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ABSTRACT 

 Deep Learning [DL] provides an efficient way to train Deep Neural Networks [DNN]. 

DDNs when used for end-to-end Automatic Speech Recognition [ASR] tasks, could produce more 

accurate results compared to traditional ASR. Normal feedforward neural networks are not suitable 

for speech data as they cannot persist past information. Whereas Recurrent Neural Networks 

[RNNs] can persist past information and handle temporal dependencies. For this project, three 

recurrent networks, standard RNN, Long Short-Term Memory [LSTM] networks and Gated 

Recurrent Unit [GRU] networks are evaluated in order to compare their performance on speech 

data. The data set used for the experiments is a reduced version of TED-LIUM speech data. 

According to the experiments and their evaluation, LSTM performed best among all other 

networks with a good word error rate at the same time GRU also achieved results close to those of 

LSTM in less time.  
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1. INTRODUCTION 

Deep Learning is a subset of Machine Learning. One of the architectures of Deep Learning 

is Deep Neural Networks [DNNs]. These DNNs are nothing but a class of Artificial Neural 

Networks having many hidden layers as compared to standard neural networks, hence the name 

Deep Neural Networks. Neural Networks have been around since many decades but being a large 

network, DNNs require more data to analyze and hence more powerful computers. Thus, because 

of the sudden rise of powerful computers using GPUs, deep learning has gained popularity in many 

areas recently. 

Deep Learning architectures have been applied in many areas such as machine translation, 

language modeling, automatic speech recognition, image processing and many more. In the image 

processing area, one of the architectures of deep learning, Convolutional Neural Network [CNN] 

is used to recognize images. Specific hidden layers of CNN such as convolutional layers and 

pooling layers help to encode certain image properties.   

Deep Belief Network [DBN] auto-encoder is another type of deep learning architecture [1]. 

It is similar to DNN, having multiple hidden layers. It consists of connections between the layers 

but no recurrent connection between units within each layer. DBN has been used for many tasks 

like natural language understanding or building automated fault detection method for quality 

inspections [2,3].  

Deep learning is gaining huge popularity in the Automatic Speech Recognition area as 

well. Particularly, the speech recognition is a combination of good acoustic and language model 

[4,5]. Speech recognition data is continuous data and it can perform better if it has access to both 

past as well as future information in order to predict the current information. 
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 Feedforward Neural Network is one of the basic architectures where the output of one layer 

is forwarded to its next layer, thus it works in an unidirectional way. In a particular Feedforward 

Neural Network architecture, the input layer is connected to the first hidden layer. Each hidden 

layer is always connected to the next hidden layer and finally the last hidden layer to the output 

layer. This manner of connecting layers is the reason why they are called ‘feedforward’. As there 

is no connection to previous layers, feedforward neural networks cannot persist past information. 

Therefore, it makes them less suitable for the speech recognition task. When using DNN 

architectures for speech recognition tasks there are some problems to be considered like temporal 

dependencies and different speaking rates [6], [7], [8]. Standard DNNs are unable to handle 

different speaking rates; they can only work on fixed size acoustic frame windows.  

Another architecture of deep learning is Recurrent Neural Networks [RNNs]. RNNs can 

access past information because of its loop like structure. In RNN, recurrent connections can be 

formed in three ways; between a neuron and a neuron itself or between a neuron and a neuron in 

the same layer or with the neuron and a neuron in the previous layer of a neural network 

architecture. These recurrent connections are formed with hidden and output neurons only and not 

with input or bias neurons. This type of architecture makes it useful to persist past information in 

order to predict current information and to deal with different speaking rates [8].  

In the process of speech recognition, temporal dependencies play an important part as well. 

Temporal dependency could be shorter. For example, “The birds are flying in the sky”. Whereas 

in some cases temporal dependency could be longer too. For example, “I am born and brought up 

in India… I speak fluent Hindi”. In the first example, in order to predict the word sky, we need no 

further information as its obvious that the next word will be sky. However, in case of the second 

example, the actual physical distance between first sentence and the current sentence where it’s 
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needed to predict the word Hindi is long. RNNs have the limitations of the vanishing/exploding 

gradient problem, and thus, can work with short-term temporal dependencies only. Thus, the 

speech recognition problems in which temporal dependencies are shorter, RNNs are very popularly 

applied. Speech being a dynamic process, RNNs are better over feedforward neural networks [9]. 

Along with the short-term temporal dependency limitation, RNNs also need pre-segmented 

training data and conversion of the output into labeled sequences by performing post-processing 

on the data as well. This problem is solved by combining the Connectionist Temporal 

Classification [CTC] method with RNN. The CTC method can be used to label data sequences in 

the training process. It is being used and proven to be best in the case where the input and output 

label lengths are different and are unknown [10]. Another limitation as mentioned before while 

working with RNN is that RNNs cannot work efficiently with long-term dependencies in data 

where the distance between the relevant information and the place where it is required is large. 

RNNs cannot hold this information from long distance. This limitation has been overcome by a 

class of RNN, Long Short-Term Memory [LSTM] networks. LSTM networks have special 

memory cell structure, which is intended to hold long-term dependencies in data. And therefore, 

makes them perfect for speech recognition tasks [9]. Much later, a decade and half after LSTM, 

Gated Recurrent Unit [GRU] were introduced by Cho et al. [11] in 2014. They are similar to LSTM 

networks but with a simpler architecture, suitable to work on long-term dependencies and 

sequential data. 

For this project, I have built three neural network models using standard RNN, LSTM and 

GRU cell. These models are trained end-to-end using the CTC method for sequence labeling and 

dropout as a regularization method. Afterwards, the performance of these three different models 

is evaluated for the speech recognition task on a reduced version of the TED-LIUM dataset [12].  
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2. RELATED WORK 

In early days, the speech recognition task was typically performed based on generative 

models. These generative models are made up of Gaussian Mixture Models [GMMs], Hidden 

Markov Models [HMMs] and Maximum-A-Posteriori [MAP] estimation [13], [14]. However, 

restrictions to these models are; they need expert knowledge about the specific language at hand 

and in case of Automatic Speech Recognition [ASR] using generative models it requires specific 

pre-processing of the speech data [14]. Whereas, when ASR is performed end-to-end it does not 

require expert knowledge as it dependents on a good acoustic and language model used [14]. Due 

to the advancement in deep learning architectures more discriminative models (sequence to 

sequence models) have been used for speech recognition tasks [13], [15]. For these discriminative 

models, audio sequences act as an input and gives corresponding text transcript sequences as an 

output [13]. 

Language modeling is the essential element to many Natural Language Processing [NLP] 

tasks such as machine translation, and speech recognition. Given a particular sequence of words 

the language model predicts the next word in the sequence with the help of a probabilistic model 

built to assign probabilities to the words. RNNs have performed very sound in language modeling 

tasks [16], [17]. The dataset used for performance evaluation here was the Penn Tree Bank [PTB] 

data set [17]. 

RNNs and LSTMs have also been applied to sequence to sequence mapping problems. 

Typically, in sequence-to-sequence models, two RNNs are used, one as an encoder for input 

processing and another as a decoder at the output end to create output. In translation tasks [18], 

multilayered RNN cells are used and the performance is evaluated using the WMT’14 data set on 

English to French translation. 
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LSTMs and RNNs have performed excellent in speech recognition tasks. In case of 

learning Context Free Language [CFL] and Context Sensitive Language [CSL], LSTM has been 

proven to be an efficient choice over standard RNNs [19].  

For training RNNs for the speech recognition task, sequence labeling is an important step. 

HMM is used in the past with the RNN model for sequence labeling [20], [21]. However, currently 

with DNN, the HMM-RNN framework does not perform efficiently. The Connectionist Temporal 

Network [CTC] method has been introduced by Graves et al. [10] as an efficient solution for the 

sequence labeling task. The CTC method could train RNN end-to-end without the need of pre-

segmentation of input training data or post processing of output. Further, it is the perfect choice 

for problems where the input-output label alignment is not known. The Deep LSTM RNN model 

was also build by Grave et al. [9] and trained with the CTC method end-to-end. The framework 

was built for the speech recognition task and the performance was evaluated on the TIMIT phone 

recognition data. They have achieved state-of-the-art results for this task. 

RNN, LSTM and DNN were also applied to large vocabulary speech recognition problems 

- the Google English Voice Search Task by Sak et al. [22]. Here in this problem they used a 

modified version of a standard LSTM network architecture for optimal use of all model 

parameters. 

The TIMIT speech data set has been used in many experiments where different architecture 

models like bidirectional LSTM, deep bidirectional LSTM, RNNs, and hybrid are built and 

evaluated. The Phoneme Classification task is performed using bidirectional LSTMs in [23], [24]. 

Results of framewise phoneme classification shows that bidirectional LSTMs performed better 

than unidirectional LSTMs as well as standards RNNs. Results of this experiment shows that 
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bidirectional architectures are a better choice in speech recognition tasks as relevant information 

can be present in past or future.  

The Hybrid bidirectional LSTM-HMM network has been used for the phoneme recognition 

task and proved to be an improvement compared to unidirectional LSTM-HMM and traditional 

HMM systems. Bidirectional LSTMs have been proven to be better than state-of-the-art HMM 

based systems when experimented with the handwriting recognition task with both online and 

offline data by Graves et al. [25].  

Deep bidirectional LSTM architecture are also being used for the speech recognition task. 

In particular, for the deep bidirectional LSTM network, each hidden layer is a combination of a 

forward layer and a backward layer. Each hidden layer receives an input from the previous forward 

and backward layer. They were combined with the CTC objective function to create an end-to-end 

model for speech recognition in [26]. The performance was evaluated on the Wall Street Journal 

corpus. This approach of using the objective function helped authors achieve very good results 

with a word error rate even in the absence of a language model. 

A hybrid system of deep bidirectional LSTM and HMM has also been experimented on the 

speech recognition problem in [27]. The performance was evaluated on the TIMIT data set where 

it outperformed the GMM deep network benchmark results obtained on the partial Wall Street 

Journal corpus. 

Hundreds of hours of speech data have been used in speech recognition tasks with a variety 

of DNN architectures. This includes data like Wall Street Journal, Librispeech, Switchboard, TED-

LIUM, Fisher corpus [28], [29], [30]. TED-LIUM data in particular has been used for experiments 

and tasks like for the audio augmentation task [30], for modeling probabilities of pronunciation 
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and silence [31], and also in automatic speech recognition with human correction task both at the 

word level as well as the lattice level [32]. 

Cho et al. in 2014 [33] came up with a different version of recurrent neural networks known 

as Gated Recurrent Unit [GRU]. Being a variation of RNN, they do not have the problem of the 

vanishing/exploding gradient problem. The GRU architecture is similar to LSTM but simpler than 

LSTM. Due to its simpler structure and fewer internal gates it is less expensive than LSTM. Both 

LSTM and GRU networks have been used in speech recognition tasks and in polyphonic music 

modeling [11], [34]. 

This MS research work is inspired from Hannun et al. [28]. They have used the standard 

RNN model with one hidden layer of bidirectional RNN for the speech recognition task. Multiple 

GPUs [Graphics Processing Unit] were used in parallel to speed up the experiments. However, I 

have used a single GPU for my experiments to build and evaluate three different bidirectional 

models RNN, LSTM and GRU in performing the speech recognition task. 
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3. RECURRENT NEURAL NETWORKS 

In this section, three RNN models used for this experiment are explained in brief with the 

help of the corresponding network architectures and equations.  

3.1. Recurrent Neural Network (RNN) 

Recurrent Neural Networks are the type of neural networks with loops which allow them 

to persist information from the past in the network model. 

 

Figure 1. Basic loop structure in RNN [8] 

In Figure 1, the center square represents a neural network, which takes input 𝑥𝑡 at the 

current time slice t and gives the value ℎ𝑡 as an output. The loop shown in the structure enables it 

to use information from past time slices to produce output for the current time slice t. Thus, we 

can say that the decision made at time slice t-1 affects the decision to be made at time slice t. So, 

the response of the network to the new data depends on the current input as well as the output from 

the recent past data. The RNN output calculation is based on iteratively calculating the output of 

the following two equations: 

ℎ𝑡 = 𝐻(𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) (1) 

𝑦𝑡 =  𝑊ℎ𝑦 ℎ𝑡 +  𝑏𝑦          (2) 
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In Equations (1) and (2), 𝑥𝑡 is the input sequence at the current time slice t, 𝑦𝑡  is the output 

sequence at time slice t, and h represents the hidden vector sequence from time slice 1 to T. W and 

b represents weight matrices and biases, respectively. Lastly, an activation function used for the 

hidden layer is H.     

3.2. Long Short-Term Memory (LSTM) Network 

LSTMs are a special type of recurrent neural networks with memory cells. These memory 

cells are the essential part in handling long-term temporal dependencies in the data. To remember 

information over a long period is their default behavior and they do not struggle to learn it. LSTMs 

also deal with the vanishing/exploding gradient problem during backpropagation. Thus, they 

overcome both of the shortcomings that RNNs face.  

 

Figure 2. LSTM cell with four interacting layers [8] 

Figure 2 shows the chain like structure of LSTM and a particular memory cell in LSTM. 

Each big square block represents a memory cell here. The cell state is the vital part of LSTM and 

is shown by the horizontal line going through the top of the cell in the figure. It runs from every 

cell in the chain of the LSTM network. LSTM has the option to add or delete information from 

this cell state. This operation is done by another structure in LSTM called gates. Gates are formed 

by the sigmoid activation function (shown by 𝜎 in Figure 2) and pointwise multiplication operation 
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(shown by ⊗ in Figure 2). As shown in above diagram there are three gates which control 

information to pass through the cell state. They are as follows: 

• Forget gate – decides what information to throw away 

• Input gate – decides what new information to save in the cell state 

• Output gate – decides what information of the cell state to output 

Originally, Hochreiter and Schmidhuber first came up with LSTM networks in 1997 [35]. 

Since then, there have been variations in the memory cell architecture by people for experimenting 

in different application areas. The calculations in standard single LSTM cell can be stated by the 

following equations: 

 𝑓𝑡 =  𝜎 (𝑊𝑓 .  [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑓)  (3) 

𝑖𝑡 =  𝜎 (𝑊𝑖 .  [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)  (4) 

𝐶̃𝑡 =  𝑡𝑎𝑛ℎ (𝑊𝑐 .  [ℎ𝑡−1 , 𝑥𝑡] + 𝑏𝑐)  (5) 

𝐶𝑡 =  𝑓𝑡 ∗  𝐶𝑡−1 + 𝑖𝑡 ∗  𝐶̃𝑡  (6) 

𝑜𝑡 =  𝜎 (𝑊𝑜 .  [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑜)  (7) 

ℎ𝑡 =  𝑜𝑡 ∗  𝑡𝑎𝑛 ℎ (𝐶𝑡)  (8) 

where the activation functions used are sigmoid function (𝜎) and hyperbolic tangent function 

(tan ℎ), 𝑖𝑡, 𝑓𝑡, 𝑜𝑡, 𝐶𝑡, 𝐶𝑡̃ represents the input gate, forget gate, output gate, memory cell content 

and new memory cell content, respectively. As mentioned earlier, three gates are made up of the 

sigmoid function, and the output of the particular cell is scaled up by using the hyperbolic tangent 

function. 
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3.3. Gated Recurrent Unit (GRU)  

GRUs are another type of RNNs with memory cells. They are similar to LSTM but with 

simpler cell architecture. GRU also has gating mechanism to control the flow of information 

through cell state but has fewer parameters and does not contain an output gate. 

 

Figure 3. Gated Recurrent Unit (GRU) single cell structure [11] 

Figure 3 shows a particular single cell structure of GRU. It consists of two gates, r is a reset 

gate, and z an update gate. The reset gate regulates the flow of new input to the previous memory, 

and the update gate determines how much of the previous memory to keep. If we compare GRU 

with LSTM, the update gate is the combination of the input and forget gate and the previous hidden 

state (h in Figure 3) is connected to the reset gate directly. Another difference is in the exposure 

of memory content. As GRUs do not have an output gate, it exposes all of its memory content, 

whereas in LSTM the memory content to be used or seen by other units/cells in the network is 

managed by the output gate [11]. The following equations are used in the GRU output calculations: 

𝑟𝑡 = 𝑠𝑖𝑔𝑚 (𝑊𝑥𝑟 𝑥𝑡 +   𝑊ℎ𝑟  ℎ𝑡−1 +  𝑏𝑟)                                             (9) 

                                     𝑧𝑡 = 𝑠𝑖𝑔𝑚 (𝑊𝑥𝑧 𝑥𝑡 +   𝑊ℎ𝑧 ℎ𝑡−1 +  𝑏𝑧)                                               (10) 
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ℎ̃𝑡 = tanh(𝑊𝑥ℎ 𝑥𝑡 +  𝑊ℎℎ (𝑟𝑡  ⊙ ℎ𝑡−1) +  𝑏ℎ)                                 (11) 

ℎ𝑡 =  𝑧𝑡 ⊙  ℎ𝑡−1 +  (1 −  𝑧𝑡 )  ⊙  ℎ̃𝑡                                           (12) 

In Equations (9)-(12), 𝑥𝑡, ℎ𝑡,  𝑟𝑡,  𝑧𝑡 represent the input vector, output vector, reset gate and an 

update gate, respectively. All W variables denote the weight matrices, and b are biases. Activation 

functions used are the same as LSTM, sigmoid function (𝑠𝑖𝑔𝑚) and hyperbolic tangent (tan ℎ) 

function.  

The gating mechanism in both LSTM and GRU cells makes them the perfect choice for 

long-term dependencies. Bahdanau et al. in [36] experimented with both of these cells for the 

machine translation task. Their preliminary experiments proved both LSTM and GRU comparable 

to each other. Chung et al. [11] performed the evaluation of LSTM and GRU cells on the sequence 

modeling task using data sets like raw speech signal data and polyphonic music data. Although 

both, LSTM and GRU networks, performed well they were unable to conclude which one was 

better than other. These experiments motivated me to include GRU along with LSTM for their 

performance evaluation in this research for the speech recognition task. 

 

  



 

13 

4. EXPERIMENT ARCHITECTURE 

The architecture used for this experiment is based on the RNN architecture in [28]. For the 

models in this experiment, preprocessed speech spectrogram is the input and it gives the 

corresponding English plain text as an output. In the preprocessing step, a small window of raw 

audio waveform (typically 20ms) is selected. Next, the Fast Fourier Transform [FFT] is calculated 

and the magnitude (power) is taken to describe the frequency content in a particular window of the 

audio waveform selected initially. This is how one frame is computed. After computing all frames 

similarly, frames from adjacent windows are concatenated to form a spectrogram. This 

spectrogram acts as input features for the RNN model architecture. This pre-processing step is 

explained in visual format on the simple “Hello World” example in Figures 4 and 5. 

 

Figure 4. Pre-processing of a small window of “Hello World” raw audio waveform to 

corresponding one frame of spectrogram [37] 
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Figure 5. Full spectrogram from raw audio waveform with one frame showed in zoom [37] 

Assume X = {(𝑥(1), 𝑦(1)), ( 𝑥(2), 𝑦(2)), ...} is a training set and a single utterance x with 

label y is sampling from this training set X. In this training set, every utterance 𝑥(𝑖) is a time series 

of 𝑇(𝑖) length. Here, the 𝑇(𝑖) time slice is a vector representation of audio features 𝑥𝑡
(𝑖)

 where t = 1 

to 𝑇(𝑖). The ultimate aim is, given a transcription y, convert an input sequence x into a sequence 

of character probabilities using 𝑦̂𝑡 = ℙ(𝑐𝑡|x) where 𝑐𝑡 ∈ {a, b, c, …, z, space, apostrophe, blank}. 

The RNN model shown in Figure 6 is a deep network with five hidden layers, one input 

and one output layer. The hidden units of layer l are written as ℎ(𝑙) and that makes ℎ(0) an input. 

The output of the first layer (the input layer) at each time t is dependent on the spectrogram frame 

𝑥𝑡 and the context of C frames on each side. For this experiment, context values C ∈ {5,7,9} are 

considered. In the model shown in Figure 6, layer one, two and three are normal feedforward layers 

and for each time t, they are calculated as follows: 

ℎ𝑡   
(𝑙)

= 𝑔(𝑊(𝑙) ℎ𝑡
(𝑙−1)

+  𝑏(𝑙))                                                      (13)                                               

where, g(z) is the clipped rectified-linear unit [ReLu] activation function to calculate the output at 

the respective hidden layers. 𝑊(𝑙), 𝑏(𝑙) are the weight matrix and bias vector used at layer l, 
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respectively. To overcome the vanishing gradient problem, ReLu is preferred instead of normal 

sigmoid activation function. 

 

Figure 6. The RNN architecture with speech spectrogram as an initial input and five hidden layers 

 Standard RNN could persist information from the past only. In case of the speech 

recognition task, speech training data is recorded all at once. Thus, in order to predict current data, 

future as well as past data plays an important role here. For this purpose, Bidirectional Recurrent 

Neural networks [BRNNs] are useful. Therefore, the next hidden layer (layer four) in the model is 
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a Bidirectional Recurrent layer which is made up of forward hidden sequence and backward hidden 

sequence [9]. These two hidden sequence layers in BRNN, one forward hidden sequence ℎ(𝑓) and 

one backward hidden sequence ℎ(𝑏) are calculated by following equations: 

ℎ𝑡   
(𝑓)

= 𝑔 (𝑊(4) ℎ𝑡
(3)

+ 𝑊𝑟
(𝑓)

 ℎ𝑡−1
(𝑓)

+  𝑏(4))            (14) 

ℎ𝑡   
(𝑏)

= 𝑔(𝑊(4) ℎ𝑡
(3)

+ 𝑊𝑟
(𝑏)

 ℎ𝑡+1
(𝑏)

+  𝑏(4)) (15) 

In Equations (14) and (15), the forward hidden sequence is calculated sequentially from t =1 to t= 

𝑇(𝑖) and the backward hidden sequence is calculated sequentially from t = 𝑇(𝑖) to t = 1 for the 𝑖𝑡ℎ 

utterance. Once the bidirectional layer processes the data in both directions, it feed forward the 

output to the next layer (layer five), which is again a normal feedforward layer. Layer five which 

takes input from layer four can be calculated as: 

 ℎ𝑡   
(5)

= 𝑔(𝑊(5) ℎ𝑡
(4)

+  𝑏(5))                                            (16) 

where, ℎ𝑡
(4)

=  ℎ𝑡   
(𝑓)

+  ℎ𝑡   
(𝑏)

 

 After hidden layer five, the last layer is the output layer. The standard softmax function at 

this layer evaluates the predicted character probabilities in each time slice t and character k in the 

alphabet. Equation (17) calculates these probabilities at the output layer: 

ℎ𝑡,𝑘
(6)

=  𝑦̂𝑡,𝑘 =  ℙ (𝑐𝑡 = 𝑘|𝑥) =  
𝑒𝑥𝑝(𝑊𝑘

(6)
ℎ𝑡

(5)
+ 𝑏𝑘

(6)
)

∑ 𝑒𝑥𝑝(𝑊
𝑗
(6)

ℎ𝑡
(5)

+ 𝑏
𝑗
(6)

)𝑗

 (17) 

where 𝑊𝑘
(6)

 and  𝑏𝑘
(6)

 are the 𝑘𝑡ℎ column in the weight matrix and the 𝑘𝑡ℎ bias, respectively. Once 

the predicted character probabilities ℙ (𝑐𝑡 = 𝑘|𝑥) are computed, the next step is to calculate the 

CTC loss [28] ℒ (𝑦̂, 𝑦) to measure the prediction error. When provided a network output, the CTC 

loss function computes the error in the predicted output. This error is the negative log likelihood 

of the target probability. The input for this CTC loss function is the output of the predicted 

character probabilities for each time slice obtained from Equation (17). Once the CTC loss is 
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calculated, the corresponding loss gradient has to be calculated given the actual character sequence 

y and the network outputs. Afterwards this loss is backpropagated from the output layer to the 

weights in the network layer by layer. For this experiment, out of different backpropagation 

algorithms available, the ADAM optimization algorithm [38] is used. The reason behind selecting 

this algorithm is that it is very tolerant to the learning rate and also to other training parameters 

which lead to less fine-tuning. 

 In this project, experiments are performed on three models. The only difference between 

three models is the kind of bidirectional recurrent layer used in layer four of the architecture 

explained above. The first model, which is described above, uses a Bidirectional RNN layer. The 

second and third model make use of the bidirectional LSTM layer and bidirectional GRU layer, 

respectively. The formulation of these second and third model is similar to the first model. 
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5. EXPERIMENTS AND RESULTS 

In this section, the speech data set used for the experiments, the evaluation measures and 

lastly the results are discussed in detail. 

5.1. Data Set 

For these experiments, a subset of the TED-LIUM release 2 corpus [12], which is available 

publicly is used. This is the second version of the TED-LIUM dataset with enhanced language 

model. Rousseau et al. [4] were able to achieve more accurate results in terms of word error rate 

[WER] compared to the older version (TED-LIUM release 1) of this data. The data set has filtered 

data from the TED website with audio files and their corresponding transcriptions. This data is 

specifically designed to train and evaluate acoustic models. For these experiments, I have reduced 

the data from 34.3 GB to 11.7 GB. This reduced data set can be found at [39]. The data is already 

separated in train, test and validation folders. The data has the following contents: 

• 378 audio talks in NIST sphere format (SPH files) 

• 378 corresponding transcripts (STM format files) 

• Dictionary with pronunciations (152k entries) 

• Language Model improved with selected monolingual data from WMT12 corpus [4] 

5.2. Evaluation Measures 

Normally, speech recognition task performance can be measured based on two different 

parameters, the first is accuracy and the second is speed [40]. The accuracy based evaluation 

measures are WER, loss, and mean edit distance.  

Most research work done in the ASR area have used WER as their error measurement. 

WER is derived from the Levenshtein distance [41] and is formulated by [42], [43]: 
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𝑊𝐸𝑅 =  (
𝑆+𝐼+𝐷

𝑁
) × 100          (18) 

where N denotes the number of total words present in the actual transcript, S, I, D are the number 

of substitutions, number of insertions, and number of deletions, respectively. WER is taken as the 

lower the WER value the better is the speech recognition [42], [43]. 

 The loss term is also mentioned as Expected Transcription Loss [26]. This expected 

transcription loss function is given by: 

                                          ℒ(𝑥) =  ∑ 𝑃𝑟 (𝑦|𝑥) ℒ(𝑥, 𝑦)𝑦                                          (19) 

where x is the input sequence given, 𝑃𝑟 (𝑦|𝑥) is the distribution over transcript sequence y given 

by CTC, and ℒ(𝑥, 𝑦) is a transcription loss function. 

 The edit distance is explained with the help of example below. Assume that 𝑑(𝐴, 𝐵) is the 

normalized edit distance between two words or strings A and B [44]. Then, the mean edit distance 

can be calculated by: 

𝑑(𝐴, 𝐵) = min (
𝑊(𝑃)

𝑁
) (20) 

where P denotes the editing path between A and B, W(P) is the total sum of weights of all edited 

operations of editing path P, and N denotes the total number of edited operations (the total length 

of editing path, P) [44]. 

5.3. Hyperparameter Setup 

The hyperparameter values used while training the speech data in the experiment are stated 

below: 

• Total epochs = 10 

• Training batch size = 16 

• Testing batch size = 8 

• Dropout rate = 30% 
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• Activation function = ReLu 

• Total number of neurons in each hidden layer = 500 or 1000 (as specified) 

• Backpropagation technique = ADAM Optimizer with: 

• β1 = 0.9 

• β2 = 0.999 

• ϵ = 1e-8 

• learning rate 𝛼 = 0.0001 

5.4. Results 

Experiments were ran using three models as explained earlier, standard RNN, LSTM and 

GRU with two different configuration architectures. First architecture has 500 nodes in each 

hidden layer whereas the second architecture has 1000 nodes in each hidden layer. 

Table 1 shows the results of the three models each using 500 nodes architecture. The WER 

is measured in percentage. RNN achieved 87.02% WER whereas LSTM and GRU achieved closer 

values of WER 77.55% and 79.39%, respectively. As a part of the neural network optimization 

the loss was measured. Loss values for RNN, LSTM and GRU are 186.61, 160.51 and 162.22, 

respectively. We can say that the loss values show a similar trend as WER. Lastly, the mean edit 

distance values are mentioned in the table out of which LSTM and GRU achieved better values of 

0.3853 and 0.3939, respectively.  

Table 1. 500 nodes layer architecture results 

Model WER (%) Loss Mean edit distance 

Standard RNN 87.02 186.61 0.4484 

LSTM 77.55 160.51 0.3853 

GRU 79.39 162.22 0.3939 
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Table 2 shows the results of the three models with 1000 nodes layer architecture. These 

results show similar trends as with 500 nodes but with better results. In terms of WER, LSTM 

achieved a value of 65.04 compared to the other two models. The loss values for RNN, LSTM and 

GRU models are 164.60, 134.35 and 136.89, respectively. In terms of mean edit distance also 

LSTM achieved the best result of 0.3222. As we can see, LSTM and GRU model achieved close 

results in terms of all three measures, WER, loss, and mean edit distance.  

Table 2. 1000 nodes layer architecture results 

Model WER (%) Loss Mean edit distance 

Standard RNN 78.66 164.60 0.3991 

LSTM 65.04 134.35 0.3222 

GRU 67.42 136.89 0.3308 

 

  

Figure 7. WER values in percentage for all three models, RNN, LSTM and GRU considering 500 

nodes and 1000 nodes layer architecture 
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Figure 7 shows the WER values for both the 500 nodes and the 1000 nodes architecture. 

We can see that the LSTM achieved the lowest WER compared to the GRU and RNN models for 

both architectures. 

 

Figure 8. WER values in percentage for each epoch for three models with 1000 nodes 

Figure 8 shows the WER values per epoch for all three models with the 1000 nodes layer 

architecture. At the end of each epoch, the test data was applied to test the model obtained at the 

end of each epoch and WER values were recorded. The pattern is the same as we observed so far. 

LSTM has achieved lower a WER compared to other two (RNN and GRU) models. We can also 

observe from the figure that the models started converging after Epoch 9 and the best WER values 

were recorded at Epoch 9 as 78.43% for RNN 64.76% for LSTM and 67.34% for GRU model. 

 If we observe the models in terms of running time, as shown in Figure 9, the RNN model 

has the shortest running time in terms of days and it beats the other two models. However, the 

WER values of LSTM and GRU are way better than RNN and we cannot compare RNN with 

them. In case of the 500 nodes layer architecture, LSTM took more than two days and GRU model 

took approximately 1.5 days. With the 1000 nodes layer architecture the values are more 
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significant. LSTM model ran for more than 7 days whereas GRU run was finished in 5 days and 5 

hours. 

  

Figure 9. Running time of three models in days with 500 nodes and 1000 nodes layer architecture 
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6. CONCLUSION 

A simple feedforward neural network is not capable of handling reverse connections. They 

cannot persist past information to make predictions at the current time which is important for tasks 

like speech recognition. For this purpose, RNNs were introduced. RNNs have a loop like structure 

and can persist short-term past information. Due to limitations of RNNs to the vanishing/exploding 

gradient problem and not being able to work on long-term temporal dependencies in the data, 

LSTMs were introduced which overcame these limitations with the help of memory cells in their 

structure. Recently, GRU were also introduced which could be used to solve similar type of 

problems such as LSTMs with simpler architecture. 

This project evaluated these three networks, standard RNN, LSTM and GRU, and 

compared their performances. The data set used for comparison was the reduced TED-LIUM 

speech data. The networks were trained and evaluated with two architectures. The one with 500 

nodes in each hidden layer and another with 1000 nodes in each hidden layer. WER, loss and mean 

edit distance are the evaluation measures used for these experiments. While observing the results 

it is obvious that there is a tradeoff between accuracy in the results and the run time of the model. 

Though, LSTM achieved better results in all the runs, its run time is highest among all of the 

models. We could see that the GRU values are also close to LSTM values with lesser run time. 

Thus, the recommendation would be to use GRU cell neural network while working on smaller 

data like in this case the reduced TED-LIUM data. 
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