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ABSTRACT

Modern agriculture encounters several challenges these days. There is a vital need

for spatial data about plant and weed distributions. Obtaining accurate knowledge of the

plants and weeds distribution in the field with manual methods are time-consuming. In this

research, image processing programs were developed from the unmanned aerial vehicle

(UAV) digital images to obtain the plant-stand count and weed identification and mapping

in the field. Algorithms using pixel-march with search-hands criterion for the plant-stand

count and shape-based features for weed identification were developed. Results were

found to be accurate in the cropped UAV stitched images (>99 %) in manual image-based

validation. User-friendly message windows, labeled images, textual results, and

distribution maps were produced as outputs. The outcomes of this study will enable

farmers to determine the plant and weed distributions in the field and will be helpful in

deploying precision agriculture measures.
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1. GENERAL INTRODUCTION

Agriculture should and always embraced new technologies to maximize the

efficiency and to minimize the inputs in order to move towards sustainability. The vital

need for spatial data about plant and weed distributions to explore genotype ×

environment × management (GEM) interactions was understood and being explored.

Recently, with modern precision agriculture, there is a growing interest for using modern

technology, such as the application of an unmanned aerial vehicle (UAV) or an unmanned

aerial system (UAS) along with image processing. The UAVs, which are popularly called

drones, are automated, pilotless aircraft which can be remotely controlled by using flight

plans that can be set with programming or through dynamic systems based on a global

positioning system (GPS). UAVs have many benefits and have been used in many

industries, such as defense, construction, surveying, digital surface modeling and mapping,

surveillance, archaeology, and several other fields (Nex & Remondino, 2014). In general,

UAV applications in agriculture are new, and they are open to several research possibilities

and the development of practical methods.

Traditionally, agricultural field management was performed as a “blanket”

application or as a “uniform” application of fertilizers, herbicides, fungicides, and irrigation

for the crops being grown. This traditional application was not very efficient, and it led to

wasted resources. In recent years, the development of GPS and geographic information

systems (GIS) led to the advancement of precision agriculture for site-specific field

management. The UAV applications for the fields help farmers/producers to overcome the
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shortcomings of uniform applications in an efficient way by enabling variable-rate zone

application for the nutrients, plant-protection chemicals, soil management, or crop-stress

management based on the local field requirements (Rudd et al., 2017).

In precision agriculture, manned aircraft vehicles can be used for image capturing

or for spraying chemicals over the large fields; however, UAVs not widespread and efficient

for the most prevalent medium and smaller fields. UAVs fly at a low altitude and capture

high-resolution images that are suitable for further image processing. The UAVs’ endurance

level is based on their batteries, which is their power source; hence UAVs are suitable for

smaller field areas (Lu et al., 2015). Thus, UAVs are developed as cost-effective

alternatives, and agricultural field operations can benefit from using UAVs for a shorter

period (Huang et al., 2013). UAVs have been created with different models, configurations,

sizes, and shapes for various applications. UAVs were used for crop dusting in agriculture

fields during 1980s, and eventually, the UAV applications with fields increased rapidly for

aerial photography and crop imaging over the agricultural fields for precision agriculture

management.

Direct-contact sensors that measure crop- and soil-related parameters are available

or can be developed for various agriculture applications. However, contactless and

remotely operated sensors use indirect measurements (such as color, temperature, and

spectral wavelengths) that can be integrated with UAVs and have a wider coverage area.

By using UAV sensors and measuring indirect variables, the plant’s phenological and

physiological characteristics can be correlated and studied. For instance, leaf color is

helpful to identify the crop’s growth stages, diseases, and pest attacks. In this regard, a

normalized difference vegetation index (NDVI), which is a graphical color representation of
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vegetation ranging between −1.0 to+1.0 (Primicerio et al., 2012), can be derived from the

component color channels (R, G, B, and NIR) of the digital color images that were obtained

from the UAV mounted cameras through image processing.

Plant populations, in general, can influence the yield and can cause reduction in

crop yield. In corn, it was found that yield was maximized with particular plant populations

depending upon nutrient availability (Duncan, 1958). Many researchers examined the

relationships between the corn’s population density and yield. The two field variables that

have a larger effect on the final yield are plant-population density (Willey & Heath, 1969)

and inter-plant spacing (Nafziger, 1996). Seed germination, planter-seed placement, and

plant death were the three main causes of variability for plant spacing (Nielsen, 2001).

Manual stand counts are laborious, are not feasible for large field areas, and are susceptible

to human error. Challenges involved with stand counting include plant-row identification,

plant-row straightness (linear or curvilinear), plant-size variation (projected area), and the

plants’ spatial variation which is represented as “doubles” (< 1
2 ideal spacing) and “skips”

(> 1
2 ideal spacing). An automated, non-subjective plant-counting system would provide a

method to quantify plants objectively, precisely, and quickly, which are always desirable.

It is now understood that a blanket, or uniform, application of herbicides (or

pesticides) to the crops is inefficient and not profitable for the farmers/producers. Weeds

are found randomly in the agricultural fields, either as large/small patches or individually,

based on the weed variety. It is inefficient to apply chemicals as a uniform application to

the entire field, and such applications are harmful to the environment, too. Several

predominant weeds were identified in North Dakota (Zollinger et al., 2006), and targeted

spraying the herbicides, rather than applying them uniformly to the field, is the most
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efficient approach. For such precision agriculture applications, the most important step is

to identify and to quantify the weeds or diseased plants; then, the weeds are mapped in the

field. UAVs can be utilized to capture images that are processed in order to identify and to

map the weeds (Pena et al., 2013).

With suitable image processing, applications such as plant-stand count as well as

weed identification and mapping are possible with the images from the UAV cameras or

other input devices. Because digital images (visual or spectral) can be represented by an

array of numbers, inspecting and manipulating the numbers based on user-designed

algorithms make image processing possible in order to address specific challenges and to

develop user-specific products.

With this background, this thesis focused on developing plant-stand counting and

weed-identification algorithms using the UAVs’ visual images while employing ImageJ

software. ImageJ is an open-source, free, Java-based programing system that allows people

to develop user-coded plugins (programs developed by users) to solve the

image-processing problem that represents the chosen practical applications. The developed

plugins utilize the digital images as inputs, which will run in ImageJ and then produce the

processed images and/or textual outputs.

1.1. Statement of Objectives

The major objectives of this research work are:

1. To review the applications of UAVs for crop growth and health monitoring.

2. To develop a digital image processing program for counting plants, identifying

plant rows, quantifying “skips” and “doubles” in a straight and curvilinear plant

rows from UAV images.
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3. To develop a digital image processing program for identifying different types of

weeds in the agricultural fields from UAV images.

1.2. Thesis Organization

The thesis consists of chapters such as (i) general introduction, and the study’s

objective is presented in the form of three (ii, iii, and iv) peer-reviewed journal articles,

(v) general conclusions, combined references, and an appendix. A commonly presented

“Review of Literature” chapter was replaced by the 3rd chapter in the form of a paper

entitled “A review of unmanned aerial vehicles application for crop-growth and health

monitoring”, which also presents the similar material that is expected from the traditional

Review of Literature chapter. Each of the chapters that are presented in the form of

research paper is complete with its own introduction with supporting review of literature,

materials and methods, results and discussion, and conclusions.

The chapters in the form of journal articles. Paper 1 entitled: “A review of

unmanned aerial vehicles application for crop-growth and health monitoring” compiled the

various research on UAV applications as a review article in the field of crop growth and

health (Objective 1); Paper 2 entitled: “Automatic plant-stand count and spatial

distribution using unmanned aerial vehicle digital images” described the development of an

ImageJ plugin that analyzed the digital images of corn fields for plants row identification,

stand count along rows, and plant distribution (skips and doubles) in the field; and Paper 3

entitled: “Shape-based weed identification and mapping using low-altitude unmanned

aerial vehicle images” described the development of an image processing plugin that

identified and mapped the two most common weeds of North Dakota from the corn field

based on geometrical features of the image objects (Objective 3).
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The “General conclusions and suggestions for future work” chapter summarized the

results derived from the papers (1–3) in the section “General Conclusions”, and also

presented was the “Suggestions for Future Work.” The “References” listing of the chapters

was collected and presented as a separate final chapter. Appendices A and B presented

some of the common weed species and some portions of the developed ImageJ plugin code.
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2. A REVIEW OF UNMANNED AERIAL VEHICLES

APPLICATION FOR CROP-GROWTH AND HEALTH

MONITORING

2.1. Abstract

The UAV technologies significantly contribute to precision agriculture for optimizing

the available agricultural resources and could play a large role in sustainable agriculture.

Satellite images may not have the high resolution, which is necessary for precision

agriculture applications with small field sizes. UAV technologies could address this issue by

assisting with gathering information at the required frequency for continuous plant

monitoring. This technology produces satisfactory resolution crop images, and with

effective data analysis, useful information can be extracted, which could provide a decision

support system for agriculture. There have been several recent studies about the

application of UAVs with agriculture, but surprisingly, research about knowledge extraction

using the images and data analysis from the images is relatively scant. Therefore, this

review paper’s objective was to focus on the use of UAV technologies in agriculture along

with the exploration of data analytics using the captured images. The review synthesizes

the available results about UAV technology applications in agriculture, identifies research

gaps, and provides recommendations. The outputs are helpful to farmers, producers, UAV

operators, and researchers for making informed decisions when selecting and employing

UAV technologies to increase the effectiveness of mechanical agriculture and to perform

future research.
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2.2. Introduction

The UAV technology has existed for a few decades, but its potential use in

agriculture was realized recently by capturing sequential images in order to gain scientific

information and field scouting. In the next few years, the market value for UAVs in

agriculture will increase by 80 % (4Deloitte, The Aerospace and Defense Industry in the

U.S., A financial and economic impact study, March, 2012, written in Association for

Unmanned Vehicle Systems International [AUVSI] economic report). This percentage

signifies the reputation of UAV applications in agriculture. With the invention of novel and

effective technologies, UAVs have the potential in the agricultural industry to deliver the

site-specific farming management. When realizing the importance of drone applications in

many industries, including agriculture, there are many openings for business opportunities,

and increased investments are in this field.

Agricultural production can be significantly affected due to the influence of the

surrounding environment in terms of soil, water, and weather conditions. Swain et al.

(2007) suggested that drone technology provides an important characteristic: a solution,

which is extremely sensitive to both environmental conditions and management practices.

It is, thus, very important for the farmer to know where a problem exists in the field in a

timely manner so that he/she can modify agricultural practices or solve the existing issue.

Therefore, any techniques which increase agricultural productivity while helping to control

the environmental effect will certainly help society. There is an example of integrating this

technology with sensors which can identify the field variability, such as variable rate

application (VRA) technology, along with combining grain-yield monitors and a GPS to
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help with issues that arise due to agricultural management practices regarding irrigation

management and yield estimation, respectively (Stafford, 2000).

As a result, precision agriculture provides a realistic means for optimizing resources,

potentially reducing the effect of harmful compounds that affect the soil and atmosphere,

and precision agriculture helps to greatly reduce the excess use of fertilizers, pesticides,

fungicides, and herbicide applications. Despite having all these advantages, UAV

application in agriculture had been also few other issues which need to be addressed, such

as the lack of an efficient decision-support system, insufficient accuracy with temporal

variation, and environmental auditing (Mcbratney et al., 2007).

The purpose of this review is to provide insight by defining the application of the

UAVs remote sensing in precision agriculture by exploring the current uses and limitations

of drones in environmental monitoring and precision agriculture, including platforms such

as the UAVs data-processing issues, cost-effective images, and farmers participation

(Quilter, 1997).

2.3. Information and Communication Technology in Agriculture

Using technology for agriculture is one of the best solutions to meet the rapidly

increasing population’s larger food demand. Agricultural production needs to be 70 %

higher in order to meet the food demand. To address this issue, information and

communication technology (ICT) could play an important, practical role in precision

agriculture and this has been explained well in Gartner’s hype cycle, and (Fig.2.1) explains

this cycle in detail (Shi et al., 2016). Among the many existing ICT technologies, remote

sensing is a prominent method of capturing aerial view images of agricultural farms for

processing and analysis.
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Figure 2.1. Gartner hype cycle — various development of technologies and
integration of various multidisciplinary technologies
(Source: Shi et al., (2016)).

2.3.1. Remote Sensing Technology

Remote sensing technology includes UAV/UAS and GPS that can be utilized to

provide the optimum and precise amounts of water, fertilizers, and plant-protection

chemicals. The VRA can be achieved by using this technology. Proper application of these

technologies will increase crop production and will also support proper farm management,

reducing the manual labor requirement (Abdullahi et al., 2015).
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This technology can be considered as “smart farming”, which includes “big-data”

applications and various stages of data management, such as image capturing, storage,

transfer, transformation, analysis, and visualization. Also, the data need to be converted

from raw images (data) to forms by preprocessing so that image-processing operations can

be utilized to extract useful information.

2.4. Unmanned Aerial Vehicle Applications

In the early 1950s, precision agriculture was a popular management technique

which created a revolution in the agriculture industry (Colwell et al., 1956). Crop scouting,

also referred to as field scouting, is a historical method where farmers would monitor the

land to find pests and weeds, to make a recommendation about applying inputs, and to

make other management decisions. However, manual scouting is a very time-consuming

task and relies heavily on random sampling, which has been observed to have many

inaccuracies due to human error.

Recently, with the increased use of UAV applications for crop field management,

many agricultural industries realized the technology’s potential use in precision agriculture

to obtain high-resolution imagery, data, and information relative to existing methods, such

as satellite imaging or manual crop scouting. These industries, along with collaboration

from many profitable and non-profit organizations, started to provide timely solutions such

a crop-scouting practices, for farmers. People realized that UAV technology would have a

highly positive effect on the agricultural industry with planning and other strategies based

on real-time data gathering and processing (Warren & Metternicht, 2005).
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2.5. UAVs Flight Plan

In order to fly the drones, the pilot has to set the flight plans and wave points. The

wave points are specified based on the fields’ dimensions and orientation. The flight’s

height, speed, and amount of image overlap are specified as inputs. Based on these inputs,

the drones fly and capture images, or record videos (Fig.2.2). Usually, the UAV’s onboard

battery life determines the flight time and the size of the field that is captured.

Distance-measuring equipment, such as ultrasonic echoing and lasers (including

light-detection and ranging [LiDAR] lasers), helps the drones to modify the flight’s altitude

to avoid collisions.

UAV flight planning

Images acquisition

Data captured & stored

Image orientation

Orthomosaicking

Review 
quality

Stitched field image

GoodBad

Figure 2.2. Process flow of UAV flight plan and image capture.

2.6. Types of UAVs

Based on the type and number of wings the drones have, the UAVs are classified into

several types and are used for different purposes. The main two drone classifications are

fixed-wing drones and rotary-wing drones.
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2.6.1. Fixed Wing Drones

Fixed-wing drones are used for photogrammetric surveying, mapping, and other

applications (Fig.2.3). These purposes require drones to be stable for long-duration flights.

With the elongated wings on either side of the drone’s body, these UAVs’ endurance level is

high, so the drone can capture images of large fields on one charged battery. The UAVs can

carry high-resolution cameras and are capable of capturing images with a finer resolution.

For example, in a single flight, a fixed-wing drone at a flying altitude of 400 feet can

capture images with a resolution of 2.9 cm for 540 acres of field area.

Figure 2.3. Fixed wing drone
(Source: https://unmanned-aerial.com/senseflys-latest-fixed-wing-mapping
-drone-is-here).

2.6.2. Tricopters

Tricopters are drones with three propellers (Fig.2.4). Although they are called

tricopters, they have six rotors. There are three propellers and three motors on each side

(top and bottom) of the tricopter drone. This tricopter is so efficient and cost-effective that

it has overtaken the budgeted-drones market. The tricopters “hold” mode for altitude is a

noticeable feature, which is accomplished by using barometers. Another noticeable
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characteristic is taking off automatically and one-key operation for most of the tripcopters.

These drones can only cover small field areas with multiple flights.

Figure 2.4. Tricopter
(Source: https://newtechstore.eu/en/camera-drones/152-535-cheerson-cx-33c
-tricopter-drone-with-10-mp-camera.html).

2.6.3. Quadcopters

Drones with four propellers are called quadcopters (Fig.2.5). The quadcopters are

lifted by rotary wings or propellers instead of fixed wings. Two propellers rotate in a

clockwise direction, and two propellers rotate in a counterclockwise direction. Thus, these

drones can fly stably in the air. The propellers make these drones efficient and

cost-effective for carrying heavy payloads when compared with a helicopter of the same

size. The flight time is approximately 30 minutes, or it can be less with multiple flight runs.

Quadcopters are the most commonly used drone type.

2.6.4. Hexacopters

Hexacopters have six propellers (Fig.2.6). Propellers are located around the drone’s

body. A hexcopter is more powerful than tricopters and quadcopters because of its six
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Figure 2.5. Quadcopter
(Source: https://www.dji.com/phantom-4-pro).

propellers and its ability to carry heavier payloads. The biggest advantage of a hexacopter

is that, even when one propeller fails, the drone can continue flying by using the other five

propellers, thus the drone will not prematurely crash during the flight. If two propellers

fail, then the drone will not take off. Compared to a quadcopter, the hexacopter can fly at

higher altitudes and at a faster rate. Compared to tricopters and quadcopters, the

hexacopter is expensive; hence, it is generally used for commercial purposes. The flight

duration can be up to 20 or 30 minutes, depending on the drone’s payload.

2.6.5. Octocopters

Octocopters have eight propellers (Fig.2.7). The octocopter is more powerful when

compared to quadcopters and hexacopters. It can fly at higher altitudes and can carry

heavier payloads. Because the octocopter has eight propellers, it will not hover in the air

much. Eight blades offer the drone stability during flight. The octocopter records

high-quality videos and captures high-resolution images because it can have heavier

payloads. These copters can survive heavy winds and rain, and they will not crash even if
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Figure 2.6. Hexacopter
(Source: https://www.yuneec.com/en_GB/camera-drones/hexacopter.html).

two or three propellers fail. Because of their high reliability, octocopters are suitable for the

purpose of missions.

Figure 2.7. Octocopter
(Source: https://www.dji.com/spreading-wings-s1000).
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2.7. Potential Uses of UAVs in Agriculture Research

UAV applications in agriculture have six major contributions: soil and field analysis,

planting, crop spraying, crop monitoring, irrigation, and crop-health assessment. Many

other applications are being explored for this UAV technology.

2.7.1. Soil and Field Analysis

Drones can be used at the beginning of the crop season to provide precise 3D maps

for soil analysis, helping to plan seed-planting patterns. After sowing, this technology

provides a drone-driven soil analysis, which greatly helps to manage irrigation and

nitrogen applications. These management applications are crucial for the crops to grow

and to produce a better yield (Corbane et al., 2012).

2.7.2. Planting

Start-ups have created drone-driven planting systems that are available to farmers;

these systems help achieve the maximum growth rate and can reduce the initial planting

costs by 85 %. These prospects are profitable for farmers and represent the technology’s

significant contribution. These planting systems include seed management and nutrient

management (Wich et al., 2015).

2.7.3. Crop Spraying

Crop spraying with drones is an emerging technology. The drones scan the ground

and apply the necessary amount of chemicals, such as fertilizers or pesticides, wherever

required based on the programmed instructions. This method efficiently reduces the waste

and the amount of chemicals that infiltrate into the groundwater, avoiding land and air

pollution. It is estimated that this methodology is five times faster and more effective when

compared with traditional methods (Zhu et al., 2010).
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2.7.4. Crop Monitoring

One of the biggest hindrances for current agriculture is the large fields and low

efficiency with crop monitoring. This problem was aggravated due to unpredictable climate

conditions which put agriculture-management practices at risk. Previously, satellite

imagery and remote-sensing platforms addressed these issues. The biggest drawback with

satellite images was that the image capturing needs to be planned well in advance and

cannot be done whenever necessary. Moreover, it is also expensive. The image quality was

highly dependent on the weather conditions for the day of image capture (Honkavaara et

al., 2013). However, drone technology was a boon in helping to solve this issue with

sequential image capturing. Drones can obtain images whenever necessary, so the crop and

its production can be monitored continuously. Sequential images from drones result in

time-series animations, enabling better crop management.

2.7.5. Irrigation

The UAV technology utilizes different spectral cameras, including RGB,

hyperspectral, multispectral, or thermal. By using different cameras to capture images, it is

possible to identify which part of the field requires irrigation or needs improvement.

During the crop’s growing period, drones facilitate the calculation of vegetation indices

which describe the plants’ density and health. Thermal cameras show the heat signature

and the amount of energy which the crop emits. These data are very useful for breeding

specialists to develop drought-resistant varieties that are suitable for the world’s semi-arid

regions (Lambert & Faulkner, 1991).
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2.7.6. Crop Health Assessment

It is always important to assess the crop’s health and to spot bacterial or fungal

infections in the crops. Plants reflect different amounts of green and near-infrared (NIR)

wavelengths, and this can be captured as images by using visible and NIR cameras. The

information can be utilized to track changes in the crop’s health. Because this technology

can provide prompt assessment, crops can be saved, and remedies can be given in a precise

and timely manner. Furthermore, in the case of crop failure, the farmer can document

losses more efficiently for insurance claims (Zhang & Kovacs, 2012).

2.8. UAV Image Analysis Indices in Agriculture Research

Color is an essential method which is used to discriminate plants from the soil

background in the drone images. Several researchers have used color to differentiate plants

from the soil. For example, color characteristics were utilized to distinguish green-colored

plants from the soil (machine-vision technology) and to estimate the leaf area or leaf area

index (LAI) (Meyer & Neto, 2008). Background extraction is done to remove the undesired

region from the image, highlighting the crop by removing the soil background. The

opposite thing can also be done, depending on the purpose. The most-commonly used

visible-spectrum cameras are in RGB color space. Simply converting the RGB values into

grayscale does not result in a good division because the plant and soil background pixels

had similar grayscale values (Tian & Slaughter, 1998). In order to demonstrate good

segmentation, the RGB space is often converted to different color spaces, such as Lab, HSV,

or YUV. Several common green indexes are as follows.
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2.8.1. Normalized Difference Index (NDI)

The NDI was defined by Woebbecke et al. (1993), and they introduced three

different methods in RGB image to differentiate crop from the soil based on R, G, and B

frequencies (e.g., [G-B], [G-R], and [G-R]/[G+R]). This index is functional to all pixels in

the image and its values range between −1 and +1. But to display the image, these values

must range between 0 and 255. Thus, the index was further modified by adding 1 to it and

then multiplied by a factor of 128 to make available a grayscale image in the range of 0 to

255. Therefore, the formula of NDI is as follows:

NDI= 128×
�

G − R
G + R

+ 1
�

(2.1)

2.8.2. Color Index of Vegetation Extraction (CIVE)

The CIVE was defined by Kataoka et al. (2003) based on an experimental study in

soybean and sugar beet fields. Crop growing stages can be projected using this method to

separate crops from the soil background. The formula for CIVE is as follows:

CIVE= 0.441R− 0.811G + 0.385B + 18.78745 (2.2)

This index has a better segmentation approach since it provides a greater importance to the

green areas of the crop.

2.8.3. Vegetative Index (VEG)

The VEG is used to separate especially plants like cereal and weeds from soils

(Hague et al., 2006). To perform the analysis using this index the images had been

captured using a charge-coupled device camera. This index will convert the RGB scale
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images into grayscale by using the following formula:

VEG=
G

Ra × B(1−a)
(2.3)

where a is a constant value equal to 0.667. In addition, this index has a significant

advantage of being robust to lighting change.

2.8.4. Excess Green Index (ExG)

The ExG was one of the several color vegetation indices studied by Woebbecke et al.

(1995) using chromatic coordinates and modified the color in separating green plant from

the soil background. The ExG color vegetation index is expressed as:

ExG= 2g − r − b (2.4)

where r, g, and b are the chromatic coordinates are given by:

r =
R∗

R∗ + G∗ + B∗
; g =

G∗

R∗ + G∗ + B∗
; b =

B∗

R∗ + G∗ + B∗
(2.5)

where R∗, G∗, and B∗ are the normalized RGB values ranging from 0 to 1, and are

computed as follows:

R∗ =
R

Rmax
; G∗ =

G
Gmax

; B∗ =
B

Bmax
(2.6)

where R, G, and B are the actual pixel values from the images based on each channel and

for a 24-bit color image.

Among selected color vegetation methods (Eqs.2.1–2.6), it has been found that the

ExG index (Eq.2.6) was the best choice for differentiating plants from soil background
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(Woebbecke et al., 1995). This is because ExG provided a clear distinction between plants

and soil, and produced well-segmented binary images. Guerrero et al. (2012) studied the

ExG index and found that it has been widely used and has performed very well in

separating plants from non-plants.

2.9. UAVs Image Processing

The images captured using drones possess high radiometric similarity when

compared to aircraft or satellite images due to the low altitude, which is utilized when

capturing images (Lelong et al., 2008). This aspect is a noteworthy advantage of drone

technology. However, drone-captured pictures have a lot of image-quality issues. For

example, lightweight UAV systems hold the camera in a less stable position, resulting in

poor spatial resolution (Lelong et al., 2008). Such artifacts also result in severe geometric

alteration. This results in a technical problem for drone-captured images, such as blurred

images which are not suitable for analysis purposes. To eliminate this adverse effect, image

oversampling needs to be done, again resulting in a higher volume of data and leading to a

difficult situation for handling large amount of data by storing the data and by processing

them (Aber et al., 2009).

With a large number of images, image mosaicking is a necessary preprocessing step.

There have been many successful cases using manual geometric correction to handle this

issue (Vericat et al., 2009). This approach is not possible with larger areas that need to be

monitored. This issue becomes the main concern that leads to UAV use with precision

agriculture or site-specific management.

In order to address this issue, an effective automatic or semi-automatic

photogrammetric approach was proposed (Laliberte & Rango, 2011). Although this
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method is effective, geometric correction and ortho-rectification need to be done before the

images can be combined because of the small swath area. Many other techniques,

including manual geo-referencing using ground collected points, photo match, and

automatic geo-referencing, also exist to address these issues (Xiang & Tian, 2011).

For practical purposes, the quality of the images collected by drones needs to be

scrutinized so that the most suitable preprocessing methodology can be selected. There are

many other issues, including bi-directional reflectance distribution, multiple-angle effects,

and the effects from clouds as shadows, which need to be addressed during the

preprocessing stage. Although some methods were proposed to deal with these effects

(Lelong et al., 2008), different experiments require various and appropriate strategies to

best address the issues in order to stimulate the next stage of information extraction.

UAV-based remote sensing can be a good way to test these effects for other remote-sensing

platforms (Aber et al., 2009).

In summary, problems with UAV image applications are generally fuzzy to the

people who are utilizing applications with traditional aerial and satellite images. These

problems include atmospheric correction, instrument calibration, line-shift correction, and

frame mosaicking. For most applications, image-processing procedures must be automated

so that the final image is delivered in an appropriate way. This has been observed to be of

utmost importance for the UAVs’ remote-sensing approach (Hardin & Jensen, 2011).

2.10. Algorithm Development

It is clear that applying UAVs for precision agriculture is still in the juvenile stage,

leaving significant room for further development in terms of technology and

data-extraction techniques. For now, the successful application of UAVs to monitor fields
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reveals that using drones for site-specific management could be the next successful stage

for remote-sensing applications, possibly contributing to increased agricultural production.

The preliminary examination was limited to individual plants which were observed

against a soil background in controlled conditions. Vegetation and soil reflections will be

different in the near-infrared region, which proved to be a successful approach for

differentiating plants from the soil (Guyer et al., 1986). Plant diseases may manifest in

different parts of the plant. There are methods to identify these diseases from the

drone-captured images by exploring the visual indications for almost all the plant parts,

such as roots (Smith & Dickson, 1991), kernels (Ahmad et al., 1999), fruits (Aleixos et al.,

2002), stems(Corkidi et al., 2006), and leaves (López-García et al., 2010).

Methods such as artificial neural networks (Abdullah et al., 2007), thresholding

(Sena Jr et al., 2003), dual-segmented regression analysis (Story et al., 2010), and others

are becoming popular for plant counting, weed identification, crop-stress analysis, and the

integration of vegetation indices. Yield estimation can be effectively performed using these

different methods with the high-resolution, UAV-captured images.

2.11. Publications on UAV’s Applications in Agriculture

The total number of peer-reviewed publications on UAV’s applications in agriculture

has also been reviewed and presented in Table 2.1. The review was performed in “Web of

Science”, a online scientific citation service. The search used the combination of keywords

“UAV” & “. . . Application. . . ” (listed in Table 2.1) with a filter of only journal articles. It is

possible a single article can produce multiple hits if it addressed UAV and a combination of

any of the considered applications (Table 2.1). However, the number publications shown is

a good indicator of the volume of research carried out on UAVs application in agriculture.

24



Table 2.1. Number of peer-reviewed publications in major research areas of
agriculture with UAV applications for 10 years ranging between 2007 to 2017.

S.No Agriculture applications Publication Number of
year publications

1 Irrigation 2014–2016 39
2 Yield estimation 2013–2016 275
3 Stand counting 2007 & 2014–17 66
4 Stress management 2009–2016 126
5 Weed management 2013–2017 44
6 Disease management 2013–2016 55
7 Pest management 2011–12 & 2015–17 26
8 Inventory management 2012–2017 53

The results showed the comparison between the total number of publications in

main areas of agriculture with UAV applications in the past 10 years ranging between 2007

and 2017. It was found that a large number of studies was conducted in the yield

estimation and crop stress management. So there is a great scope for the researchers to

conduct research in other areas like irrigation, stand counting, field management (weed,

disease, and pest), and inventory management.

2.12. Conclusion

The enhanced agreement between the drone’s images and the ground’s true data,

the flexibility of image-acquisition times, and the cost-effectiveness should encourage

researchers as well as the public and private sectors to consider drone technology as a key

tool for precision agriculture endeavors. Fortunately, it is expected that, with the advanced

drone technology and improved image-processing techniques, leading to a greater number

of UAV studies based on remote sensing for agriculture application, there will be an

appreciable benefit for precision agriculture and environmental monitoring. In this review,

detailed information about different drone types, several drone-image capturing and
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processing techniques, and various vegetation indices for agricultural field-image analysis

were analyzed. Publication details about UAV applications in agriculture were given, which

will help researchers/scientists to identify the research gaps and to develop research

studies for the remaining issues. If UAV aviation regulations can be relaxed, research

scientists may be more engaged with the farming community, and a greater adoption of

UAVs for site-specific farming may occur.
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3. AUTOMATIC PLANT-STAND COUNT AND SPATIAL

DISTRIBUTION USING UNMANNED AERIAL VEHICLE

DIGITAL IMAGES

3.1. Abstract

Determining the emergence and distribution of plants after they are seeded is an

important measure for farmers and producers. It is challenging to accurately determine the

plant count and distribution with the traditional approaches of manual observations and

measurements. The manual method for plant surveys may be laborious, time-consuming,

and result in undesirable disturbance to the plant ecosystems. The UAVs are increasingly

used in precision agriculture, provide satisfactory levels of image features to estimate the

plant’s distribution and its vegetation types at a relatively low cost for small or large

agriculture fields. In this research, corn, a row crop, was selected for testing and

development. The digital, color images were obtained with a small-scale UAV to count the

corn plants and to determine their distributions. Using an open-source ImageJ

image-processing system, a robust plugin (program) was developed to count the plants and

to determine the distance between plants, irrespective of the row’s straightness. Techniques

such as the pixel-march and search-hand criterion were introduced. The output also

included the quantification of “skips” and “doubles” of plant emergence. Results were

produced in 25–30 s, and plant counts obtained by using the developed algorithm were

validated with manual, direct observations from the images; the plugin performance and
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accuracy were found to be more than 99 %. Outputs were produced in various formats,

such as message windows, field-prescription maps, textual forms, and tabular forms.

3.2. Introduction

In today’s agriculture, the necessity of precision agriculture is on the rise. Through

precision agriculture, the inputs can be optimized, and a higher yield can be achieved with

an improved micro-level, spatial management of the field. More knowledge about

agricultural inputs and outputs will help farmers/producers to manage their field

efficiently; this knowledge can create more economic benefits. To achieve this, two main

variables have a great influence with predicting the yield: knowing the plants’ distribution

as well as the plants’ row and inter-spacing. The UAV technology has existed for a few

decades, and its potential use in agriculture was recently realized by capturing sequential

images in order to collect scientific data and for doing field scouting of the agricultural

lands. In the next few years, the market value for UAVs in agriculture is going to increase

by 80 %. This percentage signifies the reputation of UAV applications in agriculture.

Agricultural production can be changed a lot due to the effect of the surrounding

environment in terms of soil, water, and air quality. This drone technology provides a

biological solution which is extremely sensitive to both environmental conditions and

management practices (Swain et al., 2007). Any techniques which help to increase

agricultural production also assist with controlling the harmful effects caused to the

environment due to big machinery and large amounts of chemical applications for the

agricultural field.

Corn plant populations can influence the yield. Corn yield is maximized at particular

plant populations, depending upon nutrient availability (Duncan, 1958). Many researchers
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have examined the relationships between the corn’s population density and yield. These

studies, which were conducted by different researchers, have found that the predictions

had similar trends for yield maximization at particular plant population densities (Willey &

Heath, 1969). Along with plant population studies, inter-plant distribution is also

important for the effective utilization of available resources, such as nutrients and sunlight.

If there is a missing plant in a row, the plants on either side of the missing plant only

receive compensation for 47 % of reduced yield in a low-density agricultural field; for a

high-density agricultural field, the compensation was 19 % of reduced field (Nafziger,

1996). The reasons for the plant-spacing difference could vary: plant death, poor seed

germination, and improper seed placement. Weather and pest attacks could be other

possible reasons for non-uniform plant distributions in the field (Nielsen, 2001). To achieve

an effective variable-rate seeding, a farmer should have knowledge about his/her field’s

stand count for many years. Gaining this knowledge by manually counting the plants in the

field is tedious and may have human errors (Bullock et al., 1998)).

To perform this analysis, an automated plant-counting system is necessary. This

system provides a method to count plants quickly, objectively, and precisely. In addition,

comparing early stage plant population measurements with the later-stage populations at

harvest could be used to measure the plants’ survival rate during the growing period. Then,

the plant survival rates could be utilized to estimate the necessary population density for

planting in order to achieve the desired population density. Many studies and technologies

have been developed for population measurement, but most of them are utilized at harvest.

Therefore, this study investigates machine-vision technology as a means of measuring the

corn plant population at the early growth stage. Additionally, most studies have not
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accounted for the plants which were placed/growing in a curvilinear pattern in the fields

along with “skips” and “doubles” information for the plant rows. This project’s goal is to

develop a machine-vision based, image processing plugin to measure the corn’s population

(irrespective of if plant rows are grown in a straight or curvilinear pattern) in the fields and

also to count the number of “skips” and “doubles” in the field.

In order to accomplish this goal, the following specific objectives were envisaged:

(i) Development of a robust segmentation system to separate plants from the background;

(ii) Development of a machine vision algorithm to locate and count the individual plants

from the segmented image; and (iii) Determine the distribution of plants along the row in

terms of skips and doubles and map the distribution.

3.3. Materials and Methods

3.3.1. Experimental Setting and Image Acquisition

The experiments were conducted at Carrington Research Extension Center (CREC)

in Carrington, North Dakota (47°30′29.574′′N, 99°7′14.4084′′W, elevation 467 m, Google

Imagery 2018, CNES/Airbus, Digital Globe, USDA Farm Service Agency). The soil type at

the experimental site is a clay. The corn plants have a between row and within-row spacing

of 0.6 and 0.3 m, respectively, and the target population was 35,000 per acre. The number

of plants within each experimental unit was determined through manual stand counts.

Aerial images were captured from the field using MicaSense RedEdge Multispectral

UAV Camera with 6 mm lens mounted on a Hexacopter UAV vehicle (Fig.3.1) flown at the

height of 50 feet above the ground, covering an area of 10000 m2 with the 0.05 m ground

spatial resolution, when the plants reached V3 to V4 stages. These stages are the vegetative

growth stages of corn crop, when the third or fourth leaf collar is visible. This camera has a
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capacity of capturing five bands: red band, green band, blue band, NIR band, and RedEdge

band. The UAV speed was adjusted initially using the AutoPilot software (software used to

fly drones in the MS Windows machine) and the other camera settings were set to default

mode. In the field, the wave points were set using the software in order to capture the

images. In the CREC laboratory, images were transmitted from the camera to a dedicated

computer. The set of captured images were orthomosaicked (uploaded images were

stitched using a third-party service online) with the calculated amount of overlapping and

then orthorectified with ArcGIS software (ESRI ArcGIS, version) using the set of ground

referenced points) and saved as a color tagged image file format (*.TIFF).

Figure 3.1. Hexacopter UAV used in the study.

31



3.3.2. Plugin Development

Automated plant counting using machine vision involves three major steps. First,

the individual images captured by drones need to be stitched together with the applied

amount of overlap of the images in order to avoid improper and multiple placements of the

objects. Second, the plants must be segmented from the background of soil and other

debris. Third, plants must be singulated and counted. The overall algorithm of processing

the image for plant-stand count is outlined in the flowchart (Fig.3.2).

Figure 3.2. Flowchart of the developed plugin to count plant rows and count plants
along the rows.
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3.3.3. Image Preprocessing

An free and open source Java-based image processing system called ImageJ (https:

//imagej.nih.gov/ij/index.html) is written in Java and allows it to run on Linux,

Mac OS X, and Windows, both in 32-bit and 64-bit modes. ImageJ is an open source

software and its Java source code are freely available and it resides in the public domain.

The integrated development environment used was Fiji (https://imagej.net/Fiji),

which actually used ImageJ in the backdrop (Fig.3.3). This system can process different

types of images and different size images (8-bit, 16-bit and 32-bit images).

Figure 3.3. Fiji ImageJ integrated development environment.

Fiji was used for the plugin development and the programming environment is

shown in (Fig.3.4). The version used for the plugin development is the ImageJ 1.49b with

Java 1.6.0, 64-bit version. In the programming environment (Fig.3.4), the plugin (user

developed program) code is written and compiled to produce the results.

For the plugin the initial development purpose, orthomosaicked stitched image

(which was large and represented the whole test plot) were zoomed, cropped and rotated

into smaller sections of images (Fig.3.5). Since the UAV camera captured five different

bands of images (R, G, B, NIR, and RedEdge), the plugin was customized so that it can read

any type of color or grayscale images (8-Bit, 16-bit, and 32-bit).
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Figure 3.4. Fiji programming environment and plugin development.

3.3.4. Image Segmentation

The initial step in almost in all image processing analysis including the plant

population detection is to segment the image by differentiating the pixels into two different

classes: main objects in the image (plants) and the background (soil and residues). This

step is very important to avoid the misclassification of our desired objects from the image

(undesired region). Converting the RGB image into grayscale image did not result in a

good division because plant and soil background pixels had similar grayscale values (Tian

& Slaughter, 1998). The most common segmentation techniques available for this kind of

discrimination are the color index-based segmentation and threshold-based segmentation.

Among the color index-based segmentation techniques, though there are several methods

available for the segmentation, the well-tested and popular method of ExG color method of
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(a)

(b)

Figure 3.5. Original and input image used in developed plugin. (a) Original stitched
UAV image captured at 50 feet and (b) cropped and rotated image that was used as
plugin input.

thresholding (Eqs.2.4–2.6) was selected based on literature (Woebbecke et al., 1995). This

method of thresholding was found to provide a clear contrast between plant and soil

background (non-plants) from the agricultural field and produced near binary images more

precisely than the threshold-based method.

The input RGB image is converted into binary image (segmentation process) using

the determined ExG index values (Eq.2.4) and the user-input threshold value (Eq.3.1). In
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this segmentation process, individual pixel R, G, and B values were read and their ExG were

calculated and based on threshold input the pixel will be decided whether it belongs to

plant (assigned black) or background (assigned white) using the logic described (Eq.3.1).

Object pixel(x ,y) =















Plant, value= 0 ExG≥ Th

Background, value= 255 Otherwise

(3.1)

where x , y are the coordinates of the pixel, and ‘Th’ is the user-input threshold value. The

generated segmented image suitable for image processing is presented in Figure 3.6.

Figure 3.6. Segmented image of rows of corn plants using ExG index.

3.3.4.1. Plugin input panel

To make the plugin interactive, take inputs, and to make the user feel comfortable

to use the plugin, the generic dialog box had been added to the plugin as the front input

panel (Fig.3.7). In this front panel, the user provides the inputs, such as the minimum area

limit of plants that will remove the small particles in the image (crop residues), the
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threshold value for the ExG method, the row, and the plant spacing values. The user also

chooses the output options, such as “Particle Analysis” dialog box for making other

selections of filtering outputs, display of “Binary image” in the raw form, display of binary

image with identified rows, and the display of the final image output of labeled plants. The

required images output can be checked or unchecked according to our requirement.

Figure 3.7. Input panel of the plant-stand count plugin.

3.3.4.2. Plant counting using search-hands

After segmentation, the image will be ready to be counted based on a developed

“search-hands” method (Fig.3.8). Search-hands is a new method developed for the plant

counting based on white and black pixels in the given image based on “pixel-march”

(Igathinathane et al., 2009). In the image, the plant will be the black pixels with the value
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of 0, and background will be in white pixels with the value of 255. During pixel-march, the

search point moves pixel by pixel based on the chosen direction (any angle will work) and

locates the entry and exit of black pixels (belonging to the plants). From the identified

black region, the centroid and object profile was obtained and will be used to derive several

geometric parameters. From the initial point (lower-left, near the bottom of the first row)

the plugin pixel-march will start in the horizontal direction for the first rows in the image to

determine the total number of rows in the image. This results will be stored in an array. For

each identified row, label numbers will be established. This is called “Horizontal search”.

Figure 3.8. Demonstration of search-hands method in seeking out plants that are
offset from the row.

After the horizontal search, the counting for each and respective plant row was

performed. This is called “Vertical search”. Through this vertical search, each plant in a

plant row will be counted and labeled. These searches are done using seven hands.

Assuming most of the time the plants are in the center of the row, the center hand will be

extended first to count the total number of white and black pixels, which will identify the
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plants. If not, first left hand will be extended and then first right hand. If these three hands

were not able to identify the plant’s pixels, second left and right hand will be extended at a

given angle and length, which will be given as an input parameter. Likewise, when the

second set of hands were not able to identify the plant pixels, the third set of hands will be

extended in the left and right directions (Fig.3.8).

In the preliminary research, it has been found that three sets of hands (totally six)

with a center hand search (predominant in most cases) was sufficient to identify the total

number of plant pixels in a given row. The hands were also restricted to an optimal number

so that the search hands will not intersect with the neighboring rows. Following this

procedure, all the plants of each plant rows were identified.

Once all the image rows were scanned using the plugin and extracted features were

recorded. In order to determine the plant counts, the ImageJ’s “Analyze Particle” method

was used. This command counts and measures objects in binary or thresholded images

based on the parameters set with the “Analyze” method using “Set Measurements”

commands. This method scans the image or the selected region of interest and then

measures several properties of the objects or particles in the image using the “Measure”

command. This process gets repeated until it reaches the end of the image or selection.

The plant and background regions were further refined using the following rule. Plant

areas that were greater than 400 pixel2, which was fixed based on the image resolution and

general plant area, were considered as a required plant region and other plant areas were

eliminated. In such a way, the crop residues and other artifacts were eliminated. After this

refinement, the plants were counted again and labeled and the regions were refined again

through the base rule.
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3.3.5. Curvilinear Plant Rows

Sometimes, the straight row crops will not emerge in a straight pattern in the field.

Plants are grown in straight or curved patterns based on the field shape or boundary and

the planters sow seeds accordingly. In this case, an algorithm counting plants only in the

straight pattern will not be sufficient. It should also account for the changes in the plant

row pattern, when it is not straight or even deviates a little. The plant’s rows may be

curved in left or right directions in the field (Fig.3.9a). The search-hands algorithm, having

seven search hands, will account for this curvilinear pattern and capture the plants

(Fig.3.9b). Thus, the algorithm, being robust, captures the plants in any of the patterns

such as straight or curvilinear.

Captures 
right turn

Captures 
straight row

Captures left 
turn

(b)(a)

Figure 3.9. Addressing the plant-stand count along curvilinear plant rows (a) Corn
crop grown in curvilinear pattern (b) plugin performance in capturing the curvilinear
plant rows.
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3.3.6. Distance Calculation

After segmentation and plant counting, the distances between the plants were

calculated using Feret center X and Y measurements. In order to determine the plant

centers, two features were extracted from every row of the binary segmented images:

(1) the center position of the plant pixels along each row using Feret diameter

measurements. Feret diameter is a measure of the maximum diameter of an object size

along a specified direction. In general, it can be defined as the distance between the two

parallel planes restricting the object perpendicular to that direction. This plugin gives the

output of six ferret measurements: (a) Feret X coordinate of the plant pixel, (b) Feret Y

coordinate of the plant pixel, (c) Maximum Feret diameter of the plant, (d) Minimum Feret

diameter of the plant, (e) Feret angle of the plant, and (f) center XY positions of the plant

pixels. (2) The centroids XY coordinates of the plants. Feret center XY coordinates are

calculated using Feret XY coordinates, Feret angle, and Feret diameter, which are the

outputs of the standard “Analyze Particles” ImageJ measurements.

Based on centroid XY coordinates too, the distance between the plants could be

calculated. However, Feret is a better way of representing the plants using its bounding

circle around the plants (Fig.3.10).

Figure 3.10. Feret Center XY coordinates calculation. Violet circle represents the Feret
diameter, red point is the Feret XY coordinates, green point is the Feret Center XY
coordinates, and blue lines are showing the Feret angles.
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Based on the Feret angle, the Feret center point calculation divided into two cases

using the equations Eqs.3.2–3.5.

X c = (Feret diameter/2)× cosθ

Yc = (Feret diameter/2)× sinθ

Feret center X = Feret X + X c (3.2)

Case 1: If Feret angle is Greater than or equal to 90°, then the following calculations

are done.

Feret center Y = Feret Y + Yc (3.3)

Case 2: If Feret angle is less than 90°, then the following calculations are done.

Feret angle= 180°− Feret angle (3.4)

Feret center Y = Feret Y − Yc (3.5)

Finally, plant regions that were more than twice the average distance between the

plants were counted as “doubles” and less than the average distances were counted as

“skips”. The Feret coordinates were assumed to represent plant center and fall at the

middle of the plant region. As the Feret centers generally fall in the plant region, this

assumption will not create any undesirable effect while measuring the plant distances.
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3.3.7. Labeling the Plants

After counting the plants, they were given the labels based on the count number.

The position of the labels was based on the respective centroid and Ferret circle center

positions (Fig.3.11). This will help us to understand the distribution and variability among

the plants in the agricultural fields. The “GeneralPath” class from ImageJ was used and this

class represents a geometric path with the specified path coordinates. These path

coordinates are the Feret center point measurements for the labels to appear on the image

(Fig.3.11).

Figure 3.11. Plant-stand count illustration. Plants were labeled and red cross in the
image represents the Feret center, blue labels represent the plant count, and pink
labels the row count.
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First, in the plugin process, horizontal labels are established, which is the total

number of plant rows. Then as a next process, for each horizontal row, the total number of

plants were counted and labeled.

3.3.8. Results Table

Results table is a table for storing and displaying the measurement results of the

plugin (Fig.3.12). This method had been used to get a reference to the “Results Table” class

used by the “Measure” command. The plugin includes 14 measurements of the plants and

it is displayed in the tabular form which is useful for the data management. The

measurements include parameters, such as Area, Perimeter, Height, width, Angle, Major

axis, Minor axis, Centroid XY coordinates, Feret Maximum and Minimum diameter, Feret

angle, Feret center XY coordinate of the plants.

Figure 3.12. Results in tabular form using “ResultsTable” class.
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3.3.9. Log Output File

The plugin will also give outputs as a log file (default style of ImageJ output) for

displaying messages and other information of the plugins (Fig.3.13). Here several

intermediate or final outputs can be generated and the log file will be quite useful while

developing the plugin. Any relevant outputs, which may or may not go as rectangular table

of values, such as the total number of plants without applying the rule base, total number

of plants after applying the rule base, the central processing unit (CPU) taken time to

calculate the whole plant counting process, distance between the plants, skips calculation,

and doubles calculation can be included in the log output file.

Figure 3.13. Log output file of the plant-stand count plugin.

3.3.10. Message Windows

As a result of running the plugin, the general expectation is to see the final result

and a pop-up window is most suitable for the purpose. This was achieved through a
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message window where the most relevant results such as the number of plant rows, plant

count, skips, and doubles were displayed (Fig.3.14). This pop-up message windows will be

user-friendly for most of the users (mostly farmers/producers).

Figure 3.14. Message window output of the major results of the plugin.

3.4. Results and Discussion

3.4.1. Performance of Algorithm with Field Image

The developed plugin was validated using the actual field images. As the field

images are larger, for example, one acre image with the drones flight height of 50 ft, some

improvisation are required. This image (based on area and resolution) is huge and there is

a size limitation in ImageJ. Therefore, to accommodate large images they can be cropped

into equal sizes and processed sequentially. Later, for the total count number of plants, the

individual results of small sized images will be added to produce the final result. Initial

points need to be given as an input to the plugin for the field image. When the plugin was

operated with field images as input, the following challenges need to be addressed:

(i) In vertical, slightly distorted from linear, and curvilinear patterns.

(ii) Plants very close to each other.

(iii) Within and beyond the optimum distance.
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(iv) Search hands angle — wider or narrower.

(v) Weeds between and within plant rows.

The above-mentioned challenges were considered during the algorithm

development to make it as robust as possible to count the plants in the field. Based on the

measures, the input search angle for the search hands needs to be adjusted. Wider the

angle, the accuracy is decreased as it may skip some plants from total counting and it may

interact with the neighboring plant rows which is not correct. Smaller the angle, better it

will find the plants that had only a little deviation from the linear. During the development

it has been found that 45° is the optimum angle. This could be varied, using trial and error

depending on the field image loaded into the plugin. The total number of hands were kept

constant as seven, which yielded a good result. Based on the pixel-march method, the

search pattern will get adjusted both in the vertical and curvilinear pattern of plants in the

field and the search will be completed. A larger image of the plant-stand count of a portion

of the field is shown in Figure 3.15.
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Figure 3.15. Plant-stand count output of a large size field image showing labels.
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3.4.2. Field Plant-Stand Distribution Map

To make the plugin output more useful, a plant-stand distribution map is also

generated by the plugin (Fig.3.16). It is a color-coded map of the field that shows the plant

population and the spatial plant-stand distribution in the field, such as plants planted and

grown at the optimum distance represented in green, above the optimum distance

considered as skips represented in red, and below the optimum distance considered as

doubles represented in blue. With georeference of any reference points latitude and

longitude (e.g., the initial point, any plant, or field corners) along with the field

orientation, it is possible to convert this distribution map into a regular map with XY

coordinates of the plants to corresponding latitudes and longitudes. The map also serves as

an indicator of the seeds germinability and the planters mechanical performance efficiency.

3.4.3. Algorithm Validation

The developed algorithm is versatile to handle any other row type crop field images.

Visual counting the plants in the image (usually be zooming-in) is similar to manual

inspection in the field. This is termed “Manual count” and that obtained by the program is

“Plugin count”, and these were compared in the plugin algorithm and the “Accuracy (%)”

was calculated in the validation. The image size with the total number of plants was

increased from small to high in the validation. The total number of plants in the images

varied from 80 to 500 with a difference of 100 s, tested, and the results are presented along

with the computational speed in terms of CPU time (Table 3.1). The algorithm performed

irrespective of the size of the field or the number of plants, with an accuracy greater than

99 %. Good segmentation and singulation of objects improve the accuracy of validation.
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Figure 3.16. Field plant-stand distribution map (Green represents plants under
optimum distance, red represents skips and blue represents doubles).
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Table 3.1. Plant-stand count plugin validation results.

Validation Manual count Plugin count Accuracy CPU time taken
(%) (s)

# 1 80 80 100 10
# 2 100 100 100 15
# 3 262 261 99.6 17
# 4 (Set 1) 500 496 99.2 20
# 5 (Set 2) 500 497 99.4 25

3.4.4. Limitations and Future Work

One of the main sources of error found was variability in plant size and leaf

orientation within an experimental unit. Another issue is the overlap of plants (e.g.,

well-grown plants touching each other and canopy closing). This made the threshold used

to refine the plant and background region sensitive to plant size distribution. Advanced

algorithms based on average plant size at different stages and the ideal spacing can be used

to resolve the plants touching/overlapping issues. More weed and noise pixels were

counted as plants when the area low limit was lowered below 400 pixel2 and small plants

were considered to be weeds when the threshold was increased. However, under low weed

conditions and plant growth stage of V3–V4, the system was able to estimate the number of

plants along the tested row (≤6.1 m length), and should be tested for other row lengths.

The plugin needs to be developed further, for having a web-based interface/plugin to

identify the plant rows and to count the total number of plants and their spatial

distribution.

3.5. Conclusion

In this study, the pixel-march and search-hand methods were successfully developed

using a free, open-source, Java-based ImageJ image processing system, and were tested to
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count the plants irrespective of rows’ straightness. The skips and doubles included in the

analysis, help farmers to predict their yield based on the plant distributions in the fields as

well as to evaluate the seed establishment and the planter’s mechanical efficiency. The

plugin’s accuracy was >99 %, and the calculations took ≤25 s when tested with different

plot sizes. The user-friendly message windows with the final plant and row counts, the

plant-stand count images with labeled “skips” and “doubles”, and the distribution maps to

know the precise locations of plants generated by this plugin will be of assistance to

producers making field-management decisions.
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4. SHAPE-BASED WEED IDENTIFICATION AND MAPPING

USING LOW-ALTITUDE UNMANNED AERIAL VEHICLE

IMAGES

4.1. Abstract

To achieve sustainable agriculture, there are lots of obstacles, particularly weed

management, in today’s agriculture. Weeds intervene with the healthy crops’ use of

resources such as water, spacing, nutrients, and sunlight altering the yield. Recognizing

and removing weeds with visual inspection and manual crop scouting are ineffective and

tedious for farmers who are managing vast agriculture lands. In this research, a

Java-based, ImageJ plugin was developed UAV stitched RGB input images to identify, to

locate, and to quantify weeds. Geometrical shape features were utilized to identify and to

discriminate between plants and weeds. Six standard shape features from ImageJ were

used, and with these features, seven more shape features were derived and incorporated

into the algorithm to differentiate crops and weeds. Outputs were produced in the form of

a weed-distribution prescription map to visualize the weeds’ distribution and location. This

algorithm will help farmers to quantify the weeds’ infestation level and to determine weed

locations in the field in order to deploy site-specific, precise management techniques. This

work can be extended to other major row crops in different geographical locations as well

as those crops’ associated weed identification and quantification.
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4.2. Introduction

In order to maintain a better quality and quantity of produce with many crops,

applying herbicides is essential. Herbicides account for about 40 % of the total cost for

chemical applications, which also include fertilizers, to the field; these chemical

applications are done based on the field’s total weed infestation (Gianessi, 2005). With

modern precision agriculture, site-specific weed management (SSWM) technology is

researched and promoted. This strategy is mainly based on customizing herbicide

applications at the weeds’ location in the field with the applied amount based on the weeds’

coverage in the field (Srinivasan, 2006). The SSWM uses spatial data as a major input for

the spot application of herbicides in the field.

Most satellite captured images have weed and crop images at the later stages. The

optimal time for applying herbicides to control a weed infestation is during the seedlings’

early stage. UAVs play a major role in obtaining this spatial information to control weeds in

the field. Identifying small weeds in the satellite images is difficult because the satellite

captures images at a higher altitude. UAVs can get images by flying at a lower altitude with

lots of flexibility, depending on the farmers’ field requirements (Torres-Sánchez et al.,

2014). This advantage is important to identify weeds during the crop’s early stage.

To implement SSWM, it is necessary to have spatial information, such as the weeds’ density,

location, and type, about the field (Torres-Sánchez et al., 2014).

In SSWM, the eventual objective of identifying the weeds’ location and density in

the field is to provide a decision-support system for farmers, giving them information,

which can be used for herbicide sprayers. To achieve this objective, many algorithms and

software programs were developed in order to classify weeds and crops in the fields.

54



Developing a robust algorithm to identify weed locations during the early crop stage is still

challenging. This study addressed this challenge by capturing field images that contained

weeds at an early crop stage and weeds for SSWM; this project also developed an

algorithm based on object-based methods, thus generating a weed-distribution map for the

sprayers to use for placing herbicides at the weeds’ exact locations. To achieve this research

goal, we developed an image-processing plugin, using a free and open-source ImageJ

image-processing system, with two objectives: (i) Identification of weeds by discrimination

from crops based on their geometrical shapes, and (ii) Automatic generation of a

weed-coverage map from the field image.

4.3. Materials and Methods

4.3.1. Major Weeds in ND

Based on NDSU survey 2017 and other literature, the following weeds were found

most predominant in the row crop fields such as corn and wheat. Weeds such as ragweed,

lambsquarters, marestail, velvet flower, morning glory were majorly found in the corn field.

Among these weeds, two broadleaf weeds lambsquarters and marestail were selected, as

these were voted as the most prominent of ND, for the image library development since

they are the major competitor for the corn in the field and also which demands more

herbicide application.

4.3.2. Algorithm Development

Weed identification using image processing techniques involves three major steps.

First, the individual images of crop and weeds such as lambsquarters and marestail were

collected and an image library of 45 sub-images for each of the plants considered were

developed. Second, the crop and weeds were segmented using excess green segmentation
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method. Third, crop and weeds were analyzed based on their geometrical shape features

(setting cut-off levels), and weed prescription map was produced. The overall algorithm of

identifying and classifying the crop and weeds is outlined in the flowchart Figure 4.1.

Figure 4.1. Flowchart of the developed plugin to identify and differentiate between
corn crop and weeds.

4.3.3. Image Collection and Image Library

Multiple corn images at the V2 stage were collected. Lambsquarters and marestail

weeds images were collected from different sources. The weed stage was also similar to

corn V2 stage. Images were collected in such a way that different orientations and angles of
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weeds and corn crop were considered. Forty-five images of each species (crop and weeds)

were collected and an image library was developed for the plugin development (Fig.4.2).

Figure 4.2. Developed image library of corn crop, lambsquarters, and marestail
weeds at different angles and orientations.

4.3.4. Image Scaling

Though multiple images were collected from different sources and the images were

of different sizes. To make all the images on a uniform size, the images were scaled to a

uniform size using image to stack option in ImageJ. Before scaling, the images were
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segmented first using ExG segmentation method. After scaling, the montage method was

applied to the stacked image set using the ImageJ “Make Montage” dialog box (Fig.4.3).

The montage was done first horizontally until the images were fitted in a row and then a

new row was started. This process was continued until all the uniform-sized images were

included in the montaged frame were filled.

Figure 4.3. Montaging an image stack using Make Montage dialog box.

4.3.5. Geometrical Shape Features

Geometrical features were considered in this study to discriminate the shape

between the crop and weeds. Totally, 11 geometrical shape features were considered. Out

of 11, four were the standard outputs of ImageJ and seven shape features were derived in

the developed algorithm. The four standard ImageJ shape features used in the plugin for

crop and weed identification are as follows:
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Circularity=
4π×Area

Perimeter2 (4.1)

Aspect ratio=
Major axis
Minor axis

(4.2)

Roundness=
4×Area

π×Major axis2 (4.3)

Solidity=
Area

Convex area
(4.4)

where area and perimeter are the objects area (pixel2) and perimeter (pixel), respectively

obtained from the binary image; major and minor axes correspond to the orthogonal axes

(pixel) of fitted ellipse of equivalent area of the object; and the convex area is the area of

the convex hull (polygon) that “wraps” the object (pixel2). All these four features (Eqs.4.1

–4.4) are dimensionless parameters. Further details on these standard shape features can

be found elsewhere (https://imagej.nih.gov/ij/docs/menus/analyze.html).

The additional seven shape features derived in this work based on standard ImageJ

outputs are as follows:

Convex area=
Area

Solidity

Hollowness=
Convex area - Area

Convex area
(4.5)

Reverse aspect ratio=
1

Aspect ratio
(4.6)

Rectangularity=
Area

Bounding rectangle area
(4.7)
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Feret major axis ratio=
Feret diameter

Major axis
(4.8)

Feret minor axis ratio=
Feret diameter

Minor axis
(4.9)

Convex area Feret ratio=
Convex area

Feret diameter
(4.10)

Compactness=
Area

Feret diameter
(4.11)

where the convex area is obtained from Equation 4.4 (pixel2), bounding rectangle area is

the area of the smallest enclosing rectangle of the object (pixel2), and the Feret diameter is

the maximum diameter of a particle (pixel). Other than the last two (Eqs.4.10–4.11)

shape features, the rest are dimensionless.

4.3.6. Output Message Window

The algorithm calculates the geometrical shape features and outputs the window in

a message window (Fig.4.4). The end users were mostly interested in knowing the final

weed density in the field, therefore the algorithm has been designed to display the output

separately in the message window along with other forms of outputs (e.g., tables and

maps).

Figure 4.4. Message window with count of total crops and weeds with identified
species.
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4.4. Results and Discussion

4.4.1. Plugin Shape Features Output

The outputs of the studied standard ImageJ shape features and developed features

generated by the plugin are displayed in the tabular form using Results Table (Fig.4.5).

From these tabular form, the main shape feature compactness was found to differentiate

between weeds and crops and the compactness value was extracted and given a range in

the algorithm to calculate the difference between corn crop and weeds.

Figure 4.5. Results of standard ImageJ and developed geometrical shape features for
crop and weed identification.

4.4.2. Standard Geometrical Shape Features of Weeds and Crops

The shape features from the ImageJ standard outputs (circularity, aspect ratio,

roundness, and solidity) did not perform well in discriminating the corn crop and weeds

61



(Eqs.4.1–4.11). All of the features were overlapping with each other and it was hard to

differentiate between the crop and the weeds (Fig.4.6).
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Figure 4.6. ImageJ standard geometrical shape features variation among crop and
selected weeds. Blue: corn crop, orange: marestail, and grey: lambsquarters weed.

Among the parameters, circularity ranged from 0.1 to 0.35; aspect ratio ranged

from 1 to 6; roundness, which is based on round shape for crops and weeds, ranged from

0.2 to 0.9; and solidity ranged from 0.4 to 0.8; Area of corn crop was approximately

2613 pixel2. For marestail, it was 5016 pixel2, and for lambsquarters, it was 6961 pixel2.

Feret diameter for corn crop was approximately on an average 125 pixel2. For marestail it

was 132 pixel2, and for lambsquarters it was 133 pixel2. The Feret diameter is almost the

same for the corn crop and both weeds. The standard shape features didn’t yield good

differentiating results. Therefore from these results of standard ImageJ parameters of
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circularity, aspect ratio, roundness, and solidity, it has been observed that these shape

features because of the observed overlap were not useful in differentiation (Fig.4.6).

4.4.3. Calculated Geometrical Shape Features of Weeds and Crops

As the standard shape features of ImageJ did not yield good differentiation between

the crop and the weeds, the other seven derives shape features were tested. Hollowness

ranged from 0.2 to 0.6. The reverse aspect ratio and rectangularity are dimensionless

shape parameters varied from 0.2 to 0.9 and 0.2 to 0.6 respectively. Feret major axis ratio

varied from 1.2 to 1.8 based on their major axis. These four derived shape features values

(Eqs.4.1–4.4) were again overlapping with each other and they were not useful to

discriminate the corn crop and weeds (Fig.4.7).
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Figure 4.7. Developed geometrical shape features (hollowness, reverse aspect ratio,
rectangularity, and Feret major axis ratio) variation among crop and selected weeds.
Blue: corn crop, orange: marestail, and grey: lambsquarters weed.
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The three other shape features such as compactness, Feret minor axis ratio, and

convex area Feret ratio (Eqs.4.5–4.7) gave good discrimination of various degrees among

crops and weeds (Fig.4.8). Compactness ranged from 10 to 60. Feret minor axis ratio

ranged from 1 to 7, and convex area Feret ratio raged from 20 to 85 and the calculated

geometrical shape features, Among them, compactness was able to clearly differentiate

among corn crop, lambsquarters, and marestail weeds individually from each other with

minor overlapping values. Therefore, compactness (Eq.4.5) was recommended as the best

feature for identification of crops and selected weeds.
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Figure 4.8. Developed geometrical shape features (compactness, Feret minor axis
ratio, and convex area Feret ratio) variation among crop and selected weeds. Blue:
corn crop, orange: marestail, and grey: lambsquarters weed.

4.4.4. Field Application — Weed Distribution Map

For the autonomous herbicide application process, weed distribution maps were

generally used. Production of such maps as one of the outputs of the plugin, to easily
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locate the weeds for the herbicide spraying, was included in the algorithm. Weeds located

in between the plant rows of a sunflower field infested with marestail were identified and

displayed in the form of a weed distribution prescription map (Fig.4.9). Through this

prescription map, the weeds location image coordinates can be calculated and then

converted into Universal Transverse Mercator (UTM) coordinates for the spatial application

of herbicides. In this way, SSWM will be successfully performed for the precise agriculture

applications.

Figure 4.9. Weed distribution prescription map of a sunflower field infested with
marestail weeds.
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The limits on the selected best discriminating shape features developed from the

image libraries could be extended to the field application and this was tested in the

sunflower as row crop example with the ragweed as a major weed. The calculated values

for lambsquarters were extended to the ragweed and it was found that the algorithm was

able to successfully discriminate sunflower crop from ragweed because ragweed and

studied marestail had some shape similarity.

4.5. Conclusion

A robust and automated, shape-based image-processing ImageJ plugin program was

developed to identify and to map the weed distribution from a developed library of images

for corn and weeds of different sizes and orientations. Among the various standard and

developed shape features, compactness was the best feature that can clearly differentiate

among corn, lambsquarters, and marestail. The algorithm successfully identified the crops

and weeds, producing the weed-distribution prescription map. The results were

satisfactory and can be used after suitable processing as an input for the sprayers; the

georeferenced information gives site-specific, precise spraying locations for herbicides in

the field. This will help with the overall estimation of herbicides applied to the field and

will help farmers to reduce their input cost and to increase their profit.

66



5. GENERAL CONCLUSIONS AND SUGGESTIONS FOR

FUTURE WORK

5.1. General Conclusions

The UAV applications in agriculture are advantageous by being cost-effective, easily

available, efficient, robust, and timely; the applications help farmers/producers to improve

their yields by achieving sustainability in agriculture. This technology helps farmers to save

time and energy and to increase yield, obtaining more profits than investments. In the

future, applying these technologies may reduce human labor and its cost, may increase

productivity, and should be given much consideration. In order to utilize this technology,

agricultural extension programs should train farmers to fly UAVs in an appropriate way so

that people can fully use the technologies’ potential. Research related to UAV applications

in agriculture by developing software were limited, inspiring the development of this entire

research study: reviewing UAVs in agriculture (Paper 1), determining the plant-stand count

and distributions in the field (Paper 2), and identifying and mapping weed locations in the

field (Paper 3).

A detailed literature analysis was performed, and the highlights of using drones in

agriculture were presented. The total number of journal articles that have been published

related to work with UAVs in agriculture was presented; this information is useful for

researchers to identify the potential areas and research gaps for drone applications in

agriculture as well as to develop research studies. In plant-stand counting work, to identify

plant distributions in the field, techniques such as ExG segmentation, the pixel-march
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method, and the search-hand technique using UAV images were developed and successfully

tested in a cornfield. For the weed-identification research, two important weeds in North

Dakota, lambsquarters and marestail, both of which are broadleaf weeds, were considered.

The geometrical-shape, feature-based analysis (total 11 shape features: standard and

derived) was successfully developed to differentiate between the field’s crop and weeds,

and this analysis determined the weed coverage in a field by producing a weed-distribution

map. These outputs help farmers to reduce their input cost for herbicides and to increase

their profitability while also being environment friendly.

This research utilized simple and robust image processing techniques to estimate

plant distributions and to identify weed locations in the fields, thus not making the process

computationally intensive and difficult for the end users to obtain the desired results. The

accuracy level for this research was greater than 99% for both plant-stand counting and

weed identification. The output was produced in less than 30 s, which is efficient and less

time-consuming. This spatial information helps farmers to manage their fields effectively

and to be profitable when employing the site-specific precision agriculture. The data help

individuals move towards achieving sustainability in agriculture.

5.2. Suggestions for Future Work

There is more scope of future research works in UAV applications in agriculture

could be done. Some of the research work possibilities are:

1. Study on plant counting at the later stages of crop growth, when the leaves start

overlapping with each other.

2. Extend the study to different row crops as well as identify the various growth

stages of the crops.
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3. Study on weed identification could be extended by collecting more images and

developing the image library with more weeds appropriate to specific locations

and needs.

4. Study including different types of images like thermal images, multi-spectral

images can be included to identify plant distributions, weed locations,

identifying growth stages of plants, which are mainly helpful in crop breeding

and physiological studies.

5. Study can be developed based on economics involving from the producers

perspective based on grain and biomass yield of the crops.

69



REFERENCES

Abdullah, N. E., Rahim, A. A., Hashim, H., & Kamal, M. M. (2007). Classification of rubber

tree leaf diseases using multilayer perceptron neural network. In Research and

Development, 2007. SCOReD 2007. 5th Student Conference (pp. 1–6).

Abdullahi, H. S., Mahieddine, F., & Sheriff, R. E. (2015). Technology impact on agricultural

productivity: A review of precision agriculture using unmanned aerial vehicles. In

International Conference on Wireless and Satellite Systems (pp. 388–400).

Aber, J. S., Aber, S. W., Buster, L., Jensen, W. E., & Sleezer, R. L. (2009). Challenge of

infrared kite aerial photography: A digital update. Trans. Kans. Acad. Sci., 112(1/2),

31–39.

Ahmad, I. S., Reid, J. F., Paulsen, M. R., & Sinclair, J. B. (1999). Color classifier for

symptomatic soybean seeds using image processing. Plant Dis, 83(4), 320–327.

Aleixos, N., Blasco, J., Navarron, F., & Molto, E. (2002). Multispectral inspection of citrus

in real-time using machine vision and digital signal processors. Comput. Electron.

Agric., 33(2), 121–137.

Bullock, D. G., Bullock, D. S., Nafziger, E. D., Doerge, T. A., Paszkiewicz, S. R., Carter, P. R.,

& Peterson, T. A. (1998). Does variable rate seeding of corn pay? Agron. J., 90(6),

830–836.

Colwell, R., et al. (1956). Determining the prevalence of certain cereal crop diseases by

means of aerial photography. Hilgardia, 26(5), 223–286.

70



Corbane, C., Jacob, F., Raclot, D., Albergel, J., & Andrieux, P. (2012). Multitemporal

analysis of hydrological soil surface characteristics using aerial photos: A case study

on a mediterranean vineyard. Int. J. Appl. Earth Obs. Geoinf., 18, 356–367.

Corkidi, G., Balderas-Ruíz, K., Taboada, B., Serrano-Carreón, L., & Galindo, E. (2006).

Assessing mango anthracnose using a new three-dimensional image-analysis

technique to quantify lesions on fruit. Plant Pathol, 55(2), 250–257.

Duncan, W. (1958). The relationship between corn population and yield 1. Agron. J.,

50(2), 82–84.

Gianessi, L. P. (2005). Economic and herbicide use impacts of glyphosate-resistant crops.

Pest. Manage. Sci., 61(3), 241–245.

Guerrero, J. M., Pajares, G., Montalvo, M., Romeo, J., & Guijarro, M. (2012). Support

vector machines for crop/weeds identification in maize fields. Expert Syst. Appl.,

39(12), 11149–11155.

Guyer, D. E., Miles, G., Schreiber, M., Mitchell, O., & Vanderbilt, V. (1986). Machine vision

and image processing for plant identification. Trans. ASAE, 29(6), 1500–1507.

Hague, T., Tillett, N., & Wheeler, H. (2006). Automated crop and weed monitoring in

widely spaced cereals. Precis. Agric., 7(1), 21–32.

Hardin, P. J., & Jensen, R. R. (2011). Small-scale unmanned aerial vehicles in

environmental remote sensing: Challenges and opportunities. GISCI REMOTE SENS,

48(1), 99–111.

Honkavaara, E., Saari, H., Kaivosoja, J., Pölönen, I., Hakala, T., Litkey, P., . . . Pesonen, L.

(2013). Processing and assessment of spectrometric, stereoscopic imagery collected

71



using a lightweight UAV spectral camera for precision agriculture. Remote Sens.,

5(10), 5006–5039.

Huang, Y., Thomson, S. J., Hoffmann, W. C., Lan, Y., & Fritz, B. K. (2013). Development

and prospect of unmanned aerial vehicle technologies for agricultural production

management. Int. J. Agric. Biol. Eng., 6(3), 1–10.

Igathinathane, C., Pordesimo, L., Columbus, E. P., Batchelor, W. D., & Sokhansanj, S.

(2009). Sieveless particle size distribution analysis of particulate materials through

computer vision. Comput. Electron. Agric., 66(2), 147–158.

Kataoka, T., Kaneko, T., Okamoto, H., & Hata, S. (2003). Crop growth estimation system

using machine vision. In Advanced Intelligent Mechatronics, 2003. AIM 2003

Proceedings. 2003 IEEE/ASME International Conference (Vol. 2, pp. b1079–b1083).

Laliberte, A. S., & Rango, A. (2011). Image processing and classification procedures for

analysis of sub-decimeter imagery acquired with an unmanned aircraft over arid

rangelands. GISCI Remote Sens., 48(1), 4–23.

Lambert, R., & Faulkner, R. (1991). The efficient use of human energy for micro-scale

irrigation. J. Agric. Eng. Res., 48, 171–183.

Lelong, C. C., Burger, P., Jubelin, G., Roux, B., Labbé, S., & Baret, F. (2008). Assessment of

unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small

plots. Sensors, 8(5), 3557–3585.

López-García, F., Andreu-García, G., Blasco, J., Aleixos, N., & Valiente, J.-M. (2010).

Automatic detection of skin defects in citrus fruits using a multivariate image analysis

approach. Comput. Electron. Agric., 71(2), 189–197.

72



Lu, J., Miao, Y., Huang, Y., Shi, W., Hu, X., Wang, X., & Wan, J. (2015). Evaluating an

unmanned aerial vehicle-based remote sensing system for estimation of rice nitrogen

status. In Agro-Geoinformatics, 2015, Fourth International Conference (pp. 198–203).

Mcbratney, A. X., Whelan, B. M., & Shatar, T. M. (2007). Variability and uncertainty in

spatial, temporal and spatiotemporal crop-yield and related data. In Ciba Foundation

Symposium 210-Precision Agriculture: Spatial and Temporal Variability of

Environmental Quality (pp. 141–160).

Meyer, G. E., & Neto, J. C. (2008). Verification of color vegetation indices for automated

crop imaging applications. Comput. Electron. Agric., 63(2), 282–293.

Nafziger, E. D. (1996). Effects of missing and two-plant hills on corn grain yield. J. Prod.

Agric., 9(2), 238–240.

Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: A review. Appl.

Geometics, 6(1), 1–15.

Nielsen, R. (2001). Stand establishment variability in corn. AGRY-91-1 (Rev. Nov.-01).

Department of Agronomy, Purdue Univ., West Lafayette, IN.

Pena, J. M., Torres-Sánchez, J., de Castro, A. I., Kelly, M., & López-Granados, F. (2013).

Weed mapping in early-season maize fields using object-based analysis of unmanned

aerial vehicle (UAV) images. PloS one, 8(10), e77151.

Primicerio, J., Di Gennaro, S. F., Fiorillo, E., Genesio, L., Lugato, E., Matese, A., & Vaccari,

F. P. (2012). A flexible unmanned aerial vehicle for precision agriculture. Precis.

Agric., 13(4), 517–523.

73



Quilter, M. C. (1997). Vegetation monitoring using low-altitude, large-scale imagery from

radio-controlled drones (Unpublished doctoral dissertation). Botany and Range

Science Department, Brigham Young University, Provo, Utah.

Rudd, J. D., Roberson, G. T., & Classen, J. J. (2017). Application of satellite, unmanned

aircraft system, and ground-based sensor data for precision agriculture: A review.

Paper Number: 1700272. In 2017 ASABE Annual International Meeting, (pp. 1–7).

Sena Jr, D., Pinto, F., Queiroz, D., & Viana, P. (2003). Fall armyworm damaged maize plant

identification using digital images. Biosyst. Eng., 85(4), 449–454.

Shi, Y., Thomasson, J. A., Murray, S. C., Pugh, N. A., Rooney, W. L., Shafian, S., . . . others

(2016). Unmanned aerial vehicles for high-throughput phenotyping and agronomic

research. PloS one, 11(7), e0159781.

Smith, S., & Dickson, S. (1991). Quantification of active vesicular-arbuscular mycorrhizal

infection using image analysis and other techniques. Funct. Plant Biol., 18(6),

637–648.

Srinivasan, A. (2006). Handbook of precision agriculture: principles and applications. CRC

press.

Stafford, J. V. (2000). Implementing precision agriculture in the 21st century. J. Agric. Eng.

Res., 76(3), 267–275.

Story, D., Kacira, M., Kubota, C., Akoglu, A., & An, L. (2010). Lettuce calcium deficiency

detection with machine vision computed plant features in controlled environments.

Comput. Electron. Agric., 74(2), 238–243.

74



Swain, K. C., Jayasuriya, H. P., & Salokhe, V. M. (2007). Suitability of low-altitude remote

sensing images for estimating nitrogen treatment variations in rice cropping for

precision agriculture adoption. J. Appl. Remote Sens., 1(1), 013547.

Tian, L. F., & Slaughter, D. C. (1998). Environmentally adaptive segmentation algorithm

for outdoor image segmentation. Comput. Electron. Agric., 21(3), 153–168.

Torres-Sánchez, J., Peña, J. M., de Castro, A. I., & López-Granados, F. (2014).

Multi-temporal mapping of the vegetation fraction in early-season wheat fields using

images from uav. Comput. Electron. Agric., 103, 104–113.

Vericat, D., Brasington, J., Wheaton, J., & Cowie, M. (2009). Accuracy assessment of aerial

photographs acquired using lighter-than-air blimps: low-cost tools for mapping river

corridors. River Res. Appl., 25(8), 985–1000.

Warren, G., & Metternicht, G. (2005). Agricultural applications of high-resolution digital

multispectral imagery. Photogramm. Eng. Remote Sens., 71(5), 595–602.

Wich, S., Dellatore, D., Houghton, M., Ardi, R., & Koh, L. P. (2015). A preliminary

assessment of using conservation drones for sumatran orang-utan (Pongo abelii)

distribution and density. J. Unmanned Veh. Syst., 4(1), 45–52.

Willey, R., & Heath, S. (1969). The quantitative relationships between plant population

and crop yield. In Advances in Agronomy (Vol. 21, pp. 281–321). Elsevier.

Woebbecke, D. M., Meyer, G. E., Von Bargen, K., & Mortensen, D. (1995). Color indices for

weed identification under various soil, residue, and lighting conditions. Trans ASAE,

38(1), 259–269.

75



Woebbecke, D. M., Meyer, G. E., Von Bargen, K., & Mortensen, D. A. (1993). Plant species

identification, size, and enumeration using machine vision techniques on near-binary

images. In Optics in agriculture and forestry (Vol. 1836, pp. 208–220).

Xiang, H., & Tian, L. (2011). Method for automatic georeferencing aerial remote sensing

(RS) images from an unmanned aerial vehicle (UAV) platform. Biosyst. Eng., 108(2),

104–113.

Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for

precision agriculture: A review. Precis. Agric., 13(6), 693–712.

Zhu, H., Lan, Y., Wu, W., Hoffmann, W. C., Huang, Y., Xue, X., . . . Fritz, B. (2010).

Development of a PWM precision spraying controller for unmanned aerial vehicles. J.

Bionic Eng., 7(3), 276–283.

Zollinger, R., Christoffers, M., Endres, G., Gramig, G., Howatt, K., Jenks, B., . . . Valenti, H.

(2006). North Dakota Weed Control Guide. Fargo, ND, North Dakota State University

Extension Service Publication W-253.

76



APPENDIX A. COMMON WEEDS OF NORTH DAKOTA

This appendix illustrates the different types of weeds (studied and others) of North

Dakota and their identification features.

A.1. Different types of weed identification features

Crops are intentionally planted by farmer and ideally crop should be the only plant

in the entire field. Weeds are plants that are not the crop and they may or may not grow in

rows. Crops and weeds can be differentiated based on their morphological structure of

plants. Differentiating weeds based on its types, growth stages, plant structures like hairs,

seed head, growth habit, color, leaf shape, flowers and fruits, and color/shapes is possible.

Different weeds, common to North Dakota, and their identification features have been

described. Using these features, image processing protocols or algorithms can be developed

based on the described weed features such as shape, color, texture, size, and other

properties.

A.1.1. Palmer Amaranth

A.1.1.1. Seedlings

Palmer amaranth seedlings have leaves round in shape, pink underside, pink stem,

notch on tip of leaves, and are hairless (Fig.A1). This shape and color factor can be

considered in image analysis process to identify the early stage plants of palmer amaranth.

A.1.1.2. Mature plants

Mature plants of Palmer amaranth have diamond shaped leaves and petiole is long

as leaf (Fig.A1). Sometimes, mature plants have an arrowhead shaped watermark. Stem
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grows straight with lots of lateral branches and can be red or green. This weed can grow

up to 2 inches/day.

Figure A1. Seedlings and matured stage of Palmer amaranth weed
(Source: For seedling: https://aces.nmsu.edu/pubs/_a/A617/welcome.html and for
mature plant: http://www.mda.state.mn.us/plants/pestmanagement/weedcontrol/
noxiouslist/palmeramaranth).

A.1.2. Water Hemp

A.1.2.1. Seedlings

Water hemp seedlings have pink color underside of leaves and stems (Fig.A2). But

this feature to capture in the camera of drone are difficult since underneath of leaves. This

could be differentiated by looking at leaves size since water hemp has got leaves longer

than palmer amaranth.

A.1.2.2. Mature plants

Water hemp’s mature leaves are longer and narrower with shorter petioles, when

compared to Palmer amaranth (Fig.A2). Usually, it is difficult to differentiate between
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Palmer amaranth and water hemp. However, using the available features, the images can

be classified.

Figure A2. Seedlings and matured stage of water hemp weed
(Source: For seedling: https://ipm.missouri.edu/IPCM/2010/7/Weed-of-the-Month
-Palmer-Amaranth/, and for mature plant: https://agrilife.org/coastalbend/
program-areas/soil-and-crop-sciences/weeds/weeds-to-watch-out-for/common
-waterhemp/).

A.1.3. Common Ragweed

A.1.3.1. Seedlings

Common ragweed are very common among weed varieties and mostly found in all

the agricultural fields(Fig.A3). Common ragweed seedlings have round shape leaves and

serrated leaves mostly in even numbers. This can be used as identification feature.

A.1.3.2. Mature plants

Common ragweed mature plants have leaves with multiple lobes and coarse hair

with rough texture (Fig.A3). Stems are found to be hairy. This weed can grow up to 8 feet

tall. Thus, for image classification, the shape features can be used to identify ragweeds.
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Figure A3. Seedlings and matured stage of common ragweed
(Source: For seedling: https://agfaxweedsolutions.com/2018/04/26/michigan
-status-of-herbicide-resistant-weeds-in-2018/, and for mature plant:
https://weedid.missouri.edu/weedinfo.cfm?weed_id=17).

A.1.4. Kochia

A.1.4.1. Seedlings

Kochia is another common weed mostly found in the agricultural fields (Fig.A4).

Kochia seedlings have long and narrow leaves with hairs giving the leaf a silver tint, which

can be used for image identification.

A.1.4.2. Mature plants

Kochia mature plants have lots of branching and they are bushy (Fig.A4). Leaves

are lanceolate and have hairs only on margins. Stems are red tint in color. These features

are more advantageous and useful for image identification process.
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Figure A4. Seedlings and matured stage of kochia weed
(Source: For seedling: https://www.gov.mb.ca/agriculture/crops/weeds/print
,managing-kochia.html, and for mature plants: https://pnwhandbooks.org/weed/
problem-weeds/kochia-kochia-scoparia-bassia-scoparia).

A.1.5. Velvet Leaf

A.1.5.1. Seedlings

Velvet leaf seedlings have leaves in heart shape and has small soft hairs, which can

be used for image identification process (Fig.A5).

A.1.5.2. Mature plants

Velvet leaf mature plants have larger heart shaped leave with more dips in the leaf

structure with fine soft hairs on stem and leaves (velvet texture) (Fig.A5). Flowers are

button shaped. These features helps in identifying this weed variety.

81

https://www.gov.mb.ca/agriculture/crops/weeds/print,managing-kochia.html
https://www.gov.mb.ca/agriculture/crops/weeds/print,managing-kochia.html
https://pnwhandbooks.org/weed/problem-weeds/kochia-kochia-scoparia-bassia-scoparia
https://pnwhandbooks.org/weed/problem-weeds/kochia-kochia-scoparia-bassia-scoparia


Figure A5. Seedlings and matured stage of velvet leaf weed
(Source: For seedling and for mature plants: https://ipm.missouri.edu/IPCM/2015/
5/Weed-of-the-Month-Velvetleaf/).

A.1.6. Morning Glories

A.1.6.1. Seedlings

Morning glory seedlings have cotyledons in butterfly shape and can distinguish

between species by looking at differences in shape (Fig.A6).

A.1.6.2. Mature plants

Morning glories mature plants are vine plants climbing on crops and leaves have

unique characteristics with purple color flowers, which can be used for image classification

process (Fig.A6).

A.1.7. Lambsquarters

A.1.7.1 Seedlings

Lambsquarters seedlings have long narrow cotyledons and small triangular shaped

leaves (Fig.A7). Leaves have red outline along leaf margin and stems have silver powder
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Figure A6. Seedlings and matured stage of morning glories weed
(Source: For seedling: https://oak.ppws.vt.edu/~flessner/weedguide/ipopu.htm,
and for mature plants: https://www.thriftyfun.com/tf/Gardening/Flowers/Growing
-Morning-Glory.html).

gradient. Triangular shaped leaf features of lambsquarters make them as unique

identification feature for image identification process.

A.1.7.2. Mature plants

Lambsquarters mature plants have larger triangular shaped leave with a serrated

structure and silvery powder texture on leaves (Fig.A7). Leaves are shaped like a goose

foot. These features help in identifying this weed variety.
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Figure A7. Seedlings and matured stage of lambsquarters weed
(Source: For seedling: http://healthyhomegardening.com/Plant.php?pid=285&ss=
1536/, and for mature plants: https://courses.missouristate.edu/pbtrewatha/
common_lambsquarters.htm).

A.1.8. Marestail

A.1.8.1. Seedlings

Marestail seedlings have leaves with coarse hairs in a rosette shape mostly in a

round pattern (Fig.A8). Successive leaves are projected in an apical direction with toothed.

Rosette feature is an advantageous feature of marestail, which mainly used as a

classification feature for the marestail weed image identification process.

A.1.8.2. Mature plants

Marestail mature plants is an erect herb which can grow up to 1.5 to 6 feet tall with

coarse hirsute leaf and stem (Fig.A8). Leaves are grown in a crowded and alternate

pattern, which makes the pant to grow in a rosette-like structure. These features helps in

identifying this weed variety.
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Figure A8. Seedlings and matured stage of marestail weed
(Source: For seedling and for mature plants: https://www.no-tillfarmer.com/
articles/2309-tips-for-identifying-fall-emerging-weeds/).
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APPENDIX B. IMAGEJ CODE - SAMPLES

B.1. Fiji ImageJ System Download Webpage for Different Platforms

Users can download Fiji (Fig.B1), which is a distribution of ImageJ, and includes

several plugins and offers a clean color-coded integrated development environment (IDE)

for program (plugin) development. ImageJ is a free and open-source image processing

system and supports the development of user-coded plugins. The webpage of Fiji for

different platforms can be found at https://imagej.net/Fiji/Downloads.

Figure B1. Fiji ImageJ download webpage for different platforms
(Source: https://imagej.net/Fiji/Downloads).
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B.2. Sample ImageJ Codes for Plant-Stand Count and Weed Identification

// -----------------------------------------------------------
/*
A small portion of original ImageJ code (which is more than 1200 lines for

plant-stand counting and approximately 500 lines for weed identification) is
given here. This section contains code for functions like identifying plant
rows, identifying individual plants and differentiating between weeds and
plants.

*/
// Developed by: Dharani Suresh Babu and
// C. Igathi; ABEN, NDSU
// -----------------------------------------------------------
// Inputs:
// ExG # Excess Green threshold value
// xli # Initial X1 coordinate
// yli # Initial Y1 coordinate
// x2i # Initial X2 coordinate
// y2i # Initial Y2 coordinate
// row_plant_spacing # Spacing between plant rows
// row_plant_search_angle # Search hand angle search
// imp # Image processor 1
// imp2 # Image processor 2
// -----------------------------------------------------------

//###################### Functions ###################

//-----------Excess green segmentation technique --------------

public void do_ExG_binary_mask_and_rows(ImageProcessor ip, int ExGCutoff,
ImagePlus bimage){

Image img1; //java.awt.Image

for (int i=0; i<h; i++) {
for (int j=0; j<w; j++) {
PixCol = ip.getPixel(j,i, PixCol);
R = PixCol[0];
G = PixCol[1];
B = PixCol[2];
ExG = 2*G - R -B;
if (ExG >= ExGCutoff){
} // if
} // for j

} // for i
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//---------------------------------------------------

//------------Identifying plant rows

public int[] Horizontal_initial_branch(int x1, int y1, int x2, int y2, double
rplant_spacing, double rsang, ImagePlus impin, ImagePlus impout)

{ // ImagePlus is passed

int [] HNext_branch = new int[3];
int [] Start_cen = new int[3];

HNext_branch = hori_Five_points_branching(x1, y1, x2, y2,
rplant_spacing, rsang, imp, imp2);

Start_cen[1] = HNext_branch[1];
Start_cen[2] = HNext_branch[2];

return Start_cen;
}

//---------------------------------------------------

//------------ Efficient Search hand if plant exists or dont exist

public int[] points_branching(int x1, int y1, int x2, int y2, double
plant_spacing, double sang, ImagePlus impin, ImagePlus impout)

{ // ImagePlus is passed

if((Plant_found[0]==1 && Plant_found[3] < optimum) ||
(Plant_found[0]==1 && Plant_found[3] < sec_optimum) ||
(Plant_found[0]==1 && Plant_found[3] < plant_spacing))

{// condition check
//IJ.showMessage("Center line was sufficient");
//IJ.log("Center points Distance: " + Plant_found[3] );
}//if

else{ //if center search fails
for (int i=0; i<6; i++){ // iterate rest 4 hands
IJ.log("Slope value: " + m);
if (m<0){ // slope

xp = x[i];
yp = y[i];

}
else{ //slope

xp = xf[i];
yp = yf[i];
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}

Plant_found = Pixel_march_two_points(x2, y2, xp, yp, impin, impout);
return Plant_found;
}

//---------------------------------------------------

//--------------- Labeling the plants
public void label_counted_plants(ImagePlus impp, int[]sxsshCen, int[]sysshCen,

int[]sxssCen, int[]syssCen, int[] sxCen, int[] syCen, int[] skipxCen, int[]
skipyCen, int stplants, int totplants, int skipplants)

{
ImageProcessor ip = impp.getProcessor();

for (int i=0; i < totplants; i++ )
{//plus symbol for horizontal X and Y centroid coordinates

path.moveTo(sxssCen[i]-size, syssCen[i]);
path.lineTo(sxssCen[i]+size, syssCen[i]);
path.moveTo(sxssCen[i], syssCen[i]-size);
path.lineTo(sxssCen[i], syssCen[i]+size);

}

for (int i=0; i < totplants; i++)
{ //plus symbol for vertical X and Y centroid coordinates

path.moveTo(sxCen[i]-size, syCen[i]);
path.lineTo(sxCen[i]+size, syCen[i]);
path.moveTo(sxCen[i], syCen[i]-size);
path.lineTo(sxCen[i], syCen[i]+size);

}

Overlay overlay = new Overlay();
//---------------------------------------------------

//------- Weed geometrical shape identification

for(int i = 0; i < counter1; i++)
{ //modifying the results table based on max length limits

lmm = areaOrig[i];
if (lmm > areaMinLim)
{

areas[k] = areast[i];
per[k] = pert[i];
angle[k] = anglet[i];
mAxis[k] = mAxist[i];
miAxis[k] = miAxist[i];
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xCen[k] = xCent[i];
yCen[k] = yCent[i];
height[k] = heightt[i];
width[k] = widtht[i];
feret[k] = ferett[i];
feretxx[k] = feretx[i];
feretyy[k] = ferety[i];
feretangle_xy[k] = feretangle[i];
circ[k] = circt[i];
aspectratio[k] = aspectratiot[i];
roundness[k] = roundnesst[i];
solidity[k] = solidityt[i];
compact[k] = areas[k]/feret[k];

if (feretangle_xy[k] <= 90.00)
{

XFC[k]= (feret[k]/2)*Math.cos(Math.toRadians(feretangle_xy[k]));
YFC[k]= (feret[k]/2)*Math.sin(Math.toRadians(feretangle_xy[k]));

feretCx[k]= (int)(feretxx[k] + XFC[k]);
feretCy[k] = (int)(feretyy[k] - YFC[k]);

}

if (feretangle_xy[k] > 90.00)
{

feretangle_xy[k] = (int)(180.00 - feretangle_xy[k]);
XFC[k]= (feret[k]/2)*Math.cos(Math.toRadians(feretangle_xy[k]));
YFC[k]= (feret[k]/2)*Math.sin(Math.toRadians(feretangle_xy[k]));

feretCx[k]= (int)(feretxx[k] + XFC[k]);
feretCy[k] = (int)(feretyy[k] + YFC[k]);

}

CA[k]= areas[k] / solidity[k];
H1[k] = (CA[k]-areas[k])/CA[k];

k++;
}

}

90


	ABSTRACT
	ACKNOWLEDGEMENTS
	DEDICATION
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	LIST OF APPENDIX FIGURES
	General Introduction
	Statement of Objectives
	Thesis Organization

	A review of unmanned aerial vehicles application for crop-growth and health monitoring
	Abstract
	Introduction
	Information and Communication Technology in Agriculture
	Remote Sensing Technology

	Unmanned Aerial Vehicle Applications
	UAVs Flight Plan
	Types of UAVs
	Fixed Wing Drones
	Tricopters
	Quadcopters
	Hexacopters
	Octocopters

	Potential Uses of UAVs in Agriculture Research
	Soil and Field Analysis
	Planting
	Crop Spraying
	Crop Monitoring
	Irrigation
	Crop Health Assessment

	UAV Image Analysis Indices in Agriculture Research
	Normalized Difference Index (NDI)
	Color Index of Vegetation Extraction (CIVE)
	Vegetative Index (VEG)
	Excess Green Index (ExG)

	UAVs Image Processing
	Algorithm Development
	Publications on UAV's Applications in Agriculture
	Conclusion

	Automatic plant-stand count and spatial distribution using unmanned aerial vehicle digital images
	Abstract
	Introduction
	Materials and Methods
	Experimental Setting and Image Acquisition 
	Plugin Development
	Image Preprocessing 
	Image Segmentation
	Curvilinear Plant Rows
	Distance Calculation
	Labeling the Plants
	Results Table
	Log Output File
	Message Windows

	Results and Discussion
	Performance of Algorithm with Field Image
	Field Plant-Stand Distribution Map
	Algorithm Validation
	Limitations and Future Work

	Conclusion

	Shape-based weed identification and mapping using low-altitude unmanned aerial vehicle images
	Abstract
	Introduction
	Materials and Methods
	Major Weeds in ND
	Algorithm Development
	Image Collection and Image Library
	Image Scaling
	Geometrical Shape Features
	Output Message Window

	Results and Discussion
	Plugin Shape Features Output
	Standard Geometrical Shape Features of Weeds and Crops
	Calculated Geometrical Shape Features of Weeds and Crops
	Field Application — Weed Distribution Map

	Conclusion

	General Conclusions and Suggestions for Future Work
	General Conclusions
	Suggestions for Future Work

	REFERENCES
	APPENDIX A. Common weeds of North Dakota
	A.1. Selected North Dakota Weeds and Their Identification Features
	A.1.1. Palmer Amaranth
	A.1.2. Water Hemp
	A.1.3. Common Ragweed
	A.1.4. Kochia
	A.1.5. Velvet Leaf
	A.1.6. Morning Glories
	A.1.7. Lambsquarters
	A.1.8. Marestail

	APPENDIX B. ImageJ code - Samples
	B.1. Fiji ImageJ System Download Webpage for Different Platforms
	B.2. Sample ImageJ Codes for Plant-Stand Count and Weed Identification


