
IDENTIFICATION OF WEED SPECIES AND GLYPHOSATE-RESISTANT WEEDS USING 

HIGH RESOLUTION UAS IMAGES 

A Dissertation 

Submitted to the Graduate Faculty 

of the 

North Dakota State University 

of Agriculture and Applied Science 

By 

Alimohammad Shirzadifar 

In Partial Fulfillment of the Requirements 

for the Degree of 

DOCTOR OF PHILOSOPHY 

Major Department: 

Agricultural and Biosystems Engineering 

November 2018 

Fargo, North Dakota 

  



North Dakota State University 

Graduate School 
 

Title 
 

IDENTIFICATION OF WEED SPECIES AND GLYPHOSATE-RESISTANT 

WEEDS USING HIGH RESOLUTION UAS IMAGES 

  

  

  By   

  
Alimohammad Shirzadifar 

  

     

    

  The Supervisory Committee certifies that this disquisition complies with North Dakota State 

University’s regulations and meets the accepted standards for the degree of 

 

  DOCTOR OF PHILOSOPHY  

    

    

  SUPERVISORY COMMITTEE:  

    

  
Sreekala G. Bajwa 

 

  Chair  

  
Peter Oduor 

 

  
Kirk Howatt 

 

  
Igathinathane Cannayen 

 

 
 

 

    

    

  Approved:  

   

 11/21/2018   Sreekala G. Bajwa   

 Date  Department Chair  

    

 



 

iii 

ABSTRACT 

Adoption of a Site-Specific Weed Management System (SSWMS) can contribute to 

sustainable agriculture. Weed mapping is a crucial step in SSWMS, leads to saving herbicides 

and protecting environment by preventing repeated chemical applications. In this study, the 

feasibility of visible and near infrared spectroscopy to classify three problematic weed species 

and to identify glyphosate-resistant weeds was evaluated. The canopy temperature was also 

employed to identify the glyphosate-resistant weeds. Furthermore, the ability of UAS imagery to 

develop accurate weed map in early growing season was evaluated. A greenhouse experiment 

was conducted to classify waterhemp (Amaranthus rudis), kochia (Kochia scoparia), and 

lambsquartes (Chenopodium album) based on spectral signature. The Soft Independent Modeling 

of Class Analogy (SIMCA) method on NIR (920-2500 nm) and Vis/NIR (400-2500 nm) regions 

classified three different weed species with accuracy greater than 90 %. The discrimination 

power of different wavelengths indicated that 640, 676, and 730 nm from red and red-edge 

region, and 1078, 1435, 1490, and 1615 nm from the NIR region were the best wavelengths for 

weed species discrimination. While, wave 460, 490, 520 and 670 nm from Vis range, and 760, 

790 nm from NIR region were the significant discriminative features for identifying glyphosate-

resistant weeds. Random Forest was able to detect glyphosate-resistant weeds based on spectral 

weed indices with more than 95% accuracy. Analysis of thermal images indicated that the 

canopy temperature of glyphosate-resistant weeds was less than susceptible ones early after 

herbicide application. The test set validation results showed the support vector machine method 

could classify resistant weed species with accuracy greater than 95 %. Based on the stepwise 

method the best times for discrimination of kochia, and waterhemp resistant were 46 and 95 

hours after glyphosate application, respectively. In addition, a field study was proposed on 
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soybean field to identify weed species and glyphosate-resistant weeds using multispectral and 

thermal imagery. Results revealed that the object-based supervised classification method could 

classify weed species with greater than 90% accuracy in early growing season. Furthermore, the 

glyphosate-resistant kochia, waterhemp and ragweed were identified based on canopy 

temperature with 88%, 93% and 92% accuracy, respectively.  
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1. INTRODUCTION 

1.1. Motivation 

Weeds are the biggest threat to crop production because they cause significant yield loss 

in crops, limit crop rotation choices, and host insects and diseases (Cardina & Doohan, 2000; 

FAOSTAT, 2014; Slaughter et al., 2008). Potential yield loss due to uncontrolled weed growth is 

estimated to be 43% globally (Oerke, 2006). Weed management is an important aspect of 

agricultural production as the economic cost of not managing weeds with herbicide is estimated 

$21 billion approximately in the United States (Yontz, 2014). Herbicide application, which is the 

most common weed management strategy in the United States agriculture, provides a 

convenient, economical, and effective way to control weeds. However, the repeated and non-

optimal application of herbicides results in herbicide resistance in weeds, excessive waste, 

herbicide residues in food, and environmental pollution with potential impact on human health, 

ecosystems, and quality and safety of agriculture products (Gil & Sinfort, 2005; Pimentel et al., 

1992).  

Among all different types of herbicides, glyphosate is the most applied herbicide in the 

world. Glyphosate or N-(phosphonomethyl) glycine is the aminophosphonic acid analog of the 

natural amino acid glycine. It was supposed to be first synthesized by Henri Martin in 1950. 

Glyphosate is widely used herbicides in agriculture, industrial weed control, forestry, and in 

outdoor residential applications in the United States. It was first registered for use in the United 

States in 1974. Glyphosate is a non-selective broad-spectrum, systemic, POST application 

herbicide, which prevents the plants from making certain proteins that are needed for plant 

growth. It comes in a number of chemical forms but most of the formulated products contain the 

isopropylamine salt. Glyphosate is a compound with an amphoteric and zwitterion structure 
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containing a basic secondary amino function in the middle of the molecule, monobasic-

carboxylic and dibasic phosphonic acidic sites at both ends, hence having three functional 

groups, phosphonate, amino and carboxylic. A zwitterion is a neutral molecule with positive and 

negative electrical charges at different locations within the same molecule. It is different from 

simple amphoteric compounds that might only form either a cationic or anionic species 

depending on external conditions—a zwitterion simultaneously has both ionic states within the 

same molecule (Figure 1.1).  

  

Figure 1.1. Structure of glyphosate molecule and its functional groups.  

Recently, several species of glyphosate-resistant weeds are spreading across the United 

States and around the world, raising concerns about their potential impact on agriculture. Figure 

1.2 presents the chronological increase in glyphosate-resistant weeds around world. Based on 

developed United States weed maps glyphosate-resistant weeds are in 35 states. Furthermore, the 

diversity of glyphosate-resistant weeds has been increasing sharply (Figure 1.2). However, weed 

mapping can be significant solution to choose the proper strategy against the formation and 

developing of herbicide-resistant weeds in agricultural fields. 
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Figure 1.2. Glyphosate-resistant weeds distribution across the United States and its diversity 

trend around the world. 

Weed distribution in fields is non-uniform, with field borders being the most infested by 

weed patches. Yet, herbicides are applied uniformly across the whole field. These problems can 

be reduced by more targeted methods of herbicide application. Therefore, there is a growing 

need to identify and map weed distribution in the field to reduce herbicide application. Adoption 

of a sustainable weed management strategy can improve the efficiency of herbicide application 
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without diminishing weed control. (Slaughter et al., 2008; Weis et al., 2008). Site-specific weed 

management (SSWM) is an efficient  method that has been proposed to achieve satisfied weed 

control (Torres-Sánchez et al., 2013). In this procedure, farmers only apply the right amount of 

herbicide to the specific location at the right time. This application of Precision Agriculture (PA) 

can minimize chemical usage and herbicide resistance because it decreases the opportunity for 

selection of herbicide tolerant strains of weeds by minimizing the chance of survival through 

application of suboptimal concentrations of herbicide. 

Weed scouting (early detection of weed) and quick target spraying (applying herbicide 

only on the weeds instead of soil and crop) are two critical key components of a SSWM. Several 

approaches were reported for weed identification with sensing technologies, visual texture, and 

spectral characteristics of plants (Pantazi et al., 2016; Tian, 2002).  

Discrimination between weeds and crop plants is the first step needed to apply SSWM 

(Gutjahr & Gerhards, 2010). Visible wavelengths remote sensing is one method of acquiring 

information for SSWM application (Peña et al., 2013). However, the use of satellite imagery for 

weed detection at the early stages of weed growth is limited by the lack of spatial and spectral 

resolution of the satellite sensors to detect small plants (Peña et al., 2013). UASs or drones are an 

alternative means of collecting high spatial and temporal resolution Vis and NIR imagery 

(Garcia-Ruiz et al., 2015). They are easily deployed, relatively low-cost and have a flexible 

payload capability that allows them to be fitted with lightweight sensors such as multispectral 

cameras (Von Bueren et al., 2015). 

Multispectral remote sensing refers to the collection of reflected, emitted or back-

scattered energy from an object of interest in multiple bands (regions) of the electromagnetic 

spectrum. The bands are sensitive to different features of the object, so they can be used to detect 
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weeds and crop, and to classify weed plants based on difference in spectral signatures (Garcia-

Ruiz et al., 2015). Image processing techniques potentially can be used to discriminate  the weed 

species from the crop plants and thereby produce an accurate weed map from the multispectral 

imagery (Lee et al., 2010).  

This research has the potential to demonstrate a procedure for identifying spectrally 

unique signatures from the weed species and glyphosate-resistant weeds, introducing canopy 

temperature to discriminate glyphosate-resistant versus susceptible weeds and employing them 

as the basis for multispectral and thermal imagery to map weeds in the field. 

1.1.1. Intellectual Merit and Broader Impact 

Despite the satisfactory results of weed versus crop classification based on spectral 

reflectance, this technique has not been used, to the best of our knowledge, to discriminate weed 

species using the Vis/NIR spectrometers. Since processing the huge spectral dataset is 

complicated, selecting the optimal statistical analysis method is a crucial step in the classification 

of weed species accurately in efficient time. Furthermore, if resistant weeds can be mapped 

without having to scout the fields, it would contribute to the effectiveness of weed management. 

Timely identification of resistant weeds is the first step in managing them effectively, as the 

farmers can then make decisions for appropriate alternate weed management methods. Currently, 

there is no cost-effective method to identify the distribution of herbicide resistant weeds on large 

fields. We developed a method and an algorithm to identify major glyphosate-resistant weeds in 

the field using UAS imagery. Therefore, this study was conducted with the objective developing 

and validating a method in the greenhouse to identify resistant from susceptible weeds in 

selected weed species, using canopy temperature and spectral signature early after herbicide 
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application. We introduce the concept of thermal signature in this study for detecting resistant 

weeds in greenhouse conditions. 

Remote sensing will provide an inexpensive and more efficient method for mapping 

weed infestations than ground surveys. Early and easier detection of herbicide resistant weeds 

would allow growers to effectively manage these weeds by applying another herbicide or using 

manual method before the plant seeds and spreads. Herbicide resistance in weeds is becoming an 

increasing problem, with serious implications to crop yield and weed management costs. With 

the rapid adoption of glyphosate-resistant crops, glyphosate use increased more than six-fold 

from 1992 to 2002 (Gianessi & Reigner, 2006). With this adoption there has been tremendous 

increase in the incidence of glyphosate-resistant weeds in the United States and around the 

world. Identifying weed species and resistant biotypes and mapping their distribution in a field is 

a first step in managing these weeds in the field. Farmers will benefit greatly from identifying 

resistant weeds and weed species in their fields by implementing integrated weed management 

practices early in development to prevent it from becoming more devastating within a short time 

period. 

1.1.2. Research Approach 

This study focused on the classification of three common glyphosate-resistant weed 

species considering spectral signature of weeds. Spectral weed species indices were developed 

using discriminative wavelengths to identify glyphosate-resistant weeds. Furthermore, this study 

introduced a new concept for identifying glyphosate-resistant weeds based on plant canopy 

temperature early after glyphosate application. Classifying weed species and identifying 

glyphosate-resistant weeds using UAS images in early growing season was the final goal of this 

project. 
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1.2. Hypothesis and Objectives 

1.2.1. Dissertation Objectives 

The long-term goal of this project was to develop a method for identifying herbicide 

resistant weeds. The project was divided into four objectives and the study had the following 

sub-objectives: 

1.2.1.1. Sub-Objectives 

1.  To develop a methodology for classifying weed species and detecting glyphosate-resistant 

weeds from susceptible ones based on spectral reflectance. 

2.  To develop the spectral weed indices for detecting glyphosate-resistant weeds early after 

spraying. 

3.  To evaluate glyphosate-resistant weeds identification based on plant canopy temperature 

early after herbicide application. 

4.  To employ the proper image processing method for weed mapping in early growing 

season.  

1.2.1.2. Dissertation Hypothesis 

1. There is a significant difference between spectral signature of weed species, and also 

between glyphosate-resistant weed and susceptible one. 

2. Machine learning methods can find the wavebands which are useful to classify weed 

species and to identify glyphosate-resistant weeds with high accuracy. 

3. Canopy temperature of susceptible weeds increase after herbicide application compared to 

glyphosate-resistant weeds. 
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4. There is an image processing method that can be used for accurate classifying weed 

species in early growing season, when there are a lot of mixed pixels in the acquired 

images. 

1.3. Dissertation Structure 

This manuscript-based dissertation divided into six chapters; Chapter one includes a 

general introduction and literature review. Chapters two to five include the main findings of this 

dissertation, and chapter six contains an overall discussion of the research related to the sub-

objectives outlined above. A schematic for the organization of the dissertation is presented in 

Figure 1.3.  

 

Figure 1.3. Dissertation overview and organization of the chapters. 
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Chapter 1 offers a comprehensive introduction and literature review on the importance 

of weed species classification approach. Particularly, the application of different techniques on 

detecting the glyphosate resistance status in weed species is discussed. This chapter identifies the 

current challenges in identifying resistant weeds. The objectives and hypothesis of the 

dissertation are also defined in chapter one.  

Chapter 2 presents a paper published in Biosystem Engineering 171 (2018), 143-154. 

This chapter provides a comprehensive greenhouse study on the application of soft independent 

modelling of class analogy (SIMCA) analysis of plant canopy spectral data to classify weed 

species.  

Chapter 3 is based on a greenhouse study which is evaluating the feasibility of spectral 

weed indices (SWIs) to identify glyphosate-resistant weeds early after herbicide application. In 

this study Relief-F algorithm was employed to select the significant and most relevant 

wavelengths describing the detrimental effect of glyphosate application for three different weed 

species. 

Chapter 4 reports a case study to assess the application of plant canopy temperature after 

glyphosate application as an indicator for glyphosate resistant weeds. In this work the stepwise 

regression and support vector machine (SVM) methods were used to analyze the discriminative 

time features to classify resistant weeds based on canopy temperature.  

Chapter 5 is based on a field study validating the potential application of high resolution 

multispectral and thermal UAS images in classification of weed species and glyphosate-resistant 

weeds at early phenological stage. Six classification algorithms were used to identify three 

different weed species in a soybean field and a field which was naturally infested by different 
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weed species. Thermal infrared imagery was also used to assess the canopy temperature variance 

within the weed species to identify the glyphosate- resistance status in detected weeds  

Chapter 6 includes significant conclusions and recommendation for further research on 

weed species classification methods and weed mapping. 

1.4. Literature Review 

1.4.1. Herbicide Resistance 

Herbicides are effective and popular for weed control which can be so helpful to increase 

crop yield and quality (Harker et al., 2013). Development of herbicide-resistant crops has 

resulted in significant positive changes to agronomic practices, while repeated and intensive use 

of herbicides with the same mechanisms of action has caused the evolution of herbicide-resistant 

weeds. Upward trend of developing herbicide resistant weeds is a critical problem in all around 

the world which effect on the yield crops (Evans & Diggle, 2008). The result of one survey in the 

US indicated that farmers and neighbors who successfully managed glyphosate-resistant weeds 

in corn and soybean crop improved their profits by more than 20% (Livingston et al., 2015). 

Glyphosate or N-(phosphonomethyl) glycine is a widely used herbicides in agriculture and 

forestry for industrial weed control, and in outdoor residential applications in the US. It is a non-

selective broad-spectrum, systemic, post-herbicide that prevents the plants from making certain 

proteins that are vital for plant growth (Jayasumana et al., 2014). Two glyphosate resistance 

mechanisms have been identified in naturally occurring glyphosate-resistant weeds namely, 

reduced target-site affinity for glyphosate and reduced translocation of glyphosate to 

meristematic regions (Pollegioni et al., 2011). 

Herbicide resistance was reported by Ryan in 1970. The first herbicide-resistant weed 

was common groundsel (Senecio vulgaris) that was shown to be resistant to atrazine and 
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simazine after the herbicides had been applied once or twice annually for 10 years in Washington 

State. Herbicide resistance might be occurred prior to this date while it was interpreted as a poor 

weed control. Survey herbicide resistance has been continued by Weed Science Society of 

America's Herbicide Resistant Weeds Committee. In 1986, over 50 weeds were resistant to 

triazines, and over 107 resistant biotypes had evolved around the world. Rapid developing 

resistance to atrazine and other classes of herbicide cause the phenomenon of resistance has 

become major problem in agriculture. 

Inherited ability of a weed population (biotype) to survive and reproduce after exposure 

to an herbicide dose (rate) that would control an unselected (sensitive) population. Inherent in 

this definition are three important points:  

1.  Herbicide resistance is inheritable, so it is a characteristic coded for in the plant genome. 

At least some of the progeny of that plant will either be resistant or will carry the 

resistance trait. This distinguishes herbicide resistance from other causes of poor herbicide 

efficacy, perhaps caused by environmental factors including their effect on spray 

effectiveness, plant physiology and biochemistry. 

2.  Herbicide - resistant plants survive herbicide treatment and can successfully complete 

their life cycle by flowering and producing seed. This does not mean that resistant 

individuals will not show symptoms of herbicide damage, but that they are not killed by 

herbicides. In many cases some herbicide damage may be observed but it does not lead to 

plant death. 

3.  A normal population is a population of the species that when treated with an optimum 

dose of an herbicide, under ideal conditions, all individuals within it are killed. This 

population will be one that has never been exposed to an herbicide. Such ‘wild - type’ 
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populations are not always available to the researcher, so populations that have 

demonstrated 100% susceptibility are often used in research, regardless of their field 

history. To determine baseline sensitivity for an herbicide acting on a distinct species, 

several normal populations are ideally used. 

1.4.2. How Resistance Occurs 

Selection pressure: repeated and intensive use (frequency and number of acres treated) on 

the same field site of herbicides with similar modes of action has imposed selection for increased 

resistance within species that formerly had been susceptible. The plants that are susceptible are 

killed. The resistant population survives and reproduce, so year upon year (if the same herbicides 

are used) the percentage of resistant individuals in a population will increase and comes to 

dominate (Figure 1.4). 

 

Figure 1.4. How resistance occurs. (a) Herbicide application imposing a selection pressure on a 

mixed population. Light green: herbicide sensitive; dark green: herbicide resistant. (b) Repeated 

use of the same herbicide will repeat the selection process.  
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Since the introduction of herbicide resistant crop (Genetically Modified Organisms, 

GMOs) and the dramatic decrease in herbicide price, herbicide has been widely used for weed 

control. This significantly increased the number of acres where herbicide is used and greatly 

increased the potential for selecting herbicide-resistant weeds. 

1.4.3. Mechanisms of Weed Resistance to Herbicides  

There are two common mechanisms of weed resistance to herbicides including target site 

resistance, enhanced metabolism resistance and enhanced compartmentalization. Herbicides have 

distinct target sites where they disrupt biochemical processes leading to cell, tissue and plant 

death (Evans & Diggle, 2008). Most target sites are enzymes and the interaction between 

herbicide and target site can be disrupted if there is a change in the primary structure of the 

enzyme protein molecule. Where this occurs, the herbicide may no longer be effective in 

blocking the action of the target site and the plant will not die, but exhibit herbicide resistance. 

Plants possess a host of enzymes for the metabolism of xenobiotics and unwanted substances 

(Pollegioni et al., 2011). It is these detoxifying enzymes that modify or break down herbicides 

once they enter a plant cell. The rate at which these enzymes carry out this task will determine 

whether a plant lives or dies and is the main contributor to herbicide selectivity between crops 

and weed species. If an individual weed biotype within a population has the ability to metabolize 

an herbicide at an increased rate, then it may survive an herbicide treatment. Such biotypes are 

described as possessing enhanced metabolism resistance. 

Both target- and non-target-site-based resistance mechanisms are responsible for 

glyphosate resistance. Two glyphosate resistance mechanisms have been identified in naturally 

occurring glyphosate-resistant weeds, reduced target-site affinity for glyphosate and reduced 

translocation of glyphosate to meristematic regions. Alterations in the EPSPS gene sequence, 
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specifically at the amino acid P106, have been reported in several glyphosate-resistant weeds. 

Glyphosate translocation is mostly restricted within the treated leaves, resulting in significantly 

less translocation throughout the whole plant. The absorption pattern of glyphosate is similar up 

to 24 hours after herbicide application in resistant susceptible while after this time, resistant 

plants absorb more herbicide than susceptible weeds (Alcántara-de la Cruz et al., 2016).  

1.4.4. Shikimate Accumulation 

Shikimate accumulation following glyphosate application has been employed to 

recognise glyphosate-resistance plants (Corrêa et al., 2016). Quantifying shikimate accumulation 

in suspected glyphosate- resistant and known susceptible plants can determine whether suspected 

plants are resistant and can provide data concerning the resistance mechanism. If the resistance 

mechanism is a mutated target site with a lower affinity for glyphosate, the shikimate 

accumulation will be lower in the resistant plants than in the known susceptible weeds because 

of less pathway blockage. If both resistant and susceptible plants accumulate shikimate at the 

same rate, then pathway blockage is similar, and the target site is inhibited. Resistant and 

susceptible weeds did not differ in shikimate accumulation at 3 days after treatment, but 

accumulation slowed between 2 and 3 days after treatment for the resistant populations, while 

continuing to rise in the susceptible population. 

1.4.5. Plant Canopy Temperature 

Several studies indicated the reduction of the photosynthetic rate following glyphosate 

treatment. (Gomes et al., 2017; Mateos-Naranjo et al., 2009; Yanniccari et al., 2012; Zobiole et 

al., 2012). Glyphosate can influence photosynthesis by inhibiting chlorophyll biosynthesis 

(Radwan & Fayez, 2016) or inducing chlorophyll degradation (Gomes et al., 2016), decreasing 

stomatal conductance (Yanniccari et al., 2012). Evaporation of water during photosynthesis 
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diurnal phase has cooling effect on the plants. However, warmer canopy can happen because of 

reduced evapotranspiration rates that are often associated with reduced leaf stomatal size 

openings and prevent plant water lose, after glyphosate application. Plant canopy temperature 

depends on the radiation and environmental factors such as air temperature, humidity, wind 

speed, time of day, clear or cloudy sky, and soil conditions (soil type, soil water content, etc.) as 

well as stomatal aperture. Equation 1.1 exhibits the plant canopy temperature (Tcanopy) as a 

function of leaf energy balance (Costa et al., 2013). 

 
𝑇𝑐𝑎𝑛𝑜𝑝𝑦 − 𝑇𝑎𝑖𝑟 =  

[𝑟𝐻𝑅(𝑟𝑎𝑤 + 𝑟𝑠)𝛾𝑅𝑛𝑖 − 𝜌𝑐𝑝𝑟𝐻𝑅𝑉𝑃𝐷]

[𝜌𝑐𝑝{𝛾(𝑟𝑎𝑤 + 𝑟𝑠) + 𝑠𝑟𝐻𝑅}]
 (1.1) 

Where Tcanopy denotes plant canopy temperature (K), Tair is air temperature (K), rHR represents 

parallel resistance to heat and radiative transfer (s m–1), raw is boundary layer resistance to water 

vapor (s m–1), γ is the psychrometric constant (Pa K–1), Rni is net isothermal radiation (the net 

radiation for a plant at air temperature) (W m–2), ρ is density of the air (kg m–3), cp is specific 

heat capacity of air (J kg–1 K–1), s represents the slope of curve relating saturating water vapor 

pressure to temperature (Pa K–1), and VPD denotes air vapor pressure deficit (Pa).  

Considering Equation 1.1, Tcanopy is dependent not only on Tair, but also on, Rni, VPD, and 

wind speed (Jones, 1999). Based on energy balance equation, the canopy to air temperature 

difference (Tcanopy – Tair) depends on VPD under non-limiting soil water conditions, a crop 

transpires at the potential rate (i.e. evapotranspiration is the maximum it can be, but maximum 

evapotranspiration increases with increasing VPD). Thus, there is a linear relationship between 

Tcanopy – Tair and VPD when water availability is not limiting, and sky is clear. This linear 

relationship is known as the theoretical non-water-stressed baseline which provides the minimum 

possible value of Tcanopy – Tair at a given VPD (Costa et al., 2013). If the goal is to measure the 
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increase of stress in a crop over time, on the other hand, it is essential to normalize Tcanopy in 

relation to references to account for changing meteorology.  

Many researches have been conducted to normalize the data to account for environmental 

variation and resolve this problem. The first normalization technique for environmental 

difference was a function of Tair, achieved by adding differences between Tcanopy and Tair as an 

indicator of stress in plant. Tcanopy rises as a result of plant stress (Ben-Gal et al., 2009). The 

stress degree day is the summation of differences in temperature between the crop canopy and 

the ambient air along a specific time. In this technique, if Tcanopy is lower than Tair, then plants are 

expected to be well watered. In contrast, if Tcanopy is greater than the Tair, then plants are assumed 

to be drought stressed. While this index represents an improvement over the use of Tcanopy alone, 

since it allows Tair changing, it does not reflect fluctuations in VPD, solar radiation, or wind 

speed. The Tcanopy – Tair for a non-transpiring crop is insensitive to VPD and can be estimated if 

wind speed and net solar radiation are known. This sets the ‘upper limit’ to Tcanopy – Tair used the 

idea of ‘upper and lower’ baselines, to create a crop water stress index (CWSI):  

 
𝐶𝑊𝑆𝐼 =

(𝑇𝑐𝑎𝑛𝑜𝑝𝑦 − 𝑇𝑎𝑖𝑟) − (𝑇𝑐𝑎𝑛𝑜𝑝𝑦 − 𝑇𝑎𝑖𝑟)
𝑛𝑤𝑠𝑏

(𝑇𝑐𝑎𝑛𝑜𝑝𝑦 − 𝑇𝑎𝑖𝑟)
𝑢𝑙

− (𝑇𝑐𝑎𝑛𝑜𝑝𝑦 − 𝑇𝑎𝑖𝑟)
𝑛𝑤𝑠𝑏

 (1.2) 

Where Tcanopy – Tair is the measured difference in temperature, (Tcanopy – Tair)nwsb is the estimated 

difference at the same VPD under non-limiting soil water conditions (non-water stressed 

baseline), and (Tcanopy – Tair) ul is the non-transpiring upper limit.  

CWSI allows to relate crop’s temperature to the maximum and minimum values possible 

under similar environmental conditions. The higher the CWSI, the greater the crop stress is 

assumed to be (Testi et al., 2008). This index does not account for changes in Tcanopy due to 

irradiance and wind speed, and the non-water-stressed baseline is not necessarily the same under 
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different radiation conditions. Finally, the non-transpiring upper limit also varies, with a wide 

range of values being reported (Ben-Gal et al., 2009). 

Rather than using actual empirical crop temperatures as references for calculation of 

CWSI, an alternative method is to replace the non-water-stressed baseline and the non-

transpiring upper limit, respectively with the Tcanopy from which there is maximum transpiration 

and the Tcanopy from which there is no transpiration, measured in the same environment and at the 

same time as the crop of interest. The fact that these ‘references’ are in the same environment as 

Tcanopy means that there is no need for theoretical estimations of baselines, as they will be 

exposed to the same VPD, Rni, and wind speed as the canopy of interest. The temperatures of the 

references are referred to as Twet and Tdry, respectively. Therefore, crop water stress index which 

include these reference temperatures was developed as following form (Costa et al., 2013). 

 
𝐶𝑊𝑆𝐼 =

(𝑇𝑐𝑎𝑛𝑜𝑝𝑦 − 𝑇𝑤𝑒𝑡)

(𝑇𝑑𝑟𝑦 − 𝑇𝑤𝑒𝑡)
 (1.3) 

This version of CWSI inversely correlates with leaf water potential. To ensure that there 

are suitable references in each thermal image, plant’s leaves can be sprayed with water (Twet) and 

covered in Vaseline to artificially close stomata (Tdry). A particularly helpful feature of the use of 

wet and dry reference temperatures is that they can readily be used for the derivation of indices 

that do not require detailed environmental information. It is a useful index for screening 

purposes, and in other cases where absolute estimates of stomatal conductance may not be 

required.  

(IG) is the index of stomatal conductance where the index is proportional to stomatal 

conductance (for a constant boundary layer conductance) and is calculated using Equation 1.4: 
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𝐼𝐺 =

(𝑇𝑑𝑟𝑦 − 𝑇𝑐𝑎𝑛𝑜𝑝𝑦)

(𝑇𝑐𝑎𝑛𝑜𝑝𝑦 − 𝑇𝑤𝑒𝑡)
 (1.4) 

For most values of stomatal conductance (gs), IG is linearly proportional to gs, as has now 

been demonstrated under a wide range of conditions. This index uses the same references as the 

second form of CWSI (Equation 1.3) but gives low values in stressed crops and higher values 

with increasing gs.  

As the inclusion of wet and dry reference surfaces in every image can sometimes be 

logistically difficult, an alternative to the above indices is to use an actual non-water-stressed 

plant and a stressed plant as extremes and relate the temperature of the crop of interest to these. 

This is suitable for example where the crop is scarcity irrigated and hence anticipated to have a 

Tcanopy intermediate between those extremes. Since the reference crops, however, cannot usually 

be included in every image, there is the problem that meteorological conditions can change 

between imaging the reference crop and the crop of interest. (Costa et al., 2013) interpolated the 

temperatures of the reference crops between a series of images to estimate their temperature at 

the precise time when the crops were imaged. 

The above indices are appropriate where only leaves are being examined (i.e. either the 

crop completely covers the soil, or only leaves are selected to obtain Tcanopy). An alternative 

index called the water deficit index (WDI) was established for applications where soil and crop 

temperatures could not be separated (Costa et al., 2013). This index employs the variation 

between the temperature of the surface (which includes vegetation and bare soil) and the 

temperature of the air – (Ts – Tair) – along with an index of vegetation cover. At 100% vegetation 

cover, the values of WDI will fall within the same limits of the CWSI. 
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1.4.6. Alternatives to the Stress Indices 

An alternative to the application of stress indices is to approximate gs from Tcanopy. This 

requires that Tair and VPD, net radiation, and wind speed are measured at the same time as 

Tcanopy. Berni et al. (2009) estimated CWSI using meteorological data rather than references to 

obtain Twet and Tdry. CWSI was strongly inversely correlated with leaf water potential. Ben-Gal 

et al. (2009) compared approximation of CWSI using meteorological data with estimation using 

Tdry =Tair + 5 °C (which is rather arbitrary) and Twet being the temperature of a wet cloth. The two 

methods gave similar results, and the authors suggested using meteorological data is preferable, 

to avoid the need of a wet reference in every image. This approach, however, means that the 

reference temperatures are not obtained at the same environmental conditions as Tcanopy, since a 

full set of meteorological data cannot be collected at each plant of interest. 

1.4.7. Weed Scouting 

Weed scouting is a key component of integrated weed management programs, 

particularly if there are resistant weeds involved. Many of the proposed automatic weed 

identification methods use a variety of visual characteristics of the plants, and sensing 

technologies (Lin, 2010). Three general characteristics used for plant species identification are 

biological morphology, spectral characteristics, and visual texture (Hong et al., 2012). The 

ability for non-contact detection, simple measurement process, fast response, high reliability, and 

low power consumption make a spectral discrimination method a simple and easy application 

procedure that can be used in real-time application systems (Rogalski, 2003; Wang et al., 2001). 

Plants reflect NIR radiation and absorb the visible wavelengths. Weed mapping is challenging 

because of the similarity in reflectance between the weed species. Hyperspectral sensing may 

provide a way to identify differences between weed species.  NIR, red-edge and Green regions 
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are the optimal regions for discrimination between different species (Wilson et al., 2014). The 

position and magnitude of the red-edge zone depends on the amount and type of chlorophyll 

pigmentation in the leaf (Blackburn, 2006). Reflectance from the NIR and red-edge regions 

produces the most accurate discrimination of aquatic weeds in the US (Everitt et al., 2011). Leaf 

structure and the processes that occur in it affect the spectral reflectance from it. Spectral 

reflectance of plant species at canopy or single leaf scale at specific stages is unique and known 

as the spectral signature. The spectral signature of weed species and glyphosate-resistant weeds 

can be a useful tool for weed identification. 

In previous studies, researchers demonstrated many spectral reflectance analysis 

techniques to distinguish weeds from soil background (Scotford & Miller, 2005). Spectral 

reflectance was successfully employed to identify weeds versus crops when there was a 

maximum phenological distinction between crop and weeds (López Granados et al., 2008). 

Identifying critical wavelengths that can effectively discriminate between crops, weeds, and soil 

is another step in identifying weeds from crops or bare ground (Andújar et al., 2013).  

Three main steps in the spectral characterization of weed species include developing 

spectral data pre-processing or reduction methods, building a proper classification model, and 

validating the best combination of pre-processing with a classification model. Many processing 

methods have been used to distinguish the reflectance of weeds from crop plants. These include 

Artificial Neural Network (ANN), Principal Component Analysis (PCA) and Stepwise Linear 

Discriminant Analysis (SLDA) (Eddy et al., 2014).  To discriminate between crop versus weeds, 

a SLDA procedure identified four bands of 572.7, 676.1, 801.4, and 814.6 nm as most suitable 

for discrimination weeds from maize or sugar beet crop (Vrindts et al., 2002). This method 

discriminated sugar beet from weeds with 90% accuracy. A combination of two methods, ANN 
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and PCA, produced the most accurate classification in discriminating between weeds and crop 

plants  (Liu et al., 2010) . Maximum Likelihood Classification (MLC) and ANN were tested to 

distinguish between redroot pigweed and wild oats in Southern Alberta, Canada. The results 

showed that ANN was more accurate for redroot pigweed and wild oats species (Eddy et al., 

2008).  A partial least squares discriminant analysis (PLS-DA) model was used to classify soil, 

wheat, broadleaf weed, and grass weed with 85% accuracy (Shapira et al., 2013).  

Two different classification methods such as PCA and Linear Discrimination Analysis 

developed from a select group of vegetation indices and the best spectral band combination 

(BSBC) successfully classified soybean, six broadleaf weeds (BLW), and soil (Gray et al., 2009). 

The classification accuracy varied from less than 50% for PCA to greater than 50% for LDA, 

and 80% for BSBC. Qin et al. (2013) applied the soft independent modeling of class analogy 

(SIMCA) method on visible and infrared spectroscopy to identify cabbage versus weeds with the 

highest accuracy of 98%. PCA and SLDA have been used to select wavelengths to separate 

different plant species (Yang & Everitt, 2010). These methods increased classification accuracy 

by 10%. SLDA was used to select the significant bands to distinguish weeds from crop plants (de 

Castro et al., 2012). The comparison of spectral reflectance between two crops and five weed 

species was tested and produced 90% accuracy using SLDA and LDA (Smith & Blackshaw, 

2003). The combination of PLS and LDA to identify weeds in wheat showed good 

discrimination (Rabatel et al., 2011). The glyphosate-resistant and susceptible Palmer amaranth 

weeds were discriminated successfully around the wavebands 676 and 730 nm based on 

hyperspectral imaging (Reddy et al., 2014a). 

In the other study, PLS-DA analysis of plant spectra used to select multispectral camera 

filters. Researchers acquired sugar beet and thistle weed spectral reflectance to discriminate 
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weeds versus crop by using UAS. Spectral responses of a multi-band camera equipped with the 

filter configuration proposed by the PLS-DA models were simulated (Garcia-Ruiz et al., 2015). 

Applications of remote sensing using UASs have increased recently in precision agriculture 

(Laliberte et al., 2010). UASs are capable of capturing imagery in high risk situations. They can 

also be flown below clouds and in light rain. (Berni et al., 2009). A further big advantage is that 

they are not limited by physiological conditions that would affect human pilots of light planes. 

FieldCopter is a UAS that can carry multispectral sensors for crop monitoring (Van der Wal et 

al., 2013). It can fly and capturing imagery in more than 70% of weather conditions compared to 

satellite imagery. The spectral and spatial resolution of the images depends on the sensors carried 

by the UAS.  

The type of sensor should be matched to the type of information to be collected. For 

instance, discriminating weed species and pests or detecting the occurrence of specific diseases 

needs multispectral or thermal camera (Berni et al., 2009). The multispectral camera which has 

more bands than RGB camera but less than hyperspectral (which has hundreds of bands) can 

collect higher spatial resolution imagery than satellite sensors and at a lower cost (Torres-

Sánchez et al., 2013). Good imagery depends on the UAS, sensor types, and flight plan 

(Espinoza et al., 2015). In Italy, the first research using UASs for mapping was successful in 

vineyard plant vigor based on NDVI (Primicerio et al., 2012). A multi-spectral camera and a 

spectroradiometer were used to capture imagery and record the hyperspectral reflectance data 

respectively. Hyperspectral and multispectral data can be used to detect spectral differences 

between weeds and crop plants(Garcia-Ruiz et al., 2015). The weed species reflect unique 

spectral signatures that can potentially be processed to produce a weed map.  
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2. SIMCA ANALYSIS OF PLANT CANOPY SPECTRAL DATA1 

2.1. Abstract 

Adoption of a site-specific weed management system (SSWMS) can contribute to 

sustainable agriculture. Weed classification is a crucial step in SSWMS that could lead to saving 

herbicides by preventing repeated chemical applications. In this study, the feasibility of visible 

and near infrared spectroscopy to discriminate three problematic weeds was evaluated. A 

greenhouse experiment was conducted to classify three common weed species: waterhemp 

(Amaranthus rudis), kochia (Kochia scoparia), and lambsquarters (Chenopodium album). Soft 

independent modeling of class analogy (SIMCA) method was used to classify these weed species 

based on canopy spectral reflectance. Five different pre-processing methods were evaluated to 

remove the irrelevant information from spectral reflectance. Analysis of data indicated that the 

second derivative pre-processing method applied to NIR (920-2500 nm) spectra was the best to 

discriminate three weed species with 100% accuracy for 63 test samples. The SIMCA model on 

NIR wavebands exhibited the highest discrimination power ratio. The results showed the model 

distance value for most developed classes in NIR range was more than 3, which indicated its 

superior ability to discriminate weed species with low risk of misclassification. Furthermore, the 

discrimination power of different wavelengths obtained from the best models indicated that 640, 

                                                 
1 The material in this chapter was co-authored by Alimohammad Shirzadifar, Sreekala Bajwa, 

Seyed Ahmad Mireei, Kirk Howatt, and John Nowatzki. Content in this chapter was published in 

Journal of Biosystems Engineering 171 (2018): 143-154. Alimohammad Shirzadifar had primary 

responsibility for performing the samples preparation and all of the tests. Alimohammad 

Shirzadifar also drafted and revised all versions of this manuscript. Sreekala Bajwa and Kirk 

Howatt helpe in conducting greenhouse experiments and they served as proofreader. Seyed 

Ahmad Mireei helped in data processing and interpreting the results. Sreekala. Bajwa and John 

Nowatzki supervised the project. 
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676, and 730 nm from the red and red-edge region, and 1078, 1435, 1490, and 1615 nm from the 

NIR region were the best wavelengths for weed discrimination. 

Keywords: Spectral Reflectance, Soft independent modeling of class analogy, Weed 

classification. 

2.2. Introduction 

Weeds are the biggest threat to crop production because they cause significant yield loss 

in crops, limit crop rotation choices, and host insects and diseases (Cardina & Doohan, 2000; 

FAOSTAT, 2014; Slaughter et al., 2008). Weed management is an important aspect of 

agricultural production as the economic cost of not managing weeds with herbicide is estimated 

as $21 billion approximately in the US (Yontz, 2014). 

Herbicide application, which is the most common weed management strategy in US 

agriculture, provides a convenient, economical, and effective way to control weeds. However, 

repeated and non-optimal use of herbicides results in herbicide resistance in weeds, excessive 

waste, herbicide residues in food, and environmental pollution with potential impact on human 

health, ecosystems, and quality and safety of agriculture products (Gil & Sinfort, 2005; Pimentel 

et al., 1992). 

Weed distribution in fields is non-uniform (Pantazi et al., 2016; Slaughter et al., 2008), 

with field borders being the most infested by weed patches. Yet, herbicides are applied uniformly 

across the whole field. Therefore, there is a growing need to identify and map weed distribution 

in the field to reduce herbicide application by applying only the best herbicide option in the areas 

that need application. Adoption of a sustainable weed management strategy, such as site-specific 

herbicide application, can improve the efficiency of herbicide application without diminishing 
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weed control and can play an important role in reducing spraying cost and the pollution of non-

target sensitive environments (Slaughter et al., 2008; Weis et al., 2008). 

Weed scouting (early detection of weed) and quick target spraying (applying herbicide 

only on the weeds instead of soil and crop) are two critical key components of a site-specific 

weed management system (SSWM). Several approaches were reported for weed identification 

with sensing technologies, visual texture, and spectral characteristics of plants (Pantazi et al., 

2016; Tian, 2002). The sensor-based systems include ultrasonic (Andújar et al., 2012), X-ray 

(Haff et al., 2011), and optoelectronic (Andújar et al., 2011; Biller, 1998) sensors, remote 

sensing method (Thorp & Tian, 2004), machine vision systems (Burgos-Artizzu et al., 2011; 

Christensen et al., 2009; Piron et al., 2011; Weis & Sökefeld, 2010), and ground-level 

hyperspectral imaging (Hadoux et al., 2014; Sui et al., 2008; Vrindts et al., 2002). The ability for 

non-contact detection, simple measurement process, fast response, high reliability, and low 

power consumption make a spectral discrimination method a simple and easy application 

procedure that can be used in real-time application systems (Rogalski, 2003; Wang et al., 2001). 

Hyperspectral sensors can capture subtle differences in reflectance obtained from plant species 

(He et al., 2015). 

Spectral reflectance of plant species at canopy or single leaf scale at specific stages is 

unique and known as the spectral signature. The spectral signature of weed species can be a 

useful tool for weed identification. Weeds’ distinctive colors, phenological stages, and vegetation 

indices can enhance the differences between weed species as a distinguishing factor to classify 

weeds (López Granados et al., 2008). In previous studies, researchers demonstrated many 

spectral reflectance analysis techniques to distinguish weeds from soil background (Scotford & 

Miller, 2005). Spectral reflectance was successfully employed to identify weeds versus crops 
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when there was a maximum phenological distinction between crop and weeds (López Granados 

et al., 2008). Identifying critical wavelengths that can effectively discriminate between crops, 

weeds, and soil is another step in identifying weeds from crops or bare ground (Andújar et al., 

2013). Three main steps in the spectral characterization of weed species include developing 

spectral data pre-processing or reduction methods, building a proper classification model, and 

validating the best combination of pre-processing with a classification model. To discriminate 

between crop versus weeds, a stepwise discriminant analysis procedure identified four bands of 

572.7, 676.1, 801.4, and 814.6 nm as most suitable for discrimination weeds from maize or sugar 

beet crop (Vrindts et al., 2002). This method discriminated sugar beet from weeds with 90% 

accuracy. A partial least squares discriminant analysis (PLS-DA) model was used to classify soil, 

wheat, broadleaf weed, and grass weed with 85% accuracy (Shapira et al., 2013). In the other 

study, PLS-DA analysis of plant spectra was used to select multispectral camera filters. 

Researchers acquired sugar beet and thistle weed spectral reflectance to discriminate weeds 

versus crop by using unmanned aerial vehicles (UAV). Spectral responses of a multi-band 

camera equipped with the filter configuration proposed by the PLS-DA models were simulated 

(Garcia-Ruiz et al., 2015). The red-edge region was reported as the best region to identify 

vegetation classes. Two different classification methods such as principal component analysis 

(PCA) and linear discriminant analysis (LDA) developed from a select group of vegetation 

indices and the best spectral band combination (BSBC) successfully classified soybean, six 

broadleaf weeds (BLW), and soil (Gray et al., 2009). The classification accuracy varied from less 

than 50% for PCA to greater than 50% for LDA, and 80% for BSBC. Qin et al. (2013) applied 

the soft independent modeling of class analogy (SIMCA) method on visible and infrared 

spectroscopy to identify cabbage versus weeds with the highest accuracy of 98%. 
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Despite the satisfactory results of weed versus crop classification based on spectral 

reflectance, this technique has not been used, to the best of our knowledge, to discriminate weed 

species using the Vis/NIR spectrometers. Since processing the huge spectral dataset is 

complicated, selecting the optimal statistical analysis method is a crucial step in the classification 

of weed species. SIMCA is an ideal class modeling technique for the classification of spectral 

data because it does not assume a specific distribution of variables, and each class model is 

created independently (Brereton, 2003). 

This study focuses on the classification of three weed species waterhemp (Amaranthus 

rudis), kochia (Kochia scoparia), and lambsquarters (Chenopodium album). Among these 

species, waterhemp and kochia have been reported as glyphosate-resistant weeds in North 

Dakota, US. Lambsquarters was studied because it should be controlled carefully due to different 

herbicide application rate needs (Zollinger, 2016). The objective of this research was to evaluate 

the feasibility of visible and near infrared (Vis/NIR) spectroscopy for discriminating the three-

weed species. Furthermore, the supervised pattern recognition, SIMCA method and appropriate 

pre-processing corrections were evaluated for their influence on classification performance. 

2.3. Materials and Methods 

2.3.1. Greenhouse Experiment 

A greenhouse experiment was conducted with three weed species to test the hypothesis 

that canopy reflectance is a good tool for weed identification. The weed species considered in 

this study were waterhemp (Amaranthus rudis), kochia (Kochia scoparia), and lambsquarters 

(Chenopodium album), which are major weeds of concern in the upper great plains of the 

Midwestern US. These weed biotypes were raised in March 2016 at the North Dakota State 

University greenhouse from locally collected seeds. Bulked weed seeds (110 seeds for each 
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species) were planted in labeled SC7 cones with a cell diameter of 3.81 cm (1.5") and a depth of 

21 cm (5.5"). Cone-tainers contained a commercial potting mix (Metro-Mix 360; Sun Gro 

Horticulture, Bellevue, WA). The tall, cone-shaped design and internal vertical anti-spiral ribs 

allow the roots to grow deep and straight. Plants were irrigated at 10 am daily in each individual 

cell, which had a center drainage hole at the bottom and four side-drain holes on the tapered end. 

Cone cells were arranged randomly in 70×30.5×17.15 cm (24"×12"×6.75") cone-tainer racks, 

that could hold 98 cells (Figure 2.1a).  

  

(a) 

 

(b) 

  

(c) 

 

(d) 

Figure 2.1. (a) Experimental set up in the NDSU greenhouse and the three weeds addressed in 

the study namely, (b) Waterhemp, (c) Kochia, and (d) Lambsquarters.  

The greenhouse was maintained at 28/22 ± 3 °C day/night temperatures, with natural 

light supplemented by sodium vapor lamps to provide a 12 h photoperiod. Three weeks after 
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germination, when plants were less than 8 cm (3") tall, samples were selected for the reflectance 

measurement. Reflectance spectra were measured from canopies of 88 of waterhemp, 108 of 

kochia, and 56 of lambsquarters plants. 

Waterhemp plants are characterized by oval leaves with a prominent mid-vein, reddish 

tinted underside and shiny and smooth surface (Figure 2.1b). Kochia leaves were elliptic, dull 

green above, purplish on the underside and covered in soft hairs (Figure 2.1c). Lambsquarters 

had narrow leaves with no mid-vein, dull green to gray color with a mealy coating on both 

surfaces (Figure 2.1d). 

2.3.2. Spectral Data Acquisition 

A USB2000 Vis/NIR spectrometer (MODEL+XR1-ES, Ocean Optic Inc. Dunedin, 

Florida, USA) was used to acquire spectral reflectance characteristics of the weed plants when 

they were less than 8 cm tall. At this time, the plants had 4 to 6 leaves for waterhemp and 

lambsqurters and 8 to 10 leaves for kochia. The spectrometer consisted of two individual 

systems, including a UV-Vis-NIR (USB 2000 sensor) spectrometer that measured reflectance in 

the 200-920 nm range, and an NIR spectrometer (NIRQuest512-2.5 sensor) that measured 

reflectance in the 920-2500 nm range. The USB 2000 sensor was equipped with a 2048-element 

linear silicon CCD array that collected data at 2 nm band interval. The maximum integration 

time of 1 ms was helpful to avoid saturating the detector under bright light conditions. The NIR 

spectrometer had a 6 nm spectral resolution and used a Hamamatsu indium gallium arsenide 

(512-element InGaAs array) detector with a 25 μm slit. An HL-2000 family tungsten halogen 

lamp with an integrated fan was used as a Vis/NIR light source.  

To calculate the relative reflectance of each sample and eliminate the interference by the 

optical system, the reference and dark spectra were recorded before sample spectra acquisition. 
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The reference spectra were collected at the beginning of each of 20 sample measurements using 

a Polytetrafluoroethylene made reference panel. The reference panel was able to reflect more 

than 95% of the light from 250-2200 nm, respectively. The integration time for reflected spectra 

of samples was set to 110 ms. Two reflectance spectra were acquired over each plant canopy by 

rotating the plant by 180°. The spectral data were collected by pointing the fiber optic probe at 

the plant canopy from nadir at 6 cm above the top of plant canopy. This distance was enough to 

acquire the spectrum of each plant sample according to the field of view of the sensor. The 

average of two obtained spectra were then calculated and used for representing the canopy 

reflectance of each weed plant sample. 

2.3.3. Spectral Data Pre-Processing 

The canopy reflectance spectra were pre-processed before performing feature selection 

and classification. The raw Vis/NIR spectra of solid samples include irrelevant information due 

to light scattering, distance variation of sample and detector, and physical properties of samples 

such as surface irregularities. Typically, the most effective pre-processing method is selected by 

trial and error. In this study, five pre-processing methods were evaluated: (1) multiplicative 

scatter correction (MSC), (2) standard normal variate (SNV), (3) vector normalization (VN), (4) 

first derivative and (5) second derivative. 

The MSC performs a linear transformation of each spectrum in two steps, estimation of 

the correction coefficients (additive and multiplicative contributions) by Equation 2.1 in the first 

step and calculating the corrected spectra (Equation 2.2) in the second step. 

 𝑋𝑜𝑟𝑔 = 𝑏0 + 𝑏𝑟𝑒𝑓,1𝑋 + 𝑒 
(2.1) 

 
𝑋𝑐𝑜𝑟𝑟 =

𝑋𝑜𝑟𝑔 − 𝑏0

𝑏𝑟𝑒𝑓,1
= 𝑋𝑟𝑒𝑓,1 +

𝑒

𝑏𝑟𝑒𝑓,1
 

(2.2) 
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Where Xorg is one original sample spectra measured by the NIR instrument, Xref is a reference 

spectrum used for pre-processing the entire dataset, e is the un-modeled part of Xorg, Xcorr is the 

corrected spectra, and b0 and bref,1 are scalar parameters.  

The SNV correction was performed by subtracting the average spectra from each 

observed spectrum, and then dividing it by the standard deviation of the spectra sample Equation 

2.3. 

 
𝑋𝑐𝑜𝑟𝑟 =

𝑋𝑜𝑟𝑔 − 𝑎0

𝑎1
 

(2.3) 

Where a0 is the average value of the sample spectra to be corrected, a1 is the standard deviation 

of the sample-spectra.  

The principal of object-wise standardization correction is similar to SNV while, for 

normalization, a0 is set equal to zero. Since SNV and normalization do not involve the least 

square fitting in their parameter estimation, they can be sensitive to noisy entries in the spectra. 

To enhance the absorbance and reflectance peaks in the spectra, the first and second derivatives 

were computed from the raw data using Savitzky-Golay algorithm. The derivatives are capable 

of removing both additive and multiplicative effects in the spectra. First and second derivatives 

are mainly used to resolve peak overlap and eliminate constant and linear baseline drift between 

the samples. Spectral derivatives can be calculated by obtaining the differences between two 

consecutive points (Equation 2.4). Some common disadvantages of applying derivatives are 

noise enhancement and difficult spectral interpretation. 

 𝑋𝑖,𝑓𝑠𝑑 = 𝑋𝑖 − 𝑋𝑖−1 (2.4) 

Where Xi, fsd denotes the first-order derivative at wavelength i, this technique removes only the 

baseline of the spectra. 
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2.3.4. SIMCA Analysis 

The pre-processed data were then transformed into the principal components (PCs) with 

Principal Component Analysis (PCA) to test the possibility of discriminating weed species. PCA 

is the oldest and most common latent variable projection method (Jackson, 2004; Wold et al., 

1987). The data matrix X is decomposed into several PCs that explained the highest variance in 

the data on each successive component under the constraint of being orthogonal to the previous 

PCs Equation 2.5. The result is a bilinear model, a product of scores (T) and loadings (L) 

matrices. Since each object gets a score value on each PC, objects can be presented in score plots 

which can reveal patterns, such as clusters, trends, and outliers in the data. In the same manner, 

variables can be presented in loading plots. Since each variable gets a loading value on each PC, 

loading plots monitor covariance among variables and can be used to interpret patterns observed 

in the score plot, scores, and loadings.  

 𝑋 = 𝑇𝐿𝑇 + 𝐸 = 𝑡1𝑙1
𝑇 + 𝑡2𝑙2

𝑇 + 𝑡3𝑙3
𝑇 + ⋯ + 𝑡𝐴𝑙𝐴

𝑇 + 𝐸 (2.5) 

Where X is the original n samples (rows) × p wavelengths (columns) data matrix, T is a n×A 

matrix known as the scores matrix, A is the number of principal components in the model, L is a 

p×A matrix known as the loadings matrix, superscript T indicates the transpose of L, E is a n×p 

matrix that represents the residual variance, tili
T are the ith orthogonal principal components that 

make up the model.  

The final step in data processing was the classification of weed species with SIMCA 

model. SIMCA is a supervised classification technique in which a PCA is developed for each 

class individually within its calculated boundary. In this study, three weed classes were modeled 

by PCA using 75% of samples representative of the class population variance as the training 

class. Cross-validation was performed by a leave-one-out procedure to define the optimum 
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number of PCs to avoid over- or under-fitting in models. Finally, the rest of the 25% of 

observations in each weed species were used to validate the selected PC-based SIMCA models 

(Xt in Equation 2.6). In order to classify the weed plants, after transforming the test data to the 

latent variable (computed PCA sub-models as a 𝑡̂𝑢t in Equation 2.6) space, a nearest neighbor 

classification strategy was used (computing the residual variance in Equation 2.6).  

Equations (2.6) to (2.9) illustrate how the spectra of each tested weed specify to weed 

classification in SIMCA model. Equation 2.6 calculates the residual variance. The total residual 

variance for all the n samples in the PCA model can be calculated by Equation 2.8. These two 

variances allow us to perform a Fischer’s F-test Equation 2.9 that forms the ultimate basis of the 

SIMCA classification method. The tested weed sample belongs to the class representing matrix 

X, if S2
u and S2

total are statistically the same based on the F test (Davis et al., 2015). 

 𝑒𝑡 = 𝑋𝑡 − 𝑡̂𝑢𝐿𝑇                (2.6) 

 

𝑠𝑢
2 = ∑

𝑒𝑢𝑗
2

𝑝 − 𝐴

𝑝

𝑗=1

         (2.7) 

 

𝑠𝑡𝑜𝑡𝑎𝑙
2 = (

1

𝑛 − 𝐴 − 1
) ∑ (∑

𝑒𝑢𝑗
2

𝑝 − 𝐴

𝑝

𝑗=1

)

𝑖

𝑛

𝑖=1

      (2.8) 

 
𝐹 =

𝑠𝑢
2

𝑠𝑡𝑜𝑡𝑎𝑙
2  (2.9) 

Where Xt is tested spectra, 𝑡̂𝑢 is the estimate of the scores vector, and et is the residual variance 

vector, S2
u is residual variance for the tested sample, A is the number of principal components in 

the model, S2
total is the total residual variance for all the n samples, and F is the Fischer’s F-test. 

The ability of SIMCA analysis to classify three weed species was evaluated using all the 

wavelengths as variables as well as just the visible or near infrared wavelengths. Pre-processing 
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of data and SIMCA analysis were all performed with the Unscrambler V10.4 (CAMO AS, 

Trondheim, Norway) software package. 

2.3.5. Model Performance Evaluation 

Model performance was evaluated by three performance parameters: discrimination 

power, model distance, and classification accuracy. The results of SIMCA analysis allow us to 

evaluate the discrimination power of the individual wavelength (Esbensen et al., 2002). The 

discrimination power depends on the number of weed samples that were inside each class, the 

standard deviation of distance between the samples, the class centroid, and the number of 

variables that made the specific class. Equations (2.10) to (2.14) show the discrimination power 

(dk) computational steps. 

 

𝑑𝑘
(𝑟,𝑔)

= √
𝑆𝑘,𝑟

2 (𝑔) + 𝑆𝑘,𝑔
2 (𝑟)

𝑆𝑘,𝑟
2 + 𝑆𝑘,𝑔

2   (2.10) 

 

𝑆𝑘,𝑟
2 = ∑

𝑒𝑖𝑘
2

(𝑛𝑟 − 𝐴𝑟 − 1)

𝑛𝑟

𝑖=1

 (2.11) 

 

𝑆𝑘,𝑟
2 (𝑔) = ∑

𝑒𝑘𝑓
2 (𝑔)

𝑛𝑟
               

𝑛𝑟

𝑖=1

 (2.12) 

 

𝑆𝑘,𝑔
2 (𝑟) = ∑

𝑒𝑘𝑓
2 (𝑟)

𝑛𝑔

𝑛𝑔

𝑖=1

 (2.13) 

 

𝑆𝑘,𝑔
2 = ∑

𝑒𝑖𝑘
2

(𝑛𝑔 − 𝐴𝑔 − 1)

𝑛𝑔

𝑖=1

 (2.14) 

Where dk 
(r, g) symbolizes the discrimination power of the variable k in terms of r and g classes, 

k=1, 2…, p is the number of variables, i=1, 2..., n is the number of observations. 
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Discrimination power indicates the independent variables that are most useful in 

describing the difference between the classes. If the discrimination power equals 1, classes 

cannot be discriminated, while the discrimination power value greater than 1 indicates classes 

can be successfully discriminated. A discrimination power value of 3 or greater means that the 

relevant variable is of vital importance in discriminating the classes. 

Model distance (Equation 2.15) shows the distance between two classes. 

 

𝑑(𝑟. 𝑔) = √
∑ (

𝑝
𝑘=1 𝑆𝑘,𝑟

2 (𝑔) + 𝑆𝑘,𝑔 
2 (𝑟))

∑ (𝑝
𝑘=1 𝑆𝑘,𝑟

2 + 𝑆𝑘,𝑔 
2 )

 (2.15) 

Where d (r, g) is the distance between r and g groups. 

Model distance could be useful in comparing different models. A distance larger than 3 

indicates good class separation and low risk of misclassification in the model. No classification 

can be made if the model distance is less than 1 and the discrimination of the classes can be 

made successfully if the value is more than 3. 

2.4. Results and Discussion 

2.4.1. Overview of Canopy Reflectance 

Mean raw reflectance data of kochia, waterhemp, and lambsquarters are illustrated in 

Figure 2.2. The jump in the spectra around the wavelength of 1000 nm was occurred due to the 

changing of the spectrometer system. This jump was constant for all samples and no adverse 

effects were seen in the performance of classification models. The canopy reflectance for three 

weed species were different in the red and red-edge regions and also in several parts of the NIR 

region. These regions related primarily to chlorophyll and water content of selected weed 

species, respectively. These distinguishable differences in canopy reflectance of the weed spices 
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indicated the possibility to classify them based on their spectral signature in Vis/NIR 

wavelengths (Figure 2.2). 

 

Figure 2.2. The average canopy reflectance spectra of three weed species, including kochia, 

waterhemp, and lambsquarters in Vis/NIR wavelengths. 

2.4.2. Spectral Pre-Processing 

In general, the pre-processing method significantly influenced the separation of the 

clusters. However, among different pre-processing methods, SNV could better separate the weed 

species clusters in 400-920 nm and whole spectral (400-2500) ranges, while 2nd derivative could 

better discriminate the weed species in 920-2500 nm spectral range, based on visual inspection. 

Figure 2.3 illustrates the scatter plot of the PCA scores in the first two PC spaces obtained from 

best pre-processing methods in the 400-920 nm (Figure 2.3a), 920-2500 nm (Figure 2.3b), and 

the whole spectral region (Figure 2.3c). As shown, among different ranges, the spectral range of 

920-2500 resulted in the best discrimination between the weed clusters (Figure 2.3b), where, 

despite the relative overlap between the kochia and lambsquarters samples, waterhemp samples 

were successfully separated from other weed species. It should also be noted that this 
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discrimination was carried out with two PCs that only described 52% of total spectral data 

variance (40% for PC1 and 12% for PC2). It was expected that spectral reflectance analysis can 

lead to better results when more PCs are used. Figure 2.3b also depicts that the major part of 

waterhemp samples was located on the positive side of the PC2 axis, while the kochia and 

lambsquarters samples were scattered on the negative side of PC2 with a tendency to the origin 

region. The other wavelength regions, however, could only result in a slight separation between 

weed species in the first two PC spaces, as shown in Figure 2.3a and c. The overlap of weed 

species in the 400-920 nm (Figure 2.3a) may be due to the similar spectral characteristics of the 

weed species in the visible range which include the main part of 400-920 nm (Figure 2.2) since 

the leaf of the weed species had similar color features (Figure 2.1). Regarding Figure 2.3c, no 

significant improvement in the separation of clusters was achieved when using all spectral data. 

In general, the total variance described by two PCs were less than the respective models when 

using 400-920 nm (Figure 2.3a) and 920-2500 nm (Figure 2.3b) spectral information. This was 

due to the larger number of input variables to the PCA models. Therefore, more PCs may be 

needed to achieve a better discrimination power. 
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Figure 2.3. The PCA scores of the samples of kochia, lambsquarters, and waterhemp weed 

species obtained from the best pre-processing methods in the (a) 400-920 nm, (b) 920-2500 nm, 

and (c) the whole spectral region. 
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2.4.3. Classification by SIMCA 

Table 2.1 summarizes the test set validation results of the SIMCA analysis performed to 

discriminate three weed clusters in the wavelength region of 400-920 nm, using different pre-

processing methods. The number of PCs necessary to obtain the best SIMCA models was 

between 1 and 10 and depends on the class and pre-processing method. As expected, among 

different pre-processing methods, the best results were obtained by SNV with a total accuracy of 

88.89%. Interestingly, 92.59% and 100% of kochia and lambsquarters samples, respectively, 

were successfully discriminated. This was expected because after a close investigation of Figure 

2.3a, it was concluded that the kochia and lambsquarters groups were more accurately classified 

than the waterhemp group. However, the relatively poor discrimination of waterhemp samples 

(77.27%) reduced the total accuracy to 88.89%, due to the significant overlap of waterhemp 

samples with the two other weed samples (Figure 2.3a).  

The test set validation results of the SIMCA analysis performed to classify three weed 

clusters in the wavelength region of 920-2500 nm using different pre-processing methods were 

shown in Table 2.2. As expected from Figure 2.3b, the 2nd derivative pre-processing resulted in 

the best discrimination power. The developed SIMCA model could successfully discriminate all 

three weed clusters (Total accuracy of 100%). The optimum number of PCs necessary to achieve 

this model was 12, 10, and 14 for kochia, lambsquarters, and waterhemp classes, respectively 

(Table 2.2). The 1st derivative pre-processing resulted in the next best model in the range of 920-

2500 nm and the related SIMCA model could successfully classify all the kochia and 

lambsquarters samples (classification accuracy of 100%). However, only one waterhemp sample 

was misclassified as kochia (classification accuracy of 95.45%) and caused the total accuracy to 

be 98.41% (Table 2.2). 
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Table 2.1. The test set validation results of the SIMCA analysis for classification of three weed 

species in the wavelength region of 400-920 nm, using different pre-processing methods. 

Spectral Pre-

processing 
Class variable PCs Kochia Lambsquarters Waterhemp 

Accuracy 

(%) 

Weighed 

accuracy (%) 

Raw Kochia (n=27) 4 25 0 2 92.59 76.19 

 
Lambsquarters 

(n=14) 
4 1 13 0 92.86  

 Waterhemp (n=22) 3 12 0 10 45.45  

        

Normalization Kochia (n=27) 3 21 2 4 77.78 84.13 

 
Lambsquarters 

(n=14) 
5 1 13 0 92.86  

 Waterhemp (n=22) 4 3 0 19 86.36  

        

MSC Kochia (n=27) 2 26 0 1 96.30 80.95 

 
Lambsquarters 

(n=14) 
2 2 12 0 85.71  

 Waterhemp (n=22) 1 9 0 13 59.09  

        

SNV Kochia (n=27) 3 25 0 2 92.59 88.89 

 
Lambsquarters 

(n=14) 
5 0 14 0 100.00  

 Waterhemp (n=22) 3 5 0 17 77.27  

        

1st Derivative Kochia (n=27) 7 27 0 0 100.00 87.30 

 
Lambsquarters 

(n=14) 
5 3 11 0 78.57  

 Waterhemp (n=22) 5 5 0 17 77.27  

        

2nd Derivative Kochia (n=27) 13 26 1 0 96.30 85.71 

 
Lambsquarters 

(n=14) 
15 3 11 0 78.57  

 Waterhemp (n=22) 10 5 0 17 77.27  
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Table 2.2. The test set validation results of the SIMCA analysis in the wavelength region of 920-

2500 nm using different pre-processing methods. 

Spectral Pre-

processing 
Class variable PCs Kochia Lambsquarters Waterhemp 

Accuracy 

(%) 

Weighed 

accuracy 

(%) 

Raw Kochia (n=27) 4 26 0 1 96.30 87.30 

 
Lambsquarters 

(n=14) 
2 1 11 2 78.57  

 Waterhemp (n=22) 2 4 0 18 81.82  

        

Normalization Kochia (n=27) 2 24 0 3 88.89 85.72 

 
Lambsquarters 

(n=14) 
2 2 10 2 71.43  

 Waterhemp (n=22) 2 2 0 20 90.91  

        

MSC Kochia (n=27) 4 25 1 1 92.59 88.89 

 
Lambsquarters 

(n=14) 
3 1 12 1 85.71  

 Waterhemp (n=22) 3 1 2 19 86.36  

        

SNV Kochia (n=27) 2 27 0 0 100.00 83.55 

 
Lambsquarters 

(n=14) 
2 0 14 0 100.00  

 Waterhemp (n=22) 1 2 4 16 72.73  

        

1st Derivative Kochia (n=27) 3 27 0 0 100.00 98.41 

 
Lambsquarters 

(n=14) 
2 0 14 0 100.00  

 Waterhemp (n=22) 2 1 0 21 95.45  

        

2nd Derivative Kochia (n=27) 12 27 0 0 100.00 100.00 

 
Lambsquarters 

(n=14) 
10 0 14 0 100.00  

 Waterhemp (n=22) 14 0 0 22 100.00  

MSC: multiplicative scatter correction; PCs: principal components; SNV: standard normal 

variate. 
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Despite the satisfactory results of the 920-2500 nm wavelength region for classifying the 

weed clusters, the total spectral data (400-2500 nm) were also used to possibly find more simple 

and robust models. Table 2.3 summarizes the test set validation results of the SIMCA analysis 

performed to classify three weed clusters using all spectral information (400-2500 nm) and 

different pre-processing methods.  

Table 2.3. The test set validation results of the SIMCA analysis performed to classify three weed 

clusters using all spectral information (400-2500 nm) and different pre-processing methods. 

Spectral Pre-

processing 
Class variable PCs Kochia Lambsquarters Waterhemp 

Accuracy 

(%) 

Weighed 

accuracy 

(%) 

Raw Kochia (n=27) 4 25 0 2 92.59 87.30 

 
Lambsquarters 

(n=14) 
3 2 11 1 78.57  

 Waterhemp (n=22) 4 3 0 19 86.36  

        

Normalization Kochia (n=27) 4 25 1 1 92.59 85.71 

 
Lambsquarters 

(n=14) 
4 3 11 0 78.57  

 Waterhemp (n=22) 4 4 0 18 81.82  

        

MSC Kochia (n=27) 4 26 1 0 96.30 92.06 

 
Lambsquarters 

(n=14) 
3 2 12 0 85.71  

 Waterhemp (n=22) 4 2 0 20 90.91  

        

SNV Kochia (n=27) 5 27 0 0 100.00 96.82 

 
Lambsquarters 

(n=14) 
4 1 13 0 92.86  

 Waterhemp (n=22) 5 1 0 21 95.45  

        

1st Derivative Kochia (n=27) 28 27 0 0 100.00 79.36 

 
Lambsquarters 

(n=14) 
26 6 8 0 57.14  

 Waterhemp (n=22) 19 7 0 15 68.18  

        

2nd Derivative Kochia (n=27) 10 27 0 0 100.00 95.23 

 
Lambsquarters 

(n=14) 
9 1 11 2 78.57  

 Waterhemp (n=22) 11 0 0 22 100.00  

MSC: multiplicative scatter correction; PCs: principal components; SNV: standard normal 

variate. 
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Despite the better results in comparison with the wavelength region of 400-920 nm 

(Table 2.1), no improvement in prediction power occurred when using all spectral information as 

compared with the wavelength region of 920-2500 nm. This can be due to the additional and 

unnecessary information for distinguishing between three classes that was imported to the built 

SIMCA models. The best model (in the range of 400-2500 nm), however, was obtained by the 

SNV pre-processing method that could successfully discriminate 100%, 92.86%, and 95.45% of 

kochia, lambsquarters, and waterhemp samples, respectively (Table 2.3).  

The total accuracy of 96.82% of whole spectra was obviously worse than the best model 

obtained in the spectral region of 920-2500 nm (100%) but better than the best obtained model in 

the 400-920 spectral region (Table 2.4). 

Table 2.4. The summary of the SIMCA analysis performed to classify three weed clusters. 

Spectral Range Spectral pre-processing Weighted accuracy (%) 

400-920 nm SNV 88.89 

920-2500 nm 2nd Derivative 100.00 

400-2500 nm SNV 96.82 

SNV: standard normal variate. 

2.4.4. Model Distance 

Table 2.5 depicts the model distance values for the three weed clusters obtained from the 

best SIMCA model in the 400-920 nm and 920-2500 nm (Table 2.3) wavelength regions. These 

values are usually used to estimate the distance between the models for specific target classes or 

to quantify the possible differences between them (Equation 2.15). A useful way to interpret 

these values is that a model distance greater than 3 indicates the models are significantly 

different (Esbensen et al., 2002). As shown in Table 2.5, only the distance between 

lambsquarters and waterhemp models had this criterion (model distance greater than 3) and the 
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other distances were less than 3, indicating the high risk of misclassification in the developed 

model. Especially in discrimination of kochia from waterhemp, the low model distance of 1.65 

caused 5 waterhemp samples from a total of 22 to be misclassified as kochia (Table 2.1), 

indicating high similarity of kochia to waterhemp sample in using the 400-920 nm spectral 

region. For discriminating of lambsquarters from waterhemp, however, due to the high model 

distance of 3.29 between lambsquarters and waterhemp classes (Table 2.1), no confusion 

between these two-weed species occurred when 400-920 nm spectral range was used as the input 

to the SIMCA model. 

Table 2.5. The model distance value for the three weed clusters obtained from the best SIMCA 

model in 400-920 nm and 920-2500 nm wavelength regions.  

 Model distance 

Class combination 400-920 nm 920-2500 nm 

Kochia-lambsquarters 2.693 3.928 

Kochia-waterhemp 1.653 4.157 

Waterhemp-lambsquarters 3.288 6.246 

 

In contrast to 400-920 nm, the 920-2500 nm region resulted in satisfactory model 

distances, where surprisingly all three model distances between the weed clusters were greater 

than 3 (Table 2.5). Hence, the developed SIMCA model could significantly differentiate between 

all weed clusters (Table 2.2). The maximum model distance was provided between the 

waterhemp and lambsquarters classes (a model distance of 6.25), indicating the high potential of 

SIMCA analysis for discriminating these two-weed species. Moreover, the kochia and 

waterhemp model distance in using 920-2500 nm range was 4.16, which resulted in no confusion 

between these two clusters (Table 2.2). 
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2.4.5. Discrimination Power Plot and Wavebands Selection 

In order to investigate which variables were the most important in discriminating the 

models, the discrimination power values of the best models (in both ranges of 400-920 nm and 

920-2500 nm) were plotted against wavelength variables (Equation 2.10). Figure 2.4 illustrates 

this plot for the best SIMCA models obtained from 400-920 nm (Figure 2.4a) and 920-2500 nm 

(Figure 2.4b) spectral ranges. On the whole, the variables that have a discrimination power value 

greater than 3 could be considered useful in the overall classification. As shown in Figure 2.4a, 

no variable was found in the 400-920 nm that could satisfy this criterion for all three weed 

clusters simultaneously. However, for discriminating the kochia from lambsquarters, the 

wavelength variables around 640, 676, and 725 nm (wavebands of (635-650 nm), (670-683 nm), 

and (720-733 nm)) resulted in discrimination power values greater than 3. The wavelength 

variables around 730 nm (waveband of 701-731 nm) could also satisfy the criterion of 

wavelength selection for discriminating the lambsquarters from waterhemp (Figure 2.4a). 
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Figure 2.4. The discrimination power plot for the three weed clusters obtained from the best 

SIMCA model in (a) 400-920 nm and (b) 920-2500 nm wavelength regions. 
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This was in agreement with findings obtained for differentiating the glyphosate resistant 

and susceptible weeds (Palmer amaranth) using hyperspectral imaging, where the wavebands 

around 676 and 730 nm presented the best separation ability (Reddy et al., 2014a). The 

wavelengths around 640 and 676 nm are normally attributed to the chlorophyll absorption bands, 

while the wavelengths around 730 nm (the red edge) corresponded to C-H fourth overtone 

associated with the carbohydrate content of the leaves (Yang et al., 2012). Therefore, it can be 

concluded that the chlorophyll and carbohydrate contents of weed leaf can be considered as the 

helpful factors for distinguishing the weed species. 

For the 920-2500 nm spectral region, (Figure 2.4b), the number of wavelength variables 

with the high discriminatory power was relatively more than those obtained in the 400-920 nm 

spectral region. However, only four wavelengths of 1078, 1435, 1490, and 1615 nm achieved the 

discrimination power values greater than 3 for classifying the three weed species simultaneously. 

Yet, the available literature does not investigate the exact biochemical composition of leaves in 

the studied weed species. Therefore, accurate chemical analyses are needed to characterize the 

specific components in the weed leaves and better discern differences in chemical composition 

among the weed species.  

Nevertheless, by applying the partial least squares (PLS) regression for determining 

wavelength regions, Lehmann et al. (2015) related the wavelength regions around 1078, 1435, 

and 1615 nm to the tannin concentration of the different exotic-invasive shrub species. They also 

showed that these wavelength regions had a better classification performance for discrimination 

of Mediterranean native plants and shrub species than using all wavelengths. Generally, the 

wavelengths around 1078 nm is close to the second overtone of N-H functional group and it was 
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found to have a high correlation to tannin concentration in plant tissues (Lehmann et al., 2015) 

which precipitates proteins and other organic compounds including amino acids and alkaloids.  

Moreover, the wavelengths around 1490 nm are close to the first overtone of N-H 

functional group or first overtone of O-H functional group found in cellulose structures (Burns & 

Ciurczak, 2007). Therefore, it may be attributed to the protein content of weed leaves or water 

content of plant. The high discrimination power values at the wavelengths in the vicinity of 1435 

nm can be related to the possible differences in the water content of weed species, since the 

wavelengths around 1435 nm correspond to the strong absorption of the water content of the 

leaves (first overtone of O-H functional group). Moreover, the high discriminatory power of 

wavelengths around 1615 can be attributed to the differences in carbohydrate content of three 

studied weed species (Burns & Ciurczak, 2007). Similar to the 400-920 nm spectral region, it 

seems that the water and carbohydrate contents of weed leaves play an important role in the 

classification of three weed species studied in this work. 

2.5. Conclusion 

The greenhouse study described in this paper proved the potential of Vis/NIR 

spectroscopy to discriminate three selected weed species. The SIMCA classification method 

discriminated three weed species, namely waterhemp (Amaranthus rudis), kochia (Kochia 

scoparia), and lambsquarters (Chenopodium album) with 100% accuracy. This research study 

demonstrated the feasibility of SIMCA supervised classification method combined with a 

second-derivative pre-processing method. Based on the test set validation results, SIMCA 

models on Vis, NIR and Vis-NIR regions classified three different weed species with more than 

90 percent accuracy. The derivatives correction was more effective to obtain high accuracy 

classification compared to the other pre-processing methods evaluated in this study. This 
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expected result confirmed that in the greenhouse, the derivatives correction played a more 

important role than the scattering filters due to the consistency of light. Based on distance model 

results, the SIMCA model on NIR bands showed the lowest risk of misclassification. 

Furthermore, the discrimination power of different wavelength variables obtained from the best 

models indicated that the red and red-edge (640, 676, and 730 nm) and NIR (1078, 1435, 1490, 

and 1615 nm) regions had the best wavelengths for weed discrimination. 
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3. DEVELOPMENT OF SPECTRAL INDICES FOR IDENTIFYING GLYPHOSATE-

RESISTANT WEEDS1 

3.1. Abstract 

Glyphosate as the most common and widely-used herbicide in agricultural crops has 

resulted in the explosion of resistant weeds around the world. The objective of this study was to 

evaluate the feasibility of spectral weed indices (SWIs) to identify glyphosate-resistant weeds 72 

h after herbicide application. A greenhouse experiment was conducted on three common weed 

species, namely, waterhemp (Amaranthus rudis), kochia (Kochia scoparia) and ragweed 

(Ambrosia artemisiifolia L.) including resistant and susceptible types to collect canopy spectral 

reflectance after glyphosate spraying. Relief-F algorithm selected the significant and most 

relevant wavelengths and two band normalized differences from 450 to 920 nm describing the 

detrimental effect of glyphosate application for each weed species, separately. To generate 

hyperspectral indices for detecting resistant weeds from susceptible plants the best weighted 

combination of single wavelength and a normalized wavelength difference was searched 

exhaustively by testing all possible combinations. The performance of optimized SWIs on 

resistant weeds identification were assessed by employing a machine learning Random Forest 

(RF) method. The RF classification model achieved a classification accuracy of 96%, 97% and 

100% for resistant kochia, waterhemp and ragweed, respectively. A comparison between 

developed SWIs and introduced spectral-based vegetative indices (VIs) in previous published 

                                                 
1 The material in this chapter was co-authored by Alimohammad Shirzadifar, Sreekala Bajwa, 

and John Nowatzki. Alimohammad Shirzadifar performed the experiments and processed the 

experimental data. Alimohammad Shirzadifar also drafted and revised all versions of the 

manuscript. Sreekala Bajwa aided in interpreting the results and worked on the manuscript. 

Sreekala Bajwa and John Nowatzki supervised the work. 
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works indicated that generated SWIs were accurate enough to identify glyphosate-resistant 

weeds based on spectral signature. 

Keywords: Glyphosate-resistant weed, Spectral weed indices, vegetative indices, 

Hyperspectral reflectance, weed classification. 

3.2. Introduction  

Weeds are ubiquitous to most crops, proliferating each year on every farm around the 

world. Particularly, weeds in crop fields are considered as a significant problem due to weed 

competition on crop yield (Yadav et al., 2018). In general, mechanical and chemical methods are 

two common weed management. The existing manual weed management options are no longer 

feasible due to large scale crop fields and unavailability of manual labours in peak season (Rao et 

al., 2018). Furthermore, overreliance on the some commonly used chemical herbicide has 

resulted in the occurrence of several herbicide‐resistant weed species, leading to an increased 

need for herbicide application (Colbach et al., 2017).  

Glyphosate is a non-selective, systemic herbicide, extremely toxic to a variety of 

sensitive plant species. The application of glyphosate is dramatically growing, while the 

resistance to glyphosate is the most common genetic modification (GM) in crops (Bonny, 2016), 

suggesting the importance of the weed management as an important factor in precision 

agriculture (Shirzadifar et al., 2018). 

General information on weed species is essential, so that farmers can minimize the 

environmental impacts of weed control via reducing the repeated application of herbicides 

(Aiello et al., 2018). Recent advances in sensors opened up the possibility of using machine 

vision methods to identify different weed species, providing precision weed control (Singh et al., 

2016).  
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Weed management can be implemented through the application of spectral reflectance 

imaging, in which, the reflectance spectra at each point of the farm is measured and the weed 

species is identified for each point via spectral signature recognition rather than shape analysis 

method (Westwood et al., 2018). Spectral signature basically includes recording and identifying 

a set of repeatable spectral features for distinct targets (Ferguson & Rundquist, 2018).  

In the case of weed species identification, several spectral-based indices have been 

extensively explored for fast and non-destructive measurements of leaf area (Zhou et al., 2017), 

nitrogen content (Frels et al., 2018), photosynthetic status (Zhang et al., 2017), disease 

identification (AL-Saddik et al., 2017), leaf and canopy senescence (Gara et al., 2018). 

Developing and computation of Vegetation Indices (VIs) is another technique for weed 

species discrimination. In terms of the indices, most are expressed as reflectance or first 

derivative at a given wavelength (R or D), simple ratios (SR), normalized differences (ND), 

double differences (DDn), modified simple ratios (mSR) or modified normalized differences 

(mND) (Sonobe & Wang, 2017). Furthermore, more complicated indices such as chlorophyll 

absorption ratio indices, soil line vegetation indices and the integrated forms have been used for 

different plant species (Wu et al., 2008). The other indices are the feature-based indices which 

were calculated as the sum of the reflectance at the red and infrared regions (Sonobe & Wang, 

2017). However, there is no a reliable spectral index to identify glyphosate-resistant weed in the 

field. 

Furthermore, remote sensing of the spectral reflectance using multispectral images can be 

a reliable way to detect changes in the physiological status of plants in response to different 

biotic and/or abiotic stresses, since stresses often results in the low rates of photosynthesis in the 

plants (Zhang et al., 2016). Glyphosate application results in a reduction of the photosynthetic 
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rate in susceptible plants (Gomes et al., 2017) . When the photosynthetic mechanism is less 

efficient, the chlorophyll and the other pigments was affected, changing the spectral reflectance 

in Vis/NIR range. Therefore, we hypothesized that the spectral signature of susceptible weeds 

should be changed in comparison with resistant weeds after glyphosate application. 

This study was conducted with the objective of developing and validating spectral weed 

indices (SWIs) to identify glyphosate-resistant weeds from susceptible ones in selected weed 

species, using spectral signature 72 h after glyphosate application. We also introduced the 

concept of SWIs for detecting glyphosate-resistance in three weed species including waterhemp 

(Amaranthus rudis), kochia (Kochia scoparia), and ragweed (Ambrosia artemisiifolia L.), the 

weeds known to have glyphosate-resistance in North Dakota, US. Furthermore, the classification 

accuracy of the combining Relief-F and Random Forest (RF) strategy to distinguish herbicide-

resistant weeds was evaluated.   

3.3. Materials and Methods 

3.3.1. Greenhouse Experiment 

Greenhouse experiment was conducted in a greenhouse at North Dakota State University 

(NDSU, Fargo, ND, USA). Three different weed species including waterhemp (Amaranthus 

rudis), kochia (Kochia scoparia), and ragweed (Ambrosia artemisiifolia) were employed to 

assess the potential application of vegetative indices on glyphosate-resistant weeds identification. 

The seeds were collected from twenty different local sites in North Dakota with confirmed 

glyphosate-resistance and susceptible species. Weed seeds were planted in 3.81 cm diameter and 

21 cm depth plastic cones to provide enough space for root growth. The cones were filled with 

commercial potting mix (Metro-Mix 360, Bellevue, WA) and the weeds were daily subirrigated 
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with water to keep the adequate soil moisture. The greenhouse day/night temperature was set at 

28/22 °C with a 12 h photoperiod under sodium vapor lamps.  

3.3.2. Herbicide Treatments 

Three weeks after germination when waterhemp was in the four to eight leaf growth 

stage, kochia, and ragweed had eight to ten leaves, glyphosate was sprayed on the weeds (July 

2017). The herbicide treatment was applied on the weeds with recommended full rate (1.7%) of 

technical grade glyphosate (glyphosateisopropylammonium, >95% purity, Chem Service, West 

Chester, PA, USA). A cabinet sprayer (DeVries Manufacturing, Hollandale, MN, USA) 

equipped with a moving boom was employed to apply herbicide on the weeds. The Tee Jet spray 

nozzles (8001) were mounted on the beam and the average height from nozzle to weeds was 40 

cm for all samples. The spraying was conducted at 40 psi pressure and 2.23 m/s velocity.  

3.3.3. Spectral Signature Recording and Datasets 

A data set of spectral reflectance in the range of 450 to 920 nm was recorded using a 

USB2000 Vis/NIR spectrometer (MODEL + XR1-ES, Ocean Optic Inc. Dunedin, Florida, 

USA). The spectral signatures for each of three aforementioned weed species were collected 72 h 

after glyphosate application. The spectral reflectance was recorded under constant conditions in a 

controlled environment, and the experiments were repeated three times for each treatment. 

3.3.4. Development of Specific Indices for Identifying Glyphosate-Resistant Weeds 

Canopy spectral reflectance differ in weed species and some portions of the spectrum 

might exhibit more worth in identifying glyphosate-resistance status. A statistical algorithm was 

developed to compute and to evaluate spectral weed species indices (SWIs). The steps from 

developing spectral signatures to glyphosate-resistant weed species indices is illustrated in 

Figure 3.1. Developing the spectral signatures of glyphosate-resistant kochia, waterhemp, and 
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ragweed were the basic component in generating the SWIs. Acquired spectral reflectance data 

consist of a large number of continuous narrow bands from 450–920 nm. Analyzing such high 

dimensional data was complex and time-consuming task. The  adjacent wavelengths are highly 

correlated to each other, therefore the spectral band interval was reduced to 20 nm to decrease 

computational time (Mahlein et al., 2013). In order to obtain reliable SWIs a weighted 

combination of single wavelength and a normalized wavelength difference was required. Single 

wavelengths were especially vital to differentiate samples with higher resistance degree. 

Normalized wavelength difference was suitable to assess changes in the hyperspectral signature 

caused by glyphosate application early after spraying, as the detrimental effect of glyphosate 

application on photosynthesis mechanism changes at different ranges on the hyperspectral 

signature.  

 

Figure 3.1. Flowchart showing the main steps involved in developing glyphosate-resistant weeds 

identification indices.  
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3.3.5. Feature Selection  

The normal distribution of data was assessed since the normality is an underlying 

assumption in many statistical analyses. There are two main methods of assessing normality 

including graphically and numerically. The normality assumption of spectral signature was tested 

using the powerful Shapiro–Wilk test. If the Shapiro equation value is equal to one it means the 

data are distributed normally while small values reject the normality assumption.  

This section outlines how the number of original wavelengths was narrowed down by 

selecting eight discriminative bands. Irrelevant wavelengths may complicate developing SWIs 

algorithm and leading to generate wrong results. Therefore, it is necessary to select the most 

relevant features based on suitable feature selection method. In this study, to reduce the 

computational time and effort, only eight relevant wavelengths were selected by Relief-F feature 

selection. The simple well-known Relief-F approach estimates the relevance of feature 

(wavelength) according to their goodness to separate samples of both classes, which are close to 

each other. Feature relevance was defined as a weight for a feature of a measurement vector. 

There are several advantages for the Relief-F algorithm including correct estimation of feature 

quality with strong dependencies, strict against outliers and nearest-neighbor classification, 

which made it as a widely used feature selection. The Relief-F explores the two nearest 

neighbors of the same class (hit) and from the different classes (miss) for a given k samples in 

the neighborhood. Then, the weight of a feature Fi is changed based on the absolute difference 

between the Fi-values of nearest hit and nearest miss. However, the sum of the Euclidean 

distance between nearest misses and nearest hits for all samples determines the weight 

(relevance) of the features (wavelengths). Pseudo code of the Relief-F algorithm for two class 

classification was reported by Mahlein et al. (2013). 
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To generate SWI, the combination of single wavelength and normalized wavelength 

differences were developed. Each spectral weed index included three wavelengths, and a 

weighting factor for single wavelength (Equation 3.1). The possible weights for single 

wavelength were −1, −0.5, 0.5 and 1.  

 
𝑆𝑊𝐼 = 𝑎𝑏 +

(𝑐 + 𝑑)

(𝑐 − 𝑑)
 

(3.1) 

Where a, c, d are wavelengths chosen from the pool of eight selected wavelengths (a ≠ c ≠ d) and 

b is the weighting factor.   

Since SWIs combination included multiple eight, seven and six choices for the first, 

second and third wavelength respectively, and four weighting factors, the totally 1344 SWIs 

(8×7×6×4) could be generated. However, the optimized combination of the individual 

wavelength and normalized wavelength difference was selected using exhaustive search by 

Relief-F analysis.  

In order to evaluate the classification ability of developed SWIs, a 10-fold cross 

validation Random Forests was employed. 

3.3.6. Random Forest Classifier  

A Random Forest classifier (RF) is a supervised machine learning technique, which 

consists of multiple independent decision trees. Each individual tree randomly uses a subset of 

raw data, which is known as training data that contains about two-thirds of the samples. 

Furthermore, the split node is built by random subset of the features. The one-third of remaining 

data is considered to obtain a test dataset classification as well as to determine the importance of 

features. The predicted result is determined by a majority vote of the ensemble of decision trees 

leading to more accurate and stable output. There are two noticeable parameters considered by 

users including the number of trees (h) which are limited by prediction error, and the number of 



 

58 

randomly selected variables to split the nodes (k). A nested 10-fold cross validation process can 

minimize the estimation error and increase the performance of classifier. In respect of training 

data for building the classification model, we randomly selected glyphosate-resistant weed 

species and susceptible weeds as training set. The most significant advantage of Random Forest 

algorithm is preventing overfitting most of the time by generating smaller trees using random 

subsets of the features.  

3.3.7. Classifier Performance Evaluators 

The performance of RF model was evaluated through a 10-fold cross-validation method. 

For this purpose, data were divided randomly into two parts for training and validation, and the 

process was repeated for 10 times. For each fold, the RF model was built with training data set 

and evaluated with validation dataset. 70% of the samples were selected randomly to train the 

classifier and the remaining 30% was used to test the classification accuracy. 

In addition to model accuracy, the model sensitivity, specificity, precision and F-measure 

were calculated to further evaluate model performance. Classifier performance was evaluated by 

two-class problems based on confusion matrix. The two classes are positive and negative and 

confusion matrix has four values computed based on real and predicted categories namely true 

positive (TP), false positive (FP), false negative (FN) and true negative (TN) values. Since the 

objective of classification was to identify resistant weeds, the resistant weeds (class R) was 

defined by a model output of positive and the susceptible weeds (Class S) was defined by a 

model output of negative in this study. Sensitivity and specificity were introduced to represent 

the proportion of real positive or negative which are correctly classified, respectively (Equation 

3.3&4). The classifier evaluator F-measure defines the harmonic mean of sensitivity and 

precision which is the ratio of predicted positive examples which really are positive (Equation 
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3.6). If the β parameter on F-measure has zero value, which means that sensitivity and precision 

have the same importance.  

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (3.2) 

 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.3) 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (3.4) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.5) 

 
𝐹. 𝑚𝑒𝑎 =

(𝛽2 + 1) × 𝑠𝑒𝑛𝑠 × 𝑝𝑟𝑒𝑐

𝑠𝑒𝑛𝑠 + 𝛽 × 𝑝𝑟𝑒𝑐
, 𝛽 ≥ 0 (3.6) 

3.3.8. Vegetation Indices (VIs)  

In this study, a total of 71 spectral-based vegetative indices were evaluated for their 

potential to identify glyphosate-resistant weeds based on chlorophyll content. Random Forest 

method was developed to find the proper indices for classifying glyphosate-resistant weed 

species. Cross-validation is the most common method to estimate out-of-sample prediction error. 

The inner evaluation of the classifiers performances was carried out by 10-fold cross-validation. 

Finally, we applied the RF model on unseen data samples and evaluated the prediction 

performance using a manually classified set of indices.  

3.3.9. Software   

Matlab software v8.5 (MathWorks, Natick, MA, USA) was used to build the RF 

classification model, and to select the significant features for modeling based on Relief-F 

algorithm. 
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3.4. Results and Discussion 

3.4.1.  Overview of Canopy Reflectance 

Mean raw reflectance data of kochia, waterhemp, and ragweed for both resistant and 

susceptible species after glyphosate application are illustrated in Figure 3.2. The canopy 

reflectance for all three-weed species exhibited significant discrepancy in the red-edge and NIR 

regions which are related to chlorophyll content and cell structure of weed species, respectively. 

The distinguishable differences in canopy reflectance of the weed spices with different 

glyphosate resistance status indicated the possibility of classifying different weed species 

considering the spectral signature in Vis/NIR wavelengths (Figure 3.2).  

All weed species exhibited the same reflectance trend. The spectral reflectance of 

vegetation in Vis/NIR region is characterized by very low reflectance in the red part of the 

spectrum followed by an abrupt increase in reflectance at 700± 740 nanometer (nm) 

wavelengths. However, glyphosate resistant weeds exhibited higher reflectance, in contrast to 

susceptible ones in different wavelengths. The most noticeable differences between resistant and 

susceptible weed species were observed in the wavelength of 766, 779 and above 800 nm.  

Particularly, resistant kochia and waterhemp weeds exhibited higher spectral reflectance as 

compared to susceptible species in infrared regions (>750 nm). While, in the case of ragweed 

more significant discrepancy between resistant and susceptible weed was happened in the 

wavelength of 450- 630 nm. These effects are associated with a decrease in chlorophyll content 

of susceptible weeds as a response of plant stress. In fact, the application of glyphosate results in 

lower photosynthesis rate by inhibiting chlorophyll biosynthesis. Thus, plant stresses by virtue of 

glyphosate application appear to be associated with an inhibition of normal shifts in the spectral 

reflectance towards lower values in susceptible weeds. 
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Figure 3.2. Spectral signature of three-weed species in the range of 450-920 nm. 
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3.4.2. Relief-F Analysis for Feature Selection  

Based on the Relief-F analysis, eight discriminative wavelength features were selected to 

establish the combination of three wavelengths for developing the SWIs (Table 3.1). Developed 

spectral indices (SWIs) should able to classify glyphosate-resistant of kochia, waterhemp, and 

ragweed plants 72 h after herbicide application in Vis/NIR wavebands.  

Table 3.1. Selected discriminative wavebands for developing SWIs. 

Weed species Discriminative Wavebands (nm) 

Kochia 550 520 670 700 640 610 460 580 

Waterhemp 490 760 520 820 850 910 880 790 

Ragweed 910 850 670 880 820 730 790 760 

 

Photosynthetic pigment composition can be used as an indicator of the physiological 

status of a plant. The reference wavelengths at 430 and 445 nm, 531 and 570 nm is attributed to 

the carotenoids and xanthophylls, respectively. Xanthophyll evaluation by employing spectral 

reflectance can be used to assess pigment composition for determining photosynthetic efficiency. 

The reference wavelengths from 550 to 680 nm and red-edge region is related to chlorophyll 

content. Chlorophyll concentration can be derived using spectral reflectance at 675 nm and at 

550 nm. For very low concentrations, the reflectance sensitivity is higher at the maximum 

absorption located at 675 nm and, for medium- to-high chlorophyll concentrations, reflectance 

sensitivity is higher around 550 nm. The red-edge region has been found to be a good indicator 

of chlorophyll content. The region between 700 to 800 nm stands for the brown pigments. The 

reference wavelengths in the range of 800 to 900 nm is called structural reference wavelengths 

and is sensitive to the cell organization structure (cell wall, intercellular space, etc.).  
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In the NIR domain (700–1300 nm), where minimum absorption and high reflectance was 

occurred, the magnitude of reflectance is controlled by internal leaf structure and biochemical 

composition. In this study, susceptible weeds exhibited lower spectral reflectance in the 

wavelength from 800 to 900 nm in comparison with resistant type. Glyphosate had detrimental 

effect on the physiological mechanisms involved in photosynthesis and other physiological 

processes, resulting in poor photosynthetic efficiency (Gomes et al., 2017). So, the application of 

glyphosate resulted in different photosynthesis performances in the plants and photosynthesis 

efficiency altered based on stresses. Photosynthesis efficiency of glyphosate-resistant weeds was 

higher than susceptible type which were affected by physiological stress.  

3.4.3. Relief-F Analysis for Feature Selection 

Based on the proposed combination, three wavelengths and best weighting factor for 

weed species were selected using Relief-F method. Consequently, the SWIs were developed for 

identifying glyphosate-resistant weed species (Table 3.2). The combination of wavelengths SWIs 

confirmed that the photosynthesis efficiency which was affected by glyphosate application 

played an important role for detecting glyphosate-resistant from susceptible plants. So, spectral 

reflectance can be used to assess pigment composition for identifying glyphosate-resistant weeds 

72 h after spraying. 

Table 3.2. SWIs for identifying glyphosate-resistant weeds. 

Weed species SWI 

Kochia 
𝑆𝑊𝐼 = −𝑅460 +

(𝑅520 + 𝑅670)

(𝑅520 − 𝑅670)
 

Waterhemp 
𝑆𝑊𝐼 = −𝑅760 +

(𝑅490 + 𝑅790)

(𝑅490 − 𝑅790)
 

Ragweed 
𝑆𝑊𝐼 = 𝑅670 +

(𝑅790 + 𝑅760)

(𝑅790 − 𝑅760)
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3.4.4. Random Forest Analysis  

The test set validation results of RF analysis are shown in Table 3.3. As mentioned 

before, for model development, 70% of samples was used to train the classifier and 30% was 

selected randomly to test the classification accuracy. The number of samples in the test was 41, 

33, and 33 for kochia, waterhemp, and ragweed, respectively to assess the classification accuracy 

of RF. Resistant kochia, ragweed and waterhemp samples were classified with 96%, 100% and 

97% accuracy, respectively (Table 3.3). The specificity for ragweed was 1 while it was 

calculated as 0.93 and 0.92 for kochia and waterhemp, respectively (Table 3.4). The model 

output indicated that only one resistant sample was misclassified for waterhemp and two 

resistant kochia was predicted as susceptible type. (Table 3.3). In addition, RF was able to 

discriminate susceptible kochia, waterhemp and ragweed with 100% accuracy. The sensitivity, 

specificity, precision, F measure and G mean was computed as 1 (Table 3.4) for ragweed 

samples due to the high performance of the respective model. It means that there was a full 

agreement between classified glyphosate-resistant ragweed and actual class.  

Table 3.3. Confusion matrix of RF classification. 

 

Predicted value 

Kochia Ragweed Water hemp 

SUS RES Total SUS RES Total SUS RES Total 

Actual 

value 

SUS 13 0 13 15 0 15 21 0 21 

RES 2 26 28 0 18 18 1 11 12 

Total 15 26 96% 15 18 100% 22 11 97% 

 

The overall accuracy for ragweed, waterhemp and kochia was reported as 100%, 97 % 

and 96% respectively (Table 3.4). Generally, in classification method, the overall accuracy 

higher than 85% is required to reach the commonly accepted requirements (Castillejo-González 

et al. 2014). The high classification accuracy for three weed species presented that SWIs were 
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powerful enough to identify the resistant weeds. There was no chance for happening 

misclassification in three-weed species due to their sensitivity value (1). Taking into 

consideration the model performance, RF models and SWIs presented a good assessment in 

identification of susceptibility and resistibility in resistant weeds. 

Table 3.4. Statistical measurements of the performance of RF. 

Weed Species Kochia Ragweed Waterhemp 

Classification accuracy, % 96 100 97 

Specificity, ratio 0.93 1 0.92 

Sensitivity, ratio 1 1 1 

Precision, ratio 0.96 1 0.95 

F Measure, ratio 0.96 1 0.98 

 

3.4.5. Vegetation Indices (VI)  

In the context of vegetation status monitoring, the plant species or specific plant stress 

can be identified using spectral reflectance measurement. Vegetation indices (VI) used band ratio 

formula to classify the spectral reflectance into weed species. This technique is based on 

magnifying the discrepancy between the features via manipulating spectral reflectance in one 

band by spectral reflectance in other bands. The most discriminative VI from 71 VIs for 

identifying glyphosate-resistant waterhemp, kochia and ragweed is shown in Table 3.5. The 

triangular vegetation index (TVI) was able to detect glyphosate-resistant waterhemp, kochia and 

ragweed from susceptible plants with 82%, 86% and 94% accuracy (Table 3.6). The triangular 

vegetation index (TVI) was calculated as the area of the triangle defined by the green peak, the 

chlorophyll absorption minimum, and the NIR shoulder in spectral space. Since, chlorophyll 

absorption cause to decrease red reflectance and leaf tissue abundance results in increasing NIR 

reflectance which rises the total area of the triangle (Broge & Leblanc, 2001) 



 

66 

Table 3.5. The most discriminative VI which identify glyphosate-resistant type of weed species. 

Weed species TVI Overall accuracy% 

Kochia 0.5(120 (R750-R550)-200 (R670-R550)) 86 

Ragweed 0.5 (120 (R750-R550)-200 (R670-R550)) 94 

Waterhemp 0.5 (120 (R750-R550)-200 (R670-R550)) 82 

 

The TVI index could classify kochia and ragweed with accepted accuracy (> 85%). 

However, the classification accuracy of developed SWIs was much more than the TVI (Table 

3.6). The chance of misclassification was 22%, 20% and 14% for kochia, ragweed and 

waterhemp. 

Table 3.6. Statistical measurements of the performance of VI. 

Weed Species Kochia Ragweed Waterhemp 

Classification accuracy % 86 94 82 

specificity 0.92 1 0.75 

Sensitivity 0.78 0.8 0.86 

Precision 0.88 1 0.86 

F Measure 0.82 0.89 0.86 

 

3.5. Conclusion 

For site specific weed management system, the difference between spectral signatures of 

susceptible and glyphosate-resistant weeds could be the key to identify discriminative 

wavelengths for detecting resistant plants. The transformation of reflectance into SWIs was a 

potential technique to reduce a large number of wavelengths for detecting herbicide resistant 

weeds. This study demonstrated that spectral weed index developed as a combination of 

weighted single wavelength and normalized wavelength difference were effective in identifying 

glyphosate-resistant weeds. The Relief-F method was employed to select 8 discriminative 
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wavelengths for 3 required wavelengths in SWIs and find the optimized combination from 1344 

feasible combinations. Photosynthetic pigment composition region and cell structure had the 

most discriminative wavelengths due to detrimental effect of glyphosate application on 

photosynthetic mechanism and plant cell structure. The results showed machine learning 

Random Forest method could discriminate resistant kochia, waterhemp and ragweed with 96%, 

97% and 100% accuracy respectively, based on the newly developed SWIs. The high value of 

sensitivity and specificity of RF models proved the ability of SWIs to identify glyphosate 

resistant weeds.   
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4. CAN CANOPY TEMPERATURE DIFFERENTIATE GLYPHOSATE-RESISTANT 

WEEDS IN CROP FIELDS?1 

4.1. Abstract 

The non-optimum application of herbicides with the same mode of action in crop fields 

results in the development of herbicide-resistant weeds. Glyphosate as a widely-used herbicide in 

agriculture has resulted in the development of resistant weeds. The resistance to glyphosate is the 

most common genetic modification (GM) in crops. In this study, the feasibility of plant canopy 

temperature after glyphosate application was investigated as an indicator of herbicide resistance 

in weeds. A greenhouse experiment was conducted on three common weed species, namely, 

waterhemp, kochia, and ragweed, including resistant and susceptible plants. Canopy temperature 

was monitored hourly using a thermal camera for up to 96 h after glyphosate application. Feature 

selection with stepwise regression was used to analyze the discriminative time features, and 

support vector machine (SVM) was used to classify resistant and susceptible weeds based on 

canopy temperature. Stepwise regression method indicated that the most effective time for 

identifying herbicide-resistant weeds was 95 h after herbicide application for waterhemp and 

ragweed, while, herbicide-resistant kochia was effectively identified 46 h after herbicide 

application. The SVM classification model achieved a classification accuracy of 97.4% for 

resistant Kochia, and 100% for resistant waterhemp and ragweed. The results indicated that 

canopy temperature after herbicide application is an excellent indicator of herbicide resistance in 

plants. 

                                                 
1 The material in this chapter was co-authored by Alimohammad Shirzadifar, Sreekala Bajwa, 

Seyed Ahmad Mireei, Heather Zhang. Alimohammad Shirzadifar conceived and carried out the 

experiments and analyzed the observed results. Alimohammad Shirzadifar wrote this chapter in 

consultation with Sreekala Bajwa. Seyed Ahmad Mireei and Heather Zhang helped in data 

processing. Sreekala Bajwa supervised findings of this work. 
 



 

69 

Keywords: Canopy temperature, Glyphosate, Herbicide-resistance, Weeds, Support 

vector machine. 

4.2. Introduction 

Herbicide application is the most common and economical weed management strategy in 

the US agriculture (Zimdahl, 2018), as the economic cost of not managing weeds is estimated 

around $21 billion in the US (Abdul Aziz, 2015; Yontz, 2014). However, the repeated and non-

optimal application of herbicides with the same mechanisms of action has caused the evolution 

of herbicide-resistant weeds (Green, 2018). Glyphosate [N-(phosphonomethyl)glycine)] is a 

widely-used herbicide in agriculture and forestry for industrial weed control in the US 

(Benbrook, 2016). The annual farm-sector usage of glyphosate was approximately 108.8 million 

kg in 2014, which is a 100-fold increase since the first decade of its use in the 1970s (Myers et 

al., 2016). The emerging issue of the glyphosate-resistant weeds resulting from the broad 

adoption of roundup ready crops has the potential to have a huge negative impact on US 

agriculture (Green, 2018; Myers et al., 2016).  

Weed scouting is a key component of integrated weed management programs, 

particularly if there are resistant weeds involved. Three general characteristics used for weed 

species identification are biological morphology, visual texture, and spectral characteristics 

(Hong et al., 2012).  

Glyphosate is a non-selective foliar chemical that prevents the plants from making certain 

proteins which are essential for plant growth (Zhong et al., 2018). This herbicide converts 

shikimate-3-phosphate (S-3-P) together with phosphoenolpyruvate (PEP) into 

enolpyruvalshikimate-3-phosphate (EPSP), leading to accumulation of shikimic acid in plant 

leaves (Lorentz et al., 2014). Shikimate accumulation following glyphosate application has been 
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used to identify glyphosate-resistance plants (Corrêa et al., 2016). However, the extraction of 

shikimic acid directly from the plant tissue in the lab is time-consuming and costly (Xu et al., 

2017). 

Glyphosate-resistant and glyphosate-susceptible weeds look alike and are not 

distinguishable visually. Therefore, identification of glyphosate-resistant weeds may not be 

accomplished using the application of common visual identification techniques. Resistance 

discrimination based on optical or temperature characteristics of the canopy that are not visible to 

the human eye has a variety of advantages such as non-contact detection, simple measurement 

process, fast response, and high reliability. Glyphosate-resistant and glyphosate-susceptible 

Palmeramaranth (Amaranthuspalmeri S.Wats.) was discriminated with hyperspectral imagery 

acquired in lab condition with the accuracy of more than 90% (Reddy et al., 2014b). However, it 

is difficult to translate such lab results to canopy scale in field condition due to the complex 

Vis/NIR optical properties of leaves, the variability introduced by varying field conditions, and 

the canopy structure even within the same species canopies (Roberts et al., 2004).  

Remote sensing of the canopy temperature using thermal imaging can be a reliable way 

to detect changes in the physiological status of plants in response to different biotic and/or 

abiotic stresses, since abiotic or biotic stresses often result in decreased rates of photosynthesis 

and transpiration in the plants (Anjum et al., 2011; Zhang et al., 2016). Glyphosate application 

results in a reduction of the photosynthetic rate in susceptible plants (Gomes et al., 2017; 

Mateos-Naranjo et al., 2009; Yanniccari et al., 2012; Zobiole et al., 2012). When the 

photosynthetic mechanism is less efficient, more light energy becomes lost as heat, increasing 

canopy temperature. Therefore, we hypothesized that resistant weeds will have lower canopy 

temperatures in comparison with susceptible weeds immediately after glyphosate application. 
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Evapotranspiration of water during the photosynthesis diurnal phase has a cooling effect on the 

plants. However, reduced evapotranspiration rates because of reduced leaf stomatal openings 

lead to higher canopy temperatures. Since plant canopy temperature is a good indicator of leaf 

transpiration (Mangus et al., 2016), plant canopy temperature early after herbicide application 

could be a potential discriminative factor to identify glyphosate-resistant weeds early after 

herbicide spraying.  

In an integrated weed management system, the optimal time for identifying glyphosate-

resistance is a vital factor for timely weed management. Stepwise multiple regression analysis 

could select the most significant features for developing an empirical model (Bajwa & Kulkarni, 

2011; Maire et al., 2015). Stepwise feature selection can be combined with support vector 

machine (SVM) classification method for feature selection (the optimal time), predictive 

modeling, and classification (Dogan & Uysal, 2018). 

This study was conducted with the objective of developing and validating a method to 

identify the glyphosate-resistant weeds from susceptible ones in selected weed species, using 

canopy temperature early after glyphosate application. We also introduced the concept of 

thermal signature for detecting glyphosate-resistance in three weed species including waterhemp 

(Amaranthus rudis), kochia (Kochia scoparia), and ragweed (Ambrosia artemisiifolia L.), the 

weeds known to have glyphosate-resistance in North Dakota, US (Zollinger et al., 2006). 

Furthermore, the classification performance of combining stepwise regression for feature 

selection with SVM classification strategy to distinguish herbicide-resistant weeds was 

evaluated. 
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4.3. Materials and Methods 

4.3.1. Greenhouse Experiment 

To assess the influence of glyphosate application on canopy temperature, three common 

glyphosate-resistant weeds in the region, namely waterhemp, kochia, and ragweed were selected 

for a greenhouse study. The experiment was carried out in a greenhouse at North Dakota State 

University in Fargo, ND. A selection of weed biotypes was raised in March 2017 in the 

greenhouse (Figure 4.1a) from the collection of susceptible and resistant plants with 

approximately the same number of plants in each category.  

Waterhemp plants with the smooth texture and oval leaves have reddish tinted underside 

and shiny surface (Figure 4.1b). Kochia leaves are elliptic, dull green above, purplish on the 

underside, and covered in soft hairs (Figure 4.1c). Ragweed has egg-shaped leaf outline and once 

or twice compounded leaves (pinnatifid) that are symmetrically distributed to either side of the 

hairy green stem. The leaf stem is hairy on the upper or dorsal surface and margin and densely 

appressed on the lower surface (Figure 4.1d). In total, 160 seeds for each species were planted in 

labeled SC7 cones with a cell diameter of 3.81 cm and a depth of 21 cm (Figure 4.1a). The 

labeled planting cones were filled with a commercial potting mix (Metro-Mix 360; Sun Gro 

Horticulture, Bellevue, WA) to which the seeds were planted. Plants were irrigated daily at 10 

am in each individual cell, which had a center drainage hole at the bottom and four side-drain 

holes on the tapered end. Cone cells were arranged randomly in 70×30.5×17.15 cm3 

(24"×12"×6.75") racks, with each rack holding 98 cells (Figure 4.1a). The greenhouse 

temperature was set at 28± 3 °C during the day, and 22 ± 3 °C during the night, with natural light 

supplemented by sodium vapor lamps to provide a 12 h photoperiod. 
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(a) 

   

(b) (c) (d) 

Figure 4.1. a) Experimental set up in the NDSU greenhouse showing cones of weed plants of the 

resistant and susceptible types. Three weeds addressed in this study were b) Waterhemp, c) 

Kochia, and d) Ragweed. 

When the plant’s height reached close to 10 cm, the weeds were sprayed with 

recommended full rate (1.7%) of glyphosate using a cabinet sprayer (DeVries Manufacturing, 

Hollandale, MN, USA). Spraying was done at 40 psi pressure and 2.23 m/s velocity using a 

model 8001 nozzle mounted on the boom 40 cm above the plants (Figure 4.2). 
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Figure 4.2. A cabinet sprayer, where weed plants are being sprayed with the recommended dose 

of glyphosate.  

4.3.2.  Thermal Images Acquisition 

Thermal images of both susceptible and resistant weeds were acquired on an hourly basis 

during the first 96 h after herbicide application. A USB calibrated ICI thermal camera (Model 

9640 P-Series Infrared Camera, ICI, Beaumont, TX, USA) was used to acquired thermal images 

of the weed plants. The camera was equipped with a 24.8 × 18.6 FOV lens with a focal length of 

25 mm. Thermal images were acquired for a total of 418 plants including 132 waterhemp, 154 

kochia, and 132 ragweed plants. The thermal camera operated in the long-wave infrared (LWIR) 

region of 7 to 14 µm range and recorded grey level images of 640 by 480-pixel size. The camera 

could operate at a temperature range of -40 to 140 °C. The grey level values of the thermal 

images were converted to actual temperature values using a built-in calibration function in the IR 

Flash software (Infrared Camera ICI. TX, USA) (Figure 4.3).  
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Figure 4.3. A sample thermal image of the weed plants viewed in the IR Flash software. The 

average temperature for the various zones can be seen on the right-hand panel.  

The IR Flash software was used to control the camera operation and its settings such as 

the gain temperature level for the scene, hourly operation, and the specific folder where images 

are saved. For example, Figure 4.3 is the IR Flash window which illustrates colorized thermal 

image over ragweed plants. The IR256 color lookup ramp was used for visualization so that the 

coolest canopies were in the dark black and the hottest canopies were in the green following by 

pink. Before starting the image capture, a Blackbody ICI 350 portable IR calibration (ICI. TX, 

USA) was used to check the camera calibration. The thermal camera was mounted 1.6 m above 

the plants on a cross-beam (Figure 4.4) throughout the experiment, and it provided a 2.5 mm 

spatial resolution in the image. To account for environmental conditions, the air temperature and 

relative humidity in the greenhouse were recorded by a HOBO pro series sensor (Onset MA, 

USA), and leaf water content was recorded with a PhotosynQ (Michigan State University, USA). 
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Figure 4.4. Thermal camera set up in the NDSU greenhouse, with a close-up of the thermal 

camera, and the plant racks placed on a table. 

In this study, a novel thermal signature feature was extracted from the thermal images 

that was invariant to the time transition. The thermal signature describes certain characteristics of 

the target objects (Christiansen et al., 2014). Thermal signatures of each weed species and 

resistance condition were developed based on individual plant canopy temperature changes 

during the 96 h after herbicide application. A total of 95 thermal signatures were extracted to 

classify resistant weeds versus susceptible one. The signature was normalized by subtracting it 

with the ambient temperature. Since we aimed to compare the plant canopy temperature of 

resistant and susceptible weeds at the same environmental condition (greenhouse), the 

atmospheric relative humidity fluctuations during data collection in the greenhouse was not 

significant (Figure 4.5). So, the canopy temperature of resistant and susceptible weeds was 

normalized using Tcanopy-Tair equation. 
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Figure 4.5. Relative humidity fluctuation during data collection in the greenhouse.  

Weeds were inspected 15 days after glyphosate application and classified as resistant or 

susceptible based on its survival condition. Dead or dying plants 15 days after herbicide 

application were labeled as susceptible while green and alive plants were labeled as glyphosate-

resistant weeds (Figure 4.6). Model development included feature selection by stepwise 

regression analysis and modeling with support vector machine (SVM). 

 

Figure 4.6. A visual illustration of resistant and susceptible weeds.  
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4.3.3. Measurement of Photosystem II Efficiency 

Photosystem II (PSII) is where most of the energy from sunlight gets captured and used 

by plant to make food. PSII efficiency changes quite quickly based on plant stresses before this 

change is noticeable by the eye. Measurement of PSII efficiency in glyphosate-resistant and 

susceptible weeds in the selected three species was performed in a non-invasive method using a 

MultispeQ-Beta instrument (Kuhlgert et al., 2016) controlled by the PhotosynQ platform 

software (Michigan State University, USA). MultispeQ has four LEDs with peak emission 

wavelengths at 530, 605, 650 and 940 nm and a photodiode detector which is sensitive to 700–

1160 nm light, making it possible to estimate a range of fluorescence-based photosynthetic 

parameters. Measurements were carried out 1 to 4 days after the application of glyphosate on 

fifteen plants of each weed type.  

4.3.4. Feature Selection with Stepwise Regression Analysis 

Prior to feature selection and classification, data were evaluated for normal distribution 

since the normality is an underlying assumption in many statistical analyses. There are two main 

methods of assessing normality including graphical and numerical. The normality assumption of 

plant canopy temperature was tested using the Shapiro–Wilk test. If the Shapiro-Wilk criterion is 

equal to one, it means the data are distributed normally while small values reject the normality 

assumption.  

High-dimensional features are usually time-consuming in both features’ computation and 

model utility. The stepwise selection process within the regression analysis was implemented in 

this study to select a set of features with the most discriminatory power for identifying 

glyphosate-resistant weeds. The stepwise regression is a technique of developing a regression 

http://en.wikipedia.org/wiki/Photosystem_II
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model in which the predictor variables are selected based on their ability to explain the most 

variability in the response variable.  

In regression analysis, the regression function is the relationship between a dependent 

variable (Y) and one or more independent (predictor variables, Xi). A multiple linear regression 

model with more than one predictor variable can be presented as (Ghani & Ahmad, 2010): 

 𝑌 = 𝛽0  + 𝛽1𝑋1 + 𝛽2𝑋2 ⋯ + 𝛽𝑘𝑋𝑘 + 𝜀 (4.1) 

Where Y is the dependent variable and represents the temperature of resistant or susceptible 

weed. 𝛽0 is a constant variable, 𝛽i denotes coefficient of ith predictor variable, Xi is the 

temperature of weed species in ith hours after glyphosate application (predictor variable), and 𝜀 

represents the error. 

In this research, the stepwise selection was used to find the best time after glyphosate 

application for identifying glyphosate-resistant weeds based on canopy temperature. Significance 

level for a variable to enter and stay in the model was set at P=0.05 and the criteria for features to 

be removed from the model was that P > 0.1.  

Multiple coefficient of determination (R2), multiple correlation coefficient (R) and 

adjusted R2 were used elsewhere to interpret stepwise analysis (Darlington & Hayes, 2016). The 

adjusted R2 is a modified version of R2 that has been adjusted based on the number of predictors 

in the model. The adjusted R2 increases only if the new term improves the model more than 

expected by chance. In contrast, it decreases when a predictor improves the model by less than 

expected by chance (Bates et al., 2014). 

4.3.5. SVM Classification 

After identifying the most discriminative features with stepwise regression method, an 

SVM model was used to classify glyphosate-resistant and susceptible weeds. In machine 
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learning theory, SVM was employed to classify the dataset into two categories, building the 

model as it is initially trained and consequently used to predict whether a new data point belongs 

to one category or the other.  

4.3.6. Non-Linearly Separable Binary Classification 

In SVM, all the samples, regarded as p dimensional vectors, will be divided into two 

classes using a (p-1) dimensional hyperplane, which is called a linear classifier. The 

classification problem is a set of training vector with N training samples belonging to two classes 

described as  {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, 2, … . , 𝑁}, where 𝒙𝒊 are the input vectors and 𝑦𝑖 are the labels of 

class (𝒚𝒊 = 1 (class 1), -1 (class 2)). The classification function can be described as follows 

(Cristianini & Shawe-Taylor, 2000; Jayadeva et al., 2002; Jayadeva & Chandra, 2002): 

 𝑦𝑖 = 𝝎 ∙ 𝒙𝒊 − 𝑏 (4.2) 

Where 𝝎 is a vector normal to the hyperplane, |𝑏| ∕ ||𝝎|| is the perpendicular distance from the 

hyperplane to the origin (Figure 4.7), and ||𝝎|| is the Euclidean norm of 𝝎. Only certain data 

points (support vectors in SVM) influence the equation of the hyperplane while remaining data 

points are known as redundant data.  

 

Figure 4.7. A schematic illustration of the Support Vector Machine (SVM) classification method 

illustrating the hyperplane classifier between two classes (Bajwa & Kulkarni, 2011). 
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For computing support vectors, we need to prevent data points from falling into the 

margin, thus one of the following constrained conditions would be required: 

𝛚 ∙ 𝒙𝒊 − 𝑏 ≥ 1, (𝑦𝑖 = 1)  for 𝒙𝟏𝒊 of the first class  

𝛚 ∙ 𝒙𝒊 − 𝑏 ≤ −1, (𝑦𝑖 = −1) for 𝒙𝟐𝒊 of the second class 

[𝝎 𝒙 − 𝑏 = 0] is defined as the hyperplane and the points which are on the supporting vector of 

[𝛚 ∙ 𝒙𝒊 − 𝑏 = 1] will have a perpendicular distance from the origin of [
1−𝑏

‖𝜔‖
]. Similarly, those 

points on [𝛚 ∙ 𝒙𝒊 − 𝑏 = −1] would have the distance of [
−1−𝑏

‖𝜔‖
]. Consequently, the distance 

between the two supporting planes can be obtained as [
2

‖𝜔‖
], which is termed as the margin of 

hyperplane, ρ(𝛚), given by: 

 ρ(𝛚) = 2/||𝝎|| (4.3) 

For optimal classification, we need to maximize this distance via minimizing ||𝝎||. 

Technically, the constrained conditions (dividing the data points into two distinct classes) are 

required in all classification issues. However, some of the sampled points from the two classes 

may overlap each other in the realistic cases. So, a relaxation for the constrained conditions is 

considered with the majority of points falling on the “right” side of the hyperplane and a few 

points falling in between the hyperplanes, which are treated as misclassifications or errors. 

Therefore, the optimization of the hyperplane requires maximization of the distance of the 

hyperplane and minimization of the errors. For this purpose, relaxation factors would be 

introduced to balance between distance maximization and error minimization. When the 

relaxation factors are introduced, the Equation 4.4 would be defined to maximized ρ(ω) 

(Jayadeva et al., 2002; Karimi et al., 2006). 
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∅(ω) =  ‖𝝎‖2 2⁄ + 𝐶 ∙ ∑ 𝑧𝑖

𝑁

𝑖=1

 (4.4) 

Where 𝑧𝑖 present the relaxation factors, and C is the trade-off for balancing the maximized 

margin of the hyperplane and the minimized classification error.  

The explicit solution of Equation 4.4 is rather difficult as it is a convex quadratic 

optimization problem. By applying Lagrangian multipliers, Equation 4.4 could be written as 

Equation 4.5 for the linear model (Jayadeva et al., 2002; Karimi et al., 2006). 

 

ω(α) =  ∑ 𝛼𝑖

𝑁

𝑖=1

− (∑ ∑ 𝛼𝑖𝛼𝑗

𝑁

𝑗=1

𝑦𝑖𝑦𝑗𝒙𝒊 ∙ 𝒙𝒋

𝑁

𝑖=1

) 2⁄  , (∑ 𝛼𝑖𝑦𝑖 = 0,0 ≤ 𝛼𝑖

𝑁

𝑖=1

≤ 𝐶) (4.5) 

In which, i is the positive Lagrange multipliers. 

A complicated non-linear hyperplane is required to separate the class members that are 

not linearly separable. The SVM simplifies this problem by transforming the training points into 

a higher dimensional space (feature space) where the features are linearly separable. By this 

transformation, in the higher dimensional space, 𝒙𝒊 and 𝒙𝒋 are replaced by φ(𝒙𝒊) and φ(𝒙𝒋), 

respectively, and Equation 4.5 could be written as (Jayadeva et al., 2002; Karimi et al., 2006): 

 

ω(α) =  ∑ 𝛼𝑖

𝑁

𝑖=1

− (∑ ∑ 𝛼𝑖𝛼𝑗

𝑁

𝑗=1

𝑦𝑖𝑦𝑗φ(𝒙𝒊) ∙ φ(𝒙𝒋)

𝑁

𝑖=1

) 2⁄  , (∑ 𝛼𝑖𝑦𝑖 = 0,0 ≤ 𝛼𝑖

𝑁

𝑖=1

≤ 𝐶) (4.6) 

A “Kernel Function”, 𝑲(𝒙𝒊, 𝒙𝒋) which is the dot product of φ(𝒙𝒊) and φ(𝒙𝒋) allows the 

non-feasible optimization Equation 4.6 to be solved. Three common kernel functions such as 

radial basis function (RBF), sigmoid, and polynomial kernels are used in SVM classifier. The 

RBF is the most commonly used kernel function in SVM classification problems and is described 

in Equation 4.7. 
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 𝑲(𝒙𝒊, 𝒙𝒋) =  𝒆−𝛾(𝒙𝒊−𝒙𝒋)𝟐
 (4.7) 

Where 𝛾 represents kernel parameter. Therefore, the optimization problem for non-linear cases is 

modified to (Jayadeva et al., 2002; Karimi et al., 2006): 

 

ω(α) =  ∑ 𝛼𝑖

𝑁

𝑖=1

− (∑ ∑ 𝛼𝑖𝛼𝑗

𝑁

𝑗=1

𝑦𝑖𝑦𝑗𝑲(𝒙𝒊, 𝒙𝒋)

𝑁

𝑖=1

) 2⁄  , (∑ 𝛼𝑖𝑦𝑖 = 0, 0 ≤ 𝛼𝑖

𝑁

𝑖=1

≤ 𝐶) (4.8) 

In which, 𝛾 and C are the determinants for SVM classifier evaluation. Parameter 𝛾 is the kernel 

parameter that defines the influence of a single training example. Parameter C is the penalty 

parameter of the error term which controls the tradeoff between smooth decision boundary and 

classifying the training points correctly.  

4.3.7.  Evaluation of SVM Classification 

The performance of SVM classifier is sensitive to the C and 𝛾 parameters. A low value of 

C parameter makes the decision surface smooth and cause under-fitting, while a high C value 

aims at classifying all training examples correctly and lead to the over-fitting of the training data. 

Furthermore, very high 𝛾 value tries to classify single training data and causes a serious over-

fitting problem (Cao & Tay, 2003).  

Since there is no structured way to choose the optimum values of 𝛾 and C parameters in 

developing the SVM model, they were determined through trial and error routes in this study. 

The model calibration included running the model with different value sets of γ and C were 

developed using the training data set, and then building the SVM model with the optimum 

values. The generalization ability of the model was determined using the test data set. Finally, 

the performance of the SVM model was evaluated through a 10-fold cross-validation method. 

For this purpose, data were divided randomly into two sets for training and validation, and the 

process was repeated for 10 times. For each fold, the SVM model was built with training data set 
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and evaluated with validation data set. In this research, the optimal values of C and 𝛾 parameters 

were selected to be 80 and 0.07, respectively. Furthermore, 70% of the samples were selected 

randomly to train the classifier and the remaining 30% was used to test the classification 

accuracy. 

In addition to model accuracy, the sensitivity of the model and kappa coefficient were 

calculated to further evaluate model performance. Since the objective of classification was to 

identify resistant weeds, the resistant weeds (class R) was defined by a model output of YES and 

the susceptible weeds (Class S) was defined by a model output of NO in this study. Sensitivity 

and specificity were introduced to represent the proportion of actual YES or NO which are 

correctly classified, respectively. Kappa coefficient described the performance of the model and 

examined the degree of agreement between the actual class and predicted class more than 

expected by chance. A kappa coefficient of 1 means a full agreement, and zero means full 

disagreement between assigned and the actual class. 

4.3.8. Software 

Matlab software v8.5 (MathWorks, Natick, MA, USA) and IBM SPSS Statistics 20.0 

(IBM Analytics, Armonk, New York, USA) were used to build the SVM classification model, 

and to select the significant features for modeling.  

4.4. Results and Discussion 

4.4.1. Plant Canopy Temperature of Glyphosate-Resistant and Susceptible Weeds 

The difference between plant canopy temperature and ambient temperature (ΔT) over the 

period of the experiment for resistant and susceptible weed species of kochia, waterhemp, and 

ragweed is illustrated in Figure 4.8. All three-weed species exhibited a higher value of ΔT for 

susceptible weeds 24 h after spraying glyphosate in comparison with the resistant weeds. The 
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temperature difference between the susceptible and resistant weeds of the same species 

fluctuated through 96 h after herbicide application. 

(a) 

 

(b) 

 

(c) 

 

Figure 4.8. The difference between plant canopy temperature and ambient temperature (thermal 

signature) of resistant and susceptible three weed species (a) Waterhemp, (b) Kochia, and (c) 

Ragweed over time for the first 96 h after a glyphosate application.  
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As Figure 4.9 shows, no obvious trend was observed in ΔT as the relative humidity 

fluctuated, and ΔT values were not dependent on ambient relative humidity.  

(a) 

 

(b) 

 

(c) 

 

Figure 4.9. The difference between plant canopy temperature and ambient temperature of 

resistant and susceptible three weed species vs. relative humidity: (a) Waterhemp, (b) Kochia, 

and (c) Ragweed. 
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Furthermore, there was not significant difference between leaf water content for control 

and sprayed plants during four days after glyphosate application (Table 4.1). 

Table 4.1. The effect of glyphosate application on leaf water content of weed species.  

Weed species 
 No. of Days after herbicide application 

 2 3 4 

Kochia 

Control 78.3%+2.4a 78.3%+2.6a 78.5%+2.6a 

Resistant 79.1% +1.8a 78.5%+2.4a 78.3%+2.8a 

Susceptible 78.5% +2.7a 77.7%+3.1a 78.6%+ 2.8a 

Waterhemp 

Control 74.2%+ 3.2b 74.5%+3.1b 74.5%+ 2.9b 

Resistant 74.5%+3.3b 73.3%+3.6b 73.2%+3.4b 

Susceptible 73.3%+2.4b 73.2%+2.7b 72.5%+2.4b 

Ragweed 
Control 71.3%+4.1c 71.4%+3.9c 72.2%+3.9c 

Resistant 71.6%+4.2c 70.2%+3.5c 71.3%+3.1c 

 Susceptible 71.2%+4.2c 71.6%+4.4c 70.2%+3.2c 

* The same letters in each raw indicate a non-significant difference in the mean values at  = 0.05. 

The elevated temperature of the susceptible weeds can be explained by the fact that 

glyphosate is detrimental to the physiological mechanisms involved in photosynthesis and other 

physiological processes, resulting in poor photosynthetic efficiency. This in turn results in a 

significant loss of light energy as heat in the susceptible plants compared to resistant weeds 

(Gomes et al. 2017). 

4.4.2. Stepwise Regression Analysis for Feature Selection  

The stepwise regression analysis resulted in the standard error of 0.021, 0.061 and 0.009 

for kochia, ragweed and waterhemp, respectively considering one discriminative feature plant 

canopy temperature after glyphosate application to identify resistant weeds. (Table 4.2). A slow 

convergence of the standard error of estimation was observed for all three-weed species by 

increasing the number of predictive features. Similarly, the 𝑅𝑎𝑑𝑗
2 value was improved by adding 

more predictive variables in kochia.  
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Based on the model performance, nine features including F46, F60, F91, F19, F15, F28, F44, 

F70, and F36 were selected to establish the model (Table 4.3) for classification of glyphosate-

resistant kochia (subscripts indicate hours after glyphosate application). These nine variables 

indicated that the resistant kochia weeds could be successfully identified based on the plant 

canopy temperature 46, 60, 91, 19, 15, 28, 44, 70, and 36 h after glyphosate application. For 

identifying glyphosate-resistant ragweed and waterhemp, seven and five input features were 

selected, respectively (Table 4.3).  

Input variables of F95, F57, F26, F77, F25, F22, and F24 were selected for the identification of 

resistant ragweed. The standard error of estimation started from a high value of 0.061 for one 

feature (F95), converged fast to 0.003 with 2 features, and leveled off later. It means that the plant 

canopy temperature at 57, 26, 77, 25, 22, and 24 h after glyphosate application were critical to 

identify the resistant from susceptible ragweed with 𝑅𝑎𝑑𝑗
2  equaling to 1.  

The five features selected for identifying resistant waterhemp included plant canopy 

temperature at 95, 57, 26, 55, and 5 h after glyphosate application. The standard error of 

prediction model converged from 0.009 to 0.002 with 5 selected features, resulting in 𝑅𝑎𝑑𝑗
2  equal 

to 1 (Table 4.2). 

In fact, it is time and labor-intensive to collect plant canopy temperature at 5 to 9 times 

after herbicide application to identify glyphosate-resistant weeds. Therefore, the improvement in 

the accuracy by increasing the number of features can be neglected as the accuracy of predicted 

model by considering one feature was acceptable. The best feature time for the prediction of 

glyphosate-resistant waterhemp and ragweed was 95 h after spraying with  𝑅𝑎𝑑𝑗
2  value 1 and 

0.985, respectively. In order to identify glyphosate-resistant kochia, plant canopy temperature 46 

h after glyphosate spraying was the most discriminative feature with  𝑅𝑎𝑑𝑗
2  value of 0.998. 
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The most discriminative variable was achieved after more than 24 h after glyphosate 

application for all three-weed species. This result is in the agreement with the absorption pattern 

of glyphosate in the plants. The absorption pattern of glyphosate in the waterhemp and ragweed 

populations was similar up to 24 h after herbicide application for both susceptible and resistant 

types, however, after this time, the absorption of susceptible weeds was noticeably more than the 

resistant ones (Whitaker et al., 2013). The total chlorophyll and plastoquinone concentrations 

decrease in plant leaves after herbicide application. The carotenoid concentration was shown to 

decrease by 24 h after herbicide application (Gomes et al., 2017). The stepwise feature selection 

process confirmed the glyphosate-based herbicide mode of action interconnecting its effects on 

shikimate pathway, photosynthetic process, and oxidative events in plants which have been 

reported by Gomes et al., (2017) for the first time. 

Table 4.2. Model summary of stepwise regression for feature selection. 

NO 
Adjusted R2 Std. error of the estimate 

Waterhemp Ragweed Kochia Waterhemp Ragweed Kochia 

1 1 .985 .998 .009 .061 0.021 

2 1 .999 .999 .003 .003 0.018 

3 1 1 .999 .003 .003 0.017 

4 1 1 .999 .002 .002 0.016 

5 1 1 .999 .002 .002 0.015 

6  1 .999  .002 0.014 

7  1 .999  .002 0.013 

8   .999   0.012 

9   1.000   0.011 

 

An analysis of canopy temperatures at the time points identified in stepwise regression 

process revealed that the largest temperature difference in kochia was observed at 46 h after 
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glyphosate application (Figure 4.10a), which matched well with the feature selection results from 

the stepwise model (Table 4.3).  

 (a) 

 

(b) 

 

(c) 

 

Figure 4.10. Features selected by the stepwise regression process plotted for resistant and 

susceptible plants of a) Kochia, b) Waterhemp, and c) Ragweed.  
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The largest temperature difference in waterhemp and ragweed was achieved at 95 h after 

the herbicide application (Figure 4.10b and 10c). This is consistent with the finding that 

glyphosate activations rapidly reduces photosynthesis activity, and it is translocated with 

photosynthesis from the leaves to the meristematic tissue to reach the target-site, achieving 

maximum uptake at 96 h after treatment (Alcántara-de la Cruz et al., 2016). 

The stepwise regression model to predict the plant canopy temperature of selected weed 

species was developed based on the most discriminative features for identifying glyphosate-

resistant weeds (Table 4.3). 

Table 4.3. Stepwise regression model developed from thermal signatures weeds. 

Weed species Modela 

Kochia 
Y = 12.073-0.293*F46-0.354*F60-0.05*F91+0.102*F19+0.021*F15+0.268*F28-

0.135*F44+0.255*F70-0.137*F36 

Ragweed 
Y = 1.808-0.191*F95+0.173*F57+0.102*F260.106*F77+0.006*F25+0.065*F22-

0.05*F24 

Waterhemp Y = 2.000-0.191*F95+0.182*F57+0.105*F26-0.115*F55+0.017*F5 

a Fi (i = 1,2, …) = plant canopy temperature ith  after glyphosate application. 

Y is dependent variable and represents the temperature of resistant or susceptible weed. 

4.4.3. Measurement of Photosystem II Efficiency 

The application of glyphosate can affect photosynthesis in the plants, and photosynthesis 

efficiency alters based on stresses. Photosynthesis efficiency of glyphosate-resistant weeds is 

much higher than susceptible weeds from one to four days after spraying (Figure 4.11).  
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Figure 4.11. Comparison of photosynthesis’s performance measured from 1 to 4 days after 

glyphosate application on the weeds (Error bars represent the standard deviations). No 

significant difference was observed in the photosynthetic efficiency for different weed species in 

the first day. However, resistant weeds exhibited significantly higher photosynthetic efficiency 

than susceptible weeds two days after herbicide application. 
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4.4.4. SVM Analysis 

Resistant kochia samples were successfully classified with 100% accuracy, while the 

waterhemp and ragweed resistant weeds were classified with 97.4% accuracy (Table 4.4). The 

specificity of the classification model was 1 for all three-weed species. The model output 

indicated that only one resistant sample was misclassified for waterhemp and ragweed (Table 

4.4). In addition, SVM was able to discriminate susceptible weeds with 100% accuracy for all 

three-weed species. The maximum kappa coefficient was computed as 1 (Table 4.4) for kochia 

samples which was due to the high performance of the respective model. It means that there was 

a full agreement between classified glyphosate-resistant kochia and actual class.  

Table 4.4. Confusion matrix of SVM classification. 

 

Predicted value 

Kochia Ragweed Water hemp 

NO YES Total NO YES Total NO YES Total 

Actual 

value 

NO 23 0 23 19 0 19 21 0 21 

YES 0 23 23 1 18 19 1 16 17 

Total 23 23 100% 20 18 97.4% 22 16 97.4% 

 

The kappa coefficients for waterhemp and ragweed were reported as 0.947 and 0.948, 

respectively (Table 4.5). This strong degree of agreement between actual and predicted classes 

for three weed species presented that thermal features after herbicides application were powerful 

enough to identify the resistant weeds. Misclassifications occurred in both ragweed and 

waterhemp discrimination with the sensitivity values of 0.947 and 0.941, respectively (Table 

4.5), indicating that resistant weeds could be misidentified by chance of 5.3% and 5.9%. Taking 

into consideration the limited number of sample data and weed species, SVM models and 



 

94 

thermal features of weeds presented a good performance in identification of susceptibility and 

resistibility in weeds. 

Table 4.5. Statistical measurements of the performance of SVM. 

Weed Species Kochia Ragweed Waterhemp 

Classification accuracy % 100 97.4 97.4 

specificity 1 1 1 

Sensitivity 1 0.947 0.941 

Kappa Coefficient 1 0.948 0.947 

 

4.5. Conclusion 

The study demonstrated the feasibility of stepwise regression-based feature selection and 

SVM classifier to identify resistant weeds based on weed species’ thermal signature. The 

stepwise regression method was able to select the optimum time after glyphosate application to 

identify the glyphosate-resistant type of kochia, ragweed, and waterhemp. The strong degree of 

agreement between actual resistant type and predicted resistant plant for three weed species 

revealed that thermal features after herbicides application were powerful enough to identify the 

resistant weeds with high accuracy. Based on the test set validation results, SVM machine 

learning classified glyphosate-resistant weed species with more than 97 % accuracy. The most 

effective features to obtain high accuracy classification were more than 24 h after glyphosate 

application in this study. According to the stepwise regression model results, 95 h after spraying 

was the most discriminative time to identify glyphosate-resistant ragweed and waterhemp with 

reliable accuracy. Resistant kochia weeds could be identified based on plant canopy temperature 

46 h after glyphosate application. The results of this study exhibited a novel approach to identify 

glyphosate-resistant weeds based on canopy temperature in support of SSWM. 



 

95 

4.6. Acknowledgment 

We thank Sandy Johnson and Mark Ciernia from NDSU greenhouse for their help with 

the greenhouse experiment. The authors would like to thank the North Dakota Agricultural 

Experiment Station, North Dakota Soybean Council, and the North Dakota Department of 

Commerce for providing grant support to conduct this research. 

 

  



 

96 

5. FIELD IDENTIFICATION OF WEED SPECIES AND GLYPHOSATE-RESISTANT 

WEEDS BASED ON UAS IMAGERY IN EARLY GROWING SEASON1  

5.1. Abstract 

Accurate weed mapping in early growing season is an essential step in a site-specific 

weed management (SSWM) system. This study focuses on validating the potential application of 

high resolution multispectral and thermal UAS images in classification of weed species and 

glyphosate-resistant weeds at an early phenological stage. A field experiment was conducted to 

evaluate supervised classification methods to identify three-weed species including waterhemp, 

kochia, and ragweed. The accuracy of six classification algorithms namely Parallelepipeds (P), 

Mahalanobis Distance (MD), Maximum Likelihood (ML), Spectral Angle Mapper (SAM), 

Support Vector Machine (SVM) and Decision Tree (DT) implemented at pixel level and object-

level for weed species classification were studied. Thermal infrared imagery was also used to 

assess the canopy temperature variance within the weed species to identify the glyphosate- 

resistance status in detected weeds. The object-based algorithms developed with mosaicked 

imagery effectively classified weed species with the overall accuracy and Kappa coefficient 

values greater than 86% and 0.77, respectively. The lowest accuracy and Kappa coefficient (67% 

and 0.58) were observed for pixel-based MD algorithm. The canopy temperature-based 

classification of susceptible and resistant weeds resulted in discrimination accuracies of 88%, 

93% and 92% in glyphosate-resistant kochia, waterhemp and ragweed. 

                                                 
1 The material in this chapter was co-authored by Alimohammad Shirzadifar, Sreekala Bajwa, 

and John Nowatzki. Alimohammad Shirzadifar developed the idea and processed the 

experimental data. Alimohammad Shirzadifar performed the analysis, drafted the manuscript and 

designed the figures. Sreekala Bajwa provided critical feedback and supervised the project. John 

Nowatzki helped supervise the project. 
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Keywords: Weed species; Glyphosate-resistant weeds; UAS imagery; Object-based 

classification. 

5.2. Introduction 

Weeds are considered as the most serious threat to agricultural crop production as they 

compete with crops for water, nutrients, and light, resulting in yield reduction. Currently, 

herbicide application is the most common weed management technology in the US (Benbrook, 

2018), where weed control is achieved through a uniform herbicide application across the entire 

field (Kunz et al., 2018). However, weed species and populations across the field are highly 

variable (Lambert et al., 2018). Chemical weed management is of great interest owing to 

increased concern over environmental protection as well as the emergence of herbicide resistant 

weeds as a result of sub-optimal application of chemicals (Schütte et al., 2017).  

In the context of precision agriculture, site-specific weed management (SSWM) is an 

emerging strategy, confining the application of herbicides to weed infested areas to improve crop 

protection efficacy (Pflanz et al., 2018). The SSWM strategy includes four steps of weed 

monitoring, decision making, herbicide application, and evaluation and documentation. Weed 

mapping as the first step is a key element in SSWM, collecting data for field survey and weed 

distribution either by ground sampling or remote detection. Remote sensing that captures the 

whole field offers particular advantages for weed mapping over traditional ground survey 

methods including large area coverage, facile data collection, and time-efficient process (Gålfalk 

et al., 2018).  

The recent advances in Unmanned Aerial System (UAS) facilitate the application of 

time-efficient field mapping in large scale in modern agriculture. Small UAS with light weight 

and high level of maneuverability are capable of carrying deferent sensors and flying at low 
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altitude over agricultural fields (Sosnowski et al., 2018). Very high ground resolution 

(pixel<5cm) UAS images can be used to identify and map the spatial distribution of weeds 

within crop fields when spectral differences among weeds, crop and soil are present and 

quantifiable (Castillejo-González et al., 2014). Although Garcia-Ruiz et al. (2013) used low 

attitude UAS equipped with multi spectral camera to detect different plants, traditional pixel-

based image analysis cannot effectively detect weeds in crop fields during early growth stages 

due to spectral similarity of crop and weed pixels, and the variability in spectral characteristics of 

similar plants caused by field variability.  

The application of supervised classification methods using ground-based imaging devices 

has shown promise for weed classification (Pérez-Ortiz et al., 2015). Remote sensing-based 

high-resolution UAS imagery in combination with supervised classification holds the potential to 

identify weed species. Supervised pixel-based classifiers use prior knowledge to identify spectral 

similarity in image pixels to assign each pixel to the most similar class. Supervised classification 

methods include the simplest distance- or angular-based classifiers (Mahalanobis Distance and 

Spectral Angel Mapper) to the most complex probability-based (maximum likelihood) or 

machine learning (support vector machine and decision tree) algorithms. Each classifier has its 

own strengths and limitations, and the selection of a classifier for specific site study requires the 

consideration of many factors, including data distribution, classification accuracy, algorithm 

performance and computational resources. 

In UAS-based remote sensing, object-based image analysis (OBIA) and pixel-based 

image analysis (PBIA) are two categories of image classification. In conventional PBIA 

supervised weed classification, each pixel could potentially include a mixture of soil, plant 

leaves, residue and shadow. The variability in target spectral reflectance introduced by mixing of 
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target classes can limit the classification accuracy. In contrast, the geographic OBIA recognizes 

spatially and spectrally homogenous objects through a segmentation process based on different 

attributes, such as size, texture, shape, and spatial and spectral distribution (Liu & Abd-

Elrahman, 2018). These factors can be combined with contextual and hierarchy procedures to 

give an accurate classification in OBIA (Pena et al., 2013). A comparative study on the 

performances of PBIA and OBIA to discriminate weeds and sorghum plant indicated higher 

accuracy for OBIA (Che'Ya, 2016).  

The visual similarity between herbicide-resistant and susceptible weeds limits the 

identification accuracy of herbicide resistance status, and SSWM may not be effectively 

accomplished using the application of common visual plant species identification techniques. It 

was reported that the application of herbicide can cause stress in plants and this, in turn, can 

reduce the rates of photosynthesis and transpiration in the plants. Reduced transpiration rate is 

accompanied by elevated temperatures in stressed plants (Zhang et al., 2016). Therefore, we 

hypothesized that the canopy temperature after spraying can be a reliable indicator to detect 

resistant weeds.  

This research aims at exploring the potential of multispectral imagery captured by UAS 

over crop fields for weed species identification, followed by the application of thermal images 

for the identification of herbicide resistant weeds. Field experiment was conducted with the 

objective of identifying and validating the best PBIA and OBIA supervised classification 

methods to identify three weed species including waterhemp (Amaranthus rudis), kochia (Kochia 

scoparia), and ragweed (Ambrosia artemisiifolia L.). The detected weeds were then classified 

into glyphosate resistant and susceptible categories by the application of canopy temperature 

after an herbicide application. 
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5.3. Materials and Methods 

5.3.1. Study Site and Field Experiment Design 

A field-scale study was conducted on a 680 m2 soybean crop field at NDSU Research 

Farm located at Carrington, North Dakota, USA (Figure 5.1). The Roundup ready Nutech 

Soybean (Glycine max) was planted on May 22nd, 2017 at 403845 seeds/ha. For field 

experiment, two common types of weeds (kochia and waterhemp) were grown in the greenhouse 

in separate pots, and the pots were transferred into the field at 5-7 leaf stage (Figure 5.2). The 

weed plants were transplanted randomly in the fields to create a mix of main crop with two weed 

species. The seeds for the weeds were collected randomly from different parent plants to provide 

a collection of resistant and susceptible plants.  

Field data were also collected from a 400 m2 research field located at Mayville (Figure 

5.1). The field was naturally infested with glyphosate-resistant and susceptible lambsquarters, 

and ragweed (Figure 5.2). Weeds on the fields were manually identified and tagged with their 

species and geographic coordinates through field scouting. When the weeds were approximately 

7.6 cm tall, glyphosate [N-(phosphonomethyl) glycine] of 1.7% concentration was applied to the 

fields at a uniform rate.  
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Figure 5.1. Field sites: a) Google Maps® inset showing the general location of the study sites 

with blown up views of fields at b) Carrington, c) Mayville.  

 

   

(a) (b) 

Figure 5.2. A multispectral image illustrating the target classes in the two study sites: a) 

Carrington (false color image), b) Mayville (RGB image). 
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5.3.2. Data Collection 

The aerial data acquisition system was composed of a multispectral camera (Quad sensor, 

Sentera, Minnesota, USA) and a thermal camera (Infrared Camera Inc. Texas, USA), mounted 

separately on two types of small UAS. Two Quad-copters namely Phantom3 and DJI S1000 (SZ, 

DJI Technology Co., Ltd., Shenzhen, China) were used to fly the cameras over the experimental 

fields for collecting multispectral and thermal images, respectively (Table 5.1). Multispectral 

images were used to classify weed species. Thermal images were captured 4 days after 

glyphosate application and were used to identify herbicide resistance status in the weeds. Direct 

georeferencing of acquired images with the accuracy of 20 centimeter was provided by dual on-

board navigation-grade GPS and GLONASS receiver.  

Table 5.1. Summary of used cameras and flight procedures in the study. 

Item 
Camera type 

Multispectral Thermal 

UAS Phontom3 S1000 

Sensor name Sentera Quad 9640 P-Series USB 

Sensor type CMOS UFPA (VO×) 

Max-pixels 10.5 MP RGB, 3×1.2MP 640×480 

Length of focus 6.05 mm 25mm 

Sensor size 56×96×52 mm 34×30×34 mm 

Channels RGB,670,710,730 7µm-14µm 

Average wind speed 4.5 m/s 3.2 m/s 

Average altitude 10.1 m 8 m 

Average pixel size on the ground 6.14 mm 5.5mm 

Forward overlap 60 65 

Side overlap 70 80 

FOVa 44° H 24.8 × 18.6 
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UAS images were captured at low flying altitudes of 8 m for thermal, and 10.1 m for 

multispectral. Therefore, the area covered by each single still image was limited. The still images 

collected from the UAS at 60-65% forward overlap, and 70-80% side overlap were mosaicked to 

obtain an image covering the whole study area. In total, 420 multispectral images were captured 

over the study field located at Mayville and 750 multispectral images were recorded for the 

soybean farms at NDSU Research Center. 

Five ground control points including four points at the field corners and a coordinate 

close to the field center point were marked for bundle block adjusting. The flight route was 

programmed using DJI GS PRO app to allow the UAS to acquire data automatically at pre-set 

waypoints. In addition, the flight altitude and required image overlapping for mosaicking process 

was also managed using DJI GS PRO app. 

5.3.3. Image Calibration 

During data collection, a standard spectralon split gray level panel reference (Labsphere 

Inc., North Sutton, NH, USA) was placed in the middle of the field to calibrate spectral data. 

Digital images captured by multispectral camera were spectrally corrected by applying an 

empirical linear calibration method (Hunt et al., 2010). The mean values of three bands (blue, 

green, and red) in an image before and after correction is shown in Figure 5.3.  

5.3.4. Image Mosaicking 

Prior to implementing image processing steps to identify weeds, the individual images 

were mosaicked to create a single image representing the whole field. Agisoft Photoscan 

Professional Edition (Agisoft LLC, St. Petersburg, Russia) software was employed to 

orthorectify and mosaic the collected images. A point cloud model was developed by finding the 

geographical position and principal axes (roll, pitch and yaw) of the camera in each acquired 
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image and aligning the images automatically with the Agisoft Photoscan software. Then, the 

individual images were projected over a geometry of 3D construction to generate an orthophoto 

map. The final step was developing a single image representing the whole study site.  

5.3.5. Spectral Separability Analysis 

The application of supervised classification methods on large image sets is time and 

effort- intensive to identify the best method. The feasibility of classifications algorithms in field 

target class detection was evaluated based on the visual differences in spectral signature, 

principal component analysis (PCA), and scatter plots of spectral reflectance for target classes. 

Spectral signature of plant species of interest, bare soil and residue were developed to determine 

the possibility of weed species classification. The PCA is a statistical method that uses 

orthogonal transformation to transform a set of observations of possibly correlated variables into 

a set of values of linearly uncorrelated variables called principal components (Voyant et al., 

2017) . Due to the high degree of spatial similarity between spectral signatures, PCA is used to 

identify the most significant variance in the spectral reflectance of target classes. The scatter plot 

of target spectral reflectance in the first two PC space can illustrate the separability of target 

classes.  
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(a) 

  

(b) 

 

 

(c) 

 

 

Figure 5.3. Calibrating RGB band Digital Numbers (DNs), in an empirical line correction 

approach. a) Blue band, b) Green band, c) Red band.  
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5.3.6. Segmentation Procedure  

Segmentation is a key factor in the OBIA classification methods. The images were 

segmented using a multi-resolution algorithm to create homogeneous multi-pixel objects 

corresponding to crop, weed species, bare soil and residue. The multi-resolution segmentation 

method minimizes the average heterogeneity and produces highly homogeneous image objects at 

an arbitrary resolution. The image objects were generated from the spectrally and spatially 

similar pixels based on a set of input parameters including shape, smoothness, compactness, etc 

(Table 5.2). The OBIA method designed for the weed mapping objectives was developed using 

the commercial software eCognition Developer 8.9 (Trimble GeoSpatial, Munich, Germany). 

Table 5.2. The input information used for segmenting field image into objects for object-based 

classification.  

Target Compactness Smoothness Shape index Roundness Asymmetry Elliptic fit Density Border index 

Soybean 0.23 0.77 2.68 1.43 0.25 0.31 1.8 2.68 

Waterhemp 0.5 0.5 1.4 0.75 0.69 0.54 2.31 1.25 

Kochia 0.52 0.38 1.37 0.19 0.75 0.36 1.89 1.2 

Ragweed 0.34 0.76 2.27 0.81 0.74 0.67 2.1 2.15 

Lambsquarters 0.16 0.84 1.38 0.31 0.22 0.76 1.62 1.42 

Residue 0.44 0.56 1.39 0.36 0.9 0.68 1.2 3.69 

 

5.3.7. Image Classification 

Weed species, crop and soil were classified using six supervised classification algorithms 

with both PBIA and OBIA methods. Six supervised classifiers with strong conceptual and 

mathematical differences including Parallelepiped (P), Maximum Likelihood (ML), Mahalanobis 

Distance (MD), Support Vector Machine (SVM), Spectral Angle Mapper (SAM), and Decision 

Tree (DT) were examined to select the optimum method for weed species classification 

(Castillejo-González et al., 2014). To evaluate the normality of UAS images data, the histogram 
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graphical visual inspection with skewness and kurtosis parameters were used. Exploratory data 

analysis showed that image data were normally distributed and meets the normality assumption 

for methods such as ML.  

The P classification method also known as the box decision rule, recognizes each class by 

defining square areas based on minimum and maximum reflectance values into spectral measures 

of training classes. The MD and SAM algorithms calculate the spectral distance and the spectral 

angle from each pixel to the spectral average of each class, respectively. The ML algorithm is a 

parametric supervised classifier based on the Bayes theorem and classifies the objects by 

considering the variance– covariance within the class distributions. 

The SVM is a supervised learning algorithm that analyzes data as points in a feature 

space and identifies the pattern for classification. This model divides the data into separate 

categories by defining a clear gap between the categories as wide as possible. In this study, the 

linear SVM method was used due to obtaining more accurate result than non-linear functions. 

The DT is a predictive model that maps observations to their target values or labels. DT method 

makes classification rules by recursively partitioning the data into increasingly homogenous 

groups (Stephens & Diesing, 2014). In this study, the DT method was applied using the C5 

algorithm (Pandya & Pandya, 2015) that expands nodes in depth-first order in each step by the 

divide-and-conquer strategy. Mosaicked multispectral images were classified in ENVI 5.3 

(Broomfield County, Colorado, US) software equipped with image processing toolbox. 

The accuracy of each classification method was evaluated by developing the numerical 

confusion matrix (error matrix) and computing the kappa coefficient. The confusion matrix 

provides the overall accuracy of the classification by comparing the percentage of classified 

pixels of each class with the verified ground truth class. The Kappa coefficient is a measure of 



 

108 

how the classification results compare to class labels assigned by chance. It can take values from 

0 to 1, and the value of 0 indicates that there is no agreement between the classified image and 

the reference image. If kappa coefficient equals to 1, then the classified image and the ground 

truth image are totally identical.  

5.3.8. Glyphosate-Resistant Weed Identification 

After weed species identification step, herbicide resistance status was studied by 

comparing the canopy temperature 4 days after glyphosate application. Canopy temperature was 

obtained from thermal images using a 9640 P-Series Infrared Camera (ICI, Beaumont, TX, USA) 

with 7–14 μm spectral response and ±1°C accuracy. Thermal camera was mounted on DJI S1000 

and images were processed using IR Flash software (Infrared Camera ICI. TX, USA) to identify 

glyphosate-resistant kochia and waterhemp in Carrington site, and resistant-ragweed in Mayville 

field. Before capturing the images, a Blackbody ICI 350 portable IR calibration (ICI. TX, USA) 

was used to check the camera calibration. Thermal images were captured in low altitude to 

develop high resolution (5.5 mm) images for classifying resistant versus susceptible weeds. Each 

individual thermal image covered a relatively small area of 1.6 m2 in the field. This analysis 

assumed that the variations in thermal signature due to soil moisture content was negligible in a 

small field. Furthermore, atmospheric condition in each image was the same for both susceptible 

and resistant weeds (data were collected between 12 to 2 pm and the sky was clear) (Table 5.3). 

Therefore, the comparison of plant canopy temperature could lead to classify resistant versus 

susceptible weeds in each individual thermal image. Before starting the image capture, a 

Blackbody ICI 350 portable IR calibration (ICI. TX, USA) was used to check the camera 

calibration. 
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Table 5.3. Atmospheric conditions during the period of data collection in Carrington (S1) and 

Mayville (S2) study sites.  

Study site Data collection time Air temperature (°C) Relative humidity (%) 

S1 12:15-12:30 32.13±0.01 48.32±0.00 

S2 13:05-13:23 33.37±0.02 54.12±0.01 

 

To identify glyphosate-resistant weeds based on canopy temperature, 16 thermal images 

captured form each field were analyzed separately by threshholding and segmentation in IR 

Flash software. The results were compared with the ground truth data to evaluate the accuracy, 

sensitivity, specificity, and precision through counting the false positives and the false negatives 

for herbicide resistance. Classifier performance was evaluated as two-class problems based on 

the confusion matrix. There are two classes namely positive and negative for herbicide 

resistance. Confusion matrix consists of true positive (TP), false positive (FP), false negative 

(FN) and true negative (TN) values. Since the objective of classification was to identify resistant 

weeds, the resistant weed (class R) was defined by a model output of positive and the susceptible 

weed (Class S) was defined by a model output of negative in this study. False positive represents 

the number of susceptible weeds which were identified as resistant. In contrast, false negative 

indicates the number of resistant weeds which were classified as susceptible ones. Accuracy was 

the ratio of correct decisions made by a classifier (Equation 5.1). Sensitivity and specificity were 

introduced to represent the proportion of actual resistant (Equation 5.2) or susceptible (Equation 

5.3) species which are correctly classified, respectively. Precision was defined as the ratio of 

predicted positive examples which really were positive (Equation 5.4). 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

(5.1) 
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 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(5.2) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

(5.3) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(5.4) 

 

The ground truth data were collected 15 days after glyphosate application to visually 

detect the resistant weeds. Glyphosate-resistant weeds on the field were identified and labeled 

with their geographic coordinates throughout the field.  

An overview of weed species classification and identifying glyphosate-resistant weeds in 

this study is illustrated in Figure 5.4.   

 

 

 

Figure 5.4. Flowchart of recognition algorithms applied for object classification and weed 

species detection and glyphosate resistant weeds. 
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5.4. Results and Discussion 

5.4.1. Spectral Reflectance Separability  

The distinct spectral signatures for field components in both field studies are illustrated in 

Figures 5.5a and 5.5a. The scatter plot of spectral reflectance in the first two PC indicated that 

soybean and weed species in Carrington could be discriminated into separate classes considering 

spectral signature in red and blue wavebands (Figure 5.5).  

 

  

Figure 5.5. Assessment of feasibility of field components classification in Carrington study site: 

a) Spectral signature, b) PC plane, and c) Scatterplot of spectral reflectance. Band number 1 

through 4 are RGB, 670,710,730 nm. 

  

Similarly, the separable scatterplots in the discriminative range of green and red 

wavebands (Figure 5.6) confirmed the possibility of weed species classification in Mayville 

research site. In general, the differences in the spectral responses between crop and weed species 
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in visible blue, green and red wavebands can be attributed to variations caused by the differences 

in the chlorophyll content of the plants.  

 

  

Figure 5.6. Assessment of feasibility of field components classification in Mayville study site: a) 

Spectral signature, b) PC plane, and c) Scatterplot of spectral reflectance. Band number 1 

through 4 are RGB, 670,710,730 nm. 

5.4.2. Crop and Weed Species Classification Accuracy  

At high spatial resolution, it is possible to distinguish the different leaf shapes and 

textures for the different target classes. The accuracy of classifying the target classes (main crop, 

weed species, soil and residue) in the experimental fields using OBIA and PBIA classification 

algorithms is listed in Table 5.4. All six classification algorithms resulted in lower the overall 

accuracies and Kappa coefficients under the pixel-based analysis, compared to object-based 

analysis. Lower accuracies of PBIA methods indicate that soil background, residue, and shadow 

in mixed-pixel may cause variabilities that reduce the classification accuracy.  
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The SVM method resulted in the highest classification accuracy of 98-99%, and kappa 

coefficient of 0.99-1 under object-based classification. In OBIA method, all classification 

methods except MD algorithm exhibited high classification accuracies with overall accuracies 

greater than 86% and Kappa coefficients greater than 0.77. A supervised classification strategy is 

considered acceptable if the overall classification accuracy higher than 85%, and Kappa 

coefficient higher than 0.75 (Castillejo-González et al., 2014). Therefore, the OBIA classification 

with P, ML, SVM, SAM, DT methods exhibited accuracies higher than the minimum acceptable 

levels (Table 5.4). However, the MD classifier with the overall accuracy of 74% and Kappa 

coefficient of 0.6 didn’t reach the commonly accepted requirements. This observation might be 

attributed to the disability of simple MD analysis to detect small variations in spectral reflectivity 

(Morozova et al., 2013). 

Table 5.4. Classification accuracy of weed species using different supervised classification 

algorithms at Carrington (S1) and Mayville (S2) study sites. 

Supervised classification method 

Pixel-based Object-based 

OAa (%) Kb OA (%) K 

S1
c S2

d S1 S2 S1 S2 S1 S2 

Parallelepiped (P) 78 86 0.69 0.78 85 90 0.77 0.82 

Maximum Likelihood (ML) 83 87 0.65 0.86 91 97 0.86 0.94 

Mahalanobis Distance (MD) 67 85 0.58 0.85 74 95 0.6 0.93 

Support Vector Machine (SVM) 92 93 0.87 0.9 99 98 1 0.96 

Spectral Angle Mapper (SAM) 87 85 0.8 0.83 92 91 0.86 0.81 

Decision Tree (DT) 88 89 0.87 0.92 94 97 0.91 0.95 

OAa: overall accuracy, K
b: Kappa coefficient 

In PBIA method, the most comparable classification results were observed with SVM 

method. The SVM classifier exhibited the overall accuracy and Kappa coefficient of 92-93% and 



 

114 

0.87-0.9, respectively. While, MD classification algorithm resulted in the lowest overall accuracy 

of 67% and Kappa value 0.58 for the Carrington location. 

The distribution of soybean crops, waterhemp and kochia weed species, soil and the other 

field components in Carrington field in multispectral image were analyzed using all the 

classification algorithms evaluated with the PBIA and OBIA methods (Figure 5.7.).  

 

Figure 5.7. Comparison of a) PBIA and b) OBIA classification algorithms in Carrington study 

site. 
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Similarly, the results of classified images for two weed species including lambsquarters 

and ragweed, bare soil and residue in Mayville research site using all the classification 

algorithms through PBIA and OBIA methods are illustrated in Figure 5.8. 

 

Figure 5.8. Comparison of a) pixel- and b) object-based classification algorithms in Mayville 

study site. 

All classifiers under PBIA and OBIA exhibited higher overall accuracy in Mayville field 

in comparison to Carrington site. This observation was related to the reduction of crop-plant 
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detection ability in the multispectral images as a classified object. Furthermore, the relatively 

higher phenological difference between lambsquarters and ragweeds in Mayville field than 

soybean and weed species (waterhemp and kochia) in Carrington might be another factor in 

enhancing weed detection accuracy in Mayville. This fact confirmed that the spectral reflectance 

similarity between plant species in early growth season is a limiting factor in PBIA. However, 

OBIA methods by segmenting the images into groups of adjacent pixels with homogenous 

spectral values displayed higher detection accuracy for weed species by reducing some of the 

pixel to pixel variability.  

Although all the classifiers worked with the same data, SVM and DT algorithms required 

longer processing times. More complicated computational processing made SVM and DT more 

sensitive and accurate in comparison to MD, ML and p algorithms with a fast and facile 

procedure for weed species classification early after plant germination. The two simple MD and 

ML algorithms yielded very accurate results in Mayville site where there were two weed species 

for discriminating, while their classification accuracy was lower in Carrington site in which 

soybean was added to classified objects.  

Clear difference was observed between the OBIA and PBIA classifications in all 

supervised classification methods evaluated in this study. The integration of segmented objects 

in the studied classifiers resulted in an increase in overall accuracy in OBIA classification 

methods. The ML classifier exhibited 10% higher overall accuracy through OBIA classification 

platform in comparison with PBIA method in Carrington site study. While, the least growth in 

overall accuracy was seen in P with 4% increase in OBIA with segmentation in Mayville site. 

Similar observation was reported by López Granados (2011). On one hand, a high spatial 

resolution of the remote images is required for weed detection, however, the higher spatial 
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resolution is penalised with lower spectral resolutions limited to the visible and NIR spectral 

regions. The similar morphology between plant species in early growing season cause low 

spectral differentiation between weed species and main crop. Therefore, the combination of 

spectral and spatial characteristics produced a significant improvement over the precision 

obtained in the object-based classifications. Although, OBIA was more time and effort- intensive 

due to the initial segmentation process for which more expert knowledge and more specialised 

software were required, the overall classification accuracy exceeded the performance achieved 

using PBIA algorithm. Therefore, in this study the object-based had great potential and 

advantages for weed species detection in early growth stage.  

5.4.3. Glyphosate-Resistant and Glyphosate-Susceptible Weed Accuracy  

The plant canopy temperature extracted from the thermal images indicated that the 

temperature of susceptible weeds increased after glyphosate application. The resistant weeds in 

Carrington and Mayville exhibited much lower canopy temperature in comparison with the 

susceptible weeds for all three-weed species (Table 5.5).  

Table 5.5. Mean values of canopy temperatures in Carrington (S1) and Mayville (S2) study sites.  

Study site Weed species 
Canopy temperature (°C) 

Resistant weeds Susceptible weeds 

S1 
Kochia 26.12 ±0.11 27.95± 0.25 

Waterhemp 27± 0.18 28.85±0.19 

S2 Ragweed 28.04 ±0.21 29.96±0.33 

 

The temperature variance in weed species with different level of susceptibility is a result 

of physiological mechanism involved in the photosynthesis process. The application of herbicide 

leads to a poor photosynthetic efficiency accompanied by a significant loss of light energy as 
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heat in the susceptible plants (Gomes et al., 2017). The IR Flash window which illustrates the 

colorized thermal image over weed plants is shown in Figure 5.9 and 10. The IR256 color lookup 

ramp was used for temperature variance visualization, in which the area with lower temperatures 

were displayed in blue and the hottest canopies were presented in red and followed by green. 

Glyphosate-resistant waterhemp weeds are shown by green color (27.18 °C) in the Carrington 

experimental field in comparison with susceptible weeds which were shown in red (28.99°C). In 

Mayville, the resistant-ragweed plants are revealed by the blue color (28.14 °C) in IR Flash 

window while susceptible are displaced in green (30.06 °C). 

 

 

Figure 5.9. A thermal image of the waterhemp plants (Carrington study site) in IR Flash 

software. Zone 1(green) indicates Resistant waterhemp. And Zone 2 (red) indicates susceptible 

waterhemp. The average temperature for the various zones can be seen on the right-hand panel. 
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Figure 5.10. The thermal image of the ragweed plants (Mayville study site) in IR Flash software. 

Zone 1 (blue) # Resistant ragweed. Zone 2 (green) # susceptible ragweed. The average 

temperature for the various zones can be seen on the right-hand panel.  

The results were compared with the ground truth data after observing the death symptoms 

in susceptible weeds. (Table 5.6). 
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Table 5.6. Summary of glyphosate-resistant weed classification accuracy at Carrington (S1) and 

Mayville (S2) study sites. 

  Weed No. Resistant weed classification accuracy 

Study 

site 

Weed 

species 
Resistant Susceptible 

Accuracy 

% 
Sensitivity Specificity Precision 

 

S1 

Kochia 25 36 88 0.83 0.92 0.87 

Waterhemp 27 41 93 0.91 0.95 0.90 

S2 Ragweed 56 21 92 0.89 0.95 0.88 

 

The overall accuracy was 88%, 93% and 92% for kochia and waterhemp in Carrington 

site, and ragweed in Mayville research field, respectively.  The high accuracy for all three-weed 

species in two different locations indicated that plant canopy temperature can be a reliable 

discriminative feature for identifying glyphosate-resistant weeds early after spraying, and even 

before observing stress symptom on plants. The false positive and negative errors were 

interpreted by the fact that weeds varied in their level of susceptibility to glyphosate. In fact, 

there were some actual resistant weeds while their temperature raised early after spraying. 

However, they were survived after 15 days when the drying symptom was observed on 

susceptible weeds. 

5.5. Conclusions 

In this field study, the potential application of supervised classification methods and 

canopy temperature in weed species and glyphosate-resistant weed detection. Supervised object-

based and pixel-based image analysis strategies were employed to assess six different 

classification methods that included Parallelepipeds (P), Mahalanobis Distance (MD), Maximum 

Likelihood (ML), Spectral Angle Mapper (SAM), Support Vector Machine (SVM) and Decision 

Tree (DT). The object-based algorithms developed with mosaicked imagery effectively classified 

weed species with the overall accuracy and Kappa coefficient values greater than 86% and 0.77, 
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respectively. However, the performance of pixel-based classification methods was limited in 

early growth stages due to the high similarity between weed species. The canopy temperature 

variation within the crop species provided a novel approach for identifying glyphosate-resistant 

weeds with the accuracy of 88%, 93% and 92.6% for kochia, waterhemp and ragweed. The 

results of this study can be used in support of SSWM to inhibit the distribution of resistant weeds 

across the fields. 
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6. SUMMARY AND CONCLUSIONS 

The main goal of this dissertation was to classify selected weed species and to 

specifically identify glyphosate-resistance in those weeds for a site-specific weed management 

system (SSWM). This dissertation aimed at contributing to issues such as 1) protecting the 

environment by site-specifically applying the herbicide based on weed maps, 2) reducing 

chemical application cost through a need-based herbicide application, 3) preventing the 

distribution of glyphosate-resistant weeds, and 5) increasing farmers profits by SSWM. In this 

study, different weed species were classified based on spectral reflectance. Glyphosate-resistant 

weeds were identified using plant canopy temperature and spectral reflectance in greenhouse and 

field scale experiments.  

In chapter 2, spectral signature of three common and challenging weed species in ND, 

USA, namely waterhemp (Amaranthus rudis), kochia (Kochia scoparia), and lambsquarters 

(Chenopodium album) were collected and analyzed to classify weed species. Results showed 

noticeable differences between spectral signatures of the three-weed species, especially in the red 

and red-edge regions and in several parts of the NIR region. The combination of a second-

derivative of spectral reflectance in NIR (920-2500 nm) with the supervised SIMCA model 

could classify weed species with 100% accuracy. The SIMCA model on NIR bands showed a 

lower risk for misclassification compared to visible region.  

In chapter 3, the spectral based weed indices (SWIs) were developed to identify 

glyphosate-resistant weeds after herbicide application. The indices generated included a 

combination of weighted single wavelengths and normalized wavelength differences for 

identifying glyphosate-resistant weeds. The Relief-F algorithm selected 8 discriminative 

wavelengths on 550-680 nm for 3 required wavelengths and found an optimized combination for 
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the SWIs. The wavelengths selected for the SWI were sensitive to the photosynthetic pigments 

and plant cell structure that affected by the detrimental effect of glyphosate application. The 

model validation indicated that machine learning Random Forest (RF) classifier could 

discriminate resistant kochia, waterhemp and ragweed with 96%, 97% and 100% accuracy, 

respectively, based on developed SWIs. The high accuracy of the RF model showed that the 

selected wavebands can be employed in multispectral camera for weed mapping.  

Chapter 4 focused on introducing a new concept for identifying glyphosate-resistant 

weeds based on plant canopy temperature. Thermal images of both susceptible and resistant 

types of waterhemp (Amaranthus rudis), kochia (Kochia scoparia) and ragweed (Ambrosia 

artemisiifolia) were acquired on an hourly basis for the first 96 hours after a glyphosate 

application. The exploratory analysis of the thermal data indicated that the canopy temperatures 

of susceptible weeds increase after glyphosate application, which could be attributed to the 

damages to the physiological mechanism such as photosynthesis caused by herbicide spraying. 

Significant thermal features for identifying resistant weeds were selected with stepwise 

regression. The most discriminative thermal feature to identify glyphosate-resistant ragweed and 

waterhemp was canopy temperature 95 h after spraying while, resistant kochia plants could be 

identified at 46, 60, 91, 15, 28, 70, and 36 h after a glyphosate application. Furthermore, an SVM 

model developed to discriminate resistant weeds species based on the plant canopy temperature 

showed more than 95% accuracy. The high accuracy in identifying glyphosate resistance in three 

weed species indicated that thermal features of plants after herbicides application were powerful 

enough to identify the herbicide resistance in different weed species. We recommend that 

analyzing thermal images 46-95 h after glyphosate application is a potential way to discriminate 

resistant from susceptible weeds with reliable accuracy. 
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In chapter 5, a field scale experiment was conducted at research site in Carrington and 

Mayville, ND, USA to evaluate the greenhouse results on weed species and herbicide resistance 

identification at field scale. Six supervised classifiers methods including Parallelepipeds (P), 

Mahalanobis Distance (MD), Maximum Likelihood (ML), Spectral Angle Mapper (SAM), 

Support Vector Machine (SVM) and Decision Tree (DT) were implemented at pixel level and 

object level for weed species classification in early growing season. Then, the feasibility of 

identifying glyphosate-resistant weeds based on canopy temperature was evaluated at field scale.  

The object-based algorithms applied on a mosaicked multispectral UAS image effectively 

classified weed species with the overall accuracy and Kappa coefficient values greater than 86% 

and 0.77, respectively. The performance of pixel-based classification methods was limited in 

early growth stages due to the large level of variability in mixed-object pixels. The glyphosate-

resistant kochia, waterhemp and ragweed were identified from thermal imagery based on canopy 

temperature with 88%, 93% and 92% accuracy, respectively.  

Currently, there is no cost-effective method to identify and map the distribution of 

herbicide resistant weeds on large fields. Developing a method and an algorithm to identify weed 

species and major glyphosate-resistant weeds in the field using UAS imagery in early growing 

season can support sustainable agriculture by using SSWM.  

Remote sensing provides an inexpensive and more efficient method for mapping weed 

infestations than ground surveys. Timely and efficient classification herbicide resistant weeds 

allows growers to effectively manage these weeds by using alternative methods before 

developing multi resistant weeds. Also, the same methodology would be applicable to identify 

invasive species and weeds in parks, highway sides, and other state properties before they seed 

and spread. This project has positive impact on crop agriculture across the state and around the 
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world by identifying herbicide resistant weeds and thereby allowing proper management before 

they become a major disaster. 

6.1. Future Work 

Although the research studies and methodologies in this dissertation covered a relatively 

wide area of identifying weed species and glyphosate-resistant weeds using different methods, 

future research should aim at further improving the weed identification efficiency. Here are a 

few recommendations for future research: 

1) Identifying glyphosate-resistant weeds considering different degrees of resistance in resistant 

weeds. This research currently does not consider plants with different levels of herbicide 

resistance. 

2) Perhaps, the research should be expanded to include additional weed species, and resistance to 

other herbicides.  

3) Developing online processing website to generate weed map for creating herbicide application 

map  

4) Conducting field experiment to assess the developed spectral weed indices. 
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