
COMPARISON OF RNN, LSTM AND GRU ON SPEECH RECOGNITION DATA

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Apeksha Nagesh Shewalkar

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

October 2018

Fargo, North Dakota

North Dakota State University

Graduate School

Title

COMPARION OF RNN, LSTM AND GRU ON SPEECH

RECOGNITION DATA

 By

Apeksha Nagesh Shewalkar

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Dr. Simone Ludwig

 Chair

Dr. Saeed Salem

Dr. Maria Alfonseca-Cubero

 Approved:

 October 23, 2018 Dr. Kendall Nygard

 Date Department Chair

iii

ABSTRACT

 Deep Learning [DL] provides an efficient way to train Deep Neural Networks [DNN].

DDNs when used for end-to-end Automatic Speech Recognition [ASR] tasks, could produce more

accurate results compared to traditional ASR. Normal feedforward neural networks are not suitable

for speech data as they cannot persist past information. Whereas Recurrent Neural Networks

[RNNs] can persist past information and handle temporal dependencies. For this project, three

recurrent networks, standard RNN, Long Short-Term Memory [LSTM] networks and Gated

Recurrent Unit [GRU] networks are evaluated in order to compare their performance on speech

data. The data set used for the experiments is a reduced version of TED-LIUM speech data.

According to the experiments and their evaluation, LSTM performed best among all other

networks with a good word error rate at the same time GRU also achieved results close to those of

LSTM in less time.

iv

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude to my research advisor, Dr. Simone

Ludwig at North Dakota State University for trusting me and giving me the opportunity of research

in this new area on Deep Learning and Recurrent Neural Networks. I have learnt a lot in this whole

process. Her indispensable guidance and encouragement during the research and execution of

experiments made this paper possible.

I wish to express my gratitude to Guy Hokanson, System Administrator in Computer

Science department for helping with the GPU machine issues while running the long runs. I also

like to thank you NVIDIA Corporation for the support.

Lastly, I wish to thank my parents and to my spouse for their continuous support, faith and

encouragement throughout my master studies.

v

DEDICATION

I would like to dedicate this paper to the beginners who are interested in massively growing

Machine Learning field.

vi

TABLE OF CONTENTS

ABSTRACT ……………………………………………………………………………………. iii

ACKNOWLEDGEMENTS ……………………………………………………………………...iv

DEDICATION …………………………………………………………………………………... v

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS .. ix

1. INTRODUCTION ... 1

2. RELATED WORK .. 4

3. RECURRENT NEURAL NETWORKS ... 8

3.1. Recurrent Neural Network (RNN) ... 8

3.2. Long Short-Term Memory (LSTM) Network .. 9

3.3. Gated Recurrent Unit (GRU) ... 11

4. EXPERIMENT ARCHITECTURE .. 13

5. EXPERIMENTS AND RESULTS.. 18

5.1. Data Set .. 18

5.2. Evaluation Measures .. 18

5.3. Hyperparameter Setup .. 19

5.4. Results .. 20

6. CONCLUSION ... 24

REFERENCES ... 25

vii

LIST OF TABLES

Table Page

1. 500 nodes layer architecture results .. 20

2. 1000 nodes layer architecture results .. 21

viii

LIST OF FIGURES

Figure Page

1. Basic loop structure in RNN [8] ... 8

2. LSTM cell with four interacting layers [8] ... 9

3. Gated Recurrent Unit (GRU) single cell structure [11] .. 11

4. Pre-processing of a small window of “Hello World” raw audio waveform to

corresponding one frame of spectrogram [37] ... 13

5. Full spectrogram from raw audio waveform with one frame showed in zoom [37] 14

6. The RNN architecture with speech spectrogram as an initial input and five hidden layers 15

7. WER values in percentage for all three models, RNN, LSTM and GRU considering 500

nodes and 1000 nodes layer architecture. ... 21

8. WER values in percentage for each epoch for three models with 1000 nodes 22

9. Running time of three models in days with 500 nodes and 1000 nodes layer architecture. 23

ix

LIST OF ABBREVIATIONS

DL ..………………………………………Deep Learning

DNN ...………………………………Deep Neural Network

ASR ………………………………………….…………………... Automatic Speech Recognition

RNN…………………………………………………………………... Recurrent Neural Network

LSTM ………………………………………………………………… Long Short-Term Memory

GRU ……………………………………………………………………...… Gated Recurrent Unit

GPU ……………………………………………………………………. Graphics Processing Unit

WER ………………………………………………………………...…………... Word Error Rate

CNN ………………………………………………………..……. Convolutional Neural Network

DBN …………………………………………………………...…………… Deep Belief Network

CTC …………………………………………………….... Connectionist Temporal Classification

GMMs ……………………………………………...…………………. Gaussian Mixture Models

HMMs …………………………………………...………………………. Hidden Marcov Models

MAP …………………………………………...………………………… Maximum-A-Posteriori

NLP …………………………………………...…………………… Natural Language Processing

PTB ……………………………………………...………………………………. Penn Tree Bank

CFL ……………………………………………..……………………...... Context Free Language

CSL ………………………….. Context Sensitive Language

FFT ……………………………………………..………………………... Fast Fourier Transform

ReLu ………………………………………..……………………………… Rectified Linear Unit

BRNNs ……………………………………………….. Bidirectional Recurrent Neural Networks

1

1. INTRODUCTION

Deep Learning is a subset of Machine Learning. One of the architectures of Deep Learning

is Deep Neural Networks [DNNs]. These DNNs are nothing but a class of Artificial Neural

Networks having many hidden layers as compared to standard neural networks, hence the name

Deep Neural Networks. Neural Networks have been around since many decades but being a large

network, DNNs require more data to analyze and hence more powerful computers. Thus, because

of the sudden rise of powerful computers using GPUs, deep learning has gained popularity in many

areas recently.

Deep Learning architectures have been applied in many areas such as machine translation,

language modeling, automatic speech recognition, image processing and many more. In the image

processing area, one of the architectures of deep learning, Convolutional Neural Network [CNN]

is used to recognize images. Specific hidden layers of CNN such as convolutional layers and

pooling layers help to encode certain image properties.

Deep Belief Network [DBN] auto-encoder is another type of deep learning architecture [1].

It is similar to DNN, having multiple hidden layers. It consists of connections between the layers

but no recurrent connection between units within each layer. DBN has been used for many tasks

like natural language understanding or building automated fault detection method for quality

inspections [2,3].

Deep learning is gaining huge popularity in the Automatic Speech Recognition area as

well. Particularly, the speech recognition is a combination of good acoustic and language model

[4,5]. Speech recognition data is continuous data and it can perform better if it has access to both

past as well as future information in order to predict the current information.

2

 Feedforward Neural Network is one of the basic architectures where the output of one layer

is forwarded to its next layer, thus it works in an unidirectional way. In a particular Feedforward

Neural Network architecture, the input layer is connected to the first hidden layer. Each hidden

layer is always connected to the next hidden layer and finally the last hidden layer to the output

layer. This manner of connecting layers is the reason why they are called ‘feedforward’. As there

is no connection to previous layers, feedforward neural networks cannot persist past information.

Therefore, it makes them less suitable for the speech recognition task. When using DNN

architectures for speech recognition tasks there are some problems to be considered like temporal

dependencies and different speaking rates [6], [7], [8]. Standard DNNs are unable to handle

different speaking rates; they can only work on fixed size acoustic frame windows.

Another architecture of deep learning is Recurrent Neural Networks [RNNs]. RNNs can

access past information because of its loop like structure. In RNN, recurrent connections can be

formed in three ways; between a neuron and a neuron itself or between a neuron and a neuron in

the same layer or with the neuron and a neuron in the previous layer of a neural network

architecture. These recurrent connections are formed with hidden and output neurons only and not

with input or bias neurons. This type of architecture makes it useful to persist past information in

order to predict current information and to deal with different speaking rates [8].

In the process of speech recognition, temporal dependencies play an important part as well.

Temporal dependency could be shorter. For example, “The birds are flying in the sky”. Whereas

in some cases temporal dependency could be longer too. For example, “I am born and brought up

in India… I speak fluent Hindi”. In the first example, in order to predict the word sky, we need no

further information as its obvious that the next word will be sky. However, in case of the second

example, the actual physical distance between first sentence and the current sentence where it’s

3

needed to predict the word Hindi is long. RNNs have the limitations of the vanishing/exploding

gradient problem, and thus, can work with short-term temporal dependencies only. Thus, the

speech recognition problems in which temporal dependencies are shorter, RNNs are very popularly

applied. Speech being a dynamic process, RNNs are better over feedforward neural networks [9].

Along with the short-term temporal dependency limitation, RNNs also need pre-segmented

training data and conversion of the output into labeled sequences by performing post-processing

on the data as well. This problem is solved by combining the Connectionist Temporal

Classification [CTC] method with RNN. The CTC method can be used to label data sequences in

the training process. It is being used and proven to be best in the case where the input and output

label lengths are different and are unknown [10]. Another limitation as mentioned before while

working with RNN is that RNNs cannot work efficiently with long-term dependencies in data

where the distance between the relevant information and the place where it is required is large.

RNNs cannot hold this information from long distance. This limitation has been overcome by a

class of RNN, Long Short-Term Memory [LSTM] networks. LSTM networks have special

memory cell structure, which is intended to hold long-term dependencies in data. And therefore,

makes them perfect for speech recognition tasks [9]. Much later, a decade and half after LSTM,

Gated Recurrent Unit [GRU] were introduced by Cho et al. [11] in 2014. They are similar to LSTM

networks but with a simpler architecture, suitable to work on long-term dependencies and

sequential data.

For this project, I have built three neural network models using standard RNN, LSTM and

GRU cell. These models are trained end-to-end using the CTC method for sequence labeling and

dropout as a regularization method. Afterwards, the performance of these three different models

is evaluated for the speech recognition task on a reduced version of the TED-LIUM dataset [12].

4

2. RELATED WORK

In early days, the speech recognition task was typically performed based on generative

models. These generative models are made up of Gaussian Mixture Models [GMMs], Hidden

Markov Models [HMMs] and Maximum-A-Posteriori [MAP] estimation [13], [14]. However,

restrictions to these models are; they need expert knowledge about the specific language at hand

and in case of Automatic Speech Recognition [ASR] using generative models it requires specific

pre-processing of the speech data [14]. Whereas, when ASR is performed end-to-end it does not

require expert knowledge as it dependents on a good acoustic and language model used [14]. Due

to the advancement in deep learning architectures more discriminative models (sequence to

sequence models) have been used for speech recognition tasks [13], [15]. For these discriminative

models, audio sequences act as an input and gives corresponding text transcript sequences as an

output [13].

Language modeling is the essential element to many Natural Language Processing [NLP]

tasks such as machine translation, and speech recognition. Given a particular sequence of words

the language model predicts the next word in the sequence with the help of a probabilistic model

built to assign probabilities to the words. RNNs have performed very sound in language modeling

tasks [16], [17]. The dataset used for performance evaluation here was the Penn Tree Bank [PTB]

data set [17].

RNNs and LSTMs have also been applied to sequence to sequence mapping problems.

Typically, in sequence-to-sequence models, two RNNs are used, one as an encoder for input

processing and another as a decoder at the output end to create output. In translation tasks [18],

multilayered RNN cells are used and the performance is evaluated using the WMT’14 data set on

English to French translation.

5

LSTMs and RNNs have performed excellent in speech recognition tasks. In case of

learning Context Free Language [CFL] and Context Sensitive Language [CSL], LSTM has been

proven to be an efficient choice over standard RNNs [19].

For training RNNs for the speech recognition task, sequence labeling is an important step.

HMM is used in the past with the RNN model for sequence labeling [20], [21]. However, currently

with DNN, the HMM-RNN framework does not perform efficiently. The Connectionist Temporal

Network [CTC] method has been introduced by Graves et al. [10] as an efficient solution for the

sequence labeling task. The CTC method could train RNN end-to-end without the need of pre-

segmentation of input training data or post processing of output. Further, it is the perfect choice

for problems where the input-output label alignment is not known. The Deep LSTM RNN model

was also build by Grave et al. [9] and trained with the CTC method end-to-end. The framework

was built for the speech recognition task and the performance was evaluated on the TIMIT phone

recognition data. They have achieved state-of-the-art results for this task.

RNN, LSTM and DNN were also applied to large vocabulary speech recognition problems

- the Google English Voice Search Task by Sak et al. [22]. Here in this problem they used a

modified version of a standard LSTM network architecture for optimal use of all model

parameters.

The TIMIT speech data set has been used in many experiments where different architecture

models like bidirectional LSTM, deep bidirectional LSTM, RNNs, and hybrid are built and

evaluated. The Phoneme Classification task is performed using bidirectional LSTMs in [23], [24].

Results of framewise phoneme classification shows that bidirectional LSTMs performed better

than unidirectional LSTMs as well as standards RNNs. Results of this experiment shows that

6

bidirectional architectures are a better choice in speech recognition tasks as relevant information

can be present in past or future.

The Hybrid bidirectional LSTM-HMM network has been used for the phoneme recognition

task and proved to be an improvement compared to unidirectional LSTM-HMM and traditional

HMM systems. Bidirectional LSTMs have been proven to be better than state-of-the-art HMM

based systems when experimented with the handwriting recognition task with both online and

offline data by Graves et al. [25].

Deep bidirectional LSTM architecture are also being used for the speech recognition task.

In particular, for the deep bidirectional LSTM network, each hidden layer is a combination of a

forward layer and a backward layer. Each hidden layer receives an input from the previous forward

and backward layer. They were combined with the CTC objective function to create an end-to-end

model for speech recognition in [26]. The performance was evaluated on the Wall Street Journal

corpus. This approach of using the objective function helped authors achieve very good results

with a word error rate even in the absence of a language model.

A hybrid system of deep bidirectional LSTM and HMM has also been experimented on the

speech recognition problem in [27]. The performance was evaluated on the TIMIT data set where

it outperformed the GMM deep network benchmark results obtained on the partial Wall Street

Journal corpus.

Hundreds of hours of speech data have been used in speech recognition tasks with a variety

of DNN architectures. This includes data like Wall Street Journal, Librispeech, Switchboard, TED-

LIUM, Fisher corpus [28], [29], [30]. TED-LIUM data in particular has been used for experiments

and tasks like for the audio augmentation task [30], for modeling probabilities of pronunciation

7

and silence [31], and also in automatic speech recognition with human correction task both at the

word level as well as the lattice level [32].

Cho et al. in 2014 [33] came up with a different version of recurrent neural networks known

as Gated Recurrent Unit [GRU]. Being a variation of RNN, they do not have the problem of the

vanishing/exploding gradient problem. The GRU architecture is similar to LSTM but simpler than

LSTM. Due to its simpler structure and fewer internal gates it is less expensive than LSTM. Both

LSTM and GRU networks have been used in speech recognition tasks and in polyphonic music

modeling [11], [34].

This MS research work is inspired from Hannun et al. [28]. They have used the standard

RNN model with one hidden layer of bidirectional RNN for the speech recognition task. Multiple

GPUs [Graphics Processing Unit] were used in parallel to speed up the experiments. However, I

have used a single GPU for my experiments to build and evaluate three different bidirectional

models RNN, LSTM and GRU in performing the speech recognition task.

8

3. RECURRENT NEURAL NETWORKS

In this section, three RNN models used for this experiment are explained in brief with the

help of the corresponding network architectures and equations.

3.1. Recurrent Neural Network (RNN)

Recurrent Neural Networks are the type of neural networks with loops which allow them

to persist information from the past in the network model.

Figure 1. Basic loop structure in RNN [8]

In Figure 1, the center square represents a neural network, which takes input 𝑥𝑡 at the

current time slice t and gives the value ℎ𝑡 as an output. The loop shown in the structure enables it

to use information from past time slices to produce output for the current time slice t. Thus, we

can say that the decision made at time slice t-1 affects the decision to be made at time slice t. So,

the response of the network to the new data depends on the current input as well as the output from

the recent past data. The RNN output calculation is based on iteratively calculating the output of

the following two equations:

ℎ𝑡 = 𝐻(𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) (1)

𝑦𝑡 = 𝑊ℎ𝑦 ℎ𝑡 + 𝑏𝑦 (2)

9

In Equations (1) and (2), 𝑥𝑡 is the input sequence at the current time slice t, 𝑦𝑡 is the output

sequence at time slice t, and h represents the hidden vector sequence from time slice 1 to T. W and

b represents weight matrices and biases, respectively. Lastly, an activation function used for the

hidden layer is H.

3.2. Long Short-Term Memory (LSTM) Network

LSTMs are a special type of recurrent neural networks with memory cells. These memory

cells are the essential part in handling long-term temporal dependencies in the data. To remember

information over a long period is their default behavior and they do not struggle to learn it. LSTMs

also deal with the vanishing/exploding gradient problem during backpropagation. Thus, they

overcome both of the shortcomings that RNNs face.

Figure 2. LSTM cell with four interacting layers [8]

Figure 2 shows the chain like structure of LSTM and a particular memory cell in LSTM.

Each big square block represents a memory cell here. The cell state is the vital part of LSTM and

is shown by the horizontal line going through the top of the cell in the figure. It runs from every

cell in the chain of the LSTM network. LSTM has the option to add or delete information from

this cell state. This operation is done by another structure in LSTM called gates. Gates are formed

by the sigmoid activation function (shown by 𝜎 in Figure 2) and pointwise multiplication operation

10

(shown by ⊗ in Figure 2). As shown in above diagram there are three gates which control

information to pass through the cell state. They are as follows:

• Forget gate – decides what information to throw away

• Input gate – decides what new information to save in the cell state

• Output gate – decides what information of the cell state to output

Originally, Hochreiter and Schmidhuber first came up with LSTM networks in 1997 [35].

Since then, there have been variations in the memory cell architecture by people for experimenting

in different application areas. The calculations in standard single LSTM cell can be stated by the

following equations:

 𝑓𝑡 = 𝜎 (𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (3)

𝑖𝑡 = 𝜎 (𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (4)

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝑐 . [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑐) (5)

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 (6)

𝑜𝑡 = 𝜎 (𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (7)

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛 ℎ (𝐶𝑡) (8)

where the activation functions used are sigmoid function (𝜎) and hyperbolic tangent function

(tan ℎ), 𝑖𝑡, 𝑓𝑡, 𝑜𝑡, 𝐶𝑡, 𝐶𝑡̃ represents the input gate, forget gate, output gate, memory cell content

and new memory cell content, respectively. As mentioned earlier, three gates are made up of the

sigmoid function, and the output of the particular cell is scaled up by using the hyperbolic tangent

function.

11

3.3. Gated Recurrent Unit (GRU)

GRUs are another type of RNNs with memory cells. They are similar to LSTM but with

simpler cell architecture. GRU also has gating mechanism to control the flow of information

through cell state but has fewer parameters and does not contain an output gate.

Figure 3. Gated Recurrent Unit (GRU) single cell structure [11]

Figure 3 shows a particular single cell structure of GRU. It consists of two gates, r is a reset

gate, and z an update gate. The reset gate regulates the flow of new input to the previous memory,

and the update gate determines how much of the previous memory to keep. If we compare GRU

with LSTM, the update gate is the combination of the input and forget gate and the previous hidden

state (h in Figure 3) is connected to the reset gate directly. Another difference is in the exposure

of memory content. As GRUs do not have an output gate, it exposes all of its memory content,

whereas in LSTM the memory content to be used or seen by other units/cells in the network is

managed by the output gate [11]. The following equations are used in the GRU output calculations:

𝑟𝑡 = 𝑠𝑖𝑔𝑚 (𝑊𝑥𝑟 𝑥𝑡 + 𝑊ℎ𝑟 ℎ𝑡−1 + 𝑏𝑟) (9)

 𝑧𝑡 = 𝑠𝑖𝑔𝑚 (𝑊𝑥𝑧 𝑥𝑡 + 𝑊ℎ𝑧 ℎ𝑡−1 + 𝑏𝑧) (10)

12

ℎ̃𝑡 = tanh(𝑊𝑥ℎ 𝑥𝑡 + 𝑊ℎℎ (𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ) (11)

ℎ𝑡 = 𝑧𝑡 ⊙ ℎ𝑡−1 + (1 − 𝑧𝑡) ⊙ ℎ̃𝑡 (12)

In Equations (9)-(12), 𝑥𝑡, ℎ𝑡, 𝑟𝑡, 𝑧𝑡 represent the input vector, output vector, reset gate and an

update gate, respectively. All W variables denote the weight matrices, and b are biases. Activation

functions used are the same as LSTM, sigmoid function (𝑠𝑖𝑔𝑚) and hyperbolic tangent (tan ℎ)

function.

The gating mechanism in both LSTM and GRU cells makes them the perfect choice for

long-term dependencies. Bahdanau et al. in [36] experimented with both of these cells for the

machine translation task. Their preliminary experiments proved both LSTM and GRU comparable

to each other. Chung et al. [11] performed the evaluation of LSTM and GRU cells on the sequence

modeling task using data sets like raw speech signal data and polyphonic music data. Although

both, LSTM and GRU networks, performed well they were unable to conclude which one was

better than other. These experiments motivated me to include GRU along with LSTM for their

performance evaluation in this research for the speech recognition task.

13

4. EXPERIMENT ARCHITECTURE

The architecture used for this experiment is based on the RNN architecture in [28]. For the

models in this experiment, preprocessed speech spectrogram is the input and it gives the

corresponding English plain text as an output. In the preprocessing step, a small window of raw

audio waveform (typically 20ms) is selected. Next, the Fast Fourier Transform [FFT] is calculated

and the magnitude (power) is taken to describe the frequency content in a particular window of the

audio waveform selected initially. This is how one frame is computed. After computing all frames

similarly, frames from adjacent windows are concatenated to form a spectrogram. This

spectrogram acts as input features for the RNN model architecture. This pre-processing step is

explained in visual format on the simple “Hello World” example in Figures 4 and 5.

Figure 4. Pre-processing of a small window of “Hello World” raw audio waveform to

corresponding one frame of spectrogram [37]

14

Figure 5. Full spectrogram from raw audio waveform with one frame showed in zoom [37]

Assume X = {(𝑥(1), 𝑦(1)), (𝑥(2), 𝑦(2)), ...} is a training set and a single utterance x with

label y is sampling from this training set X. In this training set, every utterance 𝑥(𝑖) is a time series

of 𝑇(𝑖) length. Here, the 𝑇(𝑖) time slice is a vector representation of audio features 𝑥𝑡
(𝑖)

 where t = 1

to 𝑇(𝑖). The ultimate aim is, given a transcription y, convert an input sequence x into a sequence

of character probabilities using 𝑦̂𝑡 = ℙ(𝑐𝑡|x) where 𝑐𝑡 ∈ {a, b, c, …, z, space, apostrophe, blank}.

The RNN model shown in Figure 6 is a deep network with five hidden layers, one input

and one output layer. The hidden units of layer l are written as ℎ(𝑙) and that makes ℎ(0) an input.

The output of the first layer (the input layer) at each time t is dependent on the spectrogram frame

𝑥𝑡 and the context of C frames on each side. For this experiment, context values C ∈ {5,7,9} are

considered. In the model shown in Figure 6, layer one, two and three are normal feedforward layers

and for each time t, they are calculated as follows:

ℎ𝑡
(𝑙)

= 𝑔(𝑊(𝑙) ℎ𝑡
(𝑙−1)

+ 𝑏(𝑙)) (13)

where, g(z) is the clipped rectified-linear unit [ReLu] activation function to calculate the output at

the respective hidden layers. 𝑊(𝑙), 𝑏(𝑙) are the weight matrix and bias vector used at layer l,

15

respectively. To overcome the vanishing gradient problem, ReLu is preferred instead of normal

sigmoid activation function.

Figure 6. The RNN architecture with speech spectrogram as an initial input and five hidden layers

 Standard RNN could persist information from the past only. In case of the speech

recognition task, speech training data is recorded all at once. Thus, in order to predict current data,

future as well as past data plays an important role here. For this purpose, Bidirectional Recurrent

Neural networks [BRNNs] are useful. Therefore, the next hidden layer (layer four) in the model is

16

a Bidirectional Recurrent layer which is made up of forward hidden sequence and backward hidden

sequence [9]. These two hidden sequence layers in BRNN, one forward hidden sequence ℎ(𝑓) and

one backward hidden sequence ℎ(𝑏) are calculated by following equations:

ℎ𝑡
(𝑓)

= 𝑔 (𝑊(4) ℎ𝑡
(3)

+ 𝑊𝑟
(𝑓)

 ℎ𝑡−1
(𝑓)

+ 𝑏(4)) (14)

ℎ𝑡
(𝑏)

= 𝑔(𝑊(4) ℎ𝑡
(3)

+ 𝑊𝑟
(𝑏)

 ℎ𝑡+1
(𝑏)

+ 𝑏(4)) (15)

In Equations (14) and (15), the forward hidden sequence is calculated sequentially from t =1 to t=

𝑇(𝑖) and the backward hidden sequence is calculated sequentially from t = 𝑇(𝑖) to t = 1 for the 𝑖𝑡ℎ

utterance. Once the bidirectional layer processes the data in both directions, it feed forward the

output to the next layer (layer five), which is again a normal feedforward layer. Layer five which

takes input from layer four can be calculated as:

 ℎ𝑡
(5)

= 𝑔(𝑊(5) ℎ𝑡
(4)

+ 𝑏(5)) (16)

where, ℎ𝑡
(4)

= ℎ𝑡
(𝑓)

+ ℎ𝑡
(𝑏)

 After hidden layer five, the last layer is the output layer. The standard softmax function at

this layer evaluates the predicted character probabilities in each time slice t and character k in the

alphabet. Equation (17) calculates these probabilities at the output layer:

ℎ𝑡,𝑘
(6)

= 𝑦̂𝑡,𝑘 = ℙ (𝑐𝑡 = 𝑘|𝑥) =
𝑒𝑥𝑝(𝑊𝑘

(6)
ℎ𝑡

(5)
+ 𝑏𝑘

(6)
)

∑ 𝑒𝑥𝑝(𝑊
𝑗
(6)

ℎ𝑡
(5)

+ 𝑏
𝑗
(6)

)𝑗

 (17)

where 𝑊𝑘
(6)

 and 𝑏𝑘
(6)

 are the 𝑘𝑡ℎ column in the weight matrix and the 𝑘𝑡ℎ bias, respectively. Once

the predicted character probabilities ℙ (𝑐𝑡 = 𝑘|𝑥) are computed, the next step is to calculate the

CTC loss [28] ℒ (𝑦̂, 𝑦) to measure the prediction error. When provided a network output, the CTC

loss function computes the error in the predicted output. This error is the negative log likelihood

of the target probability. The input for this CTC loss function is the output of the predicted

character probabilities for each time slice obtained from Equation (17). Once the CTC loss is

17

calculated, the corresponding loss gradient has to be calculated given the actual character sequence

y and the network outputs. Afterwards this loss is backpropagated from the output layer to the

weights in the network layer by layer. For this experiment, out of different backpropagation

algorithms available, the ADAM optimization algorithm [38] is used. The reason behind selecting

this algorithm is that it is very tolerant to the learning rate and also to other training parameters

which lead to less fine-tuning.

 In this project, experiments are performed on three models. The only difference between

three models is the kind of bidirectional recurrent layer used in layer four of the architecture

explained above. The first model, which is described above, uses a Bidirectional RNN layer. The

second and third model make use of the bidirectional LSTM layer and bidirectional GRU layer,

respectively. The formulation of these second and third model is similar to the first model.

18

5. EXPERIMENTS AND RESULTS

In this section, the speech data set used for the experiments, the evaluation measures and

lastly the results are discussed in detail.

5.1. Data Set

For these experiments, a subset of the TED-LIUM release 2 corpus [12], which is available

publicly is used. This is the second version of the TED-LIUM dataset with enhanced language

model. Rousseau et al. [4] were able to achieve more accurate results in terms of word error rate

[WER] compared to the older version (TED-LIUM release 1) of this data. The data set has filtered

data from the TED website with audio files and their corresponding transcriptions. This data is

specifically designed to train and evaluate acoustic models. For these experiments, I have reduced

the data from 34.3 GB to 11.7 GB. This reduced data set can be found at [39]. The data is already

separated in train, test and validation folders. The data has the following contents:

• 378 audio talks in NIST sphere format (SPH files)

• 378 corresponding transcripts (STM format files)

• Dictionary with pronunciations (152k entries)

• Language Model improved with selected monolingual data from WMT12 corpus [4]

5.2. Evaluation Measures

Normally, speech recognition task performance can be measured based on two different

parameters, the first is accuracy and the second is speed [40]. The accuracy based evaluation

measures are WER, loss, and mean edit distance.

Most research work done in the ASR area have used WER as their error measurement.

WER is derived from the Levenshtein distance [41] and is formulated by [42], [43]:

19

𝑊𝐸𝑅 = (
𝑆+𝐼+𝐷

𝑁
) × 100 (18)

where N denotes the number of total words present in the actual transcript, S, I, D are the number

of substitutions, number of insertions, and number of deletions, respectively. WER is taken as the

lower the WER value the better is the speech recognition [42], [43].

 The loss term is also mentioned as Expected Transcription Loss [26]. This expected

transcription loss function is given by:

 ℒ(𝑥) = ∑ 𝑃𝑟 (𝑦|𝑥) ℒ(𝑥, 𝑦)𝑦 (19)

where x is the input sequence given, 𝑃𝑟 (𝑦|𝑥) is the distribution over transcript sequence y given

by CTC, and ℒ(𝑥, 𝑦) is a transcription loss function.

 The edit distance is explained with the help of example below. Assume that 𝑑(𝐴, 𝐵) is the

normalized edit distance between two words or strings A and B [44]. Then, the mean edit distance

can be calculated by:

𝑑(𝐴, 𝐵) = min (
𝑊(𝑃)

𝑁
) (20)

where P denotes the editing path between A and B, W(P) is the total sum of weights of all edited

operations of editing path P, and N denotes the total number of edited operations (the total length

of editing path, P) [44].

5.3. Hyperparameter Setup

The hyperparameter values used while training the speech data in the experiment are stated

below:

• Total epochs = 10

• Training batch size = 16

• Testing batch size = 8

• Dropout rate = 30%

20

• Activation function = ReLu

• Total number of neurons in each hidden layer = 500 or 1000 (as specified)

• Backpropagation technique = ADAM Optimizer with:

• β1 = 0.9

• β2 = 0.999

• ϵ = 1e-8

• learning rate 𝛼 = 0.0001

5.4. Results

Experiments were ran using three models as explained earlier, standard RNN, LSTM and

GRU with two different configuration architectures. First architecture has 500 nodes in each

hidden layer whereas the second architecture has 1000 nodes in each hidden layer.

Table 1 shows the results of the three models each using 500 nodes architecture. The WER

is measured in percentage. RNN achieved 87.02% WER whereas LSTM and GRU achieved closer

values of WER 77.55% and 79.39%, respectively. As a part of the neural network optimization

the loss was measured. Loss values for RNN, LSTM and GRU are 186.61, 160.51 and 162.22,

respectively. We can say that the loss values show a similar trend as WER. Lastly, the mean edit

distance values are mentioned in the table out of which LSTM and GRU achieved better values of

0.3853 and 0.3939, respectively.

Table 1. 500 nodes layer architecture results

Model WER (%) Loss Mean edit distance

Standard RNN 87.02 186.61 0.4484

LSTM 77.55 160.51 0.3853

GRU 79.39 162.22 0.3939

21

Table 2 shows the results of the three models with 1000 nodes layer architecture. These

results show similar trends as with 500 nodes but with better results. In terms of WER, LSTM

achieved a value of 65.04 compared to the other two models. The loss values for RNN, LSTM and

GRU models are 164.60, 134.35 and 136.89, respectively. In terms of mean edit distance also

LSTM achieved the best result of 0.3222. As we can see, LSTM and GRU model achieved close

results in terms of all three measures, WER, loss, and mean edit distance.

Table 2. 1000 nodes layer architecture results

Model WER (%) Loss Mean edit distance

Standard RNN 78.66 164.60 0.3991

LSTM 65.04 134.35 0.3222

GRU 67.42 136.89 0.3308

Figure 7. WER values in percentage for all three models, RNN, LSTM and GRU considering 500

nodes and 1000 nodes layer architecture

22

Figure 7 shows the WER values for both the 500 nodes and the 1000 nodes architecture.

We can see that the LSTM achieved the lowest WER compared to the GRU and RNN models for

both architectures.

Figure 8. WER values in percentage for each epoch for three models with 1000 nodes

Figure 8 shows the WER values per epoch for all three models with the 1000 nodes layer

architecture. At the end of each epoch, the test data was applied to test the model obtained at the

end of each epoch and WER values were recorded. The pattern is the same as we observed so far.

LSTM has achieved lower a WER compared to other two (RNN and GRU) models. We can also

observe from the figure that the models started converging after Epoch 9 and the best WER values

were recorded at Epoch 9 as 78.43% for RNN 64.76% for LSTM and 67.34% for GRU model.

 If we observe the models in terms of running time, as shown in Figure 9, the RNN model

has the shortest running time in terms of days and it beats the other two models. However, the

WER values of LSTM and GRU are way better than RNN and we cannot compare RNN with

them. In case of the 500 nodes layer architecture, LSTM took more than two days and GRU model

took approximately 1.5 days. With the 1000 nodes layer architecture the values are more

23

significant. LSTM model ran for more than 7 days whereas GRU run was finished in 5 days and 5

hours.

Figure 9. Running time of three models in days with 500 nodes and 1000 nodes layer architecture

24

6. CONCLUSION

A simple feedforward neural network is not capable of handling reverse connections. They

cannot persist past information to make predictions at the current time which is important for tasks

like speech recognition. For this purpose, RNNs were introduced. RNNs have a loop like structure

and can persist short-term past information. Due to limitations of RNNs to the vanishing/exploding

gradient problem and not being able to work on long-term temporal dependencies in the data,

LSTMs were introduced which overcame these limitations with the help of memory cells in their

structure. Recently, GRU were also introduced which could be used to solve similar type of

problems such as LSTMs with simpler architecture.

This project evaluated these three networks, standard RNN, LSTM and GRU, and

compared their performances. The data set used for comparison was the reduced TED-LIUM

speech data. The networks were trained and evaluated with two architectures. The one with 500

nodes in each hidden layer and another with 1000 nodes in each hidden layer. WER, loss and mean

edit distance are the evaluation measures used for these experiments. While observing the results

it is obvious that there is a tradeoff between accuracy in the results and the run time of the model.

Though, LSTM achieved better results in all the runs, its run time is highest among all of the

models. We could see that the GRU values are also close to LSTM values with lesser run time.

Thus, the recommendation would be to use GRU cell neural network while working on smaller

data like in this case the reduced TED-LIUM data.

25

REFERENCES

1. “Deep Belief Network.” Wikipedia, Wikimedia Foundation,

en.wikipedia.org/wiki/Deep_belief_network.

2. R. Sarikaya, G. E. Hinton and A. Deoras, "Application of Deep Belief Networks for Natural

Language Understanding," in IEEE/ACM Transactions on Audio, Speech, and Language

Processing, vol. 22, no. 4, pp. 778-784, April 2014.

3. J. Sun, A. Steinecker, P. Glocker, Application of Deep Belief Networks for Precision

Mechanism Quality Inspection. In: Ratchev S. (eds) Precision Assembly Technologies and

Systems. IPAS 2014. IFIP Advances in Information and Communication Technology, vol

435. Springer, Berlin, Heidelberg, 2014.

4. A. Rousseau, P. Delglise, Y. Estve, Enhancing the TED-LIUM Corpus with Selected Data

for Language Modeling and More TED Talks. In LREC, 3935-3939, May 2014.

5. Y. Gaur, F. Metze, J. P. Bigham, Manipulating Word Lattices to Incorporate Human

Corrections, Interspeech 2016, 17th Annual Conference of the International Speech

Communication Association, San Francisco, CA, USA, September 2016.

6. E. Busseti, I. Osband, S. Wong, Deep Learning for Time Series Modeling, Seminar on

Collaborative Intelligence in the TU Kaiserslautern, Germany, 2012.

7. Deep Learning for Sequential Data - Part V: Handling Long Term Temporal Dependencies,

https://prateekvjoshi.com/2016/05/31/deeplearning-for-sequential-data-part-v-handling-long-

term-temporaldependencies/, last retrieved July 2017.

8. Understanding LSTM Networks, http://colah.github.io/posts/2015-08-Understanding-

LSTMs/, last retrieved July 2017.

https://prateekvjoshi.com/2016/05/31/deeplearning-for-sequential-data-part-v-handling-long-term-temporaldependencies/
https://prateekvjoshi.com/2016/05/31/deeplearning-for-sequential-data-part-v-handling-long-term-temporaldependencies/

26

9. A. Graves, A. R. Mohamed, G. Hinton, Speech recognition with deep recurrent neural

networks. In 2013 IEEE International Conference on Acoustics, speech and signal processing

(ICASSP), 6645-6649, 2013.

10. A. Graves, S. Fernndez, F. Gomez, J. Schmidhuber, Connectionist temporal classification:

labelling unsegmented sequence data with recurrent neural networks. In Proceedings of the

23rd international conference on Machine learning, 369-376, ACM, June 2006.

11. J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent neural

networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

12. TED-LIUM Corpus, http://www-lium.univ-lemans.fr/en/content/ted-lium-corpus, last

retrieved July 2017.

13. C. C. Chiu, D. Lawson, Y. Luo, G.Tucker, K. Swersky, I. Sutskever, N. Jaitly, An online

sequence-to-sequence model for noisy speech recognition, arXiv preprint arXiv:1706.06428,

2017.

14. T. Hori, S. Watanabe, Y. Zhang, W. Chan, Advances in Joint CTC-Attention based End-to-

End Speech Recognition with a Deep CNN.

15. W. Chan, N. Jaitly, Q. V. Le, O. Vinyals, Listen, attend and spell. arXiv preprint

arXiv:1508.01211, 2015.

16. T. Mikolov, Statistical language models based on neural networks, PhD thesis, Brno

University of Technology, 2012.

17. W. Zaremba, I. Sutskever, O. Vinyals, Recurrent neural network regularization. arXiv

preprint arXiv:1409.2329, 2014.

18. I. Sutskever, O. Vinyals, Q. V. Le, Sequence to sequence learning with neural networks. In

Advances in neural information processing systems, 3104-3112, 2014.

27

19. F. A. Gers, E. Schmidhuber, LSTM recurrent networks learn simple context-free and

context-sensitive languages. IEEE Transactions on Neural Networks, 12(6), 1333-1340,

2001.

20. O. Vinyals, S. V. Ravuri, D. Povey, Revisiting recurrent neural networks for robust ASR. In

2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

4085-4088, 2012.

21. A. L. Maas, Q. V. Le, T. M. O’Neil, O. Vinyals, P. Nguyen, A. Y. Ng, Recurrent neural

networks for noise reduction in robust ASR. In Thirteenth Annual Conference of the

International Speech Communication Association, 2012.

22. H. Sak, A. Senior, F. Beaufays, Long short-term memory based recurrent neural network

architectures for large vocabulary speech recognition. arXiv preprint arXiv:1402.1128, 2014.

23. A. Graves, J. Schmidhuber, Framewise phoneme classification with bidirectional LSTM and

other neural network architectures. Neural Networks, 18(5), 602-610, 2005.

24. A. Graves, S. Fernndez, J. Schmidhuber, Bidirectional LSTM Networks for Improved

Phoneme Classification and Recognition. In: Duch W., Kacprzyk J., Oja E., Zadrony S. (eds)

Artificial Neural Networks: Formal Models and Their Applications ICANN, Lecture Notes in

Computer Science, vol. 3697, Springer, Berlin, Heidelberg, 2005.

25. A. Graves, M. Liwicki, S. Fernndez, R. Bertolami, H. Bunke, J. Schmidhuber, A novel

connectionist system for unconstrained handwriting recognition, IEEE transactions on pattern

analysis and machine intelligence, 31(5), 855-868, 2009.

26. A. Graves, N. Jaitly, Towards end-to-end speech recognition with recurrent neural networks.

In Proceedings of the 31st International Conference on Machine Learning (ICML-14), 1764-

1772, 2014.

28

27. A. Graves, N. Jaitly, A. R. Mohamed, Hybrid speech recognition with deep bidirectional

LSTM. In 2013 IEEE Workshop on Automatic Speech Recognition and Understanding

(ASRU), 273-278, December 2013.

28. A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh,

S. Sengupta, A. Coates A. Y. Ng (2014). Deep speech: Scaling up end-to-end speech

recognition. arXiv preprint arXiv:1412.5567, 2014.

29. H. Xu, G. Chen, D. Povey, S. Khudanpur, Modeling phonetic context with non-random

forests for speech recognition. In Sixteenth Annual Conference of the International Speech

Communication Association, 2015.

30. T. Ko, V. Peddinti, D. Povey, S. Khudanpur, Audio augmentation for speech recognition. In

INTERSPEECH, 3586-3589, 2015.

31. G. Chen, H. Xu, M. Wu, D. Povey, S. Khudanpur, Pronunciation and silence probability

modeling for ASR. In Sixteenth Annual Conference of the International Speech

Communication Association, 2015.

32. Y. Gaur, F. Metze, J. P. Bigham, Manipulating Word Lattices to Incorporate Human

Corrections. In INTERSPEECH, 3062-3065, 2016.

33. K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, On the properties of neural

machine translation: Encoder-decoder approaches, Eighth Workshop on Syntax, Semantics

and Structure in Statistical Translation, 2014.

34. D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, Y. Bengio, End-toend attention-based

large vocabulary speech recognition. In 2016 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 4945-4949, March 2016.

29

35. S. Hochreiter, J. Schmidhuber, Long Short-Term Memory. Neural Comput. 9, 8, 1735-1780,

November 1997.

36. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align

and translate. Technical report, arXiv preprint arXiv:1409.0473, 2014.

37. A. Coates, and V. Rao. “Speech Recognition and Deep Learning.”

cs.stanford.edu/~acoates/ba_dls_speech2016.pdf.

38. D. Kingma, J. Ba, Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

39. Reduced TED-LIUM release 2 corpus (11.7 GB),

http://www.cs.ndsu.nodak.edu/_siludwig/data/TEDLIUM release2.zip, last retrieved July

2017.

40. Speech recognition performance, https://en.wikipedia.org/wiki/Speech

recognition#Performance, last retrieved July 2017.

41. Levenshtein distance, https://en.wikipedia.org/wiki/Levenshtein distance, last retrieved July

2017.

42. A. C. Morris, V. Maier, P. Green, From WER and RIL to MER and WIL: improved

evaluation measures for connected speech recognition. In Eighth International Conference on

Spoken Language Processing, 2004.

43. Word error rate, https://en.wikipedia.org/wiki/Word error rate, last retrieved July 2017.

44. A. Marzal, E. Vidal, Computation of normalized edit distance and applications, IEEE

transactions on pattern analysis and machine intelligence, 15(9), 926-932, 1993.

https://en.wikipedia.org/wiki/Speech
https://en.wikipedia.org/wiki/Levenshtein

