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ABSTRACT 

In common bean (Phaseolus vulgaris), the main seed storage pests are the bruchid 

beetles.  Damage done to the seed by the larvae has a large impact on seed quality and yield. 

Arcelin (ARC), phytohaemagglutinin (PHA), and α-amylase inhibitor (α-AI) are linked seed 

storage proteins that form the APA locus on chromosome Pv04 and are associated with 

resistance.  A major breeding objective is to introduce bruchid resistance into common bean 

from a resistant tepary genotype, G40199, by introgressing the resistant APA locus into 

susceptible common bean backgrounds. Here we developed a molecular marker that tracks the 

introgression. A set of PCR primers to the α-amylase inhibitor locus amplified a DNA fragment 

that showed a 45 base pair insertion in the middle of a lectin Leg_b domain. This enhanced locus 

characterization and insertion/deletion marker may preclude the need for bruchid resistance 

screening early in the breeding.  
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INTRODUCTION 

Common bean (Phaseolus vulgaris L.) is one of the most important grain legumes in the 

developing world. Approximately 14 million hectares of arable land produces 11 million metric 

tons of common bean worldwide (Singh 1999; FAO 2005). In southern Africa, beans are the 

second most important source of dietary protein (Cardona, 1989). Additionally, this inexpensive 

crop has a positive mix of protein, complex carbohydrates, fiber, iron, folic acid concentrations 

that make beans a nearly perfect food (Pachicho, 1989).  Damage done by post-harvest predators 

is one of the biggest problems facing both small and large-scale dry bean farmers. The bean 

weevils (Acanthoscelides obtectus) and the Mexican bean weevil (Zabrotes subfasciatus) are the 

most notable pests. These bruchids attack seeds in the field prior to harvest as well as in storage. 

In parts of Africa and Latin America, 30-35% of stored seeds suffer damage and/or 

contamination due to bruchid damage (Nahimana, 1992; Uebersax, 1996). The process currently 

used to identify resistance is time and labor intensive. Adult beetles are given the opportunity to 

lay eggs on seeds and in 30-60 days the number of exit holes from emerging adults can be scored 

(Singh, 1985).    

Resistance to Z. subfasciatus was originally found in wild Mexican tepary bean 

accessions, and a major breeding effort was started to breed the resistance into susceptible P. 

vulgaris genotypes. Only recently has a source of strong resistance to A. obtectus been 

discovered in a tepary genotype G40199 (Kusolwa, 2007). Resistance appears to be associated 

with a group of linked seed storage proteins, arcelin (ARC), phytohaemagglutinin (PHA), and α-

amylase inhibitor (α-AI) encoded by the APA locus on chromosome Pv04.  Arcelin, originally 

thought to be the main resistance factor, was isolated and analyzed in vitro, and it was shown to 

not be solely responsible for resistance (Goosens, 2000). It appears a combination of arcelin, α-
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amylase inhibitor, and other closely linked genetic factors have the greatest effect on resistance. 

As the interactions of these proteins became better understood, developing a molecular marker to 

track the introgression of the members of the APA locus became a goal in order to more quickly 

identify resistance in populations without having to infest and measure the susceptibility in every 

individual.  
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LITERATURE REVIEW 

Dry Bean 

Common bean (2n = 2x = 22) is the most important grain legume and accounts for more 

than 29 million metric tons of seed world-wide (McClean and Raatz, 2017). Beans are legumes 

that belong to the Fabaceae family which is the third-largest family of flowering plants. These 

are vitally important to agriculture and the environment. Legumes provide a substantial fraction 

of all nutritional protein and reduce the need for exogenous fertilizers due to their capacity for 

symbiotic nitrogen fixation (Kumar, Srivastava, Singh and Pratap, 2014). After the Poaceae grass 

family, this family represents the second most important family of crop plants. Grain legumes 

account for 27% of world crop production and provide 33% of the dietary protein consumed by 

humans while pasture and forage legumes provide a vital part of animal feed (Smýkal et al., 

2015). 

Legumes are comprised of several evolutionary lineages derived from a common 

ancestor ~54 million years ago (Wojciechowski, 2003). The Papilionoids form the largest clade, 

dating nearly to the origin of legumes and contain most cultivated species (Lavin, Herendeen, & 

Wojciechowski, 2005). Currently, based on morphological characters, three major groups are 

recognized as Papilionoid subfamilies: mimosoid legumes, Mimosoideae (four tribes and 3,270 

species); papilionoid legumes, Papilionoideae (or family Fabaceae/Papilionaceae with 28 tribes 

and 13,800 species); and caesalpinioid legumes, Caesalpinioideae (or family Caesalpiniaceae 

with four tribes and 2,250 species) (Lewis, Schrire, Mackinder, & Lock, 2005).  

Beans, along with soybeans (Glycine max) and cowpeas (Vigna unguiculata) belong to 

the most economically important tribe of the legume family, Phaseoleae. There are two gene 

pools of bean (Andean and Mesoamerican) that are thought to have diverged from a common 
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ancestor more than 100,000 years ago (Mamidi et al., 2012). The wild gene pools, found in 

South America and present-day Mexico, resulted in two unique parallel evolutionary lineages 

within the same species. 

The domestication of legumes included changes in plant architecture, seed gigantism, 

transition to self-pollination, reduced seed dispersal, and loss of seed dormancy (Hammer, 1984). 

An increase in the seed size of domesticates compared to their wild relatives is suggested to be 

related to greater planting depth in agricultural systems, with larger seeds producing more 

vigorous seedlings (Abbo et al., 2011). At the same time, early farmers may have selected for a 

higher proportion of starch, oil, and protein.  

Grain legumes were domesticated in conjunction with the domestication of grasses 

(Shahal Abbo, Lev-Yadun, & Gopher, 2012). However, more legumes were domesticated 

overall, and as a result the Fabaceae family contains the largest number of domesticated species. 

Pea, faba bean, lentil, pea, and chickpea are some of the world's oldest domesticated crops and 

were common in Fertile Crescent of Mesopotamian agriculture (Smýkal et al., 2015). Common 

bean in the Americas probably has the longest history as a domesticated species, originating in 

parallel in two separate centers of domestication: 1) the Andean mountains of South America, 

giving rise to the Andean gene pool, and 2) the Central American highlands and lowlands, giving 

rise to the Mesoamerican (Middle American) gene pool (Blair, Díaz, Buendía, & Duque, 2009). 

Market Classes 

There are many characteristics that distinguish beans the Andean and Middle American 

gene pools. Leaflet size and shape, leaf hairiness, length of internodes, pod beak origin, days to 

maturity, and growth habit are just a few of these characteristics (Singh, 1992). The Middle 

American gene pool encompasses the Mesoamerican, Durango, and Jalisco races. Middle 
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American races are generally small to medium seeded and range in seed shape from cylindrical, 

kidney, oval, to rhombohedric. Races are further divided into commercial market classes; most 

commonly pinto, great northern, small red, navy, small white and black in the U. S.  

 The Andean gene pool contains races Nueva Granada, Peru and Chile (Singh, 1992). 

Some of the more obvious characteristics that differentiate these races from the Middle 

American gene pool include medium (25-40 g per 100 seed) to large seeds (>40 g per 100 seed) 

and oval, round and kidney shaped seeds. Nueva Granada is the most common Andean race in 

the U.S and includes light red kidney, dark red kidney, white kidney and cranberry beans. The 

importance of the Andean beans in parts of Africa, Europe and South America has sparked a 

large increase in research in genetic improvement for many dry bean market classes. 

Dissemination of the Domesticated Lines 

It was originally thought that the center of origin of common bean was in the western 

hills of the Andes in northern Peru and Ecuador, and the wild bean was dispersed north into 

Colombia, Central America, and Mexico and south into Peru, Bolivia, and Argentina (Kami, 

Velásquez, Debouck, & Gepts, 1995). Recently, AFLP (Rossi et al., 2009) and simple sequence 

repeats (Kwak & Gepts, 2009) analyses of wild and domesticated P. vulgaris accessions, 

suggested, there was a severe bottleneck in the Andean populations prior to domestication, and 

that there was a Mesoamerican origin of the common bean. The center of origin of common bean 

is now thought to be in Mexico which coincides with the domestication maize (Zea mays) and 

squash (Cucurbita spp.) (Zizumbo-Villarreal, 2010).  

Pinto and great northern beans seem to have migrated from central Mexico into the 

central region of the US and were moved northward by the Native Americans into Canada.  

Elsewhere, navy and black beans were carried from the Caribbean to the east coast of the US and 



 

6 
 

northward into the Great Lakes region. Kidney beans, domesticated from the wild Andean gene 

pool, were moved along the slave trade route to Europe and on to eastern Africa (Kelly, 2010).  

  Grown in mild climates with a mean temperature of 15-25°C, beans are considered a 

short-day crop and can survive in environments up to 3000 m above sea level (White and Laing, 

1989). Beans are often intercropped either at the same time or in relay with maize which acts as a 

support for climbing varieties. Beans provide additional income and serve as a nutritional backup 

if the maize crop grows poorly.  The crop possesses variability for photoperiod sensitivity, 

growth habit, and disease resistance in the different market classes.  This contributes to diversity 

in production systems in a variety of climates spanning North America, Latin America, Europe, 

Africa and Asia (Singh, 1992; Woolley et al., 1991). 

Bruchids 

Bruchids belong to the order coleopteran in the family bruchidae. The word bruchid is a 

general term for beetles, such as the bean weevil (Acanthoscelides obtectus Say.) and the 

Mexican bean weevil (Zabrotes subfasciatus Boh.).  These are the two most common and 

devastating seed storage pests of common bean (Kornegay & Cardona, 1991). Both bruchids 

feed on other species of Phaseolus including the wild tepary (P.acutifolius A. Gray), runner (P. 

coccineus L.), and lima (P. lunatus L.) beans. The larvae are most economically devastating to 

the common bean, and damage done to these seeds by the bruchid larvae can cut the marketable 

of the beans by 7-40% (Slumpa and Ampofo, 1991). 

The Z. subfasciatus originated in Central America and was described in the early 19th 

century. It is a small black beetle that ranges in size from 2.0-3.0 mm in length and 1.3-1.5 mm 

in width. It is tropicopolitan and favors warm temperatures. Other closely related hosts include 

Glycine max, Phaseolus acutifolius, Phaseolus coccineus, Vigna angularis, Vigna mungo, and 



 

7 
 

Vicia faba. Commercial distribution of dried beans has allowed this seed storage pest to infiltrate 

South America, Africa and parts of India (Southgate, 1964). Z. subfasciatus females oviposit 

only on seeds that have fallen from the pod or are still inside a dehisced pod. This makes 

infestation detection before the prepupal stage challenging. Once the pupal stage has 

commenced, the larva has compromised the inner surface of the integument with a hole to 

facilitate emergence of the adult beetle (Pierre and Pimbert 1981). 

Z. subfasciatus only infests stored beans, and not those in the field. Some control 

strategies are only applicable on a small scale.  For example, farmers can place their seeds into 

storage and add dust or ashes to fill up the spaces between the seeds making it more difficult for 

the females to lay their eggs. Tumbling the seeds inside the storage containers and frequent 

drying in the sun helps mitigate infestation by creating unfavorable conditions for the pest 

(Quentin et al. 1991). The use of pesticide controls is available, but they come at a financial and 

environmental cost that is often times too great for small farmers. Phosphine fumigants and 

pyrethroid compounds are extremely toxic and can have a negative impact on the environment 

and effect the health of applicator and consumer (Agrofit 20011). Studies in developing countries 

have found an incident of acute pesticide poisoning in 35 out of every 100,000 workers every 

year (Henao, 2002).  In search of an alternative form of control, research moved towards 

botanical pesticides and found neem (Azadirachta indica A. Jus), eucalyptus (Eucalyptus 

citriodora Hook), lemongrass (Cymbopogon citratus Stapf.) and camellia (Camellia oleifera) 

essential oils all repelled Z. subfasciatus weevils from laying eggs on P. vulgaris (Oliveira 1999 

and França 2012).   Another method of controlling infestation uses diatomaceous earth (DE). DE 

is a soft sedimentary rock that is easily crumbled into powder. It consists of fossilized remains of 

a hard-shelled algae called diatoms, from which it gets its name. Due to the chemical properties 
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of DE, the powder absorbs lipids on the exoskeletons of insects causing desiccation and death 

(Golob, 1997). DE has no known toxic effect on animals or humans and is in turn a good 

alternative as a safe pest control.  

A. obtectus Say, commonly known as the bean weevil, originated in Central America and 

is specialized on P. vulgaris L. (Delgado-Salinas, 1999). It is now found worldwide due to 

commercial trade, distribution, and its ability to reproduce in slightly cooler and higher altitude 

climates. It is characterized as a small beetle, 2-5 mm in length, are light to dark brown with a 

red posterior border. Adult females lay eggs in groups of 2-20 in or on the seed pods and can lay 

up to 200 eggs. The first instar larvae emerge within 30-45 days. A few days after that the larvae 

molt into 2nd instar larvae and spend the next 3-4 weeks consuming seeds inside the pod. The 

larvae then enter the holes they formed in the seed and pupate. The entire life cycle of a single 

generation takes approximately 100-110 days and when in favorable climates (22-29°C) multiple 

generations can reproduce one after another. Due to the neotropical nature of the insect, any 

temperature higher or lower than 22-29°C can drastically decrease average fecundity of the laid 

eggs.  

A. obtectus infestation control is more complex because it starts in the field and continues 

in storage. In an effort to combat infestation from the field, Schmale and colleagues (2002) 

researched the use of the parasitoid Horismenus ashmeadii (Dalla Torre) as a biological control. 

In the field the parasitoid would feed on the A. obtectus larvae and reduce infestation.  However, 

the effectiveness did not extend into storage. There are a few insecticides for Z. subfasciatus that 

are effective for the control of A. obtectus as well. DE, malathion, aluminum phosphide, 

magnesium phosphide, gaseous phosphine, carbon dioxide, and methyl bromine are the most 

common. However most of these methods either have widespread insect resistance or require 
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well-sealed and climate-controlled granaries. This poses a problem for small subsistence and 

shareholder farmers who may not have these types of facilities or agents.  

Logistic issues, like these, highlight the need for research to develop a genetic resistance 

to these pests. It is known that certain seed storage proteins are toxic to these bruchids and confer 

a natural resistance in some wild Mexican varieties (Osborn, 1988). Utilizing these proteins and 

introgressing them into breeding lines would reduce the use of these insecticides and would 

provide farmers with limited storage capacity a means to protect their yield. 

APA Locus and Bruchid Resistance  

One defense mechanism the Fabaceae family employs against insects, birds, or mammals 

is to accumulate antinutritional seed storage proteins. Specifically, in P. vulgaris, the seed 

storage proteins include phaseolin, lectins, phytohaemagglutinins, and lectin-like proteins (LLP). 

Lectin-like proteins are associated with plant defense in Phaseolus (Chrispeels and Raikhel, 

1991). Lectins reversibly bind to carbohydrate molecules (Peumans and Van Damme, 1995). 

This aids in defense by interfering with the carbohydrate metabolism of an organism that has 

ingested the plant. Phytohemagglutinin is a major lectin found in common bean and is 

homologous to arcelins and α-amylase inhibitors, all of which are involved in bruchid resistance 

(Chrispeels and Raikhel, 1991). 

Evolutionarily, the APA (Arcelin/Phytohemagglutinin/α-Amylase inhibitor) locus found 

in Phaseolus species is a result of an ancestral paralogous duplication event that produced the 

true lectin and the lectin-related genes. Eventually, these lectin-related genes evolved through a 

second duplication event into the α-AI and ARC, which is only found in some wild Mexican 

varieties (Lioi et al., 2003). This locus, which encodes all three proteins is located on 

chromosome Pv04 (previously B4) in the P. vulgaris genome (Nodari et al., 1993) and is 
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estimated to be 500 kbp in size (Galasso, 2005; Sparvoli, 2008; Gepts, 2008). These genes have 

no introns and are between 732-825 base pairs.  These are homologous with high (45-85%) 

amino acid sequence identity. Varying degrees of resistance to pests have been attributed to the 

APA locus, however the molecular effect that confers resistance is still not known. A study by 

Kami and colleagues developed a figure from a BAC clone that helps visualize how the locus is 

thought to look (Fig. 1). The figure shows six purple arrows that denote APA genes.  

Interestingly the reference genome only has three gene models (Phvul.004G158000, 

Phvul004G158100, and Phvul004G158200) that are associated with the APA locus. This 

highlights how many more genes could be involved in the resistance and just not accounted for 

in the reference as of now.  

 

Figure 1. Schematic of the distribution of putative genes identified in P. vulgaris G02771 BAC 

clone 71F18. (From Kami et. al. 2006, Fig 3) 
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 Arcelin (ARC) is a lectin related protein that may aid in resistance to bruchids. Although 

the specific mechanism is unknown it is thought that this protein is difficult to digest and may 

contribute to a change in gut structure and epithelial cells (Bardocz et al., 1995; Minney et al., 

1990). Arcelin was originally found in wild common bean accessions from Mexico (Osborn et 

al., 1988a and 1988b). There are eight known variants that are differentiated based on amino acid 

sequence and electrophoretic polypeptide comparison: Arc-1, Arc-2, Arc-3 and Arc-4 (Osborn et 

al., 1986; 1988b; Hartweck et al., 1991), Arc-5 (Lioli, 1989; Goossens et al., 1994), Arc-6 

(Santino et al., 1991), Arc-7 (Acosta-Gallegos et al. 1998) and Arc-8 (Zaugg, 2013). Resistance 

from all of these variants is effective on Z. subfasciatus, but Arc-4 is the only variant to show 

resistance for both species. In regards to differences in nomenclature in previous publications, 

variants in this document are denoted by Arc-# 

Osborn and colleagues initially identified Arc-1, Arc-2, Arc-3 and Arc-4 by 

electrophoretic differences after screening 106 wild bean accessions that contained a novel 

protein band that had not previously been reported (1986). The source for Arc-1 is PI325690 or 

G12882. More research was conducted to find the differences in these initial arcelin variants. 

The source for Arc-2 was G12866, and through the comparison of cDNA clone sequences it was 

found to be 99.3% homologous with Arc-1 (John, 1990). Arc-5 (Lioli, 1989) was further 

characterized and revealed it was made up of three polypeptides (Arc-5a, Arc-5b and Arc-5c). 

Using G02271 as the source, two cDNA clones, Arc-5-I and Arc-5-II, were isolated and found to 

have 98.3% similarity at the nucleotide level (Goossens, 1994). Arc-4-I and Arc-4-II were 

discovered in 1994 from G12949 as the source. Arc4-II was later found to be identical to Arc-3-

II (Lioi, 2003). Arc-6 was later found to be highly similar to Arc-1 and Arc-2 based on cDNA 

sequence from G11051 by the same group. Arc-7 was discovered in 1998 from wild accession 
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G24584, and like Arc-5 made up of two polypeptides (Acosta-Gallegos, 1998). Lastly, in 2012 

Arc-8 was discovered in an accession named QUES and was found to be closely related to Arc-4 

which are the only variants resistant to both types of bruchid beetle.  

The phytohemagglutinin (PHA) family consists of two major polypeptides, PHA-E and 

PHA-L. Both of these isoforms cause agglutination but have different targets. PHA-E acts on red 

blood cells and PHA-L acts on white blood cells. The amino acid sequence identity of these 

tandemly linked genes is 82% similar (Rudiger and Gabius, 2001). PHA can bind to 

carbohydrates in the insect's digestive system and prevents the absorption of nutrients across the 

intestinal wall (Sakthivelkumar, 2013). A study Pusztai and colleagues demonstrated the 

antinutritional effect of PHA on rats when they were fed purified PHA or bean seeds (1979 

&1983).  

α-Amylase inhibitor (α-AI) is the third lectin-like proteins that makes up the APA locus. 

This protein inhibits the α-amylase activity in some insect species. The α-amylase activity aids in 

starch breakdown, and interrupting that process deprives the insect of carbohydrates and retards 

larval development. There are multiple allelic variants of α-AI that combined with other proteins 

have varying levels of resistance to bruchid attack (Ishimoto and Chrispeels, 1996; Morton et al., 

2000). Genotypes with α-AI-2 are more resistant compared to α-AI-1, however studies have 

shown that the resistance mechanism is complicated, and high expression of α-AI-2 is not 

enough to confer resistance on its own (Nishizawa et al., 2007). α-AI variants have been found in 

P. acutifolius that are successful in protecting beans from Z. subfasciatus due to their similarity 

to α-AI-2 (Yamada et al., 2001). The complexity of this region and the possibility that there may 

be protein interactions that are not well understood yet makes it difficult to utilize this locus 

correctly.  
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Breeding and Hybridization 

One way to cultivate bruchid resistance would be to incorporate proteins with known 

resistance properties into popular common bean genotypes. This was done originally with a 

backcross-breeding scheme with the arcelin gene (Osborn et al. 1988b; Cardona et al. 1990; 

Kornegay and Cardona, 1991; Kornegay et al. 1993; Misangu, 1997; Hartweck et al. 1991). Arl-

1 was the first variant introgressed into cultivated beans, and Arl-2, Arl-3 and Arl-4 were soon to 

follow (Osborn et al. 1998b; Romero-Andreas et al. 1986; Cardona et al. 1990; Hartweck et al. 

1991; Kornegay et al. 1993). In order to increase accumulation of arcelin in the seed, a phaseolin 

null allele was introduced to the lines with variants 1, 2 and 4 of arcelin. The increased arcelin 

activity of these ‘Sanilac’ mutant (SMARC) lines have been highly successful and imparting 

resistance to Z. subfasciatus but are still ineffective against A. obectus (Cardona et al. 1990; 

Kornegay and Cardona 1991; Kornegay et al. 1993; Hartweck et al. 1997; Acosta-Gallego et al. 

1998; Paes et al. 2000; Sales et al. 2000).   

With the ability to isolate and compare the resistance of different lines with a variety of 

combinations of seed storage proteins, it is probable that other factors are involved. Harnessing 

the ability to transfer the whole locus from one resistant line to a susceptible line could be a way 

to preserve resistance without a priori understanding of the exact mechanism. Transferring genes 

from P. acutifolius to P. vulgaris is a difficult process due to genetic and reproductive barriers. 

Interspecific hybrids from these two species present a challenge due to a small number of 

offspring with low fertility; abnormal chromosome recombination; need for embryo rescue; and 

high linkage drag from the tepary parent (Haghighi et al. 1988; Mejia-Jiménez et al. 1994; 

Rabakaorihanta et al. 1980). Despite the challenges, it is possible. Singh and Muñoz (1999) 

successfully transferred common bean blight (Xanthomonas campestris pv. phaseoli) resistance 
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from tepary to common bean. Modifications to the congruity backcrossing method (CBC) 

resulted in the double congruity backcross (DCBC) method which resulted in increased hybrid 

fertility and gene transfer (Mejia- Jiménez et al. 1994). As the backcrossing system for APA 

locus becomes more reliable and introgression from tepary G40199 is more successful, a method 

to track that introgression is becoming greater. Transferring and tracking the APA locus from 

G40199 to other common bean cultivars will be an important step towards introducing resistance 

to both Z. subfasciatus and A. obectus.  

In 2007 P.M. Kusolwa and J.R. Myers discovered the utility of G40199 as it relates to its 

high level of A. obectus resistance. Following a F1 interspecific hybrid between G40199 and P. 

vulgaris, subsequent backcrosses with ICA Pijao were made to recover fertility and the 

development of a F2 interspecific population from G40199 and Brown Tepary. The population 

showed a single dominant gene coded for a 33 kDa seed storage protein in G40199. Subsequent 

lines developed from these lines show significant bruchid resistance and the 33 kDa protein was 

linked to co-expression of arcelin-like and PHA protein subunits.  

The main objective of this study is to develop a molecular marker to track the 

introgression of the APA locus from Phaseolus acutifolius into Phaseolus vulgaris in order to 

utilize its resistance to seed storage pests. A secondary objective as to better characterize the 

locus itself through sequence analysis and phylogenetic mapping. 
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MATERIALS AND METHODS 

Plant Material 

Four bruchid resistant and four bruchid susceptible genotypes were used in this research 

(Table 1). P. acutifolius genotype, G40199, is the source of bruchid resistance. The four resistant 

genotypes are: PR1012-29-3-1A and PR1012-3-3A, medium sized red beans; and PR1464-1, and 

PR1464-6, black beans.  The four susceptible genotypes are: XRAV-40-4 and Rojo, used as 

parents to develop the new resistant lines; and Verano and Badillo, susceptible checks. G40199 

was originally crossed with ICA-Pijao, then backcrossed twice. Using a similar scheme, Rojo 

and SMARC-2-PN-1 were crossed and backcrossed three times. The progeny of those two 

crossing schemes were crossed to develop the PR1012-29-3 line. The individuals PR1012-29-3-

1A and PR1012-29-3-3A were selected from that line and used as the resistant parents in a cross 

with XRAV-40-4 to develop the PR1464-1 and PR1464-6 genotypes. Table 1 shows the 

pedigrees of these lines below. 

 



 

 

1
6
 

Table 1. Resistant and susceptible genotypes used to test marker

Genotype Resistant/Susceptible Pedigree Size/Color 

PR1464-1 Resistant PR1012-29-3/XRAV-40-4 Black 

PR1464-6 Resistant PR1012-29-3/XRAV-40-4 Black 

PR1012-29-3-1A Resistant Parent 

Rojo#3/SMARC-2-PN-1//ICA-

Pijao#2/G40199(Tepary) 

Medium/Red 

PR1012-29-3-3A Resistant Parent 

Rojo#3/SMARC-2-PN-1//ICA-

Pijao#2/G40199(Tepary) 

Medium/Red 

XRAV-40-4 Susceptible Parent   Black 

Rojo Susceptible Parent 
 

Red 

Verano Susceptible Check   White 

Badillo Susceptible Check   LRK 

G40199 Resistant Source  Tepary 
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Genomic DNA Preparation and PCR Analysis 

Seeds from resistant and susceptible genotypes were planted in the greenhouse and grown 

to the first trifoliate stage. One to two young trifoliate leaves (approximately .1 g of tissue) of 

each genotype were collected from multiple plants and stored in the -80 C freezer. The samples 

were ground into powder using liquid nitrogen with a plastic pestle.  Genomic DNA was 

extracted using the IBI Plant Genomic DNA Mini Kit IB47231 as per the kits protocol and 

quantified using a Nanodrop (www.ibisci.com).  Each individual DNA sample was brought to a 

concentration of 20 ng/ul using MilliQ water. These samples were stored in the -20 C freezer 

until further use.  Using an online sequence alignment program, MultAlin 

(http://multalin.toulouse.inra.fr/multalin/), sequences from Zaugg et. al. 2013 were obtained from 

GeneBank and aligned to show significant differences. Those GenBank IDs are as follows: Arc-1 

(P19329), Arc-2 (P19330), Arc-4-I (CAD29134), Arc-4-II (CAD58679), Arc-4-III (CAD58657), 

Arc-5a (CAA90585), Arc-5b (CAA85405), Arc-5c (AAF23725), Arc-6 (CAA04960), Arc-7 

(CAD28677), α-AI-1 (AAA33769), α-AI-2 (CAD28676), ARL-4 (CAD28840), ARL-4-I 

(JQ675761), PHA-E (CAD28837), PHA-L (CAD28838), Lec-4B17 (CAD29133). We were then 

able to develop internal primers that were specific to the insertion/deletion difference now called 

INS45 (see results Fig. 1). The sequence of the internal primer, named, α-AI-1 is: (5’ –

CCCGTCCAGCCCGAATCCAAAGG- 3’and 5’-CATCCCAAGGCACGCTTTTGATATCG- 

3’).  DNA was amplified using a standard PCR protocol across all eight genotypes. The cycles 

were as follows: 3 mins at 95 C for initial denaturation, 30 sec at 95 C, 30 sec at 55 C, 1 min at 

72 C for 45 cycles, followed by 10 min at 72◦C for one cycle. Each 20 µl PCR reaction consisted 

of 1.2 µl of DNA at 20 ng/µl, 2 µl of 10x PCR buffer that contained 15 µM MgCl2, 1 µl of 10 

µM total dNTPs, 1 µl of each forward and reverse primers at 5 µM, and 1-2 units of Taq-
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polymerase. The PCR product was visualized on a 3% (w/v) agarose gel stained with ethidium 

bromide, and band sizes were estimated by comparison to the 1 KB Plus DNA Ladder 

(Invitrogen Cat. No. 10787-026) (www.thermofisher.com).  

Marker Development 

The α-AI-1 PCR product showed a single band that was approximately ~275 base pairs 

(bp) in length for the resistant genotypes and a slightly shorter product (~225 bp) that was visible 

on the susceptible genotypes. The PCR products for the resistant and susceptible genotypes were 

visualized on a 1.5% agarose gel, and individual bands of the resistant and susceptible genotypes 

were excised. The gel fragments were melted and purified with a Promega Wizard SV Gel and 

PCR Clean-up System (Cat. No. A9281) following the kit’s instructions (www.promega.com). 

The products were sent for Sanger sequencing to Eton Biosciences (http://www.etonbio.com/). 

The sequences were analyzed and edited using the Staden package (Bonfield, 1995).  

To gain further understanding of this locus additional primer sets were developed. Three 

sets of primers were designed to capture full gene sequences for alpha-amylase inhibitor, 

phytohaemagglutinin, and arcelin from BAC clone 71F18 (GenBank, DQ323045; Kami, 2006). 

The primers were designed to the start and stop sites of the AAI, ARC and PHY genes.  
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Table 2. Oligonucleotide sequence specific primers  

Target gene Primer Sequence 

PHY-gene Forward: 5’-TCAACGAAACCAACCTTATCCTCCAACG- 3’ 

 Reverse: 5’-GGTCCTGAATTGTTGGGAACGTCGAT-3’ 

ARC-gene Forward: 5’-TCCACCAAGGCGATCCCAAACTTA-3’  

 Reverse: 5’-ATTGTTATTGCTCCTAGAGCGGATACTGAATG-3’ 

α-AI-gene Forward: 5’-ATGGCTTCCTCCAAGTTCTTCACTGTCCT-3’ 

 
Reverse: 5’-

CTAGAGGATGTTGTTGAGGAGGATGTTGGAACGTTGAGATG-3’ 

α-AI-1 Forward: 5’-CCCGTCCAGCCCGAATCCAAAGG- 3’ 

  Reverse: 5’-CATCCCAAGGCACGCTTTTGATATCG- 3’ 

 

These new primers were used to amplify DNA using the same protocol as previously 

stated across the same eight genotypes and run on an agarose gel. Bands were visible on six of 

the eight genotypes for the AAI-gene primer (four resistant and two susceptible). All eight 

genotypes amplified a product with the PHY-gene primer set. The amplified products were 

isolated from the agarose gel and purified using the Wizard SV Gel and PCR Clean-up System 

(Cat. No. A9281) following the kit instructions (www.promega.com). Samples were then sent for 

sequencing to Eton Biosciences (http://www.etonbio.com/).  

The α-AI-1primers (Table 2) were then used on a population of recombinant inbred lines 

(RILs) to test the marker’s effectiveness by comparing genotype to the resistance field scoring. 

The RILs were developed by Dr. Kelvin Kamfwa by crossing AO1012-29-3-3A, as the resistant 

source, and Badillo, as the susceptible parent. AO-1012-29-3-3A (Reg. No. GP-299, PI 675563) 

was derived from a population developed by Dr. Paul Kusolwa and Dr. James Myers at Oregon 

State University. The University of Puerto Rico bean breeding program received BC3 F4 lines 

from the cross ‘Rojo’*3///SMARC-2-PN-1//‘ICA Pijao’*2/G40199. These parents were used to 
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make the recombinant inbred line of 215 individuals. Seeds from this population were grown in 

the greenhouse and grown to the first trifoliate stage. Genomic DNA was prepared as previously 

stated, and the DNA was amplified using the α-AI-1 primers under standard PCR protocol. The 

PCR products were visualized on a 3% (w/v) agarose gel with the same conditions and compared 

to a 1 kb molecular weight standard. 

Scoring of susceptibility in each individual was done by placing recently emerged adult 

pairs in containers with 10 well dried seeds. The adults were allowed to mate and then removed 

from the containers. The seeds are then monitored for visible egg development and checked for 

perforations made by the new emerging adults at 30, 45, and 60 days after infestation. The score 

is made up of two numbers, the first is a scale to measure the total number of perforations on the 

seeds, 1 = 0 perforations, 2 = 1-5 perforations, 3 = 6-10 perforations, 4 = 11-15 perforations, and 

5 = >15 perforations. The second number is the proportion of seeds with perforations out of the 

total infested/evaluated seeds. For example, if a score was (2, 3/10), out of the 10 seeds evaluated 

there were 1-5 perforations on a seed, and 3 seeds were perforated.    

Cloning and Phylogeny of APA PCR Products 

Because the amplification products for the four resistant genotypes using the PHY-gene, 

ARC-gene, and α-AI-gene prime pairs were not monomorphic, the product from using the PHY-

gene, ARC-gene primers were purified. The purified products were cloned using a Promega 

pGEM-T vector system (Cat. No. A3600) (http://www.promega.com/). Using X-gal blue/white 

screening, five individual white colonies per PCR reaction were grown in liquid culture for 

approximately 24 hrs. 1.5 mL of the cell suspension was centrifuged into a pellet and 

resuspended as per the directions in the Promega Wizard Plus SV Minipreps DNA Purification 

System (Cat. No. A1330) (http://www.promega.com/). The DNA from the individual clones 
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were sequenced as previously stated. To compare the amplification products using the primer 

pairs designed to amplify fragments the APA locus and not another region of the genome, the 

clones with a translated sequence that contained a lectin leg_B domain (PF00139) 

(www.pfam.xfam.org), were selected from the collection of proteins predicted from the 

annotation of the common bean genome v2.0 assembly 

(https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Pvulgaris). The sequences of the 

cloned fragments from the α-AI and PHY primer pairs, and the ARC sequences from the 

previous primer sets were added as well. A MUSCLE (Edgar, 2004) alignment of all lectin 

leg_B domain containing protein sequences and predicted proteins of all the amplification 

products was performed in MEGA v.7 (Kumar et al. 2015). The alignment was then used to 

develop a neighbor-joining tree with a 1000 bootstrap value using MEGA v.7 with the default 

parameters.  
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RESULTS  

INS45 Marker Screening 

Amplification with the α-AI-1 PCR internal primers produced products varied in size 

between the resistant and susceptible genotypes (Fig. 2). The gel shows that lanes 1-4 are slightly 

larger fragments than in lanes 5-9. Based on the phenotypic data in Table 1, the resistant 

genotypes correspond with the larger fragment (~275 bp) and the susceptible genotypes 

correspond with the smaller (~225 bp) bands. These fragments were sequenced, and sequence 

data revealed an in-frame 45 base pair insertion in the resistant genotypes that was absent in the 

susceptible genotypes.  (Fig. 3). Those individuals with the presence of the 45-base pair insertion 

will be referred to as containing the INS45 band. 
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Figure 2. Differences in PCR products generated using the α-AI-1 internal primers with resistant 

(1-4) and susceptible (5-9) genotypes. Lane 1, PR1464-1; lane 2, PR1464-6; lane 3, PR1012-29-

3-1A; lane 4, PR1012-29-3-3A; lane 5, XRAV-40-4; lane 6, Rojo; lane 7, Verano; lane 8, 

Badillo; lane 9, G19833; lane 10, G40144 

 

 

275 bp                                                 

225 bp 

1       2       3        4       5        6       7       8        9      10 
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Figure 3. Sequence obtained from the amplicons using α-AI-1 internal primers showing the 45 

bp insertion in the resistant PR1464-6 compared to the susceptible Verano 
  

After amplifying members of the SA recombinant inbred lines with the α-AI-1 primers, 

the samples were scored relative to band size and compared to the field resistance severity score. 

Of the 215 members of the population, data was available for 206 individuals. As shown in Table 

3, five individuals were scored as field resistant and had the INS45 band that is associated with 

resistance. It also shows that 159 individuals that were scored as susceptible and did not have the 

INS45 band as expected. Among the phenotypically resistant, six lacked the INS45 insertion, and 

20 susceptible individuals contained the INS45 insertion. Also, 14 individuals contained both 

bands. The observed number of individuals with the resistance is much lower than the expected 

1:1 ratio. This segregation distortion could be accounted for by the fact that this RIL was 

developed to track introgression from one species to another. A contingency chi-square test was 

performed to determine if the presence of the INS45 marker phenotype was associated with 

resistance.  The p-value for this test was p=0.0011 suggesting that the presence of INS45 

insertion marker was associated with resistance. 

Table 3. Number of individuals from the SA population that had the INS45 band or did not have 

the INS45, compared to the original resistance scoring method. 

 
 Resistant Susceptible 

+ INS45 5 20 

 - INS45 6 159 

Both  3 11 
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Sequence Analysis of Leg_b Domain Containing Sequence 

The α-AI-gene primers were used to amplify DNA of eight test genotypes. These PCR 

products were slightly different in size. The resistant genotypes produced a product of ~750 bp 

(Fig. 4, lanes 1-4).  However, among the susceptible genotypes, amplification products from 

XRAV-40-4 and Verano were present and larger than expected, while no product was generated 

from susceptible genotypes Rojo and Badillo DNA (Figure 4, lanes 6 and 8, respectively).   

 

 

Figure 4. Differences in resistant (1-4) and susceptible (5 and 7) bands with α-AI-gene primer. 

Lane 1, PR1464-1; lane 2, PR1464-6; lane 3, PR1012-29-3-1A; lane 4, PR1012-29-3-3A; lane 5, 

XRAV-40-4; lane 6, Rojo; lane 7, Verano; lane 8, Badillo; lane 9, G19833; lane 10, G40199 

 

When working with a multigene family of closely related individual gene models it is 

important to understand that the primers might amplify sequences across related families. The 

ARC and PHY primer pairs were designed to isolate gene specific differences, yet at the 

1      2       3       4      5       6       7       8       9      10 

750 bp 
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nucleotide sequence level the amplification products among different genotypes were highly 

similar. A large collection of cloned fragments was sequenced among resistant and susceptible 

genotypes as well as the P. acutifolius donor of the bruchid resistance. After aligning these 

sequences, it became clear that these clones formed subgroups (see Fig 6). These subgroups 

consisted of sequences from G40199, the crosses, and parents, and within each subfamily there 

was a high level of identity. A full inventory of how many clones for each primer and genotype 

that was sequences can be found in appendix Table A1. From this point forward in the study any 

clones that no insertion/deletion differences and <5 nucleotide substitution differences to another 

clone were considered as one sequence. 

Phylogenetics 

Due to the high similarity of cloned sequences associated with genes in the Leg_b 

multigene family, multiple neighbor-joining trees were developed to better understand the 

relationship between these clones and the other ~60 Leg_b proteins in the reference common 

bean genome. The first tree was constructed with amino acid sequences to investigate the 

relationship of all Leg_b gene models annotated from the reference P. vulgaris genome (Fig 5). 

The three gene models for the α-AI, ARC and PHY genes and another Leg_b domain are 

clustered in a single node of the tree (bootstrap equals 93; see red nodes; Phvul.004G158000, 

Phvul.004G158100, Phvul.004G158200, Phvul.004G158300). The cluster is uniquely separated 

from the other Leg_b domain proteins suggesting a unique evolutionary relationship. 

An additional neighbor-joining tree was constructed using all the clone sequences from 

the PHY, ARC, and AAI primers from the resistant and susceptible genotypes (Fig 6).  In this 

tree, due to the high bootstrap values, the relationship of primer specific products can be 

observed. The three red node clusters make up a PHY/AAI #1 subgroup. The two blue node 
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clusters differentiate the PHY/AAI #2 subgroup. The green nodes (bootstrap equals 99) shows 

the ARC #1 subgroup, and (bootstrap equals 84) define the ARC #2 subgroup. Specificity of the 

ARC primer pair is strong because the tree shows all but one ARC product is found in the ARC 

clusters. An introgression is expected to bring a block of genes in that are linked (for example the 

APA locus) into introgression lines. We see evidence of that since the four PHY primer products 

from G40199 also clustered with the ARC #1 and #2 groups.  

The high number of individual clones that grouped together at nodes with large bootstrap 

values allowed for further analysis into their similarity at the nucleotide level. When analyzing 

sequence of all clones regardless of primer origin, nine different groups were recognized (Table 

4). Every sequence was analyzed as part of an all-by-all BLAST to compare similarities. Only 

sequences with e-values of 0 were considered to be part of the same group. Using these groups, 

the many individual sequences that make up Fig 6 were consolidated even further. Clones that 

had no insertion/deletion differences, had less than 5 substitution differences, and were from the 

same amplification product (clones 1-5) were considered to represent a single individual (Table 

6). Representative clones from each group were chosen for further tree development. Figure 7 

shows the similarities between the representative clones from each group compared to one 

another using a color code to denote high and low consensus.  

Using the two ARC groups denoted in Table 4, a neighbor-joining tree was developed 

with published ARC sequence from P.vulgaris, P. acutifolius, and the two ARC group 

representatives identified in this research, ARC_G_B3 and ARC_G_T1.  This allowed the 

determination of the relationship of these cloned ARC sequences with the other published ARC 

sequences (Figure 8). This tree also supports that an arcelin introgression took place in the 



 

28 
 

introgression lines since ARC_G_T1, a representative of ARC subgroup #2, is nearly identical to 

an arcelin amino acid sequence previously characterized in P. acutifolius.  

Thirteen clones were not part of any group due to insertion/deletions and were analyzed 

as individuals along with the parsed clone representatives from Table 4 in a neighbor-joining tree 

(Figure 9). Black circles were used to denote the representative sequences. To get a larger picture 

of how the clones are related to the Leg_b domains, a neighbor-joining tree was constructed that 

merges the information found in Figures 4 and 7 (Figure 10). The nodes with bootstrap values of 

99 and 98 (see triangles) show the clusters of clones and the relationship to the Leg_b domain 

models Phvul.004G158000, Phvul.004G158100, Phvul.004G158200 and Phvul.004G158300.1. 

This tree determines that these cloned sequences were actually present in the APA locus on 

chromosome 4 and were not the product of amplification of other Leg_b subdomain genes 

elsewhere in the genome. Figure 10 compares the previously characterized sections of the APA 

locus from BAC clone 71F18 (APA-1, APA-2, APA-3, APA-4, APA-5 and APA-6) (Kami, 

2006), along with the ARC, PHY and α-AI whole gene primer clones from this project.  
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Figure 5. Neighbor joining tree comparing Leg_b amino acid sequences across the Phaseolus 

vulgaris genome. The red nodes indicate where the four Pv04 gene models separate from the 

other Leg_b domains across the genome which are blue  
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Figure 6. Neighbor-joining tree containing all cloned amino acid sequences from the resistant 

genotypes (PR1464-1 and PR1464-6), resistant parents (PR1012-29-3-1A and PR1012-29-3-3A), 

susceptible parents (XRAV-40-4 and Rojo), and susceptible checks (Verano and Badillo) and the 

source G40199 amplified with ARC, PHY and AAI primers. B or T indicates bottom or top from 

a double banded sample. 1-5 indicates the clone number. PHY/AAI #1 subgroup nodes are red, 

PHY/AAI #2 subgroup nodes are blue, and ARC subgroup nodes are green.  
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Table 4. Clones parsed into groups based on differences in the nucleotide sequence. The 

representative individual clone for each group is listed. 
Group Members Differences in Sequence Group Representative 

ARC_G_T2   
ARC_G_B3 

PHY_G_1 2 nt substitution between members  
ARC_PR-1A_T2 
ARC_PR-3A_T1  ARC_G_B3 

ARC_PR-6_T1   
ARC_PR-1_T1   
   
ARC_G_T1 

PHY_G_2     

ARC_PR-1A_B1   
ARC_PR-6_B1 5 nt substitution between members ARC_G_T1 

ARC_PR-1_B2   
   
AAI_PR-3A_1 2 nt substitution between members AAI_PR-1_2 

AAI_PR-1_2   
AAI_PR-6_5   
   
AAI_G_B2     

PHY_Rojo_2   
PHY_Badillo_4 20 nt substitution between members AAI_G_B2 

PHY_XRAV_2   
PHY_Rojo_6   
   
AAI_PR-3A_4   
AAI_PR-1A_1 1 nt substitution between members AAI_PR-1_3 

AAI_PR-1_3   
   
AAI_G_B4     

PHY_XRAV_4 18 nt substitution between members AAI_G_B4 

PHY_Badillo_3   
   
AAI_G_T2   
PHY_PR-1A_3 6 nt substitution between members AAI_G_T2 

PHY_PR-6_4   
   
AAI_G_T1   
PHY_PR-1A_2 18 nt substitution between members AAI_G_T1 

PHY_PR-6_3   
PHY_PR-1_4   
   
PHY_PR-1_3 5 nt substitution between members PHY_PR-6_5 

PHY_PR-6_5     
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Figure 7. Alignment of nucleotide sequence from each of the representative clones. High consensus color is red, low consensus color 

is blue and neutral consensus is black. 



  

  
 

3
3
 

 

Figure 7. Alignment of nucleotide sequence from each of the representative clones (continued). High consensus color is red, low 

consensus color is blue and neutral consensus is black.  
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Figure 8. Neighbor-joining tree with the two ARC representative clones, APA 1, APA 2, and 

previously characterized ARC amino acid sequence from P. vulgaris and P. acutifolius.  
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Figure 9. Neighbor joining tree comparing the amino acid sequence from the ARC, PHY and 

AAI group representatives with the individual clones that do not fit into groups 
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Figure 10.  Neighbor-joining tree comparing the amino acid sequence of the representative ARC, 

PHY and AAI group members with the Leg_b domain models and the previously characterized 

APA 1-6 sequences. 
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DISCUSSION 

INS45 Marker Durability 

As previously mentioned, the development of a molecular marker to track the 

introgression of this locus could dramatically decrease the time and labor involved in screening 

for bruchid resistance. Having an easily identifiable marker could allow breeders to screen 

hundreds of individuals in a matter of days, as opposed to 8 weeks which is typical in the 

traditional method (Singh, 1985). The α-AI-1 INS45 indel marker discovered here is important, 

not only because it distinguishes the resistant and susceptible individuals, but also because it 

gives more insight into what proteins and domains are involved. As previously stated, the Pfam 

database showed that this indel occurs in the middle of the Lectin_legB (PF00139) domain. With 

more than 70 lectins in the common bean reference genome, this is the largest lectin family and 

is a member of the superfamily, concanavalin, which includes a multitude of carbohydrate 

binding domains (Sharon, 1990). This is important because it brings together the specific genetic 

information we know about the marker and the information about the lectins that may be 

interfering with the carbohydrate metabolism in bruchid beetles (Chrispeels and Raikhel, 1991).  

Using the SA recombinant inbred line population, we were able to test the marker and 

analyze its usefulness as a tool to track the introgression of the APA locus from the tepary bean 

G40199 source. The marker itself has an easy to identify size difference that allows for 

repeatable and consistent scoring across many different individuals. As previously mentioned, 

when the population was screened against this marker it correctly identified resistant genotypes 

in 5 individuals, and correctly identified susceptible genotypes in 159 individuals. However, due 

to multiple effects in this APA locus there were instances where the marker did not correspond to 

the phenotypic score. This could be partly be the result of an intense scoring system for 
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resistance that is too rigid for this marker screening. Some members of the population showed no 

signs of infestation (1,0/10) for up to 60 days in the first replication and then were deemed 

susceptible when one or two seeds were affected 60 days into the second replication. This 

screening system is important information for breeding purposes but does not lend itself well to 

the complexities of this complex locus, especially since the specific mode of resistance is not 

well understood yet.  

While this screen of 206 individuals in the SA population has not shown the INS45 

marker to be a perfect predictor of the introgression of the P. acutifolius source of bruchid 

resistance, it has shown it could be a valuable tool in the screening process. Selecting on the 

INS45 band across a whole population would result in low type II error and would pick out many 

of the individuals that are susceptible. Additionally, the remainder of the population, and 

individuals with both bands could be screened for damage using the original scoring system on a 

smaller scale.   

Sequence Analysis of Leg_b Domain Containing Sequence 

The presence of the PCR product for only XRAV-40-4 and Verano was an unexpected but 

ultimately important part of this study. Discovering that Verano, the susceptible check, with no 

part in the breeding scheme had the same amplification as XRAV-40-4 is what prompted the 

cloning effort. After looking into the background of Verano it was discovered that VAX6, 

another tepary genotype was present in its pedigree (Beaver, 2008). It is possible that the 

presence of the unexpected PCR product could be an artifact of having another tepary genotype 

in the background   

After aligning and comparing the Leg_b domain containing clone sequences it became 

apparent that there is a highly similar and trackable presence of ARC sequences from source, to 
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parent, to progeny in the ARC_G_B3 and ARC_G_T1 groups as evidenced by the fact that the 

APA locus from the P. acutifolius source G40199 was indeed introgressed into these resistant 

genotypes. Interspecific crosses in which genetic blocks are inherited from one species to another 

can be difficult and tracking whether the important loci is introgressed can be even more difficult 

to track. For the work here, having clear proof that the important Leg_b subdomain sequences 

from the APA locus were indeed introduced is crucial to developing resistant lines, even when 

the mechanism for resistance is unclear.  

Phylogeny 

Looking at the Leg_b gene model tree it is evident that there are many gene models with 

this domain on almost every chromosome. In Figure 5 the gene models that are important to this 

Pv04 Leg_b domain (Phvul.004G158000.1, Phvul.004G158100.1, Phvul.004G158200.1, and 

Phvul.004G158300.1) separate at a node with a 93-bootstrap value from gene models on 

chromosome Pv07. Alternatively, in Figure 6 there is strong differentiation between subgroups 

that are made up of clones ARC and PHY/AAI clones. Figure 8 uses previously characterized 

ARC sequences from P. vulgaris and P. acutifolius to support that the introgression itself was 

successful. Figure 9 allows for a consolidation of data and the ability to look across primer 

groups and the chance to put less weight in the name of the primer and analyze its relationship 

with other sequences. Using the ARC_G_T1 group from Table 4 and the relationship it has with 

the P. acutifolius arcelin sequence in Figure 8 it shows a clear introgression from the G40199 

tepary source that can be tracked into the newly developed lines. Alternatively, groups like 

AAI_PR-1_2 and AAI_PR-1_3 that had no G40199 sequences represented could come from the 

P. vulgaris unique sequences relative to P. acutifolius. In other words, those clones sequence are 

from the susceptible parents and not from the tepary source. 
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In Figure 10 when both of these trees are analyzed together the big picture was revealed. 

Merging the clone representatives with the Leg_b domain sequences verifies that the clone 

sequences are highly related to APA Leg_b protein on Pv04, not to other regions of the genome.  

In this figure clusters become more apparent, for example, with a bootstrap value of 96 AAI and 

ARC sequence show relation to characterized APA sequences from BAC clones described by 

Kami et al. (2006) and Leg_b domain Phvul.004G158100.1. On the adjacent node a cluster of 

PHY clones show a close relationship to the previously characterized PHA-E and lectin domain 

sequences Phvul.004G158200.1 and Phvul.004G158300.1. It proved difficult to develop gene 

specific primers that could clearly distinguish sequences because of the extreme similarity and 

variants of these genes. It remains unclear why the AAI_G_T1, AAI_G_T4, AAI_G_B1 and 

AAI_G_B4 sequences show such similarity to the PHY clone clusters in Figure 10, and why we 

did not see as a clear of relationship between the clones from the resistant cross genotypes and 

the susceptible parents.  

Up until this point using the three Phvul gene models from the reference genome has 

been the best model available for how the locus was arranged. Now, taking into consideration 

this phylogenetic evidence, it could be more beneficial to look at the model in Figure 1 (Kami et 

al, 2006). During the development and annotation of reference genomes sequences that are 

highly similar or repetitive are often left out. In this case the BAC clone, which denotes the APA 

genes in purple, gives a much more accurate representation of how many genes could be 

involved in this locus. A major challenge of this project was getting rooted in nomenclature. 

Much of the previous research was so focused on isolating genes, getting them into specific 

lines, and trying to discover resistant variants, that the nomenclature surrounding this locus 

became too specific for what was actually known. Perhaps with this new phylogenetic 



  

41 

information the use of new gene models the language around this research can start to reflect the 

complexity and big picture approaches needed to understand this locus. With more research a 

better understanding of the locus will provide more insight into the resistance mechanism and 

advance the development of more specific markers.  
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CONCLUSION 

The ability to track the introgression of this APA locus into common bean is the key to 

being able to understand this source of bruchid resistance. Tracking the locus is essential to 

knowing what existing lines to use and what crosses to make to develop new lines.  Use of a 

marker to allow breeders to select lines with resistance would be helpful for small shareholder 

farmers who can’t afford to lose a substantial portion of their crop because their infrastructure to 

store seed is not ideal (CIAT, 1986). Post-harvest losses require global attention in the fight for 

food security. Sub-Saharan Africa is estimated to lose $4 billion USD annually due to post 

harvest losses, and even a 1% advancement in loss prevention would bring back $40 million 

dollars to the people in the most food insecure areas in the world (World Bank, 2010). 

Resistance to these seed storage pests with the presence of the APA locus from wild 

tepary bean genotype G40199 resistance can be strong.  The use of interspecific crosses between 

P. acutifolius and P. vulgaris has allowed the introgression of this locus into dry bean cultivar. 

The availability of a marker that tracks the introgression with accuracy allows breeders to screen 

large populations for this locus without having to grow every individual to seed and test bruchid 

resistance. While the data from the INS45 marker hasn’t shown it to be a definitive screen for 

resistance, it can be used as an effective tool in reducing the number of lines that need to be 

evaluated with the laborious screening procedure.  This enables breeders to develop a larger 

number of early generation lines that contain the G40199 source of bruchid resistance, screen 

these larger populations with the INS45 marker, and only phenotype a reduced number of lines. 

In an effort to better characterize the locus, the sequence and phylogeny work in this 

study details the relationship among members of the complex Leg_B family. This survey has 

allowed for increased understanding about the relationships between the sequences that make up 
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subgroups and the gene models by comparing them on the sequence level. At the same time, it 

also opens up a discussion about how well this data fits the current gene models based on the 

reference genome. There is much more research to be done but the work done in this study has 

shown that given a recombinant inbred line made from one of these interspecific crosses, this 

INS45 marker could help track the introgression in the population. Furthermore, additional 

research into allele optimization for the numerous variants of ARC, PHY and α-AI primers will 

quicken the development of lines with the targeted variant introgression.        
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APPENDIX. CLONE INVENTORIES FOR ARC, PHY AND α-AI CLONES 

SEQUENCED FROM THE NUMBER OF PRODUCTS  

Number of ARC Primer Clones 

  One Band Two Bands 

Genotype One Top Bottom 

G40199 x 3 4 

PR1464-1 x 2 4 

PR1464-6 x 3 3 

PR1012-29-3-1A x 2 3 

PR1012-29-3-3A x 1 4 

 

Number of PHY Primer Clones 

  One Band Two Bands 

Genotype One Top Bottom 

G41099 4 x x 

Rojo 3 x x 

Badillo 4 x x 

XRAV-40-4 4 x x 

Verano 4 x x 

PR1464-1 4 x x 

PR1464-6 3 x x 

PR1012-29-3-1A 3 x x 

PR1012-29-3-3A 2 x x 

 

Number of α-AI Gene Primer Clones 

  One Band Two Bands 

Genotype One  Top Bottom 

G41099 x 4 4 

PR1464-1 4 x x 

PR1464-6 3 x x 

PR1012-29-3-1A 3 x x 

PR1012-29-3-3A 4 x x 

 

 


