do not know which peaks come from the spectrum of the substance either. Therefore, 

the optimal number of cornpouents in the mixed spectrum should be found. First, 

we can find the number of components for model of the liquid. Then, using the 

estimated number of components iu the liquid solution model, we can find the number 

of components of the substance sample in the mixed spectrum. The author assign 

observations to cluster according to the largest posterior probabilities ,}'£ and ,f!,, . 
In Section 2.3, the author have provided the function (4), which is an appropriate 

choice for being the functional form of the mixture cornponeut in the framework of 

the problem. Also, i11 Sectiou 2.4, by the El\1 algorithm, the closed-form solutions 

for unknown parameters are obtained. The author incorporate the probability mass 

function ( 4) into the proposed model to be the mixture cornpoucnt. Eventually, by 

the final results for posterior probabilities, the observations can be allocated to their 
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estimated components. Then, we can separate the spectrum of the sample from the 

liquid spectrum. 

2.5.1. Model Selection 

Model selection in finite mixtme models has often referred to the problem of 

choosing the optimal mHnber of components [13, 14]. In this paper, we have /( + lvl 

components in the mixed spectrum. First, 1( needs to be estimated. Iu this section, 

we briefly review the history related to choosing the optimal uumber of components in 

mixture models. There is vast literature [20, 23, 32] contributing to the problem. \Ve 

refer to [6] who provide a detailed description of different and available approaches 

to address this issue. According to [9, 28], most methods devoted to estimating the 

number of components can be divided into two categories. One group of methods 

is parsimony-based while another category depends on testing procedures. The 

former has been widely used and discussed by [25]. In this paper, the method we 

employ belongs to the parsimony-based category. The majority of parsimony-based 

approaches choose a 1111mher of components to minimize a penalized negative log 

likelihood function by trying different values of the mnnber of components. A variety 

of information-based criteria such as Akaikc Information Criterion (AIC) [5], Bayesiall 

Information Criterion (I3IC) [29] and their modificatiorn, fall into this category. BIC 

has been known in finite mixture models for demonstrating good performance. It 

also can be implemented easier than many other methods in this group. In this 

paper, the author use BIC to select the best model. The author vary the values 

of M and /( in order to minimize the value of I3IC. The computational form of 

BIC is BIG = -2 x [logL(€1)] + p x log(n), where p is the munbcr of parameters, 

p = 31( + 3i\J - 1, and n is the total number of observations from all peaks in the 

liquid matrix and the mixed matrix. The values of M and /( should be chosen so that 

they correspond to the smallest value of BIC. They represent the optimal numbers 
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of components according to I3IC. l(B) is log-likelihood function which is given by the 

following form: 

n,. K 

l(B) = logL(B) = L log I)n1;J(:r;; JL,az)j+ 
i=l k=l 

"u K ny /\I 

L log L[n,J(yj; /Lk, aDJ + L log L [,,,J(yj; Vm, T,~,)] 
j=l k=l j=l m=l 

(2G) 

2.5.2. Groups Identifiers 

Group identifier is the basic information needed to allocate the peaks into 

different groups. By the E~l algorithm, at E- and M-steps, the author obtained the 

parameter estimates of 71';1.·, ,Jf, ,Jr~,, 71'J.- and rrn· Therefore, the posterior probabilities 

,Ji and ,Jr;, are available for the group identifiers. The spectrum matrix has two 

columns. The first one presents the peaks heights awl the other one provides the 

locations of peaks. Using posterior probabilities ,J,~, multiplied by the heights of the 

peaks ( number of observations), we can estimate how wany observations came from 

the components of the spectrum of the sample. Based on the Bayes rule, observations 

are assigned to these groups according to the highest posterior probability. Under 

some conditions, there might be several posterior probabilities with the same value, 

so it is unclear how to assign an observation to a group. In [24], randomization is 

rccomrnenclcd to break the tics among competing clusters 

Thus, the author implements the EI\1 algorithm and allocating the peaks to the 

estimated clusters. The author starts the procedure by findiug reasonable starting 

values. \Ve also need to specify the stopping rule for detecting the convergence of the 

E:t-.1 algorithm. 

2.6. Initialization and Stopping Criterion 

The initialization of the Er--.1 algorithm is a step that might be challc11gi11g to 

implement in research. We need to select the best possible starting values to make 
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sure that we can obtain the correct estimates of parameters and the right 11urnber of 

components. But how do we decide on which combination of starting values is good'( 

Fortunately, the likelihood function is a co11venicnt tool that can be used for both, 

initialization and stopping steps. 

2.6.1. Initialization of the EM Algorithm 

Good initialization strategy is crucial for finding 1\11 estimators. In papers of 

[11, 19], many different initialization procedures have been mentioned and co11sidered. 

However, there is no any single method that can outperform the others in all cases. A 

model-based hierarchical clustering approach is seen to work well when components 

arc well-separated [21], but not as well in other situations. This method is proposed by 

[7] and included in the R package Ivic:lust [12], and is specifically designed for Gaussian 

mixtures. This hierarchical clustering method in initialization is very restrictive for 

larger datasets. 

The El\l algorithm is an iterative and hill-climbing procedure whose performance 

can depend on particular starting observations called central points. Choosing and 

assigning observations to the closest central points in the initialization is an important 

step. The initialization of the El\1 algorithm involves starting from the central points 

and running the El\1 algorithm until the pre specific convergence criterion is satisfied. 

The Er,.l algorithm implemented to find the best starting values in the initialization 

is usually call short em. A good choice of central points increases the chance to find 

the correct parameter estimates. Random selection of initial points may be a bad 

approach, because we may pick several initial central observations from the same 

component. Therefore. a pre specified rule is necessary to choose the best initial 

observations. The author will discuss this rule later in the next section. Once we 

obtain the best initial observations, representing the central points of each cluster, 

we continue allocating the observations to groups and proceed to find the unknown 
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parameters. At the short cm, the solution producing the highest log likelihood is 

chosen as a starter for the long Ei\1 algorithm. Then the long EM algorithm nms 

until the convergence is achieved. Thus, the cm-EM algorithm consists of two Ei\,1 

stages proposed by [8]. Iu thiti paper, the author use the locations of the peaks instead 

of considering all observations tu find the best starting central locations. Then, based 

on the distance betweeu pair wise locatious of the peaks, all observations are assigned 

to their nearest group. After the short em is finished, the author save, the best 

locations and the corresponding parameters estimates: Trk, "Im, c, /Lk, al, v"'and T,~, as 

the starting parameters. The starting values are passed into the long EM algoritl11u 

to get the final parameter estimates. The initialization of the EM algorithm in this 

paper is a challenging step because the information about the spectrum of the liquid 

is also unknown. Therefore, first, the author runs the short em for tlw spectrum of 

the sole liquid to obtain the estimates of 7rk, /lk, ar At the short Clll and the loug EM 

steps, specific stopping niterion helps us decide when the EM algorithm should be 

stopped. 

2.6.2. Stopping Criterion 

The log-likelihood fm1ction is used iu the convergence criterion to select the best 

starting points. If the difference between two consequent log-likelihood values is less 

than some pre specified error margin, we stop the short ern algorithm aJl(l continue 

running the 1011g E:\1 with the best starting values of the parameters. After running 

the long EJ\1 algorithm, the main stopping criterion is also based OB the log- likelihood 

fuBction. \Vheu the long Ej\1 algorithm converges, we save the produced parameter 

estimates. i\Icanwhile. the maximized log-likelihood fnnction is used for calculating 

the values of BIC for different numbers of componcuts. 
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CHAPTER 3. SIMULATION EXAMPLE 

In the paper, the author applied the methodology to a small but challenging 

simulated dataset. In this simulation example, the author uses a 3-cornpoueut model 

to simulate 1000 observations from the liquid. the author also performs simulations 

of 1000 observations under the mixed !cipectrum model assuming 2 components for 

the substance sample. 500 observations were simulated from the model for the liquid 

solution. The following tables summarize the data simulated with an underlying 

Gaussian mixture distribution: 0.5 x 0.5 x N(G, 1) + 0.5 x 0.2 x N(9, 0.5) + 0.5 x 0.3 x 

N(14, 1) + 0.3 x N(7.5, 0.5) + 0.2 x N(l2.2, 0.5). Table 1. provides simulated data for 

the liquid solution. Iu Table 2., we cau find simulated data for the mixed spectrum 

when the sample is placed into the liquid. 

Table 1. Liquid matrix data 

Location 3 4 5 6 7 8 9 10 11 12 13 14 15 1G 17 

Peak 
Height 3 2G 123 194 123 77 94 55 5 17 63 124 81 14 1 

Table 2. Liquid matrix data+sample data 

Location 3 4 5 G 7 8 9 10 11 12 13 14 15 lG 17 

Peak 
Height 0 13 Gl 118 197 IGO 7G 2G 31 102 100 70 33 12 1 

Figure 3. shows the spectrum of the liquid from the simulation example. \Vhere, 

the x-axis represents the location of the peaks and the y-axis demonstrates the number 

of observations at each location in the liquid. Figure 4. represents the mixed spectrum 

from the simulation example when the sample is placed into the liquid. According to 

Figures 3. and --1., the difference between two spectrums is obvious, but the author 

cannot visually detect the number of components needed for fitting both data.c;ets. 
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Figure 3. The spectrum of the liquid from the simulation example 
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Figure 4. The spectrum of the mixed solution from the simulation example 
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The author implemented the methodology in R environment and applied it for the 

simulated data. Although the initialization of the E1'1 algorithm is a difficult problem, 

we solved it successfully in the simulation example. As mentioned in section 2.G.1, by 

varying the number of mixture components for the liquid matrix all(] the sample, we 

obtained the correct number of components according to I3IC. The following Table 

3. represents the different values of BIC corresponding to the various values of the 

number of mixture components J{ and 1\1. 

Table 3. BIC values of different models 
BIC M=l l\1=2 1\1=3 1'1=4 l\l=G M=G 

K=l 10379.07 10110.85 I01:30.G3 10149.60 10174.83 10192.D2 

K=2 9524.315 9508.G49 9G28.9GG %38.091 DGG4.244 9584.943 

K=3 %18.027 9397.326 9,119.563 9445.313 9467.39:3 9493.468 

K=4 %44.071 9444.088 9444.636 946G.44 9492.942 9513.477 

Based on the values of I3IC in Table 3., when I( = 3 and M = 2 , I3IC reaches its 

smallest value: 9397.326. Therefore, we can conclude that there are 5 total mixture 

components which consist of 3 components from the liquid and 2 from the sample 

in the mixed spectrum. Thus, we are able to detect the correct model from the 

simulated data. Figures 5. and G. illustrate the original spectrmm; along with the 

predicted values obtained based 011 the chosen model. As we can see, the model docs 

an excellent job in predicting the peak heights. 

The posterior probabilities ~y)';,, which is obtained from the Eivl algorithm specify 

proportion of particles from the substance in the j - th peak of the mixed spectrum. 

Therefore, the particle counts of observations or the heights of peaks for the sample 

can be estimated using the total number of observations multiplied by the probabilities 

of the sampl<' at each location in the mixed spectrum. The formula used is giveu: 
Al 

L ,);, x nJY. Here. n1y is the m1wber of the observations i11 the j - th peak from the 
m=l 
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Figure G. The points represent the predicted values of the nmnber of observations at 
each location in the liquid spectrum 
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Figure 6. The points represent the predicted number of observations at each location 
in the mixed spectrum 
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mixed spectrum. Eventually, the author successfully finds the mass spectrum of the 

substance sample placed into the liquid. The correct uumber of cornponcnts has been 

detected. Figure 7. represents the extracted sample spectrum. The author applies 

parametric bootstrapping to obtain the variability of the l\lLEs for the heights of the 

peaks in the spectrum of the substance. The author .simulated 1000 datw,et.s from 

random estimated mixtures. 

The author ran the EM algorithm aud then saved the posterior probabilities for 

all 1000 datasets. Then, we can obtain the 1000 different combinatious of the heights 

for all peaks for the spcctrums of the sample. Fiually, the author dropped the first 25 

mininrnm values of the heights out of all peaks and the largest 25 maximum values 

of the heights of all peaks for the spcctn11n of the sample. So, the author present 

the variability of l\lLEs for the heights of peaks in Figure 8., usiug 95% confidence 

intervals. In Figure 8., the dottPd lines represent the 95% coufidence intervals for 

the numbers of observations at every location of the simulated spectrum, where the 

circles arc the predicted mm1bcr of observatious at each locatiou. 

In order to check the performance of the proposed method on other datasets and 

more challenging parameter settings, the author considered c = 0.1, c = 0.5, c = 0.9. 

For each value of c, 5 datasets were simulated. For each dataset, the entire analysis has 

been repeated. In all 15 cases, we successfully detected the number of components 

under liquid rnatrix and mixed spectrum mixture models. Thus, the author can 

conclude that the procedure is relatively robust to changes in c and can be used even 

for small concentrations of substance iu the liquid. In the simulation example, the 

author successfully extracted the spectrum of the samrle from the mixed spectrum. 

The author finds that there are two components of the sample in the mixed solution 

according to the l3IC based model selection. The author present the variability in 

.\ILEs for the number of observations from the substance sample at each location. 
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Figure 7. The substance spectrum extracted from the mixed spectrum 
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Figure 8. The \'ariability of the estimated height of each peak according to bootstrap 

The results of the simulation example indicate that the bell-shaped probability mass 

function which we have proposed is appropriate and can be employed. Furthermore, 

the author co11cludcs that the statistical methodology works well for extracting the 

entire mass spectrum of the substance sample from the mixed spectrum. 
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CHAPTER 4. DISCUSSION 

IvIS is the teclrnique used to dct<'nniuc the elemelltal composition in a substance 

sample. Usually, the substauce sample is placed illto some liquid solutiou. Therefore, 

the origin of the peaks from the obt ai1wd mixed spectrum is uIJknowIJ. Ill order 

to separate the spectnuu of the sample from the spectrum of the liquid solution, 

the author propose and impk·uw11t a flexible statistical model formulated iu term 

of finite mixtures. Then, the E:t\1 algorithm is used for the purpose of maximum 

likelihood estimation. Although, the initialization of the EM algorithm is a difficult 

problem, the author propose a strategy that successfully resolves all issues. The 

author clemoustrate that the methodology can successfully separate the spectrum of 

the substance aud liquid spec:trmu. The variability of the obtained estimates of tlw 

heights of peaks in spectrums can lw assessed by the parametric bootstrap. 

The reader call think about using a naive approach for finding the spectrnm of 

the sample that would simply subtract the liquid matrix spectrum from the mixed 

spectrum. However, this approach is troublesome and caIJnot provide desired results 

bee a use the scaling coefficient for mass spectrum peaks is 11ot kuow11. Also, the 

obtailled spectrum might have negative peaks that are clifhc:11lt to interpret. lu 

addition to that, this approach docs not provide us with a reasouable model that 

call be nsed, for example, for assessing variability. 

For the future work. the author would like to analyze several wal mass spectrums 

and compare the results with results obtained by other researchers. 
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