
JOB AGGREGATION SEARCH ENGINE

A Paper
Submitted to the Graduate Faculty

Of the
North Dakota State University

of Agriculture and Applied Science

By

Anita Sundaram

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

February 2011
Fargo, North Dakota

North Dakota State University
Graduate School

Title

JOB AGGREGATION

SEARCH ENGINE

By

ANITA SUNDARAM

The Supervisory Committee certifies that this disquisition complies with North Dakota Stc1te
University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the document, signatures have been
removed from the digital version of this document.

ABSTRACT

Sundaram, Anita, M.S., Department of Computer Science, College of Science and
Mathematics, North Dakota State University, February 2011. Job Aggregation Search
Engine. Major Professor: Dr. Kendall E. Nygard.

In this paper we describe the design and implementation of a Job Aggregation

Search Engine (JASE) that acts as a one-stop-shop for listing recently posted jobs across top

multiple job search engines. There are multiple job search engines available that receive and

present jobs posted by employers. The JASE system extracts data from multiple websites

and presents the job data in a consistent and presentable format.

The objective of this paper is to implement a job search tool that seeks to reduce the

browsing time of the user querying multiple job websites for the same job criteria. It also

aims to reduce the possibility of the user being overwhelmed while browsing through

various websites to find the job of interest. The reduction in total browsing time is made

possible by triggering a search for jobs when the user chooses a discipline. This allows the

user to view recently posted jobs across multiple job boards. Often it can become tedious

for a user to visit a job website and not find the job of interest, resulting in browsing

through other websites one at a time. In order to avoid the browsing of many sites, JASE

serves as a job extraction program that aggregates jobs from multiple job websites and

returns results in a simple, user-friendly user interface.

The program consists of two components, the user interface and the job extraction

program. The job extraction program has two components, namely the crawler program and

the parser program. The techniques for crawling and parsing the websites are designed and

implemented after carefully studying the HTML structure of the target website.

lll

ACKNOWLEDGEMENTS

I would like to thank Dr. Kendall E. Nygard for his continued support, help and

direction. My sincere thanks to Dr. Changhui Yan, Dr. Tariq King, and Dr. Limin Zhang for

serving on the committee. I would also like to thank my parents who gave me

encouragement to complete the paper.

IV

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS .. iv

LIST OFT ABLES ... vii

LIST OF FIGURES .. viii

1. INTRODUCTION .. 1

2. RELATED WORK .. 3

3. COMPONENTS OF JASE .. 6

3.1. Enviroment Used to Build the Search Engine ... 7

3.2. The User Interface .. 7

3.3. Data Extraction Program .. 8

3.3.1. Crawler Program .. 8

3.3.2.Parser Program .. 11

4. IMPLEMENTATION OF DATA EXTRACTION ... 15

4.1. Strategy for Crawler Program .. 15

4.1.1. Crawling Sector Based Seed URL and Related URLs 16

4.2. Strategy for Parser Program .. 19

4.3. Data Retrieval from a Target Job Website .. 21

4.3.1. Crawler Program for Seed URL .. 21

4.3.2. Crawler Program for Multiple Pages ... 23

4.3.3. Parser Program for Text Extraction ... 24

V

5. OUTPUT .. 26

5.1. System Performance ... 29

6. TESTING ... 32

6.1. Testing for Crawler Program .. 32

6.2. Testing for Parser Program ... 35

6.3. Functional Testing .. 37

7. CONCLUSION .. 40

8. FUTURE WORK .. 41

REFERENCES .. 42

APPENDIX A. SOURCE CODE .. 44

VI

LIST OF TABLES

5.1 Total Time Taken for Job Retrieval from Target Websites ... 31

Vll

LIST OF FIGURES

1.1. Architecture of Metasearch Engine [3] ... 3

3.1. Architecture of JASE .. 6

3.2. Screenshot of the User Interface Showing the Job Sector .. 7

3.3. Sample Layout of Job Listing Page of a Job Search Engine .. 11

3.4. HTML Source for Individual Job Listing in Figure 3.3 .. 12

4.1. Sample HTML Layout Job Listing Page ... 19

4.2. Sample Source Code for Figure 4.1 .. 20

4.3. Code Snippet for Job Sector Selection Page ... 21

4.4. Code Snippet for Crawling Seed URL. ... 22

4.5. Code Snippet for Finding Total Number of Pages for a Job Sector 23

4.6. Code Snippet to Crawl Multiple Pages for a Specific Job Sector 24

4.7. Code Snippet for Parsing Target Website ... 25

5. I. Selection of Job Sector - Administrative .. 26

5.2. Job Listing Page for Administrative Sector .. 27

5.3. Selection for Job Sector - Accounting ... 27

5.4. Job Listing for Accounting Sector .. 28

5.5. Feedback Message .. 28

5.6. Retrieved Jobs from Job.com [7] and Simplyhired.com [6] ... 29

5.7. Simplistic View of Job Results .. 30

6.1. Screenshot of Simplyhired.com [6] Accounting Webpage ... 33

Vlll

LIST OF FIGURES (Continued)

6.2. Testing for Correctness of Crawled URLs ... 33

6.3. Screenshot for Administrative Sector of Job.com [7] ... 34

6.4. Crawled URLs for Administrative Sector of Job.com [7] ... 35

6.5. Screenshot for Indeed.com [5] Finance Sector ... 36

6.6. Screenshot for Indeed.com [5] Job Details Parsed to Notepad 36

6.7. Screenshot of the User Interface - Drop-Down Menu .. 37

6.8. Screenshot oflnitial Listing of Jobs for Computer/IT Sector 38

6.9. Screenshot of the User Interface with Jobs Sorted by Location 39

IX

1. INTRODUCTION

In recent times, Job Search Engines have become an important bridge between job

seekers and employers. These engines provide job seekers with access to job vacancies

posted by companies and also, an easy way to apply for the jobs online. One of the

underlying concepts used is that of a metasearch engine or a vertical search engine or a

combination of both. A Metasearch engine [1] crawls through various search engines and

presents the output without the intermittent usage of a database; whereas, a vertical search

engine [3] aims at scraping data that pertains to a pre-defined topic such as jobs and careers.

The primary goal of a job search engine is to provide a listing of all available jobs in

the Internet by retrieving job vacancies from career webpage of multiple company websites

in addition to job vacancies posted to the job engine website by individual companies.

There is a large amount of job data in the Internet, which becomes a target for many

search engine enthusiasts. Each of the search engines employs their own search algorithm

techniques to extract available information. Due to the variance in the crawling techniques,

not all engines crawl through the same web pages. Hence, when a user queries different

search engines for a word or a set of words, he may find different results being returned.

The objective of this paper is to reduce the browsing time of the user from visiting

various websites for the same job criteria a user is interested in and also to reduce the

overwhelming factor associated with browsing through multiple job search engines for

relevant jobs.

This paper implements a Job Aggregation Search Engine(JASE) which aims at

categorizing jobs into sectors such as Accounting, Computers, etc; retrieving job listings

from top job portals in real-time; unifies the listings and gives a response in a consistent

format so that users can choose the best website that suits their job interests. The

implementation consists of a user interface which displays a list of job categories. Once the

user selects a category, the crawler program is triggered. It crawls through various top job

websites and displays a unified list of related jobs that are posted on the current date. This

method of unification saves the user from accessing various sites and keying in the same

search data multiple times.

The two main components related to job extraction are the crawler and parser

program. In general, a web crawler is a computer program that browses through the internet

in a methodical manner. The crawler program visits the list of seed job URLs, and

downloads all the required child hyperlinks such as the job listing hyperlink. The parser

program is used for text processing where in it parses through the downloaded HTML

content of the job listing page and extracts only the desired text and hyperlinks such as Job

Position name, Location, and Description.

Each job website has a different layout and HTML structure. The extraction

technique involves analyzing the HTML content and employing different crawling and

parsing programs to extract only the target data. An attempt has been made to standardize

the crawlers and parsers to an extent such little modification is required for different

websites.

The rest of this paper is organized as follows: Chapter 2 discusses about earlier work

that has been done with job search engines. Chapter 3 describes the architecture of JASE.

Chapter 4 discusses about the crawling and parsing techniques employed. Chapter 5 and

Chapter 6 illustrate the output and testing results respectively.

2

2. RELATED WORK

Due to the increase in the amount of data present on the web, research is being done

on search engine techniques to provide a unified access to multiple search engines and

consolidate the results into a single list. This section discusses work that is related to this

paper and about search engines that has been used as a target source for the search tool.

Metasearch engines are systems that take requests from the user and sends them to

multiple other search engines or databases and unifies the results into a single list, thereby,

saving the user from visiting multiple websites separately [1]. The main advantage of these

engines is that they provide larger coverage and a consistent interface [2]. These engines do

not use a physical database to store the results. Rather, the databases of the search engines

are used to collect the results and display it in a list format. These metasearch engines

employ unique search algorithms to implement the search. The architecture of a metasearch

engine [3] is illustrated in Figure 1.1.

User Interface

Database Selector Result merger

Query Dispatcher Result Extractors

Engine Engine

Figure 1.1. Architecture of Metasearch Engine [3]

3

The metasearch engine [3) takes the input from the user using the User Interface,

selects the correct database, customizes the query and sends it to multiple search engines.

The result from these search engines are merged together and returned to the user. This is

similar to our work because the user query is sent to multiple search engines and the results

are merged into a single unified list. Since we restrict our search to the job domain, the user

query is sent to all the selected search engines without any database selection criteria.

There are many Job portals that exist as typical search engines which aggregate jobs

from job websites, career websites and other online sources. A metasearch technique is used

in paper [4]. It discusses the a job search techniques where in it extracts the user interface

from job boards, generates an XML scheme, and uses resultant information to display jobs.

Our result is related to this work. However, we extract job information from the search

engines job webpages based on the HTML source code.

Vertical Search Engines [3] use focused crawlers. Instead of crawling the entire

web; search is based on a certain domain. This work involves text and link analysis for the

crawling. Our paper is related to this work since we focus on only the job sector. Hence,

text in the HTML webpage is analyzed to crawl and parse the job information.

Indeed.com [5] and Simplyhired.com [6] are metasearch engines that browse

through thousands of job boards, classified listings, newspaper etc. These engines focus on

a keyword search. These engines do not have a physical database but uses the databases of

the source websites. Our paper is related to the work since we also crawl through these

websites to gets gather result sets. But in our case, a database is used for intermittent storage

of extracted job information from where the results are displayed. Also, our focus is on a

4

job sector categorization. The result is displayed on a single page with important job data

such as job title, location and descriptions link.

Job.com [7] is a job search engine that provides an extra option for the users to post

their resumes and employers to post their job listings. The paper is related to this work but

we provide the users with a job sector selection drop down menu as the main source of

input. We crawl through job.com and display the results in a tabular format which is easily

comprehensible. The user can click on the hot-links provided on the display page to apply

for jobs through job.com. JASE holds a database from where information is manipulated to

a simple format. Job information from all these job websites are merged together to provide

a consistent result.

5

3. COMPONENTS OF JASE

The structure of the job engine can be classified into two segments. The first

segment is comprised of a user interface and the second segment is the data extraction

program. The user interface is the web based medium through which the user inputs the job

selection criteria and gets the results displayed in a readable format. The job extraction

program mines through various job resources and parses specific job information on those

job board websites and downloads job data into the database. Section 3.1 briefs about the

environment used to build the system. Section 3.2 discusses about the user interface and

section 3.3 discusses about the data extraction program which includes the crawler and

parser programs. Figure 3.1 illustrates the architecture of JASE.

'------U_s_e_r _1n_t_er_f:_ac_-e ___ ~l 1~ __ P_H_P_~

Perl Library

EJEJ i.

TP- HTML::TokeParser
MH - WWW: :Mechanize

Data Extraction Program

Crawler

Parser

Data
Access

Figure 3.1. Architecture of JASE

6

MYSQL

3.1. Environment Used to Build the Search Engine

The environment used to develop the user interface is XAMPP [8]. It is an open

source, cross platform development tool used for executing Perl and PHP programs using

Apache server and MySQL database. The main reason for choosing XAMPP [8]

environment is that it can be run on Windows and it is easy to configure to make it a web

server. The user interface was built using PHP, HTML and JavaScript. PHP is a free

software and scripting language used to generated dynamic web pages. It is used for

retrieving data from database and presenting in a web based format. Perl is used as the data

extraction language. Perl is a high level, general purpose programming language that has

powerful text manipulation facilities. Perl is chosen because the underlying technique for

the data extraction program is based on text identification and extraction from websites.

3.2. The User Interface

The User Interface provides the user with a dropdown menu that lists various job

sectors. Interface is intended to be simple and easy. Categorizing of jobs is used as the

criterion for job retrieval because users can easily relate to a job domain depending on their

profession. For instance, an accountant can select Accounting as the sector and browse

through all related jobs. Figure 3 .2 shows the job selection input page.

Accounting • I submit I

Figure 3.2. Screenshot of the User Interface Showing the Job Sector

7

Once the user selects the sector from the drop down menu and hits the submit

button, he will be routed to a page that displays a unified list of jobs from various top job

portals. The job listing page displays details in a tabular format which is easily

comprehensible. Details that are listed are title of the job, location where the position is

available and the details hyperlink that route to the web page where it is originally posted.

The details hyperlink redirects the users to the appropriate detailed description page wherein

he usually has an option of applying for a requirement online.

Job data available in the job boards are extracted after the users submit action. Real

time extraction of data has been done giving the users an advantage of browsing through the

latest jobs. In order to limit users' wait time, a partial list of jobs is displayed periodically as

and when a particular job site is extracted. The user can browse through the jobs that are

initially displayed while the rest of jobs get crawled and loaded.

Once all the jobs are loaded, the users are given an option of sorting out the job title

and location in ascending or descending order.

3.3. Data Extraction Program

The core part of the JASE lies in data extraction. The data extraction segment of the

job retrieval program can be divided into two units.

1) Crawler program

2) Text Parser program

3.3.1. Crawler Program

In general, a Web Crawler is an automated software program that browses through

the internet in a methodical manner. JASE makes use of web crawler technology to gather

8

information from a given set of publicly available large job boards and retrieves relevant

and up-to-date data.

Once the extraction system receives the job sector input from the user, it triggers the

crawler program. The crawler is fed with a seed URL which is the entry point to the job

website that has to crawled. The seed URL is not always the main page of the job website.

Depending on the job sector, the seed input keeps changing. The techniques employed for

crawling will be discussed further in chapter 4.

The web crawler automatically navigates through the URL and downloads the

destination page as HTML content in its history stack. All the pages that are fetched can be

traversed back and forth. Due to the large number of jobs in job boards, the websites have

pagination facility. Hence, the crawler loops through all the pages until a specified break

condition. The downloaded page will be used by the parser program for text processing as

discussed in section 3.3.2.

One of the important behaviors of the web crawler is related to the Politeness policy

[12] that states how to avoid overloading websites. Steps have been taken while bui !ding the

crawler to specify the number of seconds delay between each request for next page in order

to avoid overloading the other job websites servers. Some of the modules that are employed

in writing the program have been discussed in the following sections.

3.3.1.1. Mechanize

Mechanize [1 O] is a Perl module that has been used for the process of web crawling.

It is a handy module that aids in programmatic web browsing. It is used to automate

interaction with websites. It is used in the process of crawling and screen scrapping which

not only downloads hyperlinks but also emulates an interaction with the website facilitating

9

navigation around site and filling out forms. Mechanize can be used to fetch sequence of

pages by following links and submitting forms. The visited URLs can be queried and

revisited since mechanize stores the history of all the URLs.

Reasons for choosing Mechanize are as follows:

1. Job search engine provides a feature keyword search box and a submit button.

Mechanize provides methods for automated form filling and submitting forms.

2. Each fetched page by Mechanize is stored in history. So, traverse between pages

becomes easy. It mimics a back and forward button in a web browser.

3. It is used for testing web applications. Using the testb::* modules, the fetched

content can be checked and passed as an input to a test call.

4. It automatically handles cookies and redirections.

One disadvantage of Mechanize is that it cannot be used to crawl JavaScript pages.

Declaration and Methods used with Mechanize are described below:

A Mechanize object can be created using the following syntax:

my $mech_object = WWW::Mechanize->new().

Some of the methods that are commonly used to crawl web pages are discussed as follows:

I. $mech->get($URL)

This method is used to the fetch the job URL thdt is passed as a parameter. The URL

can be passed as a string or URI object or a mechanize link.

My $link= www::mechanize::link->new({url => $url,

Text=> $text,

Name=> $name,

Tag=> $tag});

10

2. $mech -> back()

This method is used to return to return to the previous webpage. It is similar to the

back button of a web browser.

3. $mech -> links()

It is used to get a list of all the links found on the last fetched page.

3.3.2. Parser Program

The downloaded webpage received from the crawler program is the input to the

parser program. A webpage is generally built using HTML. An HTML page consists of a

number of tags which encloses text, hyperlinks and sub-tags. The parser program parses

through the HTML content of the web pages to extract job data.

As discussed, the important details that are required for a job listing webpage are the

job title and corresponding location and the description link. The main intent of the parser is

to scrape only these details avoiding all other text content on the webpage. Figure 3 .3 shows

a sample layout of a job listing page of a search engine.

Job Board Website XYZ

Job Title
Short Description

Job Title
Short Description

Job Title
Short Description

Job Title
Short Description

Company
Location

Company
Location

Company
Location

Company
Location

Figure 3.3. Sample Layout of Job Listing Page of a Job Search Engine

11

A job board website generally follows the same HTML structure for its job listing

pages. The job postings along with its short description would be displayed vertically one

below the other and the corresponding details such as location are located at specific

positions. In Figure 3.3, all the individual job titles would be placed between the same start

and end HTML tag. The parser would search for the job title start tag and then looks for the

tag which contains the corresponding Company information and Location. These HTML

start tags will sometimes be accompanied by attributes such as href, class, id, style or title.

In such cases, a combination of start tag and attribute will be used by the parser to identify

and extract the required text information. The HTML source for Figure 3.3 is shown is

Figure 3.4 below.

<div style = " ... "> Company<ldiv>

<h2 class= "job_title">Job Tit/e<!a></h2>

<div> Location</ div>

Figure 3.4. HTML Source for Individual Job Listing in Figure 3.3

In Figure 3.4, the parser can parse the HTML document for the first div tag and style

combination to find the company detail. It would find the heading tag h2 with attribute class

that equals job _title, in order to get the job title information. It finds the anchor tag with href

to extract the details link and it follows the second div tag to get the location.

The extracted text information is stored in a database. These details are retrieved

from the database using PHP language and presented in a simple, readable format. Parsing

techniques will further discussed in Chapter 4.

12

For testing purposes, the parser program is used to concatenate and return an output

of the extracted text information in a readable format i.e., in the form of a notepad or an

excel file. This can be done before sending the information to the database.

The Perl modules and methods that are used for data scraping are discussed m

section 3.3.2.1.

3.3.2.1. HTML::TokeParser

HTML: :Toke Parser [11] is a Perl module that is used for text extraction. It is a class

with predefined set of token types and it has methods that identify tokens.

It is initialized as follows:

$parse_content = HTML::TokeParser->new($file, %opt)

where $file can be a file name, plain scalar that is an entire document that has to be parsed.

3.3.2.1.1. Advantages of TokeParser

TokeParser provides efficient methods to extract the required data such as URLs,

title of the URL link, any text on the HTML page given a opening tag and an closing tag.

It provides methods for rewriting start tag attributes. It is used when there 1s

incorrect HTML on the page which in general cases, neglected by the parser.

3.3.2.1.2. Important Methods used in TokeParser

1) get_tag()

The method is used to return an HTML tag. Since relevant job data on the job

webpage will be enclosed within an HTML start tag and an end tag, the first step for

text extraction in our case would be to get the tags.

$tag= $stream->get_tag('HTML tag')

13

2) get_text()

The get_text method would return all the text that is available in the current position

of the tag or till the specified tags that passed as arguments to the method.

$text= $stream->get_text('HTML tag')

14

4. IMPLEMENTATION OF DATA EXTRACTION

The information retrieval combines the crawler and the parser program which aids in

information retrieval from large job boards. Each job search engine has unique HTML

structure that is analyzed and an appropriate crawler and parser is written. These crawler

and parser programs have a standard format except pieces of code that are modified due to

the difference in the main seed URL and HTML tags that contain the core job details.

The prototype job retrieval program extracts job information from top five job

search engines. These search engines have jobs that are either posted to their websites by

companies or jobs that are crawled through various companies career website or both.

4.1. Strategy for Crawler Program

To initiate the crawling of a website, the crawler is given an input of the target job

search engines URL. Since the categorization of jobs is done based on the job sector, an

initial analysis of the website is done to find the URL that directly routes to the jobs listing

page of a particular URL. Taking the given link below as an example, the analysis can be

explained.

$ URL = http :l/www. simplyh ired. com/ a/jobs!/ ist/ q-accountinglfdb-1 /pn-1

The main link of a popular job search engine is www.simplyhired.com [6]. The first

step is to find the link that contains the accounting jobs. The parameter "q-accounting"

specifies that the accounting sector is taken into consideration. Once the link has been

clicked, it routes to the first page of the job listings. In order to crawl only the latest jobs, a

15

criterion of data posted is taken into account. In the case of simplyhired.com website, the

latest jobs are posted using a separate folder name "fdb-1" in addition to the existing

accounting URL. Hence this complete link is given as a seed URL to the crawler program.

Similar techniques have been followed for crawling other job search engines seed

URL. In order to crawl only the fresh jobs, the job posted date on the website has to be

taken into account. There will not be an exclusive hyperlink or a hot-link for all the

categories. Hence, further analysis has been done to gather the appropriate seed URL.

The crawler program clicks on the seed URL and downloads the HTML content of

the webpage. These sector wise jobs are displayed in multiple pages using pagination. In

general cases, about ten pages are listed per page. The parameter "pn-1" in the URL

represents the first page of the jobs sector webpage. The crawler then crawls through all

these webpages and these corresponding hot-links are stored in its history stack.

The technique used to crawl and extract job information from a famous website has

been discussed in section 4.2.

4.1.1. Crawling Sector Based Seed URL and Related URLs

Seed URL is decided in such a way that the crawler need not travel through multiple

links to reach the sector based jobs. This contributes to the reduction in the total time of

crawling. On analyzing the seed URL, it is found that there exists a parameter that can be

incremented to travel through multiple pages. The crawler loops through the

given'nextpage' URL and downloads all the pages. On a generic level, the input to the

crawler program can be divided into common categories.

16

• Job search engines have a default search box where the user can input the job sector

name. Perl module Mechanize is used to mimic the user input. The search box and

the submit button are generally the placed inside an HTML 'form' tag.

@array= {'Accounting', 'Administrative', 'Finance'};

Foreach $sector(@array)

{

$sector = $array;

$ml= "http://xyz.com";

$browser-> get($url);

$browser-> form_number(n);

$browser -> field('search _ string' ,$sector);

eval{

$browser-> click_button(value => "Search");

} ;

$contents_ of_ webpage = $browser->content();

}

In the code given above, the job sectors are stored in an array. The crawler looks for the

form number where the search box is located and auto fills the job sector and hits the

Search button. The HTML content is then stored in a variable.

• In some cases, the job sectors are listed in a Drop-Down menu. On analysis of the

source code for HTML, the form encloses the Drop-Down menu and the

17

submit/search button. In the HTML source code, the crawler looks for the option

value. A sample source code is shown below:

<form action ="/www.xyz.com" method= post>

<strong class = "abc"> Job Category:

<select name = "industry" id = "xyz">

<option value= "1 ">Accounting</option>

<option value= "2">Administrative</option>

<option value= "3">Finance</option>

</select>

</form>

Taking into consideration the code above, the strategy for crawling follows the one

employed for the search box style crawling with the exception that it uses the name of the

drop down menu along with the option value.

$browser->value ($name, $number)

Where $name = industry

$number IN (1, 2, 3)

The webpage that is crawled by the crawler is used by the parser program which in turn

parses through the source HTML to extract the job information.

18

4.2. Strategy for Parser Program

Parser program is implemented in such a way that it looks for a specific set of

HTML tags in the HTML source code. Search engine websites are generally designed in an

organized manner. Individual job titles are listed in a webpage in systematic manner. There

is usually a unique tag that encloses the job titles. The job titles also work as a hot-link

which routes to the detailed description page of a job source website's page. Sample HTML

layout of a job website is illustrated in Figure 4.1.

Job Board Website XYZ

Job Title

Job Title

Job Title

Job Title

Sector
Location

Sector
Location

Sector
Location

Sector
Location

Figure 4.1. Sample HTML Layout for Job Listing Page

In figure 4.1, it can be seen that the Job titles ;:ire located vertically one below the

other. The corresponding job sector and location are positioned on the right of the page

relative to the job titles. The HTML source code of the sample page in Figure 4.1 is shown

in Figure 4.2.

19

l

<h2 class = "jobtitle _result">

Job Title 1

</h2>

<div style= "float"right"> Location J</div>

<h2 class= "jobtitle_result">

Job Title 2

</h2>

<div style = "float"right"> Location 2</div>

Figure 4.2. Sample Source Code for Figure 4.1

On analyzing the HTML code in Figure 4.2, it can be seen that the individual job

listings are placed inside heading "<h2>" tags with an attribute class equaling

"jobtitle_result". It should be made sure that this combination is applicable only to the job

titles in the entire HTML source. If it holds good for other information apart from the job

details, the parser would be extracting irrelevant information.

The parser would initially get the h2 tag and then looks for the element "<a id ="

followed "href' which holds the name of the job title as well the hot-link for detailed

description.

The immediate division tag "<div>" is parsed for the location of the job. Similarly,

the company details, date posted can be also be extracted by looking into the correct HTML

tags.

20

4.3. Data Retrieval from a Target Job Website

Indeed is a large job search engine that crawls through thousands of jobs on the

internet. The data retrieval technique combines the crawler and the parser programs. Once

the crawler accesses the input URL of indeed.com [5], the parser scrapes the job data.

4.3.1. Crawler Program for Seed URL

The crawler program crawls jobs related to job categories such as Accounting,

Administrative, Computer and Finance. The URL of the source website contains the

category name. The names of the categories are stored in Perl associative arrays:

$category {'number'} {'name'}

where a random number is assigned and "name" equals the category name. The code

snippet the job selection is shown in Figure 4.3.

#!/usr/bin/perl

use strict; # implementing strict helps in writing quality and cleaner code

use WWW::Mechanize;

use HTML::TokeParser;

my $bot_name = 'Indeed';

my %sectors; # associative array which would contain the different

disciplines for a job seeker

Sector selection

$category{'}'} {'name'} = 'Accounting';

$category {'I '}{'sector _id'} ='I';

$category{'2'} {'name'} = 'Administrative';

$category{'2'} {'sector_id'} = '2';

$category{'3'} {'name'} = 'Finance';

Figure 4.3. Code Snippet for Job Sector Selection Page

21

l

The code snippet for crawling the seed URL is shown Figure 4.4.

my $nextpage = 'http://www.indeed.com/';

Initialise a new Mechanize instance for the main page function, and the

subpage function

my $page= WWW::Mechanize->new();

print "\nConnected to Indeed \n";

#Indicates the current category we are scraping

print "\nScraping \"".$category{ 1} {'name'} ."\"\n\n";

my %jobs;

my $job _ref;

my $jobcounter = 1;

my $counter= O;

my $counter 1 = 1;

my $numpages = O;

my $total_pages = O; #it is not the total number of page but the existing

page.

my $detailspage;

$nextpage =

'http://www.indeed.com/jobs?q='.$category{$admin_ category} {'name'}.' &start=O'

$page->get($nextpage);

my $cleancontent = $page->content;

Figure 4.4. Code Snippet for Crawling Seed URL

"http://www.indeed.com/j obs? q= Administrati ve&sort=date&start=O" contains the

first page which has job in the accounting discipline. Before we begin browsing through the

website, we need to get the total number of pages on the target website which has

Accounting jobs. This section identifies the total number of pages to be crawled and text

parsed. We step through HTML on the target website and scrape the total number of jobs

22

actually found for the current discipline search. This is then divided with the total number of

jobs usually found on the target website to get the total number of pages to be scraped.

4.3.2. Crawler Program for Multiple Pages

The job search engines have the jobs categorized by sectors that are spread across

multiple pages. Hence, the crawler program has to recognize the link for the next pages. The

websites display the total number of jobs for a particular sector. This display is utilized by

the crawler program to crawl through multiple pages. Parsing techniques are used by the

crawler program to find the total number of pages which is illustrated in Figure 4.5 and 4.6.

my $stream= new HTML::TokeParser(\$cleancontent);
while(my $tag= $stream->get_tag('td'))

{
my ($temp, $first, $second)= ";
if($tag->[l]{class} eq "search_meta")
{

$total_pages = $stream->get_ trimmed_ text('/b');
($temp,$total _pages) = split('of ', $total _pages);
($templ, $temp2) = split(',', $total_pages);
$total_pages = $temp l .$temp2;

if($total_pages%10 == 0)
{

}

$total_pages = $total_pages/l O;
print "Total Pages= $total_pages\n";

else
{

}

$total _pages = $total _pages/IO;
$total_pages = int $total_pages;

$total_pages = $total_pages + 1;
print "Total Pages= $total_pages\n";

print "\n";
last; } }

Figure 4.5. Code Snippet for Finding Total Number of Pages for a Job Sector

23

for ($1= 1 ;$1<$total_pages;$1++)
{

}

$nextpage=
'http://www.indeed.com/jobs?q=' .$category {$admin _category} { 'nam
e'}.'
&start=' .$counter;
$page->get($next page);

Figure 4.6. Code Snippet to Crawl Multiple Pages for a Specific Job Sector

4.3.3. Parser Program for Text Extraction

This initial scraping actually gets to the piece of HTML code which actually

has the title of the job. This is accomplished by getting to the HTML tag that contains the

title, comparing it against a condition that is unique in the entire source HTML page and

also checking if the condition applies to all the job titles on the page. After this

determination, we specify the condition and title is scraped with the 'get trimmed text'
- -

function in the HTML::TokeParser to remove unwanted white spaces in the job title.

After the title of the job is extracted, the href attribute of the anchor tag needs to

extract to scrape the link to the full summary for the current job. This is done using the

$tag->[l]{href} function. There are two kinds of URL, some websites have the absolute

URL for the detailspage and some have the relative URL. If the website has a relative URL,

we would concatenate it with the site URL to form an absolute URL to the detailspage. The

location of the job and job post date can also be scrapped depending the website and would

add to the list of key information that is required to identify the job.

In order to perform the first level of de-duplication, we would need to create a

primary key for the job to make sure they are not scrapped again when we run the program

again. The absolute link to the details page carries a reference number for the job or a job ID

24

which can also be scrapped using regular expressions (REGEX). This can act as the primary

key for the job so a comparison can be made against these ids's to determine if we already

have these jobs scrapped. This eliminates listing duplicate job and would enhance user

experience. This technique of information retrieval is applied to every job on the current

page and to every page on the target website until we get the last page that we calculated

initially. This ensures a large pool of jobs that a user can apply. The above technique is

found to be appropriate for a wide variety of job boards that have an organized listing of job

on their site. The code snippet for parsing a target website is shown in Figure 4.7.

my $cleancontent = $page->content;

Initialise a new TokeParser instance
my $stream= new HTML::TokeParser(\$cleancontent);
while(my $tag= $stream->get_tag('h2'))
{

if($tag->[1] {class} eq "jobtitle")
{

#scraping links here:
$tag= $stream->get_tag('a');

$detailspage = $tag->[l]{href}; # /job/337095/head-of-it-services?vsrc=l
#NOTE: scraping position of the job:

}
}

$jobs{$job_ref} {'name'}= $stream->get_trimmed_text('/a');

$jobs{$job_ref} {'link'} = $site.$detailspage;

$jobcounter++;
print "\n";
print "\t";
print $jobs{$job _ref} {'name'}."---" .$jobs{$job _ref} {'link'} ."\n";

Wait between 3 and 5 seconds before getting the next page.

sleep int(rand(5 - 3)) + 3;

Figure 4.7. Code Snippet for Parsing Target Website

25

5. OUTPUT

The user selects the input sector which triggers the crawler program and a list of jobs

from five different job board engines are returned. The crawler takes into account some of

the famous websites such as indeed.com [5] , simplyhired.com [6] and job.com [7]. As

crawling of the websites is done real-time, the job results from one website are displayed

initially so that the user can browse through it and apply for the interested job. It crawls

through the websites one by one and displays the results in a web browser. In Figure 5 .1 , the

job sector named Administrative has been chosen.

Job Sector Selection---------------,

Administrative ... [submit J

Figure 5.1. Selection of Job Sector - Administrative

When the submit button is clicked, the crawler retrieves jobs from the website called

job.com [7]. It displays the job title, location of the job and the details link which is a

hyperlink that routes to the description page of the main source website. It then retrieves the

jobs from a website called indeed.com [5] followed by simphired.com.

Initially the extracted jobs details from job.com [7] are displayed in a tabular format.

After a delay of a few seconds, jobs from indeed.com [5] and simplyhired.com [6] are

retrieved. Once all the jobs are retrieved, the user is given an option of sorting by job title

and location. The sorting option is more presentable because it gives the user clarity of the

26

location of the job he is interested m. Figure 5.2 displays the results for the sector

Administrative.

~ JOB WEBSITf

+- C ~ Q localhost/phpscripts/latest_output.php

~dministrative Assistant

~dministrative Assistant

Job Posti.aes

Olathe, KS

!Plano, TX

fAkron, OH

!Philadelphia, PA

I Raleigh, NC

Figure 5.2. Job Listing Page for Administrative Sector

When the job sector Accounting is chosen, it retrieves only the accounting jobs from

the given search engines but initially displays job from the website called www.job.com as

discussed earlier. The Accounting sector is chosen in Figure 5.3 .

~ Job Sector Selection-------------------------~

I
I Accounting 1 1 I]
i.;.;.;;,:.:.:;..;.;.~,.1.,,-1 submi!

I

Figure 5.3. Selection for Job Sector - Accounting

27

The corresponding screenshot of the accounting job listing is shown in Figure 5.4.

G]JOBIIWTE

+- C if [© localhostlphpscripts/'atest_output.php
-- --·-- - .~.......::m:m bf tm

JobPoslilp

ouds Receivable~

Figure 5.4. Job Listing for Accounting Sector

The user is given a feedback requesting him to wait and browse through jobs while the

others jobs are getting loaded. The feedback will be shown at the top of the page above the

job listing table. Illustration of the feedback is show in Figure 5.5.

r JOB WEBSITE

+- X ti © localhost/phpscnptl/late5t_output.p~~- _
11----~..:..---'----~;_;;_.;..__;;=::;..,;;~--;--c_~C"CC,:;;::::.;;=.:..- •==-=====-.::....:.

Job Postillcs

Figure 5.5. Feedback Message

28

1111

Figure 5.6 displays a partial result from two different websites after initial wait time. Job

from the website simplyhired.com [6] is appending to the initial set of administrative jobs.

+- C It locaihost

IPIOffi=c=e=Rec=e=pb=on=1st======="l:c~=xand=n=a=.V=A====;l"l,,=w11=1o=b=,o=m=my=1o=bs=ea=r,=~,p=a=qe==1o=b11=e=v;.~=e1=,=?=40=2=91=85=1p==1,=pt==2=gs==2=;c==12=,n=s==lf==2=rp=,p==10ji '

!Ped1atr1c Office Recepbornst !!Cheektowaga. NY l~l.1"/1 !0b com my 1Jb search:pa!ie-1ob11ew kev=? 4029175:p=2:pt=2:as=2'c=12 ns= 1 f-2 rpp= 10:j1

I !Office Administrative Assistant !!New RocheHe, NY l~mw 10b com my job sea1ch:page=1ob11ewkev=740292141p=2:pl=2.as=2 c=121s=1 ·1=2'rpp=HJ1,

1 JOffice Adrrnnistrative Assistant IISt Joseph MO lf.wm 10b com my 10b search.'page=1obl1ewked4029210:p=21p!=2gs-2 c=12'ns=11=~1

' !Office Admm Assistant !!Rock Hill, SC lf1tNW 10b com my pt search.page=1otr~ew'key= 7 4023835,p=21ot=2 os=2r=12 ns= 1 fuill
!Office Receptionist !ITailahassee, FL lf1tNW IQb com:my 10t.search.·paqe=1ob\1evilev=7 4029196,p=2!Qt=2'gs=2:c=12 ns= 11=2 rw 1 ·J·j

!Office Recepnonist !!Tempe, N. llv,\1"/110b com my jot sea1ch:paqe=1ob\1ewkev=74029189Jo=2:pt=2:as=21c=12:ns= 1 ·l=hp=Hjl

!Pediatric Office Receptiornst [[Fhnt Ml i['ll,1"/110b comm1 jot searchpar1ot11e1ikey-?40291691p=2·p:=2 gs-2,c=12ns= 1f-2"pp-lJ'I

!Recepbornst ![Kansas Ctfy, MO lf11,,,w 10b com my 10b search<paqe=1ob11ew kev=759799181p=2'lli:£ili=2 c=12'ns=~i ,

l§dm1nrstranve Assistant IITalla1assee, FL]rww ,ob c:ommy pt search'paJe=1ob~e'like,-75979888p=2·o:=2 as-2 c=1cns=1r-2 1DD=10'II

jAdministrauve Assistant !!Gilbert. N. l~mw 10b com my pt searcr,page=1ob\1ew,ke1=759798841p=21p:=2:as=2c=12 ns=11=2',pp=10J1

\AdministratJve NurSing Super.isor IIThe Villages FL llrtp ,\wm s1mpr1h,reo com 1ob-1d.gfLXas2gg:adm nrstrauvenrs1ng1obs. Ii

l~dm1rnstratJve Secretary \\ciarkston GA \[rr,p 'W1w1 s1mp!vh1reo comrll 1d.fu3ewsgmiadrn1nrstratr1e secretal'j-)Obs· [1,

\Administrative Clerk. Transfusion Meo1cine ljNew York NY llrttp \'<'lfN s1mpr1h:reo com:1ob.1d:hfxzw73sadadm,n,strat1ve-clerk-10bS: II

l§dm1nrstrative Assistant l~1N llrttp :1w,w s1mpr,r:reo com1ob1d.15yme3sd15q,adn1nrstratve-ass1stan'.-1:ibs1 Ii

J§dministrative Assistant l§aco TX =.Jlrttp rwww s1mpwh:red com:job1d.16pmzox31a,jrr 11strat1veass,stantjobs: I

!Safefy & Compliance Administrator llcorpus Chnsti. TX l\rttp 111wr.v s1mprvh1reo comjob-1d.'uezf7v Tu:safetv-compliance-pbs1 Ii

JAdministratJve Assistant [Jwestborough, MA l\rr,p I Wl'm s1mp~t1reo com1ob-1d.Ypnu2ucy'adm nrstrat1ve-assista1t:19bs · [I

!Administrative Director of Surgical Ser.ice IIMinneapohs, MN l~,p 1'Wl¥N s1mo!vh:reo ::om1ob-1d.·917cnfmo65,admn.stral1ve-d1rec1or-1obs' I!

Administrative- Human Resources, Recruitment lllchicago IL I rttn :1'<',fN simnr,hred comiobid!d7iocnztradm111stra1ve-hurn;:;n:0bs,
Manager II .

§dministrabve Assistant IINew York. NY llrr,phwr.v s1mp~hreo ::omjob-1d'4v3iisai'Tlr:admnistra:,ve-ass stant-1obs,' I

[Senior Administrative Assistant [JReston, VA l\rr,p 'W1•.w s1mpr1h:reo comjob-1d:2xspzgbrnXsernor-adm1strat1ve.jobs,' [

§dmimstra11ve Assistant IIPhoernx N. llrttp , 'wN,v s1mpr,h1red ::om 1ob-1dizpt6etg4fadnmrstrat ve-ass1stan:.1~bs' I·

lct1nica1 AdrT11mstraave Coordinator Illas Vegas. NV llrtp 1'<'1t,v sirnpr,rrred com 1ob-1d.1ea'll37sze3f chmca-adm1nistrat1ve-1obs. I

Figure 5.6. Retrieved Jobs from Job.com [7] and Simplyhired.com [6)

5.1. System Performance

The performance of the system is tested based on the following criteria:

• Usability

• Reduced browsing time

The system is intended to be simple and user-friendly. Due to the minimalist nature of the

User Interface, the user can select the job category from a drop-down menu. Since the

29

--

search engines unify the results into a unified table format, the user 1s able to browse

through the jobs without much research on the user interface.

The results illustrated in Figure 5.7 shows the jobs for Computer sector in a sorted

manner. Results from multiple job board engines are combined together and sorted by job

title. Sorting by location is also done.

C h :.· IO(alhost
:I

1
Job Postings

'''

11 Jot II
Location

11
Details

II

jco~Fusion Software Eigmeer jjRoooil~ MD : IITQ' \WIN SITD'yhirej com1ob-1d sdfr2nlXICOk:lfLS101l-S01t.vare-pbs· Ii
l !Developer 4, Software j~lanta. GA i 1tQ w1,N s1r,21yh1'ed com1ob-1d uik1av[Dgm3 deve:02er-4-1obs

: jDeveloper 4, Software jjso:001 WA : 1rrQ · v.w.v srn~:1~1:ed com·1ob-1d ulxgogrb4rr,devewer-4-1obs I
lnformabon Technology (rT) Support Specialist ~lanta, GA i:www io, comnw ob'searcr:Qage=1cb11e1tke1= 76766082 Q= 1:Qt=2:gs=2.'c=35,ns=1,f=2:rQQ= 1 oj.
jLAMP Developmenl Manager jjNew York, NY :1'/i1V.v:o: :om rnv ob'search'Qage=1cb11ew key: 76688140 Q=1:Ql=2,gs=2·c=3'., ns=1 f=2tr:iQ= 1 oj;

~~~diandise Manager. Retail (Corporate Office !saint Paul MN 
1, 

I! " 
:1w.v.v '~jeed com rec k?1k=31fC42:,20ec'!b7b 
'1 

jonlme Nernork Ma~ager JINew York, NY 11\\W.V l~ceed COllHCCk?ik=bd90b9679d324958 1: 

jPHP Developer jjNewYork NY jjw.w1102 com11y ob searcrc'Qage=1cb~ew.·Ke'1=76688141!R=1 Qt=2gs=2'C=35,ns=1f=2'rQQ=10 Ii 

jPHPIC++ Developer (Lead) !!New York NY l!w,1w 10, com 11v ob searcrs'Qage=icb~ewkei: 76688137'Q= 1 !Rt=2,gs=2'c=35,ns=1 f=2:rQQ= 10 Ii 
jaualitv Assurance Programrrer jjsa~ord, FL lw,l',vm :om 'Tl'I ob searcrCQage=1cbl1ew..key= 70196700 Q=1 ·Qt=2,gs=2'c=35 ns=1 f=2:r:iQ= 1 oI 
jsenior rr Auditor jjPerrysburg, OH !;w1.v :o~ com11v ob searcr:oaoe='cb~ew'ke• =7668855410=1 'D1=2,as=2'C=3:,,ns=1 f:2:r:ic=10 

jsernor Java Software Ergineer jjsan Jose, CA '1ttQ ,·;wr.v s1rQli~1red com,1ob-id xv:.kfmdeser1or-1ava ,ob 1-

jsernor Mobie Software Ergineer, Mint. com jjMoun!a:n View CA :'lt'Ji ·'INrN s1rolyh1red corrqob-id\vb 3Qrn7ga,senior-rrob1le-iobs I, 

jsenior Software Distnbution Technician !!Paramus NJ 11tJ)··w1r.v s1TDr1h1red conv1ob-1d zazslu~ke'sernor-software-1obs; I 
jsenior Software Engineer jjsan Jose, CA !tR, ww.v s111Qyh1red.com,1ob-idlg13d2vtmssen cr-scftw3'e-100s 

I 

jSernor Software Engineer llseatte WA iir;, , ·11•1r.v s1rQ!ytm.0d corn tob-id ax2£llc1w143. sen or-so't.•1n1cbs I, 

jsernor Software Erg1neer. MBE jjsan Diego, CA NJ!. vm,v sm!yh:red c!lf'\1ob-1d .vrcf(14w25'seni0r-so~.vare-1obs 

jsenior Software Eng1neer!Developer jDurnam. NC : 1rJ) Wl(.V SITQiyhi'ed com1ob1d}lt'1115;!])tsernor-so~w;re ,obs; 

jsottware De~gn Engineer in Test I: SDET I jjseattle. WA 1.t~ '1.w.v srngMnd cor11ob-1dz36x,u12QfSJftwndes1c1.1obs 

jsottware Developer jjBrook~ Part Mt i 
1 

'lt'Ji .·1m.v s1TQ~h1·ed com1ob-id13ri7o567vksciwared€'1e;ow1cos 

jsottware Development Ana~~ 2 jjwash1ngton. DC : 1rJ) w,r,v s1 TQ!Jh' red com 1ob-1diw 7 ssa ~ell so~.va re-develognen!- :ibs: 

Software Development Ergmeer -Armzon !Seattle, WA ,;·Aw,1,0: :om 1r1 ob searer oaae=1cb~ew ke·::6596505~ o=21ot=2as=21c=3:, ns=1 '=2,r:io=10 
Simp~ Queue SeMce . 

Figure 5.7. Simplistic View of Job Results 

30 



The total time taken for operating JASE from the time of entering the website, 

selecting a job category and retrieving jobs is done. This is compared with the time taken to 

access and browse the three individual websites that are target websites to the search engine. 

Novice users were asked to perform this task. Table 5.1 shows the results of the total time 

taken for retrieving jobs. 

Job Sector 

Accounting 

Administrative 

Finance 

Computer/IT 

Average 

Time taken for Job 
Aggregation Search 

Engine(minutes) 

0.37 

0.30 

0.31 

0.29 

0.34 

Time taken for visiting 
individual target 

websites(minutes) 

5.05 

3.22 

1.36 

6.34 

4.11 

Table 5.1. Total Time Taken for Job Retrieval from Target Websites 

Results show that JASE is user friendly and takes much less time to search for an 

appropriate job rather than visiting numerous websites to find a job that interest us. 

31 



6. TESTING 

Testing the result is an important aspect in the job retrieval program. Care should be 

taken that the correct text is being retrieved from the websites. Since data from different 

websites are being merged in a consistent manner, there are chances that data gets displayed 

at the wrong columns. Hence the crawler program and the parser program have been tested 

to check consistency. There are two level of testing. 

1. The first stage of testing is done before and after the extracted data is inserted into 

the database from where it is retrieved by the front end program PHP and displayed 

to the users. 

2. The second stage of testing is done after the job data gets displayed on the web 

browser. Comparison is made between the source job search engine webpage and 

the extracted data. 

6.1. Testing for Crawler Program 

The objective of testing the crawler program is to determine if the correct hot-links 

are identified and crawled from the target search engine webpage. This is done before the 

job data that is scraped from the websites is sent to the database. A log of the crawled 

websites is printed on the windows command prompt. The command to execute the Perl 

crawler script is passed with an argument which equals the job sector. 

Test Case 1: 

Input - Seed URL= http:/lwww.simplyhired.comlaljobs/list/q-accounting/fdb-l 

Perl command= perl jobs2.pl Sadmin_category 

where jobs2.pl is the crawler program for simplyhired.com, $admin_category = 1 

32 



Expected Output: Individual job listing hot-links shown in Figure 6.1 crawled. The page 

displays the main seed URL for the crawler program and the first page of the job listing. 

C: ~ , www.simplyh1red.com 

Keyword, Location 

simplq faccount1 ng---------------- ,-·--------------------.. ---- i Se;uch AJI Jobs: .G:.! . .it.:.: •. ~ 

job ae~rch rnade simple , t. o:,,• / ·u·,·. 

accounting jobs :Em~1i)..iert. [Saw! ··who Do I Know?_;QIJ 

Finers Appfied 

)"} Lest 24 hours 

Cfcor Sort Re-le;:ance L,)lt, 

[-i J!tJ.f: 
Cash,er 

5t:'l'IOJ ACCOUrl!~'lnt 

!nventc~f Sp,;,ri;;,l1c:1 

F1n<1nc131 t.n::ilfst 

P1n 2uprl1 sr.,,.,1,~l1c,! 

~taff ~.v.'c,.intant 

Sa!'l<::;> As:s:oc1at>? 

Price t.u,:Mor 

CrBntions t-fana',f:'f 

Sal':'S [xpe-rt 

Sal::s l,!3na\jer 

Accounting Senior r.1anili!fil - ·,u, 
Halliburton . Houston TX 
of financial statements performance of accounting systems. and processes with 
accounting pol1c1es statutory accounting and reporting regulations 

,JI,•• ,1', -'\•f.•.,''.•I\,,.'., 

Accounting Mw121qe1 
Aurora Custom Mach1nmg . Aurora !L 
accounting manager to oversee the Company·s accounting function Minimum educatrnn 
payroll and rnonthy end closes Genera! accounting experience in a manufacturing 

Accounting Intern - '•'" 
Tyco - Boca Raton FL 

Ii :, . f-•'.>'J' :t. /j'. .. \ 

• In pursurt of Bachelors degree in Accounting Business Admmistrat,on an Equal 
Opportunity Emplo~·e, Job Finance/Accounting O,gamzatmn ADT fforth America 

Jobs 1 10 ol 8,892 !1 

Figure 6.1. Screenshot of Simplyhired.com [6] Accounting Webpage 

Actual Output: The crawled websites is printed on the windows command prompt. 

Iii CommandP 

:\xampp\htdocs 
ser input is 
onnected to 

Scraping "accounting" 

fhttp://www.simplyhired.com/a/jobs/list/q-accounting/fdb-l/pn-1 
I otal Pages= 890 

I 
1 inished counting total pages .. , 

oaded page 1/2 of the jobsboard - http://l'.ww.simplyhired.com/a/jobs/list/q-accounting/fdb-l/pn-l 

Accounting Senior Manager- --http:/ /Wnw. s imp lyhi red. com/ job-i d/21 ti y62kdx/accounti ng-seni or-jobs/ 

Accounting Manage1·---http: //www. s 1mp lyh1 red. com/Job-1 d/6duf4rwzeh/account1 ng-manager-Job~s/ ! 
Accounting Intern---http://www.simplyhired.com/1ob-1d/5oqvm7zxzy/accounting-rntern-jobs/ ' 

Accounting clerk,Trad1co---http://Wnwsimplyhired.com/job-id/pSzholyxof/accounting-cler ' 

i 
,,.,:,>,,c-'X0h-<i&,-i,V~, ,,~~.'.u@.V~,1"¢,..,,;,lfJ.!:V:'N~ w,,;4»,;,: 

Figure 6.2. Testing for Correctness of Crawled URLs 

The list of all job titles and corresponding details page is printed. The total number 

of pages retrieved in the website is displayed. For prototype purpose, the total pages to be 

33 



, 

scraped are limited to two. The log displays the page and the corresponding link that 1s 

currently being crawled. 

Test Result - Comparing Figure 6.1 and Figure 6.2 shows that the correct URL has been 

crawled. The next page is crawled which is indicated by the print statement "Loaded page 

2/2 of the jobboard" along with the URL which has been manipulated using the crawler. 

Test Case 2: 

Input:http://www.job.com/my.job/search/page=results/pt= 2/qs = 2/c= 12/ns= I (f =60/rpp= I 0/ 

Perl command= perljobsl.pl $admin_category 

where jobs 1. pl is the crawler program for job.com and $admin _ category = 2 

Expected Output: Figure 6.3 shows the expected output, i.e. the jobs that are listed for the 

administrative sector of job.com [7]. 

C ti 1,vv,wjob.com 

Administrative Assistant 
Administrative Assistant 

Administrative / Clerical 

Winter Park, FL 

Are you ready to work for an organization that values you? The recru1t1ng department for a national 

company is in need of an entry-level ( ,nor,, .. ) 

- r;et Qualified E:s timate Sala1·y L Jcb Match Test !_, Pest,me ,-.:_,.1_ndt-? 

Administrative Assistant 
Confidential Company 

Adm1nistrat1ve / Clerical 

Ocoee, FL 

Are you ready to work for an organization that values you? The recruiting department for a national 

company is in need of an entry-level (,nor'2 ... ) 

"8' Get Qualified Estimate Sa!arv L Jcb Match Ti?st . F.:tsurr,e Gu1dE~ 

,.v,,v:..-".,}Cb,cc:m 'rYl/,Jf.'b,'se-arch,'r,agt::::Jct1".1e,v:'k1;-. :::'. l'Jl·+·.v;t 'p= 1 r,t:: ~: ·q~.::.) ·c:: L?:'ns:: 1 T::: ( 1 q:r,;:;. 10; 
O• ,-. ,,- , u 

Figure 6.3. Screenshot for Administrative Sector of Job.com (7] 

Actual Output: The actual result i.e., the URLs that are crawled for the administrative sector 

of job.com is show in Figure 6.4. 

34 



, 

Scraping "Administrative" 

otal Pages= 100 

Finished counting total pages ... 

Loaded page 1/2 of the jobsboard - http://www.job.com/my.job/search/page=results/p=l/pt=2/qs=2/c=12/ns=1/f= 

Administrative Assistant---www.job.com/my.job/search/page=jobview/key=70196696/p=1/pt=2/qs=2/c=12/n 
Inserting job: Administrative Assistant 

Administrative Assistant---www.job.com/my.job/search/page=jobview/key=70196701/p=l/pt=2/qs=2/c=12/n 
Inserting job: Administrative Assistant 

Admi ni str'ati ve Ass i stant---www.job.com/my. job/search/page=jobvi ew/key=71369563/p=l/pt=2/qs=2/c=12/n, 
Inserting job: Administrative Assistant -

Receptionist---www.job.com/my.job/search/page=jobview/key=75979923/p=l/pt=2/qs=2/c=l2/ns=1/f=2/rpp= 
Inserting job: Receptionist 

Receptionist-- -www.job.com/my. job/search/page=jobvi ew/key=7 5979922/p=l/pt=2/qs=2/c=l2/ns=l/f=2/rpp= • 
4: W 

<~~;/.f ,o,, w,s,,.,/,<W/'S/n#/'V'"'l°_!M v,;;:;,;;y-,:,:, ,~,'f;,~)';//~,::, ,,,···,,W(f'.';'£-/~~41@'~~'ii',ic--,0···------iiiii1 

Figure 6.4. Crawled URLs for Administrative Sector of Job.com (71 

Test Result: On comparing Figure 6.3 and Figure 6.4, there is a match between the main 

URL of job.com [7] and the webpages identified by the crawler program. Hence the output 

is achieved. 

6.2. Testing for Parser Program 

The objective of testing the parser program is to test for consistency before data is 

inserted into the database. The parser program extracts job data from he webpages that are 

downloaded by the crawler and prints it on a notepad. 

Test Case 1: 

Input= Job listing page from Indeed.com as shown in Figure 6.5. 

Expected Output = Job Title, Location and hotlink for each job extracted onto a notepad 

file. 

A sample job listing page from Indeed.com is shown in Figure 6.5. 

35 



[I] Finan ct: Jobs, Employmt: ... 

+- C ft 

SAP ABAP Specialist , 
GDH Consulting - i\,q,,. 
tuning Specific expenence required w1th FinancerControlhng (fl:CO) Pro1ect 
Systems (PS) Supply SK1lls SAP ABAP Fl1CO Finance. SCM. Supply Chain 
;::,,;;---1 (;[)H . 

German speaker Finance roles 1n Romania DX2202 - , . 
Beeswax Europe - Lia 1'tia,id PA 
for German Accounts payable/Accounts recer1i-able professionals to join their 
finance team tn Bucharest These teams are responsible for managing the 
payments of 

Beeswax Europe - L'c, 
for Dutch Accounts payabletAccounts receivable prcfess1onals to JOin their finance 
~eam in Bucharest These teams are responsible for managing the payments of 

Gain Experience in Payroll Record 
Keeping Inventory Control & Mere 

More Jobs Than Any Ma1or Job Site -
Search & Apply Online Todayl 

Email this search to a friend: 

From my email address 

To email address 

Figure 6.5. Screenshot for Indeed.com (SJ Finance Sector 

Actual output: Job data that is printed to a notepad file as shown in Figure 6.6. 

'iJ Favorites ! C:\xampp\htdots\phpscripts\indeed.txt 

Title!Location!Job Details Link! 

SAP A3AP Si;ecialist!Dallas, rx1www.1::deed.cJn:\/rc\/clk?Jk=:577e4lb255b7d7S 
Gerrr.an si:eaker Finance roles in Romania DX22021Mainland, FA1www.indeed.com\/rc\/clk?jk=e0d5122c3c91bbbc 
Dutch finance roles in Romania DX2139jl1a1nla::d, FAJ,.,,w.i::deed.com\/rc\/clk?jk=c5ff55c3db2flb3f 
Danis!'l Accc:i..'lts Fay able in 3:ic::a:::est ox2:971 Ma1::la::dr PA I www .1ndee::!. corr.\/ re\/ clk?j k=6c12~a7d9002d~21 

'II 

Figure 6.6. Screenshot for Indeed.com (SJ Job Details Parsed to Notepad 

Test Result: Printing the output in a notepad file is an important testing step. It shows that 

the data extracted is consistent with the source website. If there is an inconsistency, it shows 

that the parser is capturing incorrect HTML tags. Hence, further analysis is done to include 

the correct HTML tags which enclose the job data. 

36 



6.3. Functional Testing 

Functional testing is done based on an integrated system level taking into account 

the functional aspects of the job retrieval engine. Given an input based on the specifications, 

the performance of the system is tested as an output on the graphical user interface. An 

input of job sector is given and the results that are expected are the segregated job details for 

the selected sector. 

Test Case 1 

The purpose of the test is to check the functionality of job sector drop-down menu. 

Input: Selecting the drop-down menu list from the user interface. 

Expected output: List of four job sectors namely Accounting, Administrative, Finance and 

Computer/IT. 

Actual Output: Screenshot of job sector as shown m Figure 6. 7 which displays the job 

disciplines. 

[2] Please select a Job Sector 

C 1f (_) localhost y,::,:c 

Job Sector Selection 

: Accounting 

Administrative 
Finance 
'Computer/IT 

submit 

Figure 6.7. Screenshot of the User Interface - Drop-Down Menu 

37 



Test Case 2 

Once the user selects the job sector, jobs are retrieved from three target search 

engines. The user is given a feedback to wait for more jobs while the crawler initially lists 

the jobs from one target source and the other target sources are being crawled. 

Input: User submit action after selecting a job sector. 

Expected Output: Feedback displayed at top of the job listing webpage. 

The jobs retrieved from job.com [7] for the Computer/IT sector are initially displayed on the 

screen so as to minimize the users wait time. The remaining list of jobs is displayed on a 

periodic basis as the crawler crawls through the other job search engines. 

Actual Output: Feedback for the Computer/IT sector is shown in Figure 6.8. 

( JCSWEBIITE 

Job Postilgs 

II Location Details 

lauality Assurance Programmer !!Sanford. FL ll11w111ot com mv 1obswc~page=1ob'lle,v,/J\ev= 70196700ip=' :pt=2:gs=2 c=3: 1s= 11=2 rpp= D j 

!Marketing Sr. Manager IINew York. NY ll1vww ;ot :om 1w 1ob:searcr,page=1oltMN1<ev= 7652209Jp:;:pt=2qs=2 c=3: cis=1 i=2'rpp:1'.J I 

ID1redor of User Expenence !!New York. NY lf,w1V11ot com rm 1ob,search,paae=1Qb'~e.vr.ey= 76522092'p=11pt=2'qs=2c=3: cis=1i=2,rr,p=10 I 
!Data Operations Engineer tDBA'SysAdm1n) IINewYork. NY ll·,wr11 ,ot com mv 10b se,rchmqe=1obl'lew/J\ey=7652209' ip=',pt=Z qs=2c=3: 1S=1 t=2:rpp=1 J.j 

++:Unix!PHP Lead !New York NY llwww 1oc :om mv 10b search page=1ob'/le,v,l(ev=76522090,p=' pt=2'qs=2,c=3: 1s=11=2 rpp=Hj 

aies Director INewYork NY ll·,v11w ·ot :ommv 10b :;~arcr,paae=1ob'lle.v,1<ev=76522089 p= ,pt=2as=2c=3: cis=1.1=2'rpp=D I · 

Figure 6.8. Screenshot of Initial Listing of Jobs for Computer/IT Sector 

Test case 3 

The objective of the test is to check the functionality of sort by location. 

Input: Sector= Administrative and Sorting criteria= Location 

Expected output: Location of jobs sorted in ascending order. 

38 



' 

The administrative sector is chosen as the job sector. Once all the jobs are retrieved 

from the target job board search engines, the location is sorted in no particular order. On 

hitting the Location column heading, a sort is done in descending. Another hit on Location 

heading sorts the list in ascending order. 

Actual Output: The display page containing the unified results for Administrative sector is 

illustrated in Figure 6.9. 

f 

! 0JOB\'/EBSJ1E 

1 

f, -, C ~ o, localhosUphpseipts/latest_outputp1p1orderby=localion&sortby=ASC 

Job Postings 

Job II Location Details I 

11~]So;:,;;ftw:;;;;ar~e E:;;;rg~ine;;e~r ====~l~~;:na~po;:;l1s;;Jun;::d;;ian;;:· M;;O=~l!]~rtp~. ~,1,1~'N~s1m~pr~,h,~red~c~om~1o~b-1~d7~1b~lso~7k~7ts~oftw~a~re~-e"~~1~ne~e'~~ob~s====~II , 
j IISoftware Ergineer (J2EE I WebSphere) 

1
~nington VA ]]rttp ·.1ww s1mpr,·tlired com'1ob 1dyp1J73rrck software-engmeer-1obs1 I • 

1 ]Developer 4, Software ]§tianta, GA llnrri 11w.vs1mJr1h1red com1ob-1dukyavmom3developer-4-1ot1s I 

I Information Technology (In Support Specialist ~anta. GA ] ,wNi 10b comm· 10b search 0a e= obvlew'ke ·= 76766082; =1°1=2! s=2c=35rs=1 1f:2; =10• 

I ]Developer 4, Software ]]Bothell, WA ]]ht;p,11ww S1mpM11red com'iob-1du~qqgnb4m1deve~per-4-~b~' 

1 ]sr Software Erg1neer-Supp~ Chain OMS 11Bnsbane CA ]]rt;p \WNI ~m2r1h1red com1ob-1dpkdcr32d50:sr-software-1obs1 

! ]Sr/ Software Ergineer ]ieupertmo CA I rt0 ,•,ww s1m0 r,ti1red com:ob-1de3L'N ixasc sr-sof1ware-1cb~ 

, 11vS,e;;;;ni;;;,or~So~ftw~are~E~rg~ine~er~1De:;;;ve~lop!;;er~~;!Du;;rha~m~Jl;C====ill~~tp~·~1wii~11~sw~1~l~·m:~red~c~om~1o~b-1~ct:r~t,11~15i~mp~ts~en~10r~-so~ft.v~ar~e-i~ob~s· =====~I 
i 1r= 1: I I !Software ErgineerjHerooon. VA htp .·11ww S1m:J~~1red com1ob-1dvmcjha15rYsoftware-er~1nee'-1obs.· 

]lAMP Development Manager !!New York, ljY :10, 

Figure 6.9. Screenshot of the User Interface with Jobs Sorted by Location 

39 



, 

.... 

7. CONCLUSION 

This paper has introduced a technique to connect jobseekers with real time jobs 

posted across top job boards. With many Meta search engines available and many job 

boards for job seekers to go to, it often becomes time consuming for the user to be the first 

to apply for a newly posted job on a given day at a given time. It often also becomes 

overwhelming for the user to visit each website if he is not able to find a particular job on a 

website. 

This paper categorizes jobs by discipline, aggregates jobs from top job boards and 

brings in very recently posted jobs at the time when the user clicks on a particular discipline 

thus providing a platform for users to have access to new jobs posted across multiple job 

boards. Users are given information about the location of the job and a link to the detailed 

description if the job interests them. 

The overall browsing time of the user is reduced on searching for the jobs of interest 

usmg JASE rather than visiting multiple websites for the same job criteria. Also, the 

overwhelming factor associated with browsing through various job websites 1s reduced 

since a unified list of jobs is displayed on the simple and user-friendly interface. 

40 



, 

8. FUTURE WORK 

The paper deals with aggregating jobs from multiple job search engines. Due to the 

fact that these search engines crawl from the web, there may occur the problem of job 

duplication. Hence, the paper can be extended to eliminate the problem of duplication. 

Since the job retrieval program crawls over multiple websites in real-time, there is 

an increase in total time for retrieving the jobs. Hence, the program can be optimized for 

decreasing the total crawl time. 

The number of job board websites crawled by the job retrieval program is limited. It 

can be increased to a larger number to give a larger number of results. 

41 



, 
REFERENCES 

1. Weiyi Meng, Clement Yu, and King-Lup Liu. 2002, "Building efficient and effective 

metasearch engines," ACM Comput. Surv. pp.48-89, March 2002 

2. Eric J. Glover, Steve Lawrence, William P. Birmingham, and C. Lee Giles, 

"Architecture of a metasearch engine that supports user information needs" 

In Proceedings of the eighth international conference on Jnfhrmation and knowledge 

management (CIKM '99), Susan Gauch (Ed.). ACM, New York, NY, USA, pp. 210-

216, 1999 

3. G. Almpanidis, C. Kotropoulos, and I. Pitas., "Combining text and link analysis for 

focused crawling - An application for vertical search engines", Information 

Systems, 32(6), pp. 886-908, September 2007 

4. Dorn, J., Naz, T., "Integration of Job Portals by Meta-search", Enterprise 

Interoperability II, Part IV, Springer London, pp 401-412, 2007 

5. Indeed.com 

www.indeed.com, Retrieved on 02-14-2011 

6. Simplyhired.com 

www.simplyhired.com, Retrieved on 02-14-2011 

7. www.job.com, Retrieved on 02-14-2011 

8. XAMPP 

http://www.apachefriends.org/en/xampp-windows.HTM L, Retrieved on O 1-24-2011. 

9. Castillo, Carlos, "Effective Web Crawling", ACM SIGIR Forum 55 Vol.39 No. 1, pp. 

55-56. June 2005 

42 



10. Mechanize 

http://search.cpan.org/dist/WWW-Mechanizc/, Retrieved on O 1-13-2011 

11. TokeParser 

http://search.cpan.org/~gaas/HTM I ,-Parser-3 .68/1 i b/llTM L/TokcParscr.pm, Retrieved 

on 01-16-2011 

12. Criston Souza, Eduardo Laber, Caio Valentim, and Eduardo Cardoso, "A Polite Policy 

for Revisiting Web Pages". In Proceedings of the 2007 Latin American Web 

Conference (LA-WEB '07). IEEE Computer Society, Washington, DC, USA, pp. 128-

135, 2007 

43 



APPENDIX A. SOURCE CODE 

The source code for job extraction consists of the crawler program and the parser 

program. The source code for job.com [7] and simplyhired.com [6] is given below. 

#!"C:\xampp\perl\bin\perl.exe" 

#================================================================ 
#Code for job.com 
#================================================================ 

# standard modules 
require 'functions.pl'; 
use strict; 
use HTML::Entities; 
use WWW::Mechanize; 
use HTML::TokeParser; 
use DBix::DWIW; 

#Code for data extraction from www.job.com 

my $array = "; 
my $datafile="; 
my %category; 

my $admin_category = $ARGV[O]; 

# CONNECTING TO DAT ABASE 

my $db_user 
my $db_pass 
my $db_name 
my $server 
my $conn 

= 'root'; 
= 'secret'; 
= ]Ob'; 
= 'localhost'; 
= "· 

' 

-------------==========-----------------------------------=---=== 
#ESTABLISH DAT ABASE CONNECTION# 

$conn = DBix::DWIW->Connect(User => $db_user, Host => $server, Pass => $db_pass, 
DB=> $db_name) or die"$!"; 

44 



my $insertHandle = $conn->Prepare ("INSERT INTO jobs 
( 

) 

sector, 
website, 
job, 
company, 
location, 
Details 

VALUES 

(?,'Job',?,?,?,?) 

") or die"$!"; 

#==============================-====---========================-= 
#Crawler Code 
#==============================================================--

$category{'}'} {'name'}= 'Accounting'; 
$category{'l '}{'category _id'}= '4'; 

$category{'2'} {'name'} = 'Administrative'; 
$category{'2'} {'category _id'} = '12'; 

$category{'3'} {'name'} = 'finance'; 
$category{'3'}{'category_id'} = '14'; 

$category{'4'} {'name'} = 'computer'; 
$category { '4' }{ 'category _id'} = '35'; 

my $website 1 = 'www.job.com'; 
my $nextpage = 'http://www.job.com/'; 

#sector id to be used in url of the website 

# Initialise a new Mechanize instance for the main page function 
my $page= WWW::Mechanize->new(); 
$page->agent_alias('Windows Mozilla'); 

print "\nConnected to Job.com ..... \n"; 

45 



print "\nScraping \"" .$category { $ad min_ category} {'name'}. "\"\n\n"; 

my %jobs; 
my $job; 

my $location; 

my $job_ counter= 1; 
my $counter = O; 
my $counter I = I ; 
my $numpages = O; 
my $total_pages = O; #it is not the total number of page but the existing page. 
my $desc _page; 
my $datafile="; 

$datafile= "job.txt"; 
open OUT, ">$datafile"; 
print OUT "Job TitleJLocationJLink\n"; 

#----------------------Initial Scraping-------------------------=--== 

$nextpage='http://www.job.com/my.job/search/page=resu1ts/p='.$counter1 .'/pt=2/qs=2/c='.$ 
category{$admin_category} {'category _id'}.'/ns=l /f=2/rpp=l 0/'; 

$page->get($nextpage ); 

admin_category: This section correctly identifies the number of pages required to get all 
links on the jobsboard. 

my $page_ content= $page->content; 

#============-============================-==================-=== 

#Parser Code 
#--==========-============================================----=== 

# Initialise a new TokeParser instance 
my $stream= new HTML::TokeParser(\$page_content); 

46 



1 

while(my $tag= $stream->get_tag('span')) 
{ 

my ($temp, $first, $second)="; 

if{$tag->[ 1 ]{id} eq "dRes") 

{ 

$total__pages = $stream->get_ trimmed_ text('/span'); 
188,429" 

# Returns "Returns Jobs 1 - 10 of 

} 

} 

#$total__pages = 2; 

($temp,$total__pages) = split('than ', $total_pages); 
$total__pages =~ s/jobs//g; 

($first, $second)= split(',', $total_pages); 

$total_pages = $first.$second; 

i f{$total __pages% 10 == 0) 

$total__pages = $total_pages/l O; 
print "Total Pages= $total__pages\n"; 

} 
else 
{ 

} 

$total__pagcs = $total__pages/l O; 
$total__pages = int $total__pages; 

$total_pages = $total__pages + 1; 
print "Total Pages= $total_pages\n"; 

print "\n"; 
last: 

47 



' 

print "Finished counting total pages ... \n"; 

my $1 = O; 
for($!= 1 ;$1<=$total_pages;$1++) 
{ 

$nextpage= 
'http://www.job.com/my.job/search/page=results/p=' .$l. '/pt=2/qs=2/c=' .$category { $admin _ c 
ate gory} {'category_ id'}. '/ns= 1 /f=2/rpp= I 0/'; 

$page->get($nextpage ); 

print "\nLoaded page ".$1."/".$total_pages." of the jobsboard - ".$nextpage." \n\n"; 

###NOTE: This while loop will extract all the links on the job summary page. 

my $page_ content= $page->content; 

# Initialise a new TokeParser instance 

my $stream= new HTML::TokeParser(\$page_content); 

$desc _page = "; 
while(my $tag= $stream->get_tag('h2')) 

{ 

if($tag->[1]{class} eq "jobTitle_results") 

{ 

#NOTE: scraping links here: 
$tag= $stream->get_tag('a'); 

$desc_page $tag->[1] {href}; # /job/337095/head-of-it-

services?vsrc= 1 

#NOTE: scraping position of the job: 
$jobs {$job} {'name'} = $stream->get_ trimmed_ text('/a'); 

48 



print OUT 

$tag = $stream->get_ tag('div'); 
$jobs{$job} {'location'}=$stream-> get_trimmed _text('/div'); 

if($desc_page =~ /my\.job/) 
{ 

$jobs {$job}{ 'link'} = $website 1.$desc _page; 
$jobcounter++; 
print "\n"; 
print "\t"; 
print $jobs{$job}{'name'}." ".$jobs{$job}{'link'}; 
print "\n"; 

escape($jobs{$job} {'name'}). "I" .escape($jobs{$job} {'location'} )."I" .escape($jobs{ $job} {'Ii 
nk'} )."\n"; 

} 
#$counter 1 ++; 

if($desc_page =~ /my\.job/) 
{ 

foreach my $job (sort {$jobs{$a} cmp $jobs{$b} } keys %jobs) 
{ 

my $dbresult = $insertHandle->Execute( 

$admin _ category, 

$jobs{$job} {'name'}, 
II 

$jobs{ $job} {'location'}, 
$jobs{$job} {'link'} 

) or die"$!"; 

print 'Inserting job: '.$jobs{$job}{'name'}; 

} 
%jobs=(); 

} 

} 

} 

49 



, 

# Wait beteween 3 and 5 seconds before getting the next page. 
sleep int(rand(S - 3)) + 3; 

} 

my $dbresult = $insertHandle->finish(); 

2. CODE FOR SIMPL YHIRED.COM 

my $datafile= "; 
my %category; 

$category{'l '}{'name'}= 'accounting'; 

$category{'2'} {'name'}= 'administrative'; 

$category{'3'} {'name'} = 'software'; 

#-===-==================================-====----=========-====--

#JOB EXTRACTION FOR SIMPL YHIRED.COM 

my $jobsboard_url = 'http://www.simplyhired.com/'; 
my $admin_category = $ARGV[O]; 

print 'User input is: '.$admin_category. '** *** * * * * * * * * * * * ** * * ** * ** *'· 

$datafile = "simplyhired. txt"; 
open OUT, ">$datafile"; 
print OUT "Job Title\Location\Detail Link\n\n"; 

my $insertHandle = $conn->Prepare ("INSERT INTO jobs 

' 

(sector, website ,job, company, location, details) 
VALUES 
(

') I • 1 h. d' ') ') ') '?) . , s1mp y ire , . , . , . , . 
") or die"$!"; 

my $site2 = 'http://www.simplyhired.com/'; 

my $nextpage = 'http://www.simplyhired.com/'; 

50 



1 

# Initialise a new Mechanize instance for the main page function, and the subpage function 
my $page= WWW::Mechanize->new(); 
$page->agent_alias('Windows Mozilla'); 

print "\nConnected to Simply Hired ..... \n"; 

print "\nScraping \"".$category{$admin_category} {'name'} ."\"\n\n"; 

my %jobs; 
my $job; 

my $job_counter= 1; 
my $counter = 1 ; 
my $counter 1 = 1 ; 
my $numpages = O; 
my $total_pages = O; #it is not the total number of page but the existing page. 
my $desc _page; 

my @jobtitles = (); 
my @detaillinks = (); 

# -==---=------------ Initial Scraping --------------------------

$nextpage = 
'http://www.simplyhired.com/a/jobs/Jist/q' .$category { $admin _category} {'name'} .'/fdb-1 /pn-
1 '; 

print $nextpage. "\n"; 

$page->get($nextpage ); 

###NOTE: This section correctly identifies the number of pages required to get all links on 
the jobsboard. 

my $page_ content= $page->content; 

# Initialise a new TokeParser instance 
my $stream= new HTML::TokeParser(\$page_content); 

#Loop to extract the total number of pages for the sector 

while(my $tag = $stream->get_ tag('p')) 
{ 

my ($temp, $first, $second)="; 

51 



} 

$total_pages = 2; 

if($tag->[l]{class} eq "job_counter") 

{ 

} 

$total_pages = $stream->get_ trimmed_ text('span'); 
($temp,$total_pages) = split('of ', $total _pages); 
($first, $second)= split(',', $total_pages); 
$total_pages = $first.$second; 

if($total_pages% 10 == 0) 
{ 

} 

$total_pages = $total_pages/1 O; 
print "Total Pages= $total_pages\n"; 

else 
{ 

} 

$total_pages = $total_pages/1 O; 
$total_pages = int $total_pages; 
$total_pages = $total_pages + 1; 
print "Total Pages= $total_pages\n"; 

print "\n"; 
last; 

print "Finished counting total pages ... \n"; 

my $1 =I; 
for($!= I ;$1<=$total_pages;$1++) 
{ 

$nextpage = 'http://www.simplyhired.com/a/jobs/list/q
'.$category{$admin _category} {'name'} .'/fdb-l '.'/pn-'.$1; 

$page->get($nextpage ); 

52 



print "\nLoaded page ".$1."/".$total_pages." ofthejobsboard - ".$nextpage." \n\n"; 

###NOTE: This while loop will extract all the links on the job summary page. 

my $page_ content= $page->content; 

# Initialise a new TokeParser instance 
my $stream= new HTML::TokeParser(\$page_content); 

while(my $tag= $stream->get_tag('div')) 
{ 

if($tag->[l]{class} eq "more box") 

{ 

#NOTE : scraping links here : 
$tag = $stream->get_ tag('a'); 
$tag= $stream->get_tag('a'); 

if($tag->[l]{class} eq "permalink") 

{ 
$desc _page = $tag->[ 1 ]{href}; # /job/33 7095/head-of-it-

services?vsrc= 1 
} 

#NOTE: scraping position of the job: 
$jobs{$job} {'name'} = $stream->get_trimmed_text('/a'); 
$tag= $stream->get_tag('a'); 
$tag= $stream->get_tag('a'); 

$jobs{$job} {'link'} = $desc_page; 
($jobs{$job }{'name' },$jobs{ $job }{'comploc'}) = split(' at 

',$jobs{$job} {'name'}); 
($jobs{$job}{'company'}.$jobs{$job}{'location'}) = split(' in', 

$jobs{$job} {'comploc'} ); 
$jobcounter++; 

print "\n"; 
print "\t"; 
print $jobs{$job} {'name'}."---" .$jobs{ $job} {'link'}; 

53 



print "\n"; 
print OUT 

escape($jobs{$job} {'name'}). "I" .escape($jobs{ $job} {'company'}). "I" .escape($jobs{ $job} { 'l 
ocation'} )."I" .escape($jobs{$job} {'link'} )."\n"; 

} 

%jobs=(); 

} 
} 

#push(@jobtitles, $jobs{$job} {'name'}); 
#push(@detaillinks, $jobs{$job} {'link'}); 

#Inserting name, company, location and details link into the database 
foreach my $job (sort {$jobs{$a} cmp $jobs{$b} } keys %jobs) 
{ 

} 

my $dbresult = $insertHandle->Execute( 
$admin_category, 
$jobs{$job} {'name'} 

$jobs{$job} {'company'}, 
$jobs{ $job} {'location'}, 
$jobs{ $job }{'link'} 
) or die"$!"; 

#print 'Insertingjob: '.$jobs{$job}{'location'}; 

my $dbresult = $insertHandle->finish(); 

54 


	BCS2_4576
	BCS2_4577
	BCS2_4578
	BCS2_4579
	BCS2_4580
	BCS2_4581
	BCS2_4582
	BCS2_4583
	BCS2_4584
	BCS2_4585
	BCS2_4586
	BCS2_4587
	BCS2_4588
	BCS2_4589
	BCS2_4590
	BCS2_4591
	BCS2_4592
	BCS2_4593
	BCS2_4594
	BCS2_4595
	BCS2_4596
	BCS2_4597
	BCS2_4598
	BCS2_4599
	BCS2_4600
	BCS2_4601
	BCS2_4602
	BCS2_4603
	BCS2_4604
	BCS2_4605
	BCS2_4606
	BCS2_4607
	BCS2_4608
	BCS2_4609
	BCS2_4610
	BCS2_4611
	BCS2_4612
	BCS2_4613
	BCS2_4614
	BCS2_4615
	BCS2_4616
	BCS2_4617
	BCS2_4618
	BCS2_4619
	BCS2_4620
	BCS2_4621
	BCS2_4622
	BCS2_4623
	BCS2_4624
	BCS2_4625
	BCS2_4626
	BCS2_4627
	BCS2_4628
	BCS2_4629
	BCS2_4630
	BCS2_4631
	BCS2_4632
	BCS2_4633
	BCS2_4634
	BCS2_4635
	BCS2_4636
	BCS2_4637
	BCS2_4638

