JOB AGGREGATION SEARCH ENGINE

A Paper
Submitted to the Graduate Faculty
Of the
North Dakota State University
of Agriculture and Applied Science

By

Anita Sundaram

In Partial Fulfillment of the Requirements
for the Degree of
MASTER OF SCIENCE

Major Department:
Computer Science

February 2011
Fargo, North Dakota

North Dakota State University
Graduate School

Title

JOB AGGREGATION

SEARCH ENGINE

By

ANITA SUNDARAM

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University’s regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the document, signatures have been
removed from the digital version of this document.

ABSTRACT

Sundaram, Anita, M.S., Department of Computer Science, College of Science and
Mathematics, North Dakota State University, February 2011. Job Aggregation Search
Engine. Major Professor: Dr. Kendall E. Nygard.

In this paper we describe the design and implementation of a Job Aggregation
Search Engine (JASE) that acts as a one-stop-shop for listing recently posted jobs across top
multiple job search engines. There are multiple job search engines available that receive and
present jobs posted by employers. The JASE system extracts data from multiple websites
and presents the job data in a consistent and presentable format.

The objective of this paper is to implement a job search tool that seeks to reduce the
browsing time of the user querying multiple job websites for the same job criteria. It also
aims to reduce the possibility of the user being overwhelmed while browsing through
various websites to find the job of interest. The reduction in total browsing time is made
possible by triggering a search for jobs when the user chooses a discipline. This allows the
user to view recently posted jobs across multiple job boards. Often it can become tedious
for a user to visit a job website and not find the job of interest, resulting in browsing
through other websites one at a time. In order to avoid the browsing of many sites, JASE
serves as a job extraction program that aggregates jobs from multiple job websites and
returns results in a simple, user-friendly user interface.

The program consists of two components, the user interface and the job extraction
program. The job extraction program has two components, namely the crawler program and

the parser program. The techniques for crawling and parsing the websites are designed and

implemented after carefully studying the HTML structure of the target website.

iii

ACKNOWLEDGEMENTS

I would like to thank Dr. Kendall E. Nygard for his continued support, help and
direction. My sincere thanks to Dr. Changhui Yan, Dr. Tariq King, and Dr. Limin Zhang for
serving on the committee. I would also like to thank my parents who gave me

encouragement to complete the paper.

TABLE OF CONTENTS

ABSTRACT ...ttt ettt s bt ae b i
ACKNOWLEDGEMENTS ...ttt iv
LIST OF TABLES ...ttt ettt et b s er e st vii
LIST OF FIGURESottoietieiieeeire ettt ettt et sa e viil
1. INTRODUCTION .ottt s et s s sne s 1
2. RELATED WORKooiiiiiee ettt st b e 3
3. COMPONENTS OF JASEooioiieiieeet ettt e 6
3.1. Enviroment Used to Build the Search Engineccccccoooiii 7

3.2. The USer INTEITACE ... cviitiiieeiieiciiere ettt b bbb 7

3.3. Data EXtraction Program......ccoccooeoienirieiiiiiieiicrciee e 8
3.3.1. Crawler Programcccocevvirieniiiiiiiiiccrcies et 8
3.3.2.Parser PrOQramc..cccoocviviiiiiiiiiiiiiiiie e et 11

4. IMPLEMENTATION OF DATA EXTRACTIONcccooiiiiiiiiiiei e 15
4.1. Strategy for Crawler Programccccooiiiiiiiiiiiniiii i 15
4.1.1. Crawling Sector Based Seed URL and Kelated URLS ... 16

4.2. Strategy for Parser Program ..o 19
4.3. Data Retrieval from a Target Job Website.......ccocooervieniiiiiii 21
4.3.1. Crawler Program for Seed URL ... 21

4.3.2. Crawler Program for Multiple Pagesc...ccocoviiviin, 23

4.3.3. Parser Program for Text EXtractionccccooviviiimiiiiiiiniicc 24

A%

S OUTPUT oot et st a e s s e eir e 26

5.1, System Performancec..ccoccooriiiiiioniiicieec 29
6. TESTING c..oieiieitieeee ettt st et s et 32
6.1. Testing for Crawler Programc..ccoceoiiiniiniinniniiinic 32
6.2. Testing for Parser Programcooccoeiiiiiiiiiiiii e 35
6.3. FUNCHONAl TESNG ...ovvievieie ettt 37
7. CONCLUSION ...ttt ettt ettt cebe st sa s ae bbb n e 40
8. FUTURE WORKocoiotiiiieieiiricte sttt eae bbbt 41
REFERENCESooitiitiieoteee ettt s bbbt se e 42
APPENDIX A. SOURCE CODEccoeiiiiiiieiett et 44

vi

LIST OF TABLES

Table

5.1 Total Time Taken for Job Retrieval from Target Websites

vii

LIST OF FIGURES

Figure Page
1.1. Architecture of Metasearch Engine [3].....cccocveviieiiiiiiioniieie e 3
3.1, Architecture OF JASE ..o s 6
3.2. Screenshot of the User Interface Showing the Job Sector ..o 7
3.3. Sample Layout of Job Listing Page of a Job Search Enginecccccoceoiinninn 11
3.4. HTML Source for Individual Job Listing in Figure 3.3cccooiniiiiii 12
4.1. Sample HTML Layout Job Listing Pageccccccoeviioiiniiniiei 19
4.2. Sample Source Code for Figure 4.1cccoooiiiiiiiniiiic e 20
4.3. Code Snippet for Job Sector Selection Page.........ccccoeevviiiiiiiiiiinii, 21
4.4. Code Snippet for Crawling Seed URL........cccccovviiinininiiii, 22
4.5. Code Snippet for Finding Total Number of Pages for a Job Sectorc..ccoccoeinins 23
4.6. Code Snippet to Crawl Multiple Pages for a Specific Job Sectorc.cccooeveiiiins 24
4.7. Code Snippet for Parsing Target WebSItec...ooviiviiiiriiniieiecin i 25
5.1. Selection of Job Sector - AAMINISIIAtIVEcooiiiiiiiiiiiiiicic e 26
5.2. Job Listing Page for Administrative SECTOrc.c.ecoivieriirviiiiiiiiniiciii e 27
5.3. Selection for Job Sector - ACCOUNTING ...vviivvviriieiiieecieeeeeiree e e sie e ereeeiiee e s 27
5.4. Job Listing for ACCOUNtING SECTOT ..c.ueeviiiiiiiiiieieirreeee et 28
5.5. FEedback MESSAZEcccueerriieiiiiee ettt ettt 28
5.6. Retrieved Jobs from Job.com [7] and Simplyhired.com [6].......ccccovvininininiiinnins 29
5.7. Simplistic View 0f JOb ReSUILS ...c..coviiiiiiiiiiiiiiiiiiiiiiiie e 30
6.1. Screenshot of Simplyhired.com [6] Accounting Webpage.........cc.occooivviiiiiiniininns 33

viii

LIST OF FIGURES (Continued)

Figure Page
6.2. Testing for Correctness of Crawled URLScocooiiiiiicii s 33
6.3. Screenshot for Administrative Sector of Job.com [7] ..o 34
6.4. Crawled URLs for Administrative Sector of Job.com [7] ... 35
6.5. Screenshot for Indeed.com [5] FInance SECOr ..o 36
6.6. Screenshot for Indeed.com [5] Job Details Parsed to Notepad.....ccoooonvciiiinin 36
6.7. Screenshot of the User Interface — Drop-Down Menu ... 37
6.8. Screenshot of Initial Listing of Jobs for Computer/IT Sector ..o, 38
6.9. Screenshot of the User Interface with Jobs Sorted by Locationcoceveecniiiee 39

1. INTRODUCTION

In recent times, Job Search Engines have become an important bridge between job
seekers and employers. These engines provide job seekers with access to job vacancies
posted by companies and also, an easy way to apply for the jobs online. One of the
underlying concepts used is that of a metasearch engine or a vertical search engine or a
combination of both. A Metasearch engine [1] crawls through various search engines and
presents the output without the intermittent usage of a database; whereas, a vertical search
engine [3] aims at scraping data that pertains to a pre-defined topic such as jobs and careers.

The primary goal of a job search engine is to provide a listing of all available jobs in
the Internet by retrieving job vacancies from career webpage of multiple company websites
in addition to job vacancies posted to the job engine website by individual companies.

There is a large amount of job data in the Internet, which becomes a target for many
search engine enthusiasts. Each of the search engines employs their own search algorithm
techniques to extract available information. Due to the variance in the crawling techniques,
not all engines crawl through the same web pages. Hence, when a user queries different
search engines for a word or a set of words, he may find different results being returned.

The objective of this paper is to reduce the browsing time of the user from visiting
various websites for the same job criteria a user is interested in and also to reduce the
overwhelming factor associated with browsing through multiple job search engines for
relevant jobs.

This paper implements a Job Aggregation Search Engine(JASE) which aims at

categorizing jobs into sectors such as Accounting, Computers, etc; retrieving job listings

from top job portals in real-time; unifies the listings and gives a response in a consistent
format so that users can choose the best website that suits their job interests. The
implementation consists of a user interface which displays a list of job categories. Once the
user selects a category, the crawler program is triggered. It crawls through various top job
websites and displays a unified list of related jobs that are posted on the current date. This
method of unification saves the user from accessing various sites and keying in the same
search data multiple times.

The two main components related to job extraction are the crawler and parser
program. In general, a web crawler is a computer program that browses through the internet
in a methodical manner. The crawler program visits the list of seed job URLs, and
downloads all the required child hyperlinks such as the job listing hyperlink. The parser
program is used for text processing where in it parses through the downloaded HTML
content of the job listing page and extracts only the desired text and hyperlinks such as Job
Position name, Location, and Description.

Each job website has a different layout and HTML structure. The extraction
technique involves analyzing the HTML content and employing different crawling and
parsing programs to extract only the target data. An attempt has been made to standardize
the crawlers and parsers to an extent such little modification is required for different
websites.

The rest of this paper is organized as follows: Chapter 2 discusses about earlier work
that has been done with job search engines. Chapter 3 describes the architecture of JASE.
Chapter 4 discusses about the crawling and parsing techniques employed. Chapter 5 and

Chapter 6 illustrate the output and testing results respectively.

2

2. RELATED WORK

Due to the increase in the amount of data present on the web, research is being done
on search engine techniques to provide a unified access to multiple search engines and
consolidate the results into a single list. This section discusses work that is related to this
paper and about search engines that has been used as a target source for the search tool.

Metasearch engines are systems that take requests from the user and sends them to
multiple other search engines or databases and unifies the results into a single list, thereby,
saving the user from visiting multiple websites separately [1]. The main advantage of these
engines is that they provide larger coverage and a consistent interface [2]. These engines do
not use a physical database to store the results. Rather, the databases of the search engines
are used to collect the results and display it in a list format. These metasearch engines

employ unique search algorithms to implement the search. The architecture of a metasearch

engine [3] is illustrated in Figure 1.1.

User Interface

A

Database Selector

Result merger

A 4

A

Figure 1.1. Architecture of Metasearch Engine [3]

Query Dispatcher Result Extractors
: L
Search Search
Engine Engine

3

The metasearch engine [3] takes the input from the user using the User Interface,
selects the correct database, customizes the query and sends it to multiple search engines.
The result from these search engines are merged together and returned to the user. This is
similar to our work because the user query is sent to multiple search engines and the results
are merged into a single unified list. Since we restrict our search to the job domain, the user
query is sent to all the selected search engines without any database selection criteria.

There are many Job portals that exist as typical search engines which aggregate jobs
from job websites, career websites and other online sources. A metasearch technique is used
in paper [4]. It discusses the a job search techniques where in it extracts the user interface
from job boards, generates an XML scheme, and uses resultant information to display jobs.
Our result is related to this work. However, we extract job information from the search
engines job webpages based on the HTML source code.

Vertical Search Engines [3] use focused crawlers. Instead of crawling the entire
web; search is based on a certain domain. This work involves text and link analysis for the
crawling. Our paper is related to this work since we focus on only the job sector. Hence,
text in the HTML webpage is analyzed to crawl and parse the job information.

Indeed.com [5] and Simplyhired.com [6] are metasearch engines that browse
through thousands of job boards, classified listings, newspaper etc. These engines focus on
a keyword search. These engines do not have a physical database but uses the databases of
the source websites. Our paper is related to the work since we also crawl through these
websites to gets gather result sets. But in our case, a database is used for intermittent storage

of extracted job information from where the results are displayed. Also, our focus is on a

job sector categorization. The result is displayed on a single page with important job data
such as job title, location and descriptions link.

Job.com [7] is a job search engine that provides an extra option for the users to post
their resumes and employers to post their job listings. The paper is related to this work but
we provide the users with a job sector selection drop down menu as the main source of
input. We crawl through job.com and display the results in a tabular format which is easily
comprehensible. The user can click on the hot-links provided on the display page to apply
for jobs through job.com. JASE holds a database from where information is manipulated to
a simple format. Job information from all these job websites are merged together to provide

a consistent result.

3. COMPONENTS OF JASE

The structure of the job engine can be classified into two segments. The first
segment is comprised of a user interface and the second segment is the data extraction
program. The user interface is the web based medium through which the user inputs the job
selection criteria and gets the results displayed in a readable format. The job extraction
program mines through various job resources and parses specific job information on those
job board websites and downloads job data into the database. Section 3.1 briefs about the
environment used to build the system. Section 3.2 discusses about the user interface and
section 3.3 discusses about the data extraction program which includes the crawler and

parser programs. Figure 3.1 illustrates the architecture of JASE.

User Interface [> PHP

v
Data Extraction Program

Perl Library -

.‘ CraWICr Data
TP MH Access MYSQL

Parser

TP — HTML::TokeParser
MH - WWW::Mechanize

Figure 3.1. Architecture of JASE

6

3.1. Environment Used to Build the Search Engine

The environment used to develop the user interface is XAMPP [8]. It is an open
source, cross platform development tool used for executing Perl and PHP programs using
Apache server and MySQL database. The main reason for choosing XAMPP [8]
environment is that it can be run on Windows and it is easy to configure to make it a web
server. The user interface was built using PHP, HTML and JavaScript. PHP is a free
software and scripting language used to generated dynamic web pages. It is used for
retrieving data from database and presenting in a web based format. Perl is used as the data
extraction language. Perl is a high level, general purpose programming language that has
powerful text manipulation facilities. Perl is chosen because the underlying technique for

the data extraction program is based on text identification and extraction from websites.
3.2. The User Interface

The User Interface provides the user with a dropdown menu that lists various job
sectors. Interface is intended to be simple and easy. Categorizing of jobs is used as the
criterion for job retrieval because users can easily relate to a job domain depending on their

profession. For instance, an accountant can select Accounting as the sector and browse

through all related jobs. Figure 3.2 shows the job selection input page.

i
|

Figure 3.2. Screenshot of the User Interface Showing the Job Sector
7

Once the user selects the sector from the drop down menu and hits the submit
button, he will be routed to a page that displays a unified list of jobs from various top job
portals. The job listing page displays details in a tabular format which is easily
comprehensible. Details that are listed are title of the job, location where the position is
available and the details hyperlink that route to the web page where it is originally posted.
The details hyperlink redirects the users to the appropriate detailed description page wherein
he usually has an option of applying for a requirement online.

Job data available in the job boards are extracted after the users submit action. Real-
time extraction of data has been done giving the users an advantage of browsing through the
latest jobs. In order to limit users’ wait time, a partial list of jobs is displayed periodically as
and when a particular job site is extracted. The user can browse through the jobs that are
initially displayed while the rest of jobs get crawled and loaded.

Once all the jobs are loaded, the users are given an option of sorting out the job title

and location in ascending or descending order.
3.3. Data Extraction Program

The core part of the JASE lies in data extraction. The data extraction segment of the
job retrieval program can be divided into two units.
1) Crawler program
2) Text Parser program

3.3.1. Crawler Program

In general, a Web Crawler is an automated software program that browses through

the internet in a methodical manner. JASE makes use of web crawler technology to gather

information from a given set of publicly available large job boards and retrieves relevant
and up-to-date data.

Once the extraction system receives the job sector input from the user, it triggers the
crawler program. The crawler is fed with a seed URL which is the entry point to the job
website that has to crawled. The seed URL is not always the main page of the job website.
Depending on the job sector, the seed input keeps changing. The techniques employed for
crawling will be discussed further in chapter 4.

The web crawler automatically navigates through the URL and downloads the
destination page as HTML content in its history stack. All the pages that are fetched can be
traversed back and forth. Due to the large number of jobs in job boards, the websites have
pagination facility. Hence, the crawler loops through all the pages until a specified break
condition. The downloaded page will be used by the parser program for text processing as
discussed in section 3.3.2.

One of the important behaviors of the web crawler is related to the Politeness policy
[12] that states how to avoid overloading websites. Steps have been taken while building the
crawler to specify the number of seconds delay between each request for next page in order
to avoid overloading the other job websites servers. Some of the modules that are employed
in writing the program have been discussed in the following sections.
3.3.1.1. Mechanize

Mechanize [10] is a Perl module that has been used for the process of web crawling.
It is a handy module that aids in programmatic web browsing. It is used to automate
interaction with websites. It is used in the process of crawling and screen scrapping which

not only downloads hyperlinks but also emulates an interaction with the website facilitating

9

navigation around site and filling out forms. Mechanize can be used to fetch sequence of
pages by following links and submitting forms. The visited URLs can be queried and
revisited since mechanize stores the history of all the URLs.
Reasons for choosing Mechanize are as follows:
1. Job search engine provides a feature keyword search box and a submit button.
Mechanize provides methods for automated form filling and submitting forms.
2. Each fetched page by Mechanize is stored in history. So, traverse between pages
becomes easy. It mimics a back and forward button in a web browser.
3. It is used for testing web applications. Using the testb::* modules, the fetched
content can be checked and passed as an input to a test call.
4. It automatically handles cookies and redirections.
One disadvantage of Mechanize is that it cannot be used to crawl JavaScript pages.
Declaration and Methods used with Mechanize are described below:
A Mechanize object can be created using the following syntax:
my $mech_object = WWW::Mechanize->new().
Some of the methods that are commonly used to crawl web pages are discussed as follows:
1. $mech->get($URL)
This method is used to the fetch the job URL that is passed as a parameter. The URL
can be passed as a string or URI object or a mechanize link.
My $link = www::mechanize::link->new({url => $url,
Text=> $text,
Name => $name,
Tag => $tag});

10

2. $mech -> back()
This method is used to return to return to the previous webpage. It is similar to the
back button of a web browser.

3. $mech -> links()
It is used to get a list of all the links found on the last fetched page.

3.3.2. Parser Program

The downloaded webpage received from the crawler program is the input to the
parser program. A webpage is generally built using HTML. An HTML page consists of a
number of tags which encloses text, hyperlinks and sub-tags. The parser program parses
through the HTML content of the web pages to extract job data.

As discussed, the important details that are required for a job listing webpage are the
job title and corresponding location and the description link. The main intent of the parser is
to scrape only these details avoiding all other text content on the webpage. Figure 3.3 shows

a sample layout of a job listing page of a search engine.

Job Board Website XYZ
Job Title Company
Short Description Location
Job Title Company
Short Description Location
Job Title Company
Short Description Location
Job Title Company
Short Description Location

Figure 3.3. Sample Layout of Job Listing Page of a Job Search Engine
11

A job board website generally follows the same HTML, structure for its job listing
pages. The job postings along with its short description would be displayed vertically one
below the other and the corresponding details such as location are located at specific
positions. In Figure 3.3, all the individual job titles would be placed between the same start
and end HTML tag. The parser would search for the job title start tag and then looks for the
tag which contains the corresponding Company information and Location. These HTML
start tags will sometimes be accompanied by attributes such as href, class, id, style or title.
In such cases, a combination of start tag and attribute will be used by the parser to identify
and extract the required text information. The HTML source for Figure 3.3 is shown is

Figure 3.4 below.

<div style = “...”> Company</div>

<h2 class = “job_title”>Job Title</h2>

<div>Location</div>

Figure 3.4. HTML Source for Individual Job Listing in Figure 3.3
In Figure 3.4, the parser can parse the HTML document for the first div tag and style
combination to find the company detail. It would find the heading tag h2 with attribute class
that equals job _title, in order to get the job title information. It finds the anchor tag with href
to extract the details link and it follows the second div tag to get the location.
The extracted text information is stored in a database. These details are retrieved
from the database using PHP language and presented in a simple, readable format. Parsing

techniques will further discussed in Chapter 4.

12

For testing purposes, the parser program is used to concatenate and return an output
of the extracted text information in a readable format i.e., in the form of a notepad or an
excel file. This can be done before sending the information to the database.

The Perl modules and methods that are used for data scraping are discussed in
section 3.3.2.1.

3.3.2.1. HTML::TokeParser

HTML::TokeParser [11] is a Perl module that is used for text extraction. It is a class
with predefined set of token types and it has methods that identify tokens.
It is initialized as follows:

$parse content = HTML::TokeParser->new($file, %opt)

where $file can be a file name, plain scalar that is an entire document that has to be parsed.
3.3.2.1.1. Advantages of TokeParser

TokeParser provides efficient methods to extract the required data such as URLs,
title of the URL link, any text on the HTML page given a opening tag and an closing tag.

It provides methods for rewriting start tag attributes. It is used when there is
incorrect HTML on the page which in general cases, neglected by the parser.
3.3.2.1.2. Important Methods used in TokeParser

1) get_tag()

The method is used to return an HTML tag. Since relevant job data on the job

webpage will be enclosed within an HTML start tag and an end tag, the first step for

text extraction in our case would be to get the tags.

$tag = $stream->get_tag(‘HTML tag’)

13

2) get text()
The get_text method would return all the text that is available in the current position
of the tag or till the specified tags that passed as arguments to the method.

$text = $stream->get_text(‘HTML tag’)

14

4. IMPLEMENTATION OF DATA EXTRACTION

The information retrieval combines the crawler and the parser program which aids in
information retrieval from large job boards. Each job search engine has unique HTML
structure that is analyzed and an appropriate crawler and parser is written. These crawler
and parser programs have a standard format except pieces of code that are modified due to
the difference in the main seed URL and HTML tags that contain the core job details.

The prototype job retrieval program extracts job information from top five job
search engines. These search engines have jobs that are either posted to their websites by

companies or jobs that are crawled through various companies career website or both.
4.1. Strategy for Crawler Program

To initiate the crawling of a website, the crawler is given an input of the target job
search engines URL. Since the categorization of jobs is done based on the job sector, an
initial analysis of the website is done to find the URL that directly routes to the jobs listing
page of a particular URL. Taking the given link below as an example, the analysis can be

explained.

SURL = htip.//'www.simplyhired.com/a/jobs/list/q-accounting/fdb-1/pn-1

The main link of a popular job search engine is www.simplyhired.com [6]. The first
step is to find the link that contains the accounting jobs. The parameter “q-accounting”
specifies that the accounting sector is taken into consideration. Once the link has been

clicked, it routes to the first page of the job listings. In order to crawl only the latest jobs, a

15

criterion of data posted is taken into account. In the case of simplyhired.com website, the
latest jobs are posted using a separate folder name “fdb-1" in addition to the existing
accounting URL. Hence this complete link is given as a seed URL to the crawler program.

Similar techniques have been followed for crawling other job search engines seed
URL. In order to crawl only the fresh jobs, the job posted date on the website has to be
taken into account. There will not be an exclusive hyperlink or a hot-link for all the
categories. Hence, further analysis has been done to gather the appropriate seed URL.

The crawler program clicks on the seed URL and downloads the HTML content of
the webpage. These sector wise jobs are displayed in multiple pages using pagination. In
general cases, about ten pages are listed per page. The parameter “pn-1” in the URL
represents the first page of the jobs sector webpage. The crawler then crawls through all
these webpages and these corresponding hot-links are stored in its history stack.

The technique used to crawl and extract job information from a famous website has

been discussed in section 4.2.
4.1.1. Crawling Sector Based Seed URL and Related URLs

Seed URL is decided in such a way that the crawler need not travel through multiple
links to reach the sector based jobs. This contributes to the reduction in the total time of
crawling. On analyzing the seed URL, it is found that there exists a parameter that can be
incremented to travel through multiple pages. The crawler loops through the
given‘nextpage’ URL and downloads all the pages. On a generic level, the input to the

crawler program can be divided into common categories.

16

e Job search engines have a default search box where the user can input the job sector
name. Per] module Mechanize is used to mimic the user input. The search box and

the submit button are generally the placed inside an HTML ‘form’ tag.

@array = {*Accounting’, ‘Administrative’, ‘Finance’};
Foreach $sector(@array)
{
$sector = $array;
$url = "http://xyz.com";
$browser -> get($url);
$browser -> form_number(n);
$browser -> field('search_string',$sector);
eval{
$browser -> click button(value => "Search");
IR

$contents_of webpage = $browser->content();

}

In the code given above, the job sectors are stored in an array. The crawler looks for the
form number where the search box is located and auto fills the job sector and hits the
Search button. The HTML content is then stored in a variable.

e In some cases, the job sectors are listed in a Drop-Down menu. On analysis of the

source code for HTML, the form encloses the Drop-Down menu and the

17

submit/search button. In the HTML source code, the crawler looks for the option

value. A sample source code is shown below:

<form action ="/www.xyz.com” method = post>
<strong class = “abc™>Job Category:

<select name = “industry” id = “xyz™™>
<option value = “1">Accounting</option>
<option value = “2”>Administrative</option>
<option value = “3”>Finance</option>
</select>

</form>

Taking into consideration the code above, the strategy for crawling follows the one
employed for the search box style crawling with the exception that it uses the name of the

drop down menu along with the option value.

$browser->value ($name, $number)

Where $name = industry

$number IN (1, 2, 3)

The webpage that is crawled by the crawler is used by the parser program which in turn

parses through the source HTML to extract the job information.

18

4.2. Strategy for Parser Program

Parser program is implemented in such a way that it looks for a specific set of
HTML tags in the HTML source code. Search engine websites are generally designed in an
organized manner. Individual job titles are listed in a webpage in systematic manner. There
is usually a unique tag that encloses the job titles. The job titles also work as a hot-link
which routes to the detailed description page of a job source website’s page. Sample HTML

layout of a job website is illustrated in Figure 4.1.

Job Board Website XYZ

Job Title Sector
Location

Job Title Sector
Location

Job Title Sector
Location

Job Title Sector
Location

Figure 4.1. Sample HTML Layout for Job Listing Page
In figure 4.1, it can be seen that the Job titles are located vertically one below the
other. The corresponding job sector and location are positioned on the right of the page
relative to the job titles. The HTML source code of the sample page in Figure 4.1 is shown

in Figure 4.2.

19

<h2 class = “jobtitle result”™>

 >Job Title 1

</h2>

<div style = “float”right’> Location 1</div>

<h2 class = “jobtitle_result>

<aid = “abc2” href = “/job/a=1/b=3/” >Job Title 2

</h2>

<div style = “float”right”> Location 2</div>

Figure 4.2. Sample Source Code for Figure 4.1

On analyzing the HTML code in Figure 4.2, it can be seen that the individual job
listings are placed inside heading “<h2>" tags with an attribute class equaling
“jobtitle_result”. It should be made sure that this combination is applicable only to the job
titles in the entire HTML source. If it holds good for other information apart from the job
details, the parser would be extracting irrelevant information.

The parser would initially get the h2 tag and then looks for the element “<a id =”
followed “href” which holds the name of the job title as well the hot-link for detailed
description.

The immediate division tag “<div>" is parsed for the location of the job. Similarly,
the company details, date posted can be also be extracted by looking into the correct HTML

tags.

20

4.3. Data Retrieval from a Target Job Website

Indeed is a large job search engine that crawls through thousands of jobs on the
internet. The data retrieval technique combines the crawler and the parser programs. Once

the crawler accesses the input URL of indeed.com [5], the parser scrapes the job data.

4.3.1. Crawler Program for Seed URL

The crawler program crawls jobs related to job categories such as Accounting,
Administrative, Computer and Finance. The URL of the source website contains the
category name. The names of the categories are stored in Perl associative arrays:

$category {‘number’} {‘name’}
where a random number is assigned and “name” equals the category name. The code

snippet the job selection is shown in Figure 4.3.

#!/usr/bin/perl

use strict; # implementing strict helps in writing quality and cleaner code
use WWW::Mechanize;

use HTML::TokeParser;

my $bot_name = 'Indeed’;

my %sectors; # associative array which would contain the different
disciplines for a job seeker

Sector selection

$category{'l'} {'name'} = 'Accounting’;

$category{'l'}{'sector_id'} ='I";

$category{2'} {'name'} = 'Administrative';

$category{2'} {'sector_id'} = '2';

$category{'3'} {'name'} = 'Finance';

Figure 4.3. Code Snippet for Job Sector Selection Page
21

The code snippet for crawling the seed URL is shown Figure 4.4.

my $nextpage = 'http://www.indeed.com/";
Initialise a new Mechanize instance for the main page function, and the
subpage function
my $page = WWW::Mechanize->new();
print "\nConnected to Indeed..... \n";
#Indicates the current category we are scraping
print "\nScraping \"".$category{1}{'name'}."\"\n\n";
my %jobs;
my $job_ref;
my $jobcounter = 1;
my $counter = 0;
my $counterl = 1;
my $numpages = 0;
my $total pages =0; #it is not the total number of page but the existing
page.
my $detailspage;
$nextpage =
'http://www.indeed.com/jobs?q="$category { $admin_category} {'name'}.’ &start=0'
$page->get($nextpage);

my $cleancontent = $page->content;

Figure 4.4. Code Snippet for Crawling Seed URL

“http://www.indeed.com/jobs?q=Administrative&sort=date&start=0" contains the
first page which has job in the accounting discipline. Before we begin browsing through the
website, we need to get the total number of pages on the target website which has
Accounting jobs. This section identifies the total number of pages to be crawled and text

parsed. We step through HTML on the target website and scrape the total number of jobs

22

actually found for the current discipline search. This is then divided with the total number of

jobs usually found on the target website to get the total number of pages to be scraped.
4.3.2. Crawler Program for Multiple Pages

The job search engines have the jobs categorized by sectors that are spread across
multiple pages. Hence, the crawler program has to recognize the link for the next pages. The
websites display the total number of jobs for a particular sector. This display is utilized by
the crawler program to crawl through multiple pages. Parsing techniques are used by the

crawler program to find the total number of pages which is illustrated in Figure 4.5 and 4.6.

my $stream = new HTML::TokeParser(\$cleancontent);
while(my $tag = $stream->get_tag('td'))
{
my ($temp, $first, $second) =";
if($tag->[1]{class} eq "search_meta™)
{
$total pages = $stream->get_trimmed_text('/b'");
(Stemp,$total_pages) = split('of ', $total pages);
($templ, $temp2) = split(',', $total pages);
$total pages = $templ.$temp2;
if($total_pages%10 == 0)
{
$total pages = $total pages/10;
print "Total Pages = $total_pages\n";
}

else

{
$total _pages = $total pages/10;

$total pages = int $total pages;

$total pages = $total pages + 1;
print "Total Pages = $total pages\n";

}
print "\n";
last; }}

Figure 4.5. Code Snippet for Finding Total Number of Pages for a Job Sector
23

for ($1=1;81<S$total pages;$l++)

{
$nextpage=
'http://www.indeed.com/jobs?q=".$category {$admin_category}{'nam
el} 'V
&start="$counter;
$page->get($next page);

}

Figure 4.6. Code Snippet to Crawl Multiple Pages for a Specific Job Sector
4.3.3. Parser Program for Text Extraction

This initial scraping actually gets to the piece of HTML code which actually
has the title of the job. This is accomplished by getting to the HTML tag that contains the
title, comparing it against a condition that is unique in the entire source HTML page and
also checking if the condition applies to all the job titles on the page. After this
determination, we specify the condition and title is scraped with the ‘get trimmed_text’
function in the HTML::TokeParser to remove unwanted white spaces in the job title.

After the title of the job is extracted, the href attribute of the anchor tag needs to
extract to scrape the link to the full summary for the current job. This is done using the
$tag->[1]{href} function. There are two kinds of URL, some websites have the absolute
URL for the detailspage and some have the relative URL. If the website has a relative URL,
we would concatenate it with the site URL to form an absolute URL to the detailspage. The
location of the job and job post date can also be scrapped depending the website and would
add to the list of key information that is required to identify the job.

In order to perform the first level of de-duplication, we would need to create a
primary key for the job to make sure they are not scrapped again when we run the program

again. The absolute link to the details page carries a reference number for the job or a job ID

24

which can also be scrapped using regular expressions (REGEX). This can act as the primary
key for the job so a comparison can be made against these ids’s to determine if we already
have these jobs scrapped. This eliminates listing duplicate job and would enhance user
experience. This technique of information retrieval is applied to every job on the current
page and to every page on the target website until we get the last page that we calculated
initially. This ensures a large pool of jobs that a user can apply. The above technique is
found to be appropriate for a wide variety of job boards that have an organized listing of job

on their site. The code snippet for parsing a target website is shown in Figure 4.7.

my $cleancontent = $page->content;

Initialise a new TokeParser instance
my $stream = new HTML::TokeParser(\$cleancontent);
while(my $tag = $stream->get_tag('h2'))
{
if($tag->[1]{class} eq "jobtitle")
{
#scraping links here:
$tag = $stream->get tag('a’);

$detailspage = $tag->[1]{href}; # /job/337095/head-of-it-services?vsrc=1
#NOTE: scraping position of the job:
$jobs{$job_ref}{'name'} = $stream->get_trimmed_text('/a’);

$jobs{$job_ref} {'link'} = $site.$detailspage;

$jobcounter++;

print "\n";

print "\t";

print $jobs{$job_ref} {'name'}."---".§jobs{$job_ref} {'link'}."\n";

}
} .
Wait between 3 and 5 seconds before getting the next page.

sleep int(rand(5 - 3)) + 3;

Figure 4.7. Code Snippet for Parsing Target Website
25

5. OUTPUT

The user selects the input sector which triggers the crawler program and a list of jobs
from five different job board engines are returned. The crawler takes into account some of
the famous websites such as indeed.com [5], simplyhired.com [6] and job.com [7]. As
crawling of the websites is done real-time, the job results from one website are displayed
initially so that the user can browse through it and apply for the interested job. It crawls
through the websites one by one and displays the results in a web browser. In Figure 5.1, the

job sector named Administrative has been chosen.

— Job Sector Selection

Figure 5.1. Selection of Job Sector - Administrative

When the submit button is clicked, the crawler retrieves jobs from the website called
job.com [7]. It displays the job title, location of the job and the details link which is a
hyperlink that routes to the description page of the main source website. It then retrieves the
jobs from a website called indeed.com [5] followed by simphired.com.

Initially the extracted jobs details from job.com [7] are displayed in a tabular format.
After a delay of a few seconds, jobs from indeed.com [5] and simplyhired.com [6] are
retrieved. Once all the jobs are retrieved, the user is given an option of sorting by job title

and location. The sorting option is more presentable because it gives the user clarity of the

26

location of the job he is interested in. Figure 5.2 displays the results for the sector

Administrative.

| € 2 C A& O localhost/phpscripts/latest_outputphp

Job Location
[Administrative Assistant | Winter Park, FL
Admiistrative Assistant_||Ocoee, FL)

Admiristrative Assistart W{ n

Receptionist [Olathe, KS ‘

[Receptionist o oblsearch/page=i
|[Rewpﬁorisk Akron, OH www jo! job/searclvpage=i
[Receptionist Philadeiphia, PA age
Receptionist Raleigh, NC

Front Office Assistant

Figure 5.2. Job Listing Page for Administrative Sector
When the job sector Accounting is chosen, it retrieves only the accounting jobs from
the given search engines but initially displays job from the website called www.job.com as

discussed earlier. The Accounting sector is chosen in Figure 5.3.

—Job Sector Selection

Figure 5.3. Selection for Job Sector - Accounting

27

The corresponding screenshot of the accounting job listing is shown in Figure 5.4.

€ CH 0 iodhost@hpscﬁpts/;at'e;twdut;‘aut.bhpv -

Job Postings 8
Job Location Details

mwm YO‘*QfS,NY j i iobvi = =1i0t=2/as=2/c= =

Accounting Clerk INorth Las Veges, NV i ‘ iobviewkey= =1Ipt=2las=2lc=Alns=11=2/pp="

Accouns Payable Clerk [Metaire, LA j ; bviewkey= =gt g

Accounts Payable Clerk New York City, NY twww job.comimy job/searchipage=iobviewkey=15869570/p=1/pt=2/s=2/c=4ins=14=2Irpp=10/

Accounts Receivable Clerk (Chandier, AZ Iy job. com/my i =2/mp=101}

Figure 5.4. Job Listing for Accounting Sector

The user is given a feedback requesting him to wait and browse through jobs while the
others jobs are getting loaded. The feedback will be shown at the top of the page above the

job listing table. Illustration of the feedback is show in Figure 5.5.

7 JOB WEBSITE x

1€ 2 X f @ Iocalhost/bhpsmp:_&,’?at@skoutputphgﬂ

|

i

[Medford, OR Teawiol

lwww iob com/mv ioh/searchin

IMedical Recentionist ivonia M|

Figure 5.5. Feedback Message

28

Figure 5.6 displays a partial result from two different websites after initial wait time. Job

from the website simplyhired.com [6] is appending to the initial set of administrative jobs.

€ C R Dlocahostne v am
Office Receptonist exandria, VA
Pediatric Office Receptionist Cheeklowaga. NY
Office Administrative Assistant New Rochelle, NY | i :
Office Administrative Assistant St Joseph MO it sob commyjob search pagesjobvien Key=74029010p=2pi=2igs=2 c=12ns=1E2pp=10
Office Admin Assisiant Rock Hif, SC 'b/ww ob 'ommy obsearchpagesjobview ke\, 7402383;@ 2ipt 205 2c=12ns=1% 2’90 19
(Office Receptionist Talahassee, FL i !
Office Receptionist Tempe, AZ : ; i :
Pediatric Office Receptionist Itht, M ||www 1ob commy jobrsearchipagesiobview key=74029180ip=2p:=2.05=2ic=12ns= 14=2rpp=101
Receptionist |Kansas City, MO eww ob commy jab searchipagesiobvien key=T5979918p=2pi=2.q5=2 = 2lns= 11=2pp=10]
Administrative Assistant Tallanassee FL 3367 : ic=12inss
Administrative Assistant Gibert AZ]Mrob ComMmyjoLisearchpages lobv\ew kevs 7‘»97’48845 2 2(]>~ZC 12n5=14=2pp=10/
Administrative Nursing Supenvisor The Villages. FL | bp. 3
Administrative Secrefary Clarkston, GA
Administrative Clerk - Transfusion Medicine New York NY
Adminishrative Assistant St Paul, MN
Administrative Assistant Waco, TX
Safety & Compliance Administrator (Corpus Chnsti, TX
Administrative Assistant |Westborough, MA ! :
Administrative Director of Surgical Senvice Minneapolis, MN \rrm.v"wwsumol‘h: ed comjob-dig TenfmoB S admnstative-director-jobs!
Qgrrr]\axr;gratwe- Human Resoutces, Recrutmen Chicago. IL gy simphired comjob-didTrkocqatiadministraive-human-jobs:
IAdministrative Assistant New York NY Ibtip Ay simphared comiob-id4y3ijsazmr adminisiatve-ass:Stant-jobs!
Senior Adminisative Assistant Reston, VA Hitp. sy Simplytired comijob-td 2xsprgbimcsenior-administrative jobs:
Administative Assistant IPhoenix. AZ o simplihted com ob.idizptoetodladrunistatve assislant obs'
Clinical Adminisrative Coordinator ILas Vegas. NV |
I PG ADM‘N”RAWASS'STAMS"MW - EUOER AR B AN S U O 24

Figure 5.6. Retrieved Jobs from Job.com [7] and Simplyhired.com [6]

5.1. System Performance

The performance of the system is tested based on the following criteria:

e Usability

e Reduced browsing time

The system is intended to be simple and user-friendly. Due to the minimalist nature of the

User Interface, the user can select the job category from a drop-down menu. Since the

29

search engines unify the results into a unified table format, the user is able to browse
through the jobs without much research on the user interface.
The results illustrated in Figure 5.7 shows the jobs for Computer sector in a sorted

manner. Results from multiple job board engines are combined together and sorted by job

title. Sorting by location is also done.

€ O Dloahost s e e e 3
Job Postmos

; Job | Location | Detais |

|Cok1Fusion Software Enginesr Rockvile MD ! hep e S ed comiob-d sdfmwn coidfusion-software-jobs’ ‘

Developer 4, Software IAlanta, GA 7t v SThhred comjob-id uikyamgm3 developer-4.jobs’]

Developer 4, Software |Botell WA Tonp e smgidred comiob-d Uxqogrbdm deve oper-4obs ',

Irformation Technology (IT) Support Specialist "Allama, A I 0 Comiy b Searchpagesichwenkey=167AA082:0=ipt=2ias=2ic=35ims=1ipp= 16}

LAMP Development Manager [New Yok NY it o Com . ob'search pageobwew key=8488 140 p= pl=Dios=2 c=5ins=1=Dimp=101

:g@andise ManagerRet Corporte Offce Saint Paul MN %;mﬂ.vémeed comicCk=311042520ecbTh)

Onine Network Manager e York Ny iy ingeed comiC CKkeDO0DORTIN 408 ‘

PHP Developer New Yok NY e 90 com Ty b Seach pagesicbviewey=TOR88 141 p=t pl=2 gs= c=Jhnsct =21p=10]

PHP(C++ Developer (Lead) e York NY i 90 Com b Searchpagesicbview key=TORGR11 p pt=D gg=2c=3hms=1 aimp= 10}

uaity Assuance Programmer Sanlod FL o0 com my ob'searchipageiobenhey=TOI9RT00p=1pi=2 gs=2ic=ns=1 Eimp=10]

{Senior IT Auditor |Penysbwg, OH i 00 COm s ob Searchipagesichviewkey=THA88554p=1 =2 gs=0 ¢=35 =1 f=2pp=10]

Senior Java Sciware Engineer |San Jose, CA inip e sirphieed comiob ik pdeisenior java obs -

Senior Mobile Software Engmear, Minl com HMountain View, CA e STpiied comyob-idwh Jpm7 ga: senior-moble-jobs’

Senior Sofware Distrbuion Technician _ Paramus It srpred comiob G zazshigie serar sofware b

Senior Sofware Engineer Jen Jose, CA tp v sivgivhred comiob-id kglddavms sen e schae o5]

Senior Sofware Engineer [Seatte W it e simpitired comyob-id arbazownda seror-solare Kby

Senior Sedware Engineer - MBE 1S Drego, CA g e sioliced comiobig whoipda2%'seniorsoftwareJobs

Senior Sofware EngineerDeveloper ‘1DU(ham, NC It e SiTidized comviobad vwSimptSeriorsaftware 10bs: }

Software Design EngneerinTest 8/ SDETY {Seatle, WA Intp e Simpiired com b d Ak nbgysoftware desighicts

Software Developer Brookiyn Park, MN s SOt comyob-g TmT 03T sware develoger)s

‘Sofware Development Analst 2 [Washingon, O Itp e simpihired comjob-d inTsBabewsoftware-developrert-obs' B

§pﬂware DevelopmentEngneet - Amazon Seatie, WA w My ob Search page-jebuenkey=65065054 p=20t=2.05=2c=35ms=14=Dimp= 10

Simple Quave Service - -

Figure 5.7. Simplistic View of Job Results

30

The total time taken for operating JASE from the time of entering the website,

selecting a job category and retrieving jobs is done. This is compared with the time taken to

access and browse the three individual websites that are target websites to the search engine.

Novice users were asked to perform this task. Table 5.1 shows the results of the total time

taken for retrieving jobs.

Job Sector Time taken for Job Time taken for visiting

Aggregation Search individual target

Engine(minutes) websites(minutes)
Accounting 0.37 5.05
Administrative 0.30 3.22
Finance 0.31 1.36
Computer/IT 0.29 6.34
Average 0.34 4.11

Table 5.1. Total Time Taken for Job Retrieval from Target Websites

Results show that JASE is user friendly and takes much less time to search for an

appropriate job rather than visiting numerous websites to find a job that interest us.

31

6. TESTING

Testing the result is an important aspect in the job retrieval program. Care should be
taken that the correct text is being retrieved from the websites. Since data from different
websites are being merged in a consistent manner, there are chances that data gets displayed
at the wrong columns. Hence the crawler program and the parser program have been tested
to check consistency. There are two level of testing.

1. The first stage of testing is done before and after the extracted data is inserted into
the database from where it is retrieved by the front end program PHP and displayed
to the users.

2. The second stage of testing is done after the job data gets displayed on the web
browser. Comparison is made between the source job search engine webpage and

the extracted data.
6.1. Testing for Crawler Program

The objective of testing the crawler program is to determine if the correct hot-links
are identified and crawled from the target search engine webpage. This is done before the
job data that is scraped from the websites is sent to the database. A log of the crawled
websites is printed on the windows command prompt. The command to execute the Perl
crawler script is passed with an argument which equals the job sector.

Test Case 1:
Input - Seed URL = hitp.//www.simplyhired.com/a/jobs/list/q-accounting/fdb-1
Perl command = perl jobs2.pl Sadmin_category

where jobs2.pl is the crawler program for simplyhired.com , $admin_category = 1

32

Expected Output: Individual job listing hot-links shown in Figure 6.1 crawled. The page

displays the main seed URL for the crawler program and the first page of the job listing.

{

i € C O wwwsimplyhired.com & G A

; SavedJoby Gsyed Sgeroh 4
- Keywords Location

i, ngp!q accounting E {Search Al Jobs| agverieg

job search made simple

accounting jobs

X} Last 24 hours

é Fiiters Applied

Cas
Serio ACcountant
twentory Specialist
Financial
Part Su;

f

Price 20ditor
Opearations Manager

Salzs Expart
Salzs Kanager

HU B 628 L5 Canga iy unate o

{Emaii Alert’ [Save] Who Do i Know?! 13

Sort Relevance - Uate

Accounting Senior Manager - wew

Halliburton - Houston TX

of financial statements. performance of accounting systems. and processes
accounting policies. statutory accounting and reporting regulations.

FREES RV SRS

Clear

- U hnus Gyo Sl e iy - Bepord .
Accounting Manager
Aurora Custom Machining - Aurora il

accounting manager to oversee the Company’s accounting function Mimmi

¢ Che LB S SN gD Do - Bhe - e -

Accounting lnterrn - «zw
Tyco - Boca Raton, FL
* in pursuit of Bachelors degree m Accounting. Business Administration.

Jobs1.10 0188824

with

um education

payroll and monthy end closes General accounting expenence in a manufactunng
i Ay et B frograit - Mo Lo

an Equal

Opportunity Employer Job ~ Finance/Accounting Orgamization © ADT North America
i

i R e

Figure 6.1. Screenshot of Simplyhired.com [6] Accounting Webpage

Actual Output: The crawled websites is printed on the windows command prompt.

B Command Prompt

:\xampp\htdocs\phpscripts>perl jobs2.pl 1 — B
ser input ‘iS . 1ﬁfttﬁ**ﬂfr*'kﬁﬁﬁﬁﬁﬁ*iiﬁ*iiiﬂi

onnected to Simply Hired

Scraping "accounting”

http: //www.simplyhired. com/a/jobs/1ist/q-accounting/fdb-1/pn-1
otal Pages = 890

| Finished counting total pages...

oaded page 1/2 of the jobshoard - http://www.simplyhired.com/a/jobs/list/q-accounting/fdh-1/pn-1

Accounting Senior Manager---http://www.simplyhired.com/job-id/21tiy62kdx/accounting-senior-jaobs/
Accounting Manager---http://www.simplyhired.com/job-id/6dufdrwzeh/accounting-manager-jobs/
Accounting Intern---http://www.simplyhired.com/job-1d/50qvm?zxzy/accounting-intern-jobs/

Accounting Clerk, Tradico---http://www.simplyhired.com/job-1d/pSzholyxof/accounting-clerk-jobs/

Figure 6.2. Testing for Correctness of Crawled URLs
The list of all job titles and corresponding details page is printed. The total number

of pages retrieved in the website is displayed. For prototype purpose, the total pages to be

33

scraped are limited to two. The log displays the page and the corresponding link that is
currently being crawled.

Test Result - Comparing Figure 6.1 and Figure 6.2 shows that the correct URL has been
crawled. The next page is crawled which is indicated by the print statement “Loaded page
2/2 of the jobboard™ along with the URL which has been manipulated using the crawler.
Test Case 2:
Input.http.//www.job.com/my.job/search/page=results/pt=2/qs=2/c=12/ns=1/{=60/rpp=10/
Perl command = perl jobsl.pl $admin_category

where jobsl.pl is the crawler program for job.com and $admin_category =2

Expected Output: Figure 6.3 shows the expected output, i.e. the jobs that are listed for the

administrative sector of job.com [7].

-
/.,_._\.. AAAAAAA “_Aui S
;“ % Administrative Jobs - Job...
€« C M O WWWJOD.COM vy oo e st s e Dot e 2 L U e v e RO
- Administrative Assistant Administrative / Clerical .
Administrative Assistant Winter Park, FL
lx Are you ready to work for an organization that values you? The recruiting department for a national
company is in need of an entry-level {(mors...) .
'j’ et Qualified Estimare Salary L Job Match Test | Resume Guide
Administrative Assistant Administrative / Clerical
Confidential Company Ocoee, FL
Are you ready to work for an organization that values you? The recruiting department for a national
company is in need of an entry-level (maore...)
W cor Qualified Estimate Salary i Job Match Test :_ Fesurme Guide
1w job.comimy b search pagesobivesskey = 701 Smn=lic=l2ins= s 2arpn s 10l »

Figure 6.3. Screenshot for Administrative Sector of Job.com [7]
Actual Output: The actual result i.e., the URLSs that are crawled for the administrative sector

of job.com is show in Figure 6.4.

34

craping "Administrative”
fTotal Pages = 100

%Finished counting total pages...

] Administrative Assistant---www.job.com/my.job/search/page=jobview/key=70196696/p=1/pt=2/qs=2/c=12/n

[Inserting job : Administrative Assistant

1 Administrative Assistant---www.job.com/my.job/search/page=jobview/key=7/0196701/p=1/pt=2/qs=2/c=12/n

[Inserting job : Administrative Assistant

| Administrative Assistant---www.job.com/my.job/search/page=jobview/key=71369563/p=1/pt=2/gs=2/c=12/n_

iInserting job : Administrative Assistant

1 Receptionist---www. job.com/my. job/search/page=jobview/key=75979923/p=1/pt=2/qs=2/c=12/ns=1/f=2/rpp=

iInserting job : Receptionist

] Receptionist---www.job.com/my. job/search/page=jobview/key=75979922/p=1/pt=2/qs=2/c=12/ns=1/f=2/rpp= ~
3

Figure 6.4. Crawled URLs for Administrative Sector of Job.com [7]
Test Result: On comparing Figure 6.3 and Figure 6.4, there is a match between the main
URL of job.com [7] and the webpages identified by the crawler program. Hence the output

is achieved.
6.2. Testing for Parser Program

The objective of testing the parser program is to test for consistency before data is
inserted into the database. The parser program extracts job data from he webpages that are
downloaded by the crawler and prints it on a notepad.

Test Case 1:

Input = Job listing page from Indeed.com as shown in Figure 6.5.

Expected Output = Job Title, Location and hotlink for each job extracted onto a notepad
file.

A sample job listing page from Indeed.com is shown in Figure 6.5.

35

[T] Finance Jobs, Employme...

€ C O wwwindeed.com cin o=t anie it e e | wON

SAP ABAP §Qggahst Gain Experience in Payroll, Record *
GDH Caonsulting - Datiss TJ»‘; Keeping. Inventory Control & Mere

tuning Specific expenﬂnce required with Finance/Centrolling (FI’CO}. Project

Sy sterrs (PS}) Suppr Smlls SAP ABAP FI/CO. Fmance SCM Supply Chain

From GOH Consulyng - 17 R - - g tAore Jobs Than Any Major Job Site -
i Search & Apply Online Todayt

German speaker Finance roles in Romania DX2202 - :--

Beeswax Europe - Marland PA
for German Accounts gayable/Accounts receivable professionals to join their Email this search to a friend:
finance team in Bucharest. These teams are responsible for managing the)
payrnems of. . From my email address
P GCHERAICA i -
h Fi roles in Romani: 199 . To email address

Beeswax Europe - Llariand PA
for Dutch Accounts payable/Accounts recerable prefessionals te jom therr finance
team in Bucharest. These teams are wspons»bte for managmg the pa)ments of

Figure 6.5. Screenshot for Indeed.com [5] Finance Sector

Actual output: Job data that is printed to a notepad file as shown in Figure 6.6.

18 Cliamppidocsphs

G : m\xampp\htdocs\phpscripts\indeed.m

7 Favorites & C:amppthtdocs\phpscripts\indeed. bt

Title|Location]Jck Details Link|

| German speaker Finance roles in Romania DX2202|Mainland, FAlwww.indeed.com\/rc\/clk?3jk=edd5122c2c3lbkkc
Dutcn Finance roles in Romania DX2139Mainland, Fajwww.indeed.com\/rc\/clk?ik=cS££55c3dbZfib3f
L Danish Acccunts Fayable in Bucharest DX2197{Mainland, FAlwww.indeed.com\/rc\/clk?;k=6c124a7d3002d421

SAP ARAP SpecialistiDallas, TXjwww.indeed.com\/rc\/clk?;k=1577241b2550747¢ l

BB B R B i wmﬂfwwm/

Figure 6.6. Screenshot for Indeed.com [S] Job Details Parsed to Notepad

Test Result: Printing the output in a notepad file is an important testing step. It shows that
the data extracted is consistent with the source website. If there is an inconsistency, it shows
that the parser is capturing incorrect HTML tags. Hence, further analysis is done to include

the correct HTML tags which enclose the job data.

36

6.3. Functional Testing

Functional testing is done based on an integrated system level taking into account
the functional aspects of the job retrieval engine. Given an input based on the specifications,
the performance of the system is tested as an output on the graphical user interface. An
input of job sector is given and the results that are expected are the segregated job details for
the selected sector.

Test Case 1

The purpose of the test is to check the functionality of job sector drop-down menu.

Input: Selecting the drop-down menu list from the user interface.

Expected output: List of four job sectors namely Accounting, Administrative, Finance and
Computer/IT.

Actual Output: Screenshot of job sector as shown in Figure 6.7 which displays the job

disciplines.

}’[. Piease select a Job Sector \\éc{’p
€ C N (locathost

Job Sector Selection

A LT ic &
Administrative
Finance
‘Computer/IT

7 i
-

Figure 6.7. Screenshot of the User Interface — Drop-Down Menu

37

Test Case 2

Once the user selects the job sector, jobs are retrieved from three target search
engines. The user is given a feedback to wait for more jobs while the crawler initially lists
the jobs from one target source and the other target sources are being crawled.
Input: User submit action after selecting a job sector.
Expected Output: Feedback displayed at top of the job listing webpage.
The jobs retrieved from job.com [7] for the Computer/IT sector are initially displayed on the
screen so as to minimize the users wait time. The remaining list of jobs is displayed on a
periodic basis as the crawler crawls through the other job search engines.

Actual Output: Feedback for the Computer/IT sector is shown in Figure 6.8.

“' X & Dilocahostoomo e s

1
i

Job Postings
Job | Location Details

Qualty Assurance Programmer ISarford. FL searchy :

Marketing Sr. Manager INew York NY |

Director of User Expenence New York, NY ‘ot]
Data Operations Engineer {DBA'Sys Admin) New York, NY]['.vw b commy ob'searchpage=jobviewkey=1652209%p= pl=2.qs=2: =35 ns=14=2ipp=13
C++UnixPHP Lead [New York NY Jis o0 commy obsearchpagezicbvewkey=16220090 p=" plegs= =¥ n5= 1 :2pps 1)
Sales Director _ Iveworehy 089 ="t 5= gmp1)] -

Figure 6.8. Screenshot of Initial Listing of Jobs for Computer/IT Sector
Test case 3
The objective of the test is to check the functionality of sort by location.
Input: Sector = Administrative and Sorting criteria = Location

Expected output: Location of jobs sorted in ascending order.
38

The administrative sector is chosen as the job sector. Once all the jobs are retrieved
from the target job board search engines, the location is sorted in no particular order. On
hitting the Location column heading, a sort is done in descending. Another hit on Location
heading sorts the list in ascending order.

Actual Output: The display page containing the unified results for Administrative sector is

illustrated in Figure 6.9.

..
iG- 3 C A O locathost/phpscripts/latest output ap orderby=locationAsortby=ASC L}
E Job Postings
o T we I »

Sofware Engneex Aanapols dcion MO |1t e smpheed comob Thlso] sohware engneer b |

Sofare Engineet (J2EE/WebSphere) Aringlon VA Inty e smghted comiob dypha ek soware-engneercbs’ ’ '
Develope: 4, Schware At GA ity smphred comob-Gukyamon? developer-4cbs |
anormationTechnoIogy(]T)SupportSpecia‘istHAnanta‘GA H‘NN/ iob comvmy iob Search page-jobvieskey=TBI66082n=1 pl=2's=Dic=35re=18=2ipp=1 01

VEBAPPLICATINDEVELOPER, Boston MA llM‘N 10b comny jobsearch page=iobviewkey=65967 385 p-2pt-2ios=2ic=35rs= 1= mp= 10\

Irfomation Sendces & Techndlogy |
Develoer 4, Schvware |Batel, WA Hhrm. s simpiired comob-duxqooptmdeveloper-4obs |
51 Sofvare Engneer Supply Chain NS |Bishare, CA Inty e smphhred comiob-dphac 0Bt sowareqobs ;
Sotwre Develope [Brookin Pak M It simpbned comiob-d33m7o%6 Ty e developer-pbs |

1./ Sobware Enginee ‘Cuperino, CA Intp e simphvied comiob-deYuwgeesc rsotyare-cos)
[@iorSoftwareEngineenDeve!oper J%Dumam, NC U““:; rwnw Smofed com job- dvw Simptsenior-sofhvare-obs \
Sotware Engneer Hemdon VA \p v sohred comjob-dimehalsofare engregr-obs |
Stre Manager Retal Mimescia) [Mmeapalis 1N e comc O 7o Dhadt 145503]
Senor Moble Sohware Engreer Mntcom | Mounain View CA g e smpshred comich-d b Cpm 7oz senor-mable-cbs |
LAMP Development Marager JWwYorkr |t b Comimy o sealchpage: 10bme.vkey 76368140 =11 Zas De=irstt) pp 1 .

N

Figure 6.9. Screenshot of the User Interface with Jobs Sorted by Location

39

7. CONCLUSION

This paper has introduced a technique to connect jobseekers with real time jobs
posted across top job boards. With many Meta search engines available and many job
boards for job seekers to go to, it often becomes time consuming for the user to be the first
to apply for a newly posted job on a given day at a given time. It often also becomes
overwhelming for the user to visit each website if he is not able to find a particular job on a
website.

This paper categorizes jobs by discipline, aggregates jobs from top job boards and
brings in very recently posted jobs at the time when the user clicks on a particular discipline
thus providing a platform for users to have access to new jobs posted across multiple job
boards. Users are given information about the location of the job and a link to the detailed
description if the job interests them.

The overall browsing time of the user is reduced on searching for the jobs of interest
using JASE rather than visiting multiple websites for the same job criteria. Also, the
overwhelming factor associated with browsing through various job websites is reduced

since a unified list of jobs is displayed on the simple and user-friendly interface.

40

8. FUTURE WORK

The paper deals with aggregating jobs from multiple job search engines. Due to the
fact that these search engines crawl from the web, there may occur the problem of job
duplication. Hence, the paper can be extended to eliminate the problem of duplication.

Since the job retrieval program crawls over multiple websites in real-time, there is
an increase in total time for retrieving the jobs. Hence, the program can be optimized for
decreasing the total crawl time.

The number of job board websites crawled by the job retrieval program is limited. It

can be increased to a larger number to give a larger number of results.

41

REFERENCES

. Welyi Meng, Clement Yu, and King-Lup Liu. 2002, “Building efficient and effective
metasearch engines,” ACM Comput. Surv. pp.48-89, March 2002

. Eric J. Glover, Steve Lawrence, William P. Birmingham, and C. Lee Giles,
“Architecture of a metasearch engine that supports user information needs”
In Proceedings of the eighth international conference on Information and knowledge
management (CIKM '99), Susan Gauch (Ed.). ACM, New York, NY, USA, pp. 210-
216, 1999

. G. Almpanidis, C. Kotropoulos, and I. Pitas., “Combining text and link analysis for
focused crawling - An application for vertical search engines”, Information
Systems, 32(6), pp. 886-908, September 2007

. Dorn, J., Naz, T. “Integration of Job Portals by Meta-search”, Enterprise

Interoperability 11, Part IV, Springer London, pp 401-412, 2007

. Indeed.com

www.indeed.com, Retrieved on 02-14-2011

Simplyhired.com

www.simplvhired.com, Retrieved on 02-14-2011

. www.job.com, Retrieved on 02-14-2011]

. XAMPP

http://www.apachefriends.org/en/xampp-windows.HTML,, Retrieved on 01-24-2011.

. Castillo, Carlos, “Effective Web Crawling”, ACM SIGIR Forum 55 Vol.39 No. 1, pp.

55-56. June 2005

42

10. Mechanize

http://search.cpan.org/dist/WW W-Mechanize/, Retrieved on 01-13-2011

11. TokeParser

http://search.cpan.org/~gaas/HTML.-Parser-3.68/lib/HTML/TokeParser.pm, Retrieved

on 01-16-2011

12. Criston Souza, Eduardo Laber, Caio Valentim, and Eduardo Cardoso, ““A Polite Policy
for Revisiting Web Pages”. In Proceedings of the 2007 Latin American Web
Conference (LA-WEB '07). IEEE Computer Society, Washington, DC, USA, pp. 128-

135, 2007

43

APPENDIX A. SOURCE CODE

The source code for job extraction consists of the crawler program and the parser

program. The source code for job.com [7] and simplyhired.com [6] is given below.

#1"C:\xampp\perl\bin\perl.exe"

i
¥4

#Code for job.com
=

standard modules
require ‘functions.pl’;
use strict;

use HTML::Entities;
use WWW::Mechanize;
use HTML::TokeParser;
use DBIx::DWIW;

#Code for data extraction from www.job.com
my $array =";
my $datafile =";

my %category;

my $admin_category = $ARGV][0];

CONNECTING TO DATABASE

my $db_user ='"root’;

my $db_pass ='secret'’;
my $db_name ="0b';

my $server = 'localhost’;
my $conn ="

#ESTABLISH DATABASE CONNECTION#

$conn = DBIx::DWIW->Connect(User => $db_user, Host => $server, Pass => $db_pass,
DB => $db_name) or die "$!";

44

my $insertHandle = $conn->Prepare ("INSERT INTO jobs
(

sector,
website,
job,
company,
location,
Details

VALUES
(2,J0b',2,2,2.2)
H) ()[‘ d]'e H$!";

H

ia
#Crawler Code

"

$category{'1'} {'name'} = 'Accounting';
$category{'1'} {'category_id'} ='4; #sector id to be used in url of the website

$category{'2'} {'name'} = 'Administrative';
$category{2'} {'category_id'} ='12;

$category{'3'} {'name'} = 'finance';
$category{'3'} {'category_id'} ='14';

$category{'4'} {'name'} = 'computer’;
$category{'4'} {'category_id'} = '35";
my $websitel = 'www.job.com’;
my $nextpage = 'http://www job.com/;
Initialise a new Mechanize instance for the main page function
my $page = WWW::Mechanize->new();

$page->agent_alias('Windows Mozilla');

print "\nConnected to Job.com..... \n";

print "\nScraping \"".$category {$admin_category}{'name'}."\"\n\n";

my %jobs;
my $job;

my $location;

my $job_counter= 1;

my $counter = 0;

my $counterl = 1;

my $numpages = 0;

my $total pages=0; #itis not the total number of page but the existing page.
my $desc_page;

my $datafile =",

$datafile = "job.txt";
open OUT, ">$datafile";
print OUT "Job Title|Location|Link\n";

Initial Scraping= == —
$nextpage="http://www.job.com/my job/search/page=results/p="$counterl./pt=2/qs=2/c="$
category{$admin_category} {'category_id'}."/ns=1/{=2/rpp=10/";

$page->get(Snextpage);

admin_category: This section correctly identifies the number of pages required to get all
links on the jobsboard.

my $page content= $page->content;

i
s

#Parser Code

i
e

Initialise a new TokeParser instance
my $stream = new HTML::TokeParser(\$page_content);

46

while(my $tag = $stream->get_tag('span’))

{
my ($temp, $first, $second) =",

if($tag->[1]{id} eq "dRes")

{

$total pages = $stream->get trimmed_text('/span'); # Returns "Returns Jobs 1 - 10 of
188,429"

($temp,$total _pages) = split(‘than ', $total pages);

$total pages =~ s/jobs//g;

($first, $second) = split(',’, $total pages);
$total pages = $first.$second:;

if($total pages%10 == 0)
¢

L
$total pages = $total _pages/10;
print "Total Pages = $total pages\n";

b

else

{
$total pages = $total pages/10;

$total _pages = int $total pages;

$total pages = $total _pages + 1;
print "Total Pages = $total pages\n";

"o,

print "\n";
last:

#$total _pages = 2;
47

print "Finished counting total pages...\n";

my $1=0;
for($1=1;$I<=S$total pages;$l++)
{

$nextpage=

'http://www.job.com/my.job/search/page=results/p=".$1."/pt=2/qs=2/c="$category { $admin_c
ategory} {'category_id'}."/ns=1/f=2/rpp=10/;

$page->get(Snextpage);
print "\nLoaded page ".$1."/".$total pages." of the jobsboard - ".$nextpage." \n\n";
###NOTE: This while loop will extract all the links on the job summary page.
my $page content= $page->content;
Initialise a new TokeParser instance
my $stream = new HTML::TokeParser(\$page_content);
$desc_page =";

while(my $tag = $stream->get_tag('h2'))
{

if($tag->[1]{class} eq "jobTitle_results")

{

#NOTE: scraping links here:
$tag = $stream->get_tag('a’);

$desc_page = Stag->[1]{href}; # /job/337095/head-of-it-
services?vsrc=1

#NOTE: scraping position of the job:
$jobs{$job} {'name'} = $stream->get_trimmed_text('/a');

48

$tag = $stream->get_tag('div');
$iobs{$job} {'location'}=$stream-> get_trimmed_text('/div');

if($desc_page =~ /my\.job/)

{
$jobs{$job} {'link'} = $websitel.$desc_page;
$jobcounter++;
print "\n";
print "\t";
print $jobs{$job} {'name'}." ".$jobs{$job}{'link'};
print "\n";

print OUT
escape($jobs{$job} {'name'}).
nk'})."\n";

|||l|

.escape($jobs{$job} {'location'})."|".escape($jobs{$job} {'li

}

#$counterl++;

if($desc_page =~ /my\.job/)

{
foreach my $job (sort {$jobs{$a} cmp $jobs{¥b} } keys Y%jobs)

{
my $dbresult = $insertHandle->Execute(

$admin_category,

$jobs{$job} {'name'},

]

$jobs{$job} {'location'},
$jobs{$job} {'link'}

) or die "$!";

print 'Inserting job : ".$jobs{$job} {'name'};

%jobs = ():

49

Wait beteween 3 and 5 seconds before getting the next page.
sleep int(rand(5 - 3)) + 3;

}

my $dbresult = $insertHandle->finish();

2. CODE FOR SIMPLYHIRED.COM

my $datafile =",
my %category;

$category{'1'} {'name'} = 'accounting’;
$category{'2'} {'name'} = 'administrative';

$category{'3'} {'name'} = 'software";

#
#JOB EXTRACTION FOR SIMPLYHIRED.COM

my $jobsboard _url = 'http:// www.simplyhired.com/;
my $admin_category = SARGV|[0];
print 'User input is : .$admin_category, ¥k,
$datafile = "simplyhired.txt";

open OUT, ">$datafile”;
print OUT "Job Title|Location|Detail Link\n\n";

my $insertHandle = $conn->Prepare ("INSERT INTO jobs
(sector, website ,job, company, location, details)
VALUES
(?,'simplyhired',?,?,2,7)
"y or die "$!";
my $site2 = ‘http://www.simplyhired.com/’;

my $nextpage = 'http://www.simplyhired.com/';

50

Initialise a new Mechanize instance for the main page function, and the subpage function
my $page = WWW::Mechanize->new();
$page->agent_alias('Windows Mozilla');

1",
k4

print "\nConnected to Simply Hired..... \n
print "\nScraping \"".$category{$admin_category} {'name'}."\"\n\n";

my %ojobs;
my $job;

my $job_counter= 1;

my $counter = 1;

my $counterl = 1;

my $numpages = 0;

my $total_pages =0; #it is not the total number of page but the existing page.
my $desc_page;

my @jobtitles = ();
my (@detaillinks = ();

Initial Scraping ==
$nextpage =
'http://www.simplyhired.com/a/jobs/list/q".$category { Sadmin_category } {'name'}.'/fdb-1/pn-
1';

print $nextpage."\n";

$page->get($Snextpage);

HHNOTE: This section correctly identifies the number of pages required to get all links on
the jobsboard.

my $page_content= $page->content;
Initialise a new TokeParser instance
my $stream = new HTML:: TokeParser(\$page_content);
#Loop to extract the total number of pages for the sector
while(my $tag = $stream->get_tag('p’))
my ($temp, $first, $second) =",

51

if($tag->[1]{class} eq "job_counter")

{

$total_pages = $stream->get_trimmed_text('span');
(Stemp,$total_pages) = split(‘of ', $total pages);
($first, $second) = split(',', $total_pages);
$total pages = $first.$second;

if($total pages%10 == 0)

{
$total pages = $total _pages/10;
print "Total Pages = $total pages\n";

}

else

{
$total pages = $total pages/10;

$total pages = int $total_pages;
$total pages = $total _pages + 1;
print "Total Pages = $total_pages\n";

}
print "\n";
last;

}
$total pages = 2;

print "Finished counting total pages...\n";

my $1=1;
for($1=1;$1<=$total _pages;$1++)
{

$nextpage = 'http://www.simplyhired.com/a/jobs/list/q-
' $category{$admin_category} {'name'}."/fdb-1 "'/pn-'$l;

$page->get($nextpage);

52

print "\nLoaded page ".$1."/".$total pages." of the jobsboard - ".$nextpage." \n\n";
###NOTE: This while loop will extract all the links on the job summary page.
my $page content= $page->content;

Initialise a new TokeParser instance
my $stream = new HTML::TokeParser(\$page content);

while(my $tag = $stream->get tag('div'))

{

if($tag->[1]{class} eq "more box")

{

#NOTE : scraping links here :
$tag = $stream->get tag('a’);
$tag = $stream->get tag('a’);

if($tag->[1]{class} eq "permalink")

{
$desc_page = Stag->[1]{href}; # /job/337095/head-of-it-
services?vsrc=1

}

#NOTE: scraping position of the job:
$jobs{$job}{'name'} = $stream->get_trimmed_text('/a’);
$tag = $stream->get_tag('a’);
$tag = $stream->get_tag(‘a’);

$jobs{$job} {'link'} = $desc_page;
($jobs{$job} {'name'},$jobs{$job} {'comploc'}) = split(' at
" $jobs{$job} {'name'}); ‘ | | o
($jobs{$job} {'company'}.$jobs{$job} {'location’}) = split(" in ',
$jobs{$job} {'comploc'});
$jobcounter++;

print "\n";
print "\t"; . ' .
print $jobs{3job} {'name’}."---".$jobs{$job} {'link'};

53

print "\n";

print OUT
escape($jobs{$job} {'name'})."|".escape($jobs{$job} {'company'})."|" escape($jobs{$job} {'l
ocation'})."|".escape($jobs{S$job} {'link'})."\n";

#push(@jobtitles, $jobs{Fjob} {'name'});
#push(@detaillinks, $jobs{$job} {'link'});

#Inserting name, company, location and details link into the database
foreach my $job (sort {$jobs{$a} cmp $jobs{Sb} } keys %jobs)
{

my $dbresult = $insertHandle->Execute(
$admin_category,
$jobs{$job} {'name'}
$jobs{$job} {'company'},
$jobs{S$job} {'location'}.
$jobs{$job} {'link'}
) or die "$!";

#print 'Inserting job: ".$jobs{$job} {'location'};

%jobs= ();

}
}

my $dbresult = $insertHandle->finish();

54

	BCS2_4576
	BCS2_4577
	BCS2_4578
	BCS2_4579
	BCS2_4580
	BCS2_4581
	BCS2_4582
	BCS2_4583
	BCS2_4584
	BCS2_4585
	BCS2_4586
	BCS2_4587
	BCS2_4588
	BCS2_4589
	BCS2_4590
	BCS2_4591
	BCS2_4592
	BCS2_4593
	BCS2_4594
	BCS2_4595
	BCS2_4596
	BCS2_4597
	BCS2_4598
	BCS2_4599
	BCS2_4600
	BCS2_4601
	BCS2_4602
	BCS2_4603
	BCS2_4604
	BCS2_4605
	BCS2_4606
	BCS2_4607
	BCS2_4608
	BCS2_4609
	BCS2_4610
	BCS2_4611
	BCS2_4612
	BCS2_4613
	BCS2_4614
	BCS2_4615
	BCS2_4616
	BCS2_4617
	BCS2_4618
	BCS2_4619
	BCS2_4620
	BCS2_4621
	BCS2_4622
	BCS2_4623
	BCS2_4624
	BCS2_4625
	BCS2_4626
	BCS2_4627
	BCS2_4628
	BCS2_4629
	BCS2_4630
	BCS2_4631
	BCS2_4632
	BCS2_4633
	BCS2_4634
	BCS2_4635
	BCS2_4636
	BCS2_4637
	BCS2_4638

