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ABSTRACT 

 

Root system architecture of plant plays a key role in water and nutrient uptake from the 

soil, provides anchorage and acts as a storage organ. In this current research, we have focused on 

the molecular and physiological basis of root system variation in canola (Brassica napus L.). 

Genome wide association mappings in a diverse canola germplasm panel with ~37,500 and 

~30,200 single nucleotide polymorphism (SNP) markers were conducted under greenhouse and 

field conditions, respectively. A total of 52 significant SNP markers associated with different 

root architectural traits were identified in the greenhouse study. Majority of the markers were 

distributed on five chromosomes, A01, A02, A04, C03 and C06, of B. napus. Twenty-two 

candidate genes related to root growth and development were detected within 50 kbp upstream 

and downstream of the significant markers. Three of these candidate genes, P-glycoprotein 6 

(PGP6), Tetraspanin 7 (TET7) and ARABIDILLO-2, were co-localized with three markers on 

chromosome C03, A01 and A04, respectively. In the field study, 31 significant SNP markers 

associated with different root traits were detected. A total of 15 root related candidate genes were 

identified within 100 kbp upstream and downstream of different significant markers. We also 

analyzed and compared the transcriptomes from the root systems of spring (weak root system) 

and winter (vigorous root system) growth habits at two different time points, 30 and 60 days. A 

total of 169,646 transcripts were analyzed, of which, 582 and 555 transcripts were found to be 

significantly differentially expressed between spring and winter types at 30 and 60 days, 

respectively. Several cytokinin and gibberellin associated genes and genes sets were found to be 

upregulated in spring type compared to winter type at 60 days. Cytokinin has proven inhibitory 

effect on root system architecture in different crops, whereas, gibberellin promote root 
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elongation but inhibit lateral root growth. Therefore, we suggest that cytokinin and gibberellin 

may play an important role in root system variation between spring and winter growth habits. 

Significant marker loci, candidate genes and transcriptome profile identified in this research will 

assist future research to understand the root system variation in rapeseed/canola. 
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CHAPTER 1: GENERAL INTRODUCTION 

 

Unprecedented increase in agricultural crop production has been achieved since 1930s 

throughout the world (Myers et al., 2017; Ramankutty et al., 2018). For example, corn yield in 

United States it increased to ~10 tons/ha since 1935 (US Department of Agriculture, 2017); 

wheat yield in United Kingdom has increased to 8 tons/ha from ~2 tons/ha since 1930s (Alston et 

al., 2010). Approximately, eight-fold increase of oil seed crop production has been achieved in 

oil-seed crops (especially soybean, palm and rapeseed) since 1961 (Ramankutty et al., 2018). 

However, food demand has also continued to increase over the time due to increasing population. 

Current yield trend is considered insufficient to meet the future food demand of estimated 9 

billion population in 2050 (Haile et al., 2017). In addition, global agriculture is facing other 

challenges as decreasing cultivable land area, loss of soil fertility, water scarcity or drought, soil 

salinization, cultivars approaching yield potentials, new pests and diseases etc. (Ray et al., 2012; 

Ramankutty et al., 2018). 

To tackle the current environmental and other issues related to crop production and be 

prepared for the future needs, plant scientists need to assemble as many tools as possible and 

follow multiple avenues of crop improvement. Increasing crop production in the last century was 

mainly focused on using chemicals and fertilizers, expansion of the cultivable lands, improving 

machineries, and crop improvement through selecting high yielding varieties and modifying 

plant shoot architecture (mainly yield attributing characteristics) (Koevoets et al., 2016; Myers et 

al., 2017). However, the belowground root system remained as the “Hidden half” to the plant 

breeders as a potential traits of crop improvement. Plant root system has multiple functions 

including uptaking water and nutrient, acting as a storage organ, providing anchorage and 
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stability to the plant and in many crops root system is the main edible part. Vigorous and deep 

root system can uptake higher amount of water and nutrient comparing to shallow and less 

vigorous root system which can contribute in producing higher yield and biomass production 

(Lynch, 1995, 2013; Marschener, 1998). No wonder, that is why direct positive correlation 

between root architectural traits and yield has been detected in many crops such as rice (Harada 

et al., 1984; Morita et al., 1988; Liu et al., 2002; Yang et al., 2012; Steele et al., 2013), wheat 

(Ehdaie et al., 2010; Wasson et al., 2012; Atta et al., 2013; El Hassouni et al., 2018), maize 

(Kuchenbuch and Barber, 1987; Hochholdinger et al., 2008; Hammer et al., 2009; Mu et al., 

2015), chickpea (Jaganathan et al., 2015; Ramamoorthy et al., 2017), canola (Akhtar et al., 2008; 

Duan et al., 2009; Rahman and McClean, 2013) etc. 

Despite of having clear indication on the positive roles of root system architecture in 

increasing crop yield, plant breeders were not interested in modifying different root architectural 

traits in favor of crop yield in last century (Hochholdinger et al., 2008; Zhu et al., 2011; Piñeros 

et al., 2016). In fact, there are several challenges associated with large scale root phenotypic 

selection in the field such as plasticity of the root (Malamy, 2005; Pacheco-Villalobos and 

Hardtke, 2012a; Smith and De Smet, 2012; Koevoets et al., 2016), time and labor intensiveness, 

destructive to the plots and crops (Nagel et al., 2009; Paez-Garcia et al., 2015) etc. Recent 

advancement in the field of root phenomics have encouraged plant breeders to breed for high 

yielding varieties with desirable root characteristics. Many high throughput techniques to 

phenotype root traits in the field and controlled condition has been developed and applied 

successfully in different crops so far. Few such examples are shovelomics (Trachsel et al., 2011; 

Wishart et al., 2013), rhizotron (Singh et al., 2010; Lobet and Draye, 2013), trench profile 

method (Vansteenkiste et al., 2014), hydroponics (Holloway et al., 2011; Clark et al., 2013), 



 

3 

 

pouch and wick system, imaging with magnetic resonance imaging (MRI) technology (Schulz et 

al., 2013) and X-Ray microcomputed tomography (Mairhofer et al., 2013) etc. 

In the current research we analyzed the root system architecture variation in 

canola/rapeseed (Brassica napus L.).  B. napus (AACC, n=19) is an auto-tetraploid oilseed crop 

evolved through natural hybridization of two other Brassica species, B. rapa (AA, n=10) and B. 

oleracea (CC, n=9). The name “Canola” stands for “Canadian Oil Low Acid” and was 

developed by lowering the erucic acid and glucosinolate content of traditional B. napus in 

1970’s. Within five decades, canola has become the world second most important edible oilseed 

crop after soybean (Huang et al., 2016). Global production of canola oil reached nearly 27 

million metric tons during 2014-2015 (Elahi et al., 2016). Canola is an important crop in North 

Dakota state as North Dakota alone produces more than 80% of the total US canola production. 

Canola has three different growth habits, spring type, winter type and semi-winter type. These 

three growth habits are morphologically and genetically different from one another and are a 

great source of genetic diversity in improving canola yield (Kebede et al., 2010; Rahman and 

Kebede, 2012). Importantly, the spring and winter canola growth habits are distinct in terms of 

root architectural traits. We utilized this root system variation to identify markers and genomic 

regions associated with different root architectural traits and candidate genes regulating root 

architectural traits within those identified genomic regions following genome wide association 

mapping approach in both field and greenhouse. 

Genome wide association mapping or GWAS has widely been used to identify 

quantitative trait loci (QTL) and molecular markers associated different diseases in human and 

animals (Begum et al., 2015). In last ten years, GWAS has become highly popular among the 

plant scientists and breeders as it circumvent the major limitations of traditional bi-parental QTL 
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(Quantitative Trait Loci) mapping technique and provides some extra benefits (Ersoz et al., 

2007a; Zhu et al., 2008; Gómez et al., 2011). GWAS was successfully implemented on many 

plant species to identify loci associated with different root architectural traits such as rice (Clark 

et al., 2013a; Courtois et al., 2013), wheat (Sanguineti et al., 2007; Canè et al., 2014), barley 

(Reinert et al., 2016), maize (Pace et al., 2015), cowpea (Burridge et al., 2017) canola/ Brassica 

sp. (Akhtar et al., 2008; Wang et al., 2017) etc.  

Additionally, we analyzed the transcriptomes in canola root system following RNA-seq 

approach to identify differentially expressed genes, transcription factors and key regulatory 

pathways associated with root traits between spring and winter types growth habits at different 

time points. Studying the transcriptomic gene profiles in root system of spring and winter type 

canola at different time points allowed us to understand regulatory gene networks and complex 

physiological pathways that shape the root system architecture in canola growth habits. There are 

several evidences of successful application of transcriptomics techniques in decoding differential 

gene expression profile in root system of various plant species i.e. Arabidopsis (Lan et al., 2012; 

Vidal et al., 2013; Begara-Morales et al., 2014; Li et al., 2015), B. napus (Yong et al., 2014; Dun 

et al., 2016), rice (Zhai et al., 2013; Yoo et al., 2017), maize (Stelpflug et al., 2016), soybean 

(Song et al., 2016) etc. A majority of these above-mentioned studies were conducted under 

contrasting abiotic stress conditions or contrasting nutrient deficit conditions and in the seedling 

stages. To date, no studies have been conducted to identify complex gene networks and 

regulatory pathways causing the inherent genetic variation of root system architecture in adult 

spring and winter canola plants through transcriptomic approach. 

The objectives of this study were: 
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1. To detect the plant growth stages at which the variation of root traits initiates and 

reaches to maximum. 

2. To study the root growth behavior of spring and winter types canola under simulated 

water stress conditions in greenhouse.  

3. To identify significant markers, genomic regions associated with different root 

architectural traits in both the greenhouse and field conditions through genome wide 

association mapping approach. 

4. To identify root related candidate genes, close to the physical location of the 

identified molecular markers or genomic regions associated with root traits. 

5. To identify key regulatory pathways, differentially expressed genes and transcription 

factors related to root growth and development through transcriptomics approach. 

 



 

6 

 

CHAPTER 2: LITERATURE REVIEW 

2.1. Canola/Rapeseed 

2.1.1. Brassica 

The genus Brassica is a prominent member of the family Brassicaceae which is one of 

the most economically important plant family with over 338 genera and over 3700 species. 

(Cheng et al., 2015; Fahey, 2016).  There are 37 diverse species of flowering plants under the 

genus Brassica which are mainly consumed as vegetables worldwide in the form of edible roots, 

stems, leaves and seeds (oil). Some very important species under the genus Brassica are B. 

carinata (Ethiopian mustard), B. juncea (Indian mustard), B. napus (rapeseed, canola, rutabaga 

etc.), B. nigra (black mustard), B. oleracea (kale, cabbage, collard, broccoli, cauliflower, 

brussels sprout, kohlrabi etc.), B. rapa (Chinese cabbage, turnip). 

2.1.2. Brassica U triangle 

 Brassica “Triangle of U” is a very popular theory on the development and origin of six 

most agronomically important Brassica spp. described by Nagaharu U (1935). According to this 

theory, three allotetraploid Brassica spp., B. juncea (AABB, 2n=36), B. napus (AACC, 2n=38 

and B. carinata (BBCC, 2n=34) were developed by three independent hybridization event 

between three diploid Brassica spp., B. oleracea (CC, 2n=18, B. nigra, (BB, 2n=16) and B. rapa 

(AA. 2n=20) (Figure1). 
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Figure 2.1. Triangle of U showing the genetic relationship among the six Brassica spp. 

2.1.3. Brassica napus 

 B. napus is an allotetraploid species containing both A genome and C genome. It was 

developed through recurrent natural hybridization between two other diploid species B. rapa and 

B. oleracea. B. rapa contributed the A genome and B. oleracea contributed the C genome of the 

B. napus species. It is speculated that, the spontaneous natural hybridization that formed B. 

napus, took place in the Mediterranean region of south western European regions (Cruz et al., 

2007). It is commonly known as rapeseed, swede rape, argentine rape, oil rape, oilseed rape etc. 

2.1.4. Origin and domestication of B. napus 

 Genus Brassica is distantly related to Arabidopsis and believed to be originated from a 

common ancestor approximately 20 million years ago (Yang et al., 1999; Wang et al., 2011b). 

Species B. napus was originated within last 10,000 years (Wang et al., 2011b). The center of 

origin of B. rapa is the highlands near the Mediterranean sea from where it spread towards 

Eastern Europe, Germany and Scandinavia (Nishi, 1980; Tsunoda, 1980).  On the other hand, the 
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B. oleracea is believed to be originated in southern and Western Europe.  As B. rapa were 

disseminating from Mediterranean to the western or northern European region, some scientists 

believe that B. napus might be originated anywhere between these places wherever B. rapa and 

B. oleracea wild types got chance to grow together (Tsunoda, 1980).  Some other theories 

described the possibilities of B. napus formation in some other places where B. rapa and B. 

oleracea grow wild and naturalized wild form of B. napus were found (Rakow, 2004). In terms 

of domestication, B. napus is a relatively young species with only 400 years of domestication 

history. 

2.1.5. Taxonomy and botany 

B. napus is an annual or biennial flowering plant under the family Brassicaceae. Its stem 

is erect, slender and free branching with waxy leaves. The flowers are bisexual and form on the 

main and axillary branch. Flowers consist of four sepals, four petals, six stamens and a pistil of 

two carpels. The ovary is superior type and positioned above the receptacle (Gulden et al., 2008). 

B. napus is mainly a self-pollinating crop. However, 12-47% cross pollination can occur under 

field condition due to insects, wind or physical contact (Williams et al., 1986; Becker et al., 

1992). The fruit is a linear two-celled silique or pod containing seeds inside (Bilay, 1976; Gulden 

et al., 2008) 

2.1.6. Development of canola/rapeseed 

 Canola or Rapeseed do not refer to a single species. The term “Rapeseed” is used for the 

oilseeds from both B. napus and B. rapa species. Canola is a particular type of rapeseed which 

contains less than 2% erucic acid and less than 30 µmol glucosinolate per gram of air-dried oil-

free meal. The term “Canola” is derived from “Canadian Oil Low Acid” and registered in 
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Canada in 1978. Now in Canada, United States and Australia, “Canola” is officially defined as 

the rapeseed oil that contains less than 2% erucic acid and less than 30 µmol glucosinolates per 

gram of air-dried oil-free meal. In Europe, it is generally known as rapeseed. 

Oilseed rape including B. napus was growing from ancient times and used as edible oil 

and lamp fuel. During the industrialization in the early last century, B. napus oil was used as 

lubricant due to its high erucic acid content. During the Second World War, the use of rapeseed 

oil as lubricant in war and in merchant ships increased significantly. The demand was so high 

that the plant breeders were focused to develop high erucic acid and high glucosinolate rapeseed 

varieties. In 1954, the first registered high erucic acid and high glucosinolate variety “Golden’ 

were released in Canada.  However, the demand of rapeseed oil as lubricant decreased and plant 

breeders’ focus was shifted to develop a healthy alternative source of edible oil from rapeseed by 

lowering the erucic acid and glucosinolate content (Rakow, 2004). The first naturally occurring 

low erucic acid B. rapa line “Liho” was discovered in 1963 in University of Manitoba 

(Stefansson and Hougen, 1964). Three years later in 1966, the first commercially developed low 

erucic acid B. napus line “Oro” was released in Canada. The first naturally occurring low 

glucosinolate B. napus line was “Bronowski” was found in Poland in 1967. Discovery of both 

naturally occurring low erucic acid and low glucosinolate lines paved the path to develop double 

low rapeseed variety through plant breeding. Finally, the first double low B. napus line named 

“Tower” was developed by Dr. Baldur Stefansson in 1974 at University of Manitoba (Brown et 

al 2008). 

2.1.7. Canola oil health benefit 

 Canola oil is very popular for its nutritional qualities. Canola Council of Canada (2017) 

summarized the canola oil nutritional quality as “high in good fats, lowest in bad fats, no 
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cholesterol and good source of Vitamin E”.  Canola oil contains “good for health” Omega-6 fatty 

(Alpha-linolenic acid) and Omega-3 fatty acid (Linoleic acid) in a ratio of 2:1, which is 

nutritionally ideal. These unsaturated fatty acids help to reduce the bad cholesterol in human 

body and lower the risk of heart diseases. In addition, canola contains lowest “bad for health” 

saturated fatty acid among all the vegetable oils and no trans fats at all. The Low Erucic Acid 

Rapeseed (LEAR) oil with less than 5% erucic acid and low glucosinolates was introduced in 

Europe as an edible oil in 1977 (Przybylski et al., 2005; Lin et al., 2013). United States Food and 

Drug Administration certified canola oil “generally recognized as safe” (GRAS) status in 1985. 

According to Lin et al (2013), canola oil can be regarded as the healthiest edible oil among all, in 

terms of its biological functions and its ability to reduce the disease related risks. 

2.2. Root system architecture in plants 

2.2.1. Root system architecture 

 The structure, shape and spatial arrangement of the root system altogether in the soil is 

referred as the root system architecture (RSA) of a plant (de Dorlodot et al., 2007; Koevoets et 

al., 2016). RSA of a crop is composed of different individual root traits i.e. root length, primary 

root branches, lateral root branches, root angel, root diameter, root mass, root hair etc. The root 

system of crop plants are mainly of two types, tap root system and fibrous root system (Comas et 

al., 2013).  

In a taproot system, the primary root that starts from radicle and form the main root is 

called the taproot. Taproot length is an important characteristics in dicot plants which determines 

the capability of the plant to explore water and nutrient from the deeper soil zone. It is crucial in 

response to drought stress where plants survival and retaining productivity largely depends on 

how deep a root system plant a can produce to adapt the situation (Kong et al., 2014). In addition 
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to moisture, longer tap roots help plants extract nutrients like nitrogen which usually leached 

down from the surface soil to deep soil zone (Wasson et al., 2012; Paez-Garcia et al., 2015). 

Therefore, greater root length and greater rooting depth is important under water limiting 

condition in soil for yield stabilization (Ludlow and Muchow, 1990). 

Primary and secondary root branches grown from the taproot are together termed as the 

lateral roots and together provide overall shape and density of the root system. In Arabidopsis 

and B. rapa, lateral roots are important for water and nutrient uptake during vegetative and 

reproductive stage (Smith and De Smet, 2012). Root angle is one of the main characteristics of 

“steep-cheap-deep” root system described by Lynch, (2013). Root system with lower angle will 

not explore horizontal soil layer, instead will grow vertically along with taproot. This will result 

less competition with neighboring plants, less energy expenditure and exploration of water and 

nutrients from deeper soil zone. Higher root and/or taproot diameter represents vigorous root 

system and helpful for plant to explore water from deeper soil zone. Taproot with higher 

diameter is linked with higher total xylem area in the root (Burridge et al., 2017) which indicates 

that it may have higher water and nutrient transport efficiency from root to shoots. In the fibrous 

root system, several slender adventitious roots are grown downward and outward from the stem 

forming a dense fine root system mass. 

2.2.2. Role and function of root system architecture in plants 

 Plant root system, referred as ‘the hidden half”, plays multiple roles in plant growth and 

development. It is the root system by which plants get access to the soil moisture and nutrients 

and uptake them. In addition, it gives anchorage and mechanical support to the plant. Root 

system can also act as storage organ for carbohydrate and is an active site of producing different 

phytohormones needed for plant growth and development (de Dorlodot et al., 2007). Nodules in 
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the legume root system can fix nitrogen from the environment with the help of nitrogen-fixing 

bacteria. Root system from some plants directly serve as the source of human food consumption 

i.e. radish, beets, carrots, ginger etc.(Zhu et al., 2011). Root system is the first organ which 

responds with the change rhizosphere and help plants to sense different abiotic and biotic 

stresses. 

2.2.3. Correlation between root system architecture and yield in different crops 

 Water use, water use efficiency and harvest index are the three major components that 

determine the crop yield (Passioura, 1977; Turner et al., 2001; Ye et al., 2018). Amount of yield 

decrease is positively correlated with the water reduction in the soil, and higher water uptake 

capability of plant clearly improve drought tolerance with improved productivity in water 

limiting condition (Passioura, 1977; Ye et al., 2018). Root system in plants plays the key role in 

uptaking water and nutrient resources from the soil. A healthy root system is essential for 

optimal plant growth; and optimal plant growth can significantly boost the yield (Marschener, 

1998). Therefore, variation in root architectural traits and differences in their spatial distribution 

in the soil profile have substantial impact on water and nutrient uptake capability of plant and 

their ability to adjust with abiotic stresses to maintain the productivity (Lynch, 2007; Zhu et al., 

2011; Piñeros et al., 2016).  

Different root architectural traits are positively correlated with yield in different crops. 

Root number and root length density are directly correlated with rice (Oryza sativa) grain yield 

(Harada et al., 1984; Morita et al., 1988). Additionally, some mathematical models showed the 

correlation between root biomass and rice grain yield and root oxidation activity and rice grain 

yield (Liu et al., 2002; Yang et al., 2012). In wheat, Ehdaie et al., (2010) found significant 

positive correlation of plant nutrient uptake and grain yield with root biomass and suggested to 



 

13 

 

developing wheat genotypes with superior root characteristics in breeding programs for higher 

grain yield. Wasson et al., (2012) proposed that wheat varieties with deep root system will have 

higher root density at deep soil zone than the surface soil zone and will have increased yield in 

rain-fed system where crops rely on water from deeper soil zone. Additionally, positive 

relationships were identified between different root traits (root length, root length density and 

root diameter) with aboveground crops traits including yield in both well-watered and water 

limiting condition (Atta et al., 2013). However, relationships were stronger in well-watered 

condition comparing to water limited condition. El Hassouni et al., (2018) showed that 37-38% 

yield advantage can be obtained with durum wheat varieties with deeper root system under water 

limiting condition. In maize (Zea mays L.), Kuchenbuch and Barber, (1987) showed that, yearly 

variation of rooting depth and distribution in the soil may cause the variation in the yield in 

different years. Crop modeling approach on historical increase of maize yield in United States 

revealed that change in root system architecture and water uptake capability had a significant 

effect on biomass production and yield increase (Hammer et al., 2009).  Root hair elongation in 

maize can significantly improve yield (Hochholdinger et al., 2008). Genetic improvement of 

maize root system growth helps maize plants in uptaking higher amount of nitrogen during post-

silking stage resulted increase in maize yield (Mu et al., 2015). Under water limiting condition 

root length density, total root dry weight and deep root dry weight were positively correlated 

with chickpea yield (Jaganathan et al., 2015; Ramamoorthy et al., 2017). Shallow root system 

under phosphorus limiting condition is positively correlated with improved field performance in 

Soybean (Glycine max L.)  and common bean (Phaseolus vulgaris) (Zhao, 2004; Ho et al., 2005; 

Miguel et al., 2013). 
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2.2.4. Correlation between root system architecture and yield in Brassica species 

In rapeseed/canola, positive correlation has been established between root length and 

shoot phosphorus content under phosphorus limiting soil (Solaiman et al., 2007; Hammond et al., 

2009) indicating role of root system in higher phosphorus uptake efficiency that may lead to the 

improved field performance. Later, Duan et al., (2009) found that lateral root length is positively 

correlated with phosphorus uptake and yield in canola. Root biomass in canola is directly 

correlated with biomass accumulation which also may lead to increased productivity in B. napus 

(Akhtar et al., 2008; Duan et al., 2009) and white mustard (Sinapis alba L.) (Hajzler et al., 2018). 

Koscielny and Gulden, (2012) suggested that root length in the early growth stages (one-to two-

leaf and three-to four-leaf stages) is one of the best indicator of seed yield. Rahman and 

McClean, (2013) showed significant and positive correlations between different root traits and 

agronomic characters of canola (B. napus L.), such as, days to flowering vs. root length, days to 

flowering vs. dry root weight, pods per plant vs. root length, root length vs. dry stem weight, root 

length vs. dry root weight, root length vs. seed yield, dry stem weight vs. dry root weight.  

2.3. Breeding for root architectural traits 

2.3.1. Selection for root traits and challenges 

 Selection for the bellow ground root architectural traits in traditional breeding methods 

was not a popular strategy to improve the crop yield in last century (Hochholdinger et al., 2008; 

Zhu et al., 2011; Piñeros et al., 2016). Rather application of different chemicals and fertilizers, 

increasing the planting density and different management practices were the most popular 

strategy. Plant breeders, in last few decades, started to realize that modifying shoot architectural 

traits and yield attributing characteristics is very effective for increasing yield (Koevoets et al., 

2016). However, root traits remains as the most under-utilized source of crop improvement 
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(Herder et al., 2010; Wachsman et al., 2015). This is because of several challenges associated 

with large scale selection for the root traits following traditional breeding methods. One of the 

major challenges is the plasticity of the plant root system. Root system architecture is plastic in 

nature and tends to modify root apparatus according to soil micro-environment, soil water and 

nutrient condition (Malamy, 2005; Pacheco-Villalobos and Hardtke, 2012b; Smith and De Smet, 

2012; Koevoets et al., 2016). This leads to the variation in root system architecture in response to 

environment. For example, primary root number and length in Arabidopsis remain constant in 

response to a wide variety of nitrogen level in the soil while the length of lateral roots are 

actually stimulated under low nitrogen condition (Gruber et al., 2013; Kong et al., 2014). On the 

other hand, both primary and lateral root growth is inhibited but lateral root density is increased 

in Arabidopsis and rice in phosphorus deficient soil (Desnos, 2008; Gruber et al., 2013). Doussan 

et al., (2009) suggested that nutrient uptake capability actually depends on the plants’ ability to 

modify its root architectural traits according to the soil condition.  

Other constraints regarding selection of root traits includes time and labor intensiveness. 

Incredible amount of time and labor need to be employed to select lines phenotypically with 

improved root characteristics in the field condition. Moreover, unlike the aboveground plant 

parts, root phenotyping methods are destructive in nature. This means, it is impossible to 

measure root traits without destructing the plants and field plots, therefore, selection for higher 

yielding lines with superior root characteristics is very difficult (Nagel et al., 2009; Paez-Garcia 

et al., 2015). 

2.3.2. High throughput phenotyping for root traits 

High throughput phenotyping procedures allow plant scientists to phenotype plant traits 

in easy, rapid and cost-effective manner with high accuracy. Considering several limitations of 
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phenotyping root system in a large scale, high throughput root system phenotyping is an 

effective solution toward root related research. To date, several high throughput root system 

phenotyping procedures were developed and successfully implanted to phenotype crop root 

system. Few examples are shovelomics in maize and potato (Trachsel et al., 2011; Wishart et al., 

2013), rhizotron in maize and sorghum (Singh et al., 2010; Lobet and Draye, 2013), trench 

profile method in cauliflower and leek (Vansteenkiste et al., 2014), hydroponics in corn and rice 

(Holloway et al., 2011; Clark et al., 2013b), transparent media in rice and soybean (Fang et al., 

2009; Topp et al., 2013), pouch and wick system in canola (Thomas et al., 2016), imaging with 

magnetic resonance imaging (MRI) technology (Schulz et al., 2013) and X-Ray microcomputed 

tomography (Mairhofer et al., 2013) etc. Among these, MRI and X-ray microcomputed 

tomography is nondestructive methods and able to capture seedling root images directly from the 

pot. Beside these, 2-D and 3-D root imaging were implemented for several of the above-

mentioned high throughput phenotyping methods enabling more accurate and rapid root 

phenotyping. 

2.3.3. Marker assisted selection/breeding for root architectural traits 

 Plant breeding has two major avenues, traditional or classical plant breeding and 

molecular plant breeding. Classical plant breeding employs traditional selection procedures and 

breeding methodologies to improve a crop with desired traits. Molecular plant breeding, on the 

other hand, applies molecular biology, molecular markers and biotechnology to improve for crop 

improvement (He et al., 2014). Marker assisted selection (MAS) is one of the major approaches 

under molecular plant breeding techniques which allows molecular markers for indirect selection 

of desirable phenotypic traits. MAS has been popular among the plant breeders due to several 

benefits over classical breeding methods. These includes early generation large scale selection, 
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reducing breeding cycle, reducing cost and labor, eliminating environment influences during 

selection (He et al., 2014; Chitwood et al., 2016). Rapid advancement of the molecular marker 

technologies further popularized marker assisted selection in last few years. 

Molecular markers are now an integral part of plant molecular breeding and genetics and 

used for a range of purposes such as segregation analysis, genetic mapping, phylogenetic and 

diversity analysis, gene tagging, plant disease diagnostics and marker assisted selection (Kumar 

et al., 2012; He et al., 2014; Chitwood et al., 2016). DNA molecular markers can be of two types, 

hybridization-based markers, PCR-based markers and sequenced based markers. Hybridization 

based Restriction Fragment Length Polymorphisms (RFLP) was the first DNA based molecular 

marker used for genotyping and creating genetic linkage map (Botstein et al., 1980). Later 

several PCR based molecular markers, Random Amplified Polymorphic DNA (RAPD) 

(Williams et al., 1990), Simple Sequence Repeats (SSR) (Hearne et al., 1992), sequence 

characterized amplified region (SCAR) (Paran and Michelmore, 1993), cleaved amplified 

polymorphic sequences (CAPS) (Konieczny and Ausubel, 1993), Sequence Tagged Sites (STS) 

(Fukuoka et al., 1994),  Amplified Fragment Length Polymorphism (AFLP) (Vos et al., 1995), 

Sequence Related Amplified Polymorphism (SRAP) (Li and Quiros, 2001) etc. were developed. 

Sequenced based markers are Single Nucleotide Polymorphism (SNP) (Marth et al., 1999), 

Indels etc. Among all the molecular markers, SNPs are now the most popular molecular marker 

due to its high abundance in the genome and low cost discovery (Zhu et al., 2008; He et al., 

2014). 

Therefore, availability of high throughput phenotyping, genotyping and molecular marker 

techniques enable plant breeders to perform MAS through identify molecular markers tagged 

with gene of interest and quantitative trait loci (QTL) associated with different complex traits. 
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Considering complexity of root architectural traits, MAS can be very good alternative of 

traditional breeding method to develop varieties with desired root traits (Courtois et al., 2013). 

QTL associated with different root traits were discovered in different crops. Several QTL 

associated with root length and thickness in rice were identified (Steele et al., 2013) and 

incorporated those in an Oryza indica variety through MAS. There are few other examples of 

identification and successful introgression of root associated QTL in different crops, i.e. wheat 

(Placido et al., 2013), chickpea (Varshney et al., 2013) etc. Identification of QTL associated with 

different root traits in Brassica species were conducted mostly in response to nutrient deficiency 

or drought condition (Arifuzzaman et al., 2016). Several QTL were identified for root vigor 

(Arifuzzaman et al., 2016), root dry weight and primary root number under boron deficiency (Shi 

et al., 2011), root mass under drought condition (Fletcher et al., 2015) in B. napus and taproot 

characteristics in B. rapa (Lu et al., 2008). 

2.3.4. Genome wide association mapping  

 Identification of molecular markers and QTL associated with a trait of interest is the main 

prerequisite for successful implementation of MAS (Collard et al., 2005). Genome wide 

association study (GWAS) is a powerful gene mapping strategy that have been developed and 

used to identify QTL associated with quantitative traits in human and animals (Begum et al., 

2015). Later it become very popular in identifying QTL associated with quantitative traits in 

plants (Zhu et al., 2008). There are several benefits of GWAS mapping strategy over traditional 

bi-parental mapping. In bi-parental mapping, required mapping population is created from two 

extreme opposite parents, therefore, it takes into account only the recombination events occurred 

between the two parents which is relatively low. Due to low recombination events, it is very 

difficult to identify closely linked markers for MAS (Zhao et al., 2014). In addition, bi-parental 
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populations have limited number of polymorphic loci with which minor QTL are not detected. In 

contrast, GWAS requires a diverse germplasm panel consisting of several hundreds of unrelated 

genotypes from diverse sources and origins (Zhu et al., 2008; Zhao et al., 2014). Due to using 

large numbers of diverse genotypes, GWAS mapping strategy can capture all the historical 

recombination events occurred in the mapping panel which results high resolution genetic map 

(Ersoz et al., 2007b; Gómez et al., 2011). The basis of GWAS is the non-random association of 

alleles at different loci known as linkage disequilibrium (LD) (Zhu et al., 2008; Zhao et al., 

2014). A high density molecular marker panel (mostly SNPs are used) with a good coverage of 

the genome is essential to detect the recombination breakpoints in the population effectively 

(Flint-Garcia et al., 2003; Begum et al., 2015). Association mapping has some limitations too. 

One of the major limitation is detection of false positive association due to population structure 

and relatedness between the genotypes within the population (Celik et al., 2016). False positive 

associations can be minimized by taking account of the population structure and relatedness in 

the population during the analysis. Population structure (Q), kinship matrix (K) and principle 

component analysis can be incorporated in statistical models like general linear model (GLM) 

and mixed linear model (Price et al., 2006; Yu et al., 2006; Bradbury et al., 2007). 

2.3.5. Genome wide association mapping on root architectural traits in different crops 

 To date, not many genome wide association mapping have been conducted to identify 

molecular markers and loci associated with different root architectural traits in comparison to 

shoot architectural and other traits in different crops. Courtois et al., (2013) conducted GWAS on 

Japonica rice panel consisted of 167 genotypes and detected 51 unique loci for maximum root 

length, deep root biomass, root biomass; root to shoot ratio, root cone angle. With GWAS, Clark 

et al., (2013) detected eight QTL for primary root growth and total root growth that were co-
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localized with previously identified QTL with bi-parental mapping. In durum wheat, 15 QTL 

associated with primary root angle, total root dry weight, spread of root angle, total length of 

seminal root and number of seminal roots were identified by Sanguineti et al., (2007) with a SSR 

based GWAS study on 57 genotypes. Canè et al., (2014) studied root traits variation in a durum 

wheat germplasm panel consists of 183 genotypes and conducted GWAS. They identified 48 

QTL for different root architectural traits. Further, they compared the root associated QTL with 

the QTL identified for different agronomic and yield attributing traits using the same panel and 

detected 15 overlapping QTL for root and shoot traits. In barley, 11 putative QTL associated 

with root dry weight, root length and root-shoot ratio were identified in a GWAS mapping study 

with 179 genotypes and 58,692 SNPs. In maize, total 268 marker-trait association were detected 

for 22 different root traits in a panel of 319 genotypes by implementing both GLM and MLM in 

the GWAS (Pace et al., 2015). In cowpea, root traits were phenotyped by following shovelomics 

approach and 11 significant QTL were identified through genome wide association study 

(Burridge et al., 2017). They also identified additional 21 QTL through an image-based 

phenotyping system for different root traits. 

 Very limited examples of implementing GWAS to identify markers linked with root traits 

in Brassica sp. has been completed to date. Wang et al., (2017) performed GWAS for different 

root traits with a panel of 405 B. napus lines and detected 285 SNPs associated with different 

root traits in contrasting phosphorus level. Akhtar et al., (2008) identified one QTL for root 

diameter and root length in Brassica juncea through GWAS with a small panel consisted of only 

48 genotypes. 
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2.4. Differential gene expression study 

2.4.1. Transcriptomics 

 A complete set of transcripts or RNA-profile in a cell in a specific physiological 

condition or developmental stage is known as transcriptome (Wang et al., 2009). 

Transcriptomics is the study of these transcripts or RNA-profile at a specified condition (Pandit 

et al., 2018). Transcriptomics is an important method to understand the functional elements of 

the genome and revealing the molecular constituents of cells and tissues (Wang et al., 2009). 

Transcriptomics methods such as serial analysis of gene expression (SAGE),  cap analysis of 

gene expression (CAGE) and microarray allowed plant scientists to study the transcriptional 

changes in contrasting treatments throughout the last few decades (Grunstein and Hogness, 1975; 

Yamamoto et al., 2001; Samolski et al., 2009; Pandit et al., 2018). More recent, RNA-sequencing 

technology has become popular as it circumvents the limitations of hybridization based 

microarrays techniques and allows studying differential expression of the transcript in a more 

sophisticated manner (Wilhelm and Landry, 2009; Zhang et al., 2014; Yu and Lin, 2016). RNA-

seq method provides complete information about the transcripts rather than just measuring 

relative gene expression and more sensitive to the low-expression transcripts (Zhang et al., 

2014). In addition to monitoring global gene expression changes, RNA-seq has been adopted to 

detect candidate genes through comparative analysis of transcripts under contrasting treatments 

(Alvarez et al., 2015; Song et al., 2017). 

The first step of transcriptomics through RNA-seq is collecting total RNA from the 

targeted tissue. The total RNA is then converted to cDNA libraries with specific adaptors 

attached with cDNA fragments at both ends. cDNA libraries are then sequenced through high 

throughput sequencing techniques available to obtain short one end or pair end reads. The size of 
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the reads varies with different sequencing techniques. The single end or pair end reads are then 

aligned with the reference genome of the species to identify the transcripts with their level of 

expression (reviewed by Wang et al. (2009) 

2.4.2. Transcriptomics on root architectural traits in Brassica and other crops 

 Several transcriptomics studies were conducted to identify the complex regulatory 

pathways and gene networks involved in growth and development of different root traits. Jones 

et al., (2006) analyzed transcriptomes from Arabidopsis roots collected from wild type plants 

(with root hair) and mutant plant (without root hair) and compare the transcriptomes. From 

significantly differentially expressed genes list, they analyzed 159 T-DNA insertion lines and 

finally identified six new genes involved in root hair morphogenesis through reverse genetics. 

Transcriptomes from radish roots collected at early and late seedling stage were compared by 

Wang et al., (2012). They suggested that starch and sucrose metabolism and phenylpropanoid 

biosynthesis may be the dominant metabolic events during tuberous root formation in radish. 

Stelpflug et al., (2016) identify 1,110 differentially expressed transcription factor genes across 

longitudinal (four zones) and radial gradients (cortical parenchyma and stele) of the maize 

primary root, many of which are known for regulating root growth and development. Recently, 

Rodriguez-Alonso et al., (2018) compared root transcriptomes of Pachycereus pringlei (member 

of Cactaceae) at three developmental stages to unravel the key regulatory paths involved in root 

apical meristem (RAM) exhaustion and determinate primary root which is a common feature of 

many Cactaceae members. They identified many putative orthologues of Arabidopsis hormone 

signaling and metabolic pathway related genes. They suggested that specific transcriptional 

programming at root apex of Pachycereus pringlei at specific time points/developmental stage. 

Comparative transcriptomics were conducted to identify the genes and regulatory pathways 
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responsible for primary root growth in B. napus by Dun et al., (2016). They divided primary root 

growth into two distinct group short and long and compare the transcriptomes for extremely 

opposite four lines falls under two groups. They identified 20 differentially expressed 

phytohormone related genes that may have potential roles in primary root growth differences in 

B. napus. In soybean, identified several differentially expressed genes involved in hormone 

(Auxin/Ethylene), carbohydrate, and cell wall-related metabolism (XTH/lipid/flavonoids/lignin) 

pathways in soybean primary roots under three contrasting water deficient stress level, very mild 

stress, mild stress and severe stress. Jia et al. (2017) compared transcriptomes from roots of club 

root susceptible and resistance Chinese cabbage (Brassica rapa ssp. pekinesis) and found that 

phytohormone auxin and cytokine related genes were upregulated in susceptible genotypes. 

Cheng et al., (2016) treated B. napus seedling with nanomaterial graphene oxide and found an 

inhibitory effect of graphene oxide on root growth. Analyzing transcriptomes from treated and 

control seedlings they concluded that graphene oxide regulates root growth and development 

through modulating ABA and IBA concentration. 

2.5. Physiology of root development 

2.5.1 Cellular organization of root system 

 A growing Arabidopsis root tip can be divided into three zones, meristematic region, 

elongation zone and differentiation zone. The meristematic region is further divided into two 

zones, apical meristem and basal meristem. At the top of the apical meristem zone, there are a 

type of mitotically inactive cells forming the quiescent center. This quiescent center promotes the 

continuous division of the neighboring cells known as stem cell initials which leads formation of 

new cells (Overvoorde et al., 2010). AP2 types of transcription factors encoded by PLETHORA 1 

(PLT1) and PLETHORA 2 (PLT2) genes are responsible for quiescent center speciation and stem 
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cell activity (Aida et al., 2004). There are four types of stem cell initials give rise to different 

type of cell layers, epidermis, cortex, endodermis, pericycle, stele, lateral root cap and columella. 

The epidermis and lateral root cap are the outer layers of the root system and root cap, 

respectively, and are formed from the division of epidermal/lateral root cap initials.  Columella 

cells occupying the central and tip portion of the root cap are produced from columella initials. 

Cortex and endodermis are formed from the division of cortex/endodermis initials. The vascular 

initials divide and contribute to the formation of vascular tissues and pericycle. As a result of 

continuous division of the four types of initials, the older cells are displaced from the apical 

meristem zone and transferred to basal meristem. Here, the rate of the cell division is slows 

down, instead, the cells starts elongating (De Smet et al., 2007; Overvoorde et al., 2010). 

Eventually they move to the elongation zone where the cell division stops, instead cells starts to 

elongate in full scale. When cells reach their ideal size and shape, the elongation process ceased 

and root hairs start to emerge from the epidermis (Dolan et al., 1994). In the next step, elongated 

and matured cells move towards differentiation zone. Mature pericycle cells by the xylem poles 

in the differentiation zone stimulated to divide further and produce lateral root primordia (Parizot 

et al., 2007; Fukaki and Tasaka, 2009). Eventually new apical meristem and quiescent center is 

developed in the lateral roots which promotes the growth of the lateral roots.  

2.5.2. Plant growth hormones in root development 

2.5.2.1. Auxin 

 Auxin is the most studied among all growth hormones and plays major roles in all aspects 

of plant growth and development from embryogenesis to plant tropism (Petrasek and Friml, 

2009). Indole 3 Acetic acid (IAA) is regarded as the predominant form of auxin present in plants 

and play major roles in root development in plants (Ludwig-Müller, 2011). Auxin biosynthesis, 
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transport, signaling and perception by the plant are the major stages of auxin-mediated root 

development (Saini et al., 2013). 

 Auxin biosynthesis is a complex process involving multiple pathways and molecular 

mechanisms. However the core mechanism of IAA biosynthesis is evolutionarily conserved in 

many plant species (Saini et al., 2013). IAA can be synthesized through different Tryptophan 

(Trp) - dependent pathways where Trp plays major roles in synthesis of several precursors of 

IAA like indole 3 – pyruvic acid (IPA), indole 3 – acetamide (IAM), tryptamine (TAM) etc. 

which are converted to IAA further. Few evidences suggests that IAA can be synthesized 

through Trp-Independent pathway although the mechanism is not well understood (Zhao et al., 

2009). 
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Figure 2.2. Auxin biosynthesis, transport and signaling process. (a) Auxin produced in shoots is 

transported to the root through phloem with long distance auxin transport system. (b) 

Auxin produced in roots and transported from cell to cell through efflux and influx 

auxin careers (c) Auxin signaling. (d) With the low concentration of auxin, AUX/IAA, a 

transcriptional repressor, binds with AUXIN RESPONSIVE FACTOR (ARFs) with the 

help of a corepressor TOPLESS (TPL). Some of the ARFs act as transcriptional 

activator of different auxin responsive genes. (e) Due to binding with repressor 

(AUX/IAA), ARFs were unable to activate different auxin responsive genes controlling 

root growth and development. (f) Alternately, when there is high concentration of 

auxin, (g) AUX/IAA binds with Transport INHIBITOR RESPONSE 2 (TIR2) or Auxin 

F-BOX PROTEINs (AFBs) and further degraded. (h) ARFs become free to 

transcriptionally activate auxin responsive genes promote root growth and development. 

Auxin is synthesized in both shoot and root tissues (Müller et al., 1998; Ljung et al., 

2001; Stepanova, 2005; Overvoorde et al., 2010). Therefore, auxin need to be transported from 

the area of synthesis to the respective root tissues where it can control the process of root 

development. As, the auxin transport system can be of two distinct types, long distance transport 

and short distance transport (Petrasek and Friml, 2009). In long distance auxin transport system, 

auxin is transported from the shoot to the root tissues through phloem, very similar as the 



 

27 

 

carbohydrate transport (Goldsmith, 1977; Tsurumi and Wada, 1980). The transported auxin is 

then added with the auxin synthesized in the root tissue and starts moving to cell to cell, termed 

as short distance transport (Saini et al., 2013). Unlike the long distance auxin transport, several 

auxin influx (AUXIN RESISTANT1 [AUX1] and LIKE-AUX1 [LAX1]) and efflux (P-

GLYCOPROTEIN [PGP] and PIN-FORMED [PIN]) carriers plays important role in cell to cell 

short distance auxin transport in root (Bennett et al., 1996; Swarup et al., 2001, 2008; Geisler and 

Murphy, 2006; Petrasek and Friml, 2009). Short distance auxin transport can be of two types, 

Acropetal auxin transport (from base of the root towards the root tip) and Basipetal auxin 

transport (from root tip towards the base) (Mitchell and Davies, 1975; Rashotte et al., 2000). 

Auxin transport in cellular level plays major role in root patterning and differentiation process. 

Inhibition or disruption of the auxin transport largely affect the root patterning (Aida et al., 

2004). Epidermal cells can import auxin through auxin influx carrier AUX1 to form root hairs 

and root hair elongation (Jones et al., 2009; Overvoorde et al., 2010). Aida et al., (2004) 

described the importance of cell auxin level and auxin gradient in expression of PLT1 and PLT2 

genes which encode AP2 transcription factors responsible for quiescent center speciation and 

stem cell activities.  

 Auxin signaling in root tissue depends on the level of interaction between AUX/IAA 

protein family and the TRANSPORT INHIBITOR RESPONSE 1 (TIR1) or AUXIN F-BOX 

PROTEINs (AFBs) (Overvoorde et al., 2010). AUX/IAA protein family includes 29 proteins and 

act as a transcriptional repressor. Most of these AUX/IAA proteins have four conserved domains, 

I, II, III and IV. AUX/IAA proteins bind with TOPLESS (TPL), a corepressor, with domain I 

(Szemenyei et al., 2008) and TIR1 with domain II (Tan et al., 2007).  On the other hand, they use 

domain III and IV to interact with other AUX/IAA proteins and also to bind with AUXIN 
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RESPONSE FACTORs (ARFs) (Kim et al., 1997; Ulmasov et al., 1997). ARFs like ARF5, ARF7, 

ARF8, and ARF19 are well regarded as the transcription activator of different auxin responsive 

genes (Liscum and Reed, 2002). ARF7 and ARF19 positively regulate the lateral root formation 

by activating the transcription of LATERAL ORGAN BOUNDERY DOMAIN (LBD)/ASYMETRIC 

LEAVES 2-like (ASL) genes LBD16/ASL18 and LBD29/ASL16 (Okushima et al., 2007). With less 

auxin concentration in root tissue, the AUX/IAA protein bind with the ARFs with their domain III 

and IV with the help of corepressor TPL and repress the activity of ARFs (Szemenyei et al., 

2008). With the presence of high concentration of auxin in root tissue, the AUX/IAA proteins 

bind with the TIR1 or AFBs with their domain I and II and soon degrade through Ubiquitin-

Proteasome pathway. As a result of AUX/IAA and TIR1 or AFBs bond, ARFs are now free to 

activate the auxin responsive genes which play major roles in root the development (Gray et al., 

2001; Ramos et al., 2001; Zenser et al., 2001; Mockaitis and Estelle, 2008; Lau et al., 2009).  

2.5.2.2. Ethylene (ET) 

 Involvement of ethylene in root development is mainly through interfering with the auxin 

biosynthesis and transport process. Auxin plays a positive role in ethylene biosynthesis by 

upregulating ACC (1-aminocyclopropane-1-carboxylate) synthase gene which is essential for 

ethylene biosynthesis (Abel et al., 1995). On the other hand, ethylene controls the expression of 

two WEAK ETHYLENE INSENSITIVE (WEI2 and WEI7) genes which limits the Trp-

biosynthesis and negatively affect Trp-dependent auxin biosynthesis process (Woodward and 

Bartel, 2005). There are evidences of reduced LR formation in Arabidopsis with the application 

of ACC which can be reversed by an ethylene antagonist, silver nitrate treatment (Negi et al., 

2008). In tomato, ethylene causes significant reduction of auxin content in root tissue (Negi et 

al., 2009). In addition to the auxin biosynthesis process, ethylene also regulate the polar auxin 
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transport system (Ruzicka et al., 2007; Negi et al., 2008; Lewis et al., 2011). Ethylene stimulates 

several auxin efflux (AUX1) and influx career (PIN2, 3 and 7) and positively regulate auxin 

transport from root tip to the elongation zone. As a result, localized auxin accumulation needed 

for lateral root formation is hampered. 

2.5.2.3. Cytokinin (CK) 

 Cytokinin and auxin cross talk with each other antagonistically to control root 

development. A member of the auxin repressor AUX/IAA protein family, SHORT HYPOCOTYLE 

2 (SHY2) gene plays the central role in this process. SHY2 gene is promoted by cytokinin which 

limit the expression of PIN genes (Tian et al., 2003; Dello Ioio et al., 2008). PIN proteins are 

auxin efflux carrier and responsible for optimal auxin distribution to regulate cell division and 

expansion in root meristem (Billou et al., 2005; Galinha et al., 2007). In contrast, auxin modulate 

the degradation of SHY2 which leads to enhance the expression of PIN proteins and maintenance 

of auxin proper gradients required for cell division in the meristematic zone. Experimental 

evidence suggests gain of function of shy2 mutant produce smaller root meristem and loss of 

function of shy2 mutant produce larger root meristem (Dello Ioio et al., 2008). There is other 

experimental evidence supporting the negative role of cytokinin in root development. 

ARABIDOPSIS HISTIDINE KINASE 2 (AHK2) and AHK3 act as a receptor in the cytokinin 

signaling. Mutant analysis showed that, ahk2ahk3 mutant plants produce larger root system with 

primary branch and root system due to impaired perception of cytokinin (Riefler, 2006). 

2.5.2.4. Gibberellin (GA) 

Gibberellin plays several roles in controlling root growth in plants. One of the mostly 

studied GA regulations in root control is GA mediated degradation of growth repressor DELLA 
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proteins in association with auxin. DELLA proteins such as GAI (GA insensitive) and RGA 

(repressor of GA1-3) usually repress the GA signaling and GA regulated root growth and 

development (Dill and Sun, 2001; Saini et al., 2013). With the increased level of auxin, GA 

biosynthetic gene GA2O3 produce increased amount GA which bind with GA receptor protein 

GID1 (GA insensitive dwarf 1) protein (Tanimoto, 2005; Saini et al., 2013). This GA-GID1 

binding activates the GA signaling which enhances the degradation of DELLA proteins and 

reduce their growth inhibiting effects on roots (Dill and Sun, 2001; Tanimoto, 2005; Saini et al., 

2013). Ubeda-Tomás et al., (2009) treated wild type Arabidopsis seeding with a GA biosynthesis 

inhibitor PAC (Paclobutrazol) which inhibited the root growth. They found that size of the root 

meristem and length of the mature cells were significantly reduced in the PAC treated seedlings. 

They also reported that cell production rate was lower in the GA biosynthesis mutant 

Arabidopsis seedling. 

In addition, several studies reported the inhibitory effect of GA on lateral root growth. 

Berova and Zlatev, (2000) reported that GA synthesis mutant tomato plants produce higher 

number of lateral roots. Similarly, GA deficient and GA insensitive Populus root produce lower 

number of lateral roots than their wild types (Busov et al., 2006). Exogenous application of GA 

on GA deficient mutant Populas inhibited lateral root formation (Busov et al., 2006; Gou et al., 

2010). GA also plays an important role in root thickening too. Inhibition of GA biosynthesis 

results reduced root growth but induce the expansion of the cortex cells resulting thickening of 

the root system in the elongation zone (Tanimoto, 2005). These can completely alter by the 

external application of GA. 
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2.5.2.5. Brassinosteroid (BR) 

BR plays variety of roles in root growth and development including root cell elongation, 

root length, root meristem size, lateral root and root hair formation, and gravitropism (Wei and 

Li, 2016). Hacham et al., (2011) showed that BRI1 activity in the epidermis regulates the root 

meristem size in Arabidopsis. Mutant bri1 plants exhibited reduced root meristem which resulted 

impaired cell cycle activity and cell expansion. BR regulates the root meristem size in a 

concentration dependent manner (Gonzalez-Garcia et al., 2011; Hacham et al., 2011). Both loss 

of function and gain of function BR mutant plants produced shorter sized root meristem 

indicating an optimum BR signaling is required for proper root meristem growth in Arabidopsis 

(Gonzalez-Garcia et al., 2011). Bao, (2004) showed that Mutant bir1 Arabidopsis plants showed 

reduced number of lateral roots which can be recovered by external application of BR. BR, 

through facilitating acropetal auxin transport promotes initiation of lateral root primordia rather 

than promoting growth of lateral roots in later developmental stage (Bao, 2004; Wei and Li, 

2016).  

2.5.2.6. Abscisic acid (ABA) 

ABA is well regarded for its role in shoot and root growth during different abiotic 

stresses and help plants to adapt through morphological and physiological modification (Chen et 

al., 2006). Early studies showed that with endogenously increased level of ABA reduced shoot 

growth but maintain root elongation in maize under water deficit condition (Saab et al., 1990). 

However, the mechanism was unknown at that time. Several studies later showed that under low 

water potential increased concentration of endogenously accumulated ABA actually inhibited the 

ethylene biosynthesis to maintain continuous root elongation (Spollen et al., 2000; Sharp and 

LeNoble, 2002). Later interaction of ABA and auxin (Aux/IAA) were detected in the process. 
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With high ABA concentration, ethylene production was restricted as well as transportation of 

Aux/IAA to the root tip was inhibited which resulted enhanced root growth (McAdam et al., 

2016). In contrast, Xu et al., (2013) showed that under moderate water stress condition 

accumulation of ABA increased auxin transport to the root tip and increase proton secretion 

resulting primary root elongation and root hair formation in rice and Arabidopsis. ABA plays 

major role in regulating lateral root formation too. Two transcription factor ABA insensitive 3 

and 4 (ABI3 and ABI4) encodes two different binding domain and showed contrasting effect on 

lateral root growth (Saini et al., 2013). ABI3 has conserved B3 binding domain which interacts 

with Aux/IAA and inhibit lateral root formation (Brady et al., 2003). On the other hand, ABI4 

encodes AP2 domain which promotes lateral root formation. However, overexpression of ABI4 

caused inhibition of auxin efflux carrier PIN1 which can restrict lateral root growth in 

Arabidopsis (Shkolnik-Inbar and Bar-Zvi, 2010). 

2.5.2.7. Polyamines (PA) 

Polyamines are low molecular weight polymers associated with different developmental 

stages including cell proliferation, active growth and metabolism (Kusano et al., 2007; Saini et 

al., 2013). Several studies reported role of polyamine in root growth and development. Hummel 

et al., (2002) reported that PA biosynthesis inhibitors reduced the endogenous PA content and 

root growth was significantly inhibited in a sub-Antarctic cruciferous species Pringlea 

antiscorbutica at low temperature. Rooting during in vitro growth of sweet orange was 

significantly improved when exogenous PA were applied in the growing media (Mendes et al., 

2011). This process was reversed by applying PA biosynthesis inhibitor in the growing media. 

Martínez Pastur et al., (2007) also reported that polyamine improved in vitro rhizogenesis in 

species Nothofagus nervosa. It has been reported by few studies that PA positively affected 
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adventitious root growth in vitro i.e. poplar shoots (Hausman et al., 1994), apple rootstock (Naija 

et al., 2009) etc. 

2.5.2.8. Jasmonic acid (JA) 

Jasmonic acid and its derivatives are lipid derived compounds and regarded as plant 

hormone (Corti Monzón et al., 2012). They are mainly characterized as growth regulators 

associated with plant defense response against insect wound and for certain bacteria and fungi 

(Farmer et al., 2003; Wasternack, 2007). Besides defense responses, JA are associated with 

different aspects of growth and development in plants. There are several reports of JA mediated 

root growth inhibition in different plant species Arabidopsis (Staswick et al., 1992), Oryza sativa 

(Wang et al., 2002), Allium cepa and Phaseolus coccineus (Maksymiec and Krupa, 2007). 

However, in another study, Gutierrez et al., (2012) showed that Auxin regulates adventitious root 

growth in Arabidopsis through JA homeostasis. Exogenous application of JA and inhibitor of JA 

reduced primary root growth and lateral root growth in Helianthus annuus in an auxin 

independent manner (Corti Monzón et al., 2012). However, some other studies also reported JA 

mediated restriction of auxin transport genes PIN1 and PIN2 in Arabidopsis resulting auxin 

accumulation in root basal meristem indicating crosstalk between JA and Auxin in root growth 

(Sun et al., 2009).  
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CHAPTER 3: A COMPARATIVE STUDY ON ROOT TRAITS OF SPRING 

AND WINTER CANOLA (BRASSICA NAPUS L.) UNDER CONTROLLED 

AND WATER STRESSED CONDITIONS1 

3.1. Abstract 

Root system in canola (Brassica napus L.) varies largely in different growth habit types. 

A study was conducted with five winter and five spring types germplasm to identify the gradual 

change of root traits at different growth stages under normal and water stressed conditions. Two 

experiments, controlled condition and water stressed, were conducted in the greenhouse. Data on 

different root traits were collected at 30, 40, 50 and 60 days after planting. In controlled 

experiment, no significant difference was observed for root traits between winter and spring 

types at 30 days after planting. However, significant variations were appeared for taproot length 

(F= 10.17***) and root dry weight (F = 16.96***) between winter and spring types at 40 days 

after planting. All other root parameters such as soil level taproot diameter (F= 22.14***), 

bottom taproot diameter (F= 4.59*), primary root branches (F= 78.70***) and root vigor (F= 

47.18***) were significantly higher in the winter types compared to those of the spring types at 

60 days after planting. Growth pattern curves indicated that all the root traits of spring types 

increased in a linear fashion, where the root traits of winter types increased rapidly after 40 days 

of planting. In water stressed experiment, the water stress was applied from 20 to 60 days after 
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planting, and data were taken at 60 days after planting. All the root parameters except taproot 

length were significantly (P < 0.001) decreased in the stressed plants compared to the control 

plants., where the soil level taproot diameter, bottom taproot diameter, primary root branches, 

root vigor, and root dry weight were decreased by 43%, 63%, 19%, 31% and 53%, respectively 

The root growth reduction in stressed winter type genotypes was higher than stressed spring type 

genotypes. This study indicated that winter type canola generates vigorous root system under 

normal growing conditions, and ceases root growth the most under water stressed conditions. 

Key words: Root traits, water stress, winter and spring B. napus. 

3.2. Introduction 

The root system provides anchorage and support to the plant and allows of mining water 

and nutrient from the soil. Deep and vigorous root system can facilitate higher moisture and 

nutrient acquisition from the soil, which can boost up the yield largely (Marschener, 1998). On 

the other hand, less vigorous and shallow root system can uptake less amount of moisture and 

nutrients, which might end up with reduced yield and biomass production. Moreover, shallow 

root system cannot uptake moisture from deeper soil, and therefore, become vulnerable in 

drought prone soil. Crop plants use the nutrient and water to perform the necessary metabolic 

processes, which affect the crop growth and yield positively. For example, maize root system 

exhibits root growth variation under low phosphorus (P) level in soil and the genotypes having 

higher lateral root growth were able to uptake more P and maintained good crop stand (Zhu and 

Lynch, 2004). Seed yield is positively correlated with longer root system in Rice (Steele et al., 

2013), canola (Rahman and McClean, 2013), soybean (Brown and Scott, 1984) and maize 

(Hochholdinger et al., 2008).  
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Three canola growth habits, winter, semi-winter, and spring types differs greatly in terms 

of shoot morphology, root growth and flowering time. Winter types canola have vigorous root 

system with higher root length, root diameter, root mass and root branches than the spring types 

canola (Rahman and McClean, 2013; Arifuzzaman et al., 2016). With these superior root 

characteristics, root system in winter types might be able to cover more area and depth in soil 

and better access to moisture and nutrient. As the root length of canola is positively correlated 

with seed yield (Rahman and McClean, 2013), it can be hypothesized that moisture and nutrient 

uptake capability is higher in winter types canola, which might play a major role in the higher 

yield capacity over the spring types. These growth habits belong to different genetics groups 

(Kebede et al., 2010). Therefore, huge variation in the root system of winter and spring canola 

can serve as significant source of genetic diversity in breeding for high yielding spring canola. 

Direct selection for root traits in the traditional breeding programs is not very popular due to 

several constraints. Detecting the root phenotypic variation in a large-scale field trial regarded as 

one of the main constraints. In addition, root plasticity or preferential growth towards the area of 

higher moisture and nutrient may deceive plant breeders in highly heterogeneous soil 

(Arifuzzaman et al., 2016). An alternative, marker assisted selection (MAS) by identifying 

quantitative trait loci (QTL) associated with the genomic region that control root variation in 

canola could be a good solution. However, appropriate phenotyping of a trait is always very 

critical in the process of identifying genomic region associated with that trait. 

We observed in a preliminary study that there is no major variation in root traits between 

winter and spring types at early growth stages, but rather variations are observed in matured 

plants. There is no report available that monitored the variations of root growth pattern of winter 

and spring types canola. The lack of adequate information in this regard limits the scope of 
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proper phenotyping of root traits in a mapping population, as well as traditional selection for root 

traits in the breeding program. Considering these factors, the objectives of the current study was 

to detect the plant growth stages at which the variation of root traits initiate and reach to 

maximum. Our secondary objective was to study the root growth behavior under simulated water 

stress conditions in spring and winter types canola. 

3.3. Materials and methods 

3.3.1. Plant materials 

A total of 10 canola genotypes, five winter types (Wichita, Lindora-00, KSU 8, KSU 10, 

Regal) and five spring types (Oro, DH45, Kanada, Regent, Wester), were used for this 

experiment. The plants were grown in long pots (16"×4") in a greenhouse. A mixture of sand and 

peat soil in a ratio of 8:2, respectively, were used to grow the plants. The growing media was 

supplemented with 10g Osmocote® slow-release fertilizer (Scott’s Company LLC, Marysville, 

OH, U.S.A.). Before potting, the pots were lined with plastic bags to facilitate root extraction 

procedure. The plastic bags were perforated at the bottom to allow the excess water to drain out. 

Plants were watered daily to saturate all pots and fertilized with water-soluble 20-20-20 

fertilizer. 

3.3.2. Experimental design 

Four sets of experiments with the same germplasm panel (5 winter and 5 spring types in 

each sets) were grown in the greenhouse. Each set was planted in a randomized complete block 

design (RCBD) with four replications. Each pot contains one single plant and considered as an 

experimental unit. These four sets of experiments were grown for four different time periods 

such as 30 days, 40 days, 50 days, and 60 days after planting. 
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3.3.3. Data collection 

Data were collected from the plants at 30 days after planting (30d), 40 days after planting 

(40d), 50 days after planting (50d), and 60 days after planting (60d). Data on number of leaves 

and stem diameter were taken from the freshly harvested plants. The plants were cut at the base 

of the root. The pots were taken to root washing zone. The roots with plastic bag were taken out 

from pots, placed on sink containing a fine plastic net, and the soils covering root masses were 

washed with running water. This procedure facilitates to avoid root loss during washing.  

Absorbent papers were used to soak the water from the extracted clean root system and kept 

them for 1 hour at room temperature. Data on taproot diameter were taken at two points, just at 

the below of soil level where the first root was initiated (soil level taproot diameter) and at 10 cm 

below from the place of first root diameter (bottom taproot diameter). In addition, data on tap 

root length, and number of root branches were taken. Total root system were visually scored on 

the basis of root vigor and root mass on a scale of 1-5 according to Rahman and McClean, 

(2013), where score 1 represents weak bottom and surface roots, score 2 more bottom and 

surface roots, score 3 intermediate bottom and surface roots, score 4 strong bottom and surface 

roots, and score 5 the strongest bottom and surface roots (Figure 3.1). The entire root system of 

each plant was stored in a perforated plastic bags and dried in 60ºC for 3 days. Data on root dry 

weight were taken for each plant.  
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Figure 3.1. Root vigor score from 1-5 (1 represent weak bottom and surface roots, 2 more bottom 

and surface roots, 3 intermediate bottom and surface roots, 4 strong bottom and surface 

roots, and 5 the strongest bottom and surface roots). 

3.3.4. Data analysis 

The root traits of spring types were compared with the winter types within a set. SAS 9.3 

statistical software package was used for data analysis. Data from each experimental set (30d, 

40d, 50d, and 60d) were analyzed separately to determine if there is any significant difference 

exists in different root traits between spring and winter types within a set. Line and bar charts 

with mean and standard deviation for each trait were created by using Microsoft Excel 2013 to 

explain the progression of the traits throughout the experimental period. 

3.3.5. Water stress study 

A water stress experiment was conducted simultaneously with the first experiment using the 

same spring and winter types germplasms to evaluate the response of root growth under 

simulated water stress conditions. The experiment was set in a randomized complete block 

design with four replications. Water stress was initiated on plants at 20 days after planting by 

restraining watering until the plants were wilted. Moisture level across the wilted pots were taken 

and averaged to identify the moisture level at which the plants were wilted (10% by volume). 
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The growing media in the pots were allowed to dry at a soil moisture level of 10% by volume 

followed by water saturation. This water stress was continued until 60 days after planting. The 

available soil moisture was measured by a soil moisture meter (Spectrum technologies, Inc.). 

Data were taken from the water stressed plants of 60 days after planting on number of leaves, 

stem diameter, soil level taproot diameter, bottom taproot diameter, taproot length, number of 

root branches, root vigor, and root dry weight were taken from each plant using the same 

procedures described above. 

3.4. Result 

3.4.1. Stem diameter 

At 30 days after planting, winter and spring types plants did not show any significant 

difference for stem diameter (Table 3.1). However, from 40 days after planting stem diameter 

was significantly higher (p> 0.001) in winter types comparing to those of spring types. Stem 

diameter in winter types was sharply increasing after 30 days and became stable within 40 and 

50 days after planting (Fig 3.2a). In spring types, stem diameter was increasing relatively slow 

and steady fashion until flowering time at about 40 days after planting. 

3.4.2. Soil level taproot diameter 

Soil level taproot diameter was not significantly different between winter and spring 

types at 30, 40 and 50 days after planting (Table 3.1). At 60 days after planting, it was found 

significantly higher (P >0 .001) in winter types compared to the spring types (Table 3.1, Fig 2b). 

Soil level taproot diameter in both winter and spring types increased with a similar trend until 50 

days after planting.  
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3.4.3. Bottom taproot diameter 

Data on bottom taproot diameter were not taken at 30 days after planting. Significant 

difference (p> 0.05) in bottom taproot diameter was observed only at 60 days after planting 

(Table 3.1). It remained relatively stable up to 50 days after planting and then started to increase 

sharply in both winter and spring types (Fig 3.2c). 

 

 

 

 

 

 



 

42 

 

 

Figure 3.2. Side by side growth trend of different root parameters in winter and spring types from 

30 days to 60 days after planting (a= Stem diameter, b= Soil level taproot diameter, c= 

bottom taproot diameter, d= Tap root length, e=Primary root branch number, f= Root 

vigor score, g= Root dry weight) 

3.4.4. Taproot length 

Taproot length was significantly different (p> 0.001) in winter types than those of spring 

types from 40 days after planting (Table 3.1). Both winter and spring types had similar steady 

growth trend of the taproot length from the very beginning of the experimental period (Fig 3.2d). 

3.4.5. Primary root branches 

Winter and spring types showed a significant difference (p> 0.001) on number of primary 

root branches at 50 and 60 days after planting (Table 3.1). Number of primary root branches of 

winter types increased steadily after 30 days of planting where it remained constant until 40 days 

in spring types followed by a steady increase of root branches (Fig 3.2e). 
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3.4.6. Root vigor score 

Root vigor was found to be higher in winter types comparing to those of the spring types 

in all four-time periods. However, winter types exhibited significantly (p>0.001) higher root 

vigor at 50 days (p>0.05) and 60 days (p>0.001) after planting (Table 3.1, Fig 3.3). Root vigor 

increased with a similar trend in both winter and spring types until 50 days (Fig. 3.2f). A rapid 

increase after 50 days of planting was observed only in winter types. 

Table 3.1. F ratios from analysis of variances for different root traits of winter and spring type 

canola at different growth stages. 

Days after 

planting 

Source of variance: Type (Winter vs Spring) 

Stem Dia Soil level 

taproot 

dia 

Bottom 

taproot 

dia 

Tap Root 

length 

Primary 

Root Br. 

number 

Root 

Vigor 

score 

Root dry 

weight 

30d 0.44 0.04 ------ 2.64 0.44 1.14 0.04 

40d 16.32*** 0.44 0.07 10.17*** 1.7 2.54 16.96*** 

50d 12.32*** 2.95 0.36 13.77*** 9.87*** 4.58* 30.32*** 

60d 23.03*** 22.14*** 4.59* 14.3*** 78.7*** 47.18*** 73.95*** 

        *= significant at 0.05 level; ***=significant at 0.001 level 

3.4.7. Root dry weight 

Roots dry weight of winter types were significantly higher (p>0.001) than the spring 

types at all stages except 30 days after planting. This trait increased steadily until 50 days in 

winter types followed by a rapid increase in the next 10 days (Fig 3.2g). On the other hand, root 

dry weight in spring types increased until 40 days and remain constant after this period.  
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Figure 3.3. Observed variation between winter and spring type root mass at 50 and 60 days after 

planting.  

3.4.8. Water stress experiment 

Water stress was imposed to the plants at the age of 20 days to 60 days after seeding. All 

the root parameters at 60 days after planting in both winter and spring types were significantly 

affected under water stressed compared to their normal grown plants (Fig 3.4). The soil level 

taproot diameter, bottom taproot diameter, root vigor, and root dry weight were significantly 

(p>0.001) reduced in stressed plants of both winter and spring types (Table 3.2). Response to 

water stressed for root traits reduction of winter type was higher compared to the spring type. For 

instance, soil level taproot diameter was reduced by 43% in water stressed winter type plants 

where it is reduced by 32% in water stressed spring type plants (Fig 3.5). Similar response was 

observed for bottom taproot diameter (63% reduction in winter types, and 53% in spring types), 

root vigor score (31% reduction in winter types, and 25% in spring types), and root dry weight 

(53% reduction in winter types, and 32% in spring types).  
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Table 3.2. F ratios from analysis of variances for different root parameters in winter and spring 

type canola under control vs water stress condition at 60 days after planting. 

Type 

Days 

after 

planting 

Source of variance: Treatment (Drought stress vs control) 

Stem Dia Soil 

level 

taproot 

dia 

Bottom 

taproot 

dia 

Tap 

Root 

length 

Primary 

Root Br. 

number 

Root 

Vigor 

score 

Root dry 

weight 

No. of 

Leaves 

Spring 60d 85.1*** 43.8*** 31.8*** 0.4 1.1 45.5*** 38.1*** 3.8 

Winter 60d 87.4*** 98.1*** 25.2*** 3.8 18.7*** 138.6*** 32.8*** 49.2*** 

***=significant at 0.001 level 

Number of primary root branches was significantly (p>0.001) affected only in the winter 

types water stressed plants which was reduced by 19% from the normal grown winter types 

plants (Table 3.2, Fig 3.5). The taproot length was lower in the stressed winter types (5% lower) 

and stressed spring types (1%) but the rate of reduction was not statistically significant. 
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Figure 3.4. Means of different root parameters with standard deviations in spring and winter type 

canola under water stress and control condition planting (a= Stem diameter, b= Soil 

level taproot diameter, c= bottom taproot diameter, d= Tap root length, e=Primary root 

branch number, f= Root vigor score, g= Root dry weight, h= No. of leaves)  

 

 

Figure 3.5. Variation of root mass under drought stress in winter and spring type canola at 60 

days after planting  
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For the above ground plant parts, stem diameter was significantly (p>0.001) affected both 

in spring and winter types under water stressed conditions (Table 3.2). This trait was reduced by 

32% in winter types, and 24% in spring types water stressed plants (Fig 3.5). Number of leaves 

was reduced significantly (p>0.001) by 32% in winter types. In contrast, the effect of water stress 

on number of leaves in spring types was not statistically significant. 

 3.5. Discussion 

Two canola habits, spring and winter types, are highly distinct in their root morphology. 

Winter canola produces higher root mass system with higher root length, lateral root brunches 

and thicker taproot compared to those of spring canola (Rahman and McClean, 2013; 

Arifuzzaman et al., 2016). Kebede et al., (2010) reported that the winter types are belong to a 

very distinct genetic group than the spring canola and can be used as a source of genetic diversity 

to improve spring canola. Along with other traits, superior root traits of winter canola can be 

introgressed into spring canola to increase the seed yield. Rahman and McClean, (2013) reported 

that there is a huge difference of root vigor between winter and spring types canola at flowering 

stage. However, no report yet available to indicate the growth stage at which the root traits 

variation occurred and maximized between winter and spring types. Therefore, we have 

conducted the current study to identify the growth pattern of different root traits in four different 

time points in both winter and spring types canola. We also conducted a water stressed study to 

investigate the root growth pattern under stressed conditions. 

We did not find any significant differences on root traits between winter and spring types 

at 30 days after planting. This observation is consistent with our small-scale growth pouch study 

(unpublished data) in which there was no significant variation of root traits between winter and 

spring types at early growth stage.  Wells and Eissenstat, (2002) reported that the root and leaf 
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formation occur simultaneously in plant until the reproductive stage. Therefore, there is not 

much difference on root traits at early growth stage of plant. The spring type canola germplasm 

usually flowers at 40 days after planting in the greenhouse. It is assumed that the plants share 

more energy to reproductive stage for bud initiation and pod formation. Therefore, roots and 

vegetative growths are stopped or significantly reduced at reproductive stage. Ledent et al., 

(1990) reported that leaf initiation is ceased during the tassel formation in maize. Winter canola 

does not flower without vernalization. At 50 days after planting, the number of primary root 

branches and root vigor were significantly higher in winter types compared to the spring types. 

At 60 days after planting, all the root parameters showed significant difference between these 

two types. The reason of this difference is due to the root and vegetative growth of winter canola 

plants continue at and after 40 days of planting when the spring types start to initiate flower and 

stop or reduced the root and vegetative growth. Flowering time changes the energy from 

vegetative growth to reproductive growth that influences the overall fitness of plant (Michaels, 

2009; Posé et al., 2012). This changes of fitness are correlated with many traits including 

vegetative biomass (Jiaqin et al., 2009; Edwards et al., 2012) and a variety of root traits (Bolaños 

and Edmeades, 1993; Mitchell-Olds, 1996; Lou et al., 2007). Cheng et al., (1990) reported that 

the rate of root growth is higher at early plant developmental stages which greatly decreased 

during reproductive growth stage. This above ground vegetative growth of winter canola might 

be an indication of the nature of vigorous root growth at below ground.  

We have developed a growth pattern curve for all root traits to understand the variations 

between winter and spring types. Stem diameter, root dry weight, primary root branches, root 

vigor, and dry root weight in spring types were grown relatively in a steady fashion, where the 

winter types had a rapid increase from 40d to 60d after planting. This observation indicated that 
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the root trait variations between winter and spring types initiated at around 40 days after 

planting. Rahman and McClean, (2013) observed a significant difference of root vigor of winter 

and spring types during flowering time of spring plants. 

With the increasing popularity of molecular breeding methods, high throughput 

genotyping obtained a substantial improvement in last two decades, however, phenotyping did 

not receive much attention yet (Zhu et al., 2008). For the complex traits like roots, phenotyping 

for large scale association study is even more difficult. The pattern of root growth variation 

observed in this study will be very useful in the future study of large-scale association mapping 

for different root traits in canola. Phenotyping at 50-60 days after planting will be most effective 

time to capture maximum amount of phenotypic variation for different root traits in canola. This 

information might also be helpful in selecting or phenotyping individual root trait for special 

need.  

Crop growth and yield are significantly affected by drought stress (Martin et al., 2006; 

Saidi et al., 2010). Crop root system plays a vital role in avoidance or adapting plants under low 

moisture content in the soil (Loomis and Connor, 1992). Modification or alteration of root 

system under different abiotic stress including drought is a common adaptive measure of plants. 

In this process, different root traits comprising the whole root system, may respond differently 

under low water regime (Franco et al., 2011; Licht et al., 2013). We have investigated the 

behavior of different root traits in both spring and winter types under simulated water stress 

conditions.  Watering was restrained at 20 days after planting until the plants wilted (moisture 

level 10% by volume) and then saturated with water. This cycle continued until 60 days after 

planting. Soil level taproot diameter and bottom taproot diameter were found significantly higher 

(p> 0.001) in both spring and winter types of control plants comparing to those of stressed 



 

50 

 

plants. This finding is consistent with those observed in decreasing root diameter under low 

water conditions in pea (Eavis, 1972), soybean(Read and Bartlett, 1972), maize (Sharp et al., 

1988; Liang et al., 1997) and Silene vulgaris (Franco et al., 2008). Sharp et al. (1988) concluded 

that, decreasing root diameter is an adaptive measure under low moisture regime so that plant 

concentrate their resources for root elongation to reach water level. A significant reduction was 

observed in root vigor and root dry weight of winter and spring types grown in water stressed 

conditions compared to their normal growing conditions. Again, this is a common response of 

water stressed plants (Martin et al., 2006; Saidi et al., 2010). In Arabidopsis, reduction of root 

dry weight under severe water stress has been identified (van der Weele et al., 2000). 

We did not find any significant difference in root length between winter and spring types 

under controlled and water stressed conditions. This result is in agreement with Licht et al., 

(2013) who reported that soybean root elongation was unaffected under water deficit condition. 

Saidi et al. (2010) observed similar phenomena in maize where no significant difference for total 

root length was found between different water potential in soil. Franco et al. (2008) studied root 

and shoot growth in Arabidopsis at very early stage in nutrient-agar media and reported that the 

root elongation was actually stimulated under a certain limit of water potential deficit. Plants 

usually improve osmotic adjustment at the root growing zone under low moisture availability 

which might help plants to maintain their root elongation (Martin et al., 2006). 

Upper ground traits such as stem diameter and number of leaves were significantly 

decreased (p>0.001) in water stressed plants compared to control plants of spring and winter 

types. To our knowledge, there is no report available on the effect of water stress on stem 

diameter and leaf number. These changes are expected as many researchers reported that the 
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effect of water stress on shoot growth is higher than the root growth (van der Weele et al., 2000; 

Franco et al., 2008; Saidi et al., 2010; Licht et al., 2013).  

3.6. Conclusion 

We have observed a differential root growth of spring and winter types canola starting 

from 40 days after planting. The root growth of spring types significantly reduced at 40 days 

after planting when the plants start to initiate buds. The winter types do not flower without 

vernalization and therefore it continues to grow for roots and shoots. All the root traits of the 

winter type cultivars are highly affected under water stressed conditions over the control 

experiment. However, this affect is much lower in stressed spring types cultivars compared to 

their control study. This might be due higher water requirement by the winter type cultivars as 

they possess higher root and shoot vigor compared to the spring types. In addition, it could be a 

fact that spring types had higher relative water use efficiency compared to the winter types. 

However, future investigation is needed to confirm this hypothesis. 
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CHAPTER 4: GENOME WIDE ASSOCIATION MAPPING AND 

CANDIDATE GENE MINING FOR ROOT ARCHITECTURAL TRAITS IN 

RAPESEED/CANOLA (BRASSICA NAPUS L.)2 

4.1. Abstract 

Rapeseed/canola (Brassica napus L.) root system varied widely among the winter and 

spring growth habits in later growth stages. In this study, we have phenotyped seven different 

root architectural traits with a diversity panel consisting of 224 B. napus accessions grown in 

greenhouse during 2015 and 2016. A genome-wide association study (GWAS) with 37,500 

single nucleotide polymorphism markers was conducted to detect marker trait association. A 

total of 52 significant marker loci were identified at 0.01 percentile tail P-value cutoff for 

different root traits, ten loci for root length (RL), eleven loci for root angle (RA), nine loci each 

for number of primary root branches (PRB) and root dry weight (RDW), seven loci for root vigor 

score (RVS), and six loci for two root diameter (R1Dia and R2Dia). Majority of those significant 

marker loci were distributed on five chromosomes, A01, A02, A04, C03 and C06. Twenty-two 

candidate genes related to root traits and root development were detected within 50 kbp upstream 

and downstream of different significant markers. Three of these candidate genes, P-glycoprotein 

6 (PGP6), Tetraspanin 7 (TET7) and ARABIDILLO-2 were detected within the marker loci 

chrC03_12098594 (RL), chrA01_8813067 (PRB), and chrA04_rand_54410 (R1Dia).  Multiple 

marker loci associated with different root traits were detected within a close physical distances 

                                                 

 

2 This chapter is co-authored by Muhammad Arifuzzaman and Mukhlesur Rahman. MA and MR formulated the 

experiment. MA conducted the experiment, collected the data, analyzed the data and wrote the manuscript. MR 

helped in analyzing the data and reviewed the manuscript. 
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on chromosome A01, A02, A04 and C03 indication possible co-localization of the loci for 

different root traits. Twelve significant markers were validated for the marker-trait association of 

PRB, RVS, RL and RA in 20 germplasm accessions.  This is the first report on understanding the 

molecular basis of the natural variation in root system architecture between winter and spring B. 

napus growth habits at a later growth stages. 

Key words: GWAS, root traits, Brassica napus 

4.2. Introduction 

Brassica napus (AACC; 2n=38) is an amphidiploid species formed by ancient natural 

hybridization between two diploid species B. rapa (AA; 2n=20) and B. oleracea (CC; 2n=18) (U 

1935). It has a relatively short domestication history of only 400-500 years (Gómez-Campo and 

Prakash, 1999). “Canola” or “Canadian Oil Low Acid” was developed by lowering the erucic 

acid and glucosinolate content of B. napus in 1970’s and is regarded as one the most phenomenal 

achievement in the field of traditional plant breeding. Within five decades, canola become world 

second most important edible oilseed crop after soybean (Huang et al., 2016). Global production 

of canola oil reached nearly 27 million metric tons during 2014-2015 (Elahi et al., 2016). 

Canola is cultivated worldwide in the form of three growth habits, spring canola (mainly 

grown in Canada, Australia and parts of USA), winter canola (mainly grown in Europe) and semi 

winter types (mainly grown in China). These growth habits represent different genetically and 

morphologically diverse groups (Kebede et al., 2010). This genetic diversity between the growth 

habits can be utilized to improve the genetics of both spring and winter canola (Rahman and 

Kebede, 2012). Winter canola is superior in terms of yield comparing to the spring canola and 
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possess vigorous plant and root characteristics (Rahman and McClean, 2013; Arifuzzaman and 

Rahman, 2017).  

Root system in plants plays the major role in water and nutrient uptake from the soil and 

transport it to other plant parts. It also provides storage to the acquired water and nutrients and 

anchorage to the aboveground plant (Saini et al., 2013). Therefore, size of the root mass, root 

organs and their distribution in the soil can impact plants ability to uptake water and nutrients 

from the soil. The roots with primary root branch number, lateral branch number, length, 

diameter and angle of different root components and their spatial arrangement in the soil is 

referred as the “root system architecture” (Lynch, 2007; Koevoets et al., 2016). Different 

components of root system architecture were shown to have direct correlation with the yield in 

various crops. Few examples are, root length in rice (Steele et al., 2013), root hair in maize 

(Hochholdinger et al., 2008), root vigor in canola (Rahman and McClean, 2013). In addition, 

plants’ ability to cope with different abiotic stresses are largely depended on the plant root 

system architecture as roots are the first organs that sense and respond to the water and nutrient 

deficit or excessiveness in the soil (Lynch, 2007, 2011; Hochholdinger, 2016). 

Breeding efforts in field crops throughout the last century were mostly focused on 

improving aboveground phenotypic traits (Koevoets et al., 2016). Despite of having such 

important roles in plant growth, development and production, below ground root system remains 

as the least utilized traits for crop improvement (Herder et al., 2010; Wachsman et al., 2015). 

One of the main constraint regarding direct selection of root traits in the field is labor 

intensiveness. Phenotyping root traits involves digging, breaking soil crust and washing which 

discourage breeders to emphasize on large scale selection effort for superior root characteristics. 

Another difficulty is the plasticity of the root growth. Nutrients and water is not evenly 



 

55 

 

distributed in the soil. Plant root system can sense the availability of water and nutrients in the 

soil and tends to grow towards that direction (Malamy, 2005; Smith and De Smet, 2012).  

With the advent of high throughput phenotyping and genotyping techniques, identifying 

quantitative trait locus (QTL) and marker assisted selection for complex traits become more 

popular now a days. QTL associated with different root traits were discovered in different crops. 

Several QTL associated with root length and thickness in rice were identified (Steele et al., 2013) 

and incorporated those in an Oryza indica variety through MAS. There are few other example of 

identification and successful introgression of root associated QTL in different crops, i.e. wheat 

(Placido et al., 2013), chickpea (Varshney et al., 2013) etc. However, identification of QTL 

associated with different root traits in Brassica species were conducted mostly in response to 

nutrient deficiency or drought condition (Arifuzzaman et al., 2016). Several QTL were identified 

for, root vigor (Arifuzzaman et al., 2016), root dry weight and primary root number under boron 

deficiency (Shi et al., 2011), root mass under drought condition (Fletcher et al., 2015) in B. 

napus and taproot characteristics in B. rapa (Lu et al., 2008) 

Genome wide association mapping is now a very popular and widely used to identify 

markers and QTL associated with a particular trait (Lakew et al., 2013). It takes into account 

several ancestral recombination events during detecting the association between trait and 

markers in a diverse germplasm panel, whereas, in traditional QTL mapping, only a very few 

recombination events are taken into consideration between two parents (Gómez et al., 2011). The 

higher the diversity of the germplasm panel, the higher the historical recombination events are 

taken into consideration during association mapping approach which ultimately yield higher 

resolution molecular map (Rahman et al., 2016). A high density molecular markers panel 

covering whole genome of the species is required for a successful association mapping (Begum 
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et al., 2015). Single nucleotide polymorphism (SNP) markers are currently most popular choice 

due to their abundance in the genome, user friendly nature and low cost development (Zhu et al., 

2008; Chitwood et al., 2016). The objective of the current study was to identify significant 

markers and candidate genes associated with the different root architectural traits in greenhouse. 

4.3. Materials and methods 

4.3.1. Plant materials and experimental design 

A total of 224 genotypes were planted in a greenhouse of North Dakota State University, 

Fargo, ND, USA during 2015 (E1) and 2016 (E2). The accessions were consisting of three 

growth habits, spring, winter and semi-winter types of rapeseed/canola, and have diversified 

sources of origin (Appendix Table A1). They were planted in a randomized complete block 

design (RCBD) with three replications. Longer pots (40 × 10 cm) were used to allow roots to 

grow deeper. Each pot contains a single canola plant and considered as an experimental unit. 

Sand and peat soil were mixed together at 8:2 ratio and used as potting mix. The growing media 

was supplemented with 10g/pot Osmocote® slow-release fertilizer (Scott’s Company LLC, 

Marysville, OH, USA). Transparent plastic bags (perforated at bottom) was lined up with each 

pot before planting. Plants were watered twice daily and fertilized with water-soluble 20-20-20 

fertilizer once a week. Temperature of the greenhouse was maintained as 25 C with 16 hours of 

photoperiod. Natural sunlight was supplemented with 400 W HPS PL 2000 lights (P.L. Light 

Systems Inc., Beamsville, Ontario, Canada).  

4.3.2. Phenotyping 

Roots were extracted from fully grown 55 days old plants. Plant canopies were cut at one 

inch above of the soil level. The pots with the root system were transferred to the root washing 
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zone in the greenhouse. Plastic bags were pulled out from the pot keeping the root system intact 

inside the plastic bag. The whole root system with plastic bag were placed on a perforated base 

and the plastic bag was cut and removed. Root system was washed carefully with running water 

while kept on the perforated base. This allowed water and soil media pass through the perforated 

base and leaving the washed root system on the base. Excess water from the washed root 

samples were soaked out by using absorbent papers and kept them for one hour in room 

temperature before data taking (Fig. 4.1). This method is an adaptation of “Mesocosms for Root 

Evaluation” procedure developed by Roots lab, University of Pennsylvania for maize root 

evaluation. 

 

Figure 4.1. Root phenotyping procedure in the greenhouse at a glance. 

Data on taproot diameter from 224 genotypes were taken at two points, at soil level 

where the first root was initiated (R1Dia) and at 10 cm below from the place of first root diameter 

(R2Dia) (Appendix Table A1). In addition, data on tap root length (RL), root angle (RA) and 
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number of primary root branches from taproot (PRB) were taken from 198 germplasm 

accessions (Appendix Table A1). Total root system of these 198 germplasm accessions were 

visually scored on the basis of root vigor and root mass on a scale of 1-5 (RVS) according to 

(Arifuzzaman and Rahman, 2017), where score 1: weak bottom and surface roots, score 2: more 

bottom and surface roots, score 3: intermediate bottom and surface roots, score 4: strong bottom 

and surface roots, and score 5: the strongest bottom and surface roots. The entire root system of 

each plant was stored in a perforated plastic bags and dried in 60 ºC until constant weight. Data 

on root dry weight (RDW) were recorded from 177 germplasm accessions (Appendix Table A1). 

Data on all the traits were taken in both years except root diameters (R1Dia and R2Dia) which 

were measured only in 2016. 

4.3.3. Statistical analysis 

Data were analyzed in SAS 9.3 (SAS Institute Inc., USA) for individual years 2015 and 

2016 denoted by E1 and E2, respectively, in this study. Medians were calculated only for the 

non-parametric dataset, root score (1-5), in order to follow non-parametric methods to construct 

two-way analysis of variance (ANOVA). In all other cases means were used to create two-way 

ANOVA. Data from two years were combined if the ratio of the effective error variance for each 

trait is less than 10 fold (Tabachnick and Fidel, 2001; Elias and Manthey, 2016) and denoted by 

“Comb” throughout the current manuscript. Spearman correlation coefficient (only for root vigor 

score) and Pearson’s correlation coefficient among all traits and were calculated. 

4.3.4. Genotyping 

The genotypes used in this experiment are a subset of the 366 core B. napus germplasm 

collection, originally genotyped for diversity study and SNP detection (Michalack et al. 
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unpublished). DNA was extracted from vacuum dried young leaf tissue by using Qiagene 

DNeasy kit Qiagen, CA, US) following the manufacturers protocol. Samples were optimized and 

sent to Institute of Genomic Diversity (IGD), Cornell University for Genotyping by Sequencing 

(GBS). GBS libraries were prepared following the protocol described by Elshire et al., (2011), 

which utilizes single cutter ApeKI enzyme for digestion. Each libraries were barcoded and 

sequenced by Illumina GAII sequencer. 100 bp single end sequenced GBS data were aligned by 

using BWA-MEM (Li, 2013). Multi sample SNP calling was performed by using VarScan 

(Koboldt et al., 2012b). Identified SNPs were imputed for missing allele by using FastPHASE 

(Scheet and Stephens, 2006) and finally 42,575 SNPs were obtained. For the current experiment, 

SNPs with less than 5% minor allele frequency (MAF) were removed for further analysis. The 

name of each SNP marker consists of chromosome number and physical position of that marker. 

For example, a SNP marker located on 123456 bp of chromosome C04 was named as 

“C04_123456”. 

 4.3.5. Marker-trait association 

Association analysis were performed in Tassel 5 using LS mean data for each year 

separately and by combining data across both years. Principle components (PC) were calculated 

to account for population structure to prevent falls marker-trait association. Number of principle 

components that explains 25% and 50% variation in the population were used as two separate 

regression models. In addition, an identity by state (IBS) kinship matrix was estimated to account 

the relatedness of the populations. Finally, six regression models were developed, 1. Naïve 

(without accounting population structure and relatedness), 2. PC controls for 25% variation in 

population structure, 3. PC controls for 50% variation in population structure, 4. Kinship 

(accounts for relatedness in the population), 5. PC (25%) + Kinship (accounts for both variation 
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in population structure and relatedness), 6. PC (50%) + Kinship (accounts for both variation in 

population structure and relatedness). Among these models, only Kinship, Kinship + PC (25%), 

and Kinship + PC (50%) are mixed linear models (MLM) and consider both fixed and random 

effects. All other models are general linear models (GLM) which consider only the fixed effects. 

All the models were compared on a rank based mean square deviation (MSD) value and best 

model was selected based on the lowest MSD value (Mamidi et al., 2011). Selected best model 

for each trait was used for further analysis to detect significant markers for respective traits. 

Significant markers were called based on the P-value of the markers at 0.01 and 0.1 percentile 

tail of an empirical distribution obtained by 10,000 bootstraps (Mamidi et al., 2014). Manhattan 

plots were created by using qqman package in R statistical software (Turner, 2014). Log 

likelihood ratio based R2 or R2
LR (Sun et al., 2010) was calculated in genAble package in R 

(Aulchenko et al., 2007) for the most significant markers in the best models to determine the 

phenotypic variation explained by them. 

4.3.6. Candidate gene 

B. napus gene models within 50 kbp upstream and downstream of the significant markers 

were taken into account for candidate gene search.  Protein sequences from the gene models 

were blasted against TAIR 10 protein database to determine the gene annotation. Genes 

associated with root development were identified based on the gene functions found in previous 

literatures. 

4.3.7. Marker validation 

 From the significant markers at 0.01 percentile tail, few markers were selected to predict 

root characteristics in a set of twenty germplasms. Markers were selected based on the 
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repeatability of the markers across the environment and close physical distance to the candidate 

genes identified here. The germplasms were planted in the greenhouse in a randomized complete 

block design with three replication. Different root traits were phenotyped following the similar 

procedure described above.  

4.4. Results 

4.4.1. Phenotypic distribution 

 Phenotypic variations were observed within the germplasm panel for all the traits in both 

of the years, 2015 (E1) and 2016 (E2), and two years combined (Comb) data. Variation was 

maximum in E1 comparing to E2, and combined analysis for RL, RA, PRB and RDW (Table 

4.1). Coefficient of variance was relatively higher for RDW (E1, E2 and Comb) and for R2Dia 

(E2) comparing to other traits. The RL data in E1 and E2, RA data in Comb, and R1Dia in E2 

were normally distributed based on Shapiro Wilk normality test P-value (>0.05) (Table 4.1 and 

Fig. 4.2). Higher family mean basis heritabilty (h2 > 0.60) were observed for PRB (0.58-0.62), 

RDW (0.89-0.92), RVS (0.81-0.86)  and R2Dia (0.85). For the rest of the traits, low to moderate 

heritability (h2 ̴  ̴ 0.26-0.49) were observed. Heritability were somewhat constant for each trait 

between the E1, E2 and Comb. 
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Table 4.1. Phenotypic variation in different root architectural traits. 

 

 

 

 

 

Trait  
Env. 

 

Germplasm 

number 
 

Unit Mean (±std) Range 
CV 

(%) 

Shapiro-

Wilk 

test p 

value 

h2 

(family 

mean 

basis) 

RL                 

  E1 198 cm 23.8 (±3.5) 13.4-34.5 14.8 0.1300 0.30 

  E2 198 cm 28.9 (±1.8) 23.3-34.1 6.3 0.0600 0.31 

  Comb 198 cm 26.3 (±2.1) 20.2-33.2 7.9 0.0034 0.26 

RA                

  E1 198 degree 144.8 (±18.6) 67.6-177.3 12.8 0.0014 0.44 

  E2 198 degree 144.2 (±13.2) 87.2-168.3 9.1 0.0001 0.48 

  Comb 198 degree 144.5 (±12.7) 107.3-173.6 8.8 0.0160 0.49 

PRB                

  E1 198 number 13.5 (±2.9) 8.0-28.0 21.6 0.0001 0.62 

  E2 198 number 17.3 (±2.8) 10.3-28.3 16.3 0.0001 0.58 

  Comb 198 number 15.4 (±2.4) 10.9-28.1 15.6 0.0001 0.62 

RDW                

  E1 177 gm 1.7 (±0.9) 0.4-6.7 51.8 0.0001 0.91 

  E2 177 gm 1.6 (±0.6) 0.4-4.6 40.4 0.0001 0.89 

  Comb 177 gm 1.7 (±0.7) 0.5-4.8 44.0 0.0001 0.92 

RVS                

  E1 198 Scoring 3.1 (±0.9) 1-5 28.8 0.0001 0.86 

  E2 198 Scoring 3.4 (±0.8) 1-5 24.8 0.0001 0.81 

  Comb 198 Scoring 3.3 (±0.8) 1-5 24.0 0.0001 0.83 

R1Dia                

  E2 222 mm 7.9 (±1.2) 5.4-12.6 13.3 0.0105 0.39 

R2Dia                

  E2 222 mm 1.2 (±0.5) 0.3-3.4 48.7 0.0001 0.85 
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Figure 4.2. Phenotypic distribution of different root architectural traits in E1 (2015), E2 (2016) 

and combined data set. 

4.4.2. Relationships among the traits 

Pearson correlation coefficients and spearman correlation coefficients (only for RVS) 

among the traits within and between the environments were calculated (Fig 4.3). There were 

moderate but significant (P <0.001) positive correlation between the RL and RDW in E1 (0.25), 

E2 (0.28) and comb (0.34), and between PRB and RDW in E1 (0.24), E2 (0.37) and comb (0.34). 

Significant (P <0.001) positive correlation were also detected in RL vs RVS and PRB vs RVS in 

both environment and when data were combined ranging from (0.33-0.49). Visual root vigor 

scoring (RVS) was significantly (P <0.0001) correlated with RDW in both environment and 

combined data set with correlation coefficients ranging from 0.55-0.60. We had root diameters 

data only for 2016 or E2. R1Dia moderately correlated with R2Dia (0.33, P <0.0001). Significant 

but low to moderate correlation were found in R1Dia vs all other root parameters (0.32-0.41) 

except RA and R2Dia vs all other root parameters (0.27-0.37) except RA. 
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Figure 4.3. Correlation heat map for different root architectural traits in E1 (2015), E2 (2016) 

and combined data set 

4.4.3. Genotypic data and principle component analysis 

 A total of 42,575 SNPs were derived from the original germplasm panel consists of 366 

diverse germplasms. In this study, a subset of 177 (RDW), 198 (RL, RA, PRB, RDW and RVS) 

and 224 (R2Dia and R1Dia) germplasms were used. After correcting the original SNP panel with 

MAF > 5%, approximately 37,500 markers were retained for different subsets of the 

germplasms. Population structure were controlled with principle component analysis. Number of 

PCs accounting for 25% and 50% variation of the population were used to control the population 

structure. Principal component analysis has grouped the population into three continuous clusters 

using the first two principal components (Fig 4.4) where PC1 accounts for 13% and PC2 
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accounts for 9% of the variation. Clustering into three groups were random and could not 

distinguish between the growth habits or the geographical origin of the accessions.  

 

Figure 4.4. Principle component graphs showing the distribution of the populations for first two 

principle components, (PC1 and PC2) where, PC1 explained 13% of the variation and PC2 

explained 9% of the variation in population. (a) 224 genotype for root diameter traits. (b) 198 

genotypes for RL, PRB, RA and RVS. (c) 177 genotypes for RDW. 

4.4.4. Marker-trait association 

We tested six models for every traits for each years individually and for combined data-

set to detect the best marker-trait association. Different models were found to be best fitted for 

different traits in different environment and combined datasets (Table 4.2). Significant markers 

were identified based on two cut-off criteria, marker P-value at 0.01percentile tail of the 

empirical distribution and at 0.1 percentile tail. SNPs that passed more stringent cut off at 0.01 

percentile were the most significant markers for the trait. Significant markers at less stringent cut 

off at 0.1 percentile tail were taken into consideration only when they were repeated in E1, E2 

and combined datasets. Candidate genes were searched for all the significant markers within 50 

kbp upstream and downstream of a marker.  
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4.4.4.1. Root length (RL) 

Based on the lowest MSD value, PC4 was selected as the best model for root RL in E1 

data set (Table 4.2). Three markers were found significant with 0.01 percentile cut off P-value 

(1.20E-04). Two of these markers’ (chrUnn_rand_2975131 and chrAnn_rand_15131528) 

position in the physical map are unknown based on the B. napus reference genome sequence 

(Chalhoub et al., 2014) whereas, the third marker (chrC06_rand_1272851) was from 

chromosome C06 and they altogether accounts for 24 % of the total phenotypic variation (Table 

4.3). Kinship + PC4, and PC4 were detected as the best model in E2 and combined dataset, 

respectively. Four markers were found to be significant in each of these data sets at 0.01 

percentile P-value. The four significant markers in E2 are chrC03_4976549, chrA05_10135011, 

chrC04_45786858 and chrC03_12098594 (Table 4.3). Altogether they explained 27 % of the 

total phenotypic variation. Significant markers in combined datasets are on chromosome A10 

(13.77 bp), C02 (19.64 Mbp) and C06 (10.54 Mbp). One marker’s position is unknown. They 

altogether accounted for 29.6% of the phenotypic variation. Brassica gene model 

BnaC03g22140D was found within the position of the marker chrC03_12098594 (E2) which 

shows the best match with Arabidopsis gene model AT2G39480 encoding P-glycoprotein 6 

(PGP6, ABCB6) protein (Table 4.5). Another gene model BnaC03g10280D was found 23.9 kbp 

downstream of the marker chrC03_4976549 which is similar to Arabidopsis gene model 

AT5G20810 encoding Small Auxin Upregulated RNA 70 (SAUR70) protein.  
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Table 4.2.  Best models based on lowest MSD value with cut off P-value at 0.01 and 0.1 percentile 

tail for each trait in each environment and in combined data set. 

Traits Env. 

Best 

Model MSD 

value 

P-value cut 

off at 0.01 

percentile 

tail 

−log10 

(P-

value) 

at 0.01 

P-value cut 

off at 0.1 

percentile 

tail 

−log10 

(P-

value) 

at 0.1   

RL               

  E1 PC4 4.53E-06 6.65E-05 4.18 9.69E-04 3.01 

  E2 Kin+PC4 9.59E-06 1.14E-04 3.94 9.78E-04 3.01 

  Comb PC4 1.49E-06 1.36E-04 3.87 9.82E-04 3.01 

RA               

  E1 PC28+Kin 1.4E-05 6.46E-05 4.19 1.38E-03 2.86 

  E2 PC28+Kin 4.37E-06 5.02E-05 4.30 6.48E-04 3.19 

  Comb PC28 2.26E-05 1.03E-04 3.99 9.16E-04 3.04 

PRB               

  E1 PC4 3.43E-04 5.47E-05 4.26 1.10E-03 2.96 

  E2 Kin 0.000739 2.29E-05 4.64 1.83E-03 2.74 

  Comb Kin 8.38E-05 4.44E-05 4.35 8.10E-04 3.09 

RDW               

  E1 PC26 1.27E-03 8.73E-06 5.06 4.69E-04 3.33 

  E2 PC26+Kin 7.67E-04 3.29E-05 4.48 1.44E-03 2.84 

  Comb PC26+Kin 1.06E-03 8.12E-05 4.09 9.63E-04 3.02 

RVS               

  E1 PC28 7.95E-06 2.47E-04 3.61 1.40E-03 2.85 

  E2 Kin+PC28 7.26E-05 1.69E-04 3.77 1.01E-03 3.00 

  Comb PC28 1.07E-05 1.02E-05 4.21 1.24E-03 2.91 

R1Dia               

  E2 Naïve 1.34E-05 1.23E-04 3.91 9.07E-04 3.04 

R2Dia               

  E2 Naïve 3.73E-05 4.47E-05 4.35 1.21E-03 2.92 

 

4.4.4.2. Root angle (RA) 

 For RA, Kinship + PC28 which accounts for both population structure and relatedness 

were selected as the best fitted model for both E1 and E2 (Table 4.2). On the other hand, PC28 

accounting for only population structure was the best fitted model in combined dataset. At 0.01 

percentile, four markers were found to be significantly associated with the RA in each of the 
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three dataset (Table 4.3). In E1, the four significant markers were from 2 different chromosomes, 

C03 and C06 and accounts for 24.38% of the phenotypic variation. The four significant markers 

in E2 were from four different chromosome and explained 24.3% of the phenotypic variation. 

One significant marker from E2, chrA03_21843293, was also found to be associated with the 

trait in combined analysis and accounted for 3.0% and 10.9 % of the total phenotypic variation in 

respective environment. Two candidate genes, ABC Transporter G28 (ABCG28) and Plasma 

Membrane Intrinsic Protein 2; 4 (PIP2; 4) were identified from 1.2 kbp and 12.3 kbp upstream, 

respectively, of the marker chrC03_5436381 (E1) (Table 4.5).  

4.4.4.3. Primary root branch (PRB) 

The Kinship model accounting for only relatedness was found as the best fitted marker-

trait association model for primary root branch in E2 and combined analysis (Table 4.2 2). In E1, 

PC4, accounting for population structure only, was the best fitted model. Marker 

chrA02_192565 was the top most significant marker in both E1 and combined analysis (Table 

4.3). It accounts for 11.5% of the phenotypic variation in E1, and 8.38% of the phenotypic 

variation in combined dataset. There were two other markers appeared on both E1 and combined 

analyses from chromosome A01 (8.81 Mbp) and C03 (1.82 Mbp) at 0.01 percentile tail.  In E2, 

the significant markers at 0.01 percentile were unique and explained 29.4% of the phenotypic 

variation. A gene model BnaA01g16850D was identified within the position of the marker 

chrA01_8813067 from E1 and combined dataset (Table 4.5). This gene model matches with 

Arabidopsis gene model AT4G28050 encoding protein Tetraspanin 7 (TET) involved in root 

radial patterning and root morphogenesis. Five other candidate genes were detected within the 50 

kbp upstream or downstream from three different PRB associated markers, chrC03_1822934 

(SNRK2, NAC81), chrA02_1108743 (PIN8, GASA4) and chrC04_2352267 (ARGOS-like 1).  
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Table 4.3. Significant markers for different root traits at 0.01 percentile 

Trait  Markers 

Major 

allele/Minor 

allele 

Env. 

−log10 

(P-

value) 

R2
LR 

(%) 

RL          

  chrUnn_rand_2975131 C/A E1, Comb 5.16 11.69 

  chrAnn_rand_15131528 G/A E1 4.36 9.98 

  chrC06_rand_1272851 C/G E1 4.20 9.62 

       Total 24.72 

  chrC03_4976549 A/G E2 4.19 2.34 

  chrA05_10135011 A/T E2 4.06 4.89 

  chrC04_45786858 A/G E2 3.95 13.33 

  chrC03_12098594 A/T E2 3.95 10.09 

       Total 27.34 

  chrUnn_rand_2975131 C/A Comb, E1 4.49 10.26 

  chrA10_13775810 T/A Comb 4.31 9.86 

  chrC02_19643030 A/G Comb 4.07 9.34 

  chrC06_10542811 C/T Comb 3.92 9.02 

       Total 29.61 

RA          

  chrC03_5436381 T/G E1 4.96 23.30 

  chrC03_5436391 C/T E1 4.93 22.99 

  chrC06_33610701 T/G E1 4.39 1.15 

  chrC06_33610722 T/G E1 4.20 1.24 

       Total 24.38 

  chrA06_rand_664525 G/T E2 5.24 4.11 

  chrC06_15154006 C/T E2 5.10 7.20 

  chrA09_12827936 G/A E2 4.65 18.18 

  chrA03_21843293 T/C E2, Comb 4.31 2.99 

       Total 24.28 

  chrC09_3590337 C/T Comb 4.69 12.13 

  chrA01_12760837 C/G Comb 4.26 11.08 

  chrA03_21843293 T/C Comb, E2 4.18 10.90 

  chrC02_10095030 C/A Comb 4.13 10.76 

       Total 31.15 
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Table 4.3. Significant markers for different root traits at 0.01 percentile (Continued) 

Trait  Markers 

Major 

allele/Minor 

allele 

Env. 
−log10 

(P-value) 

R-Sq 

(%) 

PRB          

  chrA02_192565 C/A E1, Comb 4.90 11.15 

  chrA01_8813067 G/T E1, Comb 4.90 11.14 

  chrC03_1822934 G/T E1, Comb 4.44 10.14 

  chrC02_3679554 G/T E1 4.32 9.89 

       Total 27.06 

  chrA02_1108743 T/C E2 5.27 14.00 

  chrC04_2352267 T/A E2 4.80 19.93 

  chrC04_2352222 C/T E2 4.75 19.45 

  chrC04_2352228 A/G E2 4.64 19.09 

       Total 29.44 

  chrA02_192565 C/A Comb, E1 5.98 8.38 

  chrC01_3445668 A/T Comb 5.33 19.65 

  chrC03_1822934 G/T Comb, E1 5.08 17.04 

  chrA01_8813067 G/T Comb, E1 4.55 18.79 

       Total 39.33 

RDW          

  chrC01_11247236 C/T E1, Comb 6.69 18.78 

  chrC06_rand_911028 G/A E1 6.51 18.35 

  chrA07_12603394 C/A E1, Comb 5.90 16.76 

  chrA07_rand_1125045 G/A E1, Comb 5.51 15.76 

       Total 33.11 

  chrA02_1172233 A/G E2 5.24 5.72 

  chrA04_4928074 G/A E2 5.21 0.27 

  chrA02_1172218 G/T E2 5.12 8.01 

  chrA01_rand_778885 C/T E2 4.60 0.08 

       Total 8.33 

  chrA07_rand_1125045 G/A Comb, E1 5.34 15.30 

  chrC01_11247236 C/T Comb, E1 5.26 15.10 

  chrA07_12603394 C/A Comb, E1 4.96 14.31 

  chrA01_7136448 A/G Comb 4.51 13.10 

       Total 32.55 

 

 



 

71 

 

 

Table 4.3. Significant markers for different root traits at 0.01 percentile (Continued) 

Trait  Markers 

Major 

allele/Minor 

allele 

Env. 
−log10 

(P-value) 

R-Sq 

(%) 

RVS          

  chrA04_11064427 A/C E1, Comb 5.34 18.56 

  chrC05_16971678 C/A E1 4.07 16.34 

  chrCnn_rand_27194557 G/A E1, E2, Comb 3.94 14.42 

  chrA01_7949816 A/G E1, Comb 3.83 13.93 

       Total 39.93 

  chrCnn_rand_27194557 G/A E2, E1, Comb 4.11 2.26 

  chrC08_37021388 C/T E2 3.87 1.81 

  chrC08_37021410  E2 3.87 1.81 

  chrA04_5977698 T/C E2 3.83 1.48 

       Total 5.89 

  chrCnn_rand_27194557 G/A Comb, E1, E2 4.91 12.68 

  chrA04_11064427 A/C Comb, E1 4.34 11.29 

  chrA01_7949816 A/G Comb, E1 4.27 11.10 

  chrUnn_rand_2975131 C/A Comb 4.21 10.96 

       Total 36.50 

R1Dia          

  chrA07_22509933 G/A E2 5.10 10.09 

  chrA04_rand_54410 T/C E2 4.42 8.80 

  chrUnn_rand_4504809 A/G E2 4.26 8.49 

       Total 28.19 

R2Dia          

  chrAnn_rand_21292473 G/T E2 5.13 10.14 

  chrC09_35455232 G/T E2 4.62 9.18 

  chrA01_3788681 C/A E2 4.58 9.10 

       Total 28.42 

 

4.4.4.4. Root dry weight (RDW) 

PC26 were selected as the best fitted model for marker-RDW association in E1 and 

combined analysis (Table 4.2). However, MLM model Kinship+PC26, accounting for both 

relatedness and population structure was the best fitted model. Three markers, 
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chrC01_11247236, chrA07_12603394 and chrA07_rand_1125045 were detected at 0.01 

percentile cut off in both E1 and combined dataset. Marker chrC01_11247236 gave highest peak 

with –log10 (P-value) of 6.69 in E1 and second highest peak with –log10 (P-value) of 5.26 in 

combined dataset. With one additional markers in each analysis, four markers in E1 accounted 

for 33.1% phenotypic variation, and four markers in combined datasets accounted for 32.6% of 

total phenotypic variation. In E2, four different markers from A01, A02 and A03 chromosome 

were found to be significantly associated with RDW at 0.01 percentile and altogether accounts 

for 8.3% of the phenotypic variation. Four candidate genes, Auxin Signaling F-Box 4 (AFB4, 

FBX14) for marker chrC01_11247236, Homeobox 53 (HB53) for marker chrA07_rand_1125045, 

GAST1 protein homolog 4 (GASA4) for marker chrA02_1172233 and Tryptophan 

Aminotransferase Related 2 (TAR2) for marker chrA01_7136448 were identified within the close 

proximity of the respective markers.  

At less stringent 0.1 percentile cut off, four markers, chrA06_978037, chrA01_9006214, 

chrA07_22509933 and chrC08_17124940 were detected across all the datasets, environment E1, 

E2 and when data were combined (Table 4.4).  
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Table 4.4. Significant marker loci detected in both environment and datasets at 0.1 percentile tail 

P value cut off. 

Trait & Markers Env. 

  E1 E2 Comb 

  

−log10 

(P-

value) 

R-Sq 

(%) 

−log10 

(P-

value) 

R-Sq 

(%) 

−log10 

(P-

value) 

R-Sq 

(%) 

RDW                 

chrA06_978037 E1, E2, Comb   3.43 10.12 4.03 11.93 4.01 10.58 

chrA07_9006214 E1, E2, Comb   3.95 11.57 3.44 1.80 4.09 11.57 

chrA07_22509933 E1, E2, Comb   3.45 10.10 2.87 1.10 3.48 9.27 

chrC08_17124940 E1, E2, Comb   3.47 10.22 3.54 2.40 3.81 10.10 

RVS                 

chrA06_2937010 E1, E2, Comb   3.61 8.57 3.15 7.63 3.95 9.18 

chrA07_4128452 E1, E2, Comb   3.16 7.56 3.54 8.53 3.57 8.34 

4.4.4.5. Root vigor score (RVS) 

PC28 (in E1 and Combined) and Kinship + PC28 (in E2) were found to be the best fitted 

model for marker RVS association (Table 4.2). Seven markers passed the 0.01 percentile cut off 

across the two environments and in combined analysis. One marker with unknown position in 

the genome, chrCnn_rand_27194557, was detected in all three datasets and accounts for 2.3% - 

14.4% of the phenotypic variation in E1, E2 and in combined dataset (Table 4.3). Two other 

markers from chromosome A01 and A04 were found significant in E1 and in combined datasets. 

The percentile of the phenotypic variation they explain is ranged from 11.1% - 18.6% across two 

datasets. Two candidate genes, Indole Acetic Acid-Induced Protein 8 (IAA8) 45.6 kbp 

downstream of the marker chrA04_11064427 (E1 & Comb) and Phosphofructokinase 7 (PFK7) 

44.2 kbp downstream of marker chrA01_7949816 (E1 & Comb), were detected.  

At 0.1 percentile cut off twelve markers were found to be significant in more than one 

datasets (Table 4.4). Among them, two markers, chrA06_2937010 and chrA07_4128452, were 

detected in both E1 and E2 environments and combined dataset.   
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4.4.4.6. Root diameters 

We have collected root diameter only from 2016 or E2. Naïve model (accounted neither 

population structure nor relatedness) was found to be the best fitted model for both Soil level 

root diameter (R1Dia) and bottom root diameter (R2Dia). Three markers were significant at 0.01 

percentile P-value cut off of 5.55E-05 for R1Dia. Two of them were located on chromosome A04 

(chrA04_rand_54410) and A07 (chrA07_22509933) and the other marker’s position were 

unknown. The markers together explained 28.1% of the total phenotypic variation. Gene model 

BnaA04g27350D and BnaA04g27360D were found within and very close proximity, 

respectively, of the marker chrA04_rand_54410 (Table 4.5). Both of these gene model are very 

similar to Arabidopsis gene model AT3G60350 encoding ARABIDILLO-2 protein. Another gene 

model was identified 35.7 kbp upstream of the same marker encoding Indole-3-Acetic Acid 

Inducible 30 (IAA30) in Arabidopsis. 

In the case of R2Dia, three significant markers were detected at P-value cut off 2.63E-05 

at 0.01 percentile.  These are chrAnn_rand_21292473, chrC09_35455232 and chrA01_3788681, 

and altogether explained 28.4% of the total phenotypic variation. Gene model BnaA01g07940D 

similar to Arabidopsis gene model AT4G28980 encoding Cyclin-Dependent Kinase F; 1 

(CDKF; 1) was identified at 30 kbp downstream of the marker chrA01_3788681 (Table 4.5) 

4.4.5. Marker validation 

 We have selected 18 most significant markers based on haplotype block and marker 

positions on chromosome for four traits, PRB, RVS, RL, RA and RDW, to validate the marker-

trait association. Based on the predicted and observed phenotype, we were able to predict root 

traits with 12 markers for different root traits (Appendix Table A2a, A2b and A2c). Five markers 

for PRB, chrC04_2352222, chrC04_2352228, chrC04_2352267, chrA01_8813067 and 
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chrC03_1822934, successfully predicted the nature of PRB in 85% of the genotypes. Two 

markers, chrA04_5977698 and chrA01_7949816, predicted the root vigor in 75% of the 

genotypes. One RL marker, chrC03_4976549, was able to predict the nature of root length in 

90% of the genotypes. Four markers for RA, chrC06_33610701, chrC06_33610722, 

chrC03_5436381 and chrC03_5436391, were able to predict the nature of root angle with 90% 

of accuracy. 

4.5. Discussion 

4.5.1. Root phenotyping 

Recent advancement in high throughput phenomics has allowed plant scientists to 

phenotype root architectural traits efficiently with more accuracy. Several root phenotyping 

platforms were successfully used to phenotype different root architectural traits in different 

crops. Few examples are rhizotron in maize and sorghum (Singh et al., 2010; Lobet and Draye, 

2013), hydroponics in corn and rice (Holloway et al., 2011; Clark et al., 2013b), transparent 

media in rice and soybean (Fang et al., 2009; Topp et al., 2013), shovelomics in maize (Trachsel 

et al., 2011), pouch and wick system in canola (Thomas et al., 2016). Most of the currently 

established phenotyping platforms are highly efficient for phenotyping root system at seedling 

stages when the root system is comparatively less complex in majority of the crops. In canola, 

we observed that root system in spring and winter growth habits does not show any significant 

variation at seedling stage, rather variation starts to arise from 40 days after planting and reaches 

maximum at 60 days after planting (Arifuzzaman and Rahman, 2017). Therefore, the variation of 

the root system difference between adult spring and winter canola plants may not be indicative 

by their root system at early growth or seedling stages. Root traits in seedling stage in other crops 
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may not be an accurate predictor of the mature root system or plant performance (Zhu et al., 

2011). 

In our earlier studies, we successfully phenotyped root vigor with a visual scoring system 

as an indicative trait for whole root system in 45-50 days old spring and winter canola (Rahman 

and McClean, 2013; Arifuzzaman et al., 2016). However, individual root architectural traits of an 

adult canola plant proved very difficult to phenotype with many of the existing phenotyping 

platform and imaging technologies. In this current study, we modified the “Mesocosms for Root 

Evaluation” procedure developed by Roots lab, University of Pennsylvania for maize root 

evaluation. Instead of using large PVC pipe in the original procedure, we used 40 cm x 10 cm 

pots which enable us to set up a large experiment with 224 genotypes with three replication in 

the greenhouse. We used sand and greenhouse soil mix at a ratio of 8:2. Higher amount of sand 

helped the root washing procedure while small amount of greenhouse soil mix improved the 

moisture holding capacity of the growing media. A plastic poly bag (perforated at bottom) was 

lined inside the pot before potting which allowed to bring out the intact root system with growing 

media before extraction. This modified method is very cost effective but efficient method for 

complex root system extraction from adult canola plant and easy phenotyping of different root 

architectural traits and can be used in other crops too.  

4.5.2. Phenotypic distribution of canola root traits and relationship among them 

 In the current study we phenotyped seven root architectural traits in 2015 (E1) and 2016 

(E2). The RL in both E1 and E2 showed a normal distribution, which indicates a polygenic 

control of the trait (Banga and Banga, 2009). Large mean differences were observed for RL and 

PRB between E1 and E2 datasets, inferring higher environmental interaction influencing the 

trait. The low heritability (0.3-0.31) for RL in both E1 and E2 supporting this statement.  
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Moderate heritability (0.44-0.62) was detected for RA and PRB in both environment and 

combined datasets. Higher root heritability for RA was also observed in durum wheat 

(Sanguineti et al., 2007). Root angle was suggested as a proxy trait for root length in rice (Kato 

et al., 2006) and sorghum (Singh et al., 2012) due to good heritability and easiness to measure 

comparing to root length. High heritability was observed for RDW and PRB in both environment 

(0.81-0.91). High heritability across the environment ensures the repeatability of the trait 

performance which is a prime criterion among the breeders during selection (Thomas et al., 

2016). We observed high heritability for R2Dia and moderate heritability for R1Dia in E2.  

Both RL and PRB were significantly positively correlated with RDW and RVS in the 

both environments and combined dataset indicating the role of RL and RDW in defining the 

whole root dry mass and root vigor. Indeed, higher root length with higher number of root 

branches will ultimately result vigorous and higher root mass. Interestingly, RVS is highly 

correlated with RDW in both environment and combined data set. This suggests that RVS can be 

a proxy trait for RDW (Rahman and McClean, 2013). Significant positive correlation were 

detected in R1Dia vs R2Dia indicates positive relationship between root diameters at two points. 

Both R1Dia and R2Dia is significantly positively correlated with RL, PRB, RDW and RVS which 

suggests that root diameter has an important impact on the overall root system architecture in 

canola. Significant positive correlation between different root traits except RA in each 

environment indicates their role in shaping the whole root system architecture and possibility of 

co-localization of the marker loci between root traits (Burridge et al., 2017). 

4.5.3. Genome-wide association study 

 In the current study, we performed GWAS to identify useful marker loci associated with 

different root architectural traits. To detect the best marker-trait association, we tested six models 
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for each traits in each environment and combined dataset. The best fitted model for a trait in a 

specific environment was determined based on the lowest MSD value among the tested models 

(Mamidi et al., 2011). Therefore, we found different models to be best fitted for different traits in 

different environment which resulted different P-values in the best models for different traits in 

different environments (Table 4.2). Moghaddam et al. (Moghaddam et al., 2016) suggests that a 

single P-value cutoff for all traits in all environment might not be suitable to identify important 

marker loci. We bootstrapped the P-value 1,000 times and the markers at top 0.01 percentile of 

the empirical distribution considered as the significant markers (Mamidi et al., 2014; 

Moghaddam et al., 2016; Soltani et al., 2017). Possibility of identification of false positive 

marker association is high if the population was not corrected for structure and relatedness. 

However, the possibility of excluding true marker-trait association or false negative increases if 

the P-value cutoff is too stringent. Therefore, we also have taken into account the markers that 

pass a less stringent P-value cutoff at 0.1 percentile tail of the empirical distribution and 

appeared in all datasets E1, E2 and Comb.  

 We identified a total of 52 significant marker loci associated with different root traits at 

0.01 percentile P- value cutoff in different environment and combined datasets. Five of the 

identified markers were not assigned on a known position of any chromosome based on the B. 

napus reference genome (Chalhoub et al., 2014). The remaining 48 marker loci were distributed 

among 17 B. napus chromosomes except A08 and C07. Chromosome A01, A02, A04, C03 and 

C06 contain a majority of majority of the marker loci associated with different root traits. 

Limited genetic research was conducted on the root system architecture of rapeseed/canola so 

far. Few reports were found in the previous literatures on the genetic loci controlling 

rapeseed/canola root system architectural traits in response to nutrient deficiency or abiotic 
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stresses. Shi et al., (2013) and Zhang et al., (2016) reported majority of the QTL on chromosome 

A03 for different root traits in response to low and high phosphorus (P) level. Zhang et al., 

(2016) also reported abundance of co-localized QTL for primary root number located on 

chromosome A04, C04, A08 and A09 in response to high and low phosphorus. Wan et al., 

(2017) reported three marker loci associated with root length under saline condition on 

chromosome A01, A03 and A06.  

4.5.3.1. Root length (RL) and root angle (RA) 

 Tap root length (RL) is a crucial component in the root system architecture as it is 

directly related to depth of the soil zone that a plant can explore. This component become 

important especially when plant sense the drought condition and need to go deeper in the soil for 

moisture (Kong et al., 2014). Root system with higher root length is favorable for the plant to 

acquire nutrients like N, which tends to leach easily from the top soil (Wasson et al., 2012; Paez-

Garcia et al., 2015). A QTL named DEEPER ROOTING 1 (DRO1) is described by Uga et al. 

(Uga et al., 2013) in rice which is controlled by auxin and enable plants go deeper for water 

under drought condition and yield higher.  In the current study, total 10 marker loci associated 

with RL were detected in E1, E2 and combined dataset. Marker chrUnn_rand_2975131 appeared 

in both E1 and combined dataset as the highest peak. Majority of the markers are positioned 

mainly on the chromosomes of C genome, C02, C03, C04, and C06. Zhang et al. (Zhang et al., 

2015) reported one marker loci on chromosome A03 associated with root length in canola under 

water stressed condition. Yang et al., (2010) reported two unique QTL on chromosome A03 and 

C02 for root length in response to low P. Wan et al., (2017) reported three marker loci associated 

with root length under saline condition on chromosome A01, A03 and A06.  
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 Root angle in a root system architecture is mainly measured from the angle between the 

tap root and the primary roots. Root angle is a critical trait in a sense that its utility is different in 

response of different soil condition. Under low water regime in the soil, higher root angle will 

not be beneficial for the plant as it will create competition with the neighboring plants for water. 

Moreover, with higher angle root system spend its energy to explore relatively higher root zone 

when it would need to go deeper. Lynch, (2013) described the importance of “steep-cheap-deep” 

root system to increase water and nutrient uptake capacity of the root system in crop species.   In 

the current study, eleven marker loci associated with root angle were identified on chromosome 

A01, A03, A06, A09, C02, C03, and C06. 

We detected two marker loci (chrC03_4976549 and chrC03_5436381) within only 0.46 

Mbp that are associated with RL and RA, respectively. This indicates a possibility of interrelated 

mechanism defining RL and RA in canola. Although we did not detected any correlation 

between RL and RA in canola, Kato et al., (2006) describes the association of root angle and root 

length in upland rice. Three candidate genes, SAUR70 (early auxin response gene), ABCG28 and 

PIP2; 4 related to auxin transport were detected within the close proximity of these two markers. 

4.5.3.2. Multiple markers on the same chromosomal regions are associated with PRB, RDW 

and RVS 

Several markers within a close proximity on a chromosome were found to be associated 

with multiple root traits. Three markers on chromosome A01 (chrA01_7136448, 

chrA01_7949816 and chrA01_8813067, located on a close proximity of the physical map within 

1.68 Mbp were associated with RDW, RVS and PRB, respectively (Fig 4.5a). The latter two 

markers were detected in both E1 and combined data set. Primary roots and lateral roots play the 

most important role in mining soil water and nutrients during vegetative and reproductive stage 
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in Arabidopsis and B. rapa (18). We have presented four candidate genes within this region 

(TET7, ATMYB41, TAR2 and PFK7) related to various functions in root development, patterning 

and root epidermal cell differentiation. Therefore, we suggest, this region of chromosome A01 

may be a hotspot controlling root architecture of canola. Arifuzzaman et al., (2016) reported one 

QTL for root vigor (RVS) on chromosome A01. Shi et al., (2011) also assigned one root related 

QTL under boron (B) deficiency on chromosome A01.   

PRB, coming out from the tap root, are the integral part of the root system architecture 

giving an overall shape, density and angle of the whole root system in canola. Although we did 

not measure the lengths and diameters of the primary root branches, we noticed that these two 

factors are very important for lateral root growth and defining root system architecture in canola. 

We measured root dry weight and rate the overall root vigor in the current study which showed 

significant correlation to the primary root branch number. Therefore, we suggest that these traits 

can be a good indicator for primary root branch lengths and diameters or vise versa.  

Three marker loci, chrA02_1108743, chrA02_1172218 and chrA02_1172233 resided 

within 64 kbp region on chromosome A02 and associated with both PRB and RDW (Fig 4.5b). 

We reported two candidate genes (PIN8 and GASA4) related to auxin transport and GA mediated 

signaling pathway crucial in various root development procedure. Shi et al., (2011) identified 

several QTL for RDW under low and optimum boron (B) application. One of those QTL was 

assigned on A02. Additionally, two marker loci (chrA04_4928074 and chrA04_5977698) 

associated with RDW and RVS, respectively, are within 1.05 Mbp on chromosome A04. No 

candidate genes were detected within this region.  
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Figure 4.5. Manhattan plots showing co-localized markers associated with (a) PRB, RDW and 

RVS on chromosome A01 and (b) PRB and RDW on chromosome A02 where, a(i) = 

PRB in E1, a(ii) PRB in comb, a(iii) RDW in comb, a(iv) RVS in E1, a(v) RVS in 

comb, b(i) PRB in E1, b(ii) PRB in E2, b(iii) PRB in comb and b(iv) RDW in E2 

4.5.3.3. Root diameters (R1Dia and R2Dia) 

We took root diameter measurement at two points of the tap root, at the base of the tap 

root at soil level (R1Dia) and 10 cm below the soil level (R2Dia). Considering the significant 

positive correlation between root diameters and other root traits in the current study, we 

hypothesized that, root diameters at the tow points of the tap root are good indicators of the 

nature of the tap root growth on the top soil as well as other root parameters. Burridge et al., 

(2017) suggested that a tap root with higher diameter may be linked to the greater total xylem 

area in the taproot. Higher taproot diameter may help the plant to explore deeper soil domain to 

get higher water supply in a drought condition. Total six marker loci associated with R1Dia and 

R2Dia (3 loci each) distributed on chromosome A01, A04, A07 and C09 were identified.  
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4.5.4. Candidate genes 

4.5.4.1. Candidate genes were identified on the same physical location of the markers 

 We have reported total 22 candidate genes involved in root growth and development 

within the 50 kbp upstream and downstream of the significant markers. Some of these candidate 

genes were located on the exact same physical location of the respective marker and warranted 

our attention. P-glycoprotein 6 (PGP6, ABCB6) was detected on the RL marker 

chrC03_12098594. PGPs are the member of the ABC transporter superfamily and well regarded 

as the cellular and long distance auxin transporter (Geisler and Murphy, 2006) and involved in 

suppression of lateral root and root hair formation (Santelia et al., 2005). Marker loci 

chrA01_8813067 for PRB shares the same physical location with a gene encoding Tetraspanin 7 

(TET7) protein. Plant TET family proteins are believed to interact with auxin related processes 

and involved in leaf and root patterning (Wang et al., 2015). Two Brassica gene models 

(BnaA04g27350 and BnaA04g27360) were detected on the physical location of the marker locus 

chr04_rand_54410 associated with R1Dia. Both of these gene model matched with Arabidopsis 

gene model AT3G60350 encoding ARABIDILLO-2 protein. Overexpression of ARABIDILLO-2 

protein in Arabidopsis root resulted higher number of lateral roots and loss of function of this 

gene was found to decrease lateral root number (Coates et al., 2006). Therefore, this loci might 

be very important regarding lateral root formation. 

Beside these, few other root related candidate genes were located within a very close 

distance of the respective markers. We have reported two candidate genes, ABC-2 type 

transporter family (ABCG28) and Plasma Membrane Intrinsic 2; 4 (PIP2; 4) on the chromosome 

C03 within the close proximity of the marker chrC03_5436381. PIP2; 4  and another very 

similar protein PIP4;4 were reported to be highly expressed in root hair and pip4; 4 mutant 
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showed longer root hairs than the wild type plant in Arabidopsis (Lin et al., 2011). ARGOSE-like 

gene (Auxin-Regulated Gene Involved in Organ Size Like) was detected only 1 kbp downstream 

of the marker C04 which is expressed in root elongation zone and involved in organ growth 

(Markakis et al., 2012). Candidate gene Homeo Box 53 (HB53) within very close proximity (4 

kbp upstream) of RDW marker locus chrA07_rand_1125045 is a highly auxin inducible gene 

and regulate auxin/cytokinin signaling during root development (Son et al., 2004). 
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Table 4.5 Candidate genes for different root architectural traits within 50kb region at either side of the significant markers. 

Trait Locus Env BNA AT Distance* Symbol (TAIR) GO biological process (TAIR) 

RL chrC03_4976549 E2 BnaC03g10280D AT5G20810 -23,984 SAUR70 Response to auxin 

  chrC03_12098594 E2 BnaC03g22140D AT2G39480 0 PGP6, ABCB6 Root hair elongation; Lateral root development; Auxin 

efflux transmembrane transporter activity; Acropetal 

auxin transport; Basipetal auxin transport 

RA chrC03_5436381 E1 BnaC03g11140D AT5G60740 1,232 ABCG28 Transmembrane transport 

     BnaC03g11160D AT5G60660 14,338 PIP2;4 Root hair elongation; Response to abscisic acid 

PRB chrA01_8813067 E1,Comb BnaA01g16850D AT4G28050 0 TET7 Aging; Root and leaf radial pattern formation; Root 

morphogenesis 

     BnaA01g16900D AT4G28110 20,970 ATMYB41 Response to abscisic acid 

  chrC03_1822934 E1,Comb BnaC03g03700D AT5G08590 -17,836 SNRK2 Response to salt stress 

     BnaC03g03740D AT5G08790 -2,144 NAC81, ATAF2 Response to JA and SA 

  chrA02_1108743 E2 BnaA02g02480D AT5G15100 -18,970 PIN8 Auxin efflux, Auxin homeostasis; Auxin polar 

transport; Auxin-activated signaling pathway 

     BnaA02g02560D AT5G15230 31,719 GASA4 Response to gibberellin stimulus; Gibberellic acid 

mediated signaling pathway 

  chrC04_2352267 E2 BnaC04g03310D AT2G44080 -1,779 ARGOSE-like, 

ARL 

Organ growth; Multicellular organism development; 

Positive regulation of organ growth 

RDW chrC01_11247236 E1,Comb BnaC01g16320D AT4G24390 -37,392 AFB4, FBX14 Auxin-activated signaling pathway 

  chrA07_rand_1125

045 

E1,Comb BnaA07g37510D AT5G66700 4,436 HB53 Response to auxin stimulus; Root development 

  chrA02_1172233 E2 BnaA02g02560D AT5G15230 -31,771 GASA4 Response to gibberellin stimulus; Gibberellic acid 

mediated signaling pathway 

  chrA01_7136448 Comb BnaA01g14030D AT4G24670 -10,062 TAR2 Maintenance of root meristem identity; Primary root 

development; Response to ethylene; Lateral root 

development; Auxin biosynthesis Process, Positive 

gravitropism 

RVS chrA04_11064427 E1,Comb BnaA04g13090D AT2G22670 -45,699 IAA8 Auxin-activated signaling pathway; Lateral root 

formation; Negative regulation of lateral root 

development; Response to auxin, 

  chrA01_7949816 E1,Comb BnaA01g15420D AT4G26270 -44,200  PFK7 Root epidermal cell differentiation 
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Table 4.5 Candidate genes for different root architectural traits within 50kb region at either side of the significant markers (Continued) 

Trait Locus Env BNA AT Distance* Symbol (TAIR) GO biological process (TAIR) 

R1Dia chrA07_22509933 E2 BnaA07g32430D AT1G76190 -30,013 SAUR56 Response to auxin 

  chrA04_rand_5441

0 

E2 BnaA04g27350D AT3G60350 0 ARABIDILLO-2 Lateral Root Development 

     BnaA04g27360D AT3G60350 357 ARABIDILLO-2 Lateral Root Development 

     BnaA04g27430D AT3G62100 35,716 IAA30 Auxin-activated signaling pathway; Gravitropism; 

Response to auxin; Root development 

R2Dia chrA01_3788681 E2 BnaA01g07940D AT4G28980 -41,066 CDKF;1 Maintenance of root meristem identity 

*negative values= genes are downstream of the marker, positive values= genes are downstream of the marker 
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4.5.4.2. Candidate genes are mostly related to auxin mediated root development 

 Auxin is the prominent among all plant growth hormones involving root growth and 

development (Petrasek and Friml, 2009). Auxin biosynthesis, transport and signaling are the 

major stages of auxin mediated root development. A number of genes, gene families and 

transcription factors are actively involved in these stages either to promote or repress root growth 

by controlling one or more root architectural traits. In the current study, auxin related candidate 

genes are dominant among the reported 22 candidate genes. These auxin related candidate genes 

are involved in either of the auxin biosynthesis, transporting or signaling process based on the 

TAIR website and existing literatures. The auxin related candidate genes identified in this study 

are shown in a diagram which explains the whole process of auxin biosynthesis, transport and 

signaling for root development (Fig. 4.6). 

 

 

 



 

88 

 

 

Figure 4.6. Diagram showing the auxin related candidate genes identified in the current study in 

auxin biosynthesis, transport and signaling process. (a) Auxin produced in shoots is 

transported to the root through phloem with long distance auxin transport system. (b) 

Auxin produced in roots and transported from cell to cell through efflux and influx 

auxin careers (PIN, PIP6 etc.). (c) Several auxin responsive genes involve in auxin 

signaling process. (d) With the low concentration of auxin, AUX/IAA, a transcriptional 

repressor, binds with AUXIN RESPONSIVE FACTOR (ARFs) with the help of a 

corepressor TOPLESS (TPL). Some of the ARFs act as transcriptional activator of 

different auxin responsive genes. (e) Due to binding with repressor (AUX/IAA), ARFs 

were unable to activate different auxin responsive genes controlling root growth and 

development. (f) Alternately when there is high concentration of auxin, (g) AUX/IAA 

binds with Transport INHIBITOR RESPONSE 2 (TIR2) or Auxin F-BOX PROTEINs 

(AFBs) and further degraded. (h) ARFs become free to transcriptionally activate auxin 

responsive genes promote root growth and development. 

4.5.5. Marker validation 

 We were able to predict the nature of different root architectural traits with twelve 

markers in population consists of 20 germplasms with 75-90% accuracy. In most cases, the 

germplasms with major allele for a marker of a particular trait showed extreme high phenotypes. 

The markers were also be able to identify the germplasms with extreme low root traits. The root 

traits are mostly quantitative in nature and controlled with many genes of minor effect. Therefor 
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multiple markers need to be identified and validated for a single trait for successful prediction in 

a larger population. 

4.6. Conclusion 

 In earlier studies, we phenotyped the root system on adult canola plants by a visual 

scoring system and dissect the root vigor of canola (Rahman and McClean, 2013; Arifuzzaman 

et al., 2016). In the current study, we modified a maize root system phenotyping platform to 

phenotype 55 days old canola root system for different root architectural traits. All the root traits 

were found positively correlated with each other except the root angle (RA). In marker trait 

association, we identified 52 significant marker loci associated with different root traits. Gene 

models within 50 kbp region upstream and downstream were blasted against Arabidopsis gene 

models. Twenty-two candidate genes related to the root traits were identified of which three of 

them were located exactly on three respective markers. Twelve markers were validated for four 

traits indicated that the markers could be used in marker-assisted selection breeding program.  
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CHAPTER 5. SHOVELOMICS FOR PHENOTYPING ROOT 

ARCHITECTURAL TRAITS OF RAPESEED/CANOLA (BRASSICA 

NAPUS L.) AND GENOME WIDE ASSOCIATION MAPPING3 

5.1. Abstract 

 The root system architecture of spring and winter rapeseed/canola (B. napus L.) are 

different in terms of vigor and growth in later growth stages. In this study, 216 diverse genotypes 

were phenotyped for five different root architectural traits following shovelomics approach in the 

field condition during 2015 and 2016. A single nucleotide polymorphism (SNP) marker panel 

consists of 30,262 SNPs was used to conduct genome-wide association study (GWAS) to detect 

marker trait association. A total of 31 significant marker loci were identified at 0.01 percentile 

tail P-value cutoff for different root traits. Six marker loci for soil-level taproot diameter (R1Dia), 

six loci for belowground taproot diameter (R2Dia), seven loci for number of primary root 

branches (PRB), eight loci for root angle (RA), and eight loci for root score (RS) were detected 

in this study. Several markers associated with root diameters R1Dia and R2Dia were also 

associated with PRB and RS. Significant phenotypic correlation between these traits was 

observed in both environments. Therefore, taproot diameter appears to be a major determinant of 

the canola root system architecture and can be used as proxy for other root traits. Fifteen 

candidate genes related to root traits and root development were detected within 100 kbp 

                                                 

 

3 This chapter has been submitted to Molecular Genetics and Genomics Journal for publication. This chapter is co-

authored by Muhammad Arifuzzaman, Atena Oladzadabbasabadi, Phillip McClean and Mukhlesur Rahman. MA 

and MR formulated the experiment. MA conducted the experiment, collected the data, analyzed the data and wrote 

the manuscript. AO and PM helped in data analysis. AO, PM and MR reviewed the manuscript. 
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upstream and downstream of different significant markers. This is the first report on the genetics 

of B. napus root architectural traits in the field condition. 

Key words: GWAS, shovelomics, root traits, Brassica napus 

5.2. Introduction 

 Brassica napus L. is an amphidiploid species (AACC) developed from natural 

hybridization of two other diploid Brassica species, B. rapa (AA) and B. oleracea (CC) (U, 

1935) . Oil from older genotypes of rapeseed (B. rapa and B. napus) was high in erucic acid and 

glucosinolate, and the use was limited to lamp-fuel and lubricants. Modern day canola was 

developed in 1970s by lowering the erucic acid (< 2%) and glucosinolate content (<30µm/gm) 

by a team of University of Manitoba plant breeders through conventional breeding approach. 

Rapeseed/canola oil is now regarded as one of the healthiest edible oils worldwide (Lin et al., 

2013). It is the second largest oilseed crop in terms of global production after soybean (Foreign 

Agriculture Services, USDA, 2017). 

 Various genotypes of canola have spring, winter and semi-winter growth habit that is 

based on growing season and a vernalization requirement for flowering (Ferreira et al., 1995; 

Rahman and McClean, 2013). Beside their flowering time difference, spring and winter types are 

distinct in terms of other morphological characteristics. Winter type canola plants have larger 

leaves, wider stem diameters, higher plant height, and more vigorous root system with higher 

yield compared to spring canola. According to Kebede et al., (2010), the spring and winter 

canola are genetically diverse from one another. With superior morphological and yield traits, 

winter canola can be a great resource for improving spring canola yield and morphology 

(Arifuzzaman et al., 2016). 
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 The root system has several major functions such as supplying water and nutrients, acting 

as food and water storage unit, and anchoring the plant to the soil (de Dorlodot et al., 2007). The 

spatial arrangement of the whole root system in the soil is referred as its root system architecture 

(Lynch, 2007). Different components of a root system i.e. root length, primary root branch, 

lateral root branch, root density, root diameter, root angle, total root surface etc. (Kuijken et al., 

2015) define the root system architecture. Different root architectural traits respond to the soil 

microenvironment differentially and can be modified according to the plant needs. Therefore, the 

root system plays a significant role in adaptation of plants under abiotic stress conditions. 

According to Lynch, (2007), This has lead plant scientists (Lynch, 2007) to suggest a greater 

focus on the root system modification to enhance crop adaptation under different environmental 

stresses to increase levels of  crop production. Manipulation of root system architectural traits of 

crops to grow in nutrient deficient or drought condition can significantly enhance the yield 

(Wasson et al., 2012; Kuijken et al., 2015) 

The root system has remained the “the hidden half” throughout the last century in the 

field of plant breeding and crop improvement. Plasticity of the root system and difficulties in 

phenotyping root traits has discouraged breeder from focusing on root traits for crop 

improvement. Recent advancement in genetic mapping and molecular marker technologies 

encouraged breeders to emphasize on the root architectural traits for crop improvement through 

marker assisted selection (Clark et al., 2011). Nevertheless, large scale, highly accurate and 

efficient phenotyping of root traits are essential for an ideal mapping study (Canè et al., 2014). 

Recent technological advances in the field of phenomics allows plant breeders to successfully 

evaluate the root architecture of different crops from younger seedlings in controlled 

environment. There are very few methods for large scale high throughput phenotyping for the 
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root architectural traits in the field. Shovelomics is one of the popular methods of root system 

phenotyping in the field. Shovelomics involves digging up the root system with shovel from the 

field, washing them and measure the root traits with the help of a phenotyping board and/or 

imaging technology (Trachsel et al., 2011). 

 Genome wide associate studies (GWAS) were first implemented to study human diseases 

as an alternate to family-based  mapping strategies (Begum et al., 2015). Eventually, it become 

very popular among plant scientists to identify quantitative trait loci. A GWAS is performed with 

a set of diverse germplasms which enable us to capture all the historical recombination events 

within a germplasm panel (Zhao et al., 2014; Rahaman et al., 2017) and is highly efficient in 

identifying common alleles controlling a complex trait. Single nucleotide polymorphism (SNP) 

markers are now the most popular marker due to their low cost and ease of development. 

Researchers are now able to develop genetic maps with higher marker density with the help of 

abundantly generated SNPs (Luo et al., 2016). 

Genome wide association mapping is performed to successfully identify QTL and 

molecular markers associated with different root traits in different crops. However, most of these 

studies were performed under controlled condition. There are only few GWAS examples of 

phenotyping for root architectural traits in the field; i.e. rice with PVC pipe method (Li et al., 

2017), rice with basket method (Lou et al., 2015), and cowpea with shovelomics (Burridge et al., 

2017). In the current study, we adopted the shovelomics approach described by (Trachsel et al., 

2011) to phenotype genetically diverse B. napus germplasms for different root architectural 

traits, and to identify genomic regions associated with different root architectural traits of 

rapeseed/canola (Brassica napus L.) 
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5.3. Materials and methods 

5.3.1. Plant Materials and experimental design 

A total of 216 B. napus genotypes of diversified origin (Appendix Table 5.1) were 

planted in North Dakota State University Agricultural Experiment Station at Carrington, N. D. in 

2015 and 2016. The soil type of the area is Heimdahl silt loam with pH of ~6.5 and OM of ~2.7 

All the three growth habit types of canola/rapeseed were included in the germplasm panel: spring 

(n=85), winter (n=92) and semi-winter (n=39). The germplasm accessions were obtained from 

Germplasm Resource Information Network (GRIN) of USDA-ARS. Germplasms were planted 

as randomized complete block design with two replications in each year.  

5.3.2. Phenotyping 

Root architectural traits were phenotyped with the Shovelomics approach described by 

(Trachsel et al., 2011). Phenotyping was done at 50 days after planting. The total phenotyping 

procedure is divided into three major steps (Fig 5.1). Three representative plants per plot were 

selected based on plant height and general appearance and excavated them with a shovel. The 

root system in 50 days old canola plant is very complex and grows deep in the soil horizon. 

Therefore, we excavated the root system only to capture the top 10 cm of the root system and 

phenotyped the root traits. The root sample is then washed. All three excavated plants with their 

root systems were zip tied together, tagged and brought to the washing area. The roots were 

washed first with soapy water followed by a wash with normal water. After 5-10 minutes of air-

drying, data measurements were taken. Data was collected on number of primary root branches 

(PRB), lateral root angle (RA), taproot diameter at soil level (R1Dia), belowground taproot 

diameter at 10 cm below the soil level (R2Dia) and a visual scoring of the root system (RS) 

(Table 5.1) RA and the first 10 cm length of the taproot were measured with a phenotyping board 
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labeled with angle and length measurement. Diameters were taken with slide calipers at the soil 

surface position and 10 cm down from the first data point. RS were recorded with a visual 

scoring system based on general appearance of the root system, and scored from 1-5, where 

score “1” represents the weakest root system with the thinnest taproot and fewest branch roots, 

score “2” represents weak root system with thin taproot and less root branches, score “3” 

represents root system with intermediate taproot diameter and intermediate root branches, score 

“4” represents root system with higher root vigor, thick taproot and root branches and score “5” 

represents very vigorous root system with the thickest taproot and higher number of root 

branches (Fig 5.2). 

 
 

Figure 5.1. Shovelomics in phenotyping root system architectural traits of canola. (a) Work 

station in the field; (b) Selecting representative plants and excavating; (c) Excavating; 

(d) Clearing dart; (e) Tagging; (f) Washing; (g) Phenotyping board; (h) Data collection 



 

96 

 

              

Figure 5.2. Visual root scoring with 1-5 scale, where (1) is the weakest root system with low 

taproot diameter and primary root branches and (5) is the strongest root system with 

high taproot diameter 

5.3.3. Statistical Analysis 

Data from three representative plants per plot were averaged and were analyzed 2015 

(E1) and 2016 (E2) separately in SAS 9.3 (SAS Institute Inc., USA). Means were used to 

construct the analysis of variance (ANOVA) for all traits except RS, for which the medians were 

calculated and used. If the ratio of the effective error variance for each trait is less than 10 folds, 

data from both environments were combined and used for the GWAS analysis (Tabachnick and 

Fidel, 2001; Elias and Manthey, 2016). Pearson correlation coefficients were calculated in SAS 

9.3 for all traits except RS for which spearman correlation coefficient were calculated. Shapiro-

Wilk test was conducted in SAS 9.3 for all traits in both E1 and E2 and combined dataset. Entry 

mean basis heritability was calculated in SAS 9.3 for all traits in both E1, E2, and combined data 

set. RS data was available for only one replication in E1, and therefore the heritability was not 

calculated for RS in E1. 
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Table 5.1. Root Architectural traits, their abbreviation and description used in this study 

Trait  

Abbreviation 

used Description 

Soil level taproot diameter R1Dia Taproot diameter at the soil level 

Belowground taproot diameter R2Dia Taproot diameter at 10 cm below the soil level 

Primary root branch number PRB Number of primary root branches came out from 

the taproot at top 10 cm of the root system 

Root Angle RA Angle between the two top most primary root 

branches came out from the Taproot 

Root Scoring RS Visual scoring of the root excavated root system 

5.3.4. Genotyping 

A total of 366 genotypes from diverse origin and sources were planted in the greenhouse 

in 2013 (Michalack et al, Unpublished). Young leaf tissues were collected from each 

germplasms and freeze dried. DNA were extracted by using Qiagene DNeasy kit (Qiagen, CA, 

US) following the manufacturers protocol. After extraction, DNA were quantified, checked for 

quality, optimized and sent to Institute of Genomic Diversity (IGD), Cornell University for 

Genotyping by Sequencing (GBS). GBS libraries were prepared by using ApeKI single cutter 

enzyme following the protocol described by Elshire et al., (2011). Libraries were sequenced with 

Illumina GAII sequencer and 100 bp single end sequenced GBS data were aligned by using 

BWA-MEM (Li, 2013). VarScan (Koboldt et al., 2012a) were used for SNP calling. SNPs were 

imputed for missing allele by using FastPHASE (Scheet and Stephens, 2006) and finally 42,575 

SNPs were obtained. For the current experiment, we used the SNP data with minor allele 

frequency greater than 0.05 on 216 genotypes. The name of each SNP marker consists of 

chromosome number and physical position of that marker. For example, a SNP marker located 

on 123456 bp of chromosome C04 was named as “C04_123456”. 
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5.3.5. Marker-trait association 

Association mapping was performed using GAPIT R-based program (Lipka et al., 2012). 

Number of principle components (PC) that collectively explaining 25% of the variation in the 

population was determined by principle component analysis (PCA) in R 3.4.1 using prcomp () 

function (Price et al., 2006). An pairwise kinship coefficient matrix was calculated to account for 

individual relatedness by using the EMMA algorithm (Kang et al., 2008) embedded in GAPIT. A 

total of four models were tested to detect the marker-trait association, (1) a null general linear 

model or naïve model accounting for neither population structure nor kinship; (2) a general linear 

model accounting for population structure as a  fixed effect using the number of PC accounting 

for 25% of the variation (PC-25%); (3) an efficient mixed model association or EMMA 

accounting for kinship in the population; and (4) a mixed linear model accounting for both 

population structure and kinship, PC-25% + EMMA, All the models were compared on a rank 

based mean square deviation (MSD) value, and the model with the lowest MSD value was 

selected as the best model (Mamidi et al., 2011). Significant markers were declared based on the 

P-value of the markers at lower 0.01 and 0.1 percentile tail of an empirical distribution obtained 

by 10,000 bootstraps (Mamidi et al., 2014). Manhattan plots were created by using mhtplot () 

function in R statistical software package gap (Zhao, 2007). Log likelihood ratio based R2 or 

R2
LR (Sun et al., 2010) was calculated in genAble package in R.4.1 (Aulchenko et al., 2007) for 

the most significant markers in the best models to determine the phenotypic variation explained 

by those markers. 

5.3.6. Candidate gene 

B. napus gene models within 100 kbp upstream and downstream of the significant 

markers were taken into account for candidate gene search.  Protein sequences from the gene 
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models were blasted against TAIR 10 protein database to determine the gene annotation. Genes 

associated with root development were identified based on the Gene Ontology terms (GO terms) 

from TAIR website and gene functions found in previous literatures. 

5.4. Results 

5.4.1. Phenotypic Distribution 

 Phenotypic variation was observed among the germplasm panel in both environments and 

when the data was combined (Figure 5.3). The range between maximum and minimum 

observations in 2015 for R1Dia (22.88), R2Dia (8.15), PRB (13.80) and RA (96.79) was the 

higher than those of 2016 (Table 2). The CVs of R1Dia (27%), R2Dia (44%), PRB (31%) and RS 

(31%) in 2015 were higher than the CVs for the respective traits in 2016. Relatively higher CV 

was observed for R2Dia across both environments and the combined dataset (31-44%). The 

lowest CVs (6-9%) were observed for RA across both years and with the combined datasets 

ranging. High family-based mean heritability was detected for R1Dia in both years and for 

combined dataset (0.60-0.79) (Table 5.2). High heritability was detected for R1Dia in 2015 

(0.83), but moderate heritability was detected in 2016 (0.60) and the combined dataset (0.67). A 

similar trend of high heritability in 2015 (0.72) and moderate heritability in 2016 (0.56) and the 

combined dataset (0.39) were found for PRB. Very low heritability was observed for RA in 

combined dataset (0.33). RS heritability in 2015 and combined dataset found moderate ranging 

from (0.46-0.58). 



 

100 

 

 

Figure 5.3. Phenotypic Distribution of different root architectural traits in 2015, 2016 and 

combine dataset. 
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Table 5.2. Phenotypic variation in different root architectural traits 

Traits Env. Unit Mean (±std) Range 
CV 

(%) 

Shapiro-

Wilk 

test p 

value 

h2 (family 

mean 

basis) 

R1Dia               

  2015 mm 9.35 (±2.57) 22.88 27% 0.0001 0.79 

  2016 mm 10.08 (±1.84) 13.34 18% 0.0001 0.60 

  Comb mm 9.71 (±1.92) 17.27 19% 0.0001 0.67 

R2Dia              

  2015 mm 3.61 (±1.61) 8.15 44% 0.0001 0.83 

  2016 mm 2.28 (±0.71) 4.45 31% 0.0001 0.32 

  Comb mm 2.95 (±0.98) 4.86 33% 0.0001 0.41 

PRB               

  2015 number 6.49 (±2.07) 13.80 31% 0.0001 0.72 

  2016 number 13.09 (±2.15) 11.70 16% 0.0378 0.56 

  Comb number 9.79 (±1.64) 11.2 17% 0.0001 0.39 

RA               

  2015 degree 157.18 (±13.31) 96.79 8% 0.0001 0.43 

  2016 degree 128.70 (±11.36) 63.75 9% 0.0001 0.60 

  Comb degree 142.94 (±9.08) 56.53 6% 0.0001 0.33 

RS               

  2015 Scoring 2.95 (±0.93) 4.00 31% 0.0001 --- 

  2016 Scoring 3.47 (±0.87) 3.75 25% 0.0001 0.58 

  Comb Scoring 3.33 (±0.78) 4.00 23% 0.0001 0.46 

 

5.4.2. Correlation among the traits 

 Significant positive correlation (r = 0.57-0.65, P < 0.001) was detected between R1Dia 

and R2Dia in all datasets (Fig 5.4). Both the root diameters, R1Dia and R2Dia, were significantly 

(P < 0.001) positively correlated with RS in all datasets.  PRB and R1Dia were also significantly 

(P < 0.001) correlated with each other in all environment. Very low or negative nonsignificant 

correlation were detected between RA and all other traits. 
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Figure 5.4. Correlation among the root architectural traits in 2015, 2016 and combined dataset 

5.4.3. Genotypic data and principle component analysis 

 Originally 366 genotypes were genotyped from which 42,575 single nucleotide 

polymorphism (SNP) markers were obtained as described by Michalack et al. (Unpublished). In 

this current study, a subset of 216 genotypes were used. From the original panel, 30,262 markers 

were retained for the panel evaluated here after correcting for MAF > 5% and were used finally 

in this current study. Principle component analysis was performed to control for population 

structure. The first two principle components grouped the population into three continuous 

subpopulations (Fig 5.5). The first three principle components accounted for 25% of the 

population variation and were included in the association analysis as general linear model. 
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Figure 5.5. Principle Component graphs showing the distribution of the population used in this 

study. 

5.4.4. Marker-trait association 

Four models were tested for each trait in each year and with the combined over the two 

years to detect best SNP marker/trait association. Among the models, the best model was 

selected based on the lowest MSD value (Table 5.3) (Mamidi et al., 2014; Soltani et al., 2017). 

The P-values of the best model for a trait in a particular dataset (2015, 2016 or combined) were 

bootstrapped 1,000 times, and the P-value at 0.01 percentile of the empirical distribution were 

set as the cut-off for that particular trait in the respective dataset. Highly stringent P-value cut off 
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increases the chance of eliminating false positive or the false association. However, it also 

increases the chance of excluding false negative or true association. To reduce the chance of 

excluding true association or falls negative, we fixed another less stringent P-value cut off at 0.1 

percentile of the empirical distribution (Moghaddam et al., 2016). Only the markers that were 

found to be appear repeatedly for a trait in both years and the combined dataset were considered 

to be a significant association and were reported here. Candidate genes were searched 100 kbp at 

either side of a significant marker at 0.01 percentile cut off only.  

Table 5.3. Best models based on lowest MSD value with cut off P-value at 0.01 and 0.1 percentile 

tail for each trait in each environment and in combined data set. 

Traits Year 
Best Model 

  

MSD 

value 

P-value 

cut off at 

0.01 

percentile 

tail 

−log10 

(P-

value) 

at 0.01 

P-value 

cut off at 

0.1 

percentile 

tail 

−log10 

(P-

value) 

at 0.1 

R1Dia               

  2015 EMMA 1.18E-05 2.64E-04 3.58 1.86E-03 2.73 

  2016 EMMA 6.48E-05 4.96E-05 4.30 2.33E-03 2.63 

  Comb EMMA 2.17E-05 1.25E-04 3.90 1.82E-03 2.74 

R2Dia               

  2015 PC3 2.95E-04 5.60E-06 5.25 2.08E-03 2.68 

  2016 PC3+EMMA 4.14E-04 3.62E-04 3.44 2.59E-03 2.59 

  Comb PC3 3.03E-04 2.20E-04 3.66 2.09E-03 2.68 

PRB               

  2015 EMMA 2.34E-05 3.37E-04 3.47 1.63E-03 2.79 

  2016 PC3 5.60E-04 1.19E-04 3.92 9.17E-04 3.04 

  Comb PC3 2.63E-04 2.56E-04 3.59 1.31E-03 2.88 

RA               

  2015 Naïve 1.19E-05 2.84E-04 3.55 1.41E-03 2.85 

  2016 EMMA 1.02E-03 1.49E-03 2.83 4.72E-03 2.33 

  Comb PC3+EMMA 5.29E-06 1.60E-04 3.80 8.52E-04 3.07 

RVS               

  2015 EMMA 2.01E-06 3.95E-04 3.40 1.41E-03 2.85 

  2016 Naïve 1.62E-05 5.50E-04 3.26 2.11E-03 2.68 

  Comb EMMA 7.69E-04 9.90E-04 3.00 4.77E-03 2.32 
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5.4.4.1. Soil level taproot diameter (R1Dia) 

The mixed linear model accounting for relatedness in the population was the best fitted 

model in both years and combined over the two years (Table 5.3). Three markers, 

chrA01_rand_2039614, chrC01_rand_171065, and chrC04_4933647 were found to be associated 

with R1Dia in 2015 at the 0.01 percentile P-value cut off level (Table 5.4). The markers together 

explained 39.2% of the phenotypic variation. Marker locus chrA01_rand_2039614 from 2015 

was also detected in 2016 and the combined dataset. Marker locus chrC01_rand_171065 from 

2015 was also detected in combined dataset.  In 2016, two other markers chrC02_30907736 and 

chrA09_32034416 explaining 16.2%, and 16.8% of the phenotypic variation, respectively were 

detected. Two root related candidate genes STRUBBLIG- receptor family 3 (SUB) was detected 

nearby the marker locus chrA09_32034416 (2016) (Table 5.5). Marker chrC05_rand_678307 

was detected in combined dataset and two candidate genes, Cyclin-dependent kinase 2;3 (CYC2; 

3) and P-glycoprotein 11 (PGP 11) were detected nearby physical location of the marker. 

5.4.4.2. Bottom taproot diameter (R2Dia) 

 A general linear model using the first three principal component was selected as the best 

model for R2Dia in 2015 and combined data (Table 5.3). Three markers loci, chrA08_18428869, 

chrA08_18428839 and chrA08_18441370, within a very close physical distances on 

chromosome A08, were identified as the significant markers at 0.01 percentile P-value cut off in 

both 2015 and the combined dataset (Table 5.4). The markers altogether explained 13.2% and 

9.8% of the phenotypic variation in 2015 and combined dataset, respectively. The fact that the 

three loci only marginally account for more of the phenotypic variation suggest they are linked to 

the same causative locus.  Two candidate genes, AUXIN RESISTANT 3 (AXR3) and 

Cryptochrome 2 (CRY2), were identified in the same region of chromosome A08 (Table 5.5).  A 
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mixed linear model, PC3+EMMA, accounting for both population structure and relatedness was 

selected as the best model in 2016. Three unique marker loci, chrC05_7043010, 

chrA10_5618818 and chrA09_6247199, were found to be significantly associated with R2Dia in 

2016. They altogether accounted for 33.8% of the phenotypic variation (Table 5.5).  

5.4.4.3. Primary root branches (PRB) 

 EMMA, accounting for kinship in the population, was found to be the best model for 

PRB in 2015 (Table 5.3). On the other hand, PC3, accounting for population structure, was 

identified as the best fitted model in 2016 and combined dataset. In 2015, marker loci 

chrC01_rand_171065, chrC04_24065408 and chrC03_3328679, were identified as the 

significant markers associated with PRB at 0.01 percentile P-value cut off and accounts for 

37.4% of the phenotypic variation (Table 5.4). GAST1, a homolog of GASA4 was detected at 53 

kbp upstream of the marker locus chrC03_3328679 (Table 5.5). One of the 2015 marker loci, 

chrC01_rand_171065, was also detected in combined dataset and explained 9.2% phenotypic 

variation. Two other unique markers, chrA06_2653673 and chrA08_4600588, were also found to 

be significantly associated with PRB in combined dataset. Marker locus chrA06_2653673 was 

also found to be associated with PRB in both E1 and E2 with a less stringent at 0.1 percentile P-

value cut off. A lateral organ boundaries (LOB) domain family (LBD1) gene was detected at 30 

kbp upstream of the marker locus chrA06_2653673.  At 0.01 percentile P-value cut off, two 

markers chrC05_7907786 and chrA08_6097421, were identified in 2016 and explained 16.9% of 

the phenotypic variation. Aminotransferase-like, plant mobile domain family protein (MAIN) was 

detected at 87 kbp downstream of the marker locus chrC05_7907786.  
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Table 5.4. Significant markers for different root architectural traits in 2015, 2016 and combined 

datasets at 0.01 percentile 

Trait  Markers Year. (0.01) 
Year. 

(0.1) 

Allel

e 
MAF 

−log10 

(P-

value) 

  
R-Sq 

(%) 

R1Dia                 

  chrA01_rand_2039614 2015, 2016, Comb   C/T  0.14 4.76   18.49 

  chrC01_rand_171065 2015, Comb    G/C 0.05 4.64   17.86 

  chrC04_4933647 2015, Comb    A/T 0.11 3.58   13.36 

              Total 39.24 

  chrA01_rand_2039614 2016, 2015, Comb    C/T 0.14 4.37   11.65 

  chrC02_30907736 2016 Comb  A/G 0.13 4.35   16.21 

  chrA09_32034416 2016    A/T 0.16 4.30   16.79 

             Total 31.99 

  chrA01_rand_2039614 Comb, 2015, 2016    C/T 0.14 5.81   22.93 

  chrC01_rand_171065 Comb, 2015    G/C 0.05 4.49   17.79 

  chrC05_rand_678307 Comb 
2015, 

2016 
 C/T 0.26 3.99   14.45 

              Total 45.43 

R2Dia                 

  chrA08_18428869 2015, Comb    T/C 0.20 5.99   12.25 

  chrA08_18428839 2015, Comb    A/G 0.20 5.75   11.54 

  chrA08_18441370 2015, Comb    G/T 0.21 5.25   10.36 

              Total 13.15 

  chrC05_7043010 2016    T/A 0.15 3.80   14.82 

  chrA10_5618818 2016   C/T  0.48 3.57   15.76 

  chrA09_6247199 2016    G/A 0.07 3.44   13.56 

              Total 33.78 

  chrA08_18428869 Comb, 2015    T/C 0.20 4.63   9.27 

  chrA08_18428839 Comb, 2015    A/G 0.20 4.49   8.78 

  chrA08_18441370 Comb, 2015    G/T 0.21 4.12   7.91 

              Total 9.76 

PRB                 

  chrC01_rand_171065 2015, Comb   G/C  0.05 5.25   18.04 

  chrC04_24065408 2015 Comb  T/A 0.12 3.98   18.00 

  chrC03_3328679 2015   A/T  0.18 3.79   17.31 

             Total 37.37 

  chrC05_7907786 2016    T/C 0.36 4.27   8.20 

  chrA08_6097421 2016    A/T 0.45 3.93   10.45 

             Total 16.90 
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Table 5.4. Significant markers for different root architectural traits in 2015, 2016 and combined 

datasets at 0.01 percentile (Continued). 

Trait  Markers Year. (0.01) 
Year. 

(0.1) 

Allel

e 
MAF 

−log10 

(P-

value) 

  
R-Sq 

(%) 

  chrA06_2653673 Comb 
2015, 

2016 
C/T  0.13 4.59   9.15 

  chrC01_rand_171065 Comb, 2015    G/C 0.05 4.04   8.30 

  chrA08_4600588 Comb 2015 C/A  0.09 3.85   7.56 

             Total 22.45 

RA                 

  chrA02_18466347 2015, Comb    A/G 0.49 4.17   7.31 

  chrA09_8677526 2015   G/A  0.13 4.16   7.29 

  chrA03_25132124 2015    G/C 0.13 3.79   6.49 

              Total 21.09 

  chrC03_36049749 2016   C/T  0.35 2.88   10.90 

  chrA03_18531995 2016    A/C 0.10 2.86   10.30 

  chrC09_8316001 2016    T/A 0.132 2.83   9.12 

              Total 29.75 

  chrA02_18466347 Comb, 2015    A/G 0.49 4.75   16.23 

  chrC06_35857438 Comb    C/T 0.06 3.94   16.23 

  chrA02_22847077 Comb   G/A  0.09 3.87   12.83 

              Total 32.85 

RS                 

  chrC01_11345932 2015   C/T  0.22 4.89   17.34 

  chrC09_19217839 2015   C/T  0.43 3.53   13.05 

  chrC05_13423686 2015    G/A 0.24 3.41   12.08 

              Total 28.48 

  chrC09_23510860 2016    C/T 0.15 3.46   5.84 

  chrA01_rand_2039614 2016, Comb    C/T 0.14 3.43   5.78 

  chrC05_rand_678307 2016 Comb  C/T 0.26 3.36   5.63 

              Total 17.25 

                  

  chrA09_32034416 Comb    A/T 0.16 3.84   14.53 

  chrA09_32034411 Comb 2016  A/T 0.16 3.39   12.64 

  chrA01_rand_2039614 Comb, 2016    C/T 0.14 3.07   10.66 

              Total 20.46 
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5.4.4.4. Root angle (RA) 

 The naïve model, accounting for neither the population structure nor kinship, was the best 

model in 2015 for RA (Table 5.3). A mixed linear model including kinship and PC3+EMMA 

were the best model in 2016 and combined dataset, respectively. Marker locus, 

chrA02_18466347 was detected as the most significant marker associated with root angle in both 

2015 and combined dataset (Table 5.4). This marker explained 7.3% and 16.2% of the total 

phenotypic variation in 2015 and combined dataset, respectively. The other two marker loci 

found to be significantly associated with RA in 2015 are chrA09_8677526 and 

chrA03_25132124 and accounted 7.3% and 6.5% of the total phenotypic variation, respectively. 

Candidate gene SABRE-like protein (SABRE) and auxin-responsive GH3 family were detected at 

58 kbp upstream and 34 kbp downstream, respectively, of the marker locus chrA09_8677526 

(Table 5.5). Candidate gene Cytokinin response factor 4 (CRF4) and Tetraspanin 7 (TET7) were 

detected at 5 kbp and 36 kbp downstream, respectively, of the marker locus chrA03_25132124. 

Three marker loci, chrC03_36049749, chrA03_18531995 and chrC09_8316001, were detected 

for RA in 2016, and they altogether explained 29.8% of the total phenotypic variation. Two 

unique marker loci, chrC06_35857438 and chrA02_22847077, were detected in combined 

dataset. Auxin responsive factor 17 (ARF17) was detected at 99 kbp downstream of the marker 

locus chrC06_35857438 associated with RA in combined dataset. Another candidate GA 

requiring 3 (GA3) were detected at 36 kbp downstream of the marker chrA02_22847077 

associated with RA in combined dataset. 

5.4.4.5. Root score (RS) 

 A mixed linear model including kinship was found to be the best model in 2015 and the 

combined analysis (Table 5.3). Three marker loci, chrC01_11345932, chrC09_19217839 and 
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chrC05_13423686, were found to be significantly associated with RS in 2015 at 0.01 P-value cut 

off (Table 5.4). The markers together explained 28.5% of the total phenotypic variation. 

Candidate gene Cytokinin responsive factor 6 (CRF6) was detected at 89 kbp upstream of the 

marker locus chrC09_19217839 (Table 5.5). In combined dataset, three additional marker loci, 

chrA09_32034416, chrA09_32034411 and chrA01_rand_2039614, explained 20.4% of the total 

phenotypic variation were detected. A candidate gene STRUBBLIG -receptor family 3 (SUB) was 

located on chromosome A09, close to the marker loci chrA09_32034416 and chrA09_32034411. 

Marker locus chrA01_rand_2039614 was also appeared in 2016 and explains 5.8% of the total 

phenotypic variation. Two other marker loci, chrC09_23510860 and chrC05_rand_678307, were 

also detected in 2016, and explained 5.8% and 5.6% of the total phenotypic variation, 

respectively. Candidate gene P-glycoprotein 11 (PGP 11) was detected 0nly 10 kbp upstream of 

the marker locus chrC05_rand_678307.  Naïve model was selected as the best fitted model for 

2016 based on the lowest MSD value. 
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Table 5.5. Candidate genes for different root architectural traits within 100kbp region at either side of the significant markers. 

Trait Locus BNA gene 

model 

AT match

  

Distance 

(Kbp)* 

Name (TAIR) Symbol (TAIR) GO biological process (TAIR) 

R1Dia chrA09_32034416 BnaA09g47730D AT1G11130 -91.7 STRUBBELIG-

receptor family 3 

SUB, SCM, 

SCRAMBLED 

Root meristem specification 

  chrC05_rand_678307 BnaC05g49810D AT1G15570 80.3 Cyclin-dependent 

kinase 2;3 

CYCA2;3, 

CYCLIN A2;3 

Lateral Root Formation 

    BnaC05g01280D AT1G02520 9.9 ABC transporter 

family, P-

glycoprotein 11 

PGP 11 Auxin efflux transmembrane 

transporter activity; Basipetal auxin 

transport 

R2Dia chrA08_18428869 BnaA08g27770D AT1G04250 18.5 AUXIN 

RESISTANT 3 

AXR3, IAA17 Auxin-activated signaling pathway, 

Response to auxin 

  chrA08_18441370 BnaA08g27870D AT1G04400 1.9 Cryptochrome 2 CRY2 Root development 

PRB chrC03_3328679 BnaC03g06850D AT5G15230 53.9 GAST1 protein 

homolog 4  

GASA4 Response to gibberellin stimulus, 

Gibberellic acid mediated signaling 

pathway 

  chrC05_7907786 BnaC05g13870D AT1G17930 -87.7 Aminotransferase-

like, plant mobile 

domain family 

protein 

MAIN, 

MAINTENANCE 

OF 

MERISTEMS 

Meristem development 

  chrA06_2653673 BnaA06g04390D AT1G07900 30.7 Lateral organ 

boundaries (LOB) 

domain family 

LBD1 Organ Boundary Speciation, 

Lateral root formation 

RA chrA09_8677526 BnaA09g14910D AT1G58250 58.4 SABRE-like 

protein, 

HYPERSENSITIVE 

TO PI 

STARVATION 4 

HSP4, SABRE  Negative regulation of ethylene-

activated signaling pathway, 

response to ethylene 

    BnaA09g15010D AT1G48670 -34.2 auxin-responsive 

GH3 family 

auxin-responsive 

GH3 family Response to Auxin 

  chrA03_25132124 BnaA03g48910D  

AT4G27950 

-5.2 Cytokinin response 

factor 4  

CRF4 Cytokinin-activated signaling 

pathway, Ethylene-activated 

signaling pathway, 
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Table 5.5. Candidate genes for different root architectural traits within 100kbp region at either side of the significant markers 

(Continued). 

Trait Locus BNA gene 

model 

AT match

  

Distance 

(Kbp)* 

Name (TAIR) Symbol 

(TAIR) 

GO biological process (TAIR) 

  chrC06_35857438 BnaC06g38360D AT1G77850 -99.5 Auxin responsive 

factor 17 

ARF17 Auxin-activated signaling pathway 

  chrA02_22847077 BnaA02g31830D AT5G25900 -67.4 GA requiring 3 GA3 Gibberellic acid mediated signaling 

pathway, Gibberellin biosynthetic 

process 

RS chrC09_19217839 BnaC09g21990D AT3G61630 89.6 Cytokinin response 

factor 6 

CRF6 Cytokinin-activated signaling 

pathway, Ethylene-activated signaling 

pathway, 

 chrC05_rand_678307 BnaC05g49810D AT1G15570 80.3 Cyclin-dependent 

kinase 2;3 

CYCA2;3, 

CYCLIN A2;3 

Lateral Root Formation 

  
 

BnaC05g01280D AT1G02520 9.9 ABC transporter 

family, P-

glycoprotein 11 

PGP 11 Auxin efflux transmembrane 

transporter activity; Basipetal auxin 

transport 

  chrA09_32034416 BnaA09g47730D AT1G11130 -91.7 STRUBBELIG-

receptor family 3 

SUB, SCM, 

SCRAMBLED 

Root meristem specification 

                

*negative values= genes are downstream of the marker, positive values= genes are upstream of the marker 
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5.5. Discussion 

5.5.1. Shovelomics in B. napus 

 Plant breeders have historically modified the above ground morphological plant 

architecture of a crop to improve productivity. One of the greatest examples is the green 

revolution that developed high yielding dwarf verities in wheat (Vergauwen and De Smet, 2017). 

Modifying shoot features like branch angle and leaf angle are also regarded as the potential to 

improve the productivity of corn (Gong et al., 2015) and sorghum (Truong et al., 2015).  This 

allowed to increase planting density, the capture of more sunlight, and increased photosynthetic 

efficiency of the crops. Similarly, the below ground root architectural traits can also be used as a 

target for improvement and optimization according to the necessities based on soil environment. 

Several studies were conducted to phenotype root system architectural traits and to map 

associated loci in many crops such as rice (Courtois et al., 2013), wheat (Canè et al., 2014), 

maize (Pace et al., 2015), cowpea (Burridge et al., 2017), rapeseed (Wang et al., 2017) etc. A 

majority of these studies adopted root system phenotyping strategy that are feasible for 

controlled environment using soil or other growing media and phenotyped the root system of 

young seedlings. The root systems of young seedlings grown in hydroponics or soil in the 

controlled environment may not be indicative of the architecture that forms in the actual field 

condition (Zhu et al., 2011). Several researchers mentioned the importance of monitoring root 

architectural traits over the whole growth period in the soil condition as the root system 

architecture changes greatly over time (Hund, 2010; Kumar et al., 2012; Passioura, 2012; 

Colombi et al., 2015). Therefore, phenotyping the root system under all stages of growth in the 

field condition is immensely important, and high throughput phenotypic techniques should be 

developed to overcome the difficulties in exploring root system in the field.  
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Unfortunately, very few high throughput platforms for phenotyping the root system 

architecture in the field have been developed to date. Shovelomics is a high throughput root 

phenotyping system first described by Trachsel et al., (2011). However, only a few studies have 

adopted this shovelomics approach to characterize the root system in field conditions in different 

crops such as maize (Bucksch et al., 2014; Colombi et al., 2015; York and Lynch, 2015), 

common bean and cowpea (Burridge et al., 2016). Although Trachsel et al., (2011)  proposed 

manual measurement of the data in the original shovelomics approach, most studies used image 

based technologies during data collection. Burridge et al., (2017) conducted a GWAS analysis 

for cowpea root architectural traits with the phenotypic data collected with shovelomics 

approach. In the current study, we also adopted the field-based shovelomics technique to 

phenotype 216 B. napus genotypes in multiple years and used that date for a GWAS analysis. 

This is the first report of shovelomics to characterize the root architectural traits in B. napus.  

In the current study, we have phenotyped five root traits and conducted a GWAS 

analysis. Based on a stringent cut off at lower 0.01 percentile of bootstrap P-values, 31 marker 

loci were associated with different root traits in 2015, 2016 and in the combined datasets. 

Markers were distributed in all the B. napus chromosomes except A04, A05, A07, C07 and C08. 

Five marker loci were detected on chromosome A08 controlling R2Dia and PRB. Four marker 

loci controlling various root traits were detected on chromosome A09. Multiple co-localized 

marker loci were detected on chromosome A08 and A09 controlling primary root number under 

high and low P level (Zhang et al., 2016).  

5.5.2. Phenotypic distribution and correlation among the root architectural traits 

 In the current study, five different root architectural traits R1Dia, R2Dia PRB, RA and RS 

in 2015 and 2016 were phenotyped. Analysis was performed for both years and the combined 
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dataset. Population means were relatively constant across the years for R1Dia, R2Dia and RS. In 

contrast, population means for PRB and RA varied across years indicating a genotype x 

environment effect controlling these traits. Development of lateral root branches are highly 

responsive to the soil nitrogen (N) and phosphorus (P) condition and water regime. On the basis 

of range, phenotypic variation within the population was always higher in 2015 to 2016. This 

also indicates the environmental influences controlling the root traits. Entry mean basis 

heritability for different traits varied with environments. High heritability values were noted for 

R1Dia, R2Dia and PRB in 2015. However, the heritability values decreased to moderate levels 

for all these traits in 2016 suggesting high environmental variation between these two 

environments. 

 Significant and high correlation were observed among the traits within the same year and 

in the combined datasets. R1Dia and R2Dia are highly correlated in both environment and 

combined dataset. A high correlation was also observed between PRB and R1Dia. This is 

expected as the taproot having high diameter will have more surface area to grow more primary 

and lateral root branches and the root will be more vigorous. This statement is supported further 

as a high positive correlation were observed between R1Dia and RS and between PRB and RS. 

Visual root scoring was conducted based on the overall appearance of the root system on top soil 

considering diameter and root branches. Low but significant positive correlation were detected 

between R2Dia and PRB indicating lesser role of bottom tap root diameter on root branches. 

Interestingly, we did not observe any significant correlation between RA and other root traits in 

the current study. A lack of correlation between other traits and RA suggests that RA might be an 

independent trait which depends on soil environment rather than other root characteristics in B. 

napus. 
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5.5.3. Root diameters can be a proxy for other root traits 

 In the current study, multiple marker loci associated with R1Dia were also found to be 

associated with RS and PRB.   Marker loci chrA01_rand_2039614 and chrC05_rand_678307 

were found to be associated with both R1Dia and RS and detected in multiple datasets (Fig 5.6). 

Candidate gene CYC2; 3 and PGP11 were identified close to the marker chrC05_rand_678307. 

CYC2 is involved in lateral root formation and triple CYC2 mutant gives rise to defective lateral 

roots compared to the wild type (Vanneste et al., 2011). The PGP family of proteins are 

members of ABC transporter superfamily and few directly act as auxin efflux career in basipetal 

auxin transport and affect lateral root and root hair formation (Santelia et al., 2005). Two other 

significant marker loci, chrA09_32034411 and chrA09_32034416, are physically close and were 

found to be associated with RS and R1Dia, respectively (Fig 5.6). Candidate gene STRUBBELIG-

receptor family 3 (SUB) were found in the same region on chromosome A09. SUB is expressed 

in the root throughout the root development process and controls root meristem specification and 

epidermal root hair specification in Arabidopsis (Savage et al., 2013; Kwak and Schiefelbein, 

2014). Marker locus chrC01_rand_171065 was associated with PRB and R1Dia. In addition to 

these, marker loci chrC05_7043010 and chrC05_7907786 are located within 9 kbp and are 

associated with both R2Dia and PRB, respectively. Candidate gene Aminotransferase-like, plant 

mobile domain family protein or MAIN or MAINTENANCE OF MERISTEM were found close to 

this marker locus. Experimental evidences suggests mutants of maintenance of meristem have a 

defective stem cell niche in Arabidopsis roots (Wenig et al., 2013). MAINTENANCE OF 

MERISTEM  homolog MAIN-like 1 mutant have short primary root branches (Ühlken et al., 

2014).  
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Figure 5.6. Manhattan plot and QQ plot showing the common significant markers associated 

with R1Dia and RS. (a) R1Dia _2015, (b) R1Dia_2016, (c) R1Dia _combine, (d) 

RS_2016 and (e) RS_combine 

Common marker loci or a region associated with R1Dia, RS, PRB and R2Dia is expected 

because we took PRB data from the top 10 cm of the root system and RS scoring was based on 

visual appearance of the root system consisting of both PRB and taproot diameters. In our 

phenotypic study, R1Dia, PRB and RS were highly correlated with each other in both years. 

Higher soil level tap root diameter has higher root surface area to accommodate higher root 

lateral branches and root hairs. A root system with high tap root diameter is correlated with 
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higher xylem area in cowpea (Burridge et al., 2017) which may transport water and nutrients 

from the root to the shoots more efficiently. A high phenotypic correlation between R1Dia and 

R2Dia also indicates that root diameters may have a positive role in defining root length. 

Burridge et al. (2017) suggested that taproot diameter at 10 cm may be related to the plants 

ability to explore a deeper soil horizon in drought conditions for cowpea. Considering all these 

aspects, we propose that tap root diameter in B. napus can be a good indicator for other root 

architectural traits and may serve as a proxy trait for the whole root system. Importantly, the soil 

level taproot diameter R1Dia can be measured without destroying the plant. 

5.5.4. Significant marker loci associated with same trait in multiple datasets 

 The marker locus chrA01_rand_2039614 was significantly associated with R1Dia in both 

2015, 2016 and combined datasets. Marker locus chrC01_rand_171065 was also significantly 

associated with R1Dia in 2015 and the combined dataset. Marker locus chrC05_rand_678307 

was identified in the combined dataset for R1Dia at 0.01 P-value cut off. However, with a less 

stringent 0.1 percentile P-value cut off, these marker loci were found to be significant in both 

2015 and 2016. For R2Dia, three closely located marker loci on chromosome A08, 

chrA08_18428869, chrA08_18428839 and chrA08_18441370 were found to be significantly 

associated in both 2015 and combined datasets. Two candidate genes, AXR3 and CRY2, were 

detected in the same region of chromosome A08 (Fig 5.7). Auxin Resistant 3 or AXR3/IAA17 

overexpression caused defective roots in Arabidopsis (Kim et al., 2006). Knox  (2003) reported 

that AXR3/IAA17 inhibits root hair initiation and elongation. The relative abundance of 

AXR3/IAA17 and SHY2/IAA3 (gene which induce root hair formation and elongation) in a cell is 

the determinant of root hair formation in Arabidopsis. Overexpression of CRY2 in blue light 

results in reduced primary root elongation (Canamero et al., 2006). 
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Figure 5.7. Manhattan plot and QQ plot showing the results of marker trait association of R2Dia. 

(a) Manhattan plot of R2Dia in 2015, (b) QQ plot of R2Dia in 2015, (c) Manhattan Plot 

of R2Dia in combine dataset, (d) QQ plot of R2Dia in combine dataset 

For PRB, one marker locus chrC01_rand_171065 was repeatedly significant in 2015 and 

the combined dataset. Marker locus chrA06_2653673 was significantly associated with PRB in 

combined dataset was also detected in 2015 and 2016 at the less stringent 0.1 percentile P-value 

cut off. Lateral Organ Boundary domain 1 (LBD1) was detected close to this marker locus. 

Constitutive expression of LBD1 in the Medicago trancatula root system subjected to salt stress 

regulates the overall root architecture (Ariel et al., 2010).  Primary lateral roots appear from the 

taproot near the soil surface and are necessary for nutrient acquisition. Lateral roots in plants are 

highly responsive to the soil microenvironment. It has been reported that the length of lateral root 

was increased under low N condition in Arabidopsis, and lateral root density was increased in P 

deficient soil conditions in rice (Desnos, 2008; Gruber et al., 2013; Kong et al., 2014). Therefore, 
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the significant markers identified for PRB in this study may be useful in future marker assisted 

breeding program to select for improved nutrient acquisition. 

Root angle is an important trait for root architecture where a narrower root angle allows 

the root to penetrate deeper into the soil horizon which reduces the competition between the 

neighboring plants. In addition, the plant will have an excess of moisture from the deeper soil 

horizon too. Seven marker loci associated with root angle (RA) were identified in 2015, 2016 

and the combined dataset. Among them the marker locus chrA02_18466347 was found to be 

significant in both 2015 and the combined dataset. Root score was measured visually on the basis 

of overall appearances of the root system and eight marker locus were identified related to root 

score (RS). Marker locus chrA01_rand_2039614 was associated with RS in both 2016 and the 

combined datasets. 

5.6. Conclusion 

 We followed the shovelomics approach to phenotype five root architectural traits and use 

the data for GWAS of these root traits with SNP markers. In this study, a total of 31 significant 

marker loci associated with different root traits were identified. Several marker loci were found 

to be associated with multiple root traits and appeared in multiple environments. It appears that 

tap root diameter in rapeseed/canola may be a determinant of the total root system in canola and 

can be a proxy trait for other root architectural traits. Tap root diameter can be measured without 

uprooting the plant from soil. Fifteen candidate genes related to different root traits were 

detected within 100 kbp downstream and upstream of different significant markers. 
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CHAPTER 6. TRANSCRIPTOME ANALYSIS SUGGESTS CYTOKININ 

AND GIBBERELLIN SIGNALING MAY ACCOUNT FOR DIFFERENCES 

BETWEEN SPRING AND WINTER RAPESEED/CANOLA (BRASSICA 

NAPUS L.) ROOT DEVELOPMENT4 

 

6.1. Abstract 

Spring and winter canola growth habits are different from each other in terms of yield 

and plant morphology. Spring type canola produces significantly smaller and less vigorous roots 

compared to winter type canola at the same growing stage. We conducted this experiment to 

identify the genetic variation, gene regulatory networks and cross talk among phytohormones 

that may responsible for the difference between the root system of the two growth types. We 

analyzed transcriptomes from the root samples collected from two spring and two winter types 

canola at two time points, 30 and 60 days. A total of 169,646 transcripts were analyzed. Among 

them, 582 and 555 transcripts were found to be significantly differentially expressed between 

spring and winter types at 30 and 60 days, respectively. Several auxin responsive family genes 

were significantly differentially expressed between spring and winter types at both time points 

but no distinct pattern of differential regulation among auxin response or signaling genes was 

observed in either of the growth types. This would be most consistent with the hypothesis that 

some other non-auxin mediated root growth regulation might be responsible for the root system 

                                                 

 

4 4 This chapter has been submitted to BMC Plant Biology journal for publication. This article is co-authored by 

Muhammad Arifuzzaman, David Horvath and Mukhlesur Rahman. MA and MR formulated the experiment. MA 

conducted the experiment, collected the data, analyzed the data and wrote the manuscript. DH heled in data analysis. 

DH and MR reviewed the manuscript. 
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differences between the two types. Type-A and type-B ARABIDOPSIS RESPONSE 

REGULATOR (ARR) genes and gene sets involved in cytokinin signaling pathway were up-

regulated in spring types compared to winter types at 60 days. This would be consistent with 

higher cytokinin activity in spring types root system at later growth stage which has proven to 

inhibit root growth. In addition, several gibberellin responsive and gibberellin signaling gene sets 

were also upregulated in spring types compared to winter types at 60 days. We observed an 

elongated root system with fewer root branches in spring type compared to winter type at 60 

days in this study. Root elongation but inhibited lateral root formation is consistent with a role of 

gibberellin and what we observed in the spring types root system architecture. Therefore, we 

suggest that cytokinin and gibberellin may play a major role in reduced root growth in spring 

canola in the current study although gibberellin mediated tap root elongation may be occurred. 

Extensive gene expression data generated in this research will further assist to understand the 

natural variation of root system in canola growth habits. 

Key Words: Transcriptomics, Auxin, Gibberellin, Cytokinin 

6.2. Introduction 

Canola (Brassica napus L.) stands for “CANadian Oil Low Acid” was developed in 1974 

by lowering the harmful erucic acid and glucosinolate content from seed. Canola (known as 

rapeseed in Europe) gained substantial popularity worldwide for its healthy attributes. In North 

America, canola is predominantly grown in Canada and in some parts of United States. North 

Dakota alone holds over 80% of the US canola acreages in last few years (NASS, USDA, 2016).  

There are three types of growth habits of canola; winter type, spring type and semi winter 

type canola. Winter and spring type canola are the two extreme opposite in terms of shoot and 
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root morphology and belong to two distinct genetically diverse groups (Rahman and Kebede, 

2012). Winter type canola has vigorous root system with higher taproot diameter, taproot length, 

and a larger number of branches compared to those of spring canola (Arifuzzaman and Rahman, 

2017) 

Root system in plants plays versatile roles in plant development including water and 

nutrient absorption from the soil and providing anchorage to the plant (Arifuzzaman et al., 2016). 

A very complex gene network and cross-talk between different growth hormones play critical 

role from the point of radicle initiation to the formation of different types of root cells via root 

meristematic zone, elongation zone and differentiation zone (Overvoorde et al., 2010). In mature 

plant, auxin is produced in shoot and transported to the area of root tissue by phloem (only shoot 

to root transport) via various auxin transporter carriers where it regulates root growth and 

development (Goldsmith, 1977; Tsurumi and Wada, 1980; Müller et al., 1998; Ljung et al., 2001; 

Petrasek and Friml, 2009). In Arabidopsis thaliana, like-auxin1 (LAX1) and Pinformed (PIN) 

proteins are the two auxin influx and efflux carries, respectively, and both play an important role 

in cell to cell auxin transport (Bennett et al., 1996; Swarup et al., 2001; Geisler and Murphy, 

2006). In the presence of auxin, Aux/IAA repressors are degraded by auxin receptors which 

facilitate the Auxin Responsive Factors (ARF). ARFs then activate the auxin responsive genes 

that likely lead to lateral root formation (Okushima et al., 2007; Fukaki and Tasaka, 2009; 

Petricka et al., 2012).  Another phytohormone, cytokinin (CK), has cross-talk with auxin 

transport and signaling pathways and promotes cell differentiation (Saini et al., 2013). Short-

hypocotyl2 (SHY2) gene, a major auxin repressor gene, is activated by cytokinin, which in turn, 

hampers auxin transport and signaling process via downregulation of transporter PIN genes 

resulting reduced root growth (Dello Ioio et al., 2008; Chapman and Estelle, 2009). Auxin, on 
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the other hand, has the ability to induce degradation of the SHY2 protein to restore activities of 

PIN genes to promote root growth (Benjamins and Scheres, 2008). Gibberellic acid plays an 

important role in the auxin-CK cross-talk by repressing the CK mediated inhibitory effects on 

root growth (Greenboim-Wainberg, 2005; Moubayidin et al., 2010). Abscisic acid (ABA), in 

contrast, inhibits the expression level of auxin receptors in the presence of nitrate, and thus 

impairs the degradation of Aux/IAA repressors leading to reduced lateral growth (Signora et al., 

2001; Vidal et al., 2010). 

Elucidation of complex mechanisms of root growth and development is important 

because root system architecture can be exploited to deploy tolerance against abiotic stresses and 

increase yield. Comprehensive knowledge on transcriptomic gene profiles in plant root system 

should assist in our understanding of the regulatory gene networks and complex physiological 

pathways that shape the root system architecture. Transcriptome analysis is proven to be a 

successful tool in studying the transcriptome and decoding differential gene expression profile in 

root system of various plant species i.e. Arabidopsis (Lan et al., 2012; Vidal et al., 2013; Begara-

Morales et al., 2014; Li et al., 2015), B. napus (Yong et al., 2014; Dun et al., 2016), rice (Zhai et 

al., 2013; Yoo et al., 2017), maize (Stelpflug et al., 2016), soybean (Song et al., 2016) etc. A 

majority of these studies were conducted to discover the root growth mechanisms and role of 

different hormonal pathways controlling root system architecture under either abiotic stress or 

nutrient deficit condition and in the seedling stage.  

In our previous research, we observed no significant difference between root parameters 

of spring and winter canola until 30 days after planting. Rather, significant differences between 

spring and winter canola root system were evident at 40 days after planting and reached 

maximums at 60 days after planting (Arifuzzaman and Rahman, 2017). In the current study, we 
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analyzed the transcriptomes to identify differentially expressed genes between spring and winter 

types canola root system at two different time points, 30 and 60 days after planting. We 

discussed the differentially regulated genes and gene sets based on their nature, function and 

involvement in different physiological and hormonal pathways involving root growth and 

development. To date, this is the first attempt to identify differential gene expression between 

spring and winter types canola root system to understand the significant variation in the root 

system architecture between spring and winter canola at later growth stages. 

6.3. Materials and methods 

6.3.1. Plant materials 

Two winter types (Lindore 00 and Regal) and two spring types (Kanada and Wester) 

germplasms were used in this study. The plants were grown in 40 cm × 10 cm pots in the 

greenhouse. Sand and peat soil were mixed at an 8:2 ratio and were used as a growing medium. 

The growing media was supplemented with 10g/pot Osmocote® slow-release fertilizer (Scott’s 

Company LLC, Marysville, OH, USA). Pots were lined with plastic bags, perforated at the 

bottom before pouring growing media into pot to facilitate root extraction procedures. 

Perforation allowed the excess water to drain out. Plants were grown in a RCBD with 3 

biological replicates in a factorial arrangement with two time points. Thirty and sixty days, were 

considered as main factor and growth types (spring and winter) were considered as sub factors. 

Root systems were extracted at 30 days and 60 days after planting and data were taken on Soil 

level tap root diameter, number of lateral roots, tap root length. Root vigor was scored on a scale 

described by Arifuzzaman and Rahman, (2017). A small amount of fresh root tissue was 

collected into liquid nitrogen and stored in -80 ºC freezer. The collected root samples included 
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taproots, primary root branches and lateral roots. The remaining root samples were dried, and dry 

weight data was collected for each sample. 

6.3.2. RNA extraction, cDNA library preparation and sequencing 

RNA were extracted from the root tissue from 22 samples (includes 3 biological 

replicates for each lines at each time points however libraries failed for two spring type lines at 

60 days leaving two biological reps for these lines)  following the CTAB extraction method 

described by Chang et al., (1993). Genomic DNA were removed from the isolated RNA solution 

by treating with DNAse I (Invitrogen, Carlsbad, CA, USA). RNA quantification and quality 

were determined by spectroscopy and agarose gel analysis. A total of 22 cDNA libraries were 

prepared using the NEBnext ultra directional RNA library prep kit according to manufacturer’s 

specifications with minor modifications. mRNA was purified from 5 µg of RNA and first and 

second strand cDNA were synthesized from the mRNA followed by fragmentation. Fragments 

between 300 and 400 bases in length were selected using a pipin-prep gel extraction procedure 

according to manufacturer’s protocols, and the quality of the libraries were checked using the 

Agilent Bioanalyzer DNA7500 DNA chip (Agilent Technologies, Waldbronn, Germany). One 

hundred base paired end reads were sequenced on Illumina HiSeq2000 platform (Illumina, Inc., 

San Diego, CA, USA) by BGI America, downloaded into the CyVerse discovery environment, 

and trimmed for quality (Phred >20) and then size (>70 bases). 

6.3.3. Transcriptome analysis 

Sequenced data were analyzed by using the Tuxedo suits programs (Trapnell et al., 2012) 

onon CyVerse platform. Paired end reads were aligned to B. napus reference genome using 

Tophat-2.1 in CyVerse discovery environment with an anchor weight of 8 and 0 mismatch. The 
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aligned reads were then assembled using the cufflink program and fragments per kb per million 

reads (FPKM) data for individual transcripts were generated. Cuffdiff was used to identify 

statistically significant genes and transcripts between the samples and time points. 

6.3.4. Identifying the key DEGs 

The differentially expressed genes (DEGs) in each comparison were considered as the 

significant if their p-value was less than 0.05, and they had a minimum FPKM of 7 in all three 

biological replicates from at least one treatment group. Different phytohormones have strong 

direct and indirect effects on plant root development. Complex networks of cross-talk among the 

phytohormones affecting the root growth are now well established. Consequently, we focused on 

phytohormone associated genes influencing the different phytohormone signaling pathways, 

biosynthesis, inactivation and transport. Key DEGs were defined based on their specific 

functions in root development, their cross-talk with other key phytohormone associated genes 

and their pattern of differential expressions (higher in spring types or in winter types). 

6.3.5. Gene expression pattern 

Expression pattern of the significant DEGs were determined based on the log2 

transformation of the FPKM fold change ratio at 30 days and 60 days spring vs winter 

comparison. Fold change was calculated from the ratio of FPKM value in spring types and 

FPKM value in winter types. Positive value of Log2 (FC) indicates the upregulation of the gene 

in spring types relative to winter types at respective time point negative value of Log2 (FC) 

indicates the down regulation of the gene in spring types relative to winter types at respective 

time point. Finally, expression patterns of genes were determined by its direction of change in 

spring types at 30 days and 60 days. 
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6.3.6. Gene set enrichment analyses (GSEA) 

Gene Set and Sub-network Enrichment Analysis (GSEA) were done in Pathway Studio 

11.4 (Nikitin et al., 2003). GSEA is a useful statistical approach to detect the overrepresented 

genes, group them as sets and rank those sets based on their FDR p-value (Howe et al., 2015). 

We analyzed the differentially expressed genes those were identified in two comparisons, spring 

vs winter at 30 days and at 60 days. In the both comparisons, we first identified the gene sets 

without considering whether they were upregulated either in the spring or winter types. Then we 

separately identified the gene sets that were upregulated in spring and winter types for individual 

time point. The parameters were set as described by Howe et al., (2015) except for the FDR p-

value cut off 0.05 to be considered as significant gene set. Biological process, cellular 

components and molecular functions were the three Gene Ontology (GO) datasets that we 

analyzed. Arabidopsis annotation information were used to assign the GO terms of B. napus 

genes. For the Pathway Studio dataset, seven types of pathways (expression targets, miRNA 

targets, protein modification targets, proteins regulating disease, proteins regulating cell 

processes, binding partners and neighbors of key proteins, and biological processes) were 

analyzed. 

6.4. Results 

6.4.1. Phenotypic analysis 

At 30 days, no root parameters were found to be statistically significantly different 

between spring and winter types root system (Fig 6.1). However, four root parameters, root 

diameter at soil level (R1Dia), primary root branch (PRB), root vigor score (RVS) and root dry 

weight (RDW) were significantly greater in the winter types compared to the spring type at 60 
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days. No significant difference was found between the tap root length of spring and winter types 

at 60 days.  

 

Figure 6.1. Phenotypic observation of different root traits in spring vs winter comparison at 30 

days and 60 days 

6.4.2. Transcriptome changes between spring and winter types canola 

A total 169,646 transcripts were analyzed for differential expression between spring and 

winter types at two time points (30 days and 60 days) in this study (Fig 6.2b), (Appendix Table 

A4). Approximately, 10% of the transcripts had no hits with any known B. napus gene model. At 

30 days after planting, 582 transcripts were found to be significantly differentially expressed 

(FDR adjusted p<0.05) between spring and winter types canola. A relatively lower number, 555 

transcripts were significantly differentially expressed between spring and winter types at 60 days 

after planting. Out of all significant DEGs, 219 genes were differentially expressed between 

spring and winter types at both time points (Fig 6.2a). These 219 common DEGs showed very 

similar pattern of expression between spring and winter types.  Rest of the significant DEGs 

were identified as unique to either 30 days (363 significant DEGs) or 60 days (336 significant 

DEGs). A total of 92 significantly differentially expressed transcripts between spring and winter 
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types at 30 days could not be aligned with any Arabidopsis gene model (Fig 6.2c). In addition, 

140 transcripts significantly differentially expressed between spring and winter types at 60 days 

could not be aligned with any Arabidopsis gene model (Fig 6.2d). 

 

Figure 6.2. Overview of the transcripts. (a) Total number of transcripts that are matched with B. 

napus gene models (Bna) and Arabidopsis gene models (AT); (b) Number of 

significantly differentially expressed genes between spring and winter at 30 and 60 days 

at both time points; (c) Number of significantly differentially expressed genes between 

spring and winter at 30 days that matched with BNA and AT gene models; (d) Number 

of significantly differentially expressed genes between spring and winter at 60 days that 

matched with BNA and AT gene models. 

  

6.4.3. Gene set enrichment analysis (GSEA) and subnetwork enrichment analysis (SNEA) 

GSEA and SNEA were performed for our data set to detect the major gene sets related to 

key pathways, metabolic processes and regulatory functions responsible for root development in 
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spring and winter types canola. Significant gene sets were identified using GO terms including 

biological process, cellular components and molecular functions. For each comparison, spring vs 

winter at 30 days, and spring vs winter at 60 days, gene sets were estimated based on up-

regulated in winter types, up-regulated in spring types, and on significance without considering 

the direction of upregulation of the genes (Appendix Table A5.1-5.4). 

6.4.4. Gene expression pattern 

Based on their direction of change in spring types relative to winter types at 30 days and 

60 days, significant DEGs were grouped into four possible expression patterns. These are up-

regulation at both time points (Pattern 1= Up-Up), up-regulation at 30 days but down-regulation 

at 60 days (Pattern 2= Up-Down), down-regulation at both time points (pattern 3= Down-Down), 

down-regulation at 30 days but upregulation in 60 days (Pattern 4= Down-Up). Most of the 

significant DEGs from both time points followed the either expression pattern 1 or pattern 3 

(Appendix Table A6.1-6.3). Only 21 and 14 significant DEGs from 30 days spring vs winter 

followed expression pattern 2 and pattern 4, respectively. On the other hand, 16 and 14 

significant DEGs from 60 days spring vs winter followed expression pattern 2 and pattern 4, 

respectively. Based on other results and discussion, expression pattern of few selected important 

significant DEGs from both time points were presented in Fig 6.3. 

6.4.5. Differential expression of transcription factor genes 

6.4.5.1. Overview 

A total of 10,599 transcripts encode transcription factors based on similarity to 

Arabidopsis gene models were identified. Among them, only 49 transcription factors were 

significantly differentially expressed between spring vs winter at 30 days and 60 days. Among 
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them, 24 transcription factors were significantly differentially expressed exclusively in spring vs 

winter at 30 days (Appendix Table A7.1). On the other hand, 15 transcription factors were 

significantly differentially expressed exclusively in spring vs winter at 60 days (Appendix Table 

A7.2). The remaining 10 transcription factors were significantly differentially expressed in 

spring vs winter at both time points (Appendix Table A7.3).  

 

 

Figure 6. 3.  Log2 (FC) of some selected genes in spring vs winter at 30 days and 60 days. 

Positive FC= Upregulation and Negative FC= Downregulation of the gene in spring 

types relative to winter types. 

6.4.5.2. Transcription factor genes 

Top ten significantly differentially expressed transcription factor genes (ranked by FDR 

p-value) for each comparison are presented in Fig 6.4a-b. In spring vs winter at 30 days, 

relatively higher expressions were observed in winter types for most of the top ten significantly 
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differentially expressed genes (Fig 6.4a). Some notable genes are BnaCnng54100 encoding 

proteins similar to “AUXIN RESPONSE FACTOR 2”, BnaA08g01300 encoding proteins similar 

to “ETHYLENE RESPONSE FACTOR 8”, BnaAnng40580 encoding proteins related to 

“ABI3/VP1 1” in Arabidopsis. Three transcription factor genes have relatively higher expression 

in spring types at 30 days comparing to winter type at 30 days. For example, BnaA09g12590 

encoding proteins similar to “ERF family protein 8”, BnaA04g26320 encoding proteins similar 

to “AGAMOUS-like 20” in Arabidopsis. Six of the top ten transcription factor genes of spring vs 

winter at 60 days showed relatively higher expression in winter type (Fig 6.4b). These includes, 

BnaC02g02200, BnaAnng26200 and BnaA05g27930 genes encoding proteins similar to 

“WUSCHEL related homeobox 5”, “NAC domain containing protein 47” and “DRE/CRT-

binding protein 2B” in Arabidopsis. The transcription factor genes showing relatively higher 

expression in spring type at 60 days comparing to winter type at 60 days includes 

BnaA06g33560 and BnaC01g22100 encoding proteins similar to “BASIC LEUCINE-ZIPPER 

48” and “RESPONSE REGULATOR 2” in Arabidopsis. 
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Figure 6.4. Top ten differentially expressed TF genes between spring and winter; (a) 30 days, (b) 

60 days. 

6.4.5.3. Transcription factor gene sets 

A total of 19 transcription factor gene sets were identified as differentially expressed in 

spring vs winter at 30 days through GSEA and SNEA (Table 6.1). Eight of them were 

upregulated in winter types (30 days) which includes calmodulin binding, binding partners of 

WRKY70 (WRKY family transcription factor), binding partners of BZR1 (BRASSINAZOLE-

RESISTANT 1), binding partners of bZIP transcription factor, upstream neighbors of WOX5, 

upstream neighbors of auxin response factor and upstream neighbors of DREB1A (dehydration 

response element B1A). The transcription factor gene sets that were upregulated in spring types 

(30 days) includes MADS box protein, expression targets of HSF3 (HEAT SHOCK FACTOR 3), 

expression targets of HSF, upstream neighbors of HSF, expression targets of DREB2C 

(dehydration response element B2C), expression targets of HSF1, upstream neighbors of HSF1, 
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upstream neighbors of HSFA3, binding partners of ABF3 (abscisic acid responsive element-

binding factor 3), upstream neighbors of ABF1, upstream neighbors of WRKY33, upstream 

neighbors of EREBP (ethylene-responsive element binding factor 13). 

A total of 24 transcription factor gene sets were differentially expressed in spring vs 

winter at 60 days. Ten of them were upregulated in winter types (60 days) including CBF/NF-Y 

transcription factors, NAC family, BREB, expression targets of BZR2, expression targets of 

HSFA2, expression targets of ABI4 (ABSCISIC ACID INSENSITIVE4), upstream neighbors of 

WRKY, binding partners of RGA1 (Repressor of GA1-3 1) etc. The transcription factors that were 

upregulated in spring types (60 days) includes MADS box protein, expression targets of MYB51 

and MYB34, expression targets of ABI3 and ABI4, upstream neighbors of RR2 and expression 

target of RGA1 etc. 
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Table 6.1. Differentially regulated Transcription Factor gene sets between spring and winter canola 

at 30 days and 60 days. 

Time 

Point 

Upregulation in spring Upregulation in winter 

Name 

Measured 

entity Name 

Measured 

entity 

  MADS box protein 8 calmodulin binding 44 

  Expression Targets of HSF 11 Binding Partners of WRKY70 5 

  Expression Targets of DREB2C 11 Binding Partners of BZR1 14 

  Expression Targets of HSF1 9 Binding Partners of bZIP 10 

30 

days Binding Partners of ABF3 5 Upstream Neighbors of ARF 11 

  Upstream Neighbors of HSF 13 Upstream Neighbors of WOX5 5 

  Upstream Neighbors of HSFA3 7 

Upstream Neighbors of 

DREB1A 25 

  Upstream Neighbors of HSF1 6 Upstream Neighbors of RRTF1 5 

  Upstream Neighbors of ABF1 5     

  

Upstream Neighbors of 

WRKY33 17     

  Upstream Neighbors of EREBP 8     

          

  MADS box protein 7 CBF/NF-Y transcription factors 9 

  Expression Targets of MYB51 6 DREB 5 

  Expression Targets of MYB34 9 NAC family 25 

  Expression Targets of RGA1 10 Expression Targets of HSFA2 5 

  Expression Targets of ABI4 7 Expression Targets of ABI4 8 

60 

days Binding Partners of BZR1 16 Expression Targets of HSF 12 

  Upstream Neighbors of RGA1 14 Binding Partners of RGA1 9 

  Upstream Neighbors of ABF1 5 Upstream Neighbors of ABI4 10 

  Upstream Neighbors of ABF2 9 Upstream Neighbors of WRKY 25 

  Upstream Neighbors of ABF 6 

Upstream Neighbors of 

WRKY25 7 

  Upstream Neighbors of ABI3 13     

  Upstream Neighbors of WOX5 8     

  Upstream Neighbors of HSF 12     

  Upstream Neighbors of RR2 6     
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6.4.6. Differential expression of phytohormone related genes 

6.4.6.1. Overview 

A total of 2,751 transcripts were identified as the phytohormone associated genes 

involved in putative hormonal function (synthesis, signaling, transport and catabolism) in 

Arabidopsis. Among them, only 10 transcripts were significantly differentially expressed 

between spring and winter types at 30 days (Appendix Table A8.1). On the other hand, at 60 

days, 19 transcripts were differentially expressed between spring and winter types (Appendix 

Table A8.2). Top ten phytohormone associated significant DEGs at both time points are 

presented in Fig 6.5a-b. With GSEA and SNEA, 22 gene sets were identified as phytohormone 

associated gene sets in spring vs winter at 30 days (Table 6.2). Three of them were upregulated 

in both spring and winter types. In spring vs winter comparison at 60 days, thirty-two 

phytohormone associated gene sets were differentially expressed (Table 6.2). Among them, only 

eight gene sets were found to be upregulated in winter types, whereas twenty gene sets were 

upregulated in spring types. 

6.4.6.2. Auxin associated genes and gene sets 

All the significantly differentially expressed auxin associated genes in spring vs winter at 

30 days showed similar pattern of relatively higher expression in spring types (Appendix Table 

A8.1). Three of them are BnaA10g14600, BnaCnng54100 and BnaA01g24190 encoding proteins 

similar to AAO1 (ALDEHYDE OXIDASE 1), ARF2 (AUXIN RESPONSE FACTOR 2), AUX/IAA 

(INDOLE-3-ACETIC ACID INDUCIBLE 2) in Arabidopsis. The other auxin associated gene, 

BnaCnng62240 encoding protein similar to CYP71A13 (cytochrome P450, family 71, subfamily 

A, polypeptide 13) in Arabidopsis significantly differentially expressed in spring vs winter at 

both 30 days and 60 days. Five more auxin associated transcripts significantly differentially 
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expressed between spring and winter types at 60 days encoding three proteins similar to 

Arabidopsis- CYP79B3, CYP79B2 and NRT1.1 (NITRATE TRANSPORTER 1.1) (Appendix 

Table A8.1). Among them, only NRT1.1 showed relatively higher expression in winter types 

than the spring types. 

Interestingly, at 30 days of spring vs winter, 10 auxin associated gene sets were 

upregulated in winter types. Some of them are related to auxin responsive family proteins (IAAs, 

upstream neighbors of IAA7, upstream neighbors of IAA5, and upstream neighbors of IAAs). 

Others are response to auxin, auxin-activated signaling pathway, binding partners of TIR1 

(TRANSPORT INHIBITOR RESPONSE 1), upstream neighbors of ARF. Three gene sets IAAs, 

auxin-activated signaling pathway and binding partners of TIR1 were also upregulated in spring 

types. The other two auxin associated gene sets (plant growth auxin signaling and senescence 

auxin signaling) related to plant growth and senescence were also upregulated in spring types. At 

60 days spring vs winter, only three gene sets were differentially regulated. Two of them, 

basipetal auxin transport and upstream neighbors of AXR1 (auxin resistance 1) were upregulated 

in winter types and binding partners of TIR1 was upregulated in spring types. 

6.4.6.3. Cytokinin (CK) associated genes and gene sets 

No significantly differentially genes associated with CK were identified at 30 days spring 

vs winter. However, at 60 days spring vs winter, 10 transcripts encoding genes associated with 

CK in Arabidopsis were found to be significantly differentially expressed (Appendix Table 

A8.1-A8.2). These 10 transcripts encode Type-A Response Regulators (RR4, RR5 and RR7), 

Type-B Response Regulator (RR2) and ARABIDOPSIS HISTIDINE KINASE 4 (AHK4). 

Interestingly, all these CK associated genes showed similar pattern of higher relative expression 

in spring types (60 days) comparing to winter types (60 days). We found very similar results in 
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GSEA and SNEA data. No gene sets associated with CK were detected at 30 days spring vs 

winter. On the other hand, seven differentially regulated gene sets were identified as CK 

associated at 60 days spring vs winter. These are ARR-A type family, Cytokinin-activated 

signaling pathway, cytokinin signaling, response to cytokinin, upstream neighbors of RR22, 

upstream neighbors of RR24 and upstream neighbors of RR6. All of these CK associated gene 

sets were upregulated in spring types (60 days). When filtered by significance level, two CK 

associated gene sets, cytokinin activated signaling pathway and response to cytokinin stimulus 

were found to be upregulated in spring types (60 days). 

 

Figure 6.5. Top ten differentially expressed phytohormone associated genes between spring and 

winter; (a) 30 days, (b) 60 days. 
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6.4.6.4. Abscisic acid (ABA) associated genes and gene sets 

No significantly differentially expressed gene associated with abscisic acid were 

identified in either of the comparison, 30 days spring vs winter, and 60 days spring vs winter. 

However, two abscisic acid associated gene sets were detected at 30 days spring vs winter and 

found to be upregulated in spring types (30 days). These are binding partners of ABF3 (ABA 

response element binding factor 3) and upstream neighbors of ABF1. Several ABA associated 

gene sets were detected at 60 days spring vs winter. Five of them were upregulated in winter 

types (60 days) including abscisic acid binding, abscisic acid receptor, expression targets of ABI4 

(ABA INSENSITIVE 4), upstream neighbors of ABI4 and upstream neighbors of ABI1. Six of 

them were upregulated in spring types (60 days) which included response to abscisic acid, 

binding partners of ABI2, upstream neighbors of ABF1, upstream neighbors of ABF2, upstream 

neighbors of ABF, and upstream neighbors of ABI3. 

6.4.6.5. Gibberellin (GA) associated genes and gene sets 

No GA associated genes were found to be significantly differentially expressed between 

spring vs winter comparison at either of the time points, 30 days and 60 days. Few differentially 

regulated gene sets were identified through GSEA and SNEA. At 30 days spring vs winter, one 

GA associated gene set, upstream neighbors of GA20OX1 (GIBBERELLIN 20 OXIDASE 1) were 

found to be upregulated in winter types (30 days). One gene set, binding partners of RGA1 were 

upregulated in winter types at 60 days. In contrast, seven differentially regulated GA associated 

gene sets were found to be upregulated in spring types in 60 days in spring vs winter comparison. 

These are, gibberellic acid mediated signaling pathway, gibberellin signaling, response to 

gibberellin, binding partners of GAI (GIBBRELLIC ACID INSENSITIVE), upstream neighbors of 
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RGA1 (Repressor of GA 1), expression target of RGA1, binding partners of RGA1 and upstream 

neighbors of SLY1 (SLEEPY 1). 
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Table 6.2. Differentially regulated phytohormone associated gene sets between spring and winter types canola at 30 days and 60 days. 

Time 

Point 

Upregulated in spring Upregulated in winter 

Name 

Measured 

entity Phytohormone Name 

Measured 

entity Phytohormone 

30 

days 

Binding Partners of ABF3 5 ABA response to brassinosteroid 7 BR 

Upstream Neighbors of ABF1 5 ABA Binding Partners of BZR1 14 BR 

response to brassinosteroid 9 BR Binding Partners of BRI1 6 BR 

Plant Growth Auxin Signaling 15 IAA Upstream Neighbors of GA20OX1 10 GA 

IAAs 11 IAA response to auxin 67 IAA 

Senescence Auxin Signaling 16 IAA auxin-activated signaling pathway 36 IAA 

auxin-activated signaling 

pathway 39 IAA IAAs 7 IAA 

Binding Partners of TIR1 6 IAA Binding Partners of SCF(TIR1) complex 5 IAA 

response to salicylic acid 48 SA Binding Partners of TIR1 9 IAA 

      Upstream Neighbors of ARF 11 IAA 

      Upstream Neighbors of IAA7 6 IAA 

      Upstream Neighbors of IAA5 5 IAA 

      Upstream Neighbors of IAAs 15 IAA 

      Upstream Neighbors of AXR1 9 IAA 

      response to jasmonic acid 45 JA 

      JA, Et, and SA Crosstalk Signaling 18 JA, ET, SA 

              

60 

days 

Binding Partners of ABI2 5 ABA abscisic acid binding 5 ABA 

Upstream Neighbors of ABF1 5 ABA abscisic acid receptor 5 ABA 

Upstream Neighbors of ABF2 9 ABA Expression Targets of ABI4 8 ABA 

Upstream Neighbors of ABF 6 ABA Upstream Neighbors of ABI4 10 ABA 

Upstream Neighbors of ABI3 13 ABA Upstream Neighbors of ABI1 16 ABA 

Binding Partners of BZR1 16 BR Binding Partners of RGA1 9 GA 

ARR-A type family 5 CK basipetal auxin transport 5 IAA 

cytokinin-activated signaling 

pathway 17 CK Upstream Neighbors of AXR1 6 IAA 
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Table 6.2. Differentially regulated phytohormone associated gene sets between spring and winter types canola at 30 days and 60 days 

(Continued). 

Time 

Point 

Upregulated in spring Upregulated in winter 

Name 

Measured 

entity Phytohormone Name 

Measured 

entity Phytohormone 

 Upstream Neighbors of RR24 5 CK       

 Upstream Neighbors of ARR6 8 CK       

 Upstream Neighbors of RR2 13 CK       

 cellular response to ethylene stimulus 5 ET       

 GA mediated signaling pathway 11 GA       

 Gibberellin Signaling 13 GA       

 Expression Targets of RGA1 10 GA       

 Binding Partners of GAI 8 GA       

 Upstream Neighbors of RGA1 14 GA       

 Upstream Neighbors of SLY1 9 GA       

 tryptophan biosynthetic process 10 IAA       

 Upstream Neighbors of TIR1 5 IAA       

 Upstream Neighbors of CYP79B3 9 IAA       

 Upstream Neighbors of CYP83B1 6 IAA       
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6.4.6.6. Brassinosteroid (BR) associated genes and gene sets 

Two significantly differentially expressed transcripts encoding BR associated gene in 

Arabidopsis at 30 days spring vs winter were identified. Both of these transcripts encode proteins 

similar to DWF1 (DWARF1) in Arabidopsis. However, their pattern of expression is different 

from each other, one had higher relative expression in spring types (30 days), and the other had 

higher relative expression in winter types (30 days). Two BR associated gene sets were identified 

as differentially regulated in 30 days spring vs winter. One of them, response to brassinosteroids, 

were found to be upregulated in both winter and spring types (30 days) whereas the other one, 

binding partners of BRI1 (BRASSINESTOROIDS INSENSITIVE 1) was upregulated only in 

winter types (30 days). No BR associated gene or gene sets were detected in 60 days spring vs 

winter comparison. 

6.4.6.7. Ethylene (ET) associated gene and gene sets 

In 30 days spring vs winter, ACO2 (ACC oxidase 2) involve in ET signaling was found to 

be significantly differentially expressed and had higher relative expression in winter types (30 

days). One ET enriched gene set, cellular response to ethylene stimulus, were found to be 

differentially regulated in 60 days spring vs winter comparison where it was upregulated in 

spring types (60 days). 

6.4.6.8. Jasmonic acid (JA) associated genes and gene sets 

Two transcripts encoding proteins similar to ST2A (SULFOTRANSFERASE 2A) and 

AIM1 (ABNORMAL INFLORESCENCE MERISTEM) genes associated with JA were found to 

be significantly differentially expressed in 60 days spring vs winter. Both of them showed higher 

relative expression in spring types (60 days). One JA associated gene set, response to jasmonic 
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acid, was found to be differentially regulated in spring vs winter at both 30 days and 60 days. It 

was upregulated in spring types in 30 days spring vs winter whereas, it was upregulated in winter 

types in 60 days in spring vs winter comparison. 

6.4.6.9. Salicylic acid (SA) associated genes and gene sets 

Two different transcripts encoding proteins similar to SA associated genes in Arabidopsis 

were identified in spring vs winter at each of the time points, 30 days and 60 days. These are 

ISC2 (ISOCHORISMATE SYNTHASE 2) in 30 days spring vs winter and MES2 

(METHYLESTERASE 2) in 60 days spring vs winter. Both of these genes had relatively higher 

expression in spring types. One gene set, response to salicylic acid, was found to be upregulated 

in spring types in 30 days in spring vs winter comparison. 

6.5. Discussion 

6.5.1. Transcription factor genes and gene sets 

6.5.1.1. Abundance of transcription factor genes from ERF, NAC and bHLH family 

ERF family transcription factors are involved in plant growth and development, different 

phytohormone signaling and different biotic and abiotic stress responses (Nakano et al., 2006; 

Xu et al., 2011). It has been reported that overexpression of ERF transcription factor genes can 

improve drought, salt and freezing tolerances in transgenic plants (Xu et al., 2011). Although 

nine ERF family transcription factor genes were significantly differentially regulated between 

spring vs winter at both time points, they did not have an expression pattern indicative of an 

obvious role in differentiating between winter or spring root developmental responses.  
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 In total, six transcripts encoding four different NAC transcription factor genes were 

differentially expressed between spring and winter types at 30 days and 60 days. Among them,  

NAC102 and NAC047 transcription factor genes which express under hypoxia and waterlogging 

stress (Christianson et al., 2009; Rauf et al., 2013) were significantly differentially expressed at 

both time points. Six bHLH transcription factor genes were differentially expressed between 

spring and winter in the current study, did not follow any specific pattern of relative expression. 

6.5.1.2. Other transcription factor genes 

ARF2 transcription factor (significant at 30 days) promotes flowering and stamen 

development, flower abscission and leaf senescence (Ellis et al., 2005; Okushima et al., 2005) 

with relative higher expression in spring types and expression pattern “Up-Up”. This is expected 

because only spring type flowers without vernalization in the current experiment. However, it 

was surprising to find this correlation in root tissues. A root related transcription factor gene, 

WOX 5 was differentially expressed at 30 days with relative higher expression in winter types 

and expression pattern “Down-Down”.WOX5  usually expresses in root apical meristem and 

maintain root quiescent center (QC) which is important for root stem cell niche and root growth 

(Forzani et al., 2014; Kong et al., 2015; Lopez-Moya et al., 2017).  

6.5.1.3. Transcription factor gene sets 

In single gene analysis, we usually evaluate the statistically significant DEGs and may 

overlook a vast number of non-significant DEGs sharing common functions and lead to a 

common expression pattern (Howe et al., 2015). GSEA is a very useful tool to estimate the 

expression of  gene sets comprising of large number of genes with similar biological pathways 

and regulatory functions within the DEGs list (Subramanian et al., 2005; Howe et al., 2015) 
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The transcription factors gene sets that were found to be differentially regulated between 

spring and winter at 30 days and 60 days are mostly associated with different abiotic stresses. At 

30 days spring vs winter, gene sets related to heat shock factor (HSF) transcription factor family 

were most abundant among the differentially expressed gene sets and interestingly, they all were 

upregulated in spring types. HSFs usually play a major roles in plant to abiotic stresses tolerance 

by binding with the  HSE-cis element of promoter of the stress responsive gene (Guo et al., 

2016). However, at 60 days spring vs winter, HSF related gene sets were upregulated in both 

spring and winter types relative to 30 days samples.  Another notable stress related gene set 

“expression target of DREB2C” were found to be upregulated in spring type relative to winter 

type at 30 days. DREB2C is a member of ERF transcription family and overexpression of 

DREB2C can induce HSFA3 transcription factor in both high temperature stress and non-stress 

condition (Chen et al., 2010; Ohama et al., 2016) 

 At 60 days, CBF/NFY, DREB (member of ERF) and NAC transcription factor gene sets 

were upregulated only in winter types. Upstream neighbor of RR2 was found to be upregulated in 

spring types at 60 days relative to winter type. RR2 is a type-B ARR transcription factor and 

overexpression of ARR2 or RR2 caused increased sensitivity of cytokinin (Hwang and Sheen, 

2001). 

6.5.2. Significantly differentially expressed phytohormone genes and gene sets 

6.5.2.1. Auxin associated genes and gene sets 

Auxin or indole-3-acetic acid (IAA) is one of the major phytohormones which plays 

significant roles in all stages of plant growth including root growth and development (Ludwig-

Müller, 2011). Auxin biosynthesis in shoot and root, its transportation (short and long distance) 

and signaling are the major steps of auxin mediated root growth and development (Saini et al., 



  

 148 

  

  

2013). In the current study, all the auxin associated significant DEGs either in 30 days or 60 days 

spring vs winter comparison have shown relative higher expression in spring types except 

NRT1.1. Significantly differentially expressed AAO1, ARF2 and AUX/IAA2 genes are involved in 

auxin biosynthesis and signaling process. AAO1 gene converts indole-3-acetaldehyde (IAAld) 

into IAA in tryptophan (Trp) dependent pathway of auxin biosynthesis (Seo et al., 1998). 

AUX/IAA gene family plays a negative role in auxin signaling process by inhibiting ARF 

transcription factors to activate auxin responsive genes (Szemenyei et al., 2008). Notably, ARF2 

is induced by ABA and can inhibit the negative effect of ABA in cell division and auxin 

distribution when overexpressed (Wang et al., 2011a). CYP79B2 and CYP79B3 encoding 

cytochrome P450s are involved in converting Trp to indole-3-acetaldoxime (IAOX), a precursor 

of IAA in Trp dependent auxin biosynthesis pathway (Zhao et al., 2002). However, the mix of 

auxin response-promoting and limiting genes did not provide a clear indication as to the impact 

of auxin in the differences observed between spring and winter types root growth morphology.  

In GSEA and SNEA, auxin associated gene sets were the most abundant among the 

differentially regulated phytohormone associated gene sets at 30 days. The majority of these 

differentially regulated auxin associated gene sets were found to be upregulated in winter types. 

This is in contradiction with the single gene analysis where we observed all the auxin associated 

genes have higher relative expression in spring types. The auxin gene sets upregulated in winter 

types at 30 days were mostly related to Aux/IAA gene family which, with several exceptions, is a 

negative regulator of ARF transcription factor family (Szemenyei et al., 2008). At 60 days spring 

vs winter only three gene sets were differentially regulated and none of them were related to 

Aux/IAA gene family. One gene set, “binding partners of TIR1” is upregulated in both spring and 

winter types at 30 days relative to 60 days, and in spring types at 60 days relative to winter type 
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at 60 days. With high auxin concentration Aux/IAA binds with TIR1 instead of ARFs and this 

leads to transcriptional activation of auxin responsive genes by ARFs (Gray et al., 2001; Ramos 

et al., 2001; Zenser et al., 2001; Mockaitis and Estelle, 2008; Lau et al., 2009). 

To summarize, auxin associated genes related to auxin biosynthesis were identified in 

single gene analysis in both 30 days and 60 days spring vs winter comparison with a relative 

higher expression in spring types. In GSEA and SNEA, majority of the differentially regulated 

gene sets were identified in 30 days spring vs winter comparison and most of them are related to 

Aux/IAA gene family with an upregulation in winter types. 

6.5.2.2. Cytokinin associated genes and gene sets 

Unlike auxin, cytokinin associated significantly differentially expressed genes and gene 

sets showed specific and distinct pattern of expression with a relative higher expression of spring 

type, only in 60 days spring vs winter. Interestingly, all these cytokinin associated DEGs and 

gene sets were mostly related to ARR or RR. In Arabidopsis, there are two types of RR genes, 

type-A RR and type-B RR. Both types are highly induced by cytokinin through a multistep 

phosphorelay system involving hybrid type AHK, histidine phosphotransfer protein (AHPs) and 

response regulators  (To et al., 2004; Ferreira and Kieber, 2005). Cytokinin is perceived by 

AHKs through CHASE (cyclases/ histidine kinases associated sensory extracellular) domain in 

plasma membrane, and then through multistep phosphorelay the phosphoryl group is transferred 

to the receiver domain of type-B ARRs. Type-B ARRs act as the transcription factors and activate 

the type-A ARRs and other cytokinin response genes (Ferreira and Kieber, 2005). In this current 

study, type-A (ARR4, ARR5 and ARR7), type-B ARRs (ARR2) and a chase domain containing 

AHK4 were upregulated in 60 days with a relatively higher expression in spring types. This 

evidence suggests that higher concentrations of cytokinin was present in the root system of 
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spring type canola at 60 days. Further tests would be needed to determine if this is indeed the 

case or if cytokinin signaling was enhanced in spring types via other mechanisms. 

Several studies described the negative regulatory role of cytokinin in root growth and 

development (Riefler, 2006; Dello Ioio et al., 2008). Targeted expression of ISOPENTENYL 

TRANSFERASE (IPT), a cytokinin biosynthesis in the xylem pole pericycle cells resulted 

defective lateral root initiation and patterning (Laplaze et al., 2007). In another study, Dello Ioio 

et al. (Dello Ioio et al., 2008) showed that, cytokinin responsive ARR1 (type-B) transcription 

factor decrease the root meristem size by negatively regulating the auxin efflux carrier PIN 

through the activation of short hypocotyl 2 (SHY2) gene. However, with the increased auxin 

concentration, SHY2 protein is degraded and PIN activity is restored. This suggests the role of 

auxin-cytokinin cross-talk is important in root growth and development. Type-A ARRs are 

regarded as the negative regulator of cytokinin signaling (To et al., 2004; Argyros et al., 2008). 

Loss of function mutant of eight type-A ARR (ARR 3, 4, 5, 6, 7. 8. 9, 15) also caused inhibition 

of auxin transport by altering PIN proteins which ultimately results reduced root apical meristem 

(To et al., 2007).  

To summarize, higher expression of both type-A and type-B ARRs and AHK4 in 60 days 

spring types root system indicates cytokinin mediated reduced root growth in spring types canola 

comparing to winter canola at 60 days. Our GSEA and SNEA results with six differentially 

regulated cytokinin associated gene sets also support this hypothesis. All these cytokinin 

associated gene sets were differentially regulated in only 60 days spring vs winter comparison 

with an upregulation in spring types. In addition to type-A and type-B, two gene sets related to 

type-C response regulators (RR22 and RR24) named “upstream neighbor of RR22” and 

“upstream neighbor of RR22” were differentially regulated with a higher expression in spring 
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types. ARR22 inhibits the phosphorylation of type-B ARRs, therefore the transcription of type-A 

ARRs and other cytokinin responsive genes (Wallmeroth et al., 2017). 

6.5.2.3. Abscisic acid associated genes and gene sets 

Abscisic acid is a major phytohormone involved in plant growth and development and 

plays a critical role in different abiotic stress responses in crop (Choi et al., 2000; Tuteja, 2007; 

Danquah et al., 2014). Plants maintain its cellular ABA balance by continuous biosynthesis and 

degradation of ABA (Tuteja, 2007). Different abiotic stresses largely disturb the cellular ABA 

balance by influencing the ABA biosynthesis and degradation (Cutler and Krochko, 1999). ABA 

signaling pathway is regarded as one of the major regulators of different stress related gene 

expression and provide adaptation and/or tolerance to various abiotic stresses such as salinity, 

drought and light (Verslues et al., 2006; Tuteja, 2007). In the current study, significantly more 

ABA associated gene sets were differentially regulated in 60 days spring vs winter compared to 

30 days spring vs winter. Among the ABA associated gene sets, two important components of 

ABA signaling pathway, ABIs and ABFs are the most abundant. Some of the ABIs (ABI1 and 

ABI2) act as negative regulator in the ABA signaling pathway (Saez et al., 2004; Hirayama and 

Shinozaki, 2007). On the other hand, ABFs are transcription factor genes, which transcriptionally 

activate ABA responsive genes. In the presence of ABA, ABI1 and ABI2 become inactivated 

through binding with ABA receptor which leads to the activation of ABF transcription factors 

facilitating the transcription of  ABA responsive genes (Danquah et al., 2014). Three gene sets 

associated with ABI3 and ABI4 were also differentially regulated in 60 days spring vs winter. 

ABI3 and ABI4 are transcription factors and can activate ABA responsive genes (Brady et al., 

2003). Large number of differentially regulated ABA associated gene sets at 60 days spring vs 
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winter suggests that plants faced different abiotic stresses during its growth and development at 

later growth stages. 

6.5.2.4. Gibberellin associated genes and gene sets 

Gibberellin is an important class of plant hormone involved root and stem elongation, 

leaf expansion, flower and seed development, seed germination and maintaining root meristem 

size in plants (Yamaguchi, 2008; Ubeda-Tomás et al., 2009). Evidence suggests that GA 

biosynthesis occurs in root meristem and is then transported and accumulated in root epidermis 

cells in root elongation zone where GA promotes cell elongation and this phenomenon plays a 

positive role in root elongation (Ubeda-Tomás et al., 2009; Shani et al., 2013). In contrast to 

promoting root elongation, several studies suggested GA is involved in inhibiting lateral root 

formation in Populas. GA biosynthesis mutant in tomato and GA signaling mutant Populas lines 

produced higher lateral root formation than wild types (Berova and Zlatev, 2000; Busov et al., 

2006). Exogenous application of GA can prevent lateral root formation through inhibiting the 

initiation of lateral root primordia (Gou et al., 2010). In Populas, GA deficient and GA 

insensitive mutants shows higher number of lateral root primordia leading to lateral root 

development (Gou et al., 2010). Authors concluded that Populas root specific auxin efflux career 

PIN9 gene is highly GA responsive and upregulated in GA deficient and mutant plants and may 

play an important role in polar auxin transport to promote lateral root growth in Populas. 

In the current study, six GA signaling associated gene sets were upregulated in spring 

types at 60 days, indicates GA mediated root elongation and reduced lateral root growth in spring 

types at 60 days, which is in accordance with our phenotypic observation. However, three of 

these gene sets are related to DELLA proteins- GAI and RGA1 which are considered as negative 

regulators of GA response. DELLA proteins bind with GA and GID1 (GA-Insensitive Dwarf 1) 
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two compound complex and form GA-GID1-DELLA three compound complex to inhibit GA 

response (Willige et al., 2007; Pacifici et al., 2015). On the contrary, DELLA protein mediated 

negative GA response can be overruled by a positive regulator of GA response gene named SLY1 

(SLEEPY1) which binds with DELLA proteins and degrade them to trigger the GA response (Fu, 

2004). Interestingly, we observed a SLY1 associated gene set which is upregulated in spring type 

at 60 days and thus may suggest a role for high GA response in spring types at 60 days. 

Therefore, although half of the total GA signaling associated gene sets were upregulated in 

spring types at 60 days, they are negative regulators of GA response Thus, SLY1 mediated 

recovery of GA response and activity might possibly be a mechanism regulating differences 

observed between spring and winter canola root growth habits.  

6.5.2.5. Brassinosteroid associated genes and gene sets 

BRs positively regulate root growth and development mainly through root cell elongation 

and BR deficient or mutant plants show reduced root phenotype (Fridman et al., 2014; Wei and 

Li, 2016). Beside this, BR also modulate root growth and development through controlling root 

meristem size, root hair formation, lateral root growth (reviewed by Wei and Li, (2016)). The 

differentially regulated BR genes and gene sets in the current study were related to both BR 

biosynthesis (DWF1) and BR signaling (BRI1, BZR1 and BES1) and were upregulated in both 

spring and winter types. DWF1, DWF4 and constitutive photomorphogenesis and dwarf (CPD) 

are the major BR biosynthesis genes in plant. Synthesized BR binds with BRI1 receptor resulting 

stimulation of BRI1. Stimulated BRI1 then bind with BAK1 forming BRI1-BAK1 complex which 

is responsible for degradation of BIN2, a negative regulator of BR signaling. Degradation of 

BIN2 causes activation of transcription factors DES1 and BZR1 which transcriptionally activate 

the BR biosynthesis genes (DWF4, CPD) (reviewed by Saini et al., (2013)). 
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6.5.2.6. Ethylene associated genes and gene sets 

Ethylene negatively regulate root growth by inhibiting root cell elongation (Le et al., 

2001), cell proliferation in root meristem (Street et al., 2015) and lateral root formation (Negi et 

al., 2008).  Upregulation of gene set “cellular response to ethylene stimulus” in spring types at 60 

days spring vs winter indicates ethylene mediated root growth inhibition in spring type. But it is 

hard to conclude if ethylene has a role in root growth difference between spring and winter types 

at 60 days with upregulation of just one gene set. Moreover, ethylene mediated root growth 

inhibition involves cross-talk with other major phytohormones like auxin (Negi et al., 2009; 

Street et al., 2015) which leads to a more complex system of how ethylene inhibit the root 

growth and development. 

6.5.2.7. Jasmonic and Salicylic acid associated genes and gene sets 

Few JA and SA associated genes and gene sets were differentially regulated between 

spring vs winter at both time points. However, they did not follow any specific pattern or 

direction of upregulation or downregulation. Both JA and SA are involved in plant defense 

responses subjected to necrotrophic pathogen (JA), herbivorous insects (JA) and biotrophic 

pathogen (SA) (Caarls et al., 2015). In addition to the defense response they cross-talk with other 

phytohormones and play important roles including participating in abiotic stress signaling and 

plant growth and development (Pieterse et al., 2012). JA associated AIM1 transcription factor 

which is a significant DEG is 60 days spring vs winter is involved in mediating cross-talk 

between biotic and abiotic stress responses (Abuqamar et al., 2009).  
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6.5.3. Other differentially regulated genes and gene sets 

6.5.3.1. Differentially expressed nitrate transporter gene  

Nitrogen is one of the essential plant nutrients playing major role in plant growth and 

development. Plant acquire N from the soil through its root system in form of nitrate and 

ammonia (Kiba and Krapp, 2016). There are two major nitrogen transport gene families, NRT1 

and NRT2 paly key role in plant nitrogen acquisition in different plants (Nacry et al., 2013; Kiba 

and Krapp, 2016). In our study, we observed higher relative expression of two genes from NRT1 

and one gene from NRT2 family in winter type comparing to spring type at 60d. NRT genes 

contribute in shaping root system architecture in a complex manner and depends mainly on the 

soil N concentration and subsequent cross talk with different phytohormones.  

NRT1.1 is the only dual affinity gene which is upregulated under both high and low 

nitrate concentration of the soil and inhibit lateral growth formation by promoting basipetal 

auxin transport out of lateral roots (Krouk et al., 2010). This is in contradiction with the current 

study as we observed upregulation of two transcripts encoding NRT1.1 in winter type relative to 

spring type at 60d but instead of inhibition, primary root branches were significantly higher in 

winter types than spring types at 60d. Interestingly, some studies showed that plants produced 

increased lateral root formation and elongation when faced local high nitrate concentration under 

heterogeneous soil nitrate application (Drew and Saker, 1975; Zhang et al., 1999; Yu et al., 2014; 

Huang et al., 2015). This is due to the role play of nitrate as a signal rather than nutrient in 

regulating lateral root formation and elongation in a nitrate rich patch (Zhang et al., 1999; 

Remans et al., 2006; Krouk et al., 2010; Sun et al., 2017). Under local high nitrate condition, 

NRT1.1 can upregulate the ANR1 transcription factor gene which is a positive regulator of 

nitrate stimulated LR development (Zhang and Forde, 1998; Zhang et al., 1999; Remans et al., 
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2006; Gan et al., 2012; Sun et al., 2017). In contrast to NRT1.1, other NRT1 family genes and 

NRT2 family genes are upregulated with mild nitrate deficiency and increase the lateral root 

initiation, formation and elongation. Under low nitrate supply NRT2.1 gene is upregulated 

resulting the upregulation of auxin biosynthetic gene TAR2. In another pathway, under mild 

nitrate deprivation, NRT2.1 can upregulate MADs box gene Agamous like-21 (AGL21) resulting 

upregulation of auxin biosynthetic gene like TAR3. Upregulation NRT2.1 mediated auxin 

biosynthetic genes TAR2, TAR3 increase the level of auxin in developing lateral roots and 

promote lateral formation and elongation (reviewed by Sun et al., 2017). Another study in rice 

showed, NRT2.1 can increase expression of PINs in roots to positively regulate polar auxin 

transport in lateral root primordia and promote lateral root initiation (Huang et al., 2015).  

In addition to their roles in regulating lateral roots, both NRT1 and NRT2 family genes 

are involved in nitrate uptake from the soil (Nacry et al., 2013; Krapp et al., 2014). Upregulation 

of these genes in winter type at 60d may result higher nitrate acquisition by winter type canola 

plants in later growth stage. NRT1.5 is solely a nitrate transporter gene which expressed in root 

pericycle cells close to xylem and involved in nitrate loading in the xylem to transport to shoot 

(Lin et al., 2008; Chen et al., 2012). Higher expression of NRT1.1, NRT1.5 and NRT2.1 in 

winter type root system at 60d indicates higher nitrate uptake and translocation from root to 

shoot in winter type canola which may be a contributing factor to the usual higher vegetative 

growth in winter type comparing to spring type canola.  

One possible reason for the observed relative lower expression of NRT2.1 gene is spring 

type at 60d might be related to cytokinin. As discussed earlier, higher concentration of cytokinin 

might be present in spring type roots at 60d based on the evidence of observed higher relative 

expression of cytokinin associated gens and gene sets in spring type comparing to winter type at 
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60d. Cytokinin is proved to be a regulator of both local and systemic signals coordinating N 

demand and acquisition (Kiba and Krapp, 2016). Cytokinin may repress NRT2.1 gene under N-

deprived soil by producing N-sufficiency signals, therefore, inhibit N uptake (Ruffel et al., 2011; 

Kiba and Krapp, 2016). No wonder, cytokinin mediated repression of NRT2.1 may also affect 

the lateral root development. 

In a word, upregulation of NRT1.1 and NRT2.1 might be occurred in winter types due to 

local high nitrate concentration and mild nitrate deficiency which is a common feature of 

heterogeneous nitrate availability in the soil. Relative higher expression of these genes in winter 

type root system at 60d contributed to observed higher primary root branches in winter type 

comparing to spring type at 60d in the current study. Cytokinin signaling may repress or lower 

the NRT2.1 gene expression in spring type at 60d. 

6.5.3.2. Abiotic stress related gene sets 

Several gene sets related to different abiotic stresses were upregulated in both spring and 

winter types at both time points in GSEA. These gene sets were related to heat, cold, hypoxia, 

anoxia, drought, UV, reactive oxygen species etc. Interestingly, at 30d spring vs winter the 

number and type of abiotic stress related genes upregulated in winter and spring were somewhat 

similar. But the at 60d spring vs winter, the number of abiotic stress related gene sets upregulated 

in winter type was way higher than those of spring type. This higher number of upregulated 

abiotic stress related gene sets in 60d winter type may be due to pot blindness of the vigorous 

winter type root system. Several researcher previously suggested how plant growth and 

physiological activities were hampered due to pot size which is in other words due to pot 

blindness (Ismail et al., 1994; Bourgault et al., 2017; Dambreville et al., 2017; Sinclair et al., 

2017). In the current research, we used large and long pots to eliminate the pot blindness. But the 
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root system of winter types at 60d were highly vigorous comparing to root system of winter 

types at 30d and spring types at 30d and 60d. Therefore, winter type root system may have 

experienced the pot blindness effect and, due to that subjected to stresses, had higher number of 

abiotic stress related gene sets up-regulated. Additionally, in GSEA and SNEA, several gene sets 

related to abiotic stress tolerance were up-regulated in winter types in 60d spring vs winter 

comparison. These gene sets were mostly related to drought tolerance, heat tolerance and 

detoxification process. This indicates that winter type root system may be able to withstand 

better when subjected to abiotic stresses by activating its defense response against those stresses. 

6.5.3.3. Biotic stress related gene sets 

 Several other gene sets associated with plant defense response and wounding were 

differentially regulated in spring vs winter at both time points. Some of them were upregulated in 

spring type and some of them were upregulated in winter types. This suggests that both spring 

and winter types faced certain degree of microbe and/or insect pressure throughout the growth 

period and therefore the defense and wound related genes and gene sets were expressed in both 

types. 

6.6. Conclusion 

This research was conducted to assist in understanding of the gene regulatory networks 

underlying the root system variation between spring and winter types canola at later growth 

stages. Therefore, we compared the transcriptome changes between spring and winter types at 

two time points 30 days (no significant variation in root system of spring and winter) and 60 

days (significant variation in root system of spring and winter). We detected cytokinin related 

genes and gene sets were differentially expressed exclusively at 60 days with an upregulation in 
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spring type. Based on this, we suggest cytokinin signaling might play a major role in inhibiting 

root growth in spring types at later growth stage. Although we did not detect any significant 

gibberellin related DEG in single gene analysis, gibberellin associated gene sets at 60 days were 

over-represented in spring types. We relate this fact to our observed root trait phenotypes in 

spring types showing elongated root length with lesser lateral root branch, a prime feature of 

gibberellin mediated root growth and development. Additional researches need to be conducted 

to confirm the role of cytokine and gibberellin in root growth and development in canola growth 

habits and their cross-talk with other phytohormones, especially auxin. The transcriptome profile 

developed in this study will serve as the basis of future research to elucidate physiological and 

biological processes involved in root growth variation in different canola/rapeseed growth habits.  
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CHAPTER 7. SUMMARY CONCLUSION AND FUTURE DIRECTION 

 

In this research, we have followed two root phenotyping procedure, a modified version of 

mesocosm in the greenhouse and shovelomics in the field. Although shovelomics has been 

applied for large scale root phenotyping in few crops, mesocosm has only been applied for short 

scale root evaluation. We modified the mesocosm and applied it for large scale root phenotyping 

in the greenhouse which can be used in phenotyping roots in other crops. We compared different 

root architectural traits between spring and winter type canola at different time points after 

planting. We identified that there was no significant variation in root architectural traits at 30 

days after planting. Variation starts between spring and winter type root system at 40 days after 

planting and it becomes highest at 60 days after planting. We also evaluated a set of spring and 

winter types canola under water stressed conditions and observed that the growth of winter type 

root system is more affected than the growth of spring type. We phenotyped the root 

architectural traits of 224 genotypes and performed a genome wide association study with 

~37500 SNP markers under greenhouse conditions. All the root traits were found positively 

correlated with each other except the root angle (RA). Fifty-two significant marker loci 

associated with different root architectural traits were identified from this study. A total of 22 

candidate genes for different root architectural traits within the neighboring regions of the 

markers were identified. Few of the candidate genes, P-glycoprotein 6 (PGP6), Tetraspanin 7 

(TET7) and ARABIDILLO-2 were located at the same physical position of the marker loci 

chrC03_12098594 (RL), chrA01_8813067 (PRB), and chrA04_rand_54410 (R1Dia). In the field 

study, the root system architecture of216 genotypes were studied, and a genome wide association 

mapping with ~30,200 SNP markers was performed. We identified 31 significant marker loci 
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associated with different root traits and 15 candidate genes for root traits that were closely 

located with the significant markers. We combined all the significant marker loci from the 

greenhouse and field and assigned them on chromosomes of B. napus on the basis of physical 

locations of the markers. We have detected some regions on chromosome A06, A09, C01, C03, 

C05 and C06 where multiple markers from field and greenhouse associated with different root 

architectural traits were co-localized (Fig 7.1). 

In phenotypic analysis, root diameters are positively correlated with other root traits, and 

several significant marker loci were co-localized in the same physical region controlling soil 

level root diameter, primary root branches and root vigor score. Therefore, we suggest that 

taproot root may play an important role in overall root growth and it can be a proxy trait for other 

root architectural traits. The candidate genes identified in this research can be a good target for 

mutant study through reverse genetics approach. Additionally, we compared the transcriptomes 

identified in spring and winter root systems at 30 days and 60 days and detected significantly 

differentially expressed genes between these two growth habits that might cause the root system 

variation between them. Several cytokinin and gibberellin related genes and genes sets were 

significantly differentially expressed in spring type at 60 days. Cytokinin inhibits the root growth 

and development in many crops and gibberellin plays an important role in reducing lateral root 

growth. Based on these, we suggest that cytokinin and gibberellin may have some important 

roles in inhibiting root growth in spring type at later growth stages which leads to the root system 

variation between spring and winter types. Extensive gene expression data generated in this 

research will further assist to understand the natural variation of root system in canola growth 

habits. 



  

 162 

  

  

In addition, we have compared the gene models within 50 Kbp and 100Kbp upstream and 

downstream of the significant marker loci from greenhouse and field condition, respectively with 

the gene models of significantly differentially expressed transcripts from our transcriptome 

study. We have identified, total twelve common gene models that were detected in both GWAS 

and transcriptome study (Table 7.1). Four of the gene models were encoding three root related 

candidate genes GASA4, NRT1.1 and NRT2.1. 

 

 

Figure 7.1. Significant markers from field and greenhouse neighboring on the same chromosome 
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Table 7.1. Common candidate genes after combining all the gene models from GWAS and transcriptome study. 

Marker Traits Datasets 
BNA gene 

model 

AT gene 

model 
Name 

Significantly 

Differentially 

expressed at 

Expression 

direction at 

30d & 60d  

chrC03_3328679 PRB 2015_F BnaC03g06850 AT5G15230 GAST1 protein homolog 4 30 Days 

Down 

Down 

 

 

chrC09_19217839 RS 2015_F BnaC09g21960 AT2G03550 

 

alpha/beta-Hydrolases 

superfamily protein 30 Days UpUp 

chrA02_1108743 PRB 2015_GH BnaA02g02560 AT5G15230 GAST1 protein homolog 4 60 Days UpUp 

chrA07_22509933 R1Dia 2016_GH BnaA07g32700 AT1G76410 

RING/U-box superfamily 

protein 60 Days DownUp 

chrC01_11247236 RDW 2015_GH, Comb_GH BnaC01g16280 AT4G24340 

Phosphorylase superfamily 

protein 60 Days UpUp 

chrC04_2352267 PRB 2016_GH BnaC04g03300 AT2G44065 Ribosomal protein L2 family 60 Days DownDown 

chrA02_22847077 RA 2015_F, Comb_F BnaA02g31810 AT5G25940 early nodulin-related 60 Days UpDown 

chrA06_2653673 PRB Comb._F BnaA06g04560 AT1G08090 nitrate transporter 2:1 60 Days DownDown 

chrA09_32034416 R1Dia, RS 

 

2016_F(R1Dia), Comb._F(RS) BnaA09g47380 AT1G12110 nitrate transporter 1.1 60 Days DownDown 

 

 

BnaC06g38360D RA Comb._F BnaC06g38140 AT1G77480 

Eukaryotic aspartyl protease 

family protein 60 Days DownDown 

 

 

chrC03_1822934 PRB 2015_GH, Comb._GH BnaC03g03830 AT5G09500 

Ribosomal protein S19 family 

protein Both DownDown 

chrA02_22847077 RA 2015_F, Comb._F BnaA02g31600 AT5G26280 TRAF-like family protein Both UpUp 
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APPENDIX 

 

Table A.1. List of accessions used in this study. 

Accession name Country of origin/obtained Growth Habit 

AR91004 USA Winter 

ARC 90016ab USA Winter 

ARC 97018 USA Winter 

ARC 97019ab USA Winter 

ARC-2180-1b USA Winter 

Aspenb USA Winter 

Aviso Canada Winter 

Azuma South Korea Semi-winter 

Azumashoab South Korea Semi-winter 

Baraska Germany Winter 

Barkant Netherlands Winter 

Barplina South Korea Winter 

Beryl Poland Winter 

Billy Sweden Winter 

Bingo USA Spring 

BNW 161/83 Germany Winter 

BO-63 Canada Spring 

Bolkoab Poland Winter 

Bridger USA Winter 

Brinkab Sweden Winter 

Brio France Spring 

Bronowskiab Poland Spring 

Buk Wuk 3 South Korea Spring 

Cascade USA Winter 

Celebra Sweeden Spring 

Ceskia Tabor Czechoslovakia Spring 

CHUN-NUNG 1 China Winter 

Cobra Germany Winter 

Colt USA Spring 

Colza South Korea Spring 

Colza 18 Miroc South Korea Semi-winter 

Cometb Sweden Spring 

Conquest Canada Spring 

Corvette UK Winter 
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Table A.1. List of accessions used in this study (Continued) 

Accession name Country of origin/obtained Growth Habit 

Cougar Canada Spring 

CR 742/91 Germany Rutabaga 

Crop France Spring 

Crystal Sweden Winter 

Cult Canada Winter 

Czyzowskiab Poland Spring 

Da vincib Canada Winter 

Dae cho sen South Korea Semi-winter 

Darmar France Winter 

Delta Sweden Spring 

Doon Majorab USA Rutabaga 

Doon Major Swede New Zealand Winter 

Drakkar France Spring 

Drawftab South Korea Winter 

Eckendorfer Mali South Korea Semi-winter 

Eragi Germany Winter 

Ericka USA Winter 

Erra Germany Winter 

Evvin Russian Federation Spring 

Expander Germany Winter 

Fashion Canada Winter 

Fertodi South Korea Winter 

Fonto South Korea Spring 

France 1 France Spring 

Fuji South Korea Spring 

Galant Serbia Spring 

Galaxyb Sweden Spring 

Galileo Canada Winter 

Gebr Dippes South Korea Winter 

Gido Germany Spring 

Girita Germany Semi-winter 

Gisora Germany Spring 

Glacier Sweden Winter 

Global Sweden Malmohus Spring 

Golden Canada Spring 

Gora Germany Spring 

Goyab Canada Winter 

Gulle Sweden Spring 
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Table A.1. List of accessions used in this study (Continued) 

Accession name Country of origin/obtained Growth Habit 

Gullivar Sweden Spring 

Hamburg South Korea Winter 

Helga Germany Semi-winter 

Hi-Q Canada Spring 

Host rape regel South Korea Winter 

Ibiza Canada Winter 

IR-2 Hungary Spring 

Iwashiro-nataneab South Korea Winter 

Janetzkis South Korea Spring 

Jasna Serbia Spring 

Jupiter USA Winter 

Kanada Poland Spring 

Karafuto South Korea Winter 

Kasuya South Korea Winter 

Kasuyashu South Korea Winter 

Klinki South Korea Spring 

Korina Germany Winter 

Kosa Germany Spring 

Koubunab South Korea Spring 

Kovalevskjj Ukraine Spring 

Kraphhauser South Korea Spring 

Kritmar rapeab South Korea Spring 

KS3579 USA Winter 

KSU 1 
  

KSU 10 USA Winter 

KSU 2 USA Winter 

KSU 3 USA Winter 

KSU 4 USA Winter 

KSU 5 USA Winter 

KSU 7 USA Winter 

KSU 8 USA Winter 

Kuju South Korea Winter 

Kutkowski South Korea Winter 

Ladoga Canada Winter 

Laura Germany Spring 

Legend Sweden Spring 

Lembkes South Korea Winter 

Lembkes malchower South Korea Winter 

Lenora South Korea Winter 
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Table A.1. List of accessions used in this study (Continued) 

Accession name Country of origin/obtained Growth Habit 

Lesira Germany Winter 

Lester Germany Winter 

Librador Germany Winter 

Licantara Germany Winter 

Lieikoposki South Korea Semi-winter 

Lifura South Korea Spring 

Lindora-00 Germany Winter 

Lindore Germany Winter 

Linglandor Germany Winter 

Linus South Korea Winter 

Lirabou Germany Winter 

Liradonne Germany Winter 

Liratrop Germany Winter 

Lisora Germany Semi-winter 

Lorenze Canada Winter 

Major France Semi-winter 

Marcusb South Korea Winter 

Mar'janovskijab Ukraine Spring 

Midas Canada Spring 

Miekuro Dane South Korea Spring 

Mihonatane South Korea Winter 

Miochowskib France Semi-winter 

Mlochowski Poland Semi-winter 

Mulchower South Korea Winter 

Murame nadame South Korea Semi-winter 

Mutsumiab Japan Semi-winter 

N001-28-246-5-4 South Korea Semi-winter 

NDSU0472 USA Spring 

NDSU0473ab USA Spring 

NDSU0474ab USA Spring 

NDSU0619 USA Spring 

NDSU0620 USA Spring 

NDSU0728 USA Spring 

NDSU0729 USA Spring 

NDSU10999 USA Spring 

NDSU151000 Canada Spring 

NDSU15989 USA Spring 

NDSU161013 USA Spring 
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Table A.1. List of accessions used in this study (Continued) 

Accession name Country of origin/obtained Growth Habit 

NDSU31011 USA Spring 

NDSU41000 USA Spring 

NDSU7997 USA Spring 

NDSU81000b USA Spring 

NDSU91013 USA Spring 

Niedera-rubacherb South Korea Winter 

Nilla 1022 South Korea Semi-winter 

Nilla glossyab South Korea Semi-winter 

Norin#1 Japan Winter 

NU 41737 Turkey Spring 

NU 51084 Sweden Spring 

Nugget South Korea Semi-winter 

NY-10ab China Semi-winter 

NY-18 China Winter 

NY-20 China Semi-winter 

NY-7 China Semi-winter 

NY-8 China Semi-winter 

Oleifera South Korea Semi-winter 

Oro Canada Spring 

Orpal France Spring 

Peace Canada Spring 

Petanova-lihonova South Korea Semi-winter 

Polo canola USA Spring 

Premierb USA Spring 

Printol USA Spring 

Protaab Germany Spring 

Prover USA Winter 

Q2ab Canada Spring 

R. Creaus South Korea Winter 

Rafal France Winter 

Ramsesb South Korea Winter 

Rangb South Korea Semi-winter 

Ratnikab Serbia Spring 

Rebel USA Semi-winter 

Red Russianb USA Winter 

Regal South Korea Winter 

Regent Canada Spring 
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Table A.1. List of accessions used in this study (Continued) 

Accession name Country of origin/obtained Growth Habit 

Regina II Canada Spring 

Reston USA Spring 

Rico Germany Spring 

Ridanab Germany Winter 

Romeo France Spring 

Russia 5 Russian Federation Spring 

Seoul South Korea Spring 

Serab Germany Semi-winter 

Siberianab USA Winter 

Silex Canada Spring 

Sparta USA Winter 

Sunrise USA Spring 

Sval of Gullen South Korea Spring 

Synra South Korea Winter 

Taichang South Korea Semi-winter 

Tanka South Korea Semi-winter 

Tanto Fu 85 France Spring 

Titus South Korea Winter 

Tokiwa South Korea Semi-winter 

Tonusb South Korea Spring 

Topasb Sweden Spring 

Tower Canada Spring 

Trebicskab Czech Republic Winter 

Tri-Bridgerb USA Winter 

Turretab Canada Spring 

Ujfertodiab Hungary Winter 

Vandaab Germany Winter 

Visiona Canada Winter 

Vostochno-sibirskii Russian Federation Spring 

Wasefujiab South Korea Spring 

Weal dong cho South Korea Semi-winter 

Westar Canada Spring 

Wichitab USA Winter 

Willa South Korea Spring 

Wipol Norway Semi-winter 

Wira Germany Winter 

Yong dang South Korea Semi-winter 
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Table A.1. List of accessions used in this study (Continued) 

Accession name Country of origin/obtained Growth Habit 

Yonkkaichi kwob South Korea Semi-winter 
aAccessions not included for RL, PRB, RA and RVS 

bAccessions not included for RDW 
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Table A.2. Validation of the significant markers (0.01) for primary root branches (PRB) by genotype based prediction of the 

germplasms. 

*Did not matched with our prediction, PRED=Predicted phenotype, OBS=Observed phenotype, H=High, MH= Moderately high,  

ML= Moderately low, L=Low, Y,R,WK=heterozugous for the markers. 

Germplasms 

        PRB                 

chrC04_

2352222 

chrC04_

2352228 

chrC04_

2352267 
PRED OBS 

  

chrA01_

8813067 
PRED OBS 

  

chrC03_

1822934 
PRED OBS 

C/T A/G T/A   G/T   G/T 

Drawft C A T H MH   G H MH   K M MH 

Bronowski C A T H ML*   G H ML*   G H ML* 

Iwawoochi C A T H MH   G H MH   G H MH 

Q2 Y R W M MH   G H MH   G H MH 

Ratnik Y R W M H*   G H H   G H H 

Attila C A T H ML*   G H ML*   T L ML 

Bolko C A T H MH   G H MH   G H MH 

Nemercanskjj_2268 C A T H MH   K M MH   G H MH 

Siberian C A T H H   G H H   G H H 

Yonkkaichi_kwo Y R W M ML   G H ML*   T L ML 

NDSU0474 C A T H MH   G H MH   T L MH* 

ARC_90016 C A T H H   G H H   T L H* 

Brink C A T H MH   G H MH   G H MH 

Czyzowskich C A T H H   G H H   G H H 

Mar_160059 C A T H MH   G H MH   G H MH 

Tonus C A T H H   G H H   G H H 

Vanda C A T H H   G H H   G H H 

Wasefuji T A A H MH   K M MH   G H MH 

Prota C A T H H   G H H   K M H 

Ramses C A T H MH   G H MH   G H MH 
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Table A.3. Validation of the significant markers (0.01) for root vigor score (RVS), and root length (RL) by genotype based prediction 

of the germplasms.  

Germplasms 

RVS   RL 

chrA04_

5977698 
PRED OBS 

  

chrA01_

7949816 
PRED OBS 

  

chrC03_

4976549 
PRED OBS 

T/C   A/G   A/G 

Drawft T H MH   G L MH*   A H MH 

Bronowski T H MH   R M MH   A H MH 

Iwawoochi T H MH   A H MH   A H MH 

Q2 T H ML*   R M ML*   A H MH 

Ratnik T H MH   A H MH   A H H 

Attila T H MH   A H MH   A H MH 

Bolko T H ML*   A H ML*   A H MH 

Nemercanskjj_2268 T H MH   R M MH   A H MH 

Siberian T H MH   A H MH   A H H 

Yonkkaichi_kwo T H MH   A H MH   A H MH 

NDSU0474 T H ML*   A H ML*   A H H 

ARC_90016 T H ML*   A H ML*   A H H 

Brink T H MH   R M MH   A H MH 

Czyzowskich T H H   A H H   A H H 

Mar_160059 T H MH   R M MH   A H ML* 

Tonus T H MH   A H MH   G L MH* 

Vanda T H H   A H H   A H MH 

Wasefuji T H MH   A H MH   A H H 

Prota T H MH   A H MH   A H H 

Ramses Y M H*   A H H   A H H 
*Did not matched with our prediction, PRED=Predicted phenotype, OBS=Observed phenotype, H=High, MH= Moderately high,  

ML= Moderately low, L=Low, Y,R,WK=heterozugous for the markers. 
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Table A.4. Validation of the significant markers (0.01) for root angle (RA) by genotype-based prediction of the germplasms. 

Germplasms 

RA 

chrC06_3

3610701 

chrC06_3

3610722 
PRED OBS 

  

chrC03_

5436381 

chrC03_

5436391 
PRED OBS 

T/G T/G   T/G C/T 

Drawft T T H MH   T C H MH 

Bronowski T T H H   T C H H 

Iwawoochi T T H MH   T C H MH 

Q2 T T H MH   T C H MH 

Ratnik T T H H   T C H H 

Attila T T H MH   T C H MH 

Bolko T T H MH   T C H MH 

Nemercanskjj_2268 T T H ML*   T C H ML* 

Siberian T T H MH   K Y M MH 

Yonkkaichi_kwo T T H H   T C H H 

NDSU0474 T T H H   T C H H 

ARC_90016 T T H H   T C H H 

Brink T T H MH   T C H MH 

Czyzowskich K T H/M MH   T C H MH 

Mar_160059 K K M ML   K Y M ML* 

Tonus K K M MH   K Y M MH 

Vanda T T H MH   K Y M MH 

Wasefuji G G L MH*   T C H MH 

Prota T T H MH   T C H MH 

Ramses T T H MH   T C H MH 
*Did not matched with our prediction, PRED=Predicted phenotype, OBS=Observed phenotype, H=High, MH= Moderately high,  

ML= Moderately low, L=Low, Y,R,WK=heterozugous for the markers. 
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Table A.5. Name, origin and growth habits of the 216 germplasm accessions used in this study 

Name of the 

Accessions 

PI number Country of 

origin/obtained 

Growth Habit 

Doon Major PI 649143 USA Rutabaga 

Bristol White NSL 22937 USA Rutabaga 

Gylle PI 469812 South Korea Semi-winter 

Major  PI 469891 France Semi-winter 

NY-20 #N/A China Semi-winter 

NY-8 #N/A China Semi-winter 

Sera PI 458957 Germany Semi-winter 

Tokiwa PI 470049 South Korea Semi-winter 

Wipol PI 535871 Norway Semi-winter 

Azuma PI 469730 South Korea Semi-winter 

Dae cho sen PI 469758 South Korea Semi-winter 

Girita PI 458947 Germany Semi-winter 

Helga PI 649136 Germany Semi-winter 

Lisora PI 458953 Germany Semi-winter 

Matador  PI 469899 South Korea Semi-winter 

Mlochowski PI 535848 Poland Semi-winter 

Murame nadame  PI 469940 South Korea Semi-winter 

NY-7 #N/A China Semi-winter 

Nabo PI 469944 South Korea Semi-winter 

Nilla glossy  PI 469946 South Korea Semi-winter 

Todane PI 470048 South Korea Semi-winter 

Yong dang PI 470060 South Korea Semi-winter 

Yonkkaichi kwo PI 470061 South Korea Semi-winter 

Shang you PI 391553 China Semi-winter 

Azumasho PI 469734 South Korea Semi-winter 

Colza 18 Miroc  PI 469757 South Korea Semi-winter 

Eckendorfer Mali PI 469784 South Korea Semi-winter 

Lieikoposki  PI 469887 South Korea Semi-winter 

Miochowski  PI 469902 France Semi-winter 

Mutsumi  PI 469942 Japan Semi-winter 

N001-28-246-5-4  PI 469943 South Korea Semi-winter 

Nilla 1022  PI 469947 South Korea Semi-winter 

Petanova-lihonova PI 470003 South Korea Semi-winter 

Su weon chag PI 470031 South Korea Semi-winter 

Taichang PI 470036 South Korea Semi-winter 

Tanka PI 470044 South Korea Semi-winter 

Nugget PI 469999 South Korea Semi-winter 
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Table A.5. Name, origin and growth habits of the 216 germplasm accessions used in this study 

(Continued) 

Name of the 

Accessions 

PI number Country of 

origin/obtained 

Growth Habit 

Rang PI 470013 South Korea Semi-winter 

Rebel PI 540457 USA Semi-winter 

Oleifera PI 470000 South Korea Semi-winter 

NY-10 #N/A China Semi-winter 

Bingo PI 546468 USA Spring 

Colza PI 469756 South Korea Spring 

Comet Ames 15939 Sweden Spring 

Conquest #N/A Canada Spring 

Cougar #N/A Canada Spring 

Drakkar #N/A France Spring 

Galant #N/A Serbia Spring 

Gido PI 458946 Germany Spring 

Bronowski PI 469737, Ames 22548, PI 

649132 

Poland Spring 

Golden PI 649126 Canada Spring 

Gullivar PI 458937 Sweden Spring 

Hi-Q #N/A Canada Spring 

Kanada #N/A Poland Spring 

Kovalevskjj PI 633132 Ukraine Spring 

Legend PI 633118 Sweden Spring 

Lifura  PI 469888 South Korea Spring 

Ratnik #N/A Serbia Spring 

Romeo PI 458971 France Spring 

Silex #N/A Canada Spring 

Topas PI 601201 Sweden Spring 

Tower    PI 431574, Ames 2792, PI 431574 Canada Spring 

Vostochno-

sibirskii 

PI 633126 Russian 

Federation 

Spring 

Westar Ames 26653 Canada Spring 

Willa PI 470058 South Korea Spring 

NDSU151000 #N/A Canada Spring 

Delta PI 543937 Sweden Spring 

Evvin PI 633131 Russian 

Federation 

Spring 

Fonto PI 469789 South Korea Spring 

France 1 PI 469791 France Spring 

Galaxy Ames 15938 Sweden Spring 
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Table A.5. Name, origin and growth habits of the 216 germplasm accessions used in this study 

(Continued) 

Name of the 

Accessions 

PI number Country of 

origin/obtained 

Growth Habit 

Gora PI 458949 Germany Spring 

Janetzkis PI 469826 South Korea Spring 

Klinki PI 469840 South Korea Spring 

Brio PI 458919 France Spring 

Kosa PI 458951 Germany Spring 

Koubun PI 469841 South Korea Spring 

Kritmar rape PI 469843 South Korea Spring 

Kraphhauser PI 469842 South Korea Spring 

Midas PI 431571 Canada Spring 

Miekuro Dane  PI 469901 South Korea Spring 

Oro PI 458930 Canada Spring 

Orpal PI 458968 France Spring 

Polo canola Ames 26635 USA Spring 

Regent PI 431572 Canada Spring 

Seoul PI 537090 South Korea Spring 

Ceskia Tabor Ames 2793 Czechoslovakia Spring 

Sunrise PI 597352 USA Spring 

NDSU0472 #N/A USA Spring 

NDSU0473 #N/A USA Spring 

NDSU0474 #N/A USA Spring 

NDSU0619 #N/A USA Spring 

NDSU0620 #N/A USA Spring 

NDSU0728 #N/A USA Spring 

NDSU0729 #N/A USA Spring 

NDSU10999 #N/A USA Spring 

NDSU15989 #N/A USA Spring 

NDSU161013 #N/A USA Spring 

NDSU31011 #N/A USA Spring 

NDSU41000 #N/A USA Spring 

NDSU7997 #N/A USA Spring 

NDSU91013 #N/A USA Spring 

BO-63 Ames 15651 Canada Spring 

Cresor PI 458920 France Spring 

Crop        PI 458922 France Spring 

Czyzowski PI 535847, PI 311728 Poland Spring 

Tanto Fu 85 #N/A France Spring 
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Table A.5. Name, origin and growth habits of the 216 germplasm accessions used in this study 

(Continued) 

Name of the 

Accessions 

PI number Country of origin/obtained Growth 

Habit 

Fuji PI 469801 South Korea Spring 

IR-2 PI 531280 Hungary Spring 

Regina II Ames 1669 Canada Spring 

Sval of Gullen PI 470033 South Korea Spring 

NU 51084 PI 633124 Sweden Spring 

Tonus PI 470050 South Korea Spring 

Turret PI 365644 Canada Spring 

Wasefuji PI 470054 South Korea Spring 

Celebra PI 538766 Sweeden Spring 

Mar'janovskij PI 633125 Ukraine Spring 

NU 41737 PI 649135 Turkey Spring 

Printol PI 552810 USA Spring 

Reston PI 649152 USA Spring 

Premier PI 639274 USA Spring 

Prota PI 458955 Germany Spring 

Rico PI 458956 Germany Spring 

Russia 5 PI 470021 Russian Federation Spring 

Global PI 601200 Sweden Malmohus Spring 

Jasna #N/A Serbia Spring 

Baraska PI 649137 Germany Winter 

Barkant PI 531274 Netherlands Winter 

Crystal PI 601261 Sweden Winter 

Glacier PI 601260 Sweden Winter 

Iwawoochi PI 469823 South Korea Winter 

Jupiter Ames 6100 USA Winter 

Karafuto PI 469829 South Korea Winter 

Korina PI 535856 Germany Winter 

KSU 6 #N/A USA Winter 

Lembkes malchower  PI 469885 South Korea Winter 

Lesira PI 409023 Germany Winter 

Lester PI 535857 Germany Winter 

Lindora-00 PI 601282 Germany Winter 

Linglandor PI 531283 Germany Winter 

Lirama PI 535860 Germany Winter 

Liratrop PI 531284 Germany Winter 

Regal PI 470019 South Korea Winter 
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Table A.5. Name, origin and growth habits of the 216 germplasm accessions used in this study 

(Continued) 

Name of the 

Accessions 

PI number Country of 

origin/obtained 

Growth Habit 

Titus PI 470046 South Korea Winter 

Trebicska PI 399418, PI 470052 Czech Republic Winter 

Tri-Bridger PI 542984 USA Winter 

Valdor PI 535850 France Winter 

Wichita PI 612846 USA Winter 

Beryl PI 535851 Poland Winter 

Cobra PI 601661 Germany Winter 

Cult #N/A Canada Winter 

Da vinci #N/A Canada Winter 

BNW 161/83 PI 531275 Germany Winter 

Dong Buk PI 469759 South Korea Winter 

Erra PI 409022 Germany Winter 

Expander PI 469787 Germany Winter 

Fashion #N/A Canada Winter 

Fertodi PI 469788 South Korea Winter 

Bolko PI 633120 Poland Winter 

Gebr Dippes PI 469802 South Korea Winter 

Bridger PI 509073 USA Winter 

Ibiza #N/A Canada Winter 

KSU 1 #N/A USA Winter 

KSU 2 #N/A USA Winter 

KSU 5 #N/A USA Winter 

Kasuyashu PI 469831 South Korea Winter 

Kuju PI 469845 South Korea Winter 

Kutkowski  PI 469882 South Korea Winter 

Ladoga #N/A Canada Winter 

Lenora  PI 469886 South Korea Winter 

Librador PI 531281 Germany Winter 

Linus  PI 469889 South Korea Winter 

Lorenze #N/A Canada Winter 

NY-18 #N/A China Winter 

Siberian Ames 26626 USA Winter 

Sparta PI 649141 USA Winter 

Synra PI 470035 South Korea Winter 

Wira PI 458959 Germany Winter 

ARC-2180-1 #N/A USA Winter 



  

 231 

  

  

Table A.5. Name, origin and growth habits of the 216 germplasm accessions used in this study 

(Continued) 

Name of the 

Accessions 

PI number Country of 

origin/obtained 

Growth Habit 

ARC 97019 #N/A USA Winter 

Bienvenu Ames 15654 USA Winter 

AR91004 PI 610258 USA Winter 

ARC 90016 #N/A USA Winter 

Barplina PI 469736 South Korea Winter 

Brink PI 458935 Sweden Winter 

Eragi PI 458945 Germany Winter 

Host rape regel PI 469817 South Korea Winter 

Kasuya PI 469830 South Korea Winter 

KS3579 PI 594321 USA Winter 

KSU 7 #N/A USA Winter 

KSU 8 #N/A USA Winter 

KSU 9 #N/A USA Winter 

Lembkes PI 469883 South Korea Winter 

Licantara PI 535874 Germany Winter 

Lindore PI 531282 Germany Winter 

Lirabou PI 535858 Germany Winter 

Mihonatane  PI 469903 South Korea Winter 

Mulchower  PI 469892 South Korea Winter 

Niedera-rubacher  PI 469945 South Korea Winter 

Norin#1  PI 469949 Japan Winter 

CHUN-NUNG 1 PI 391552 China Winter 

Corvette PI 555467 UK Winter 

Per PI 649128, Ames 26657 Sweden Winter 

Prover PI 649144 USA Winter 

Ridana PI 535865 Germany Winter 

R. Creaus PI 470010 South Korea Winter 

Ramses PI 470012 South Korea Winter 

Red Russian Ames 26645 USA Winter 

Rafal PI 458970 France Winter 

KSU 3 #N/A USA Winter 

KSU 10 #N/A USA Winter 

Billy #N/A Sweden Winter 

Vision #N/A Canada Winter 

KSU 4 #N/A USA Winter 

ARC 97018 #N/A USA Winter 
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Table A.5. Name, origin and growth habits of the 216 germplasm accessions used in this study 

(Continued) 

Name of the 

Accessions 

PI number Country of 

origin/obtained 

Growth Habit 

Goya #N/A Canada Winter 
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Table A.6. Differentially regulated gene sets in spring vs winter at 30 days detected from Gene Set Enrichment Analysis (GSEA) 

Gene sets Upregulated in Spring 

No. of 

measure

d entities 

p-value   Gene sets Upregulated in winter 

No. of 

measu

red 

entitie

s 

p-value 

response to high light intensity 27 0.00017   structural constituent of ribosome 186 1.5E-10 

ADP binding 21 0.00025   translation 187 1E-08 

extracellular region 373 0.00025   ribosome 149 8E-08 

defense response 151 0.00045   plasmodesma 355 2.1E-06 

response to jasmonic acid 60 0.00064   cytosolic ribosome 114 2.3E-06 

amino acid transmembrane 

transporter activity 18 0.00084   cell wall 195 2.8E-06 

peptidase S10 family 8 0.00089   cytosolic small ribosomal subunit 47 5.5E-06 

serine carboxypeptidase 8 0.00089   cytosolic large ribosomal subunit 64 3.6E-05 

serine-type carboxypeptidase activity 8 0.00089   extracellular region 358 0.00016 

response to wounding 83 0.00122   nucleolus 164 0.00021 

polyamine biosynthetic process 5 0.0017   lactoperoxidase 25 0.00039 

ribosome 62 0.0019   lactoperoxidase 25 0.00039 

cell wall 168 0.00271   lactoperoxidase 25 0.00039 

calcium ion transmembrane transport 10 0.00273   lactoperoxidase 25 0.00039 

cytosolic small ribosomal subunit 30 0.00306   ribosome biogenesis 77 0.0004 

SNAP receptor activity 19 0.00373   

mitochondrial proton-transporting ATP 

synthase complex, catalytic core F(1) 6 0.00047 

monooxygenase activity 19 0.00417   hydrogen peroxide catabolic process 32 0.00079 

Plant Growth Auxin Signaling 15 0.0043   translational elongation 31 0.00079 

amino acid transport 15 0.005   Apoplast 166 0.00088 

phenylpropanoid biosynthetic process 7 0.00539   

hydrogen-transporting ATP synthase, 

F1 sector 5 0.00107 
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Table A.6. Differentially regulated gene sets in spring vs winter at 30 days detected from Gene Set Enrichment Analysis (GSEA) 

(Continued) 

Gene sets Upregulated in Spring 

No. of 

measure

d entities 

p-value   
Gene sets Upregulated in 

winter 

No. of 

measured 

entities 

p-value 

chitin catabolic process 7 0.00649   ribosomal protein L12P family 5 0.00111 

chitin binding 7 0.0066   ribosomal protein L12P family 5 0.00111 

response to heat 78 0.00726   

mitochondrial proton-transporting 

ATP synthase complex 11 0.00139 

cysteine biosynthetic process from serine 6 0.00868   defense response to virus 8 0.00172 

SNARE binding 17 0.0088   heme binding 75 0.0019 

response to other organism 18 0.00916   copper ion binding 106 0.00229 

chloroplast membrane 25 0.00967   ubiquitin-like domain 16 0.00271 

chitinase activity 6 0.01004   peroxidase activity 43 0.0028 

cellular response to heat 8 0.01029   endopeptidase inhibitor activity 5 0.00286 

vesicle fusion 15 0.0104   small heat shock protein 7 0.00419 

positive regulation of flower development 10 0.01137   small heat shock protein 7 0.00419 

cysteine biosynthetic process 9 0.01147   response to wounding 66 0.00451 

small heat shock protein 11 0.01164   ADP binding 13 0.0049 

small heat shock protein 11 0.01164   endoplasmic reticulum lumen 22 0.00494 

SNARE complex 18 0.01177   large ribosomal subunit 28 0.00506 

cysteine-type endopeptidase inhibitor 

activity 5 0.01183   response to oxidative stress 124 0.00535 

cytosolic ribosome 68 0.01211   monooxygenase activity 10 0.00542 

AMP salvage 5 0.01216   response to brassinosteroid 7 0.00585 

UDP-glycosyltransferase activity 18 0.01282   Vacuole 259 0.00594 
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Table A.6. Differentially regulated gene sets in spring vs winter at 30 days detected from Gene Set Enrichment Analysis (GSEA) 

(Continued) 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value   Gene sets Upregulated in winter 

No. of 

measured 

entities 

p-value 

response to bacterium 38 0.01345   chitinase activity 7 0.006 

cellular response to nitrogen 

starvation 7 0.01382   

unsaturated fatty acid biosynthetic 

process 5 0.00743 

translation 93 0.01548   defense response to fungus 64 0.00749 

response to salicylic acid 48 0.01651   chitin catabolic process 6 0.00755 

symporter activity 19 0.01655   defense response 121 0.00801 

hydrolase activity, hydrolyzing O-

glycosyl compounds 34 0.01673   

proton-transporting ATP synthase 

activity, rotational mechanism 11 0.00866 

metabolic process 47 0.01675   water channel 8 0.0095 

sucrose biosynthetic process 5 0.01681   water channel 8 0.0095 

plasmodesma 360 0.01715   

response to molecule of bacterial 

origin 7 0.00995 

structural constituent of ribosome 93 0.01742   L-phenylalanine catabolic process 5 0.01 

protein autophosphorylation 47 0.01759   LIM domain 6 0.01025 

Ca2+-transporting ATPase 7 0.01766   response to heat 64 0.01026 

root hair cell development 5 0.01774   polysaccharide catabolic process 5 0.01047 

gravitropism 7 0.01806   

Jasmonic Acid, Ethylene, and 

Salicylic Acid Crosstalk Signaling 18 0.01055 

IAAs 11 0.01824   acid phosphatase activity 6 0.01084 

Osmotic Stress Signaling 6 0.01861   

integral component of plasma 

membrane 44 0.01089 

Gravitropism and Phototropism 

Auxin Signaling 11 0.0195   water transport 7 0.01155 
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Table A.6. Differentially regulated gene sets in spring vs winter at 30 days detected from Gene Set Enrichment Analysis (GSEA) 

(Continued) 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value   
Gene sets Upregulated in 

winter 

No. of 

measured 

entities 

p-value 

cellulose synthase (UDP-forming) 9 0.01965   microtubule binding 10 0.0119 

cellulose synthase (UDP-forming) 9 0.01965   viral process 17 0.01215 

cellulose synthase (UDP-forming) 9 0.01965   

calcium-transporting ATPase 

activity 5 0.01217 

cellulose synthase activity 9 0.01965   Fe2OG dioxygenase domain 10 0.01226 

calcium-transporting ATPase activity 8 0.01967   glucosinolate catabolic process 8 0.01252 

proteolysis involved in cellular 

protein catabolic process 24 0.02091   fatty acid desaturase family 7 0.01304 

killing of cells of other organism 6 0.02253   CLE peptide family 5 0.01314 

response to stress 27 0.02298   response to auxin 67 0.01482 

negative regulation of translation 5 0.02352   cell growth 9 0.01612 

cobalt ion binding 28 0.0239   response to jasmonic acid 45 0.01617 

glucan endo-1,3-beta-D-glucosidase 5 0.02403   water channel activity 13 0.0179 

glucan endo-1,3-beta-D-glucosidase 

activity 5 0.02403   oxidation-reduction process 359 0.01883 

nutrient reservoir activity 12 0.02432   cation transport 7 0.01901 

calcium channel activity 5 0.02456   plant-type cell wall organization 15 0.02116 

transferase activity, transferring 

glycosyl groups 95 0.02526   FKBP-type PPIase family 5 0.02144 

response to cold 125 0.02774   PPIase FKBP-type domain 5 0.02144 

Senescence Auxin Signaling 16 0.02893   peptidyl-proline modification 5 0.02144 

apoplast 151 0.03113   FK506 binding 5 0.02144 

Glucosinolate biosynthesis from 

dihomomethionine 8 0.03148   cytoplasm 1146 0.02333 

PRA1 family 9 0.03195   protein polyubiquitination 20 0.02389 
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Table A.6. Differentially regulated gene sets in spring vs winter at 30 days detected from Gene Set Enrichment Analysis (GSEA) 

(Continued) 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value   Gene sets Upregulated in winter 

No. of 

measured 

entities 

p-value 

MATE 11 0.03268   TC 3.D.1.6 16 0.02451 

drug transmembrane transporter 

activity 11 0.03268   response to hydrogen peroxide 23 0.02589 

monosaccharide transmembrane 

transporter activity 5 0.03273   

hydrolase activity, acting on ester 

bonds 16 0.02822 

signal transduction 67 0.03509   auxin-activated signaling pathway 36 0.02841 

nitrate assimilation 12 0.03532   O-methyltransferase activity 6 0.02867 

xyloglucan:xyloglucosyl transferase 12 0.03662   mitochondrial envelope 7 0.03059 

xyloglucan:xyloglucosyl transferase 12 0.03662   chitin binding 6 0.03171 

xyloglucan:xyloglucosyl transferase 12 0.03662   phosphorylphosphatase 7 0.03271 

protein kinase binding 11 0.0371   response to cadmium ion 196 0.03281 

response to light stimulus 41 0.03779   response to high light intensity 18 0.03333 

hydrogen-transporting ATP 

synthase, F1 sector 5 0.03825   cellular water homeostasis 12 0.03448 

dioxygenase activity 14 0.03896   cellular response to stress 12 0.03448 

EamA domain 18 0.03932   glycerol channel activity 12 0.03448 

oxylipin biosynthetic process 9 0.03998   electron carrier activity 55 0.03489 

secondary metabolic process 5 0.04036   Cold-Stress Signaling 8 0.03591 

protein kinase domain 120 0.041   root morphogenesis 6 0.03661 

MADS box protein 6 0.0411   

ATP synthesis coupled proton 

transport 11 0.03684 

MADS box protein 6 0.0411   response to salt stress 218 0.03702 
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Table A.6. Differentially regulated gene sets in spring vs winter at 30 days detected from Gene Set Enrichment Analysis (GSEA) 

(Continued) 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value   Gene sets Upregulated in winter 

No. of 

measured 

entities 

p-value 

lignin biosynthetic process 22 0.04126   

oxidoreductase activity, acting on 

paired donors, with incorporation or 

reduction of molecular oxygen, 2-

oxoglutarate as one donor, and 

incorporation of one atom each of 

oxygen into both donors 11 0.03703 

ATP binding 522 0.04212   glycosyl hydrolase 1 family 10 0.03718 

cellulose synthase (UDP-forming) 

activity 8 0.04371   beta-glucosidase activity 10 0.03718 

lipid metabolic process 29 0.04375   flavanone 3-dioxygenase 6 0.03845 

metal ion transport 19 0.04378   calmodulin binding 44 0.03908 

response to brassinosteroid 9 0.04416   IAAs 7 0.0402 

v-SNARE coiled-coil homology 

domain 7 0.04419   ribosomal large subunit assembly 13 0.04084 

longin domain 7 0.04419   regulation of defense response 16 0.04095 

growth 10 0.04555   structural constituent of cell wall 5 0.04167 

auxin-activated signaling pathway 39 0.04746   

negative regulation of programmed 

cell death 8 0.04256 

sulfotransferase 1 family 5 0.04925   cytochrome b5 family 5 0.0436 

sulfotransferase 5 0.04925   cellular response to heat 11 0.04383 
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Table A.6. Differentially regulated gene sets in spring vs winter at 30 days detected from Gene Set Enrichment Analysis (GSEA) 

(Continued) 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value   Gene sets Upregulated in winter 

No. of 

measured 

entities 

p-value 

sulfotransferase activity 5 0.04925   ribosomal small subunit assembly 8 0.04392 

        

double fertilization forming a 

zygote and endosperm 6 0.04409 

        

oxidoreductase activity, acting on 

paired donors, with incorporation or 

reduction of molecular oxygen 7 0.04559 

        

ER-associated ubiquitin-dependent 

protein catabolic process 7 0.04755 

        developmental process 6 0.04869 

        transcription corepressor activity 6 0.04993 
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Table A.7. Differentially regulated subnetwork gene sets in spring vs winter at 30 days detected from Sub-network Enrichment 

Analysis (SNEA) 

Gene sets Upregulated in 

Spring 

No. of 

measured 

entities 

p-value   Gene sets Upregulated in Winter 

No. of 

measu

red 

entities 

p-value 

Expression Targets of HSF3 8 0.00146   Expression Targets of JAR1 6 0.03456 

Expression Targets of STZ 6 0.00669   Expression Targets of RBOHD 6 0.03478 

Expression Targets of HSF 11 0.01135   Expression Targets of SIZ1 6 0.04665 

Expression Targets of MP 7 0.01185   Binding Partners of HDA6 15 0.00947 

Expression Targets of DREB2C 5 0.03068   Binding Partners of WRKY70 5 0.01280 

Expression Targets of HSF1 6 0.03543   Binding Partners of SCF(TIR1) complex 5 0.01521 

Expression Targets of RBOH F 5 0.0476   Binding Partners of BZR1 14 0.02398 

Binding Partners of HSC70-1 9 0.00026   Binding Partners of SGT1B 6 0.02460 

Binding Partners of FLS2 15 0.00135   Binding Partners of FLS2 12 0.03677 

Binding Partners of CUL3 8 0.01217   Binding Partners of PUB22 5 0.0390 

Binding Partners of ABF3 5 0.0254   Binding Partners of TIR1 9 0.03959 

Binding Partners of TIR1 6 0.02704   Binding Partners of BRI1 6 0.03999 

Binding Partners of HSP70 10 0.03378   Binding Partners of CUL3 8 0.04144 

Binding Partners of phytochrome 7 0.04201   Binding Partners of 14-3-3 15 0.044032 

Binding Partners of SRFR1 5 0.04273   

Binding Partners of bZIP transcription 

factor 10 0.048842 

Binding Partners of SYTA 7 0.04608   Protein Modification Targets of OST1 7 0.008566 

Binding Partners of SYP121 8 0.04658   

Proteins/Chemicals Regulating Diseases 

of fungal plant disease 8 0.02828 

Protein Modification Targets of 

CaMK family 16 0.03494   

Proteins/Chemicals Regulating Cell 

Processes of lignification 23 0.003243 

Protein Modification Targets of 

CPK6 6 0.04767   

Proteins/Chemicals Regulating Cell 

Processes of Ca++ export 7 0.007799 

Proteins/Chemicals Regulating 

Diseases of tomato yellow leaf 

curl 5 0.01579   

Proteins/Chemicals Regulating Cell 

Processes of innate immune response 43 0.011722 
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Table A.7. Differentially regulated subnetwork gene sets in spring vs winter at 30 days detected from Sub-network Enrichment 

Analysis (SNEA) (Continued). 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value   Gene sets Upregulated in Winter 

No. of 

measured 

entities 

p-value 

Proteins/Chemicals Regulating Cell 

Processes of lignin biosynthesis 20 0.003602   

Proteins/Chemicals Regulating Cell Processes 

of root growth 184 0.018099 

Proteins/Chemicals Regulating Cell 

Processes of seed abscission 9 0.005505   

Proteins/Chemicals Regulating Cell Processes 

of vegetative growth 26 0.020967 

Proteins/Chemicals Regulating Cell 

Processes of photoinhibition 7 0.006022   

Proteins/Chemicals Regulating Cell Processes 

of lipid degradation 6 0.029237 

Proteins/Chemicals Regulating Cell 

Processes of photoprotection 7 0.010112   

Proteins/Chemicals Regulating Cell Processes 

of nitrate uptake 6 0.031259 

Proteins/Chemicals Regulating Cell 

Processes of plant viability 6 0.01061   

Proteins/Chemicals Regulating Cell Processes 

of nuclear membrane fusion 5 0.031492 

Proteins/Chemicals Regulating Cell 

Processes of lignification 31 0.01141   

Proteins/Chemicals Regulating Cell Processes 

of superoxide anion generation 9 0.031698 

Proteins/Chemicals Regulating Cell 

Processes of lignin content 12 0.012972   

Proteins/Chemicals Regulating Cell Processes 

of reductive pentose-phosphate cycle 5 0.034276 

Proteins/Chemicals Regulating Cell 

Processes of leaf size 21 0.019888   

Proteins/Chemicals Regulating Cell Processes 

of somatic embryogenesis 8 0.035136 

Proteins/Chemicals Regulating Cell 

Processes of seed growth 5 0.021204   

Proteins/Chemicals Regulating Cell Processes 

of jasmonate response 27 0.036007 

Proteins/Chemicals Regulating Cell 

Processes of fertilization 23 0.023507   

Proteins/Chemicals Regulating Cell Processes 

of nonphotochemical quenching 7 0.039249 

Proteins/Chemicals Regulating Cell 

Processes of callus development 12 0.023772   

Proteins/Chemicals Regulating Cell Processes 

of stem growth 15 0.044802 

Proteins/Chemicals Regulating Cell 

Processes of lipid peroxidation 17 0.023869   

Proteins/Chemicals Regulating Cell Processes 

of heat-shock response 13 0.046624 
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Table A.7. Differentially regulated subnetwork gene sets in spring vs winter at 30 days detected from Sub-network Enrichment 

Analysis (SNEA) (Continued). 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value Gene sets Upregulated in Winter 

No. of 

measured 

entities 

p-value 

Proteins/Chemicals Regulating Cell 

Processes of xylem loading 11 0.03033 Upstream Neighbors of Ca2+ 20 0.000781 

Proteins/Chemicals Regulating Cell 

Processes of negative gravitropism 5 0.031428 Upstream Neighbors of COI1 11 0.00274 

Proteins/Chemicals Regulating Cell 

Processes of root differentiation 28 0.032618 Upstream Neighbors of lignification 23 0.002832 

Proteins/Chemicals Regulating Cell 

Processes of secondary metabolism 5 0.035186 Upstream Neighbors of CO2 6 0.00548 

Proteins/Chemicals Regulating Cell 

Processes of meristem initiation 13 0.035346 Upstream Neighbors of auxin response factor 11 0.005713 

Proteins/Chemicals Regulating Cell 

Processes of heat-shock response 19 0.035644 Upstream Neighbors of IAA7 6 0.005939 

Proteins/Chemicals Regulating Cell 

Processes of membrane depolarization 5 0.037249 Upstream Neighbors of Ca++ export 7 0.007337 

Proteins/Chemicals Regulating Cell 

Processes of photosynthetic electron 

transport 6 0.040296 Upstream Neighbors of RRTF1 5 0.009431 

Proteins/Chemicals Regulating Cell 

Processes of sugar concentration 8 0.042553 

Upstream Neighbors of innate immune 

response 43 0.00969 

Proteins/Chemicals Regulating Cell 

Processes of xylem development 14 0.044 Upstream Neighbors of UDP-glucose 6 0.010892 

Upstream Neighbors of heat shock 

protein 18 0.00012 Upstream Neighbors of root growth 184 0.012684 

Upstream Neighbors of lignin 21 0.001133 Upstream Neighbors of superoxide dismutase 19 0.014166 

Upstream Neighbors of lignin 

biosynthesis 20 0.002927 

Upstream Neighbors of 

phosphatidylethanolamine 5 0.014245 
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Table A.7. Differentially regulated subnetwork gene sets in spring vs winter at 30 days detected from Sub-network Enrichment 

Analysis (SNEA) (Continued). 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value Gene sets Upregulated in Winter 

No. of 

measured 

entities 

p-value 

Upstream Neighbors of seed abscission 9 0.004799 Upstream Neighbors of alpha-amylase 11 0.017035 

Upstream Neighbors of photoinhibition 7 0.005444 Upstream Neighbors of vegetative growth 26 0.019124 

Upstream Neighbors of monosaccharide 7 0.006822 Upstream Neighbors of IAA5 5 0.021059 

Upstream Neighbors of HSF 13 0.008886 Upstream Neighbors of GA20OX1 10 0.02457 

Upstream Neighbors of linoleic acid 5 0.008943 Upstream Neighbors of TOR 5 0.024631 

Upstream Neighbors of HSFA3 7 0.009291 Upstream Neighbors of fungal plant disease 8 0.026126 

Upstream Neighbors of photoprotection 7 0.009512 Upstream Neighbors of WOX5 5 0.026867 

Upstream Neighbors of lignification 31 0.009808 Upstream Neighbors of ATP 32 0.027197 

Upstream Neighbors of plant viability 6 0.010001 Upstream Neighbors of lipid degradation 6 0.027558 

Upstream Neighbors of phenylpropanoid 16 0.011595 Upstream Neighbors of DREB1A 25 0.029392 

Upstream Neighbors of lignin content 12 0.011703 

Upstream Neighbors of superoxide anion 

generation 9 0.02965 

Upstream Neighbors of cellulose 11 0.012655 

Upstream Neighbors of nuclear membrane 

fusion 5 0.029968 

Upstream Neighbors of photosystem II 

reaction center 27 0.012759 Upstream Neighbors of ADP 13 0.030419 

Upstream Neighbors of HSF1 6 0.013888 Upstream Neighbors of nitrate uptake 6 0.030593 

Upstream Neighbors of indole-3-acetic 

acid 29 0.014903 Upstream Neighbors of polyamine 12 0.031171 

Upstream Neighbors of spermidine 7 0.015634 

Upstream Neighbors of H+-transporting 

two-sector ATPase 16 0.031523 

Upstream Neighbors of KIN1 10 0.016262 Upstream Neighbors of jasmonate response 27 0.032613 
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Table A.7. Differentially regulated subnetwork gene sets in spring vs winter at 30 days detected from Sub-network Enrichment 

Analysis (SNEA) (Continued). 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value Gene sets Upregulated in Winter 

No. of 

measured 

entities 

p-value 

Upstream Neighbors of leaf size 21 0.018463 

Upstream Neighbors of reductive pentose-

phosphate cycle 5 0.033263 

Upstream Neighbors of seed growth 5 0.019617 

Upstream Neighbors of somatic 

embryogenesis 8 0.033592 

Upstream Neighbors of fertilization 23 0.020252 

Upstream Neighbors of pyruvate 

decarboxylase 5 0.034571 

Upstream Neighbors of tomato yellow 

leaf curl 5 0.020515 Upstream Neighbors of RPM1 5 0.035089 

Upstream Neighbors of lipid 

peroxidation 17 0.021442 Upstream Neighbors of CBF1 17 0.035714 

Upstream Neighbors of callus 

development 12 0.021474 Upstream Neighbors of NO3- transporter 8 0.03677 

Upstream Neighbors of flavonols 7 0.026461 

Upstream Neighbors of nonphotochemical 

quenching 7 0.037921 

Upstream Neighbors of xylem loading 11 0.028535 Upstream Neighbors of PAP1 10 0.03794 

Upstream Neighbors of root 

differentiation 28 0.028684 Upstream Neighbors of stem growth 15 0.039544 

Upstream Neighbors of spermine 8 0.02881 Upstream Neighbors of lignin 22 0.042064 

Upstream Neighbors of pipecolic acid 5 0.029538 Upstream Neighbors of heat-shock response 13 0.042797 

Upstream Neighbors of ribosome 

protein 5 0.029585 Upstream Neighbors of CAT2 8 0.043315 

Upstream Neighbors of negative 

gravitropism 5 0.030471 Upstream Neighbors of IAAs 15 0.044662 

Upstream Neighbors of monolignol 7 0.030576 Upstream Neighbors of cell death 147 0.045226 
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Table A.7. Differentially regulated subnetwork gene sets in spring vs winter at 30 days detected from Sub-network Enrichment 

Analysis (SNEA) (Continued). 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value Gene sets Upregulated in Winter 

No. of 

measured 

entities 

p-value 

Upstream Neighbors of heat-shock 

response 19 0.03217 

Upstream Neighbors of response to oxidative 

stress 12 0.048452 

Upstream Neighbors of meristem 

initiation 13 0.032689 Upstream Neighbors of shoot morphogenesis 6 0.048753 

Upstream Neighbors of NIR1 5 0.033078 Upstream Neighbors of AXR1 9 0.049112 

Upstream Neighbors of secondary 

metabolism 5 0.033098 Upstream Neighbors of GSH2 6 0.04984 

Upstream Neighbors of ABF1 5 0.033907       

Upstream Neighbors of membrane 

depolarization 5 0.035553       

Upstream Neighbors of PAD3 8 0.037135       

Upstream Neighbors of 

photosynthetic electron transport 6 0.037735       

Upstream Neighbors of OPR3 5 0.037772       

Upstream Neighbors of xylem 

development 14 0.039082       

Upstream Neighbors of caffeoyl-

CoA 5 0.039639       

Upstream Neighbors of sugar 

concentration 8 0.039662       

Upstream Neighbors of glucose 12 0.040144       

Upstream Neighbors of fructose 7 0.04058       

Upstream Neighbors of Ca2+ 31 0.041904       

Upstream Neighbors of immune 

response 70 0.042575       
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Table A.7. Differentially regulated subnetwork gene sets in spring vs winter at 30 days detected from Sub-network Enrichment 

Analysis (SNEA) (Continued). 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value Gene sets Upregulated in Winter 

No. of 

measured 

entities 

p-value 

Upstream Neighbors of phenylalanine 

ammonia-lyase 10 0.044963       

Upstream Neighbors of WRKY33 17 0.045339       

Upstream Neighbors of polyamine 13 0.045825       

Upstream Neighbors of carotenoid 11 0.046753       

Upstream Neighbors of EREBP 8 0.048094       

Upstream Neighbors of SEP3 6 0.048504       

Upstream Neighbors of RBOH F 5 0.049407       
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Table A.8. Differentially regulated gene sets in spring vs winter at 60 days detected from Gene Set Enrichment Analysis (GSEA) 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value Gene sets Upregulated in Winter 
No. of measured 

entities 
p-value 

3-chloroallyl aldehyde dehydrogenase 

activity 5 0.01554 abscisic acid binding 5 0.01599 

aging 12 0.01385 abscisic acid receptor 5 0.01914 

aldehyde dehydrogenase (NAD) 

activity 5 0.01554 

amino acid transmembrane transporter 

activity 16 0.02273 

aldehyde dehydrogenase family 5 0.01554 apoplast 157 0.02924 

amino acid transmembrane transport 8 0.03505 basipetal auxin transport 5 0.04947 

amino acid transmembrane 

transporter activity 16 0.00275 calcium-dependent phospholipid binding 5 0.04007 

amino acid transport 14 0.00428 calcium-mediated signaling 8 0.02509 

AMP salvage 5 0.00112 CBF/NF-Y transcription factors 9 0.03665 

apoplast 150 0.00027 cell wall 182 

6.23E-

05 

ARR-A type family 5 0.00366 cell wall biogenesis 16 0.0207 

beta-fructofuranosidase 6 0.03329 cellular copper ion homeostasis 5 0.02253 

calcium ion binding 62 0.04074 cellular heat acclimation 5 0.021 

camalexin biosynthetic process 6 0.00387 cellular response to heat 12 0.00472 

carbohydrate metabolic process 67 0.00341 cellular response to hypoxia 7 0.00126 

carboxylic ester hydrolase activity 28 0.01407 cellular response to UV-B 5 0.03911 

carboxylic ester hydrolase 

superfamily 18 0.00648 chaperone-mediated protein folding 8 0.03276 

cell wall 175 3.9E-07 Cold-Stress Signaling 7 0.03732 

cellular amino acid metabolic process 14 0.03378 copper ion binding 99 0.00924 

cellular response to ethylene stimulus 5 0.02214 cytoplasmic stress granule 6 0.0089 
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Table A.8. Differentially regulated gene sets in spring vs winter at 60 days detected from Gene Set Enrichment Analysis (GSEA) 

(Continued) 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value Gene sets Upregulated in Winter 
No. of measured 

entities 
p-value 

cellular response to phosphate 

starvation 18 0.04923 DREB 5 0.02918 

cellular response to stress 11 0.01973 drought recovery 6 0.01516 

cellular water homeostasis 11 0.01973 E2 24 0.02433 

chitin binding 7 0.00747 endonuclease activity 6 0.04983 

chitin catabolic process 7 0.00429 extracellular region 393 

3.61E-

05 

chitinase activity 6 0.01091 FK506 binding 6 0.01069 

chloroplast thylakoid lumen 9 0.02793 FKBP-type PPIase family 5 0.01431 

circadian rhythm 25 0.02997 glutathione metabolic process 29 0.02188 

copper ion binding 90 0.03615 glutathione transferase 29 0.00615 

cytokinin-activated signaling pathway 17 0.01774 glutathione transferase activity 30 0.00509 

Cytokinins Signaling 14 0.00244 glycerol metabolic process 7 0.01867 

cytoplasm 1021 0.04066 GST C-terminal domain 32 0.0008 

cytosolic ribosome 104 0.04341 GST N-terminal domain 30 0.00279 

defense response by callose 

deposition in cell wall 10 0.02404 heat acclimation 14 0.04143 

defense response to oomycetes 9 0.00637 heme binding 79 0.00106 

esterase 5 0.04351 hydrogen peroxide catabolic process 29 0.00019 

expansin 7 0.01282 

hydrogen-transporting ATP synthase, F1 

sector 5 0.04403 

extracellular region 339 4.1E-07 

hydrolase activity, acting on glycosyl 

bonds 12 0.02049 
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Table A.8. Differentially regulated gene sets in spring vs winter at 60 days detected from Gene Set Enrichment Analysis (GSEA) 

(Continued) 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value Gene sets Upregulated in Winter 
No. of measured 

entities 
p-value 

FAD-binding FR-type domain 5 0.02184 

hydrolase activity, hydrolyzing O-

glycosyl compounds 31 0.0468 

Fe2OG dioxygenase domain 10 0.03759 indole glucosinolate metabolic process 7 0.03468 

G2-like family 10 0.03707 inorganic diphosphatase 5 0.01567 

gibberellic acid mediated signaling 

pathway 11 0.00424 inorganic diphosphatase activity 6 0.00921 

Gibberellin Signaling 13 0.01423 lactoperoxidase 24 0.00026 

glucan endo-1,3-beta-D-glucosidase 5 0.01926 lactoperoxidase 24 0.00026 

glucan endo-1,3-beta-D-glucosidase 

activity 5 0.01926 lactoperoxidase 24 0.00026 

Glucosinolate biosynthesis from 

dihomomethionine 11 0.00343 lactoperoxidase 24 0.00026 

Glucosinolate biosynthesis from 

homomethionine 5 0.04343 large ribosomal subunit 18 0.04332 

glucosinolate biosynthetic process 12 0.00323 LIM domain 7 0.02414 

glucosinolate catabolic process 8 0.03153 lipase activity 7 0.03099 

glycerol channel activity 11 0.01973 lipid particle 5 0.01745 

heme binding 63 0.01569 manganese ion binding 11 0.00677 

hydrogen peroxide catabolic process 19 0.0208 metal ion transport 20 0.04736 

hydrolase activity, acting on ester 

bonds 28 0.00411 

mitochondrial proton-transporting ATP 

synthase complex, catalytic core F(1) 6 0.02097 

hydrolase activity, hydrolyzing O-

glycosyl compounds 38 0.0012 NAC family 25 0.02718 
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Table A.8. Differentially regulated gene sets in spring vs winter at 60 days detected from Gene Set Enrichment Analysis (GSEA) 

(Continued) 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value Gene sets Upregulated in Winter 

No. of 

measured 

entities 

p-value 

induced systemic resistance 5 0.00562 nuclease activity 5 0.00587 

killing of cells of other organism 8 0.01319 nutrient reservoir activity 13 0.01727 

leaf development 28 0.02256 CBF/NF-Y transcription factors 5 0.03941 

lignin biosynthetic process 23 0.03439 oxalate decarboxylase activity 5 0.03763 

lipid catabolic process 27 0.00093 oxalate metabolic process 5 0.03763 

L-phenylalanine catabolic process 5 0.03473 oxidation-reduction process 368 0.00146 

L-serine biosynthetic process 5 0.04208 

oxidoreductase activity, acting on 

paired donors, with incorporation or 

reduction of molecular oxygen, 2-

oxoglutarate as one donor, and 

incorporation of one atom each of 

oxygen into both donors 12 0.02722 

MADS box protein 7 0.01787 P4HA family 5 0.02507 

MADS box protein 7 0.01787 P4HA family 5 0.02507 

magnesium ion binding 39 0.03836 

peptidyl-proline hydroxylation to 4-

hydroxy-L-proline 5 0.02507 

metal ion transport 18 0.03308 peptidyl-proline modification 6 0.01069 

methylation 48 0.01535 peroxidase activity 40 0.00205 

negative regulation of seed 

germination 6 0.04228 phosphorylphosphatase 8 0.0086 

nitrate assimilation 8 0.01049 plant-type cell wall organization 13 0.01436 

nutrient reservoir activity 10 0.00518 PPIase FKBP-type domain 5 0.01431 

oligopeptide transporter 7 0.00868 PPR (pentatricopeptide) repeat 9 0.01775 

oligopeptide transporter 7 0.00868 

procollagen-proline 4-dioxygenase 

activity 5 0.02507 
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Table A.8. Differentially regulated gene sets in spring vs winter at 60 days detected from Gene Set Enrichment Analysis (GSEA) 

(Continued) 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value Gene sets Upregulated in Winter 
No. of measured 

entities 
p-value 

O-methyltransferase activity 6 0.00154 procollagen-proline dioxygenase 5 0.02507 

oxidation-reduction process 300 0.0063 procollagen-proline dioxygenase 5 0.02507 

phenylpropanoid biosynthetic process 7 0.04098 procollagen-proline dioxygenase 5 0.02507 

phosphorelay response regulator 

activity 10 0.00812 protein polyubiquitination 21 0.022 

phosphorelay sensor kinase activity 5 0.04351 proton transport 11 0.04965 

phosphorelay signal transduction 

system 14 0.0082 removal of superoxide radicals 7 0.02463 

photosynthesis 22 0.02394 response to anoxia 5 0.00863 

plant-type cell wall 81 0.00072 response to chitin 71 0.04194 

plant-type cell wall loosening 8 0.04444 response to cold 116 0.01561 

plant-type cell wall organization 12 0.0099 response to heat 83 4.21E-05 

plasmodesma 370 0.00394 response to high light intensity 26 0.00039 

poly(U) RNA binding 8 0.0216 response to hydrogen peroxide 28 0.00197 

polysaccharide catabolic process 5 0.00605 response to hypoxia 23 0.02756 

primary root development 11 0.01615 response to nitrate 13 0.02343 

protein import into nucleus 10 0.02943 response to oxidative stress 126 0.00017 

protein kinase binding 10 0.04574 response to temperature stimulus 8 0.00773 

protein-chromophore linkage 7 0.04201 response to toxic substance 32 0.03973 

response to abscisic acid 121 0.02991 response to water deprivation 108 0.00991 

response to cold 110 0.04125 response to wounding 80 0.04259 

response to cytokinin 82 0.03372 ribosomal small subunit assembly 5 0.0388 
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Table A.8. Differentially regulated gene sets in spring vs winter at 60 days detected from Gene Set Enrichment Analysis (GSEA) 

(Continued) 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value Gene sets Upregulated in Winter 
No. of measured 

entities 
p-value 

response to gibberellin 26 0.00066 

secondary metabolite biosynthetic 

process 15 0.03971 

response to insect 6 0.02752 small heat shock protein 13 0.0004 

response to jasmonic acid 58 0.02126 small heat shock protein 13 0.0004 

response to light stimulus 42 0.02898 superoxide dismutase 5 0.04438 

response to osmotic stress 41 0.04549 superoxide dismutase activity 5 0.04438 

response to other organism 14 0.01897 toxin catabolic process 27 0.00761 

response to water deprivation 90 0.00112 translational elongation 25 0.00495 

seed coat development 5 0.04381 

ubiquinol-cytochrome-c reductase 

activity 9 0.02274 

SNAP receptor activity 17 0.01909 ubiquitin-conjugating enzyme family 28 0.01907 

SNARE binding 15 0.03603 ubiquitin-protein ligase 23 0.01839 

sucrose alpha-glucosidase activity 6 0.03329 xyloglucan:xyloglucosyl transferase 10 0.00261 

sucrose metabolic process 6 0.02829 xyloglucan:xyloglucosyl transferase 10 0.00261 

symporter activity 16 0.02338 xyloglucan:xyloglucosyl transferase 10 0.00261 

systemic acquired resistance 9 0.00775 

xyloglucan:xyloglucosyl transferase 

activity 10 0.00261 

translational elongation 33 0.04435       

transport 62 0.00495       

tryptophan biosynthetic process 10 0.02329       

water channel activity 12 0.01501       

water transport 9 0.0145       

xyloglucan metabolic process 15 0.02001       

xyloglucan:xyloglucosyl transferase 10 0.00218       

xyloglucan:xyloglucosyl transferase 10 0.00218       
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Table A.8. Differentially regulated gene sets in spring vs winter at 60 days detected from Gene Set Enrichment Analysis (GSEA) 

(Continued) 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value Gene sets Upregulated in Winter 
No. of measured 

entities 
p-value 

xyloglucan:xyloglucosyl transferase 10 0.00218       

xyloglucan:xyloglucosyl transferase 

activity 11 0.00916       
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Table A.9. Differentially regulated subnetwork gene sets in spring vs winter at 60days detected from Sub-network Enrichment 

Analysis (SNEA) 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value Gene sets Upregulated in Spring 
No. of measured 

entities 
p-value 

Expression Targets of HPY2 7 0.01581485 Expression Targets of RBOH F 5 0.01313 

Expression Targets of MYB51 6 0.01714367 Expression Targets of SIZ1 8 0.0133 

Expression Targets of MYB34 9 0.02525484 Expression Targets of BES1 8 0.01514 

Expression Targets of JAR1 7 0.02983109 Expression Targets of HSFA2 5 0.04245 

Expression Targets of RGA1 10 0.04068884 Expression Targets of ABI4 8 0.04518 

Expression Targets of ABI4 7 0.04858455 Expression Targets of HSF 12 0.04801 

Binding Partners of AHP2 9 0.00370184 Binding Partners of CaMK family 5 0.00455 

Binding Partners of FLS2 14 0.00618697 Binding Partners of RGA1 9 0.01412 

Binding Partners of protein 

phosphatase 5 0.00815112 Binding Partners of CBL10 5 0.02007 

Binding Partners of AHP3 5 0.0122712 Binding Partners of SGT1B 5 0.0228 

Binding Partners of BZR1 16 0.01345681 Binding Partners of 14-3-3 17 0.04521 

Binding Partners of AP2 5 0.02146639 Protein Modification Targets of OST1 8 0.03629 

Binding Partners of GAI 8 0.02281919 Protein Modification Targets of CUL4 5 0.04388 

Binding Partners of SAP18 5 0.02454164 

Proteins/Chemicals Regulating Cell 

Processes of oxidative stress 115 0.00021 

Binding Partners of ABI2 5 0.02747693 

Proteins/Chemicals Regulating Cell 

Processes of innate immune response 47 0.00266 

Binding Partners of heat shock 

protein 6 0.02905358 

Proteins/Chemicals Regulating Cell 

Processes of plant defense 146 0.00268 

Binding Partners of phytochrome 7 0.03670766 

Proteins/Chemicals Regulating Cell 

Processes of cell death 174 0.00475 
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Table A.9. Differentially regulated subnetwork gene sets in spring vs winter at 60days detected from Sub-network Enrichment 

Analysis (SNEA) (Continue). 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value Gene sets Upregulated in Spring 
No. of measured 

entities 
p-value 

Binding Partners of 14-3-3 14 0.04782817 

Proteins/Chemicals Regulating Cell 

Processes of heat tolerance 58 0.00615 

Protein Modification Targets of 

AHP2 5 0.02049401 

Proteins/Chemicals Regulating Cell 

Processes of lipid metabolism 20 0.00615 

Protein Modification Targets of OST1 5 0.04652054 

Proteins/Chemicals Regulating Cell 

Processes of response to osmotic stress 36 0.00893 

Proteins/Chemicals Regulating Cell 

Processes of plant height 22 0.00066552 

Proteins/Chemicals Regulating Cell 

Processes of drought tolerance 79 0.01936 

Proteins/Chemicals Regulating Cell 

Processes of shoot formation 8 0.00163212 

Proteins/Chemicals Regulating Cell 

Processes of defense response 211 0.02024 

Proteins/Chemicals Regulating Cell 

Processes of response to cytokinin 

stimulus 39 0.00440326 

Proteins/Chemicals Regulating Cell 

Processes of nuclear membrane fusion 5 0.0207 

Proteins/Chemicals Regulating Cell 

Processes of glucosinolate 

biosynthesis 27 0.00583728 

Proteins/Chemicals Regulating Cell 

Processes of heat-shock response 16 0.02107 

Proteins/Chemicals Regulating Cell 

Processes of lignin content 10 0.00645759 

Proteins/Chemicals Regulating Cell 

Processes of lignification 26 0.02321 

Proteins/Chemicals Regulating Cell 

Processes of photodamage 5 0.00971786 

Proteins/Chemicals Regulating Cell 

Processes of detoxification (process) 61 0.02335 

Proteins/Chemicals Regulating Cell 

Processes of meristem initiation 11 0.01331132 

Proteins/Chemicals Regulating Cell 

Processes of ROS generation 85 0.0319 

Proteins/Chemicals Regulating Cell 

Processes of leaf size 20 0.01334871 

Proteins/Chemicals Regulating Cell 

Processes of Tricarboxylic acid cycle 17 0.03214 
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Table A.9. Differentially regulated subnetwork gene sets in spring vs winter at 60days detected from Sub-network Enrichment 

Analysis (SNEA) (Continued). 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value Gene sets Upregulated in Spring 
No. of measured 

entities 
p-value 

Proteins/Chemicals Regulating Cell 

Processes of photosynthetic electron 

transport 5 0.01600552 

Proteins/Chemicals Regulating Cell 

Processes of somatic embryogenesis 12 0.03694 

Proteins/Chemicals Regulating Cell 

Processes of photoinhibition 6 0.01700221 

Proteins/Chemicals Regulating Cell 

Processes of leaf area 6 0.03763 

Proteins/Chemicals Regulating Cell 

Processes of response to phosphate 

starvation 5 0.01700301 

Proteins/Chemicals Regulating Cell 

Processes of seed germination 216 0.04039 

Proteins/Chemicals Regulating Cell 

Processes of sugar concentration 9 0.01780858 

Proteins/Chemicals Regulating Cell 

Processes of apoptosis 118 0.04556 

Proteins/Chemicals Regulating Cell 

Processes of superoxide anion 

generation 7 0.01919256 

Proteins/Chemicals Regulating Cell 

Processes of disease resistance 110 0.0459 

Proteins/Chemicals Regulating Cell 

Processes of seed dormancy 20 0.02417977 

Proteins/Chemicals Regulating Cell 

Processes of endoplasmic reticulum 

stress 15 0.04735 

Proteins/Chemicals Regulating Cell 

Processes of stem growth 19 0.02662444 Upstream Neighbors of oxidative stress 115 0.00023 

Proteins/Chemicals Regulating Cell 

Processes of lateral root number 6 0.02738092 

Upstream Neighbors of innate immune 

response 47 0.00285 

Proteins/Chemicals Regulating Cell 

Processes of shoot regeneration 11 0.0274627 Upstream Neighbors of plant defense 146 0.00303 

Proteins/Chemicals Regulating Cell 

Processes of leaf yield 5 0.02747798 Upstream Neighbors of cell death 174 0.00553 

Proteins/Chemicals Regulating Cell 

Processes of xylem development 14 0.0314731 Upstream Neighbors of caspase 7 0.00621 
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Table A.9. Differentially regulated subnetwork gene sets in spring vs winter at 60days detected from Sub-network Enrichment 

Analysis (SNEA) (Continued). 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value Gene sets Upregulated in Spring 
No. of measured 

entities 
p-value 

Proteins/Chemicals Regulating Cell 

Processes of nonphotochemical 

quenching 7 0.03808961 Upstream Neighbors of lipid metabolism 20 0.00624 

Proteins/Chemicals Regulating Cell 

Processes of negative gravitropism 5 0.03866249 Upstream Neighbors of heat tolerance 58 0.0064 

Proteins/Chemicals Regulating Cell 

Processes of nodulation 19 0.03867594 

Upstream Neighbors of heat shock 

protein 17 0.00737 

Proteins/Chemicals Regulating Cell 

Processes of seed abscission 7 0.04158778 

Upstream Neighbors of response to 

osmotic stress 36 0.00902 

Proteins/Chemicals Regulating Cell 

Processes of root hair tip growth 6 0.0416314 Upstream Neighbors of phenylpropanoid 10 0.01013 

Proteins/Chemicals Regulating Cell 

Processes of meristem size 25 0.04581174 Upstream Neighbors of lignin 20 0.0108 

Proteins/Chemicals Regulating Cell 

Processes of sugar response 18 0.04705212 Upstream Neighbors of VSP2 15 0.01147 

Proteins/Chemicals Regulating Cell 

Processes of meristem function 40 0.04772572 Upstream Neighbors of ABI4 10 0.01496 

Proteins/Chemicals Regulating Cell 

Processes of lignification 27 0.04926736 Upstream Neighbors of RRTF1 5 0.01675 

Upstream Neighbors of plant height 22 0.00076518 Upstream Neighbors of ABI1 16 0.01767 

Upstream Neighbors of shoot 

formation 8 0.00157449 

Upstream Neighbors of nuclear 

membrane fusion 5 0.02066 

Upstream Neighbors of RR22 6 0.00244837 

Upstream Neighbors of heat-shock 

response 16 0.0208 

Upstream Neighbors of RGA1 14 0.00295035 

Upstream Neighbors of drought 

tolerance 79 0.02102 
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Table A.9. Differentially regulated subnetwork gene sets in spring vs winter at 60days detected from Sub-network Enrichment 

Analysis (SNEA) (Continued). 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value Gene sets Upregulated in Spring 
No. of measured 

entities 
p-value 

Upstream Neighbors of PLT1 10 0.00404466 Upstream Neighbors of COI1 11 0.02117 

Upstream Neighbors of RR24 5 0.00414906 Upstream Neighbors of polyamine 14 0.02122 

Upstream Neighbors of heat shock 

protein 16 0.00454308 Upstream Neighbors of CAT1 5 0.02237 

Upstream Neighbors of response 

to cytokinin stimulus 39 0.00550606 Upstream Neighbors of lignification 26 0.02325 

Upstream Neighbors of ABF1 5 0.00621533 

Upstream Neighbors of superoxide 

dismutase 20 0.02347 

Upstream Neighbors of TIR1 5 0.00685867 

Upstream Neighbors of detoxification 

(process) 61 0.02394 

Upstream Neighbors of lignin 

content 10 0.0069179 Upstream Neighbors of defense response 211 0.02396 

Upstream Neighbors of ARR6 8 0.00704095 Upstream Neighbors of WRKY 25 0.02736 

Upstream Neighbors of H2O 13 0.00724893 Upstream Neighbors of PP2C 8 0.02935 

Upstream Neighbors of 

glucosinolate biosynthesis 27 0.00745403 

Upstream Neighbors of iron superoxide 

dismutase 5 0.03096 

Upstream Neighbors of fructose 6 0.00770338 Upstream Neighbors of UDP-glucose 8 0.03132 

Upstream Neighbors of SLY1 5 0.00787117 

Upstream Neighbors of beta-

galactosidase 9 0.03246 

Upstream Neighbors of glycerol 5 0.00985913 

Upstream Neighbors of Tricarboxylic 

acid cycle 17 0.03337 

Upstream Neighbors of GEA6 5 0.0098688 Upstream Neighbors of ROS generation 85 0.03575 

Upstream Neighbors of 

photodamage 5 0.01018715 

Upstream Neighbors of alpha-linolenic 

acid 7 0.03657 
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Table A.9. Differentially regulated subnetwork gene sets in spring vs winter at 60days detected from Sub-network Enrichment 

Analysis (SNEA) (Continued). 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value Gene sets Upregulated in Spring 
No. of measured 

entities 
p-value 

Upstream Neighbors of PLT2 6 0.01050237 Upstream Neighbors of RD22 5 0.03727 

Upstream Neighbors of ethylene 44 0.01129375 Upstream Neighbors of leaf area 6 0.03757 

Upstream Neighbors of CYP79B3 9 0.01288112 

Upstream Neighbors of somatic 

embryogenesis 12 0.0378 

Upstream Neighbors of indole-3-

acetaldoxime 6 0.01397439 Upstream Neighbors of AXR1 6 0.04076 

Upstream Neighbors of meristem 

initiation 11 0.01447999 Upstream Neighbors of SCR 5 0.04267 

Upstream Neighbors of ABF2 9 0.01452798 Upstream Neighbors of WRKY25 7 0.04278 

Upstream Neighbors of lignin 20 0.01465841 

Upstream Neighbors of unsaturated fatty 

acid 7 0.04356 

Upstream Neighbors of COR47 10 0.01499136 Upstream Neighbors of GSH2 7 0.04459 

Upstream Neighbors of leaf size 20 0.01515079 Upstream Neighbors of RBR1 8 0.04701 

Upstream Neighbors of ABF 6 0.01623004 Upstream Neighbors of seed germination 216 0.04737 
Upstream Neighbors of 

photosynthetic electron transport 5 0.01739443 

Upstream Neighbors of endoplasmic 

reticulum stress 15 0.04921 

Upstream Neighbors of 

phenylpropanoid 17 0.01765142      
Upstream Neighbors of 

photoinhibition 6 0.01775196      

Upstream Neighbors of DFR 8 0.01801738      
Upstream Neighbors of response to 

phosphate starvation 5 0.01826884      

Upstream Neighbors of tryptophan 14 0.01961961      
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Table A.9. Differentially regulated subnetwork gene sets in spring vs winter at 60days detected from Sub-network Enrichment 

Analysis (SNEA) (Continued). 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value Gene sets Upregulated in Spring 
No. of measured 

entities 
p-value 

Upstream Neighbors of sugar 

concentration 9 0.01976596      

Upstream Neighbors of BGL2 10 0.02045246      

Upstream Neighbors of superoxide 

anion generation 7 0.02121305      

Upstream Neighbors of LDOX 7 0.02259226      

Upstream Neighbors of GSH2 5 0.02280026      

Upstream Neighbors of PHYB 10 0.02318342      

Upstream Neighbors of 

protochlorophyllide 7 0.02785716      

Upstream Neighbors of seed 

dormancy 20 0.02894936      

Upstream Neighbors of shoot 

regeneration 11 0.02916167      

Upstream Neighbors of leaf yield 5 0.02959316      

Upstream Neighbors of NRT2:1 7 0.02988875      

Upstream Neighbors of lateral root 

number 6 0.02995143      

Upstream Neighbors of ABI3 13 0.03095368      

Upstream Neighbors of 

photosystem II reaction center 31 0.03123743      

Upstream Neighbors of stem 

growth 19 0.03153891      

Upstream Neighbors of xylem 

development 14 0.03401411      

Upstream Neighbors of WOX5 8 0.03403919      

Upstream Neighbors of OST1 11 0.03449254      

Upstream Neighbors of CSD1 5 0.0359363      

 



  

    

  

2
6
1
 

Table A.9. Differentially regulated subnetwork gene sets in spring vs winter at 60days detected from Sub-network Enrichment 

Analysis (SNEA) (Continued). 

Gene sets Upregulated in Spring 

No. of 

measured 

entities 

p-value Gene sets Upregulated in Spring 
No. of measured 

entities 
p-value 

Upstream Neighbors of sulfate 7 0.03612918      

Upstream Neighbors of monolignol 9 0.03666427      

Upstream Neighbors of CYP83B1 6 0.03862085      

Upstream Neighbors of 

nonphotochemical quenching 7 0.03906974      

Upstream Neighbors of negative 

gravitropism 5 0.04230431      

Upstream Neighbors of root hair tip 

growth 6 0.04384365      

Upstream Neighbors of seed 

abscission 7 0.0438703      

Upstream Neighbors of ribosome 

protein 5 0.04491745      

Upstream Neighbors of nodulation 19 0.04567303      

Upstream Neighbors of NYE1 7 0.04659086      

Upstream Neighbors of HSF 12 0.04684083      

Upstream Neighbors of RR2 6 0.04781564      

Upstream Neighbors of HB1 5 0.04800838      

Upstream Neighbors of glycine 6 0.04947309      

 

  


