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ABSTRACT

Zhou Tan. NL.S.. Departinent of Electrical and Computer Engincering. College
of Engineering and Architecture.  North Dakota State University.  June 2011,
Design of a Reconfigurable Pulsed Quad-Cell for Cellular-Automata-Based Conformal
Computing.  Major Professor: Dr. Chao You.

This paper presents the design of a reconfigurable asynchronous unit. called
the pulsed quad-cell (PQ-cell). for conformal computing. The conformal computing
vision 1s to create computational materials that can conform to the physical and
computational needs of an application.

PQ-cells. like cellular antomata. are assembled into arrays with nearest neighbor
communication and are capable of general computation. They operate asynehirononsly
to minimize power consumption and to allow scaling without the hinitations imposced
by a global clock. Cell operations are stimulated by pulses which nse two wires (o
encode a data bit. Cells are individually reconfigurable 1o perform logic. move andd
store information. and coordinate parallel activity,

The PQ-cell design targets a 0.25 ;im0 CMOS technology. Simulation results
show that a PQ-cell. when pulsed at 1.3 GHz. consmmes 16.9 pJ per operation.
Examples of self-timed multi-cell structures include a 98 NHz ring oscillator and
a 385 MHyz pipehne.

Kevwords: Conformal Compnting. Cellular Logic Array. Asvnchronous Re-

configurable Computer. Cellular Automata
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CHAPTER 1. INTRODUCTION

In recent years there has been widespread interest in making things out of
very large numbers of very small parts. These parts could be special molecular
structures, micro-fabricated devices, or even living cells. The parts are so small
and numerous that new approaches are sought for assembly. programming (defining
local interactions to achieve global behavior), dealing with faults, and so on. There
are many ideas about what such an ensemble might be useful for. 1t could be some
form of programmnable material, “smart matter”, swarms of tiny robots, or simply a
computer. Related research areas that have computing as a desired outcome include
molecular computing {1] - [2], bio-molecular computing [3], bio-inspired computing [4]
- 5], and amorphous computing [6].

For computer systems with many small parts, the programming models tend
to be quite different from what is used in conventional computers. For example in
amorphous systems [7]. information essentially diffuses through the systemi. This
1s similar to node-to-node “hopping” in wireless sensor networks. In both cases
information moves in steps that are much shorter than the dimensions of the system.
How to deal with such issues is of interest because it may enable the realization of
systems that are superior to today’s programmable systems in important ways. In
particular, it would be very useful to be able to perform brain-like tasks with systems
that are much smaller and more cfficient than what can be expected from today’s
computing architectures.

Our interest is in non-biological cellular arrays in which the parts are densely
packed in a regular structure and the nced for power and communication is met

12

by electrically conductive wires or planes. In particular, we' “ envision sub-arrays

People who have made contribution to this design are: M. Hoseini, Z. Tan and C. You from
Electrical and Computer Engineering Department, M. Pavicic from Center of Nanoscale Science and
Engineering.

My task in this PQ-cell design includes some alterations on first version design which is in



fabricated on CMOS chips, and the chips, in turn, are arrayed on large thin flexible
substrates, or sheets. Sheets may be cut, joined, bent, and stacked to conform to
the physical and computational needs of an application. We refer to this flexible and
scalable form of computing as “conformal computing” [8].

Our long-term vision is to help make progress toward systemns capable of ef-
ficiently performing brain-like tasks. Conformal computing moves in that direction
by exploring a computational medium assembled from “cells” that are much simpler
than conventional instruction-processing nodes. Although the cells can be used to
assemble conventional structures, our desire is to explore alternatives that are more
similar to cellular automata [9], crystalline computing [10], cell matrices [11], BLOB
computing [12], cellular neural nets [13], and the like. Therefore the cell designs
emphasize simplicity (small multiplexers, 2-input logic units) and scalability (clock-
less synchronization, multi-chip arrays) combined with features of cellular automata
(regular structure, local communication) and FPGAs (rcconfigurable function and
initial state).

Thus, we present a particular cell design, called the pulsed quad-cell (PQ-
cell), for constructing a conformal computer. The PQ-cell is a quad cell because
it comsists of four orientations of an clementary cell called a quarter. The PQ-cell is
the latest in a series of cell designs that include a clocked cell [14] and a triggered
cell. These designs are distinguished by the source of the stimulus that causes a cell
to perform an operation. Clocked cells use pulses generated from a central source and
distributed throughout the array. Triggered cells use pulses generated by other cells in
respouse to previous pulses and routed along computational paths. In the clocked and
triggered schemes, a transferred data bit is accompanied by a pulse which stimulates

the receiving cell to accept and process the bit. Because the data and stimulus are

Chapter 3, the simulation part which is in Chapter 4, and optimizations which are covered in
Chapter 5.



conducted on separate wires. it is necessary 1o design for worst-case delays to ensure
the data is set up before the pulses arrive. This necessity is climinated il the data
itself is the stitnulus. This is the idea in the PQ-cell design. The PQ-cell design uses
dual-rail encoding in which a unit of data is a single pulse that appears on one of two
rails (wires): one rail for ‘0’ pulses and the other rail for ‘17 pulses. The cells route
the data pulses along computational paths.

Rather than a theoretical design, or one based on a future technology, the PQ-
cell design is targeted for fabrication in a 0.25 pm CMOS technology.  Therefore
the PQ-cell array can scrve as a concrete example of a novel computational host
for new and bencficial forms of computation. The remainder of this thesis is as
follows: Chapter 2 introduces some background about asynchronous circuit design,
meanwhile making comparisons with CA and FPPGAs to describe the general features
of PQ-cell arrays. Chapter 3 presents the specifics of the PQ-cell design. Chapter 4
shows simulation results for a single cell and a varicety of useful multi-cell structures.
Chapter 5 brings in some latest update in PQ-cell design. Finally, Chapter 6 contains

a summary and conclusions.



CHAPTER 2. BACKGROUND

2.1. Asynchronous circuits

Today’s most popular digital circuits are so-called “synchronous”. and in the
design process, it obeys two fundamental principles: (1) binary signal transmit: and
(2) throughout the circuit, a global discrete time is shared by all components in the
circuits, which is acknowledged as a “clock™.  Asynchronous circuits, on the other
hand, do not have a global discrete thme shared by the whole circuits. So it is also
called clockless. To achieve synchronization and communicate within a system, an
asynchronous circuit, utilizes some particular protocols such as bundled data transmit
and handshaking. Nowadays, the need for asynchronous circnits is crucial, mostly
because of the dramatic on increase integration degree of Very Large Scale Integrated
(VLSI) system, in which the variation across the chip makes the control of clock and
other global signals extremely difficult. In addition to the clock distribution issue,
some other advantages of the asynchronous circuits have been exploited to overtake

synchronous ones. They include:
e Low power consumption
e High operating speed
e Less emission of clectro-magnetic noise

e Robustness towards variations in supply voltage. temperature, and fabrication

process parameters
e Better composability and modularity

e No clock distribution and clock skew problems



Despite all these positive characteristics over synchronous circuits, development of
asynchronous circuits started decades ago but somechow grew slowly before the late
1990s. The following paragraph uncovers a very short history on asynchronous circuit
design.
2.1.1. A brief history

Starting as carly as the 1950s, the University of Illinois started to contain
both synchronous parts and asynchronous parts in circuits design.  In the 1960s,
the proposition of asynchronous building blocks in “macromodnle” was very close
to a modern approach.  Some other significant contributions were also made by
Huffman [15], Muller [16] and Unger [17]. However. when clocked techniques provided
an easy way to deal with timing issues, the asynchronous techniques were forgotten
for quite a while. it was not until the late 1990s that projects in academia and
industry demonstrated that it is possible to design asynchronous circuits which exhibit
significant benefits in real-life examples. Among this period of time, Caltech designed
and fabricated the first single-chip asynchronous microprocessor in 1988.  Shortly
after, in 1993, the University of Manchester implemented asynchronous techniques
on the famous ARM processor, and made the family of clones called “Amulet”. In
1997, a 32-bit MIPS R3000 microprocessor, MiniMIPS. was developed in Caltech.
MiniMIPS still holds the record of the fastest complete asynchronous microprocessor
chip. Today, the design techniques have developed to satisfy both entire asynchronous
and globally asynchronous with locally synchronous requirements. In addition, more
computer-aided design tools are developed in designing asynchronous digital systems.
2.1.2. Classication of asynchronous circuits

Depending upon the timing assumptions, asynchronous circuits can be classied
as self-timed, speed-independent or delay-insensitive and quasi-delav-insensitive,

Circuits whose correct operation relies on more elaborate or engineering timing



assumptions arc simply called self~timed. In seli-timed asynchronous circuits. cach
functional block is controlled by some handshake circuit such that each functional
block is operated in correct order. Lach functional Dlock should also be able to
acknowledge the completion of its operation to the handshake control cirenit.

A speed-independent circuit is the one of the kind that ignores delay in wire and
fork elements, compared with delay in gate components. More specifically, as shown
below in Figure 1, if the speed-independent condition is assumed, then d 4, d; and de
arc some arbitrary finite and also positive values, along with oy = dy = dy = ().

A delay-insensitive circuit, however, assumes arbitrary bounded delay existing
in all drceuit components. In Figure 1, this means the value of da, dg, de, dy, dy and
d3 are greater than zero. Circuit of this kind is certainly more robust than any other
ones, because it works properly, regardless of delay of any amount that may occur
anywhere in the circuit.  Unfortunately, delay-insensitive atiribute is very hard to

achieve, and up until today, the class of all delay-insensitive circuits are Himnited.

B .
dg

% A

] da
C -
de

Figure 1. A circuit with wire and gate delays.

Nevertheless, some weak assumption can made to form a more flexible circuit.
Still take a look at Figure 1, instecad of assuming d; = dy = d3 = 0. which is the
case in delay-inscusitive circuits, we assume only do = d3 = ¢, which is a constant
but unknown value. This class of circuits is called quasi-delay-insensitive, and the

property applied to a wire fork is called isochronic. Isochronic forks are those if the



acknowledging target has scen a transition on their end of the fork then the transition
is assumed to have also happened on the other end of the fork too. One advantage
is that it allow signals to travel to two destinations and only receive an acknowledge
signal from one. Apart from this. the assumption of isochronic is rather weak, since
it can be achieved by iimplementing syminetrical structures in cach branch, so that
they tend to introduce the same amonnt of delay.

As a conclusion, by making a weak assmption, a quasi-delay-insensitive cireuit
is almost retains both robustness and adaptability, which ensures its wide range use

throughout asynchronous circuit application.
2.2. Asynchronous communication protocols

In synchronous circuit, a global clock guarantees the safety and success of
data transmission between different logic modules. However, when two asynchronous
components (or two GALs) are getting communicated, it is essential to have some
request, and acknowledgement to signal senders and receivers, respectively, to assure
the success of communication. We will discuss later in this section in specific com-
munication protocol design with the lack of a global clock.

2.2.1. CHP, HSE notation and production rules

In this section, we will follow syntax of a high-level language called Communicat-
ing Hardware Processes (CHP) [18], which is widely utilized in most of asynchronous
circuits behavior description. The HSE notation [19] will also be used as well. It has
no distinction from CHP, except that it only accepts Boolean variables.

We will first describe some notations that are going to be used in the rest of the
section, starting with communicating process. Figure 2 is showing two processes, pl
and p2, namely two logic modules working concurrently. A sending port from pl, S.
sends out the logic value of a local variable x:. We denote this sending procedure as
Rlz. On the other hand, a receiving port from p2, R, receives what has been sent,

-
{



and stores it into its own local variable y. Again, this is denoted as R7y. Overall. an

assignment y := x is achieved.

p1  si= LplR  p2

Figure 2. Communication of pl and p2. Port S sends out the value of local variable
x, and port R receives the value from S and assigns it to local variable y.

As stated above, an assignment has the form of var = crpr. For a Boolean
variable b, b := true and b := false can also be represented as 07 and b |

There are two composition operators for processes. The sequential operator
S1 52, showing 52 carries out after SI; the parallel operator S1]]S2, showing that
S1 and S2 compose concurrently.  Additionally, notation S1,S2 is also defined as a
parallel operator but with noninterfering property: say a variable @ is being written
by S1, then x is guaranteed to be neither read nor written in process S2.

Another group of important notations are selection, wait and repetition. The
selection is represented as [B1 — S1|B2 — S2], where cach of Bl and B2 are called
a guard, and each of S1 and S2 is a process. The selection works just like an if
statement, as the value of each guard Bi is evaluated in the first place, and with the
Bi whose value is true, the corresponding Si will be executed. Particularly, when
neither of Bi is evaluated true, the whole process of selection is suspended. In this
case, the selection waits for at least one guard to be true. A very straightforward
example is [B0]. This selection waits BO to be true and terminates afterwards, moving
on to the following process. 1f an asteroid is added before a selection, the selection is
repeated forever. e.g. *[1 — S0] will execute SO forever.

Each circuit consists multiple logic gates, within which there are multiple inputs



and one output (most likely). For some Boolean conditions, say Bu, the output 2 will
be set to true. In other conditions, say Bd. z will he set (o {alse. Write them in HSE

notation, there are

Bu —

1)
—

Bu— 2]

Each row from above is considered as a production rule (PR). A production mle has
the form of B — ¢ where ¢ is a binary transition, and B is a logic expression (also
called a guard). All production rules of a single logic gate forms a production rule set
(PRs) Obviously, a production sct of a combinational gate can be inferred from its
truth table. Another example of PRs is for a state-holding celement: set-reset Tatehy,
Shown in Figure 3, 1t is constructed by two cross-coupled NOR gates, with two input,
s and 7 and two complementary output = and Z. When s is true, it sets outpul z to
be true; when 7 is true, it sets complementary output Z to be trne. The production

rule set of set-reset latch can be generalized as

~
l
IS

—

!
el
—

Some restrictions should be applied to a PRs. First, complementary PRs must be
noninterfering. For instance, in the above PRs, Bu and Bd can neither be true nor
false at the same time, otherwise the value of z turns out ambiguous. The best way
to resolve this contradiction is to sct Bd = —=Bu, thus z can only be true or false at

a time.
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Figure 3. A set-reset latch with complementary out puts.

2.2.2. Bare handshake protocol

Figure 4 below is an casy implementation of a “bare” communication between pl
and p2. It 1s called “bare”, because no data between these two processes are transniit-
ted. Two wires (s1.71) and (s2,72) exist for synchronization in this implementation,
in which the values of s1 and 2 are sent out from one process to another, and are
respectively received by target process, eventually assign to 11 and 72, According (o

conventions, all variables are initialized 1o be false.

p1 p2

Figure 4. Implementation of bare handshake with two wires.

Based on the methodology of synchronization, bare handshake protocols arce
classified into two classes: two-phase handshake and four-phase handshake protocol.
1} Two-phase Handshake The two-phase handshake is the simplest implemen-
tation of asynchronous synchronization. The following sequence defines the hehavior

of this protocol:

Su: sl 70 [rl]

Ru: [r2]: 527

10



Giving above behavior, there is only one possible transition sequence in two-phase
handshake: s1 7:72 7:52 1571 1 . Since all states in the system during the communi-
cation process should be meaningful somehow, and now only the (0 — 1 transition is

defined, we continue to define the following protocol as well:

Sd: sl ; [-rl]

Rd: [-r2]; s2]

From these two protocols, we discover the equivalence of transition 0 — 1 and 0 — 1
on all variables. We can then deduct a more general form of two-phase handshake

protocol that is adaptive to both phases:

The possible transition sequence of this protocol is: s1 7192 1:52 1:71 sl |12 |
;82 |31 | . Inospite of the protocol’s simplicity, the implementation in teris of
logic components is relatively complicated, since it requires XOR gates and storage
element of current status. Hence, in most cases, two-pliase handshake protocol is
overtaken by four-phase handshake protocol. which we are going to introduce next.
2) Four-phase Handshake As stated above, a system should not include any
meaningless states. To resolve this problem, it 1s straightforward to reset all variables
to their initialized value before a communicating process ends. One kind of {his

handshake protocol is called four-phase handshake protocol. It works as follows:

Stosl T el s2 1 [=rd)

R [r2l 270 [-r2): 2]

11



The only possible transition, in four-phase handshake. is now: s1 7:92 1752 1171 1
s1 072 1is2 il |0 Note that it might seem identical to the transitions in two-
phase handshake protocol. Here. the differences are: for two-phase handshake. a
complete communication process consists four transitions, since both pl and p2
acknowledge and react according to the transition of variables in spite of whichever
the transition is; for four-phase handshake. different processes react according to the
value of variables. As a result, considering the same tine cost for cach transition. the
four-phase handshake takes twice as much time as the two-phase handshake.
2.2.3. Bundled data

When combining data transmission with synchronization, it comes to a hybrid

comnunication protocol called bundled data. Figure b shows such an implementation.

s7 /2)
p1 30N 02

¢ 7 527

Figure 5. Implementation of bundled data with handshaking protocol and data
transiission.

Consider the following circvmstance: S sends out value of x (9'z), then R
receives and assigns it to v (R7y). Use HSE notation to describe the communicating

process:

Sl sd=ua; s17: [r1]; s1 1 [=r]]

Rty: [r2]; y=rd; s271; [-r2}: s2|

This communication is guaranteed by the synchronization of pl and p2. First, pl
starts to send data to p2, meanwhile sending out the request signal by setting s1 to

high. On tlie other hand, p2 waits for the request signal until 72 turns high. Since

12



data rail is already valid when p2 receives request signal, p2 can then start to receive
data. Right after the receiving step, p2 sends back acknowledge signal by setting s2
to high, and the following steps are the same as the four-phase handshake protocol.
This protocol works under the assumption that the delay through wire (s1.72) is
longer than (sd, rd), so that data signal arrives destination faster than the request
signal.
2.2.4. Dual-rail code

Besides bundled data, there are still other options for safe asynchronous data
transmission. Dual-rail code is one of them. In dual-rail code, two wires-bit (0 and
bit 1-exist in representing one data bit. The table for representation is as follows:

value : neutral 0 1

bit.0 : 0 1 0
bit.1 : 0] 0 1

it can be inferred that for u-bit data transmission, there are necessarily 2n wires
to finish encoding. This protocol is also delay-insensitive, since the communicating
process can work reliably regardless of arbitrary delay in the wire, as long as it is
finite.
2.2.5. 1-of-N code

I 1-0of-N code, only one wire will be selected during the data transmission.
Compared with dual-rail code, encoding n-bit data requires 2 wires. A two-bit code-

word is encoded using 1-0f-N code is shown below:
2.3. PQ-cell, cellular automata and FPGAs

To conform to a wide range of computational needs, a computing svstem needs
to scale from small to very large sizes. This need can be met by an extensible system

of small computational elements. Cellular antomata (CA) have these properties [20)]

13



value : neutral 0 1 2 3

d.0 : 0 10 00
d.1: 0 0 1 0 0
d.2: 0 0 0 1 0
d.3: 0 0 0 0 1

- [22]. A CA cell is simple and the cells are arranged on a lattice that can have a
periphery to which cells can casily be added. Similarly, PQ-cell arrays are scalable
becanse, like CA, the cells are simple and are arranged on a two-dimensional lattice,

PQ-cell arrays are also like CA in that a cell has a state, and state transitions
{ollow rules that are based on the states of nearby cells and possibly its own state.
The state transitions occur when cells perform an update.  In CA, updates are
performed throughout the array in a parallel fashion, which may be either synchronons
or asynchronous [23]. If synchronous, all the cells update their states once within
each of a scries of discrete time steps. Each step involves two phases: iuput and
output. During the input phase, the cells input the states of certain nearby cells.
During the outpnt phase, the cells update their states. All the cells complete a phase
before any of the cells move on to the next phase. If asynchronous, there is no
global synchironization and updates depend on other factors. The PQ-cells update
asynchronously in response to pulses sent by neighboring cells. By climinating the
necd for global synchronization, the PQ-cell architecture is easicer to scale 1o large
sizes.

Computing with PQ-cell arrays can use any of the methods in use for CA.
The two most common methods are digital circnit emulation and spatio-temporal
modeling of a dynamic systemy. This paper focuses on circuit emulation: however.
specially designed cells may be emulated by PQ-cell sub-arravs and used to model

dynamic systems. The emmlated cells then become the building blocks for larger

14



computation structures such as cellular neural nets.

CA are typically uniform, which means all the cells follow the same rules for
state transitions. Therefore, for digital circuit cmulation, the usual approach is to
create patterns of cells to perform the functions of wires, logic gates, and registers
[24]. These patterns involve multiple cells and may take many cycles to advance a
signal. PQ-cell arrays. however, are like non-uniform CA. The cells may have ditferent
rules. This allows a more effective method in which a single PQ-cell can perform the
function of a wire, a logic gate, a storage clement, or simple combinations thercof. By
directly implementing these circuit clements, computation is faster and more compact.
Furthermore, PQ-cells can be cascaded without intermediate storage clements. This
optimizes the performance of multi-level combinatorial logic. Customization of a 17Q-
cell is achieved by loading a set of configuration bits. A similar initialization step is
neceded for CA, but only the initial state is specified. The configuration of a PQ-cell
specifies its initial state, its transition rules (inputs and functions). and how it will
synchronize parallel activity.

The ability to configure and re-configure the cells is a feature PQ-cell arrays
share with FPGAs. The origins of the FPGA include the cellular arrays surveyed by
Minnick in 1967 [25]. An early and enduring motivation for cellar arrays was to be
able to use low cost batch processing methods. An accompanying idea is some form of
configurability, which is needed to customize the array to a particular application. Tt
was also recognized early on that it would be desirable to do this configuring “in the
field”, as opposed to in the factory, and ultimately to be able to configure repeatedly
without removing or even having physical access to the device. These desires are now
met by FPGAs and similar devices.

The PQ-cell explores a variation on the FPGA theme in which emphasis is

on support for computational paradigms that deal directly with the spatio-temporal



realities of a physical computing system. For some problems, including brain-like
tasks like pattern recognition. this approach may lead to significantly improved per-
formance and scalability. For this reason the cell designs developed so far have not
adopted some of the features that optimize the mapping of arbitrary circunits onto
an array. In particular. the PQ-cells route pulses throngh cells rather than through
an interconnection network. Also, since it may be used for routing, and it is not, yet
clear what functions are needed, each quarter of a PQ-cell uses a simple 2-input logic
unit rather than a 4- to 6-input look-up table.

Another difference is explicit support for asynchronous operation. Each PQ-
cell contains a unit for synchronizing pulses.  This unit also enables cach cell to
be configured as a stage in a pipeline {or processing and transporting information.
Pipelines can cross chip boundaries. This supports extreme scalability and allows
portions of the array to operate at different speeds (for purposes such as local heat
management). So a PQ-cell array is like an extensible FPGA whose reconfigurable
elements are simple cells that communicate asynchronously with necarby cells to

update their states.
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CHAPTER 3. THE PQ-CELL DESIGN

This section presents the PQ-cell design. heginning with basic features and then
focusing on facilities for processing and storing bits. routing pulses, coordinating
parallel activity, maintaining pulse integrity. satisfving timing requirements. and

configuring PQ-cell arrays.
3.1. Basic features: pulsed operation, quarters

At a high level, a PQ-cell is a unit that receives and sends pulses. It can receive a
pulse at any one of four inputs and respond by sending a pulse on any number of four
outputs. The received pulse may be interpreted as a bit of data or as a control signal.
The sent pulses are always in response 1o a received pulse. So, without stimulation
by a pulse, a PQ-cell does nothing. This is one reason PQ-cell arrays are expected to
be efficient consumers of power.

A PQ-cell is called a quad-cell because it consists of four clementary cells called
quarters. A quarter is the basic operational unit of a cell.

Fig. 6a shows a quarter (shaded box) and its connections to four neighboring
quarters (open boxes). A quarter receives pulses from two quarters, one internal 1o
the cell and one external. Likewise it sends pulses to two quarters. one internal and
one external. Each pulse appears on one of a pair of wires, which is what allows
the pulse to be interpreted as a bit. Figures 6b and 6¢ show how four quarters are
combined to form a quad-cell and how the connections bhetween quarters form the

connections between cells.
3.2. Processing and storing bits: logic units and data latches

In response 1o a pulse from the internal quarter, a quarter records which wire
It

the pulse arrived on. This record is stored in a data latch (RS latch) and becomes the
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Figure 6. Where pulses are received from and sent to by (a) a quarter, (b) the four
quarters of a cell, and (¢} a cell. Each arrow represents a pair of wires.

B-input to a logic unit (LU) within the quarter. The LU also has an A-input., which

receives pulses from an external quarter. Each pulse at the A-input causes the LU to

form a result based on the A and B inputs. This result is represented by a pulse that

Is sent to an internal quarter and an external quarter. Fig. 7 gives an internal view

of the quarters that shows the connections between the LUs and the data latches.

RS

RS
7 Y
z
LU
A B
A A
RS
—

A

v

Figure 7. Logic units (LUs) and data latches (RS latches). To the A input and {rom
the Z output. the black wires carry *1’ pulses and the gray wires carry ‘0" pulses. To
the B input. the black and gray wires are the Q and Q) outputs. respectively, of the

RS latch.
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The dashed lines outline the quarters (shown as shaded boxes in Fig. 1b). Each
data latch is implemented as an RS latch. The result formed by an LU is a logical
combination (Boolean function) of the A and B inputs and appears as a pulse at the
Z-output. The LU functions are listed in Table 1.

Table 1. The PQ-cell LU functions

D E F G 7 7
0 0 0 0 0 1

0 0 0 1 A-B A+ B
0 0 1 0 A-B A+ B
0 0 1 1 A A

0 1 0 0 A-B A+ B
0 1 0 1 B B

0O 1 1 0 ALD A-B+A-B
0 1 1 1 A+ DB AB
1 0 0 0 A-B A+ DB
1 0 0 1 A-B+A-B A3 B
1 0 1 0 B B

1 0 1 1 A+ DB A-B
1 1 0 0 A A

1 1 0 1 A+ B A B
1 1 1 0 A+ DB

1 1 1 1 1 0

Columns D, E, F. and G correspond to configuration bits that select which one
of the 16 functions is performed by the LU. Z and Z are the ‘1" and ‘0” output wires.
respectively, of the LU. The expressions in the Z and Z colunns specify which wire
will carry the output pulse. For example, if DEFG = 0011, then Z = A means a
pulse that enters the LU on the A wire will exit the LU on the Z wire. Likewise. £
= A means a pulse that enters the LU on the A wire will exit the LU on the Z wire.

Another example: if DEFG = 0101. then Z = B and Z = B. In this case there is 1o
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dependence on where the pulse enters the LU. If B = 1, the pulse exits on the Z wire
and, if B = 0, the pulse exits on the Z wire.

Fig. 8 shows an implementation of half of the LU using combinatorial logic. 1t
is essentially a selector that chooses some combination (cither, neither, or both) of A
and A to exit at Z. The choice is based on four configuration bits and the state of the

data latch. The circuit for Z is equivalent.

" By
- =D
A D_

Figure 8. Implementation of half of the LU.

3.3. Routing pulses: paths, turns, crossavers, and forks

In its response Lo a pulse, a PQ-cell may send a pulse to one or more of its neighhors.
A neighbor may, in turn. send a pulse to one or more of its neighbors, and so oun.
This sequence of operations formns a path through the arrayv. It is necessary that a
means be provided for steering pulses along these paths.

Pulse steering in a PQ-cell is achieved by using a selector to insert a right turn.
Fig. 9 shows the cell with the selectors. Each selector chooses one of two sources for
the A input of the LU. Since cach quarter has a selector. up to three successive right

turns can be made in a cell. Examples are shown in Fig. 10.
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Figure 9. Adding sclectors for making right turns. The numbered circles locate forks.

The cell configuration determines which source is connected to the A input.
Since there are two wires coming {rom each source, there are two 1-0f-2 selectors. For
added flexibility, these selectors are configured independently. This is useful when
routing control siguals. To prevent a pulse from intiating further activity, a cell may
configure its input sclectors so that it does not accept pulses from that source.

A path may need to cross itsell or another path. In a PQ-cell, this need is met
by the connections between the quarters, which include four crossovers (Fig. 6b).

If a cell, in response to a single pulse, sends pulses to multiple neighbors, the
cell is initiating parallel activity. This is called a fork. In a PQ-cell. a fork results
when a quarter uses the turn selector to accept an internal input (Fig. 10h). This
can happen at most three times i succession because there are four guarters and the
input pulse must be accepted by one of them. So one input pulse could result in up

to four output pulses, cach of which heads in a different direction.
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Figure 10. Using sclectors to make turns of: (a) 0 degrees, (1) 90 degrees, (¢) 180
degrees, and (d) 270 degrees.

3.4. Coordinating parallel activity

To coordinate parallel activity, the PQ-cell includes a synchironizing operation called
a join. (It could also be called a rendezvous.) A join involves two or more quarters
within a cell. A quarter participates in a join if it is configured to do so. A
participating quarter is cither ready or not-ready to send an output pulse. The
join condition is satisficd when every participating quarter is ready. If a participating
quarter is ready. it was cither initialized to be ready or it became ready by performing
an operation in response to an input pulse. Once the join condition is satisfied, cach
of the participating quarters outputs a pulse and becomes not-ready.

The PQ-cell implementation of the join operation is shown in Fig. 11, The
additional circuitry is collectively referred to as the synchronizer. 1t has four configu-
ration bits, J1. J2. J3. and J4. which indicate which cells are participating in the join.
These bits also control the output selectors, choosing either the path from the LU (if
a quarter is not participating in the join) or the switched path from the synchironizer
(if a quarter is participating in the join). Each quarter has an RS latch that is set
when a pulse exits the LU. This is called the event latch becanse it records an event of
interest to the svnchronizer. Also associated with cach quarter is an OR gate whose
output feeds into a 4-input AND gate.

The join condition is satisfied when the output of the AND gate. labeled R (for
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Figure 11. PQ-cell cireuitry involved in performing the join operation.

reset), is high. Therefore the outputs of all the OR gates must be high. For cach
quarter. the OR gate output is high if the corresponding configuration bit is high (the
quarter is not participating in the join) or the event latch output is high (the quarter
is ready to output a pulse). When the join is satisfied, R is used to reset the event
latches, which also canses R to return low. This produces a reset pulse that passes
through the switch closed by an output of the data latch. So the effeet of a join is to

delav the LU outputs of participating quarters until the join condition is satisfied.

3.5. Maintaining pulse integrity

As a pulse travels along a path. its amplitude is restored cach time it is re-driven.
However. its width may get shorter or longer, depending on the relative speeds with
which leading and trailing edges arc generated by the cirenitry. If a pulse becomes too
short, it may fail to stimulate further Jogic and vanish. If a pulse becomes too long.
it may interfere with other pulses. Therefore some means is required for maintaining

pulse width. This is the purpose of the pulse regenerator (PR).
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The PR outputs a pulse of width W in response to an input pulse that may
be shorter or longer than W. Fig. 12 shows one form for the PR. It has two delays.
D1 and D2. This circuit outputs a pulse of width W = D2 - 4 (where 4 1s the delay
through the first NOR gate) in response to an input pulse whose width is at least D1,

where W/2 < D1 < W. Choosing DI ncar W/2 allows for narrower input. pulses.

D1
Dz

PO I B

Figure 12. A design for the pulse regenerator (PR).

A PR is at every output from a cell. Fig. 13 is a composite diagram of the

PQ-cell that shows where the PRs are located.
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Figure 13. Composite diagram of the PQ-cell including a pulse regencrator (PR) at
each output.




3.6. Satisfying timing requirements

Correct. operation of computations in PQ-cell arrays requires certain {iming
requirements to be observed. Pulse width requirements are managed by the pulse
regenerator. Pulse separation is managed by handshaking such as in pipelines. A
remaining requirement is to ensure that the B-input to an LU is set hefore a pulse
arrives al the A-input. The output of the LU is produced in response to a pulse at
the A-input. Since the B-input prepares the LU to produce this response. it must
arrive a short time before the pulse at the A-input. Fig. 14 shows three ways to
achieve this.

The first solution depends on other cells to delay the A-input relative 1o the
B-input (Fig. 14a). The other solutions usc the join operation and are independent of
delays external to the cell. In these solutions, the path leading to the A-input passes
through the cell hefore re-entering the cell and delivering a pulse to the A-input. This
path mcludes an LU that participates in a join with the LU that delivers the B-input
(Fig. 14¢). I one LU is the source of both mputs. then only that LU participates in
the join (Fig. 14bh).

The solutions using the join are dependent on the design of fork 3. Fork 3
is one of five forks within the PQ-cell whose locations are circled and numbered in
figures 9 and 11. Each fork is a point at which a signal simultancously enters two or
more paths. If these paths interact within the cell, and the result of this interaction
depends on the order in which the signals arrive, then the coll needs to be designed
Lo ensurc a consistent outcome.

Fork 3 creates two paths. one that goes to the B-input of the LU and one that
exits the cell under the control of the svuchronizer. By involving the svnchronizer.
the delay in the shortest path from fork 3 1o the A-input (which involves exiting

then re-entering the cell) is guaranteed by design to exceed the time required for the
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(&) (k) (c)
Figure 14. Three ways to properly order the two mputs to an LU: (a) introdnce
sufficient external delay; (b) supply both inputs from an LU within the same cell that
participates in a join; (¢) supply the A-input from an LU that participates in a join
with the LU that supplies the B-input.
B-input to set up the LU. Therefore, even if there are no external delays, the input
order 1s still correct.

Another design consideration for fork 3 results from an internal interaction
between its two paths. One path sets the data lateh and the other path could cause
the synchronizer to gencrate a reset pulse. Since the data lateh sets up the route by
which the reset pulse exits the cell, the path through the data latch must be shorter
than the path through the synchronizer.

Fork 1 is also of interest. This fork is located at the mput of the LU in the N
quarter and creates two paths that may come together at the LU in the E quarter, One
path leads to the B-input and the other path (if chosen by the input sclector) leads
to the A-input. The path to the A-input is shorter. so the LU should be configured
to perform a function that uses only the A-input; i.e. Z = 0. 1. A.or A. Forks 2. 4.

and 5 create independent paths and therefore present no special timing issues.
3.7. Configuring PQ-cell arrays

The behavior and initial state of a cell are determined by a set of configuration
bits that are loaded into the cell before it is used. A simple way to load these bits
is to shift them serially into a long shift register that contains all the bits of all the

cells in the array. However. this would be a slow process. especially for large arravs.
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A faster and more flexible scheme is envisioned for PQ-cell arrays.

A PQ-cell array has many short shift registers. Each register holds the configu-
ration bits for a subsct of the array. which may be a single PQ-cell. Each quarter has
9 configuration bits: 4 for the LU, 2 for the input sclector, 1 for the data latch. 1 for
the event latch. and 1 to specify whether or not the quarter participates in the join.

Each register is at a node of a 2D mesh network. Serial streams of configuration
bits pass through the network to reach selected registers, hypassing registers that, are
not configured by that stream. Multiple streams may be in the network at. the same
time. Furthermore. cells that are not being configured may continue to operate.

Fig. 15 shows a single node in the configuration network. In this case the node
1s associated with a single PQ-cell. The controller routes incoming data bits to one
of three shift registers or to another node. The first bit to arrive determines whether
or not this node will receive configuration bits. The sccond bit identifies the end
of the stream. The next two bits select the next node to be visited by the stream.
Then. depending on the first bit. configuration bits for this node will follow. Finally,

depending on the second bit, any additional bits are passed on 1o the selected node,

data-N
data-W
data-E
data-S

[l Defines whether the shift register is filled or not

lapooad

——> data-N

——> data-S
—> data-W
——-—> data-E

Determines whether the cell is the last one in the chain of shift registers or not
D Determines whether the cell should/should not be configured

D Selects the neighbor to which the configuration bits should be forwarded

[j Defines the configuration bits of the celi

Figurc 15. The behavioral model of the configuration circuitry.
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CHAPTER 4. SIMULATIONS OF THE PQ-CELL

An IC design of the PQ-cell was made for fabrication in TSMCs 0.25 pm CMOS
techmology. This design was simulated to obtain the expected propagation delav and
energy consumption of a single cell. Several nnidti-cell structures were also designed
and simulated to exercise the cells welm they function together in an array.  This
section describes four of these simulations: a single cell, a fmll adder. a ring oscillator.
and a pipeline. A pipeline is an nmportant structure and a good example of how the
join works. Finally. at the end of this section, PQ-cell performance is compared with

that of asynchronous FPGA logic cell designs of other rescarchers.
4.1. Single cell

A single cell was simulated to find the minimum pulse width, the propagation
delay through a cell. and the energy consumed in a single operation, and the energy
consumed in a single operation, and to explore the effect of supply voltage on these
measures. The mininnon pulse width was determined to be about 550 ps for supply
voltages between 1.8 'V oand 2.5 V. The temperature was 25°C. This result was
independent of the cell function.

For the other measures, the cell was configured to perform the XOR function.
The B-input was set to zero and pulses were supplied to the A-input. The input
pattern was a series of pulses alternating between the ‘0 wire and the ‘17 wire. The
pulses were 700 ps wide and were separated on eachi wire by 800 ps. This is an npit
pulse rate of 1.3 GHz. The results are shown in fignres 16 and 17.

Fig. 16 shows the mput and output waveforms when operating at 2.5 V. The
propagation delay through the cellis 1.1 ns. At 1.8 V the propagation delay is about
L5 ns. Fig. 17 shows the current profiles when operating at 2.5 V and 1.8 V. At 2.5

V the average current is approximately 2.5 mA over a period of 2.5 ns. o the CHeTeY
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Figure 16. Simulation results of a PQ-cell performing an XOR function.
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Figure 17. The PQ-cell current profile at (a) 2.5V and (b) 1.8 V. The profile at 1.8
Viis lower (average 1s 1 mA) and longer (by about 500 ps).
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consumption per pulse is 15.6 pJ. At 1.8 V the average current was approximately
1.5 mA over a period of 3.2 ns. so the energy consumption per pulse is 8.6 pJ. This is
significantly less than the consumption at 2.5 V. The tradeoff is a modest increase in
propagation delay. Note that energy consmnption is essentially zero when there are

no pulses. This is one of the henefits of asvnchronous circuits.

4.2. Full adder

The full adder 1s an example of using multiple PQ-cells to perform combinatorial
logic. Fig. 18 shows how the adder was constructed. The inputs to the adder are A.
B. and C. Cis carry in. The Sum is formed as A+ B C = A5 (B4 (7). The Carry
(carry out) is formed as AB + AC + BC' = A(B + (') 4+ BC. The supply voltage
was set to 2.5 V. Input pulses representing a ‘17 were sent to the C) B, and A inputs,
in that order, at 2 ns mtervals. The output pulse for St appeared after a 1.1 ns
delay and the output pulse for Carry appeared after a 3.6 ns delay. These results
are consistent with what was expected considering the propagation delay through a

single cell.

n 3+ — Cay
+ . &
T {I 1 -
B B

Figure 18. Full adder constructed from four cells in a PQ-cell array.




4.3. Ring oscillator

The ring oscillator is a loop. Four cells were used in its constraction {Fig, 19).

stat Y | » output

B

a b b C

Figure 19. Ring oscillator constructed from four PQ-cells.

The oscillator has a start Input. a stop input. and an output. The oscillator is
started by supplying a 17 pulse at the start input. The input selector is coufigured to
accept ‘17 pulses from an external source and 07 pulses from an internal source. The
input pulse causes the N quarter of cell a to owtput a “17 pulse, which passes through
the N gquarter of cell x and triggers the N quarter of cell b, The N quarter of cell b
outputs the complement of the latest value it received from the W quarter; initially.
this is a 0. Cell ¢ receives the output from cell b, duplicates it. and sends one copy to
the output and the other copy back to cell b, Cell I duplicates this imput and stores
one copy as the B-input of the N quarter. The other copy goes to the S guarter of
cell x which outputs a pulse with the value at its B-input. If this value is a (), the
oscillator continues: otherwise it stops. Also note that the S and W guarters of cell b
participate in a join. The effect of this is to delay the cell output from the S quarter
until the W quarter has readied its output. This ensures the proper arrival order of
the inputs to the N quarter.

When simulating the oscillator. the data latches are initially zero. Nothing
happens until a 1" pulse enters the start input. This causes the first output. which is
the complement of the data latch at the B-input of the LU in the N guarter of cell b.

The simulation results are shown in Fig. 20. The output pulse rate is approximately
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98 MHz at 25°C. The oscillator was also simulated at —25°C and 65°C'. and the
output pulse rates were 119 MHz and 84 MHy. respectively. This inverse relationship

18 due to decreases in transistor current as temperature imcereases.
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Figure 20. Simulation results of the ring oscillator.

4.4. Pipeline

Pipelines are important structures for transporting and processing data.  In
particular. asynchronous pipelines. because of their ability to store variable amounts
of data, can form clastic connections between computations at different locations
within a PQ-cell arrayv.  Event-driven elastic pipelines. with or without internal
processing. was the subject of Sutherland’s 1988 ACM Taring Award lecture,

PQ-cells are readily configured as symmetric pipelines that can operate in either
direction. Fig. 21 shows a series of PQ-cells forming three stages of a pipeline. Refer

to the quarters by their compass locations within a cell: N. S. E. aud W. Then this
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pipeline involves the N and S quarters in cach cell. These quarters are configured 1o
participate in a join. To cause the pipeline to operate in the West to Fast direction.

the N quarters are initialized to not-ready and the S quarters are initialized 1o ready.

|

S

{V
i

Figure 21, Three stages of a pipeline.  Each stage uses two guarters and the
synchronizer (filled circle) of a PQ-cell.

For any cell in the initial state. if a pulse arrives at N, the join is satisficd and
two pulses are sent. one from N and one from S. If the mput pulse is interpreted as
data, then the pulse from N is mterpreted as data heing passed to the next stage and
the pulse from S is interpreted as a signal being passed to the previons stage. The
new state of the cell is that both quarters are not-ready. The next state depends on
which event occurs first: cither the cell receives a data pulse from the previous cell or
the cell receives a signal pulse from the next cell. But one event will not satisfy the
Join. Only when both events have ocenrred s the join satisficd and the cell outputs
another pair of pulses: a data pulse to the East and a signal pulse to the West.

A 3-stage pipeline was simulated to see how fast it would run. It was configured
as a loop, with a wire connecting the output to the input at cach end. By inscerting
an initial pulse. the pipeline circulated the data that was mitially in the data latches.
The resulting pipeline speed was 190 MHz. This can be unproved by integrating pulse
width control (section I1LE) with other circuitry. so this fignre should he viewed as

a lower bound.
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4.5. Comparisons

To obtain a view of a PQ-cell’s performance compared to other work, the
asynchronous FPGA logic cells presented by Wong et al. [26]. Teifel and Manohar [27].
and Mahram et al. [28] were studied. These were chosen because they are examples
of asynchronous cell designs and bhecause the anthors included estinmates of speed and
energy consumption. These estimates are summarized in Table 2, along with those
of the PQ-cell. The frequency given for the PQ-cell is the simulated pipeline speed.
The PQ-cell energy consumption is from the single-cell simulation when operating at
1.3 GHz.

Table 2. Speed and energy consumption of various asynchronous cell designs

Design Technology  Voltage  Speed(MHz)  Energy(pJ/cycle)

Wong  TSMC 180 1.8 190-235 2.1-3.1

Teifel — TSMC 250 2.5 400 18
Mahram  TSMC 180 1.8 280) 2.2
PQ-cell  TSMC 250 2.5 385 16.9

There are significant architectural differences between the designs, so it is dif-
ficult to make meaningful conclusions.  Even so. it is inferesting to sce that the
results are relatively close. The biggest difference is the low energy consumption
of the Wong and Mahram FPGAs, but at least a factor of 2 can be attribnted to
the technology and supply voltage. For exawple, an FPGA cell described in [29]
constmed 18 pJ/evele at 250 nm and was expected to mprove to 7 pJ/evele at
180 mm. A similar improvenient can be expected for the PQ-cell. ature work will
need to make a more careful comparison to see what can be learned by studying the

architectural variations and their ramifications.



CHAPTER 5. OPTIMIZING PQ-CELL

5.1. Logic unit

Figure 22 is the latest schematic of LU, Dy and Dy are delays that are part of
the pulse width control circuitry. The LU routes a pulse arriving at one of its two
inputs. Ay and Ag. to one of its two outputs. Zy and Zg. The route is determined by D,
E. PG Boand B. Pulses can be prevented from passing through the LU by setting
the enable signal low. The major improvement of this LU is that it has a built-in
circuitry to adjust the pulse width, by trimming the incoming pulse before stretching
again. Consequently, neither would the pulse width be too long, nor will it be shorten
to disappear after passing multiple cells. In addition, it maintains pnlse integrity by
introducing ouly two gate delavs. which are two nnits less than the original design

built. with pulse generator.
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Figure 22. The modified version of LU.
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The built-in pulse width control circuitry consists of two parts: pulse trinnner
and pulse stretcher. We simplified a subset of the LU for timing analysis, shown in
Figure 23. The first 3-input NAND gate and loop AA’a forms the trimmer. When
a pulse with exceeding width comes. the trimmer will generate a new inverted pulse
with a relatively narrow and fixed width. by carrving out NAND function between the
original pulse and its delayved copy. The streteher is achieved by carrving out NAND
function between the trimmed pulse and its delaved copy. Sinee all the delay clements

are fixed in this civeuit. we can successfully generate a new fixed-length pulse.

) o
A i Av,} | {0 fio
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Figure 23. Simplified LU for tming analysis.

However. the width of input pulse not staying in a certain range could lead to
a malfunction. For instance, a very narrow incoming pulse will not be stretehed but
ending up with two separate pulses. Likewise. large pulse width will resnlt in an
oscillation due to the existence of the mverting loop. For simplicity, assuine Dy =0
and D; = 0. and et G' = one gate delay. Let D, = delay from A to a = ONAND +
dnor + Dy = 2G+ Dy. Dy, = loop delay = dnanp + dxanp +dxvon + Dh = 3G + Dy.
W, = width of the imput pulse and Wo = width of the ontput pulse. If W, < D,,.
the input pulse is too short 1o stretch. Consequently. there will bhe two ontput pulses
of width W7, with leading edges scparated by D,. If D, < W, < D,. incoming pulses
are stretched appropriately. but too short to Le trinmed. thus Wy, = W, + D_If
Dy < Wy < 2D, both the trimmer and stretcher successfully adjust the pulse width.

I this case. Wy = Dy, + D, If W, > 2D, the loop forms a 3-stage ring oscillator,
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m which multiple pulses are generated out of a single long pulse. To meet timing
requircinent. D, < W; < 2D, should be satisficd. These two statuses also suffice
to be considered “steady™. since for every Wy, there is Dy < W, < 2D,. which also
helps keep the consistency of outgoing pulse width. too. The acceptable range of
mput pulse width can be increased by adding up more delav to Dy, with the tradeoff

of increasing the mininm input pulse width as well.
5.2. Configuration circuitry

Due to the arca-consuming property of the originally proposed. which takes
twice as much arca as the functional cirenit, a new configuration circuitry with high
configuration efficiency is proposed in this seetion. There are 11 bits for cach of four
quarters and 1 bit shard by a whole cell. The configuration bits for a quarter are: 1
for the initial condition of the data latch: 4 (o specify the LU function: 1 for the initial
condition of the event latch: 1 to specily whether or not the guarter participates in
the join, and 4 for the input multiplexer (1 cach for the 0" and *1° mputs to select
between straight and a turn. and 2 to select one of four turns). The configuration bit
shared by the cell is: 1 bit for split join. Each cell has two configurations: a defanlt
configuration and a programmable configuration.  The bits far the programmable
configuration arc stored in a shift register. The bits for the default configuration are
wired in. A ~default” input chooses between the two configurations. If “default” is
true. the default conficuration is selected: otherwise the programmable configuration
1s chosen.

5.2.1. Default configuration

Default configuration is accomplished by a sclection circuitry. which is a collec
ton of the following circuits. In each case. if “default” is false (low). the ompnt is
determined by the programmable configuration bit and. if “defanlt™ is true (high).

the output is determined by the cirenitry.
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Figure 24(a) and (b) are used to supply levels. Figure 24(a) is used when defanlq
1s zero. Likewise, if default is one. Figure 24(bh) is used. Figure 24(¢) and (d) arc used
Lo supply a pulse to one of two outputs. Figure 24(c) is nused if the default is to send
a pulse to zero_out. Figure 24(d) is used if the default is to send a pulse to one_out.

C_in C.in )
e M C_out e :D%cwum
(@) (b}
= .
c_in c_in
defauft Zero_out defaull Zero_out
Sulse j>—~ Cne_out Tose D———- One_out

(c} {c)

Figure 24. Default selection for (a) set default (o zero: (b) set defandt to one: (¢ set
default pulse exit zero_out: (d) set defanlt pulse exit one_ont.

5.2.2. Programmable configuration

The programmable configuration of cach cell is stored in a shift register. Each
stage in the shift register is a D-latch (Figure 25, iu which a “high” clock signal triggers
mput passing through to the output (known as the “read” state). while a “low™ c¢lock
signal discommects input from the ontput node, (known as the “store” state). 'To store
a copy of its imput. the latch goes through a store-read-store cvele. The tnput nust
be steady while the Tatch is about to reach the “read” state. Morcover. a long shift
register can be constructed by cascading the shift register clements and cansing each
stage store a copy of the output of its predecessor in a ripple-like fashion. starting
with the end opposite from the data input. Figure 26 is an example of a 3-stage shift

register. Data enters from one end of the chain. while shift pulse enters from the
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other end. With suflicient delay between stages. a negative at (6 shift pulse will cause

stage N+-1 to store a copy of the output of stage N

G
D — Q
G —> a

Figure 25, Schematic of a D-latch with complementary outputs construeted by

transmission gates.

Figure 26. A 3-stage shift register chain.

As described before, the inter-stage delay should be “sufficient™. To determine
this value, an expression is needed for this inter-stage delay. Let d he the delay
through the delay element. let g be the delay through an inverter. let p be the time
to pass through a switch. and let s be the time to open or close a switch (assume
they are equal). Consider a negative pulse of width W at G of stage N+1. The
leading edge of this pulse arrives at cach successive stage after a delay of d. 1f d is
sufficiently long, stage N+1 will enter the store state before stage N is able 10 affect
node X of stage N+1. First looking at stage N. the leading edge of the pulse will cause
stage N to begin the trausition to the read state when it reaches the input switch.

This transition will canse the D input to stage N to pass through the input switch.
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through the Q output inverter. and appear at the Q output. This new output will
appear at node X after it passes through the mput inverter and imput switch of st agoe
N-++1. So the shortest path (from G of stage N4-1. through stage N, and to node X of
stage N+1) goes through a delav element . through the G input inverter of stage N
closes the input switch (control imput to data output). and goes through the Q ontput
mmverter, the D input inverter of stage N+1. and the mput switch (data input to data
output). The length of this path is  + gtrs+g+g+p=394d+s+p Within
this time. the trailing edge of the pulse nmst open the inpnt switeh of stage N4,
This, along with closing of the loop switch. causes stage N+1 (o enter the store state.
The longest path from G to node X passes through the /G input inverter., through a
sccoud inverter (to produce G}). and opens the iuput switeh (coutrol input to data
output). The length of this path is g + g+ 5= 29+ s Sothe needed relationship is
W2g+4s < 3g+d+s+p. This reduces to W < d4+y+p. Hp=10,then W < (j+_(/.

Below in Figure 27 is the latest design for storing the configuration hits of «
quarter.  The delay clement is a driver with a delay. d. of 2¢. The initial pulse

Is generated from a low-to-high transition of the mput using a “one-shot™, which

implemented as below in Figure 28, The generated pulse width W = (142K )y where
A is aninteger. Right here we have K = 1. so that 1§ = 3g. Several issues arise

with this design. First. as shown below. in order for data bits to propagate through
the shift registers. W < d + g should be satisfied. In other words. there exists d > 2g.
This could he achieved by slight decreasing both the PMOS and NMOS width within
each driver. Second. throughout a entire cell. there are four quarters of conficuration
cireuitry cascading together. For a shift pulse propagate throngh “smoothly”. the
same amount of delay between each D-lateh nnit should be guaranteed. The only
exception occurs only when a shift pulse exiting one quarter then entering another.

To prevent this exception happening. d; +d, = d should be strictly satisfied. in which
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d; and d,, are delay of last inverter and “one-shot™ eircuit, respectively. Third. since
“one-shot”™ can only shorten a pulse by controlling the width, but cannot lengthen
a pulse that is already short. This feature requires delay clements carefully sized to

lengthen pulses so that a shift pulse does not die out in the middle.

Data_in

Pulse_out

Ficure 27. Configuration circuitry for a quarter.

Level_in . Pulse out

Figure 28. An “one-shot™ cireuity, generating an imverting fixed-length pulse from a
level input.

Below in Figure 29 is a configuration circuitry of an entire cell. Note that there
s one configuration bit remained for split-join.  An extra one-shot circuit and an
inverter are added in order to keep the delay consistency hetween cach wmdividual

register. when considering an cven longer shift register chain along multiple cells.

NN

LU [+

111l

: 3 3 l——Data,out
] SR11 SR11 SR11 SR11

Shift_out M < = e - }__ 3 v L & Level_in

Figure 29. Configuration circuitry for a cell.
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CHAPTER 6. SUMMARY AND CONCLUSIONS

The PQ-cell is the Tatest member of a set of exploratory designs for a simple re-
configurable computing element for cellular-automata-based conformal computing. A
single cell includes [acilities for performing logic. moving and storing information, and
coordinating parallel activity. The PQ-cell is a dual-rail pulse-driven asyuchronous
primitive that combines stimulus and data i a single pulse that appears on one of
two rails (wires). This dual-rail design eliminates any need to maintain a timing
relationship between separate stimulus and data signals,

A novel featnre of the PQ-cell is its quad-cell design which consists of four
clementary quarters, cach with a different compass orientation, that share synchro-
nization and configuration circuitry. Each guarter includes a 1-hit storage unit and
a logic unit capable of performing any one of the 16 possible functions of two bits.
The P-cell. a single cell with 4-{old rotational symmetry, is also being considered and
future work will include a careful comparison between these two designs.

The cells are designed to be elements of extensible cellular arrays in which
communication takes place directly between neighboring cells. Accordingly, arravs
of PQ-cells can be configured to form a wide variety of computational structures
including cellular antomata and FPGA-like circuits. Becanse there are no global
signals or long wires. and pulse imtegrity is maintained by the cells. the arrays can be
extended to very large sizes. Also. to make the cell configuration process extensible,
it was designed to be a selective and highly parallel activity.

In addition to a functional design. this paper presented simulation results for
an 1C design of the PQ-cell The design. intended for fabrication in TSMC's 0.25
pm CMOS tedmology. was used in simulations of basic single and multiple cell
structures. inclnding an XOR gate. a full adder. a ring oscillator. and a pipeline.

The simulations were nportant for testing the correctness of the design and for
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obtaining estimates of speed and power. Comparisons with other work indicate that
the PQ-cell is competitive in performance and cnergy consumption.

The PQ-cell design is a good step toward a reconfigurable asvnchronous primi-
tive that can serve as the elemental unit in extensible arrays for conformal compnting.
The next steps are to refine the design and move on to lavout and fabrication of a
prototype array chip. Many additional steps are needed to adequately address issues
related to the performance. cost. prograunning. and use of systems employving (hese
arravs. The hopeis that this path will lead to an extensible material that is a superior
host for compitation in applications ranging from small low-power scensors to large

high-throughput pattern processors.



1]

9]

[10]

[11]

REFERENCES

Jo Lyke. Go Donohoe. and S Karna. “Reconfigurable Cellular - Array
Architectures for Molecular  Electronics.”  Air Force Rescarch Laboratory.
Technical Report. AFRL-VS-TR-2001-1039. 2001

S. Das. G. Rose. M. Ziegler. C. Picconatto. and J. Fllen] bogen. “Architectures
and Simulations for Nanoprocessor Svstems Integrated on the Molecular Scale.”
w Introducing Molecular FElectronics. pp- A79-512, Springer Berlin/ Heidelherg,
2005.

L. Adleman. “NMoleenlar Computation of Solutions to Combinat orial Problems,”
i Science. vol. 266, pp. 1021-1024. 1991,

N Sipper. “The Ewmergence of Cellular Compating.” in Computer. vol. 32. issuce
7. pp. 18-26. Jul. 1999.

P-A. Mudry. F. Vannel, G. Tempesti. and D, Mange. “CONFETTI - A
Reconfigurable Hardware Platform for Prototyping Cellular Architectures.” in

IEEE Intl Parallel and Distribuled Processing Symp. (IPDPS 200 7). pp. 1-8.
H. Abelson. Do Allen. D. Coore, C. Hanson. G. Homsy. T Knight, R, Nagpal, .

Rauch. G. Sussman. and R.Weiss. “Amorphons ¢ omputing.” in Communications

of the ACM. vol. 43, pp. 74-82. 2000.

H. Abeclson. J. Beal. and G. Sussman, “Amorphons Computing.”  in
Technical Report. Computer Science and Artificial Intelligence Laboratory, MI'T,
Cambridge. MA. MIT-CSAIL-TR-2007-030. Jun. 2007,

M. Pavicic. “Wallpaper Computers: Thin. Flexible, 1 xtensibles and R2R Ready.
i Flexible Electronics and Displays Conference. Phoenix, AZ. Fely. 2009.

N. Margolus. "CAM-8: A Computer Architecture Based on Cellular Antomata.”
in Pattern Formation and Lattice Gas Aulomala. pp. 167-187. 1996.

T. Toffoli. A Pedestrians Introduction to Spacetime Crystallography,” in [BM
J. Res. and Der.vol. 48, n0. 1. pp. 13-29. Jan. 2004.

N. Macias and P. Athanas. “Application of Self- Configurability for Autonomons.
Highly-Localized Self-Regulation.” in NAS A/ESA Conference on A(ld}m\('
Hardware and Svstems (AHS-2007). pp. 397-404. Edinburgh. Scotland. Jul. 2007.

F.o Gruau. Y. Lhuillier. P. Reitz. and O. Temam. “BLOB Compnting.” in 2004
International Conference on Compuling Fronticrs. CFO4. Ischia. Italv. Apr.

L. Chua and T. Roska.Cellular Newral Networls and Visual - Computing:
Foundations and Applications. New York. NY. USA: Cambridge University Press.
2002,

44



[14]

M. Hoseini. M. Pavicic. and C. You. A Cellular Automata ASIC for Conformal
Computing.” in Proc. of the International Conference on Engineering of
Reconfigurable Systems and Algorithms. pp. 305-306. Las Vegas. Nevada, USA.
14-17 Jul. 200s.

Do A. Huffinan. “The synthesis of sequential switching circuits. in Sequential
Machines: Selected Papers. E. F. Moore. Ed. Reading. MA: Addison-Wesev.
1964.

D. E. Muller and W, S, Bartky. “A theory of assuchronons cirenits.” Proc. Int.
Symp. Theory of Switching. pp. 204-243. 1959

S. Ho Unger. Asynchronous Scquential Switching Cireunts. New York: Wiley.
1969.

C. A R. Hoare. ~Commmmicating scquential processes™. Commun. ACM. vol. 21,
pp. 666-677. 1978,

Martin. Alain J. and Nvstrom. Mika and  Martin. (2006)  Asyvuchronous
techniques for svstem-on-chip design. Proceedings of the 1L 94 (6). pp. 1089-
1120, ISSN 0018-9219

5. Wolfram. A New Kind of Science. Wolframm Media. Jamary 2002,

P. Sarkar. ~A Brief History of Cellular Automata.” vol. 32. pp. 80-107. Nar,
2000.

N. Ganguly. B Sikdar. AL Deutech. G. Canrieht. and P Chandburi.
“"A Survey on Cellular  Automata.™  Feb. 2006, Available  ouline al
http://www.cs.unibo.it /bison /publications.

S. Adachic F. Peper. and J. Lee. ~Computation by Asvichronously Updating
Cellular Automata.”™ in Journal of Statistical Physics. vol. 114, no. 1-9. pp. 261-
289. Jan. 2004.

F. Peper. J. Lee. S. Adachi. and S, Mashiko. “Layving Ont Circnits on
Asynchironons Cellnlar Arravs: A Step Towards Feasible Nanocomputers.” in
Nanotechnology 14, pp. 469-485. Mar. 2003.

R. Minnick. “A Survey of Microcellular Research.” in Journal of the ACM. vol.
14 no. 20 pp. 203-241. April 1967,

C. Wong. A, Martin. and . Thomas. “An Architecture for Asvuchronous
FPGAs.” in Proc. 2005 [EEE [nil Conf. on Field-Programmable Technology.
pp. 170-177. Dec. 2003,

J. Teifel and R. Manohar. “An Asynchronous Dataflow FPGA Architecture.” in
IEEE Trans. Comput.. vol. 53. no. 11. pp. 1376-1392. 2001.

15



(28] A. Mahram. M. Najibi. and H. Pedram. ~An Asynchronous FPGA Logic Cell
Lplementation.” in Proe. of the 17th ACM Greal Lakes Symposium on VLS.
pb. 176-179. 2007.

[29] J. Teifel and R. Manohar. “Highlyv Pipelined Asynchronons FPGAs. in Proc.

of the 2004 ACM/SIGDA 12th Intcrnational Symposiuin on Field- Programmable
Gale Arrays. pp. 133-142. Monterev, CA. Foby, 2004,

16



APPENDIX A. SOURCE CODE FOR LOGIC UNIT
DESIGN

library IEEE; use IEEE.STD_LOGIC_1164. all ;

entity LU is
port (AO0.IN, A1.IN, BO.IN, B1_IN, D.GATE,
E_GATE, F.GATE, G.GATE, EN: in STD_LOGIC;
20, 7Z1 : out STD LOGIC);

end entity ;

architecture struct of LU js

component delay is

port (A0, Al, CO, C1, EN: in STD_LOGIC;
F : out STD_LOGIC);

end component ;

component AQI4V1 is

port (A, B, C, D : in STD_LOGIC;
F : out STDLOGIC);

end component;

component OAI4V1 is

port (A, B, C, D : in STD_LOGIC;
F : out STD_LOGIC);

end component ;

signal S1, S2, S3, sS4, 85, S6 : STD_LOGIC;

begin
AOI1 : AOI4V1 port map (B1.IN, E.GATE, BO_IN » D.GATE, S1);
AOI2 : AOI4V1 port map (BO_IN, F.GATE, B1_IN » G.GATE, S2);
AOI3 : OAI4V1 port map (BO_IN, E.GATE, B1_IN » D.GATE, S3);
AOQOI4 : OAI4V1 port map (B1.IN, F.GATE, Bo.IN, G.GATE, S4);

47



delayl : delay port map (AO_IN, Al1IN, (not S1),
(not S2), EN, Z1);
delay2 : delay port map (AQIN, A1_IN, 53, S84, EN, Z0);

end ;

entity delay is
port (A0, Al, CO, C1, EN: in STD_LOGIC;
F : out STD_LOGIC);

end delay;

architecture struct of delay is
component NAND3V1 is
port (A, B, C : in STD_LOGIC;
F : out STD LOGIC);
end component;
component NAND2V1 is
port (A, B : in STD_LOGIC;
¥ : out STD_LOGIC);
end component;
component INVX1 is
port (A : in STD_LOGIC;
Z : out STD LOGIC);

end component;

signal S1, S2, S3, sS4, 55, 86 : STD_LOGIC;

begin
NAND1 : NAND3V1 port map (S6, Al, C1, S1);
NAND2 : NAND3V1 port map (S6, A0, Co, S2);
NAND3 : NAND2V1 port map (S1, S2, 83);
INVLI : INVX1 port map (83, S4);
NAND4 : NAND2V1 port map (S4, EN, S5);
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INV2 : INVX1 port map (S5, S6);
NAND5 : NAND3V1 port map (S4, S2, S1, F);

end ;
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APPENDIX B. SOURCE CODE FOR CONFIGURATION
CIRCUITRY DESIGN

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity config is
port (CLK.IN : IN STD_LOGIC;

DATAIN : IN STD_LOGIC;
default , pulse_not : IN STD_LOGIC;
D, E, F, G, DTALTCH.0, DTA_LTCH.1 , EVI_LTCHLU,
EVT_LTCH.1, JOIN, TURN.TO, TURN.T1 , TURN_UO,
TURN.U1 : OUT STD_LOGIC;
CLK OUT : OoUT STD_LOGIC);

end config;

architecture behavior of config is
component store_unit is
port (data_in, clk_in : IN STD_LOGIC;
clk_out : OUT STD_LOGIC;
data_out: OUT STD_LOGIC);
end component;
component oneshot is
port (SI : in STD_LOGIC;
PO : out STD_LOGIC) ;
end component;
component INV.REG is
port (A : IN STD_LOGIC;
Z : OUT STD_LOGIC);

end component;

signal store_bit, clk : STD LOGIC.VECTOR. (10 downto 0);
signal clk_ctl : STD LOGIC;



begin

pulse_gen

LATCHO: store.unit port map
(data_in, clk (9), clk (10), store_bit (0));
LATCH1 : store_unit port map
(store_bit (0), clk (8), clk (9), store_bit
LATCH2: store_unit port map
(store_bit (1), clk (7), clk (8), store_bit
LATCH3: store_unit port map
(store_bit (2), clk (6), clk (7), store_bit
LATCH4: store_unit port map
(store_bit (3), clk (5), clk (6), store_bit
LATCHS5: store_unit port map
(store_bit (4), clk (4), clk (5),store_bit
LATCH6: store_unit port map
(store_bit (5), clk (3), clk (4), store_bit
LATCH7: store_unit port map
(store_bit (6), clk (2), clk (3), store_bit
LATCHS: store_unit port map
(store_bit (7), clk (1), clk (2), store_bit
LATCHY: store_unit port map
(store_bit (8), clk (0), clk (1), store_bit
LATCHI10: store_unit port map
(store_bit (9), clk_ctl, clk (0), store_bit
process (default, store_bit (0), store_bit (1),
store_bit (2), store_bijt (3), store_bit (6),
store_bit (7), store_bit (8), store_bit (9),
store_bit (10))
begin
if default = °'1° then

oneshot

port map (clk_.in ,

clk_ctl);

(1));

(2));

(3));

(4));

5));

(6));

(7))

(8));

(9));

(10));



D<= '0'; E<= "0°; F <= 17 G <= ’17°; JOIN <= ’1
TURN.T0 <= ’0’; TURN.T1 <= 07 TURN.UD <= °0°;
TURNUL <= ’0°;
else
D <= store_bit (0); E <= store_bit (1); F <= store_bit
G <= store_bit (3);JOIN <= store_bit (6);
TURN.TO <= store_bit (7); TURN.T1 <— store_bit (8);
TURNUG <= store_bit (9); TURNUL <= store_bit (10);
end if;

end process;

DATATLATCH: process (default , pulse_not, store_bit (4)) begin
if default = '1' then
DTA LTCH.1 <= not (pulse_not);
DTALTCHO <= °0°;
elsif store_bit (4) = ’0° then
DTA_LTCH 0 <= not (pulse_not);
DTALTCH.1 <= °0°;
else DTALTCHLO <= 07
DTALTCH.1 <= not (pulse_not);
end if;

end process;

EVENTLATCH: process {default , pulse_not, store_bit (5)) begin
if default = ’1' then
EVILTCHO <= not (pulse_not);
EVT LTCH.1 <= ’0°;
elsif store_bit (5) = 0’ then
EVILTCHO <= not (pulse_not);
EVTLTCH.1 <= ’0°;
else EVILTCHO <= '0°;
EVILTCH.1 <= not (pulse_not );

i
o

(2);



end if;

end process;

INV: INV.REG port map (clk (10), clk_out );

end ;

entity store_unit is
port (data_in, clk_in : IN STD_LOGIC;
clk_out : OUT STD_LOGIC;
data_out: OUT STD.LOGIC);

end store_unit;

architecture structure of store_unit is
component dlatch is
port (D, G : IN STD_LOGIC;
Q : OUT STD_LOGIC);
end component;
component buffvl is
port (A : IN STD_LOGIC;
F : OUT STD_LOGIC);
end component ;
component buff_reg is
port (A : IN STD_LOGIC;
F : OUT STD_LOGIC);

end component ;

signal sig_buffl : STD.LOGIC;
signal sig_clk_out : STD_LOGIC;

begin

latch : dlatch port map (data_in, sig_clk_out , data_out);
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buffl : buffvl port map (clk_in, sig_buffl);
buff2 : buff_.reg port map (sig.buffl , sig_clk_out );
clk.out <= sig.clk_out;

end;
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