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ABSTRACT

Real biological and social data is increasingly being represented as graphs. Pattern-mining-

based graph learning and analysis techniques report meaningful biological subnetworks that eluci-

date important interactions among entities. At the backbone of these algorithms is the enumeration

of pattern space. In this work, we propose an efficient algorithm for enumerating all connected in-

duced subgraphs of an undirected graph. Building on this enumeration approach, we propose an

algorithm for mining maximal cohesive subgraphs that integrates vertices’ attributes with sub-

graph enumeration. To efficiently mine all maximal cohesive subgraphs, we propose two pruning

techniques that remove futile search nodes in the enumeration tree. Experiments on synthetic

and real graphs show the effectiveness of the proposed algorithm and the pruning techniques. On

enumerating all connected induced subgraphs, our algorithm is several times faster than existing

approaches. On dense graphs, the proposed approach is at least an order of magnitude faster than

the best existing algorithm.
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1. INTRODUCTION

Mining interesting subgraphs from a large graph has been extensively studied. The modular

structure has been observed in many real-world networks and shown to reveal insights into the

intricate interactions that take place in real-world networks. Subgraph mining aims at discovering

subgraphs that have interesting structural properties. Graph density, the ratio of present edges to

the possible edges, has been the main property of interesting subgraphs. Abello et. al 2002 [2]

proposed a greedy randomized algorithm for mining dense subgraphs. Matsuda et. al 1999 [14]

introduced an approximation algorithm for mining a subset of the quasi-cliques present in a graph.

A reverse-search-based algorithm for enumerating all dense subgraphs from an unweighted graph

has been proposed in [20, 21].

1.1. Integrating Attributes with Graph Topology

Integrating node and edge attribute data with graph analysis has received attention since

mining data from multiple sources has been shown to improve graph learning. In protein-protein in-

teraction analysis, highly interacting proteins are more likely to form function modules. Functional

module discovery can be aided by the integration of gene expression from multiple experiments as

the genes in functional modules tend to have similar expression patterns [11, 6]. Moreover, subnet-

works with differentially expressed genes have been shown to be good subnetwork biomarkers [7, 5].

Moser et al. [16] proposed the CoPaM algorithm for integrating the vertices’ attributes with dense

subgraph mining. A reverse-search algorithm was used for mining dense cohesive subgraphs from

a weighted protein-protein interaction network with nodes’ attributes have been proposed in [9].

Mining maximal homogeneous clique sets has been introduced in [17]. In Silva et al. [19], structural

correlation mining was proposed for mining quasi-cliques that have correlated attributes.

In sparse attributed graphs, meaningful subgraphs can have very low density, yet exhibit

high attribute similarity, e.g., biological pathways. Thus, it is important to mine connected sub-

graphs with high attribute similarity without the density constraint.

To achieve this goal, an algorithm for enumerating all connected induced subgraphs is

needed as the backbone of the mining process. Additional attribute similarity constraints can

be enforced while exploring the connected subgraphs search space. Moreover, the problem of

1



enumerating all subgraphs is important in the field of computer-aided structure elucidation in

cheminformatics for enumerating possible chemical graphs and stereoisomers [1].

1.2. Enumerate All Subgraphs

The problem of enumerating all connected subgraphs might seem intractable since the num-

ber of these subgraphs can be exponential. However, in sparse graphs, the number of connected

vertex sets is much smaller than the size of the power set of the set of vertices. Maxwell et al. [15]

introduced the BDDE algorithm for enumerating all connected induced subgraphs. The BDDE

algorithm follows a breadth-first discovery, and depth-first extension to enumerate the subgraphs.

Constraints defined over the nodes’ attributes can be integrating into the BDDE algorithm. Re-

cently, the TGE algorithm for enumerating all induced connected subgraphs has been proposed

[22]. By amortization, the author showed that the time complexity is O(1) for each solution.

1.3. Reverse Search Algorithms

Reverse Search is a powerful paradigm for enumeration. It was first introduced by Avis and

Fukuda [3], and employed to solve several enumeration problems, including all induced connected

subgraphs, spanning trees of a graph, maximal independent sets of a graph, and mining frequent

bipartite episode from event sequences. The basic idea of Reverse Search is to arrange all subsets

to be enumerated in a tree, where each node in the tree appears only once. The backbone of a

reverse search algorithm is the definition of a parent operation that reduces a node to a unique

parent node. By repeatedly applying the parent operation on any two different nodes in the search

tree, they will be reduced to a shared canonical node, the root of the traversal tree. Once the

child operation is defined by inverting the parent operation, we construct the enumeration tree by

simply applying depth-first traversal, starting from the root.

A reverse search algorithm, RS-MST, for enumerating all induced connected subgraphs has

been introduced in [3]. The parent operation employed for enumerating all induced connected

subgraphs was based on the minimum spanning tree of the subgraph. For an induced connected

subgraph, G, removing a vertex v that has a degree one in the minimum spanning tree of G cannot

disconnect the subgraph. The authors in [3] proposed the child operation that reverses the vertex

removal.

In this thesis, we propose a novel reverse search algorithm for enumerating all induced con-

nected subgraphs of a graph. Building on this enumeration approach, we propose an algorithm for

2



mining all maximal cohesive subgraphs that integrates vertices’ attributes with subgraph enumer-

ation. To efficiently mine all maximal cohesive subgraphs, we propose two pruning techniques that

eliminate futile search subtrees in the enumeration tree, resulting in significant improvement in the

running time of the algorithm. To demonstrate the effectiveness of the proposed algorithms and

the pruning techniques, we conducted experiments on synthetic and real-world graphs.

1.4. Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 presents related work, previous

algorithms proposed to enumerate connected induced subgraphs. Chapter 3 presents the problem

description of enumeration all connected induced subgraphs and presents the reverse search algo-

rithm for enumerating all induced subgraphs and the complexity analysis. Chapter 4 introduces

the algorithm and pruning strategies for mining all maximal cohesive subgraphs. Experiments are

presented in chapter 5. Finally, conclusion and future work are presented in chapter 6.
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2. RELATED WORK

In this section, we describe serveral previous algorithms to enumerate connected induced

subgraphs. We start with the brute force solution, which is to generate the power set [8] of the

vertex set, and then check the connectivity for each subset to exclude the unconnected subsets, we

then describe the original approach of Reverse Search for enumerating connected components that

is based on calculating the minimum spanning tree for each subgraph. Recently, two algorithms

were presented for enumerating connected induced subgraphs: the BDDE algorithm [15] which

follows breadth-first discovery and depth-first extension, and the TGE algorithm [22].

2.1. Naive Approach

There are two naive algorithms to generate connected induced subgraphs, first one is to

generate the power set of the set of vertices and check the connectivity of each generated subset,

and second one is to generate only connected subgraphs by starting with one vertex and extending

the subgraph by one neighbor at a time and mark the discovered subgraphs as visited to eliminate

duplicates.

2.1.1. Generating Power Set

Algorithm 1 Generating the power set of the vertex set
Input:
G = (V,E): an undirected graph

1: EnumerateCIS(V , {}, 0)
2:
3: function EnumerateCIS(V , U , index)
4: if index = |V | then
5: if isConnected(U) then
6: output U
7: end if
8: return
9: end if
10: EnumerateCIS(V , U ∪ {V [index]}, index+ 1)
11: EnumerateCIS(V , U , index+ 1)
12: end function

The power set P(S) of a set S is the set of all subsets of S. For example, if S = {a, b, c}

then P(S) = {{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}.

4
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Figure 2.1. Traversal tree for generating all possible subsets of vertices and then checking the
connectivity of each subset; Crossed out leaf nodes indicate unconnected subsets

A simple way to enumerate connected induced subgraphs of a graph G = (V,E) is to

generate the power set P(V ) of the vertex set V , and for each subset u ∈ P(V ), we check if the

vertices in u are connected or not.

To generate the power set P(V ) of the vertex set V , we go for each vertex, one by one, and

then either retain it or ignore it. We do this step recursively. Figure 2.1 (a) shows a sample graph

of four vertices. Figure 2.1 (b) shows a binary tree that represents how the power set of the vertices

is generated. The root has two children nodes, one has the a vertex and the other one does not.

Each of them has two children at depth = 1, one child that contains the b vertex and the other

one does not. At depth = 2, each node has two children, one contains the c vertex and the other

one does not. The same is done at depth = 3, but here we have one child node that contains the d

vertex and the other one does not. Finally, at depth = 4 we have the leaf nodes that represent the

power set. At this point, we check the connectivity for each generated subset, and we exclude it if

its vertices are not connected.
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Figure 2.2. Traversal tree generated by Depth First Search approach to enumerate connected
induced subgraphs

Algorithm 1 shows the pseudo-code. It’s clear that it takes O(2N ) to enumerate all subsets,

where N = |V |, and for each subset, it takes O(N) to check the connectivity of the subset, hence,

total time of this algorithm is O(N ∗ 2N ). Note that this is depth-first search algorithm and it uses

a total extra memory of O(N).

2.1.2. Depth First Search Traversal (DFS)

Algorithm 2 Depth First Search Traversal
Input:
G = (V,E): an undirected graph

1: visited = {}
2: for v ∈ C do
3: EnumerateCIS({v}, Neighbors{v})
4: end for
5:
6: function EnumerateCIS(U , C)
7: if U ∈ visited then
8: return
9: end if
10: output U
11: visited = visited ∪ U
12: for v ∈ C do
13: C′ = Neighbors(U ∪ {v})
14: EnumerateCIS(U ∪ {v}, C′)
15: end for
16: end function

6



Another way to generate connected induced subgraphs is to only generate connected sub-

graphs, by starting with one vertex as a subgraph (N = 1), and extending it with one of its direct

neighbors to get a connected subgraph with size N+1, then we check if the subgraph was previously

generated or not. The process of extending the subgraph with one neighbor at a time is continued

until the extended subgraph is previously visited, or there are no more direct neighbors of the

subgraph. An example of how this algorithm enumerates connected induced subgraphs is shown in

Figure 2.2. We start with a subgraph that contains only the vertex A, mark the subgraph as visited,

and then extending it with vertex B to get subgraph AB which is also marked as visited. The same

way is followed to generate subgraph ABD and ABDC. Then the algorithm extends subgraph A

with vertex D to generate subgraph AD and marks it as visited. Now it tries to extend AD with

B to get ADB, but does not complete the extension step since ABD was already discovered and

marked as visited.

Algorithm 2 shows the pseudo-code. The algorithm stores all connected induced subgraphs

is a shared memory (line 11). Since the number of connected induced subgraphs can be exponential,

total space used by this algorithm is O(N ∗ 2N ).

Algorithm 3 Breadth First Search Traversal
Input:
G = (V,E): an undirected graph

1: visited = {}
2:
3: function EnumerateCIS
4: queue = {}
5: visited = {}
6: for v ∈ V do
7: visited = visited ∪ {v}
8: queue.enqueue({v})
9: end for
10: while queue 6= ∅ do
11: U = queue.dequeue()
12: output U
13: C = Neighbors(U)
14: for v ∈ C do
15: U ′ = U ∪ {v}
16: if U ′ 6∈ visited then
17: visited = visited ∪ U ′

18: queue.enqueue(U ′)
19: end if
20: end for
21: end while
22: end function

7
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Figure 2.3. Creating a local search tree. (a) The input graph with an anchor vertex A. (b)
Binomial tree to traverse all subgraphs induced by vertex A and its direct neighbors

2.1.3. Breadth First Search Traversal (BFS)

Breadth First Search Traversal is similar to Depth First Search Traversal in terms of mem-

ory consumption and generating only connected subgraphs. Both require to store all discovered

subgraphs in a shared memory, and for each generated subgraph they check if it has been previously

discovered. The difference is the order in which the subgraphs are discovered. In Breadth First

Search, all subgraphs with size = 1 are discovered first, and then subgraphs with size = 2, and so

on, until the whole subgraph of size N is discovered.

Algorithm 3 shows the pseudo-code. The algorithm stores all connected induced subgraphs

in a shared memory (lines 7 and 17). Since the number of connected induced subgraphs can be

exponential, total space used by this algorithm is O(N ∗ 2N ).

2.2. BDDE Algorithm

The BDDE algorithm follows a breadth-first discovery and depth-first extension approach

to enumerate all connected induced subgraphs. For each vertex v ∈ V , it builds an enumeration

tree that is rooted at v, and each path P (Kn) from the node Kn to the root v represents a unique

connected vertex set U ⊆ V . After enumerating all connected vertex sets that include v, v is

deleted from the graph G(V,E). The process is repeated for all v ∈ V until V is empty.

2.2.1. Base Case

In this section, we focus on enumerating the subgraphs induced by a vertex v ∈ V and its

direct neighbors. Clearly, the direct neighbors of v can be treated as a set since any combination

of them and the vertex v will induce a connected subgraph. Hence, a binomial tree [13] can be

used to enumerate all these connected induced subgraphs. Binomial tree is a data structure that

8
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Figure 2.4. Extending the local search node approach to enumerate subgraphs beyond the direct
neighbors. (a) Building a binomial tree to traverse all subgraphs induced by vertex A and its direct
neighbors. (b) Treating the subgraph ACD as a local search node and extending the binomial tree
to traverse all subgraphs induced by vertex ACD and their direct neighbors

is used to enumerate all subsets of a set, and each node in the tree has children that are copies of

all branches that are rooted at siblings that proceed the node in the tree.

Figure 2.3 (a) shows a sample graph with four vertices. Figure 2.3 (b) shows the binomial

tree for enumerating all connected induced subgraphs that include vertex A. Each path from a

node in the tree to the root r represents a connected induced subgraph.

This approach can be extended to enumerate subgraphs beyond the direct neighbors of a

vertex, by following each path in the binomial tree and treating it as a local search node, and

building a sub-binomial tree for the direct neighbors of all vertices in the path except the vertices

that are already visited.
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BC
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Figure 2.5. The traversal tree built by the BDDE algorithm

Figure 2.4 shows how to extend this approach to enumerate subgraphs beyond the direct

neighbors of a vertex.

2.2.2. Enumeration of All Connected Induced Subgraphs

The local search node approach can be combined with the depth-first approach to enumerate

all subgraphs. Instead of using neighbors to build the tree, we use the branches generated by depth-

first search. All neighbors of a local search tree are marked as visited before recursively call the

depth-first search function, that eliminates duplicates that might be generated if the same neighbors

are reached again by continued depth search. An example of the tree constructed by the BDDE

algorithm is shown in Figure 2.5. For a complete graph, the BDDE algorithm could consume a

total space of O(2N−1), where N is the number of vertices in the input graph.

Algorithm 4 TGE Algorithm [22]

1: function EnumerateCIS(G = (V,E), S, r)
2: output S
3: if d(r) = 0 then
4: return
5: end if
6: choose a vertex v adjacent to r
7: EnumerateCIS(G/(r, v), S ∪ {v}, r)
8: EnumerateCIS(G \ v, S, r)
9: end function

2.3. TGE Algorithm

TGE algorithm is an efficient algorithm for enumeration in general. The author shows that

the algorithm takes a constant amortized time per solution. Amortized analysis considers the worst
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Figure 2.6. Traversal tree for the TGE algorithm

case run time per operation, not per the algorithm. Algorithm 4 shows the pseudo code for the

TGE algorithm and figure 2.6 shows the traversal tree generated by the algorithm.

2.4. Reverse Search

In Reverse Search, a pattern extension rule defines how to generate child search nodes from

a parent search node in the search space. The basic idea of reverse search is to arrange all solutions

to be enumerated in a tree, rooted at an empty set node (canonical object), where each node in

the tree appears only once under a specific parent node. In reverse search, a parent operation

determines the unique parent node of a search node. This operation can be repeatedly applied on

any two different nodes in the search tree until they reach a shared canonical node, the root of the

traversal tree. Once the parent operation is defined, a child operation can be derived. Building on
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invalid children

the parent-child operation, we build a tree-shaped traversal route on the set of connected vertex

sets. We perform the depth-first search on the tree without having the tree in memory to enumerate

all induced connected subgraphs.

2.4.1. MST Approach

Avis and Fukuda [3] proposed an algorithm to enumerate connected induced subgraphs.

They define the parent operation as follows: let G(V,E) be a connected graph and let U ⊂ V be a

connected vertex set, then U − j is the parent of U , where j is the smallest vertex in U such that

G(U − j) is connected.

In order to traverse all connected induced subgraphs using this approach, we start with

a one vertex subgraph and try to extend it with one vertex at a time to produce a valid child

subgraph. To check the validity of the generated child graph, we delete the smallest vertex that

keeps it connected and then we check if it matches the parent subgraph.
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For efficient implementation of this algorithm, the minimum spanning tree (MST) of a

subgraph is used to define the child operation. Given a connected graph G(V,E), first step is to

assign each edge e ∈ E a unique weight in range of 1 to |E|. Then the child operation is defined

as follows: let G(V,E) be a connected graph and let U ⊂ V be a connected vertex set, then

U∗ = U ∪ {v} is a valid child of U if and only if:

1. The degree of the vertex v is the MST (U∗) is 1; this means the newly added vertex is a leaf

in the MST, and

2. The vertex v has the least index among all the vertices in MST (U∗) which have a degree of

1.

The time complexity for this algorithm is O(|V |∗ |E|) for each connected induced subgraph.

Figure 2.7 shows the traversal tree generated by the algorithm. Crossed out search nodes

indicate invalid subgraphs.
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3. A LINEAR DELAY LINEAR SPACE ALGORITHM FOR

ENUMERATION OF ALL CONNECTED INDUCED

SUBGRAPHS

3.1. Problem Description

Let G = (V,E) be an undirected graph, where V = {v1, ..., vn} is the set of vertices, and

E ⊆ V × V is the set of edges. For any vertex set U ⊆ V , let G(U) = (U,E(U)) denote the

subgraph of G induced by U , whose edges include all the edges of G with endpoints in U . We call

U a connected vertex set if G(U) is connected.

Problem Definition: Given an undirected graph G(V,E), enumerate all connected vertex sets,

CIS(G).

CIS(G) = {U | U ⊆ V and G(U) is connected}

In this paper, we propose a linear-delay linear-space algorithm for enumerating all connected

vertex sets of an undirected graph.

3.2. Parent Child Relationship

The following lemma is essential:

Lemma 3.2.1. If G(U) is a connected graph, s, u ∈ U are two distinct vertices, and u is the vertex

with the largest shortest path from s, then G(U − u) is connected.

Proof. Assume that u is the furthest vertex away from s and deleting u results in a disconnected

graph. This means that there exists at least one vertex u′ such that all paths between s and u′ go

through u. So, the shortest distance between s and u′ is greater than the shortest distance between

s and u. This contradicts our assumption that u is the vertex with the longest shortest path from

s in G. Thus, G(U − u) is connected.

Clearly, we can choose any vertex in U , then find the furthest vertex away from it and

delete it, and still get a connected subgraph with size |U | − 1. It does not matter which vertex

to choose, and also does not matter if the chosen vertex has many vertices with the same furthest

distance because deleting any of them will produce a connected subgraph. In this work, for defining
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A, and the utomst vertex is F. (b) After deleting vertex F, vertices C and E become the furthest
vertices with the same distance away from A, so E is the utmost vertex. We reduce the subgraph
by deleting vertex E. Then we keep applying the same operation until deleting the last vertex A

a child/parent operation, we need to designate a vertex of the subgraph as the anchor vertex. We

denote the vertex with the smallest vertex identifier (smallest vertex lexicographically) in U as

anchor(U). Let v ∈ U be the vertex with the longest shortest path to s = anchor(U). If there

are more than one vertex with the longest shortest path, we take the one with the largest vertex

identifier. We refer to the vertex with the longest shortest path to s in a graph (G(U)) as the

utmost vertex.

We define the parent graph for a subgraph as follows: Let G(U) be a connected induced

subgraph, s = anchor(U), and v ∈ U is the utmost vertex, then G(U −v) is the parent subgraph of

G(U) (lemma 3.2.1). The parent operation simply deletes the utmost vertex of a subgraph. It also

can be repeatedly applied on a subgraph until reaching the canonical object (empty set). Figure

3.1 shows how to repeatedly apply the parent operation on a graph until reaching the empty set.

Now we derive the the child operation from the parent operation, as follow: Let U be a

connected vertex set, s = anchor(U), u ∈ U is the utmost vertex of U , and v ∈ V \U is connected

to U . Then the subgraph induced by U∗ = U ∪ {v} is a child of G(U) if and only if v > s

(lexicographically) and one of the following conditions holds:

1. The distance from s to v is greater than the distance from s to u, or

2. Both v and u have the same distance to s, but v is lexicographically greater than u.
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Figure 3.2. Enumeration tree of the sample graph; the crossed search nodes indicate invalid
subgraphs

if G(U∗) is a valid child of G(U), we call v a valid candidate of G(U), otherwise, we call it an

invalid candidate of G(U).

Figure 3.2 (a) shows a sample graph, and figure 3.2 (b) shows the enumeration tree of this

graph. Every search node in the enumeration tree represents a connected induced subgraph. Figure

3.2 (b) shows that search node {A,D} is extended with vertex C to produce {A,D,C}; the other

possibility {A,D,B} is crossed to indicate that it is not a valid child. In the leftmost branch, vertex

D cannot be added to search node {A,B,C} because distance(A,D) = 1 < distance(A,C) = 2.

Under the subtree rooted at B, vertex C cannot be added to {B,D} because distance(B,D) =

distance(B,C) = 1, but C is lexicographically less than D. In the middle, search node {B,A} is

crossed out because vertex A is less than the anchor vertex B.

3.3. Distance-Array Representation

One way to speed up Reverse Search is to design a data structure that speeds up testing

for valid children. In this section, we describe a data structure to represent each subgraph to be

enumerated, such that checking each valid child takes a constant time. Moreover, building the data

structure of a valid child, given the data structure of the parent node, takes only O(∆) where ∆ is

the maximum degree of the input graph.
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Given a subgraph G = (V,E), we use a data structure of four arrays of size |V |. The U

array holds the vertices of the subgraph in the same order they were visited. The C array holds

the neighbors (candidates) of the subgraph. The D array holds the distance between the anchor

vertex and all other vertices. And the P array keeps track of the parent of each vertex in U or in

C; The parent of a vertex v is the vertex connected to it on the path to the anchor when v was

first added to C. The anchor vertex does not have a parent vertex.

Figure 3.3 shows a sample graph G of 14 vertices and 22 edges. The dashed vertices and

edges represent the subgraph induced by the subset U = {2, 3, 4, 5, 7, 9}. Here is how the data

structure would look like:

U 2 3 5 4 7 9

C 1 3 5 4 6 7 9 10 8 14

v 1 2 3 4 5 6 7 8 9 10 11 12 13 14

D[v] 1 0 1 2 1 2 3 4 3 3 - - - 4

P[v] 2 -1 2 3 2 3 4 7 4 4 - - - 9

The anchor vertex of the induced subgraph G(U) is 2, and the utmost vertex is 9, with

distance 3 away from the anchor vertex. The whole graph has 14 vertices labeled from 1 to 14. Only

6 vertices belong to the subset U and there are only five neighbors in C. Using this representation,

we can easily determine the anchor vertex, since it is the first one in U , and the utmost vertex,

since it is the last vertex in U . We can also get the distance between any neighbor of the subgraph

and the anchor vertex in O(1) by accessing the corresponding index in D.
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Using this representation, we can, for instance, extend the subgraph G(U) with the valid

neighbor vertex v = 10 to form the subgraph induced by the subset U∗ = {2, 3, 4, 5, 7, 9, 10}. We

need to add neighbors of v = 10 to C array and update their distances in D to be 4, and their parent

in P to be 10. This will take only O(∆). The next tables show the data structure representation

of U∗.

U 2 3 5 4 7 9 10

C 1 3 5 4 6 7 9 10 8 14 11 12

v 1 2 3 4 5 6 7 8 9 10 11 12 13 14

D[v] 1 0 1 2 1 2 3 4 3 3 4 4 - 4

P[v] 2 -1 2 3 2 3 4 7 4 4 10 10 - 9

When backtracking, the P array is used to determine which candidates to be deleted from

C. For instance, when backtracking from U∗ to U , we first delete last added candidates whose

parent is 10 from C (11 and 12) and reset the values of these indices in the D and P arrays, then

we delete the 10 vertex from U .

3.4. Invalid Candidates Redundant Check

While analyzing the algorithm, we noticed that the C array holds many invalid candidates

as the algorithm goes deep in the recursion, and the validity of each candidate is checked at each

level of the recursion. This is time consuming and it decreases the efficiency of the algorithm. To

overcome this issue, we remove the candidate from C once it becomes invalid, and we maintain

three extra arrays to hold the invalid candidates and their information that are needed to insert

them back into their original indices in C when backtracking. The three extra arrays are:

1. IC: The invalid candidates array

2. ICIV : The invalid candidates’ invalidity vertex

3. ICOI: The invalid candidates’ original indices in C

The invalidity vertex of a vertex v is the last added vertex to U when v became invalid.

When a candidate v in C becomes invalid, we first add it to the IC array and store its

original index at C in ICOI[v], then we store its invalidity vertex in ICIV [v], and finally we move
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the right most vertex in C to the index of the deleted vertex. That guarantees a constant time

checking and deletion for each invalid candidate. When backtracking, we just revert the procedure

to get the original information before recursion.

We consider a candidate whose vertex identifier is smaller than the anchor vertex as a

special case; we never add it into the C array.

For example, the subgraph U∗ = {2, 3, 4, 5, 7, 9, 10} mentioned in the previous section would

be represented like:

U 2 3 5 4 7 9 10

C 8 14 11 12

IC 6

v 1 2 3 4 5 6 7 8 9 10 11 12 13 14

D[v] - 0 1 2 1 2 3 4 3 3 4 4 - 4

P[v] - - 2 3 2 3 4 7 4 4 10 10 - 9

ICIV[v] - - - - - 7 - - - - - - - -

ICOI[v] - - 1 2 1 1 2 - 1 2 - - - -

To extend it with the valid neighbor vertex v = 11, we do the following steps:

1. Move 11 from U to C and set ICOI[11] = 3 since 11 was at index 3 in C

2. Move the right most vertex in C (12) to the original place of 11 in C; C = {8, 14, 12}

3. At this point, the candidate vertex 8 becomes invalid since it’s closer to the anchor vertex

than the utmost vertex (11), hence, we move it to the IC array, and set ICIV [8] = 11, then

set ICOI[8] = 1 since it was at index 1 in C, and finally, we move the right most vertex in C

(12) to the original place of 8; C = {12, 14}

4. Add the new candidate 13 into C and set P [13] = 11 since 11 is the vertex connected to it

on the path to the anchor vertex, and set D[13] = D[11] + 1 = 4; C = {12, 14, 13}

After applying the previous steps, we get the following data structure, which represents the

subgraph induced by the subset {2, 3, 4, 5, 7, 9, 10, 11}:
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U 2 3 5 4 7 9 10 11

C 12 14 13

IC 6 8

v 1 2 3 4 5 6 7 8 9 10 11 12 13 14

D[v] - 0 1 2 1 2 3 4 3 3 4 4 5 4

P[v] - - 2 3 2 3 4 7 4 4 10 10 11 9

ICIV[v] - - - - - 7 - 11 - - - - - -

ICOI[v] - - 1 2 1 1 2 1 1 2 3 - - -

Note that applying the four steps in reverse order on this data structure produces the

original data structure before extending it with the valid candidate (11). Moreover, applying them

in reverse order recursively will produce the data structure of the anchor vertex only:

U 2

C 3 5

IC

v 1 2 3 4 5 6 7 8 9 10 11 12 13 14

D[v] - 0 1 - 1 - - - - - - - - -

P[v] - - 2 - 2 - - - - - - - - -

ICIV[v] - - - - - - - - - - - - - -

ICOI[v] - - - - - - - - - - - - - -

3.5. Algorithm

Algorithm 5 shows pseudo-code for our algorithm. The recursive function takes a connected

vertex set U and the set of candidate vertices. For each vertex v in the candidate set, it checks if

it a valid extension and recursively calls the EnumerateCIS function. The algorithm invokes the

EnumerateCIS function for each vertex in the graph.

3.6. Complexity Analysis

An algorithm is said to be a linear-delay algorithm if it takes linear time, in terms of input

size, to compute the next solution given a solution, or to detect that there are no more solutions.

In our case, we consider the time the algorithm takes to generate the first child subgraph, given
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Algorithm 5 Mining All Connected Induced Subgraphs
Input:
G = (V,E): an undirected graph

1: for u ∈ V do
2: EnumerateCIS({u}, Neighbors({u}))
3: end for
4:
5: function EnumerateCIS(U , C)
6: output U
7: for v ∈ C do
8: if isValidExtension(U , v) then
9: C′ = Neighbors(U ∪ {v})
10: EnumerateCIS(U ∪ {v}, C′)
11: end if
12: end for
13: end function
14:
15: function isValidExtension(U , v)
16: s = anchor(U)
17: x = lastAdded(U)
18: if v < s then
19: return False
20: end if
21: if distance(s, v) > distance(s, x) then
22: return True
23: end if
24: return distance(s, v) = distance(s, x) and v > x
25: end function

the parent subgraph. Clearly, our algorithm checks if a vertex is a valid neighbor of a subgraph in

a constant time O(1) (Algorithm 5 line 8). It checks this condition for all vertices in the candidate

set of a given connected vertex set. So, if there are no more solutions, the total delay is O(N)

where N = |V |. In case there is a valid neighbor, the algorithm takes O(∆) time to update the

arrays of the data structure.

Note that the algorithm is a Depth First Search (DFS) algorithm which ensures that the

space used is bounded by the depth of the search tree. This depth is bounded by the number of

vertices in the graph since at each level we add one vertex. So the depth is linear in the number of

nodes N , and we use 7 arrays of size N to keep track of which vertices are in the search node, their

neighbors, and their distances to the anchor vertex. So, the algorithm uses a total extra space of

O(N).
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4. MAXIMAL COHESIVE SUBGRAPHS

In many applications, we are only interested in connected subgraphs that meet a user-defined

constraint.

4.1. Problem Description

Let f : 2V → R denote a scoring function that quantifies vertex sets. Moreover, given a

threshold δ, the anti-monotone constraint guarantees that if the score of a vertex set is at least δ,

then score of each subset of the vertex set is also at least δ, i.e., f(U) ≥ δ =⇒ ∀U∗ ⊂ U : f(U∗) ≥ δ

In this section, we assume that the vertices in the graph are annotated with features. This

leads to the undirected attributed graph G = (V,E, f) where V is the set of vertices, E is the set

of edges, and f : V → {0, 1}d is a function that maps vertices to d-dimensional binary vectors. We

are interested in mining subsets of connected vertices that have similar features. A dimension j is

a cohesive dimension for a vertex set(subgraph) if the value of the dimension is ‘1’ in all the binary

vectors of the vertices of the set; j is cohesive for U if ∀v ∈ U | f(v)[j] = 1. Let A(U) denote the

set of cohesive dimensions for U .

Given a user-defined threshold Smin, a subgraph G(U) is called cohesive, if the number

of dimensions in A(U) is at least Smin. The cohesive condition is an anti-monotone constraint

where all the subgraphs of a cohesive graph are also cohesive. The set of all cohesive subgraphs

for an attributed graph will have a large number of overlapping subgraphs since the subgraphs of a

cohesive subgraph are also cohesive. To reduce redundancy in the output subgraphs, we require the

subgraphs to be maximally cohesive. A subgraph is maximal cohesive subgraph if it does not have

a supergraph that is cohesive, i.e., G(U) is maximal cohesive if @U∗ ⊃ U, such that A(U∗) ≥ Smin.

Problem Definition: Given an attributed graph G = (V,E, f), and threshold Smin, the problem

of mining the set of maximal cohesive subgraphs is to enumerate the set:

M = {M1,M2,M3, · · · ,M|M|}

such that every Mi ∈M is a maximal cohesive subgraph.
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4.2. Approach

This problem can be addressed by employing the reverse search enumeration approach in

algorithm 5 to enumerate all cohesive subgraphs and report only leaf search nodes that do not have

any valid or invalid cohesive child nodes. For a highly-connected graph and a relaxed cohesive con-

straint, enumerating the entire search tree of all cohesive subgraphs is computationally expensive.

In the following section, we describe pruning strategies to reduce the size of the enumeration tree

by pruning entire search branches without missing any search nodes. The pruning strategies result

in significant performance improvement.

4.3. Pruning Strategies

4.3.1. Nodes with A Preceding Covering Sibling

Let x and y be two neighbors of G(U) such that x is closer to anchor(U) than y (x ≺U y),

and G(U ∪ {x}) and G(U ∪ {y}) are cohesive subgraphs with A(U ∪ {y}) ⊆ A(U ∪ {x}), then none

of them is a maximal cohesive subgraph, and any maximal subgraph that contains G(U ∪{x}) will

also contain G(U ∪ {y}), and vise versa. Moreover, G(U ∪ {x, y}) is also a cohesive subgraphs that

can be reached from both G(U ∪ {x}) and G(U ∪ {y}), but is a valid child of only one of them.

Note that since A(U ∪{y}) ⊆ A(U ∪{x}), we get A(U ∪{x, y}) = A(U ∪{y}). In this case, we can

prune the search branch rooted at one of the two subgraphs.

Lemma 4.3.1. Let G(U ∪{x}) and G(U ∪{y}) be two cohesive subgraphs, x is closer to anchor(U)

than y (x ≺U y), and A(U ∪ {y}) ⊆ A(U ∪ {x}), then the search branch rooted at G(U ∪ {y}) can

be safely pruned.

Proof. For a set of vertices Z ⊆ V \ {x ∪ y}, assume that G(U ∪ {y} ∪ Z) is a maximal cohesive

subgraph. G(U ∪ {y} ∪ Z ∪ x) is a cohesive subgraph since x is connected to U and can be

added to G(U ∪{y}∪Z) without violating the attribute similarity constraint. This contradicts our

assumption that G(U ∪{y}∪Z) is a maximal cohesive subgraph. This proves that G(U ∪{y}∪Z) is

not a maximal cohesive subgraph. Moreover, G(U ∪{y}∪Z ∪x) is not a descendant of G(U ∪{y})

since x is not valid extension once y is added to vertex set U because x is closer to anchor(U)

than y. So none of the descendants of G(U ∪{y}) will be a maximal cohesive subgraph. Therefore,

it is safe to prune the search branch rooted at G(U ∪ {y}) without losing any maximal cohesive

subgraphs.
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Figure 3.4 (a) shows a sample attributed subgraph, and Figure 3.4 (b) shows a portion of

the enumeration tree of this graph with Smin = 2. Search node {A,F} is pruned because it has a

preceding sibling {A,B} where A({A,B, F}) = A({A,F}). Similarly, search nodes {A,B,C} and

{A,B,G} are also pruned because they have a preceding sibling {A,B,H} where A({A,B,H,C})

= A({A,B,C}) and A({A,B,H,G}) = A({A,B,G}).

Level One Pruning: Pruning for level one (single vertex) is a special case, where U = ∅ and

A(U) = {1}d. If a vertex x in level one has a preceding connected vertex y with A(y) ⊆ A(x), then

y can be safely pruned. In Figure 3.4, the search branch rooted at C can be safely pruned because

it is connected to B and and A(C) ⊆ A(B). Similarly, the branch rooted at H is pruned since H

is connected to A and A(H) ⊆ A(A).

4.3.2. Nodes with the Same Features as its Parent

This pruning strategy handles a special case where the attributes of a child node are identical

to those of the parent node. After sorting neighbors of U , if there is a child U∗ such that A(U)

= A(U∗), then all succeeding neighbors can be pruned safely using the previous lemma, because

their descendants will be enumerated under the U∗ search branch. Although it looks like that this

pruning operation is theoretically redundant of the first operation, it saves practically the time

needed to check if the siblings are covered by any proceeding one. So once we observe that there is

a node with the same feathers as the parent node, there is no need to check whether the succeeding

neighbors are covered by this node. We will show in the experiments section that this pruning

technique improves the performance.

In Figure 3.4 (b), search node {A,B, F,H} has same features as its parent, hence, all its

succeeding siblings can be pruned.

4.4. Algorithm

Algorithm 6 shows the pseudo code for our algorithm. The recursive function builds an

enumeration tree. The result of this algorithm is the set of all maximal cohesive subgraphs M.

The main procedure is called for each cohesive vertex in the graph (lines 2-7). Sorting the neighbors

according to the total order (closeness to U) is done in line 10. Checking for pruning the search

node rooted at U ∪ {vi} is done in 15-19. Pruning the succeeding neighboring search nodes is done

25



in lines 23-25. If there are no cohesive supergraphs of the current subgraph then it is added to the

set of maximal subgraphs (lines 28-30).

Algorithm 6 Mining All Maximal Cohesive Subgraphs
Input:
G = (V,E, f): an undirected graph
Smin: minimum number of similar attributes per pattern
Output:
M: all maximal cohesive subgraphs

1: M = {}
2: for all vertices vi ∈ V (G) do
3: U ← {vi}
4: if |A(U)| ≥ Smin then
5: MineMaximalCohesivePatterns(U)
6: end if
7: end for
8: function MineMaximalCohesivePatterns(U)
9: locally maximal← true
10: Sort(Neighbors(U))
11: for vi ∈ Neighbors(U) do
12: Let U ′ = U ∪ vi
13: if |A(U ′)| ≥ Smin then
14: locally maximal← false
15: for vj ∈ Neighbors(U) and j < i do
16: if A(U ′) = A(U ′ ∪ vj) then
17: Go to line 11
18: end if
19: end for
20: if isChild(U ′, U) then
21: MineMaximalCohesivePatterns(U ′)
22: end if
23: if A(U ′) = A(U) then
24: Break
25: end if
26: end if
27: end for
28: if locally maximal then
29: M =M∪ U
30: end if
31: end function
32: returnM
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5. EXPERIMENTAL RESULTS

We compare the performance of the proposed approach for enumerating all connected in-

duced subgraphs to that of three existing algorithms on random graphs with varying graph size and

density. Moreover, we test the running time on real enzymes. Moreover, to test the performance

of the proposed approach for mining maximal cohesive subgraphs, we evaluate the performance

on a real protein-protein interaction network with gene dysregulation profile in 13 cancer types as

attributes. All experiments were performed on a machine with Intel Xeon 2.40GHz processor with

16 Gbytes main memory, running the Linux operating system. The two reverse search enumeration

approaches were implemented in C++. The TGE algorithm is implemented in C and the BDDE

algorithm in Perl as provided by their respective authors.

5.1. Performance on Random Graphs

We generated random graphs with varying numbers of nodes and density. Figure 5.1 shows

the running times on graphs with varying size while keeping the density at 0.6. Figure 5.2 shows

the running times on random graphs with varying density while the number of vertices was set to

27. We can see that RS-SP runs about one order of magnitude faster. We can see that our proposed

algorithm is at least an order of magnitude faster than the best competing algorithm (TGE) and

two orders of magnitude faster that the BDDE and RS-MST algorithms. For graphs with larger

number of nodes (> 28), the BDDE algorithm uses too much memory and crashes after 1 hour.

For larger graphs (> 31), the RS-MST did not finish the enumeration task in 27 hours.

5.2. Performance on Real Data

We tested our algorithm on real chemical graphs downloaded from the network repository

[18]. We compared against the TGE algorithm since it is the fastest among the competing algo-

rithms. We ran both algorithms on ten graphs for which the running time is less than nine hours.

For larger graphs, it takes days before we could get any results. Table 5.1 shows the running time of

the TGE and RS-SP algorithms; RS-SP is several times faster than the TGE algorithm. Due to the

nature of chemical compounds, most atoms (nodes) have a degree of at most 8 (maximal valence

of atoms), and thus large chemical graphs are not dense. For these sparse graphs, the speedup is

not high.
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Figure 5.1. Running time on random graphs with varying graph size; graph density set to 0.6
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Figure 5.2. Running time on random graphs with varying graph density; graph size set to 27
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Table 5.1. Running time on real enzyme graphs

Graph ID |V | ρ |CIS(G)| TGE RS-SP
(in millions)

502 36 0.116 53.4 10 1

522 37 0.123 2,376.7 438 54

31 38 0.115 4,470.0 850 119

108 38 0.117 3,125.8 566 69

23 39 0.109 713.7 111 15

274 40 0.094 1,723.2 291 45

303 41 0.101 22,534.5 4,935 696

513 41 0.112 31,041.1 5,017 715

530 42 0.096 44,684.8 7,510 1,117

500 43 0.109 184,636.9 31,130 4,618

5.3. Rejection Rate Analysis

In section 3.4, we show how to separate the invalid candadites of a subgraph in the enumer-

ation tree into a separate array. We measure the effectiveness of this step by enumerating the con-

nected induced subgraphs of random networks and counting how many times the isV alidExtension

function (Algorithm 5 line 8) was executed for checking invalid children. We had three different

versions of the algorithm; First, we used the same data structure mentioned in section 3.3 where

the C array contains all and subgraph’s vertices and neighbors (Version 1). Then we improved it

by removing a candidate vertex from C once it’s added into U , and then pushing it back into its

original index in C when backtracking (Version 2), and finally we implemented the data structure

described in section 3.4 (Version 3). Table 5.2 shows the number of the connected induced sub-

graphs of graphs with varying size and constant density (0.6), along with the number of invalid

checks performed when applying each version of the algorithm.

5.4. Cohesive Subnetworks

We use the BIOGRID protein-protein interaction network (version 3.4.160; May 2018) that

has 287, 970 interactions among 21, 429 genes [4]. For attribute data, we used the gene dysregulation

profile in 13 cancers. The dataset was generated from the gene and miRNA expression data of

13 tumor types and matched normal samples [12]. On average each cancer dataset had 2, 380

dysregulated genes and each gene was dysregulated in 3.4 cancers. We ran the algorithm with all

the pruning techniques on the attributed BIOGRID network for varying minimum support. The
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Table 5.2. Rejection rate analysis on random graphs with varying size and constant density (0.6)

|V | |CIS| Invalid Candidates Count (in millions)

(in millions) Version 1 Version 2 Version 3

25 33.5 770.0 384.6 33.4

26 67.1 1,609.3 804.3 67.0

27 134.1 3,353.3 1,676.1 134.0

28 268.1 6,969.3 3,482.8 267.8

29 536.0 14,482.6 7,238.6 535.4

30 1,073.2 30,050.4 15,021.9 1,072.8

31 2,145.0 62,202.6 31,089.1 2,145.4

32 4,294.2 128,827.3 64,408.5 4,293.2

33 8,588.6 266,244.2 133,112.0 8,587.4

34 17,174.6 549,583.0 274,760.1 17,170.8

Table 5.3. Rejection rate analysis on random graphs with varying density and constant size (27)

ρ |CIS| Invalid Candidates Count (in millions)

(in millions) Version 1 Version 2 Version 3

0.2 57.4 1,402.4 621.5 49.1

0.4 129.9 3,243.5 1,606.7 127.4

0.6 134.1 3,353.3 1,676.1 134.0

0.8 134.2 3,355.4 1,677.7 134.2

1 134.2 3,355.4 1,677.7 134.2

algorithm was extremely fast finishing in less than one second for Smin ≥ 6, and for Smin = 2, and

1 it took 21 and 74 seconds, respectively.

5.5. Effectiveness of Pruning Techniques

To show the impact of the pruning techniques on the running time, we turned off the pruning

techniques in the algorithm one at a time. Figure 5.3 shows the impact of the pruning techniques.

For 1 ≤ Smin ≥ 3, the algorithm without any pruning did not finish in 50 hours, resulting in more

than 400 speed up for each of the pruning techniques.

5.6. Maximal Cohesive Subgraph Analysis

Table 5.4 shows the topological properties and biological enrichment analysis for the re-

ported maximal cohesive patterns. As we decrease Smin (relaxing the constraint), the average

size of reported subgraphs, N , increases. Moreover, the number of subgraphs increases but then

decreases when Smin = 4 the subgraphs increase in size. We performed biological enrichment anal-

ysis of the reported patterns. We checked for enrichment (over-representation) of Gene Ontology

(GO) biological process terms, KEGG pathways, and Disease Ontology (DO) terms. We used
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Figure 5.3. Effectiveness of pruning techniques

the DAVID functional annotation tool for biological enrichment [10]. If a biological annotation is

overrepresented in the reported subgraph’s genes, the subgraph is marked as enriched.

Table 5.4. Enrichment analysis of maximal cohesive subgraphs with different ontology databases

Smin N N Density KEGG% GO% DO%

1 28 798.6 0.185 68 82 71

2 260 124.5 0.19 54 59 64

3 642 58.5 0.147 56 69 68

4 816 43.5 0.123 61 77 75

5 705 37.0 0.106 72 83 77

6 429 31.2 0.104 77 87 81

7 183 25.9 0.113 82 90 79

8 72 20.7 0.125 81 92 78

9 32 15.3 0.154 69 91 72

Table 5.4 shows the percentage of patterns that are biologically enriched with different

ontology databases. Some patterns are enriched with several terms and some terms are enriched

in the genes of more than one pattern. Table 5.5 shows some of the KEGG pathways and diseases

that were enriched the most in the reported patterns for Smin = 9.
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Table 5.5. Top diseases and KEGG pathways enriched in the reported maximal cohesive sub-
graphs; Smin = 9

Top 5 Diseases

DOID:3459 breast carcinoma
DOID:3908 non-small cell lung carcinoma
DOID:3905 lung carcinoma
DOID:6050 esophageal disease
DOID:2174 ocular cancer
DOID:4231 histiocytoma
DOID:10534 stomach cancer
DOID:170 endocrine gland cancer

Top 5 KEGG pathways

hsa04110 Cell cycle
hsa05166 HTLV-I infection
hsa04218 Cellular senescence
hsa04914 Progesterone-mediated oocyte maturation
hsa04114 Oocyte meiosis
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6. CONCLUSION AND FUTURE WORK

In this thesis, we proposed an efficient algorithm for enumerating connected induced sub-

graphs of an undirected graph. Building on that, we proposed an algorithm for mining all maximal

cohesive subgraphs in a large network that integrates vertices’ attributes with subgraph enumera-

tion. We also proposed two pruning techniques that remove futile search nodes in the enumeration

tree, which lead to significant efficiency improvement. We demonstrated the effectiveness of both

algorithms on synthetic and real datasets. On enumerating all connected induced subgraphs, our

algorithm is several times faster than existing approaches. On dense graphs, the proposed approach

is at least an order of magnitude faster than the best existing algorithm.

Experiments on real biological networks are done and we showed the effectiveness and

efficiency of the algorithm achieve and the big improvement in performance. Biological enrichment

analysis of the reported patterns shows that the patterns are biologically relevant and enriched

with known biological processes and disease terms.

This thesis is addressing a fundamental problem and it has wider applicability and can

benefit many existing algorithms that require subgraph enumeration. Future work will include

developing an algorithm for mining maximal common subgraphs of multiple labeled graphs.
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