ATOMICITY IN RINGS WITH ZERO DIVISORS

A Dissertation
Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science

By
Stacy Michelle Trentham
In Partial Fulfillment of the Requirements
for the Degree of DOCTOR OF PHILOSOPHY

Major Department Mathematics

March 2011

Fargo, North Dakota

North Dakota State University

Graduate School

\square
By

Stacy Michelle Trentham

The Supervisory Committee certifies that this disquisition complies with North Dakota
State University's regulations and meets the accepted standards for the degree of

DOCTOR OF PHILOSOPHY

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the document, signatures have been removed from the digital version of this document.

Abstract

Trentham, Stacy Michelle, Ph D, Department of Mathematics, College of Science and Mathematics, North Dakota State University, March 2011 Atomicity In Rings With Zero Divisors Major Professor Dr James Barker Coykendall IV

In this dissertation, we examine atomicity in rings with zero divisors We begin by examining the relationship between a ring's level of atomicity and the highest level of irreducibility shared by the ring's irreducible elements Later, we choose one of the higher forms of atomicity and identify ways of bulding large classes of examples of rings that rise to this level of atomicity but no higher Characteristics of the various types of irreducible elements will also be examined Next, we extend our view to include polynomial extensions of rings with zero divisors In particular, we focus on properties of the three forms of maximal common divisors and how a ring's classification as an MCD, SMCD, or VSMCD ring affects its atomicity To conclude, we identify some unsolved problems relating to the topics discussed in this dissertation

DEDICATION

I want to take this opportunity to thank my parents, Terry and Loss Iszler They have always placed great value in education and hard work I remember a time in middle school when I failed an English assignment I had done all of the problems correctly, but I had misread the assignment and had done problems 1-5 instead of problems 1-15 My parents, much to my surprise, were not angry about the low grade Instead, they had me complete the assignment as the teacher had intended and had him check it for accuracy The grade was not important to them, instead, the learning and hard work required to complete the assignment were their priority

As I got older, I began to adopt their values regarding education I was the first member of my family to attend a four year college Upon graduation, I struggled to find a job My parents suggested that I take the GRE and consider going to graduate school I did not know anything about graduate school and thought that it was not an option for me So I took the exam to prove to them that I would not score high enough to get into graduate school When I got my scores, I found that I had done pretty well and shortly thereafter scheduled a visit to the NDSU math department

Without my parent's encouragement, enthusiasm, and high value for education, I would have never entered graduate school and as a result, this dissertation would never have been written This dissertation is as much a product of their hard work and dedication as it is minel

TABLE OF CONTENTS

ABSTRACT 111
DEDICATION 1V
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 DEFINITIONS 8
CHAPTER 3 THEOREMS 20
CHAPTER 4 MAXIMAL COMMON DIVISORS IN DOMAINS 29
CHAPTER 5 MAXIMAL COMMON DIVISORS IN RINGS WITH ZERO DIVISORS 34
CHAPTER 6 FUTURE RESEARCH IDEAS 43
REFERENCES 45
APPENDIX A GLOSSARY 46

CHAPTER 1. INTRODUCTION

The interest in factorization is not, by any means, a modern fascination We know that ideas of factorization have been floating around since 300 BC during the time when Euchd composed The Elements At the beginning of Book VII of The Elements, a list of definitions can be found including the definitions for even, odd, prıme, and composite numbers We also find Euclid's Algorıthm for findıng the greatest common integral divisor of two positive integers in this book This algorithm and its apphcations are still taught in contemporary Abstract Algebra courses One of the earhest results in factorization is the The Fundamental Theorem of Arithmetic, an equivalent form is found in Book IX of Euclid's The Elements This theorem states that any integer greater than one can be written unquely as the product of prime numbers, up to ordering [3], [5]

Factorization theory is a branch of commutative algebra where varıous types of commutative rings and their properties are studied These rings and their ideals are studied much like a chemist studies the molecular structure of a substance We look at the "smallest" components of the ring (if such a thing exists) and examine how these buld "larger" components We not only look at the structure of these components but also how they interact with one another via addition and multiplication Much of the research done in factorization today is focused on integral domains The definitions and theorems in this chapter can be found in a variety of texts such as [6] and [4]

Definition 11 A ring R is a nonempty set with two binary operations denoted + and $*$ with the following three properties
$1(R,+)$ is an abelian group
$2(R, *)$ is associative
$3 a(b+c)=a b+a c$ and $(a+b) c=a c+b c$ for every $a, b, c \in R$

A ring R is called commutative if for each $a, b \in R$ we have that $a b=b a$ If R contains an element 1_{R} such that $a 1_{R}=1_{R} a$ for each $a \in R$, then R is said to be a ring with 1dentity

In this dissertation, we always will assume that rings are commutative with identity

Definition 12 Let R be a ring An element $r \in R$ is called regular if $r s=0$ only when $s=0$ An element $r \in R$ is called a zero divnsor if $r s=0$ for some nonzero $s \in R$

A ring may possess both regular elements and zero divisors For example, in the ring $\mathbb{Z}_{6}[x]$ the element x is regular and the element 2 is a zero divisor with $(2)(3)=0$ Partıcular focus has been put on those commutative rings whose nonzero elements are all regular Such a ring is called an (integral) domain We encounter domains on a dally basis The ring consisting of the integers \mathbb{Z}, the ring consisting of the rational numbers \mathbb{Q}, the ring consisting of the real numbers \mathbb{R}, and the ring consisting of the complex numbers \mathbb{C} are all examples of domans We also examine the structure and behavior of a ring's ideals This can give us valuable insight into the factorization properties of the ring We can also use the various types of ideals to generate examples of rings with specific factorization properties

Definition 13 Let R be a commutative ring A subset $I \subseteq R$ is an τ deal of R if I is itself a ring and if for each $x \in I$ and each $r \in R$, the element $r x$ is an element of I

Definition 14 An ideal $I \subseteq R$ is called a principal vdeal if it generated by a single element of R

Definition 15 If every ideal of a commutative ring R is a principal ideal, then R
is called a principal ideal ring (PIR) Moreover, if R is a domain, then it is called a principal rdeal domain (PID)

The familiar domain \mathbb{Z}_{1} is an example of a PID In this domain, the ideal $I=(6)$ which consists of all integers divisible by 6 is a principal ideal If we generate an ideal with more than one element, say $I=(8,12)$, then this ideal is the same as the ideal generated by the greatest common divisor of 8 and $12,1 \mathrm{e} \quad I=(8,12)=(4)$ More generally, if an ideal $J \subseteq \mathbb{Z}$ is generated by a finite set S, then $J=(d)$ where d is the greatest common divisor of S That is, any finitely generated ideal in \mathbb{Z} is principal As it turns out, every ideal in \mathbb{Z} is finitely generated

Definition 16 A ring is called Noetherian if every ideal in the ring is finitely generated

PIR's are special cases of Noetherian rings However, a Noetherian ring need not be a PIR For example, the ring $R=\mathbb{Z}[x, y]$ is a Noetherian domain The ideal $I=(x, y)$ cannot be generated by only one element so R is not a PIR Equivalent definitions of a Noetherian ring exist One such definition is that R is a Noetherian ring if given an ascending chain of ideals $I_{1} \subseteq I_{2} \subseteq$ there exists an $N \in \mathbb{N}$ such that for every $\jmath, k>N$ we have $I_{\jmath}=I_{k}$

Definition 17 Consider an ascending chain of princıpal ideals $I_{1} \subseteq I_{2} \subseteq$ in R If there exists an $N \in \mathbb{N}$ such that for every $\jmath, k>N$ we have $I_{\jmath}=I_{k}$ then we say that R satisfies the ascending chain condition on principal vdeals (ACCP)

Defintion 18 Let M be an ideal in a commutative ring R If $M \subseteq I$ for some nontrivial ideal $I \subseteq R$ only when $M=I$, then M is called a maximal ideal of R

Definition 19 Let $P \subseteq R$ be an ideal Then P is called a prime vdeal of R if whenever $I J \subseteq P$ for some ideals $I, J \in R$ we have that ether $I \subseteq P$ or $J \subseteq P$

Proposition 110 If M is a maximal ideal in R, then M is a prime vdeal in R
Proof Let $a b \in M$ with $a \notin M$ Then the ideal (M, a) must be R This tells us that $1-r a \in M$ for some $r \in R$ Now we look at the element $b(1-r a)=b-r a b$ This element is in M so we can say that $b-r a b=m$ for some $m \in M$ Thus, $b=m+r a b \in M$ and we have that M is prime

The ideal $I=(2)$ in \mathbb{Z} is a maxımal ideal The previous theorem leads us to conclude that $I=(2)$ is also prime While the ideal $J=(3)$ is a prime ideal in the doman $R=\mathbb{Z}[x]$ However, J is not maximal as $J \subsetneq(3, x)$

Definition 111 An ideal $I \subseteq R$ is called a radzcal vdeal if whenever $x^{n} \in I$ then $x \in I$ If $J \subseteq R$ is an ideal of R, then the radical of J, written $\operatorname{rad}(J)$ is the set $\left\{x \in R \mid x^{n} \in J\right.$ for some $\left.n \in \mathbb{N}\right\}$

Definition 112 An ideal $I \subseteq R$ is pramary if given $a b \in I$, then either $a \in I$ or $b^{n} \in I$ for some $n \in \mathbb{N}$

Proposition $113 I$ is a prime vdeal on R if and only of I is both radıcal and primary
Proof Fırst we will assume that I is both radıcal and prımary Let $a b \in I$ If $a \notin I$, then we know that $b^{n} \in I$ for some $n \in \mathbb{N}$ Since I is radical, we also have that $b \in I$ Thus, I is prime

Now assume that I is prime and let $a b \in I$ This means that of $a \notin I$, then $b^{1} \in I$ so I is primary If $a^{n} \in I$, then $a \in I$ since I is prime and we have that I is radical

Let $R=\mathbb{Z}[x]$ The ideal $I=(2 x)$ is a radical ideal in R The element $2 x$ is in I but nether 2 nor x^{n} is in I for any $n \in \mathbb{N}$ Thus, I is not primary This tells us that the ideal I is not prime The ideal $J=(8)$ in \mathbb{Z} is a primary ideal However, the element 2^{3} is in J but 2 is not in J and we have that J is not radical Thus, J is also not prime

Proposition 114 Let I be a primary vdeal in R Then rad (I) is a prıme vdeal in R

Proof Let $a b \in \operatorname{rad}(I)$ This means that there is a positive integer n such that $(a b)^{n}=a^{n} b^{n} \in I \quad$ So we have that either $a^{n} \in I$ or $b^{k} \in I$ where $k=m n$ for some $m \in \mathbb{N}$ That is, either $a \in \operatorname{rad}(I)$ or $b \in \operatorname{rad}(I)$ So $\operatorname{rad}(I)$ is prıme

Definition 115 Let R be a commutative ring We say that $a \in R$ is a nulpotent element if $a^{n}=0$ for some $n \in \mathbb{N}$ We say that the ideal $I \subseteq R$ is nalpotent if $I^{n}=0$ for some $n \in \mathbb{N}$

If R is a domain, then the only nilpotent element is 0 and the only nilpotent ideal is (0) However, if we look at rings with zero divisors, we find many examples of nilpotent elements and ideals Considering the ring $R=\mathbb{Z}_{64}$ we find that the element 2 is mulpotent since $2^{6}=0$ and $I=(4)$ is a mulpotent ideal since $I^{3}=0$

Theorem 116 Let R be a commutative ring and let I be an vdeal in R
$1 R / I$ is a field of and only of I is a maximal rdeal
$2 R / I$ is a domain of and only of I is a prime vdeal
$3 R / I$ has no nonzero nulpotent elements $\imath f$ and only of I is a raducal vdeal

4 All zero divisors in R / I are nilpotent of and only of I is a primary ideal Proof

1 We will begin by assuming that R / I is a field and let J be an ideal such that $I \subsetneq J$ Then there exists an element $a \in J-I$ This means that for some $b \in R$, we have that $a b+I=1+I$ or $a b-1 \in I \subsetneq J$ So there is some element $\jmath \in J$ such that $a b-1=\jmath$ but this means that $1=a b-\jmath \in J$ Thus, $J=R$ and I is maximal

Now assume that I is a maximal ideal of R and choose some nonzero element $a+I \in R / I$ Since $a \notin I$, we know that $(I, a)=R$ So for some $r \in R-I$ and some $\imath \in I$, we have $\imath+r a=1$ Now if we look at $(\imath+r a)+I=1+I$, we will see that $r a+I=(r+I)(a+I)=1+I$ Thus, $a+I$ is a unit and R / I is a field

2 Here we will assume that R / I is a doman and assume that $a b \in I$ This means that $a b+I=0+I$ or $(a+I)(b+I)=0+I$ Since R / I is a doman, we have that $a+I=0+I$ or $b+I=0+I$, $\mathrm{e} \quad a \in I$ or $b \in I$ and we have that I is a prime Ideal

Next we will begin with I as a prime ideal Let $a b+I=0+I$ This means that $a b \in I$ Since I is prime, we have that $a \in I$ or $b \in I$ That is, $a+I=0+I$ or $b+I=0+I$ and we have that R / I is a doman

3 Let $a^{n} \in I$ for some $n \in \mathbb{N}$ Here, we are assuming that R / I has no nonzero nılpotent elements so this means that $a^{n}+I=0+I$ means that $a+I=0+I$ Thus, $a \in I$ and I is radical

Let $a^{n}+I=0+I$ where I is a radical ideal Since $a^{n} \in I$ and I is radical, we have $a \in I$ or $a+I=0+I$ So R / I has no nonzero nulpotent elements

4 Here we will assume that all zero divisors of R / I are nilpotent Let $a b \in I$ such that $a \notin I$ This means that $a b+I=0+I$ in R / I with $a+I \neq 0+I$ So $b+I$ is a zero divisor in R / I and must therefore be nilpotent, say $b^{n}+I=0+I$ where $n \in \mathbb{N}$ This means that if $a \notin I$, then $b^{n} \in I$ for some natural number n and we have that I is primary

Lastly, we will assume that I is primary Let $b+I$ be a zero divisor in R / I This means that there is a nonzero element $a+I \in R / I$ such that $a b+I=0+I$ giving us that $a b \in I$ Since I is primary and $a \notin I$, we have that $b^{n} \in I, 1 \mathrm{e}$ $(b+I)^{n}=0+I$ So the zero divisors in R / I are nilpotent

Our goal is to generalize concepts used to describe domans so that we may use these generalizations to describe rings in general To this end, our focus will be on rings with zero divisors or nondomains We must first agree on definitions for the fundamental ideas commonly used in factorization For example, there are several equivalent definitions for associate elements when working with domains However, before we begin we must first examine these definitions as appled to nondomans to see if they remain equivalent if not, we must fine tune our lexicon to allow us to properly describe rings regardless of the presence of zero divisors This will be the focus of our next section

CHAPTER 2. DEFINITIONS

A domann is atomic if every nonzero, nonunit can be written as a finite product of irreducibles To generalize this definition, we begin by replacing the word "doman" with "ring" However, this rases a new question, "What is an irreducible in a nondomain?" An trreducible in a doman is an element x such that whenever $x=y z$ then x is associate to either y or z To properly generalize this definition, we must first revisit the definition for associate elements We contmue to assume that rings are commutative with identity $1_{R} \neq 0_{R}$

Theorem 21 Let D be an integral domain with nonzero elements a and b The following statements are equivalent
$1 a \mid b$ and $b \mid a$
2 There exists a unit $u \in D$ such that $a=u b$
3 If we have $a|b, b| a$, and $a=b c$, then c must be a unat in D
Proof Clearly, $3 \Rightarrow 2 \Rightarrow 1$ So it suffices to show that $1 \Rightarrow 3$ If $a|b, b| a$, and $a=b c$, then there exists a nonzero element $d \in D$ such that $a d=b$ This means that $a=a d c$ or $a(1-d c)=0$ Because a is nonzero, we know that $1-d c=0$ or $d c=1$ Thus, both c and d are unts in D

If two elements $a, b \in D$ satisfy one, hence all of these properties, then we say that a and b are associates in D If we remove the doman restriction, then the three statements are no longer equivalent If two elements in a ring R satisfy the first statement, then we say that these elements are associates (\sim) Two elements that satisfy the second condition are called strong associates (\approx) Lastly, elements that satisfy the third statement are called very strong assocuates (\cong) We also define 0 to be very strongly associate to itself It is easily verified that very strong associates \Rightarrow
strong associates \Rightarrow associates It is worth noting that none of these implications can be reversed [1]

Example 22 Let $R=\mathbb{Z}_{6} \times \mathbb{Z}_{9}$ Notice that $(2,2)=(5,8)(4,7)$ where $(5,8)$ is a unit in R So $(2,2) \approx(4,7)$ Also, $(2,2)=(2,8)(4,7)$ where $(2,8)$ is not a unit in R Thus, $(2,2) \not \equiv(4,7)$
Example 23 Let $R=\frac{\mathbb{Q}[x, y]}{\left(x-x y^{2}\right)}$ In $R, x=x y^{2}$ so $x \sim x y$ so there exists z such that $x z=x y$ Assume that z is a unit in R Then $x z-x y=r x-r x y^{2} \in \mathbb{Q}[x, y]$ for some $r \in \mathbb{Q}[x, y]$ Since x is prime, we have $z-y=r-r y^{2}$ and $z=y+r-r y^{2}$ If z is a unit in R, then $\left(z, x-x y^{2}\right)=\mathbb{Q}[x, y]$, 1 e $1=a z+b\left(x-x y^{2}\right)=a y+a r-a r y^{2}+b x-b x y^{2}$ Note that $\mathbb{Q}[x, y]$ is a doman, so we must have $a r=1$ and $a y-y^{2}+b x-b x y^{2}=0$ This means that both a and r are units in $\mathbb{Q}[x, y]$ so they are elements of \mathbb{Q} So $b \in(y)$ and $y\left(a-y^{2}\right) \in(x)$ We know that $y \notin(x)$ so $a-y^{2} \in(x)$ and $a r-r y^{2}=1-r y^{2} \in(x)$ Since $r y^{2} \in(y)$, this gives us that $(x, y)=\mathbb{Q}[x, y]$, a contradiction So there is no unit u in R such that $x=u x y$ which means $x \not \approx x y$ A similar example can be found in [1]

In domans, we have two equivalent definitions for ırreducible elements We know that a is irreducible in a domain D if given $a=b c$, then b is a unit or c is a unit in D The three levels of associate elements along with this definition give us three types of irreducible elements Equivalently, a is irreducible in a doman D if and only If the ideal $I=(a)$ is maximal among all principal ideals of D Using this definition for an irreducible element, we find that there is also a fourth type of irreducible that exists in rings with zero divisors

Definition 24 [1] Let $a \in R$ be a nonunit We say that a is vrreducible if $a=b c$ implies that $a \sim b$ or $a \sim c$ Equivalently, a is ırreducıble if $(a)=(b)$

Definition 25 [1] Let $a \in R$ be a nonunit We say that a is strongly irreducible if $a=b c$ implies that $a \approx b$ or $a \approx c$

Definition 26 [1] Let $a \in R$ be a nonunit We say that a is very strongly arreducible If $a=b c$ imphes that $a \cong b$ or $a \cong c$

Definition 27 [1] Let $a \in R$ be a nonunit We say that a is m-ırreducible if (a) is maximal among proper principal ıdeals

In domans, these four definitions are equivalent We must now show that when we generalize to include nondomans, these are four unique levels of irreducibles Note that for nonzero elements of R, very strongly irreducible $\Rightarrow \mathrm{m}$-ırreducible \Rightarrow strongly ırreducible \Rightarrow irreducıble [1]

Definition 28 Let $a \in R$ We say that a is prime if the ideal (a) is prime ideal Equivalently, we say that a is prime if $a \mid x y$ imphes that $a \mid x$ or $a \mid y$

Proposition 29 If $a \in R$ is prime, then a is ırreducible
Proof Let a be prime in R and assume that $a=x y$ for some $x, y \in R$ This means that ether $x \in(a)$ or $y \in(a)$ That is, ether $a \sim x$ or $a \sim y$ Thus, a is ırreducible

When definıng new classifications of elements, we must verify that each class is nonempty and unique We know that prime elements are irreducible but we have yet to determine whether or not irreducible elements are prıme Let $R=\mathbb{Z}[\sqrt{-3}]$ Then $1+\sqrt{-3}$ is irreducible but not prime Thus, the class of prime elements and the class of irreducible elements are distinct Similarly, we can show that the remaining classes of irreducibles are unique by providing examples to show that the implications above cannot be reversed First, let $R=\frac{\mathbb{Q}[x, y]}{\left(x-x y^{2}\right)}$ Notice that x is prime so it is arreducible However, considerıng x and $x y$ we know that $x=x y^{2}$ and $x \sim x y$
but there is no unt $u \in R$ such that $x=u(x y)$ So $x \not \approx x y$ Clearly, $x \nmid y$ so $x \nsim y$ That is, x is irreducible but not strongly arreducible Now, let $R=\mathbb{Z} \times \mathbb{Q}$ If $(0,5)=(a, b)(c, d)$, then either $a=0$ or $c=0 \mathrm{in} \mathbb{Z}$ with both b and d being unts in \mathbb{Q} That is, either (a, b) or (c, d) is a unit multiple of $(0,5)$ So $(0,5)$ is strongly ırreducible However, if we let $I=<(0,5)>$ and $J=<(2,5)>$, then $I \varsubsetneqq J$ So $(0,5)$ is strongly irreducible but not m-irreducible Lastly, let $R=\mathbb{Z}_{6}$ Clearly, (3) is maximal among principal ideals so 3 is m-irreducible However, $3=(3)(3)$ but 3 is not a unit in R So 3 is m-irreducible but not very strongly irreducible

Using these four levels of irreducible elements along with primes, we find that nondomains may come in five different flavors of atomic

Definition 210 [1] R is atomic if every nonzero, nonunt can be written as a finte product of ırreducibles

Definition 211 [1] R is strongly atomic if every nonzero, nonunit can be written as a finite product of strong irreducibles

Definition 212 [1] R is m-atomic if every nonzero, nonunit can be written as a finte product of m-irreducibles

Definition 213 [1] R is very strongly atomic if every nonzero, nonunit can be written as a finite product of very strong irreducibles

Definition 214 [1] R is p-atomic if every nonzero, nonunit can be written as a finite product of primes

It is easily shown that very strongly atomic $\Rightarrow \mathrm{m}$-atomic \Rightarrow strongly atomic \Rightarrow atomic In [1], the following theorems were introduced Using Theorem 2 16, we are able to use familiar rings to construct examples to show that the varıous levels of atomicity are indeed unique We credit this theorem with many of the examples given in this dissertation

Theorem 215 [1] Let $\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}$ be a family of commutative rings and $R=\prod_{\alpha \in \Lambda} R_{\alpha}$ Consider the elements $a=\left(a_{\alpha}\right), b=\left(b_{\alpha}\right) \in R$
$1 a \sim b \Leftrightarrow a_{\alpha} \sim b_{\alpha}$ for each $\alpha \in \Lambda, a \approx b \Leftrightarrow a_{\alpha} \approx b_{\alpha}$ for each $\alpha \in \Lambda$ and if some $a_{\beta}=0$, then $a=0$

2 a $\imath s$ ırreducible (respectively, strongly $2 r r e d u c ı b l e$, m-ırreducıble, prime) \Leftrightarrow each $a_{\alpha} \in U\left(R_{\alpha}\right)$ except for one $\beta \in \Lambda$ where a_{β} is irreducible (respectively, strongly ırreducıble, m-ırreducıble, prıme) in R_{β}
$3 a$ us very strongly irreducıble \Leftrightarrow each $a_{\alpha} \in U\left(R_{\alpha}\right)$ except for one $\beta \in \Lambda$ where a_{β} us very strongly urreducıble in R_{β} but is not 0 unless $|\Lambda|=1$ and R_{β} ıs a domain

Proof 1 First we will assume that $a \sim b$ This means that $a c=b$ for some $c=\left(c_{\alpha}\right)$ and $a=b d$ for some $d=\left(d_{\alpha}\right)$ So for each $\alpha \in \Lambda$, we have $a_{\alpha} c_{\alpha}=b_{\alpha}$ and $a_{\alpha}=b_{\alpha} d_{\alpha}$ for $c_{\alpha}, d_{\alpha} \in R_{\alpha}$ Thus, $a_{\alpha} \sim b_{\alpha}$ for all $\alpha \in \Lambda$

Now assume that $a_{\alpha} \sim b_{\alpha}$ for each $\alpha \in \Lambda$ So there exists $c_{\alpha}, d_{\alpha} \in R_{\alpha}$ such that $a_{\alpha} c_{\alpha}=b_{\alpha}$ and $a_{\alpha}=b_{\alpha} d_{\alpha}$ That 1s, $a c=b$ and $a=b d$ where $c=\left(c_{\alpha}\right)$ and $d=\left(d_{\alpha}\right)$ and we have $a \sim b$

Let $a \approx b$ So there exists some unit $u=\left(u_{\alpha}\right) \in R$ such that $a=u b$ This means that $a_{\alpha}=u_{\alpha} b_{\alpha}$ where u_{α} is a unit in R_{α} and thus, $a_{\alpha} \approx b_{\alpha}$ for all $\alpha \in \Lambda$

If $a_{\alpha} \approx b_{\alpha}$ for all $\alpha \in \Lambda$, then there exists some unit $u_{\alpha} \in R_{\alpha}$ such that $a_{\alpha}=u_{\alpha} b_{\alpha}$ That $\mathrm{cs}, a=u b$ where $u=\left(u_{\alpha}\right)$ and $a \approx b$

Here we will begin by assuming that $a \cong b$ So etther $a=b=0$ or if $a=b c$ then
$c \in U(R)$ This gives us that etther $a_{\alpha}=b_{\alpha}=0$ for all $\alpha \in \Lambda$ or if $a_{\alpha}=b_{\alpha} d_{\alpha}$ then $a=b d$ where $d=\left(d_{\alpha}\right)$ so $d \in U(R)$ That is, each $d_{\alpha} \in U\left(R_{\alpha}\right)$ and we have $a_{\alpha} \cong b_{\alpha}$ If $a_{\beta}=0$ for some $\beta \in \Lambda$, then we have $0=b_{\beta} d_{\beta}$ If $a \neq 0$, then we must have that $d_{\beta} \in U\left(R_{\beta}\right)$ which means that $b_{\beta}=0$ However, if $a_{\beta}=b_{\beta}=0$, then $a_{\beta}=b_{\beta} x$ for any $x \in R_{\beta}$ This gives us nonunit elements $c \in R$ such that $a=b c$ where $a \neq 0$, a contradiction So if $a_{\beta}=0$, then we must have $a=0$

Next we assume that $a_{\alpha} \cong b_{\alpha}$ and if $a_{\alpha}=0$ for some $\alpha \in \Lambda$, then $a=0$ This means that if $a_{\alpha}=0$ for some α, then $a=b=0$ and we have $a \cong b$ If $a_{\alpha} \neq 0$ for all α and $a=b c$ for some $c \in R$, then $a_{\alpha}=b_{\alpha} c_{\alpha}$ for all α So each c_{α} is a unit in R_{α} and thus, c is a unit in R and we have that $a \cong b$

2 Let $a=\left(a_{\alpha}\right) \in R$ be irreducible This means that a_{\imath} is a nonunit in R_{\imath} for some $\imath \in \Lambda$ If $a_{\imath}=b_{\imath} c_{\imath}$, then we can say that $a=b c$ where $b=\left(\widehat{b}_{\alpha}\right)$ and $c=\left(\widehat{c}_{\alpha}\right)$ with $\widehat{b}_{\alpha}=1$ if $\alpha \neq \imath, \widehat{b}_{\alpha}=b_{\imath}$ if $\alpha=\imath, \widehat{c}_{\alpha}=a_{\alpha}$ if $\alpha \neq \imath, \widehat{c}_{\alpha}=c_{\imath}$ if $\alpha=\imath$ Since a is ırreducible, we know that either $a \sim b$ or $a \sim c$ and we have that either $a_{\alpha} \sim \widehat{b}_{\alpha}$ or $a_{\alpha} \sim \widehat{c}_{\alpha}$ for all $\alpha \in \Lambda$ More specifically, $a_{\imath} \sim \widehat{b}_{\imath}=b_{\imath}$ or $a_{\imath} \sim \widehat{c}_{\imath}=c_{\imath}$ and we have that a_{\imath} is irreducible

Now consider a_{\jmath} where $\jmath \neq \imath \in \Lambda$ Let $\vec{b}=\left(\bar{b}_{k}\right)$ and $\bar{c}=\left(\bar{c}_{k}\right)$ where $\bar{b}_{k}=b_{\alpha}$ and $\bar{c}_{k}=c_{\alpha}$ if $k \neq \imath, \jmath, \bar{b}_{k}=a_{\jmath}$ and $\bar{c}_{k}=1$ if $k=\jmath$, and finally, $\bar{b}_{k}=1$ and $\bar{c}_{k}=a_{\imath}$ if $k=\imath$ Recall that we are assuming a is irreducible and we now have $a=\bar{b} \bar{c}$ So etther $a \sim \bar{b}$ or $a \sim \bar{c}, 1 \mathrm{e} a_{\imath} \sim \bar{b}_{\imath}=1$ or $a_{\jmath} \sim \bar{c}_{j}=1$ That is, etther a_{\imath} or a_{\jmath} is a unit Since a_{2} is irreducible, it cannot be a unit and therefore, a_{j} must be a unit for all $\jmath \neq \imath$

Let $\imath \in \Lambda$ and $a=\left(a_{\alpha}\right)$ where $a_{\alpha}=1$ for $\alpha \neq \imath$ and a_{\imath} irreducible in R_{\imath} Now
assume that $a=b c$ with $b=\left(b_{\alpha}\right)$ and $c=\left(c_{\alpha}\right)$ This gives us that $a_{\alpha}=b_{\alpha} c_{\alpha}$ So we have that b_{α} and c_{α} are units for $\alpha \neq \imath$ and $a_{\imath} \sim b_{\imath}$ or $a_{\imath} \sim c_{\imath}$ That is, $a \sim b$ or $a \sim c$ so a is irreducible

The proofs for the strongly irreducible, m-irreducible, and prime cases are very sımılar and are left to the reader

3 Let $a=\left(a_{\alpha}\right)$ be very strongly irreducible in R This gives us that a is irreducible and hence, $a_{\alpha}=1$ for all α except one, call it a_{β}, which is irreducible in R_{β} If we assume $a=b c$, then we know that etther $a \cong b$ or $a \cong c$ That is, ether b or c is a unit in R So $a_{\beta}=b_{\beta} c_{\beta}$ where elther b_{β} or c_{β} is a unit Now we have that either $a_{\beta} \cong b_{\beta}$ or $a_{\beta} \cong c_{\beta}$ and a_{β} is very strongly irreducible in R_{β}

Assume $a_{\beta}=0$ and recall that a_{β} is very strongly irreducible so it is also mırreducible This means that $\left(a_{\beta}\right)=(0)$ is maxımal among principal ideals Now let I be an ideal in R_{β} such that $\left(a_{\beta}\right) \subsetneq I$ This means that for any nonzero element $x \in I$ we have $\left(a_{\beta}\right) \subseteq(x) \subsetneq I$ However, $\left(a_{\beta}\right)$ is maximal among principal ideals so $\left(a_{\beta}\right)=(x)$, a contradiction Hence, $\left(a_{\beta}\right)=(0)$ is a maximal ideal in R_{β} and R_{β} is a doman

Let a be very strongly irreducible where $a_{\beta}=0$ We know that $a \sim a$ and if $a=a k$ for some $k \in R$, then ether a or k is a unt Since a is very strongly irreducible, we know that a is not a unit This means that k is a unit and $a \cong a$ Also, if $a_{\beta}=0$, then we know from 1 that each $a_{\alpha}=0$ Now if $|\Lambda|>1$, then we can write $a=b c$ where $b=\left(b_{\alpha}\right)$ and $c=\left(c_{\alpha}\right)$ with $b_{\alpha}=0$ for all $\alpha \in \Lambda$ and c_{α} is a nonunit for some α Notice that nether b nor c is a unit However, since
a is very strongly irreducible, we must have that either b or c is a unit in R and we have reached a contradiction Thus, $|\Lambda|=1$

Theorem 216 [1] Let $\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}$ be a famıly of commutative rings, and let $R=\Pi R_{\alpha}$ If R satusfies $A C C P$ or any of the forms of atomicity, then Λ is finite Let $R_{1}, R_{2}, \quad R_{n}$ be commutative rings and $R=R_{1} \times R_{2} \times \quad \times R_{n}$
$1 R$ satzsfies ACCP (respectively, is atomıc, strongly atomıc, p-atomic) if and only of each R_{\imath} satısfies $A C C P$ (respectively, is atomic, strongly atomıc, p-atomic)
$2 R$ is m-atomic if and only if each R_{\imath} is m-atomic and $\imath f n>1$ and some R_{\imath} is a domain, then R_{\imath} must be a field
$3 R$ is very strongly atomic if and only if each R_{2} is very strongly atomic and if some R_{\imath} is a domain we must have $n=1$

Proof Note that if R is an atomic ring with zero divisors, then $0=a b$ for some $a, b \in R$ So we can write 0 as a finte product of arreducible elements Now if R is a doman and $0=a b$, then we have that $0 \sim a$ or $0 \sim b$ so 0 is rreducible So if R is ACCP or any form of atomic, then we must have that 0 can be written as a finite product of irreducible elements in R From the previous theorem, we can see that if Λ is infinite, then any finite product of irreducible elements must be nonzero So we must have that Λ is finite

For the remainder of this proof, we will assume that $\Lambda=n$ and $R=R_{1} \times R_{2} \times \times R_{n}$
1 We know that the principal ideals of R are all ideals of the form $I_{1} \times I_{2} \times \times I_{n}$ where each I_{α} is principal in R_{α} Now assume that $J_{1} \subseteq J_{2} \subseteq \quad$ is an ascending chain of principal ideals in R_{1} We will call this Chain 1 This gives us an ascendıng chain of prıncıpal ıdeals $J_{1} \times R_{2} \times \quad \times R_{n} \subseteq J_{2} \times R_{2} \times \quad \times R_{n} \subseteq$
in R which we will call Chain 2 Since R is ACCP, we know that Chain 2 must stabilize This means that Chan 1 must also stabilize and thus, we have that R_{1} is also ACCP Simılarly, each R_{\imath} must also be ACCP

Now we will assume that each R_{\imath} is ACCP Let $I_{1,1} \times I_{2,1} \times \quad I_{n, 1} \subseteq I_{1,2} \times I_{2,2} \times$ $I_{n, 2} \subseteq \quad$ be an ascending chain of principal ideals in R Since each R_{2} is ACCP, we know that each of the chans $I_{2, j} \subseteq I_{2, j+1} \subseteq$ must stabilize Thus, our original chain of principal ideals must also stabilize and we have that R is ACCP

We know that $r=\left(r_{\imath}\right) \in R$ is irreducible (respectively, strongly irreducbile, prime) If and only if each r_{i} is a unit in R_{2} except one, say r_{3}, which must be irreducible (respectıvely, strongly irreducible, prime) in R_{3} From this we can conclude that R is atomic (respectively, strongly atomic, p-atomic) if and only if each R_{r} is atomic (respectively, strongly atomıc, p-atomic)

2 First we will assume that R is m-atomic Notice that the element $\left(a_{2}\right)$ where $a_{\imath}=1$ for $\imath \neq \jmath$ and a_{\jmath} is a nonzero, nonunit in R_{\jmath} can be written as a finite product of m-irreducibles in R This gives us a factorization of a_{j} into a finite product of m-irreducibles in R_{\jmath} Thus, every nonzero, nonunit in R_{j} can be witten as a finte product of m-irreducibles in R_{\jmath} and R_{\jmath} is m-atomic Also, if R_{\jmath} is a doman, then 0 must be m-irreducible and hence, R_{\jmath} is a field

If each R_{\imath} is m-atomic, then each element of the form $\left(a_{\imath}\right)$ where $a_{\imath}=1$ for $\imath \neq \jmath$ and a_{\jmath} is a nonzero, nonunit in R_{\jmath} can be written as a finite product of m -irreducibles in R Also, every nonzero, nonunt in R can be written as a finte
product of elements of this form Thus, R must also be m -atomic

3 Assume that R is very strongly atomic Recall that $a=\left(a_{\alpha}\right)$ is very strongly ırreducible if and only if each a_{α} is a unit in R_{α} except one, call it a_{\imath} which must be very strongly irreducible in R_{\imath} and cannot be zero unless $n=1$ and R_{\imath} is a doman By this we see that each R_{\imath} must be very strongly atomic Now assume that R_{\jmath} is a domain for some \jmath If $n>1$, then we see that the element $\left(x_{\imath}\right)$ where $x_{\imath}=1$ if $\imath \neq \jmath$ and $x_{\jmath}=0$ is irreducible but not very strongly irreducible, a contradiction since 0 is very strongly irreducible in R_{\jmath} This means that if R_{\jmath} is a doman for any $1 \leq \jmath \leq n$, then $n=1$

Now assume that each R_{\imath} is very strongly atomic If $n=1$ and $R=R_{1}$ is a domain, then R is very strongly atomic So we will assume that $n>1$ and each R_{\imath} is not a doman Then if $a \in R_{\imath}$ is nonzero and very strongly irreducible, we have that $(1, \quad, 1, a, 1, \quad, 1)$ is very strongly irreducible in R Notice that every element of R can be written as a finite product of these types of elements Thus, R is very strongly atomic
Example 217 Let $R=\frac{\mathbb{Q}[x, y]}{\left(x-x y^{2}\right)}$ Then R is atomic but not strongly atomic R is Noetherian so it is atomic However, as we will see in the next chapter, because $x \in R$ is irreducible but not strongly irreducible, we know that R cannot be strongly atomic Now if we let $R=\mathbb{Z} \times \mathbb{Q}$, then R is strongly atomic but not m-atomic by Theorem 216 Using this same theorem, if we let $R=\mathbb{Z}_{6}$, then R is m -atomic but not very strongly atomic

The following theorems provide us with the tools we need to show that if R is p-atomic, then R is both strongly atomic and ACCP Recall that in domans, if R is ACCP, then R is atomic This implication remams true when the domain condition
is removed
Definition 218 [1] A principal ideal ring (PIR) is called a special principal ideal ring (SPIR) if it has only one proper prime ideal P and $P^{2}=0$

Theorem 219 [1] For a commutative ring R, the following statements are equivalent
$1 R$ is p-atomic
$2 R$ is a finite direct product of SPIRs and UFDs
3 Every (nonzero) proper principal adeal of R as a product of principal prime vdeals
Proposition 220 If R is a SPIR, then R is very strongly atomic

Proof We know that if R is a SPIR, then R is ACCP and hence, atomic Let $M=(m)$ be the unique maximal ideal We wish to show that m is irreducible We know that $M^{2}=0$ Now let $a \in R$ be a nonzero irreducible element This means that $a \in M$ so we have $a=r m$ for some $r \in R$ Since a is irreducible, we have that etther $a \sim r$ or $a \sim m$ If $a \sim r$, then $r \in M$ and $a b=r$ for some $b \in R$ We now have $a=r m=a b m=r m b m=a b^{2} m^{2}=0$ However, we know that a is nonzero so we must have $a \sim m$ This means that $a d=m$ for some $d \in R$ Now we will again look at our orıginal factorization of a So we have $a=r m=r a d=r r m d=r^{2} a d^{2}$ Now $r^{2} a d^{2}=0$ if either r or d is a nonunit Since a is nonzero, we know that r and d must both be units giving us that $a \cong m$ So m is also irreducible

Now we wish to show that m is very strongly irreducible so we assume that $m=s t \quad$ This means that elther $m \sim s$ or $m \sim t$ Without loss of generahty, we will assume that $m \sim t$ So for some $x \in R$, we have $m x=t$ This gives us $m=s t=s m x=s s t x=s^{2} m x^{2}$ Now $s^{2} m x^{2}=0$ if either s or x is a nonunit Thus, s must be a unt in R and we have that m is very strongly irreducible Since $a \cong m$, this means that a is also very strongly irreducible

Proposition 221 [1] If R is p-atomic, then R is strongly atomic

Proof Since R is a finite direct product of SPIRs and UFDs, we know that it is a finite direct product of very strongly atomic rings We will say that $R=R_{1} \times R_{2} \times \quad \times R_{n}$ If each R_{y} is not a doman or if $n=1$, then R is very strongly atomic If $n>1$ and each R_{\jmath} is etther a field or a nondoman SPIR, then R is m -atomic If any one of the rings R_{\jmath} is a domain but not a field, then R is strongly atomic

The following diagram shows the relationships between the various forms of atomicity

We would like to show that the class of p-atomic rings does not comelde with another class of atomic ring If we let $R=\mathbb{Z}_{4} \times \mathbb{Z}$, then R is p-atomic but not matomic Next we let $R=\mathbb{Z}[\sqrt{-3}] \times \mathbb{Z}$ Then R is strongly atomic but not p-atomic In our next chapter, we will dig a little deeper to uncover additional properties of the rings and elements identified in this chapter

CHAPTER 3. THEOREMS

Now that we have identsfied these five types of atomicity and have verfied that they are unique, we want to know, "Given a ring, how do we identify its level of atomicity?" The atomicity of some rings can be identified using Theorem 216 However, this theorem may always not be useful We strive to identify additional methods for determining a ring's atomicity Also, we will examine some of the behavior of rings with various levels of atomicity

As we have seen in the previous chapter, when working with nondomains we cannot make any assumptions, no matter how logical they may seem We will begin by verifying whether or not a unit multiple of an element will retain the irreducibility/prime status of the original element

Proposition 31 Let a be irreducible (respectively strongly irreducıble, m-ırreducıble, very strongly irreducible, prime) in R and u a untt in R Then ua is ırreducıble (respectively strongly $\imath r r e d u c i b l e$, m-ırreducible, very strongly $\imath r r e d u c a b l e$, prime) in R

Proof Let a be irreducible in R and $\alpha=u a$ where u is a unt in R Assume that $\alpha=x y$ for some x and y in R Then $a=\left(u^{-1} x\right) y$ So etther $a \sim u^{-1} x$ or $a \sim y$ If $a \sim u^{-1} x$, then $a b=u^{-1} x$ for some b in R That is, $u a b=\alpha b=x$ and $\alpha \sim x$ If $a \sim y$, then $a b=y$ for some b in R That is, $u a\left(u^{-1} b\right)=\alpha u^{-1} b=y$ and $\alpha \sim y$ Thus, α is irreducible

Let a be strongly irreducible in R and $\alpha=u a$ where u is a unit in R Assume that $\alpha=x y$ for some x and y in R Then $a=\left(u^{-1} x\right) y$ So etther $a \approx u^{-1} x$ or $a \approx y$ If $a \approx u^{-1} x$, then $a b=u^{-1} x$ for some unit b in R That is, $u a b=\alpha b=x$ and $\alpha \approx x$ If $a \approx y$, then $a b=y$ for some unit b in R That is, $u a\left(u^{-1} b\right)=\alpha u^{-1} b=y$ and $\alpha \approx y$ Thus, α is strongly irreducible

Let a be m-mrreducible in R and $\alpha=u a$ where u is a unit in R Then $(a)=(\alpha)$ which is maximal among principal ideals Thus, α is m-irreducible

Let a be very strongly irreducible in R and $\alpha=u a$ where u is a unit in R Assume that $\alpha=x y$ for some $x, y \in R$ Then $a=\left(u^{-1} x\right) y$ So etther $a \cong u^{-1} x$ or $a \cong y$ If $a \cong u^{-1} x$, then y is a unit in R and $\alpha \cong x$ If $a \cong y$, then $u^{-1} x$ is a unt in R so x is a unt in R and $\alpha \cong y$ Thus, α is very strongly irreducible

Let a be prime in R and $\alpha=u a$ where u is a unit in R Then $(a)=(\alpha)$ which is a prime ideal Thus, α is prime

Another matter of great interest is whether or not a ring's atomicity status has any relationship with the level of irreducibility reached by its irreducible elements Must the ring's atomicity status agree with the highest level of irreducibility shared by all irreducible elements? For example, can a very strongly atomic ring contain an irreducible element that attans no higher level of atomicity?

Theorem 32 If R is very strongly atomic, then a ıs ırreducible of and only of a is very strongly $\imath r r e d u c i b l e$

Proof Clearly, if a is very strongly irreducible, then a is irreducible So it suffices to show that if R is very strongly atomic, then each irreducible is very strongly ırreducıble

Let a be irreducible in R Since R is very strongly atomic, we can write a as a finite product of very strong irreducibles, say $a=\alpha_{1} \alpha_{2} \quad \alpha_{n}$ where each α_{i} is very strongly irreducible Now a is irreducible, so without loss of generality $a \sim \alpha_{1}$ That 1s, $a b=\alpha_{1}$ for some b in R but α_{1} is very strongly irreducible so b must be a unit Thus, a is very strongly irreducible

Theorem 33 If R is strongly atomic, then a is irreducible if and only if a is strongly ırreducıble

Proof If a is strongly irreducible then a is irreducible so we will assume that a in R is irreducible and we can write $a=\alpha_{1} \alpha_{2} \quad \alpha_{n}$ where each α_{\imath} is strongly irreducible Since a is irreducible, we know that $a \sim \alpha_{j}$ for some \jmath Without loss of generality, we will say that $a \sim \alpha_{1}$ This means that $\alpha_{1}=a k$ for some k in R Since α_{1} is strongly irreducible, we have that either $\alpha_{1}=u a$ or $\alpha_{1}=v k$ for some units u and v in R If $\alpha_{1}=u a$, then a is strongly irreducible and we are done So we assume that $\alpha_{1}=v k$ This means that $(a)=\left(\alpha_{1}\right)=(k)=(a)(k)=\left(\alpha_{1}\right)^{2}=(a)^{2}=(k)^{2}$ More specifically, $(k)=(k)^{2}$ and we have $k=r k^{2}$ for some $r \in R$ Also, $r k$ is idempotent since $(r k)^{2}=r k^{2} r=r k$ Now we let $I=(r k)=\left(\alpha_{1}\right)=(a)$ and $J=(1-r k)$ be ideals in R Notice that I and J are comaximal

Let $f \quad R \rightarrow R / I \times R / J$ be given by $a \mapsto(\bar{a}, \widehat{a})$ where \bar{a} represents the coset $a+I$ and \widehat{a} represents the coset $a+J$ The map f is a well-defined homomorphism Let $x \in R$ be such that $f(x)=(0,0)$ This means that $x \in I \bigcap J$ So $x=m(r k)=$ $n(1-r k)$ for some $m, n \in R$ and we have that $(m+n) r k=n$ which gives us $n \in I$ We will say $n=\operatorname{trk}$ for some $t \in R$ Now we have $x=\operatorname{trk}(1-r k)=\operatorname{trk}-t(r k)^{2}=$ $\operatorname{trk}-\operatorname{tr} k=0 \quad$ Thus, f is injective Now let $(\bar{m}, \widehat{n}) \in R / I \times R / J$ Notice that $f(n+(m-n)(1-r k))=(\bar{m}, \widehat{n})$ So f is bijective Thus, $R \cong R / I \times R / J$

We know that $a \sim r k$ so for some $b \in R$ we have $r k=a b$ This gives us that $f(a b)=f(a) f(b)=f(r k)=(0,1) \quad$ That is, $(0, \widehat{a})(\bar{b}, \widehat{b})=(0,1)$ and we have that \widehat{a} is a unit in R / J Similarly, $f\left(\alpha_{1}\right)=\left(0, \widehat{\alpha_{1}}\right)$ where $\widehat{\alpha_{1}}$ is a unit in R / J Now we have $f(a)=(0, \widehat{a})=(1, \widehat{a})(0,1)=(1, \widehat{a}) f(r k)$ Let $f^{-1}((1, \widehat{a}))=y$ in R We wish to show that y is a unit Since $f(y)=(\bar{y}, \widehat{y})=(1, \widehat{a})$, we have $y z+I=1+I$ and $y w+J=1+J$ for some $w, z \in R$ This means that there exists $s, t \in R$ such that $y z=1+s r k$ and $y w=1+t(1-r k)$ So $y w(s r k)=(1+t-t r k)(s r k)=s r k$ and $y z=1+y w r s k, 1 \mathrm{e} \quad y(z-w r s k)=1$ and $y \in U(R)$ We now have $a=y r k$ where $y \in U(R)$ Similarly, $\alpha_{1}=z r k$ for some $z \in U(R)$ Thus, $a=y z^{-1}(z r k)=\left(y z^{-1}\right) \alpha_{1}$

So a is strongly irreducible

Theorem 34 If R is m-atomıc, then a is ırreducible of and only if a is m-ırreducıble
Proof Clearly if a is m-irreducible, then a is irreducible We need to show that if a irreducible, then a is m-irreducible

Let a be irreducible in R Since R is m -atomic, a can be written as a finite product of m-irreducibles, say $a=\alpha_{1} \alpha_{2} \quad \alpha_{n}$ where each α_{\imath} is m-irreducible Now a is irreducible, so without loss of generality, $a \sim \alpha_{1}$ That is, $(a)=\left(\alpha_{1}\right)$ Since α_{1} is m -irreducible, $\left(\alpha_{1}\right)=(a)$ is maximal among principal ideals Thus, a is mrreducible

Theorem 35 If R is p-atomic, then a is irreducible of and only if a is prime
Proof It suffices to show that an irreducible a is also prıme
Let a be irreducible in R Since R is p-atomic, a can be written as a finite product of primes, say $a=p_{1} p_{2} \quad p_{n}$ where each p_{\imath} is prime Now a is irreducible, so without loss of generality, $a \sim p_{1}$ That is, $(a)=\left(p_{1}\right)$ Since p_{1} is prime, $\left(p_{1}\right)=(a)$ is a prime ideal Thus, a is prime

It is important to point out that the irreducibles of a ring with a particular form of atomicity will always fall into the corresponding class of irreducible However, this does not mean that the ring may not contain irreducibles from a "higher" class For example, ff we let $R=\mathbb{Z} \times \mathbb{Z}$, then R is strongly atomic and has no higher form of atomicity However, all elements of the form $(p, 1)$ and $(1, p)$ where p is prime in \mathbb{Z} are both very strongly irreducible and prime The elements $(1,0)$ and $(0,1)$ are only strongly irreducible but also prıme Now let $R=\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ Notice that R is m-atomic but has no higher form of atomicity but the element $(2,1)$ is very strongly irreducible in R

To assure ourselves that the classes of atomic rings we are studying are nonempty, we look for methods of generating examples One such method has been shown in Theorem 216 Another possible way of generating examples is by looking at classes of domans R along with specific types of ideals I and examıning the atomic structure of R / I

Theorem 36 Let R be a Noetherian domain and $I \subseteq R$ a primary ideal Then R / I is very strongly atomic

Proof R is Noetherian and hence ACCP Thus, R / I is also ACCP and hence atomic Let $a+I$ be irreducible in R / I and assume that $a+I=b c+I$ Without loss of generality, we have that $a d+I=b+I$ for some $d+I \in R / I$ This gives us $a+I=a c d+I$ or, equivalently, $a(1-c d)+I=0+I$ Since $a \notin I$ and I is prımary, we have that $(1-c d)^{n} \in I$ for some n This means that for some $x \in R$, the element $1-c x \in I$ So c is a unit in R / I and $a+I$ is very strongly irreducible Therefore, R is very strongly atomic

This theorem remans true if we let R be any ring such that R / I is atomic It is also important to note that the converse does not hold true A ring R may be Noetherian and R / I may be very strongly atomic for some ideal I in R However, I need not be prımary For example, let $R=\mathbb{Z}$ and $I=(900)=(4)(9)(25)$ with (4), (9), and (25) parrwise comaxımal and prımary Then $R / I \cong R /(4) \times R /(9) \times R /(25)$ is very strongly atomic but I is not primary

What happens if R is Noetherian domain and I is a product of primary ideals? We have seen that R / I may be very strongly atomic but we wish to know if this will always be the case Is there a Noetherian doman R with an ideal I that is a product of primary ideals such that R / I is no longer very strongly atomic?

Theorem 37 Let R be a Noetherian domain and $I=I_{1} I_{2} \quad I_{n}$ where each I_{\jmath} is a
nonprime primary ideal and $I_{1}, I_{2}, \quad, I_{n}$ are parrwise comaximal Then R / I is very strongly atomic

Proof $R / I \cong R / I_{1} \times R / I_{2} \times \times R / I_{n}$ where each R / I_{j} is very strongly atomic If each I_{j} is not prime, then each R / I_{j} is a nondoman and we have that R / I is very strongly atomic

Notice that, if any of the I_{j} 's in the previous theorem is maximal, then R / I is m-atomic If one of the I_{3} 's is a non-maximal prime ideal, then R / I is strongly atomic As in the previous theorem, we only need R to be a ring where R / I is atomic

Corollary 38 Let R be a PID and $I=(\alpha)$ with $\alpha=p_{1}^{a_{1}} p_{2}^{a_{2}} \quad p_{n}^{a_{n}}$ where each p_{2} is prime and each $a_{\jmath}>1$ Then R / I is very strongly atomic

The converse does not hold true If R is a PID, then R / I need not be very strongly atomic For example, let $R=\mathbb{Z}$ and $I=(6)$ Then $3+I$ is irreducible but not very strongly arreducible So R is a PID but R / I is not very strongly atomic

We now turn our attention from Noetherian domains to Dedekind domans Recall that every ideal in a Dedekind domain can be written as a finite product of prime ideals Since both prime ideals and powers of prime ideals are primary in a Dedekind doman, we wonder if we can use Theorem 36 to deduce the atomic status of the rings R / I where R is a Dedekind doman and I is any ideal in R

Lemma 39 If R is a one-dimensional domain with nonzero primary ideals Q_{1} and Q_{2} such that $\operatorname{rad}\left(Q_{1}\right) \neq \operatorname{rad}\left(Q_{2}\right)$, then Q_{1} and Q_{2} are comaximal

Proof Recall that the radical of a primary ideal is prime and since R is one-dimensional, every nonzero prime ideal is maximal Let $P_{1}=\operatorname{rad}\left(Q_{1}\right)$ and $P_{2}=\operatorname{rad}\left(Q_{2}\right)$ Assume that $Q_{1}+Q_{2}$ is contained in some maximal ideal $M \varsubsetneqq R$ Then $Q_{1} \subseteq Q_{1}+Q_{2} \subseteq M$ So $\operatorname{rad}\left(Q_{1}\right) \subseteq M$ However, $\operatorname{rad}\left(Q_{1}\right)=P_{1}$ so $P_{1}=M$ Similarly, $P_{2}=M$ This gives us that $P_{1}=P_{2}$, a contradiction So $Q_{1}+Q_{2}=R$

Theorem 310 Let R be a Dedekind domain and $I=P_{1}^{a_{1}} P_{2}^{a_{2}} \quad P_{n}^{a_{n}}$ be an vdeal in R where each P_{\imath} is a prime ideal in R and each $a_{\imath} \geq 1$ Then R / I is m-atomic If $a_{\imath}>1$ for each \imath, then R / I is very strongly atomic

Proof If we have a factorization of I into the product of primary ideals where $P_{\imath}=P_{\jmath}$ for some \imath and \jmath, then we can adjust the exponents and rewrite the factorization so that $P_{\imath} \neq P_{\jmath}$ for all $\imath \neq \jmath$ For our purposes, we will assume that $P_{\imath} \neq P_{\jmath}$ for all $\imath \neq \jmath$

We know that prıme ideals are maxımal and powers of prime ideals are prımary because R is a Dedekind doman Note that $\operatorname{rad}\left(P_{\imath}^{a_{\imath}}\right)=P_{i}$ so by the previous lemma, we have that $P_{\imath}^{a_{2}}$ and $P_{\jmath}^{a_{3}}$ are comaximal for each $\imath \neq \jmath$ Thus, $R / I \cong$ $R / P_{1}^{a_{1}} \times R / P_{2}^{a_{2}} \times \quad \times R / P_{n}^{a_{n}}$ by the Chinese Remander Theorem Each $R / P_{2}^{a_{2}}$ is very strongly atomic and if $a_{2}=1$, we have that $R / P_{2}^{a_{2}}$ is a field Giving us that R / I is m-atomic If each $a_{\imath}>1$, then each $R / P_{\imath}^{a_{2}}$ is a very strongly atomic nondoman so R / I is very strongly atomic

We know that a domain R is Dedekind if and only if it is Noetherian, onedimensional, and integrally closed What happens to the atomicity of R / I if we weaken the conditions of R That is, what happens to the atomicity of R / I if we require R to be both Noetherian and one-dımensional but not necessarıly integrally closed?

Theorem 311 Let R be a one dimensional Noetherian domain and I be an ideal in R Then R / I is m-atomic If I can be written as the product of primary ideals that are not prime, then R / I is very strongly atomic

Proof R is Noetherian and one dimensional so each ideal I in R has a primary decomposition Say $I=Q_{1} \bigcap Q_{2} \cap \bigcap Q_{n}$ is a primary decomposition of I Let $T=\left\{P_{\imath}=\operatorname{rad}\left(Q_{\imath}\right) \mid 1 \leq \imath \leq n\right\}$ Then T is a set of prime ideals with $Q_{\imath} \subseteq P_{\imath}$ Now let $S_{\jmath}=\left\{Q_{\imath} \mid Q_{\imath} \subseteq P_{\jmath}\right\}$ The set $\left\{S_{\jmath} \mid 1 \leq \jmath \leq n\right\}$ forms a partition of $\left\{Q_{\imath} \mid 1 \leq \imath \leq n\right\}$
since all nonzero prıme ideals in R are maxımal Now define $I_{j}=\bigcap_{Q_{\imath} \in S_{j}} Q_{\imath}$ and Y to be the set of all distinct ideals I_{3} Now considering only the ideals I_{3} in Y, we have that I_{\jmath} is primary, $I_{\jmath} \subseteq P_{\jmath}$, and $I_{k} \subseteq P_{k}$ with $P_{\jmath} \neq P_{k}, I_{\jmath} \nsubseteq P_{k}$, and $I_{k} \nsubseteq P_{\jmath}$ Then $I=\bigcap_{I_{\jmath} \in Y} I_{\jmath}$ is a reduced primary decomposition Also, $I_{\jmath} \in Y$ and $I_{k} \in Y$ are parrwise comaximal for all $\jmath \neq k$ as needed to apply Lemma 39 Thus, we can write $R / I \cong R / I_{1} \times R / I_{2} \times \quad \times R / I_{m}$ using the elements I_{3} from Y So each R / I_{\imath} is very strongly atome and if I_{3} is prime, then R / I_{j} is a field This gives us that R / I is m-atomic If I_{j} is not prime for all \jmath, then R / I is very strongly atomic

Can we generalize Theorem 310 any further? What happens if we now remove the requirement that R be one-dimensional? Let $R=\mathbb{Q}[x, y]$ and $I=\left(x-x y^{2}\right)$ Then R is a 2-dimensional Noetherian doman However, R / I is not m-atomic In fact, R / I is not even strongly atomic

We will now switch gears and look a hittle closer at the elements of a ring Our hope is that a better understanding of these elements will give us insight into the ring's factorization

Proposition 312 If $m \in R$ is m-irreducıble but not very strongly arreducıble, then $(m)=(m)^{2}$

Proof Let m in R be m-irreducible and say $m=a b$ for some $a, b \in R$ Since we assume that m is not very strongly irreducible, we can assume that nether a nor b are unts So we have that $(m) \subseteq(a)$ and $(m) \subseteq(b)$ Since a and b are nonumits, $(a) \neq R$ and $(b) \neq R$ Thus, $(a)=(b)=(m)=(a)(b)=(m)^{2}$

While this theorem shows us an interesting property of m-irreducibles, it does not provide us with a method for identifying m-irreducibles A principal ideal may be idempotent and its generator not be m-ırreducible If we let $R=\mathbb{Z} \times \mathbb{Z}$ and let $m=(1,0)$ and $I=(m)$, then $I=I^{2}$ but m is not m -ırreducible since $I \varsubsetneqq<(1,2)>$

Theorem 313 If $r \in$ is regular and irreducıble, then r as very strongly ırreducible but not necessarlly prome

Proof Let $r \in R$ be regular and irreducible Assume that $r=a b$ Since r is irreducible, either $r \sim a$ or $r \sim b$ Without loss of generality, we will say $r \sim a$ So $r k=a$ for some k in R This means that $r=r k b$ or $r(1-k b)=0$ We know that r is regular so this must mean that $1-k b=0$ That 1 s, k and b are units in R Thus, r is very strongly irreducıble

Let $R=\mathbb{Z}_{4}[x]$ Then x is regular and $(x+2)^{2} \in(x)$ but $x+2 \notin(x)$ so x is not prıme

Now that we are more familar with some of the intricacies of atomicity in nondomains, we wish to take the next step and look at polynomial extensions of our nondomains with varying levels of atomicity Before we do this we will look into a concept that can be used to verify the atomicity of a polynomial extension of a domann called a maximal common divisor

CHAPTER 4. MAXIMAL COMMON DIVISORS IN DOMAINS

In 1993, Moshe Roitman published Polynomial Extensions of Atomic Domains [7] Here he constructs an example of an atomic commutative domain R such that $R[x]$ is not atomic One of the key ingredients in this construction is the notion of maximal common divisor (MCD) Given a finite, nonempty set S in R, we say that $m \in R$ is an MCD of S if m divides each element of S and if n is another common divisor of S such that $m \mid n$, then m and n are associates [7] A domain in which every finite set has an MCD is called an MCD domain [7] It is worth noting that if R is a GCD domain, then R is an MCD domain If we let $R=\mathbb{F}_{2}\left[x^{2}, x^{3}\right]$, then we know that R is not a GCD doman because the set $S=\left\{x^{5}, x^{6}\right\}$ does not have a GCD However, it does have an MCD In fact, both x^{2} and x^{3} are MCD's of S We wish to show that this ring is an MCD domain To do this, we must first establish that R is atomic Notice that R is a Noetherian doman This gives us that $R[y, z]$ is also a Noetherian domain Hence, both R and $R[y, z]$ are atomic domans

In the first section of his paper, Roitman explores the connection between the MCD property and the atomicity of polynomial extensions of the doman The following theorem was first introduced and proven in [2] but is restated in Rotman's paper adjusting the language to include the MCD property it is this theorem that verifies that $\mathbb{F}_{2}\left[x^{2}, x^{3}\right]$ is an MCD domain We will later provide an alternate proof of this theorem using maximal common divisors

Theorem 41 [7] Let R be an commutative domain with identity The following are equivalent
$1 R[x, y]$ is atomuc
2 Given any indexing set I, the polynomial extension $R\left[\left\{x_{\imath}\right\}_{\imath \in I}\right.$ is atomic

$3 R$ is an atomic $M C D$ domain

This theorem shows how the MCD status of a domain can influence the atomicity of its polynomial extensions However, we wish to know more of the finer details of this property For example, do we need every finite set in R to have an MCD in order for $R[x]$ to be atomic or is it necessary only for some sets? Before we attempt to answer that question, we need to identify a special class of polynomials in $R[x]$ A polynomial $f \in R[x]$ is called indecomposable if it cannot be written as the product of two polynomials with positive degree [7] In the ring $\mathbb{Z}[x]$, the polynomial $2 x+2$ is indecomposable Notice that we can write $6 x-3=3(2 x-1)$ but we are unable to write $6 x-3$ as the product of two polynomials of positive degree In general, if R is a domain, then any linear polynomial in $R[x]$ is indecomposable

Theorem 42 [7] Let R be a domain The following condutions are equivalent
$1 R$ is atomic and the set of coefficients of any indecomposable polynomial in $R[x]$ has an $M C D$ in R
$2 R[x]$ is atomic
Proof $(1 \Rightarrow 2)$ Since any polynomial in $R[x]$ can be written as a finite product of indecomposable polynomials, it suffices to show that any indecomposable polynomial can be written as a finite product of irreducibles

Let $f=\sum_{i=0}^{n} f_{\imath} x^{2}$ be an indecomposable polynomial and m be the MCD of the coefficients of $f=\stackrel{i}{l}$ If the degree of f is 0 , then we have that $f \in R$ so f can be written as a finite product of irreducibles So we will assume that $\operatorname{deg}(f)>0$ Let $g=\sum_{\imath=0}^{n} \frac{f_{2}}{m} x^{2}$ We claim that g is irreducible Assume that $g=h k$ for some $h, k \in R[x]$ Since f is indecomposable, we know that g must also be indecomposable so without loss of generality we say that $h \in R$ This means that $m h \mid f_{2}$ and $m \mid m h$ so we now have that m and $m h$ are associates Thus, h is a unit in R and g is irreducible
$(2 \Rightarrow 1)$ Let f be an indecomposable polynomial in $R[x]$ Now look at an ırreducible factorization of f say $f=f_{1} f_{2} \quad f_{k}$ Since f is indecomposable, we know that $k-1$ of these irreducible factors must be elements of R Without loss of generality say $f_{1}, f_{2}, \quad, f_{k-1}$ are elements of R and let $m=f_{1} f_{2} \quad f_{k-1} \quad$ Now assume that $c \in R$ is a common divisor of the coefficients of f where $m \mid c$ That is, $m d=c$ for some $d \in R$ and $f=m d\left(\frac{f_{k}}{d}\right)$ but f_{k} is irreducible so d is a unit Therefore, m and c are associates and m is an MCD of the coefficients of f

If we tighten the conditions on R slightly, we see that if R is an atomic MCD domain, then $R[x]$ is atomic On our quest to provide an alternative proof of Theorem 41 , we need to know if $R[x]$ inherits the MCD property from R More generally, we want to know if any polynomial extension of R is an MCD doman of R is an MCD domain

Theorem 43 [7] Let R be a commutative domain The following are equivalent
$1 R$ is an $M C D$ domain
$2 R[x]$ is an $M C D$ domain
$3 R[x]$ is a weak $G C D$ domain (every set of two distinct elements in R has an MCD)

4 Any polynomial extension of R is an $M C D$ domain
5 Any polynomal extension of R is a weak GCD domain
Proof It suffices to show that $3 \Rightarrow 1 \Rightarrow 4$
$(3 \Rightarrow 1)$ Consider the set $S_{1}=\left\{r_{1}, r_{2}, \quad, r_{n}\right\}$ in R and assume that $n>2$ Let $f(x)=r_{1}+r_{2} x+\quad+r_{n-1} x^{n-2}$ be a polynomial in $R[x]$ We know that the set $S_{2}=\left\{f, r_{n}\right\}$ has an MCD in $R[x]$ call it m This means that $m \mid S_{1}$ Now assume that $c \in R$ such that $c \mid S_{1}$ and $m \mid c$ Then $c \mid S_{2}$ so c and m are associates Thus, m is an MCD for S_{1}
$(1 \Rightarrow 4)$ Let X be a famıly of indeterminants and let $S_{1}=\left\{f_{1}, f_{2}, \quad, f_{n}\right\}$ be a set of polynomials in $R[X]$ If $C D_{S_{1}}$ is the set of all common divisors of S_{1}, then there exists at least one polynomial in $C D_{S_{1}}$ that has the highest combined degree Choose one such polynomial and call it g Now let $m \in R$ be the MCD of all of the coefficients of the polynomials in the set $S_{2}=\left\{\frac{f_{1}}{g}, \frac{f_{2}}{g}, \frac{f_{n}}{g}\right\}$ We will show that $m g$ is an MCD of S_{1} If h is a common divisor of S_{1} such that $m g \mid h$, then $m g k=h$ for some $k \in R[X]$ Since g has the highest combined degree, we know that k must be an element in R Thus, $m k$ is a common divisor of the coefficients of S_{2} and $m \mid m k$ so m and $m k$ are associates Thus, k is a unit and $m g$ is an MCD of S_{1}

We now have the tools we need to provide an alternate proof of Theorem 41

Proof $(3 \Rightarrow 2)$ Let X be a set of indeterminates and choose $f \in R[X]$ Since $R[X]$ 1s a domam, we know that if $a=b c$ then $\operatorname{deg}_{x}(a)=d e g_{x}(b)+d e g_{x}(c)$ for all $x \in X$ Thus, we can write $f=f_{1} f_{2} \quad f_{n}$ where each f_{\imath} is indecomposable Now let S_{\imath} be the set of coefficients of f_{\imath} Since R is an MCD doman, each S_{\imath} has an MCD call it m_{\imath} So we have $f=m_{1} m_{2} \quad m_{n} \frac{f_{1}}{m_{1}} \frac{f_{2}}{m_{2}} \quad \frac{f_{n}}{m_{n}} \quad$ Now R is atomic so $m_{1} m_{2} \quad m_{n}$ can be written as a product of irreducible elements in $R[X]$ We claim that each $\frac{f_{2}}{m_{\imath}}$ is irreducible Assume that $\frac{f_{\imath}}{m_{\imath}}=g h$ Then $f_{\imath}=\left(m_{\imath} g\right) h$ so etther $\operatorname{deg}\left(m_{\imath} g\right)=0$ which means that $\operatorname{deg}(g)=0$ or $\operatorname{deg}(h)=0$ Without loss of generality, we will assume that $\operatorname{deg}(g)=0$ This means that $m_{\imath} g$ divides each element in S_{\imath} and $m_{\imath} \mid m_{\imath} g$ We know that m_{\imath} is the MCD of S_{\imath} so we must have that m_{\imath} and $m_{\imath} g$ are associates That is, g is a unit in R So $\frac{f_{2}}{m_{2}}$ is irreducible and $R[X]$ is atomic

Since we can easily see that $(2 \Rightarrow 1)$, we will conclude by proving that $(1 \Rightarrow 3)$ R inherits its atomicty from $R[x, y]$ so we need only show that R is an MCD doman Let $S=\left\{s_{1}, s_{2}, \quad, s_{n}\right\}$ be a finite set in R Then $f=s_{1}+s_{2} x+\quad+s_{n-1} x^{n-2}+s_{n} y$ is an indecomposable polynomial in $R[x, y]$ Since $R[x, y]$ is atomic, we know that the set of coefficients of any indecomposable polynomial in $R[x][y]=R[x, y]$ has an MCD
in $R[x]$ So if we rewrite f as $f=g_{1}+g_{2} y$ where $g_{1}=s_{1}+s_{2} x+\quad+s_{n-1} x^{n-2}$ and $g_{2}=s_{n}$, then we know that the set $\left\{g_{1}, g_{2}\right\}$ has an MCD in $R[x]$ call it m However, $g_{2} \in R$ so $\operatorname{deg}(m)=0$, e $m \in R$ This means that m also divides each coefficient of g_{1} So m divides each element of S Now assume that k also divides each element of S and $m \mid k$ This means that k also divides both g_{1} and g_{2} Since m is the MCD of $\left\{g_{1}, g_{2}\right\}$ we must have that m and k are associates Thus, $m \in R$ is an MCD of S and R is an MCD doman

Our goal in the next chapter is to generalize some of these theorems by removing the domain condition However, as we will see, rings with zero divisors can display behavior that can make this challenging To accommodate this behavior we will need to specify additional properties that the ring must possess in order for the result to hold true We will also provide examples of rings with some of this troublesome behavior

CHAPTER 5. MAXIMAL COMMON DIVISORS IN RINGS WITH ZERO DIVISORS

We begin by defining three different types of maximal common divisors using the defintion Roitman used when working with domans and incorporating the three levels of associate elements

Definition 51 Given a set S in R, m is a maximal common divisor ($M C D$) of S if m has the following two properties
$1 m$ divides every element in S and
2 if n is another common divisor of the elements of S such that $m \mid n$, then $m \sim n$
Definition 52 Given a set S in R, m is a strong maximal common duvzor (SMCD) of S if m has the following two properties

1 if m divides every element in S and
2 if n is another common divisor of the elements of S such that $m \mid n$, then $m \approx n$
Definition 53 Given a set S in R, m is a very strong maximal common divisor (VSMCD) of S if m has the following two properties

1 if m divides every element in S and
2 if n is another common divisor of the elements of S such that $m \mid n$, then $m \cong n$
We can see that when generalizing an MCD result in domains, we will have three corresponding results to verıfy in nondomans We begin by first definng three new types of rings

Definition $54 R$ is an $M C D$ ring if every finite set in R has an MCD
Definition $55 R$ is an $S M C D$ ring if every finite set in R has an SMCD
Definition $56 R$ is a $V S M C D$ ring if every finite set in R has a VSMCD

Before we go any further we need to verify that these are three distinct, nonempty classes of rings

The ring $R=\mathbb{Z} \times \mathbb{Z}$ is a VSMCD ring Because \mathbb{Z} is a UFD, it is also a GCD domain so it is a VSMCD ring We will see later that the product of VSMCD rings is also a VSMCD ring

Now if we let $R=\mathbb{Z}_{6}$ Then R is an SMCD ring but not a VSMCD ring If the set contains 1 or 5 , then 1 is an SMCD of the set If the set contains 2 and 3, then 1 is an SMCD of the set If the set contains 3 and 4, then 1 is an SMCD of the set If the set is $S=\{3\}$, then the only common divisors of S are $1,3,5$ Since 1 and 5 divide 3 but are not associate to 3 , we know that they are not MCD's of S Notice here that 3 is a common divisor of S such that $3 \mid 3$ However, 3 is strongly associate but not very strongly associate to itself So 3 is an SMCD of S but S does not have a VSMCD If the set is $\{2\},\{4\}$, or $\{2,4\}$, then 2 is an SMCD of the set For any of these three sets, 4 is a common divisor such that $2 \mid 4$ Also, we know that $2 \approx 4$ but $2 \not \approx 4$ This means that S has an SMCD but not a VSMCD

At this point in time, an MCD ring that is not an SMCD ring has not been identified As we will see later, if R is an atomic SMCD ring, then R is strongly atomic Since we know that $\frac{\mathbb{Q}[x, y]}{\left(x-x y^{2}\right)}$ is atomic but not strongly atomic, then this is the logical ring to begin with when looking for an example of a ring that is an MCD ring but not an SMCD ring

We will begin, as Roitman did, by examining how the various MCD properties affect the polynomial extension of a ring

Recall that in a domain R, every polynomial in $R[x]$ can be written as a finite product of indecomposable polynomials This useful fact does not necessarily hold if R is contains zero divisors For example, if we let $R=\mathbb{Z}_{4}$, then we see that $1+2 x^{n}$ is a unit in $R[x]$ for all $n \in \mathbb{N}$ So given any polynomial $f \in R[x]$ such that $2 \nmid f$
and $\operatorname{deg}(f) \geq 1$, we can write $f=\left(1+2 x^{n}\right)\left(\left(1+2 x^{n}\right) f\right)$ where both $1+2 x^{n}$ and $\left(1+2 x^{n}\right) f$ have positive degree for any $n \in \mathbb{N}$ This means that any polynomial that is not divisible by 2 can be written as the product of two polynomials of positive degree If $2 \mid f$ and $\operatorname{deg}(f) \geq 1$, then $f=2 g$ for some g in $R[x]$ Notice here that $2 \nmid g$ since $f \neq 0$ This means that $f=(1+2 x)[(1+2 x)(2 g)]=(1+2 x)[2(1+2 x)] g=$ $(1+2 x) 2 g=(1+2 x) f$ Here we have that both $1+2 x$ and f have positive degree Thus, no polynomial in $R[x]$ of positive degree is indecomposable and consequently no nonconstant polynomial can be written as a finite product of indecomposable polynomials This behavior is often problematic causing the need for an additional condition when generalizing theorems from domans to rings

It is important to point out that polynomial rings exist outside the realm of domains where each polynomial can be written as a finite product of indecomposable polynomials One such ring is $R=\mathbb{Z}_{6}[x]$ Notice that in $\mathbb{Z}_{6}[x]$, the rdeals $I=(2)$ and $J=(3)$ are comaxımal So we have that $R \cong R / I \times R / J$ Now since both R / I and R / J are both domains, we know that any polynomial in R / I, for example, can be written as a finite product of polynomials in R / I Thus, if we have a polynomial in R call it f, then we can rewrite it as $f=(g, h)$ If the degree of g is n and the degree of h is m, then f can be factored into at most $n+m$ polynomials in R with positive degree This means that we can find a factorization of f into polynomials of positive degree that has maximum length, say it is $f=f_{1} f_{2} \quad f_{k}$ where each f_{2} 1s of positive degree Now assume that $f_{\imath}=a b$ If $a \notin R$ and $b \notin R$, then we have a factorization of f into nonconstant polynomials of length $k+1$ This contradicts the maximality of the length of the original factorization of f So we have that every polynomial in $\mathbb{Z}_{6}[x]$ can be written as a finite product of indecomposable polynomials

Conjecture 57 Let R be an atomic ring and let f be a polynomial in $R[x]$ If S is
the set of coefficients of f, then there exists an MCD of S, call it m, and a polynomial g such that $f=m g$ where an MCD of the set of coefficients of g is 1

If we are working with a domain, then this conjecture is easily proven to be true However, if $R=\mathbb{Z}_{6}$, for example, then we can have factorizations like $f(x)=$ $2 x+4=2(4 x+2)$ where the MCD of $\{2,4\} \neq 1$ In this case, we can choose to factor $f(x)=2 x+4$ as $f(x)=2(x+2)$ and here the MCD of $\{1,2\}$ is 1 We use this conjecture to prove the following two theorems

Theorem 58 Let R be a ring such that all polynomials in $R[x]$ can be written as a finite product of indecomposable polynomials If R is atomic and the set of coefficients of any indecomposable polynomial in $R[x]$ has an $M C D$, then $R[x]$ is atomic

Proof Let f be a polynomial in $R[x]$ Since all polynomials in $R[x]$ can be written as a finite product of indecomposable polynomials, we may assume that f is indecomposable That is, if $f=g h$, then without loss of generality $h \in R$

Let S_{f} be the set of coefficients of f and let m be an MCD of S_{f} Also, let g be a polynomial such that $f=m g$ and the MCD of S_{g}, the set of coefficients of g, is 1 We now need to show that g is irreducible in $R[x]$

Assume that $g=k t$ for some $k, t \in R[x]$ Then without loss of generality, we may assume that $t \in R$ since f is indecomposable This means that t is a common divisor of S_{q} and $1 \mid t$ which gives us $1 \sim t$ and t is a unt Thus, g is irreducible In [1], we find that an element $a \in R$ is irreducible in R if and only if it is irreducible in $R[x]$ and we now have that $R[x]$ is atomic

Theorem 59 Let R be a ring such that all polynomials in $R[x]$ can be written as a finute product of indecomposable polynomıals If R is strongly atomic and the set of coefficients of any indecomposable polynomial in $R[x]$ has an $S M C D$ in R, then $R[x]$ us strongly atomic

Proof Let f be a polynomal in $R[x]$ Since all polynomals in $R[x]$ can be written as a finite product of indecomposable polynomials, we may assume that f is indecomposable That is, if $f=g h$, then without loss of generality $h \in R$

Let S_{f} be the set of coefficients of f and let m be an SMCD of S_{f} Also, let g be a polynomial such that $f=m g$ and the SMCD of S_{g}, the set of coefficients of g, is 1 We now need to show that g is strongly irreducible in $R[x]$

Assume that $g=k t$ for some $k, t \in R[x]$ Then without loss of generality, we may assume that $t \in R$ since f is indecomposable This means that t is a common divisor of S_{g} and $1 \mid t$ which gives us $1 \approx t$ and t is a unit Thus, g is strongly arreducible In [1], we find that an element $a \in R$ is strongly irreducible in R if and only if it is strongly irreducible in $R[x]$ and we now have that $R[x]$ is strongly atomic

Theorem 510 Let R be a ring such that all polynomials in $R[x]$ can be written as a finite product of indecomposable polynomials If R is very strongly atomic and the set of coefficients of any indecomposable polynomıal in $R[x]$ has a VSMCD, then $R[x]$ is very strongly atomic

Proof Let $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\quad+a_{n} x^{n}$ be a polynomial in $R[x]$ Since all polynomials in $R[x]$ can be written as a finite product of indecomposable polynomials, we may assume that f is indecomposable That is, if $f=g h$, then without loss of generality $h \in R$ Let $S=\left\{a_{0}, a_{1}, a_{2}, \quad, a_{n}\right\}$ be the set of all coefficients of f and m be a VSMCD of S So $f(x)=m\left(\frac{a_{0}}{m}+\frac{a_{1}}{m} x+\frac{a_{2}}{m} x^{2}+\quad+\frac{a_{n}}{m} x^{n}\right)$ Let $g(x)=\frac{a_{0}}{m}+\frac{a_{1}}{m} x+\frac{a_{2}}{m} x^{2}+\quad+\frac{a_{n}}{m} x^{n}$ We now need to show that g is very strongly rreducible in $R[x]$

Assume that $g(x)=k(x) t(x)$ for some $k, t \in R[x]$ Then without loss of generality, we may assume that $t(x) \in R$ since f is indecomposable This means that $m t$ is a common divisor of S and $m \mid m t$ So $m \cong m t$ which means there exists
a unit $u \in R$ such that $m=u m t$ and if $m t=r m$ for some $r \in R$, then r must be a unit Since $m t=u m t^{2}=\left(u t^{2}\right) m$ we can conclude that $t(x)$ is a unit in R and in $R[x]$ Thus, g is very strongly irreducible

We have seen that a direct product of rings with a particular type of atomicity does not necessarily possess the same form of atomicity In fact, this direct product may not have any form of atomicty What happens when we take a direct product of rings with a particular MCD property? Is it still an MCD ring? Do we have to bound the indexing set to retain any level of the MCD property?

Theorem 511 Let $\left\{R_{\alpha}\right\}_{\alpha \in \Lambda}$ be a family of rengs and let $R=\prod_{\alpha \in \Lambda} R_{\alpha}$ Then R is an $M C D$ ring if and only of each R_{α} is an $M C D$ ring R is an SMCD ring if and only of each R_{α} is an SMCD ring R is a VSMCD ring of and only of each R_{α} is a VSMCD ring

Proof The proofs for each of the three statements are nearly identical so we will prove only the first statement

Let $R=\prod_{\alpha \in \Lambda} R_{\alpha}$ be an MCD ring and let $S_{j}=\left\{s_{1}, s_{2}, \quad, s_{n}\right\}$ be a finite set in R_{\jmath} for some $\jmath \in \Lambda$ Let $\widehat{s_{\imath}}=\left(x_{\alpha}\right)_{\alpha \in \Lambda}$ where $x_{\alpha}=s_{\imath}$ if $\alpha=\jmath$ and $x_{\alpha}=0$ if $\alpha \neq \jmath$ Consider the set $\widehat{S_{j}}=\left\{\widehat{s_{1}}, \widehat{s_{2}}, \widehat{,} \widehat{s_{n}}\right\}$ in R Note that $\widehat{S_{j}}$ has an MCD in R, call it $m=\left(m_{\alpha}\right)_{\alpha \in \Lambda}$ We now have that $m_{\jmath} \mid S_{j}$ so we assume that $c \mid S_{j}$ and $m_{\jmath} \mid c$ for some $c \in R_{\jmath}$ If $m_{c}=\left(y_{\alpha}\right)_{\alpha \in \Lambda}$ where $y_{\alpha}=m_{\alpha}$ If $\alpha \neq \jmath$ and $y_{\alpha}=c$ if $\alpha=\jmath$, then m_{c} is a common divisor of $\widehat{S_{j}}$ with $m \mid m_{c}$ Thus, $m \sim m_{c}$ so $m_{j} \sim c$ and we have that m_{j} is an MCD of S_{j} giving us that R_{j} is an MCD ring

Let $R=\prod_{\alpha \in \Lambda} R_{\alpha}$ where each R_{α} is an MCD ring Consider the set $S=$ $\left\{s_{1}, s_{2}, \quad, s_{n}\right\}$ in R where each $s_{\imath}=\left\{x_{\imath, \alpha}\right\}_{\alpha \in \Lambda}$ Now look at the set $S_{\alpha}=\left(x_{1, \alpha}, x_{2, \alpha}, \quad, x_{n, \alpha}\right)$ in R_{α} This set has an MCD in R_{α} call it m_{α} We wish to show that $m=\left(m_{\alpha}\right)_{\alpha \in \Lambda}$ is an MCD of S Clearly, $m \mid S$ so we now assume that $c \mid S$ and $m \mid c$ for some
$\left.c=c_{\alpha}\right)_{\alpha \in \Lambda}$ in R This means that $c_{\alpha} \mid S_{\alpha}$ and $m_{\alpha} \mid c_{\alpha}$ Thus, $m_{\alpha} \sim c_{\alpha}$ and $m \sim c$

In Chapter 3, we found nice ways of generating large classes of rings with the varıous forms of atomicity We would like to also generate large classes of rings that possess the various levels of the MCD property

Theorem 512 If R is a PIR, then R is an $M C D$ ring If R is a SPIR, then R is a VSMCD ring

Proof Let R be a PIR and let $S \subseteq R$ be a finte set Since R is a PIR, we know that the ideal (S) is principally generated We will say $(S)=(d)$ This means that d is a common divisor of S Now assume that x is another common divisor of S such that $d \mid x$ We now have $S \subseteq(x)$ and $x \in(d)$ That $1 \mathrm{~s}, S=(d) \subseteq(x)$ and we have $(x)=(d), 1 \mathrm{e} \quad x \sim d$ and d is an MCD of S

Now we will let R be a SPIR with maximal ideal M and $S \subseteq R$ be a finite set We know that if $(S)=(d)$, then d is an MCD of S Now let c be a common divisor of S such that $d \mid c$ This means that $d \sim c$ If $d=0$, then $(d)=(0)=(c)$ so we have that $c=0$ and $d \cong c$ If d is a unit, then c is a unit and we have that $d \cong c$ So we will assume that c and d are nonzero, nonumits where $d=c x$ for some $x \in R$ Since R is a SPIR, if $x \in M$ then $c x=0=d$, a contradiction So $x \notin M$ which means that x is a unit Thus, $d \cong c$ and d is a VSMCD of S

Theorem 513 If R is p-atomic, then R is a VSMCD ring
Proof If R is p-atomı, then $R=\prod_{\imath=1}^{n} R_{\imath}$ where each R_{\imath} is either a UFD or a SPIR This means that each R_{\imath} is a VSMCD ring which gives us that R is a VSMCD ring

A rıng R is called présımplıfiable if $x=x y$ imphes that either $x=0$ or y is a unit [1] Notice that any domain is présımplifiable For rings with zero divisors, the
ring $R=\mathbb{Z}_{9}$ is présimplifiable Since R is very strongly atomic, we know that $x \cong x$ for all $x \in R$ so if we have $x=x y$, etther $x=0$ or y is a unit The ring \mathbb{Z}_{6} is not preesimplifiable We know that $2=24$ where $2 \neq 0$ and 4 is not a unit Theorem 514 If R is a présimplifiable $M C D$ ring, then R is a VSMCD ring

Proof Let S be a finte set in R and let m be an MCD of S Now assume that c is a common divisor of S where $m \mid c$ This means that $m \sim c$ That is, $m=c d$ and $c=m k$ for some $d, k \in R$ So we now have that $m=m(k d)$ If $m=0$, then $c=0$ and we have that $m \cong c$ If $m \neq 0$, then we have that $k d$ is a unit in R or, more importantly, k and d are each units in R Thus, $m \cong c$ and every finite set in R has a VSMCD

We have different levels of atomicity and different levels of MCD rings all influenced by the three forms of associate elements If a ring is some form of atomic and has some level of the MCD property, then how does its MCD level relate to its level of atomicity, if at all?

Theorem 515 Let R be an atomic ring
1 If R is an VSMCD ring, then R is very strongly atomic
2 If R be an SMCD ring, then R is strongly atomic
Proof 1 Let α be irreducible in R and consider the set $S=\{\alpha\}$ in R It suffices to show that α is very strongly irreducible Since R is a VSMCD ring, S has a VSMCD call it m Notice that α is a common divisor of S and $m \mid \alpha$ This means that $m \cong \alpha$ and α is also a VSMCD of S

Now assume that $\alpha=r t$ for some $r, t \in R \quad$ Without loss of generality, we have that $\alpha \sim r$ That is, $r \mid S$ and $\alpha \mid r$ Thus, we have $\alpha \cong r$ and α is very strongly ırreducıble

2 Let α be irreducible in R and consider the set $S=\{\alpha\}$ in R It suffices to show that α is strongly irreducible Since R is a SMCD ring, S has an SMCD call it m Notice that α is a common divisor of S and $m \mid \alpha$ This means that $m \alpha$ and α is also an SMCD of S

Now assume that $\alpha=r t$ for some $r, t \in R$ Without loss of generality, we have that $\alpha \sim r$ That is, $r \mid S$ and $\alpha \mid r$ Thus, we have αr and α is strongly ırreducıble

We would also lhke to generalize Theorem 43 However, the proof for this theorem relies heavily on degree arguments, a luxury we do not have when dealng with nondomams

The research of factorization properties in rings with zero divisors is limited and there are several cases where we find many different theories surrounding a single topic The idea of factoring an element has taken on two different flavors We may factor an element in a nondomain just as we would factor an element in a domain Alternatively, we may use an idea called u-factorization which separates an element's factors into relevant and irrelevant factors When using the u-factorizations, it is only the relevant factors that are examined The research on MCD domans/rings has spawned very hittle published works Our final chapter will provide a sampling of interesting unsolved questions

CHAPTER 6. FUTURE RESEARCH IDEAS

In 1993, Roitman states a conjecture that is a variation of Theorem 41
Conjecture 51 [7] Let R be a doman The following are equivalent
$1 R[x]$ is atomic
$2 R[x, y]$ is atomic
$3 R$ is an atomic MCD domain
The proof of this conjecture comes down to verifying that given a set of elements in R, there exists an indecomposable polynomial in $R[x]$ whose coefficients are exactly the elements of the set It is important to point out that the some of the coefficients of the polynomial may be zero For example, if the set is $S=\{2,3,4\}$, then a polynomial of the form $f(x)=2 x^{6}+3 x^{2}+4$ would be acceptable

Rings with zero divisors do not always behave in predictable ways For example, we can use degree arguments when working with polynomial extensions of domains However, as we have seen this technique cannot necessarily be used for polynomial extensions of rings with zero divisors A ring is indecomposable if it contans no nontrivial idempotent elements In an indecomposable ring R, can every polynomal in $R[x]$ be written as a product of indecomposable polynomials? What characteristics must R have in order for each polynomial in $R[x]$ to be written as a product of indecomposable polynomials? We also know that if R is a doman, then if $R[x]$ is atomic we know that R must also be atomic What happens if R is not a domain, is it possible to find a ring R that is not atomic but its polynomial extension $R[x]$ is atomic?

Various aspects of MCD domains and the different flavors of MCD rings are also of great interest We wish to generalize more of Roitman's theorems or at least
portions of them We also wish to know if there is any relation between a ring being indecomposable and having some level of the MCD property

There is a wealth of research to be done mnolving MCD domans/rings and their various levels of atomicity For domans, we often look beyond atomicity and examine rings with properties such as unique factorization, bounded factorization, and finite factorization We wish to follow a similar path for rings with zero divisors To this end, some additional areas of interest are unique factorization in rings with zero divisors, bounded factorization in rings with zero divisors, and u-factorizations

REFERENCES

[1] D D Anderson and Silvia Valdes-Leon, Factorization in Commutatıve Rings With Zero Divisors, Rocky Mountain Journal of Mathematics 26 (1996), 439-480
[2] D D Anderson, D F Anderson, and M Zafrullah, Factorization in Integral Domans, Journal of Pure and Applied Algebra 69 (1990), 1-19
[3] Carl B Boyer, Revised by U C Merzbach, A Hestory of Mathematıcs 2nd ed, John Wiley \& Sons, Inc , 1991
[4] D S Dummit and R M Foote, Abstract Algebra Third Edıtıon, John Wiley \& Sons, Inc 2004
[5] Howard Eves, An Introduction to the History of Mathematics 6th ed, Saunders College Publishing, 1992
[6] T W Hungerford, Algebra, Sprıng-Verlag New York Inc , 1974
[7] Moshe Roitman, Polynomial Extensions of Atomic Domains, Journal of Pure and Applued Algebra 87 (1993), 187-199

APPENDIX A. GLOSSARY

ACCP Consider an ascending chain of principal ideals $I_{1} \subseteq I_{2} \subseteq$ in R If there exists an $N \in \mathbb{N}$ such that for every $\jmath, k>N$ we have $I_{\jmath}=I_{k}$ then we say that R satisfies the ascendmg chain condition on principal ideals (ACCP)

Associate Elements Let a and b be elements of a ring We say that a and b are associates if $a \mid b$ and $b \mid a$

Associate Elements (Domain) Let D be an integral domain and $a, b \in D$ The following statements are equivalent
$1 a$ and b are associates
$2 a \mid b$ and $b \mid a$
3 There exists a unit $u \in D$ such that $a=u b$
4 If $a|b, b| a$ and whenever $a=b c$ with $a \neq 0$, then c must be a unit in D
Atomic Domain A doman is atomic if every nonzero, nonunit can be written as a finite product of irreducibles

Atomic Ring A ring R is atomic if every nonzero, nonunit can be written as a finite product of irreducibles

Commutative Ring A ring R is called commutative if for each $a, b \in R$ we have that $a b=b a$ If R contains an element 1_{R} such that $a 1_{R}=1_{R} a$ for each $a \in R$, then R is said to be a ring with identity

Ideal- Let R be a commutative ring A subset $I \subseteq R$ is an ideal of R if I is itself a ring and if for each $x \in I$ and each $r \in R$, the element $r x$ is an element of I Indecomposable Polynomial Let R be a ring A polynomial $f \in R[x]$ is said to be indecomposable if whenever $f=g h$ for some $g, h \in R[x]$, we have that ether $g \in R$ or $h \in R$

Indecomposable Ring A ring is indecomposable if it contans no nontrivial idempotent elements

Irreducible Let a be a nonumit element of a ring We say that a is irreducible if $a=b c$ imples that $a \sim b$ or $a \sim c$

Irreducible (Domain) An irreducible in a domam is an element x such that whenever $x=y z$ then x is associate to ether y or z

M-Atomic Ring A ring R is m -atomic if every nonzero, nonumit can be written as a finite product of m-irreducibles

M-Irreducible Let a be a nonunit element of a ring We say that a is m-irreducible If (a) is maximal among proper principal ideals

Maximal Common Divisor Given a set S in a ring R, we say m is a maximal common divisor (MCD) of S if m has the following two properties
$1 m$ divides every element in S and
2 if n is another common divisor of the elements of S such that $m \mid n$, then $m \sim n$
Maximal Common Divisor (Domain) Given a finite, nonempty set S in a domain D, we say $m \in R$ is a maximal common divisor (MCD) of S if m divides each element of S and if n is another element in R that divides each element of S with $m \mid n$, then m and n are associates

Maximal Ideal Let M be an ideal in a commutative ring R If $M \subseteq I$ for some nontrivial ideal $I \subseteq R$ only when $M=I$, then M is called a maximal ideal of R

MCD See Maximal Common Divisor
MCD Domain A domain in which every finite set has an MCD is called an MCD domain

MCD Ring R is an MCD ring if every finite set in R has an MCD
Nilpotent Let R be a commutative ring We say that $a \in R$ is a milpotent element if $a^{n}=0$ for some $n \in \mathbb{N}$ We say that the ideal $I \subseteq R$ is nulpotent if $I^{n}=0$ for some
$n \in \mathbb{N}$
Noetherian ring A ring is called Noetherian if every ideal in the ring is finitely generated
$\underline{\text { P-Atomic Ring A ring } R \text { is p-atomic if every nonzero, nonunit can be written as }}$ a finite product of primes

PID See Prıncipal Ideal Doman
PIR See Principal Ideal Ring
Présımplıfiable A rıng R is called présimplifiable if $x=x y$ imples that either $x=0$ or y is a unit in R

Prımary Ideal An ideal I of a rıng R is prımary of given $a b \in I$, then etther $a \in I$ or $b^{n} \in I$ for some $n \in \mathbb{N}$

Prime Element Let a be an element of a ring We say that a is prime if (a) is prime ideal

Prime Ideal An ideal P is called a prime ideal of a ring R if whenever $I J \subseteq P$ for some ideals $I, J \in R$ we have that ether $I \subseteq P$ or $J \subseteq P$

Principal Ideal An ideal I of a ring R is called a principal ideal if it generated by a single element of R

Principal Ideal Domain If every ideal of a commutative domain D is a principal ideal, then D is called a principal ideal doman (PID)

Principal Ideal Ring If every ideal of a commutative ring R is a principal ideal, then R is called a principal ideal ring (PIR)

Radical Ideal An ideal I of a ring R is called a radical ideal if whenever $x^{n} \in I$ then $x \in I$ If $J \subseteq R$ is an ideal of R, then the radical of J, written $\operatorname{rad}(J)$ is the set $\left\{x \in R \mid x^{n} \in J\right.$ for some $\left.n \in \mathbb{N}\right\}$
$\underline{\text { Regular Let } R \text { be a commutative ring An element } r \in R \text { is called regular if } r s=0}$ only when $s=0$

Ring A ring R is a nonempty set with two binary operations denoted + and $*$ with the following three properties
$1(R,+)$ is an abelian group
$2(R, *)$ is associative
$3 a(b+c)=a b+a c$ and $(a+b) c=a c+b c$ for every $a, b, c \in R$
SMCD See Strong Maximal Common Divisor
SMCD Ring A ring R is an SMCD ring if every finite set in R has an SMCD
Special Principal Ideal Ring A principal ideal ring (PIR) is called a special prıncipal ideal ring (SPIR) if it has only one proper prime ideal P and $P^{2}=0$

SPIR See Special Principal Ideal Ring
Strong Associate Elements Let a and b be elements of a ring Then a and b are strong associates if there exists a unit u in the ring such that $a=u b$

Strong Irreducible Let a be a nonunit element of a ring We say that a is strongly irreducible of $a=b c$ implies that $a \approx b$ or $a \approx c$

Strong Maximal Common Divisor Given a set S in a ring R, m is a strong maximal common divisor (SMCD) of S if m has the following two properties

1 if m divides every element in S and
2 if n is another common divisor of the elements of S such that $m \mid n$, then $m \approx n$
Strongly Atomic Ring A ring R is strongly atomic if every nonzero, nonunit can be written as a finite product of strong irreducibles

Very Strong Associate Elements Let a and b be elements of a ring Then a and b are very strong associates of ether $a=b=0$ or whenever $a=b c$ we have that c must be a unit in the ring

Very Strong Irreducible Let a be a nonunit element of a ring We say that a is very strongly irreducıble if $a=b c$ imphes that $a \cong b$ or $a \cong c$

Very Strong Maximal Common Divisor Given a set S in a ring R, m is a very strong maximal common divisor (VSMCD) of S if m has the following two properties

1 if m divides every element in S and
2 if n is another common divisor of the elements of S such that $m \mid n$, then $m \cong n$
Very Strongly Atomic Ring A ring R is very strongly atomic if every nonzero, nonunit can be written as a finite product of very strong irreducibles

VSMCD See Very Strong Maximal Common Divisor
VSMCD Ring A ring R is a VSMCD ring if every finte set in R has a VSMCD
Zero Divisor An element a of a ring R is called a zero divisor if $a b=0$ for some nonzero $b \in R$

