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ABSTRACT

Wang, Yunli, M.S., Department of Statistics, College of Science and Mathematics, North
Dakota State University, June 2011. Mass Spectrum Analysis of a Substance Sample
Placed into Liquid Solution. Major Professor: Dr. Volodymyr Melnykov.

Mass spectrometry is an analytical technique commonly used for determining
elemental composition in a substance sample. For this purpose, the sample is placed into
some liquid solution called liquid matrix. Unfortunately, the spectrum of the sample is not
observable separate from that of the solution. Thus, it is desired to distinguish the sample
spectrum. The analysis is usually based on the comparison of the mixed spectrum with the
one of the sole solution. Introducing the missing information about the origin of observed
spectrum peaks, the author obtains a classic set up for the Expectation-Maximization (EM)
algorithm. The author proposed a mixture modeling the spectrum of the liquid solution as
well as that of the sample. A bell-shaped probability mass function obtained by
discretization of the univariate Gaussian probability density function was proposed or
serving as a mixture component. The E- and M- steps were derived under the proposed
model. The corresponding R program is written and tested on a small but challenging
simulation example. Varying the number of mixture components for the liquid matrix and
sample, the author found the correct model according to Bayesian Information Criterion.
The initialization of the EM algorithm is a difficult standalone problem that was
successfully resolved for this case. The author presents the findings and provides results
from the simulation example as well as corresponding illustrations supporting the

conclusions.
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CHAPTER 1. INTRODUCTION

Statistics is a field of science with many applications in business, agriculture,
chemistry and other areas. This paper presents a statistical methodology applicable
in chemistry. It can be used to find the mass spectrum of a substance sample placed
into a liquid solution. Mass Spectrometry (MS) is a technique commonly used in
analytical laboratories that study chemical, biochemical or physical properties of a
wide variety of compounds for determining elemental composition in a substance
sample. For this purpose, the sample is usually placed into some liquid solution
called liquid matrix. Unfortunately, the spectrum of the sample is not observable
separately from the spectrum of the liquid solution. Thus, it is desired to separate
the sample spectrum from the spectrum of the liquid solution. There are special tools
and methods to identify unknown composition of elements in a molecule or chemical
solution. To learn more about these and other methods, we refer the readers to [1,17].
In literature {2,3,22,30], there are detailed introductions about the principle of MS and
the application of MS instruments. These instruments are widely used in chemistry
and physics. However, they are not flexible enough to be used out of laboratory or
during a short period. There are various methods of mass spectrum investigating the
peaks. However, there is a lack of procedures for extracting the entire mass spectrum
of the substance. Therefore, it is necessary to find inexpensive and flexible methods
which can be simply applied to separate the spectrum of the substance sample from
the spectrum of the liquid solution.

The purpose of this paper is to derive a procedure which can find the mass
spectrum of a sample placed into a liquid solution. Here, the author present the
methodology executed in the research to find the spectrum of the sample from the
spectrum of the liquid solution. The analysis is based on the comparison of the mixed

spectrum with the spectrum of the sole liquid solution. However, the origins of all



spectrum peaks are unknown. Therefore, by introducing the missing information
about the origin of observed spectrum peaks, the author obtain a classic set up for
the Expectation-Maximization (EM) algorithm. A mixture model of the spectrum
of the liquid solution as well as that of the sample is proposed. According to
the pattern of the spectrum, a bell-shaped probability mass function obtained by
discretization of the univariate Gaussian probability density function was designed
for serving as a mixture component. The author have tested the methodology in
a challenging simulation example in R environment. In Chapter 2, the author will
consider necessary background and present the derivations for the technique. Chapter
3 presents a simulation study. Finally, in Chapter 4, the author conclude the paper

and discuss the future directions of this resecarch.



CHAPTER 2. METHODOLOGY

2.1. Finite Mixture Models

Since nineteenth century, finite mixture models are applied frequently in modern
statistics. More and more scholars in science noticed that finite mixture models bring
great flexibility and convenience when multivariate datasets are met in their rescarch.
Furthermore, a wide variety of probability distribution functions are learned and used
as mixture components in finite mixture models. Diverse algorithms and methods are
developed to estimate the unknown parameters. An increasing number of books and
research papers [16, 18, 31] have come out introducing and interpreting the definition
and application of finite mixture models.

In statistical literature, the first appearance of finite mixture models, which
was used for the purpose of modecling outlier, was in paper [27] in 1886. In the
paper, however, there was no complete definition and interpretation of finite mixture
models. [26] includes the comprehensive explanation and summary of the application
and development of finite mixture models. In literature, the mixtures of Gaussian
densities are most commonly used and popular [10]. Now, we provide a definition of
a finite mixture models.

Definition : Let X, X5, X3,..., X, tobe independent and identically distributed
random variables from a distribution with probability density function f(z;w) given
by

K
flasm) =" mefiul) (1)
k=1

Then, this probability density function represents a distribution of a finite
mixture model with K components. This is the most general form of mixture
models. Here, K represents the total number of components contained in the mixture.

7 = (my, 7o, ..., ) is the vector of mixing proportions; the k — th mixing proportion
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m, is the prior probability that an observation belongs to the k& — th component.

The sum of all mixing proportions from different components must be equal to 1.

Therefore, for mixing proportions 7. s, the restrictions are 0 < 7, < 1,k =1,2,..., K
K

and > m = 1. Here, the proportions of distinct components in the sample can be
k=1

equal or completely different. In the form given in equation (1), fi(z) is called
the k — th mixture component or mixing density. fi(x) represents the probability
density function of the k£ — th component. Mixing densities are usually assumed to
have a parametric form. The functional form of f, can be different or the same for
different components and is assumed to be known. In the parametric form, unknown
parameters of each mixture component need to be estimated to define the probability

density function. For this reason, we refer to f(z;8) given by

K
f(@;0) = mfilw; 1) (2)
k=1
where, 6 is the parameter vector, § = (7',61,05,...,0}), with 8, representing the

unknown parameters corresponding to the & — th functional form of f;. Here, the
mixing proportions are also included into the vector of unknown parameters. For the
future derivation and computation, it is convenient to use one vector # to represent
all unknown parameters in the form of probability density function.

Finite mixture models can be applied to various problems. In particular, it
provides a convenient formal setting for model-based clustering whose purpose is
to classify homogeneous observations into groups. In model-based clustering, ecach
of the observations is assigned to different groups according to some pre-specified
rule. Let sample X1, X2,..., X, be drawn from the parametric mixture model (2).
Observations from the k — th group have the mixture component fi(z;6;) with the
corresponding mixing proportion 7. To assign observations to clusters, the author

use Baycs rule based on their obtained posterior probabilities.
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In form (2), when the number of components K is unknown, it has to be
estimated. In many applications of finite mixture models, the author assume that the
probability density function of mixture components is the same for all clusters. In
this paper, the author also relay on this assumption. Estimating unknown parameters
of mixture components is an important statistical problem. the author discusses how

to find posterior probabilities and estimate unknown parameters in the next section.
2.2. Expectation-Maximization (EM) Algorithm

In order to estimate the unknown parameters of the mixture components, the
author needs to maximize the likelihood function which is constructed bhased on
the probability density function (2). The estimates are called maximum likelihood
estimates (MLEs). However, in finite mixture models, maximum likelihood (ML)
estimation is difficult to implement because the form of the likelihood function form
(2) is typically complicated and multi-modal. Obtaining the closed-form solution or
conducting numerical optimization of the direct likelihood function is impossible or
troublesome. Fortunately, ML estimation can be implemented via the EM algorithm
[4,15]). The EM algorithm is an efficient method for estimation in finite mixture model
setting. The EM algorithm assumes that there are missing observations called group
identifiers. It is an iterative procedure that allows estimating unknown parameters 6.
It iteratively alternates between the expectation step called E-step and the maximiza-
tion step called M-step. In finite mixture models, the corresponding complete-data
log likelihood function usually can be easily maximized. Then, at E-step, the EM
algorithin computes the expected log likelihood for the complete data, denoted as @ —

function, and obtains the posterior probabilities ;.

(r— l)f( 279(r 1)
Zﬂ'}r 1)f “9(7“ 1)

= Prob{X; € h—th cluster|X;00" "V} = (3)

zh



Here, r is the number of iteration. At the M-step, the algorithm maximizes the
Q- function Q(@;H(“l),xl,x%...,mn) with respect to the parameter vector 6 to
re-estimate all parameters. Once the author has new parameter values, the author
repeats B and M-steps until the likelihood converges. In this paper, the EM algorithm
is implemented in the proposed model. The author obtained the closed-form solutions
for the majority of unknown parameters. The means and variances of different
mixture components need to be optimized numerically. In section 2.3, the author
discusses an appropriate model for the spectrum modeling. In section 2.4, the

solutions for the estimates of parameters are presented.
2.3. Proposed Model

In the research, the author wants to separate the spectrum of the sample from
the spectrum of liquid. This can be done by comparing the spectrum of the sole
liquid with the mixed spectrum. However, the author does not know the number
of components needed to model both spectrum. The functional form of mixture
component has to be proposed based on the pattern in the spectrum. As mentioned
before, the author assumes that the functional form of mixture components is the
same for all components in the paper.

In Figure 1., the X-axis represents the location of observations, while Y-axis
represents the height of peaks which means the number of observations at each
location. For instance, at location &, there are almost 100 observations located at
the same point.

After taking a look at the mass spectrum in Figure 1., the author can notice some
unusual patterns and multiple local modes. Thus, standard distributions cannot be
applied as mixture components for modeling mass spectrums. The observations in the
spectrum are discrete. For the purpose of finding an appropriate probability mass

function for mixture components, the author considered several standard discrete
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Figure 1. Example of mass spectrum

distributions such as Poisson, Binomial and negative Binomial distribution. Neither
of them is appropriate for modeling the mixture components in the case of study.
The bell-shaped patterns in spectrum remind a Gaussian distribution. Furthermore,
mixtures of Gaussian densities are the most commonly used in finite mixture models.
the author proposes the discretization of the univariate Gaussian probability density

function to obtain a bell-shaped probability mass function f(x;pk,0}) given by

x+0.5—uk)_(b(x—0.5—uk

Ok Tk

f(z; pr, 02) = O( )yx=0,£1,42,.... (4)

Here, ppand oy, represent the mean and also the standard deviation in the k —th
component from univariate Gaussian distribution, and & represents the cumulative
distribution function of the standard normal distribution. Figure 2. shows how

Gaussian density is used to produce a bell-shaped probability mass function.



Figure 2. Ilustrations of how to use univariate Gaussian probability density function
to obtain the discrete probability mass function

Since the author compares the spectrum of the liquid and mixed spectrum,
the author must work with two independent samples simultaneously. The author
also needs to estimate the number of components in both specified spectrums. The
following mixture models are proposed for the spectrum of liquid and mixed spectrurm,

respectively.

K
X17X2)"'7an Niid h(fl’) = Z”ka(mi;)ukaolz) (5)
k=1

K M
Yy, Yo, ... aYny ~H g(y) = Czﬂ-kf(yj; Hk, Ul2c) + Z '7mf(yj; U,”,T?”) (6>
k=1 m=1

Expression (5) represents the proposed model for the spectrum of the liquid.
ng is the number of observations in the spectrum of liquid , while n, is the number
of observations in the mixed spectrum. Unknown parameters f, of are mean and
variance of the k — th mixture component of the liquid from the univariate Gaussian
distribution. The expression (6) is the proposed model for the mixed spectrum

when the substance is placed into the liquid. Unknown parameters v,,, 72 represent



the mean and variance of m — th mixing component of the substance in the mixed
spectrum. In section 2.1, the author has mentioned that, in finite mixture models,
the sum of all mixing proportions should be equal to 1, > 7 = 1. For (6), a
similar condition has to be implemented. The constant c is ir—ltroduced to guarantee

M
that ¢ Z i+ Y. Ym = 1 . Thus, the sum of all mixing proportions in the mixed

m=1
Spectrum is restricted to be 1. Then, the author can derive the expression for the
constant ¢: ¢ =1 — Y v, . Now, the bell-shaped probability mass function for
m=1

the mixture component is proposed, and the unknown parameters and number of

components are estimated.
2.4. Parameter Estimation

The unknown parameters need to be estimated from the likelihood function
based on the functional form of both proposed models. The likelihood function is ob-
tained by considering the spectrum of liquid and the mixed spectrum simultaneously.

Thus, the likelihood function is given by:

T

HZka iz,uk,dk XHZCka yjhukaak +Z’7mf Yi5Um, T, T2n)] (7)

i=1 k=1 7j=1 k=1 m=1

The log-likelihood function obtained from equation (7) is multi-modal. Also, it is hard
to take partial derivatives of the maximum log-likelihood function directly. Usually,
deriving the closed-form solutions for unknown parameters is complicated or not
possible. Because the EM algorithm is flexible and available for treating complicated,

multi-modal incomplete data, by introducing the missing information about the group



identifiers, the complete-data likelihood function L. can be obtained:

n, K

zi 13
Le(0) = T [T lmef (oo o, o))"
i=1 k=1
ny, K
. clth
x T Tleme s (s o o)) 255 (8)
=1 k=1
%4
wrcmth
x H['me(yﬁvmaTi)]](yjemt )}
m=1

where the author assume that the origin of each peak is known. I(z; € k*") is
the indicator function that the i — th peak belongs to the k — ¢th component in the
spectrum of the sole liquid and I(y; € k') indicates that the j — th peak is from
the k — th component of the model for the mixed spectrum. Similarly, I(y; € m'")
indicates that the j — th peak belongs to the m — th component of the spectrum of
the model for the mixed spectrum.

Next, the author can obtain the corresponding complete-data log-likelihood
function 1.(6):

ne K

1(0) = logLe(6) = > > I(z: € k™)[logm, + log f (w:; k. 7]
1=1 k=1
Ty K

+ 3 > Iy; € k™M) logem, + log f(ys; i, o})] (9)
j=1 k=1
M

+ 3 I(y; € m™)[logym + log f (ys; v, T2)}}

m=1

From EM algorithm, the expectation of the conditional complete-data log-

likelihood function given observed data is obtained at the E-step. Thus, the @—
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function is given by

ny K
Q) = E(l(O)z1, -+ Tupyi Y1y Un,) = Z Z Tikllogmy + log f (x5 s, )]
T (10)
+y Z i llogermi + Log f (yj; 1, 0D + D Y imllogm + 10g.f (y53 vn, )]
j=1 k=1 j=1 m=1

where m; is the posterior probability that observation x; belongs to the & —
th component of the spectrum of the sole liquid. 7}1 is the posterior probability
that observation y; originates from the k — th component of the liquid in the mixed
speetrum, and '\/j",{l is the posterior probability that observation y; belongs to the
m — th component of the sample in the mixed spectrum.

The posterior probabilities can be estimated assuming that the paramcters
from the functional form of the proposed models are known. DBelow, r represents
the iteration number of the EM algorithm. 871 is the parameter vector estimates

calculated at the r — th iteration.

m = Prob{X; € k —th component| Xy, 0"V}
vﬁ(r) = Prob{Y; € k —th component|Yy; 671} (11)
A MO Prob{Y; € m —th component|Y; gr-y

Jm

M)

The E-step consists of updating the posterior probabilities 7rf,:), 'yﬁ_“ and v,
given the current parameter estimate =Y for all r = 1,2,3,....

The posterior probabilities can be calculated as follows:

(r—1) (r—1) =1
T Z; of
Wf}:) _ k [z ﬁ:k s O ) (12)
1 (r—1
AZ f( cl,/z,; e A
=1
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r— —1) _olr=1)
K ( H f(J],/l )7Ui' )

’Y]k: = K ) (13)
- -1 1 r—=1) r—1 2(r=1)
kzl C(r ])W k! )f(ij /J‘I:; > ( + Z /Y”l J]? 7(u )7 7-7‘121’ 1 )
o m’=1
(r=1) ¢ r—1 (r=1)
M(r) _ ’Yn’L )f(yjz Hg'l ) 07271 ) (14)
jm K
_ —1 r—1 (r= 1) pat=
kz clr 1)71'[(:/ )f(yjrﬂ](u )» O'E,, K + Z ’7m JJ’ (r’ : T:Ift’ l))
1 m/

At the M-step, (Q— function is maximized with respect to the parameters.
Then, the author can consider several simpler versions of the (Q— function depending
On PATaMeters g, Yo, C, Mk, Op, Up and 72, with respect to the which the author
maximizes the function.

First, the author derives the closed-form solution for parameters my, ¥, and
c. Since the author has two restrictions on mixing proportions, the author needs to

introduce two Lagrange multipliers: A; and Ap . After the author finds the expression

M
for 7k, Ym, and ¢ can be obtained by ¢ =1— 3" .
m=1

Thercfore, the Q*— function of the interest that nceds to be maximized over

Tk, Ym and ¢ is given by

i Z milogm + ZJ Z ’)’]klOJ(,TFk + Z Z vjmloq Yint
i=1 k=1 Jj=1 k=1 j=1 m=1
K M (15)
—)\1(2 T — 1) — )\Q(Z Ym — 1+ ¢) + constant
= m=1

Here, the constant does not affect the derivation for g, vm,and c¢. Based on
this Q*— function, the author continuess taking partial derivatives with respect to
Tk, Ym, ande., separately. First, A; and A, need to be estimated to help us achieve the

closed-form solutions for ¢, v, and c. The derivations is shown as below:

12



T Ty

00" Z ik Z ’ij

i=1 .
— -\ 16
87rk T U ! ( )
Ty Ny
Thus, A\; = > Z T+ > Z vk Next, the author obtains the solution for
i=1 k=1 J=Lk=1

. Substituting the expression for A; into the equation (16), the following expression
can be obtained:

g Ty

Z Tik Z ’YJk Ty Ty
ot —ZZm—ZZ%k— (17)
J=1 k=1

i=1 k=1 1

In the spectrum of the liquid, the sum of probabilities that cach peak assigned

to different components is equal to 1. So, the author can find the following equation:
K K K ny K

S e = 3. Mok = ... m = 1. Then, the author can conclude that > > my =
- =1 k=1 i=1 k=1

n,. For this reason, the equation (17) can be simplified to:

ne Ty

E  Tik Zl /\ﬁ ny K
i=1 J= K
- Ng — E E & =0 18
T + - Ny 4 FYJk ( )

Finally, the convenient closed-form solution for ﬂ,(f) can be obtained:
Ty Ty
Z 7r1k: + Z ’Y]k
(7") (19)

e K (r)
Ne+ 20 3V
Jj=1k=1

By taking partial derivatives of Q*— function with respect to v, ¢, Ag and

setting the derivatives cqual to zero, two equations are given by

13



Tty

> Yim

o —
OQ _J=t Ay = 0
Ym N 'Ym (20)
ao* 2‘:1 1\};1 Tk
— = - =0
dc c

For these equations, the author goes further to simplify them and obtain the

following results:

Ty

Z ’7_}7”

)\2
Ty

EZW

j=1k=1
¢ =
A2

Yin =

The author derived the closed-form solutions for 4,,, ¢ and Ay by combining the
above equations together. The author can find that Az is the number of peaks in the

mixed spectrum. Thus, the solution for A, is given by

Ny Ny

2~ZZ’Y +ZZ%," 1y (22)

j=1 k=1 j=1 m=1

Then, the parameters ¢™ and ’y,(,f) can be estimated hy the following expressions:

Ty
ny (23)
A
_Z ij
) 2=
/m -
ny,

As we can see, the M-step can provide us with convenient closed-form solutions
for m, vm and c:

The unknown parameters that still have to be estimated are py, 02, v,,, and 72.
Hky Oy U,y m

14



However, for maximizing Q— function with respect to py, o2, and v,,, 72 separately,

we can consider two versions of (), given by the following forms:

ny, K ny K
Q1(0) = Z Z milog f (@i ju, o8) + Z Z vﬁ.logf(yj; [k, 0F) + constant  (24)
i=1 k=1 j=1 k=1
ny M
Q3(6) = 33" 2109 f (55 v 72) + constant (25)
j=1 m=1

Unfortunately, the closed-form solutions for the parameters /Lk,af,vman(l T,'fl

cannot be obtained. These two Q*— functions need to be maximized numerically.

The author used an R-function optim( ) to conduct numerical optimization.
2.5. Spectrum Estimation

How can we pick the peaks which belong to the spectrum of the sample out of
the mixed spectrum? We do not know the number of components in the model. We
do not know which peaks come from the spectrum of the substance either. Therefore,
the optimal number of components in the mixed spectrum should be found. First,
we can find the number of components for model of the liquid. Then, using the
estimated number of components in the liquid solution model, we can find the number
of components of the substance sample in the mixed spectrumn. The author assign
obscrvations to cluster according to the largest posterior probabilities 7;); and 'y%t :
In Section 2.3, the author have provided the function (4), which is an appropriate
choice for being the functional form of the mixture component in the framework of
the problem. Also, in Section 2.4, by the EM algorithm, the closed-form solutions
for unknown parameters are obtained. The author incorporate the probability mass
function (4) into the proposed model to be the mixture component. Eventually, by

the final results for posterior probabilities, the observations can be allocated to their

15



estimated components. Then, we can separate the spectrum of the sample from the
liquid spectrum.
2.5.1. Model Selection

Model selection in finite mixture models has often referred to the problem of
choosing the optimal number of components [13,14]. In this paper, we have K + M
components in the mixed spectrumn. First, / needs to be estimated. In this section,
we briefly review the history related to choosing the optimal number of components in
mixture models. There is vast literature [20,23,32] contributing to the problem. We
refer to [6] who provide a detailed description of different and available approaches
to address this issue. According to [9, 28], most methods devoted to estimating the
number of compouents can be divided into two categories. One group of methods
is parsimony-based while another category depends on testing procedures.  The
former has been widely used and discussed by {25]. In this paper, the method we
employ belongs to the parsimony-based category. The majority of parsimony-based
approaches choose a number of components to minimize a penalized negative log
likelihood function by trying different values of the number of components. A variety
of information-based criteria such as Akaike Information Criterion (AIC) [5], Bayesian
Information Criterion (BIC) [29] and their modifications fall into this category. BIC
has been known in finite mixture models for demonstrating good performance. It
also can be implemented casier than many other methods in this group. In this
paper, the author use BIC to select the best model. The author vary the values
of M and K iu order to minimize the value of BIC. The computational form of
BIC is BIC = —2 x [logL(6)] + p x log(n), where p is the number of paramcters,
p = 3K + 3M — 1, and n is the total number of observations from all peaks in the
liquid matrix and the mixed matrix. The values of Af and K should be chosen so that

they correspond to the smallest value of BIC. They represent the optimal numbers

16



of components according to BIC. () is log-likelihood function which is given by the

following form:

TNy K
[(6) = logL(8) = Z log [Wk‘f(.’lf,;;/tvﬂi)]’*—
i=1 k=1
Ty K Tty Al (26)
S log D> [me (s 1 k)] + > " tog Y TS (Wi v )]
=1 k=1 g=1 m=1

2.5.2. Groups Identifiers

Group identifier is the basic information needed to allocate the peaks into
different groups. By the EM algorithm, at E- and M-steps, the author obtained the
parameter estimates of T, Vi YA e and Y. Therefore, the posterior probabilities
’yj[i and ’yj/-‘,{l are available for the group identifiers. The spectrum matrix has two
columns. The first one presents the peaks heights and the other one provides the
locations of peaks. Using posterior probabilities 7]!-‘,’” multiplied by the heights of the
peaks (nummber of obscrvations), we can estimate how many observations came from
the components of the spectrum of the sample. Based on the Bayes rule, obscrvations
are assigned to these groups according to the highest posterior probability. Under
some conditions, there might be several posterior probabilities with the same value,
s0 it is unclear how to assign an observation to a group. In [24], randomization 1s
recommended to break the ties among competing clusters

Thus, the author implements the EN algorithm and allocating the peaks to the
estimated clusters. The author starts the procedure by finding reasonable starting
values. We also need to specify the stopping rule for detecting the convergence of the

EM algorithm.
2.6. Initialization and Stopping Criterion

The initialization of the EM algorithm is a step that might be challenging to

implement in research. We need to select the best possible starting values to make
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sure that we can obtain the correct estimates of parameters and the right number of
components. But how do we decide on which combination of starting values is good?
Fortunately, the likelihood function is a convenient tool that can be used for both,
initialization and stopping steps.

2.6.1. Initialization of the EM Algorithm

Good initialization strategy is crucial for finding ML estimmators. In papers of
[11,19], many different initialization procedures have been mentioned and considered.
However, there is no any single method that can outperform the others in all cases. A
model-based hierarchical clustering approach is seen to work well when components
arc well-separated [21], but not as well in other sitnations. This method is proposed by
(7] and included in the R package Mclust [12], and is specifically designed for Gaussian
mixtures. This hierarchical clustering method in initialization is very restrictive for
larger datasets.

The EM algorithm is an iterative and hill-climbing procedure whose performance
can depend on particular starting observations called central points. Choosing and
assigning observations to the closest central points in the initialization is an important
step. The initialization of the EM algorithm involves starting from the central points
and running the EM algorithm until the pre specific convergence criterion is satisfied.
The EM algorithm implemented to find the best starting values in the initialization
is usually call short em. A good choice of central points increases the chance to find
the correct parameter estimates. Random selection of initial points may be a bad
approach, because we may pick several initial central observations from the same
component. Therefore, a pre specified rule is necessary to choose the best initial
observations. The author will discuss this rule later in the next section. Once we
obtain the best initial observations, representing the central points of cach cluster,

we continue allocating the observations to groups and proceed to find the unknown
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parameters. At the short em, the solution producing the highest log likelihood is
chosen as a starter for the long EM algorithm. Then the long EM algorithm runs
until the convergence is achieved. Thus, the em-EM algorithm consists of two EM
stages proposed by [8]. In this paper, the author use the locations of the peaks instead
of considering all observations to find the best starting central locations. Then, based
on the distance between pair wise locations of the peaks, all observations are assigned
to their nearest group. After the short em is finished, the author saves the best
locations and the corresponding parameters estimates: g, Yo, €, fis 0,2“ Uypand 7'72” as
the starting parameters. The starting values are passed into the long EM algorithim
to get the final parameter estimates. The initialization of the EM algorithm in this
paper is a challenging step because the information about the spectrum of the liquid
is also unknown. Therefore, first, the author runs the short em for the spectrum of
the sole liquid to obtain the estimates of my, gy, of. At the short em and the long EM
steps, specific stopping criterion helps us decide when the EM algorithm should be
stopped.
2.6.2. Stopping Criterion

The log-likelihood function is used in the convergence criterion to sclect the best
starting points. If the difference between two consequent log-likelihood values is less
than some pre specified error margin, we stop the short em algorithm and continue
running the long EM with the best starting values of the parameters. After running
the long EM algorithm, the main stopping criterion is also based on the log- likelihood
function. When the long EM algorithm converges, we save the produced parameter
estimates. Meanwhile. the maximized log-likelihood function is used for calculating

the values of BIC for different numbers of components.
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CHAPTER 3. SIMULATION EXAMPLE

In the paper, the author applied the methodology to a small but challenging
simulated datasect. In this simulation example, the author uses a 3-component model
to simulate 1000 observations from the liquid. the author also performs simulations
of 1000 observations under the mixed spectrum model assuming 2 components for
the substance sample. 500 observations were simulated from the model for the liquid
solution. The following tables summarize the data simwulated with an underlying
Gaussian mixture distribution: 0.5 x 0.5 x N(6,1)4+ 0.5 x 0.2 x N(9,0.5) 4+ 0.5 x 0.3 x
N(14,1)+ 0.3 x N(7.5,0.5) + 0.2 x N(12.2,0.5). Table 1. provides simulated data for
the liquid solution. In Table 2., we can find simulated data for the mixed spectrum
when the sample is placed into the liquid.

Table 1. Liquid matrix data
Location 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Peak
Height 3 26 123 194 123 77 94 55

17 63 124 81 14 1

<

Table 2. Liquid matrix data+sample data

Location 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Peak
Height 0 13 61 118 197 160 76 26 31 102 100 70 33 12 1

Figure 3. shows the spectrum of the liquid from the simulation exaimnple. Where,
the x-axis represents the location of the peaks and the y-axis demonstrates the number
of observations at cach location in the liquid. Figure 4. represents the mixed spectrum
from the simulation example when the sample is placed into the liquid. According to
Figures 3. and 4., the difference between two spectrums is obvious, but the author

cannot visually detect the number of components needed for fitting both datasets.
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Figure 3. The spectrum of the liquid from the simulation example
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Figure 4. The spectrum of the mixed solution from the simulation example
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The author implemented the methodology in R environment and applied it for the
simulated data. Although the initialization of the EM algorithin is a difficult problem,
we solved it successfully in the simulation example. As mentioned in section 2.5.1, by
varying the number of mixture components for the liquid matrix and the sample, we
obtained the correct number of components according to BIC. The following Table
3. represents the different values of BIC corresponding to the various values of the
number of mixture components K and M.

Table 3. BIC values of different models
BIC M=l M=2 M=3 M=4 M=5H M=6

K=1 10379.97 10110.85 10130.63 10149.60 10174.83 10192.92
K=2 9524.315 9508.549 9528.966 9538.091 9564.244 9584.943
K=3 9518.027 9397.326 9419.563 9445.313 9467.393 9493.468
K=4 9544.071 9444.088 9444.636 9466.44  9492.942 9513.477

Based on the values of BIC in Table 3., when K = 3 and M = 2 | BIC reaches its
smallest value: 9397.326. Therefore, we can conclude that there are 5 total mixture
components which consist of 3 components from the liquid and 2 from the sample
in the mixed spectrum. Thus, we are able to detect the correct model from the
simulated data. Figures 5. and 6. illustrate the original spectnuns along with the
predicted valies obtained based on the chosen model. As we can see, the model does
an excellent job in predicting the peak heights.

The posterior probabilities ’y]“-‘,{l which is obtained from the EM algorithm specify
proportion of particles from the substance in the j — th peak of the mixed spectrum.
Thercfore, the particle counts of observations or the heights of peaks for the sample
can be estimated using the total number of observations multiplied by the probabilities
of the sample at each location in the mixed spectrum. The formula used is given:

M

> 7%1 X n;,. Here, njy is the nuinber of the observations in the j — th peak from the

m=1
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Figure 5. The points represent the predicted values of the number of observations at
each location in the liquid spectrum
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Figure 6. The points represent the predicted number of observations at cach location
in the mixed spectrum
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mixed spectrum. Eventually, the author successfully finds the mass spectrum of the
substance sample placed into the liquid. The correct number of components has been
detected. Figure 7. represeuts the extracted sample spectrum. The author applies
parametric bootstrapping to obtain the variability of the MLEs for the heights of the
peaks in the spectrum of the substance. The author simulated 1000 datasets from
random estimated mixtures.

The author ran the EM algorithm and then saved the posterior probabilities for
all 1000 datasets. Then, we can obtain the 1000 different combinations of the heights
for all peaks for the spectrums of the sample. Finally, the author dropped the first 25
minimum values of the heights out of all peaks and the largest 25 maximum values
of the heights of all peaks for the spectrum of the sample. So, the author present
the variability of MLEs for the heights of peaks in Figure 8., using 95% confidence
intervals. In Figure 8., the dotted lines represent the 95% confidence intervals for
the numbers of observations at every location of the simulated spectrum, where the
circles are the predicted number of observations at each location.

In order to check the performance of the proposed method on other datasets and
more challenging parameter settings, the author considered ¢ = 0.1,¢ = 0.5,¢ = 0.9.
For cach value of ¢, 5 datasets were simulated. For cach dataset, the entire analysis has
been repeated. In all 15 cases, we successfully detected the number of components
under liquid matrix and mixed spectrum mixture models. Thus, the author can
conclude that the procedure is relatively robust to changes in ¢ and can be used even
for small concentrations of substance in the liquid. In the simulation example, the
author successfully extracted the spectrum of the sample from the mixed spectrum.
The author finds that there are two components of the sample in the mixed solution
according to the BIC based model selection. The author present the variability in

MLEs for the number of observations from the substance sample at each location.
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Figure 7. The substance spectrum extracted from the mixed spectrum
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Figure 8. The variability of the estimated height of cach peak according to bootstrap

The results of the simulation example indicate that the bell-shaped probability mass
function which we have proposed is appropriate and can be employed. Furthermore,
the author concludes that the statistical methodology works well for extracting the

entire mass spectrum of the substance sample from the mixed spectrum.



CHAPTER 4. DISCUSSION

MS is the technique used to determine the clemental composition in a substance
sample. Usually, the substance sample is placed into some liquid solution. Therefore,
the origin of the peaks from the obtained mixed spectrum is unknown. In order
to separate the spectrum of the sample from the spectrum of the liquid solution,
the author propose and implement a flexible statistical model formulated in term
of finite mixtures. Then, the EM algorithm is used for the purpose of maximum
likelihood estimation. Although, the initialization of the EM algorithm is a difficult
problem, the author propose a strategy that successfully resolves all issues. The
author demonstrate that the methodology can successfully separate the spectrum of
the substance and liquid spectruin. The variability of the obtained estimates of the
heights of peaks in spectrums can be assessed by the parametric bootstrap.

The reader can think about using a naive approach for finding the spectrum of
the sample that would simiply subtract the liquid matrix spectrum from the mixed
spectrum. However, this approach is troublesome and cannot provide desired results
because the scaling coefficient for mass spectrumm peaks is not known. Also, the
obtained spectrum might have negative peaks that are difficult to interpret. In
addition to that, this approach does not provide us with a reasonable model that
can be used, for example, for assessing variability.

For the future work. the author would like to analyze several real mass spectrums

and compare the results with results obtained by other researchers.
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