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ABSTRACT 

Shrestha, Suman Lal, Ph.D., Department of Civil Engineering, College of Engineering and 
Architecture, North Dakota State University, September 2011. Fate and Transformation of 
a Conjugated Natural Hormone l 7jf-Estradiol-3-Glucuronide in Soil-Water Systems. Major 
Professors: Dr. G. Padmanabhan and Dr. Francis X.M. Casey. 

The objectives of the study were to investigate the sorption and degradation behavior of 

a glucuronide conjugated natural hormone, l 7jf-estradiol-3-glucuronide (E2-3G), and the 

conjugate-derived estrogens in soil-water systems. The effects of soil organic matter 

content and microbial activity on the fate and sorption of E2-3G were investigated using 

soil-water batch experiments with natural and sterilized topsoil (0-6 cm) and !-.ubsoil ( 18-24 

cm) from an agricultural farm. 

A radiolabeled version of E2-3G was synthesized using an immobilized-enzyme 

approach for conducting the fate and transformation experiment. The aqueous dissipation 

of 14C in the batch experiments followed a biphasic pattern, where there was an initial rapid 

dissipation phase followed by a second slower phase where apparent sorption equilibrium 

was achieved. Significant differences in total aqueous 14C dissipation were observed for the 

different initial concentrations for both soils. The pe1 sistence of intact E2-3G was 

exacerbated at higher initial concentrations. which may indicate the saturability of the 

enzymatic hydrolysis. 

Speciation analysis indicated that E2-3G metabolized into e!-.trone glucuronide (E l-3G ). 

E2. and estrone (EI). Other unidentified polar metabolites were detected and estriol (E3 J 

was not detected. The sorbed phase fraction contained EI and E2. Concentration of EI was 

at least 1.8 times greater than E2 in the sorbed phase of the natural topsoil. \vhile E2 

concentration was greater in the sorbed phase of the subsoil. 
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Compared to the subsoil, more rapid E2-3G deconjugation in the topsoil was observed. 

which resulted in rapid aqueous phase dissipation dominated by aglycone (E2 and EI) 

hydrophobic sorption dynamics. In case of the subsoil, transformation of E2-3G to free 

estrogens was slower, and E2-3G transformation and sorption of aglycones were equivalent 

processes. For the topsoil and subsoils, the first 24 h and up to 14 d, respectively, were 

critical periods for the potential estrogenic contribution to the environment from intact 

glucuronide conjugates. The estrogenicity, expressed as E2 equivalent (EEQ) 

concentration, was calculated for the natural topsoil showing a maximum EEQ at 24 h (33 

to 972 µg eq-E2 L~ 1 
), and significant EEQ was observed even up to 28 days. 

A comprehensive kinetic biogeochemical model was developed to describe various 

non-equilibrium degradation and sorption processes of E2-3G and its metabolites that 

included the simultaneous chemical and biological transformation of the compounds and 

their mass exchanges between the aqueous phase and the reversible and irreversible 

sorption sites. The batch soil-water process parameters for E2-3G and its metabolites were 

uniquely identified by optimizing all the experiments simultaneously, using a global 

optimization strategy. The E2-3G hydrolysis in the na~ural topsoil was two orders of 

magnitude greater than the subsoil. The sorption capacity for E2-3G was one and three 

orders of magnitude lower than the E2 in the topsoil and subsoils. respectively. 

This study shows that estrogen conjugates may be significant contributors in the 

environmental detection of potent free estrogens. Agricultural application of manure 

containing conjugates. especially at the subsurface. may result in greater mobility of intact 

conjugates in the enYironment. 
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GENERAL INTRODUCTION 

Steroidal estrogens occupy a prominent spot in the list of the emerging contaminants 

because they have the ability to disrupt sensitive organisms at very low concentrations. 

Estrogens have been demonstrated to disrupt the endocrine systems of sensitive organisms 

at concentrations as low as IO parts per trillion. Synthetic steroid hormones used in the 

livestock industry were first recognized as a possible environmental threat in 1980 ( Knight. 

1980). Several studies conducted in 1990s (Shemesh and Shore, 1993: Shore et al., 1993: 

Shore et al., 1995) were then the first to connect animal operations with natural hormone 

detections in the environment and indicated the possible toxicological implications. Other 

early reports included the casual observations of hermaphrodite roach fish (Ruti/11.\ rutilus) 

in UK rivers in mid-I 980s by anglers. Several ensuing scientific studies in early 1990s 

linked these observations to estrogens emitted from the effluent of sewage treatment works 

(Purdom et al.. 1994 ). In the US. a national reconnaissance of 139 rivers across 38 states 

found reproductive hormones in approximately 4Wlc of the samples that were analyzed 

(Kolpin et al.. 2002). The samples from this reconnaissance study were taken downstream 

of waste treatment facilities and animal feeding operati,ms. 

As a result of the aforementioned field observations. multiple laboratory studies ensued 

to identify the fate and transport of e"1rogenic compounds. These studies overwhelmingly 

suggest that estrogens are highly hydrophobic and should be strongly bound to the organic 

rich topsoil. and should completely degrade within a few hours to days (Casey et al.. 2003: 

Fan et al.. 2007: Shore et al.. 1993 ). :'\onetheless. the continued detection of these 

compounds in the water bodies around the world (Belfroid et al., 1999; Kolpin et al.. 2(X)2; 

Lei et al.. 2009) indicates that there are other unknown significant processes contributing to 



estrogen fate and transport in the environment. This dissertation presents the results of 

investigations into the fate and transformation of an estrogen conjugate in agricultural soi I­

water systems, which may provide an explanation to the frequent and widespread 

detections of steroid estrogens in the environment. 

Organization of the Dissertation 

This dissertation is organized into six parts that consists of a general introduction, one 

published and three manuscripts to be submitted to peer-reviewed journals, and a general 

conclusion. The general introduction includes a literature review on natural steroidal 

hormones especially estrogens and their conjugates. It also includes discussion on the 

sources and occurrences of estrogens in the environment, their toxicological effects, their 

environmental fate and transport, and the potential for estrogen conjugates to contribute 

estrogens in the environment. The first manuscript presents a method on laboratory 

syntheses and characterization of radiolabeled 17 /J-estradiol conjugates. The second 

manuscript provides methods developed to investigate fate and transformation of a labile 

estrogen conjugate. 17 /3-estradiol-3-glucuronide. The third manuscript focuses on the 

potential estrogenic contributions to environmental systems from an applied estrogen 

conjugate source. The fourth manuscript presents the possibility of transport of intact 

conjugates as a potentially significant contributor of steroidal estrogens in the environment. 

A detailed qualitati\·e and quantitatiYe analysis of the metabolites in the aqueous and 

re\'ersibly sorbed phase is reported. Furthermore. a model wa'> also de\'eloped to capture 

the degradation and '>orptiYe potential of the estrogen conjugate and its metabolite.-, in '>oil­

water systems. This fourth manuscript addresses the puzzle of con'>i'>tent estrogen detection 
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in the water bodies using the batch soil-water experiments and modeling. The disse11ation 

is finished with the general conclusion, which summarizes the entire research. Paper 

references are listed at the end of each paper in which they are cited; however, references 

for the General Introduction and General Conclusions are listed together at the end of the 

dissertation. 

Literature Review 

Estrogens: Natural steroidal hormones 

Estrogens refer to a group of female sex hormones; estradiol, estrone, and estriol: that 

all have steroidal structures with four rings made of seventeen carbon atoms. The most 

important estrogens in terms of their hormonal binding strengths and their ability to bring 

about physiological changes are I 7/f-estradiol (E2) and estrone (El). Estrogens stimulate 

the female secondary sex characteristics, impact the growth and maturation of long bones. 

and are responsible for health of reproductive tissues, breast, skin, and brain (Ying et al., 

2002). Although male and female mammals produce estrogens, they are found in higher 

amounts in females. In humans, estrogens are secreted hy the adrenal cortex, the ovary. 

placenta. and the testis (?\el son and Bulun. 2001 ). In livestock. the granulosa cells of the 

ovarian follicles and the placenta in the female. and the testes in males are the major site" 

of estrogen secretion ( Lange et al.. 2002 ). 

Conju2:ation of estro2:ens 

After hormones perform their intended action. the body di'ipose'i them by way of Pha'ie 

I and Phase II metabolism" (Dutton. I 980 ). In Pha'ie I. hormones undergo a wide range of 

reactions such as hydroxylation. oxidation. and reduction in order to 'functionalize· the 
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compound. Functionalization produces or uncovers a chemically reactive functional group 

on the molecule on which a Phase II reaction can occur. The Phase II reaction then attaches 

a polar moiety, increasing its water solubility (Gibson. 2001 ). The Phase II reaction, also 

known as a conjugation reaction, is a major detoxification pathway in the metabolism of 

endogenous and exogenous steroid hormones, drugs, toxicants, and non-nutritive smal I 

organic molecules (Dutton, 1980). A typical conjugation reaction involves the covalent 

attachment of a charged, polar moiety to a hydrophobic compound. such as an estrogen. 

which increases its water solubility, allowing it to be easily excreted in urine or bile. 

Estrogens are typically conjugated with glucuronic acid or sulfate moiety, or both (Khanal 

et al., 2006). Glucuronidation reactions are catalyzed by uridine 5'-diphospho­

glucuronosyltransferase (UGT) enzymes. which are localized within the endoplasmic 

reticulum, and are divided into two subfamilies, UGTl and UGT2 (Kiang et al., 2005: King 

et al., 2000). Glucuronidation consists of the transfer of a glucuronosyl group from uridine 

diphosphate (UDP) glucuronic acid to the substrate molecule (e.g. an estrogen) bearing a 

reactive oxygen, nitrogen. sulfur. or carboxyl functional group (Bock and Kohle, 2005: 

King et al., 2000). Glucuronidation is a major detoxicatory pathway in all vertebrates 

(Dutton, 1980), the reasons for its being the most widespread conjugation reaction are the 

relative abundance of the co-factor for the reaction (L'DP glucuronic acid) and ubiquitous 

nature of the enzyme. L'DP-glucuronic acid (Gibson and Skett. 200 I). Sulfation reactions 

occur with cytosolic sulfotransferases. which serve to inactivate hydrophobic substrates 

such as estrogens ('.\:ishiyama et al.. 2002). Glucuronidation or sulfation of estradiol can 

occur at either the C-3 phenol or C-17 hydroxyl. or simultaneously at both sites (Khanal et 

al.. 2006). 
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Conversion of conjugated estrogens to 'free' estrogens 

Conjugated estrogens can be hydrolyzed to form 'free' estrogens either by acid 

(Carignan and Lodge, 1980) or enzymatic hydrolysis (Khanal et al., 2006). Acid and 

enzymatic hydrolysis are common laboratory methods used to indirectly quantify aqueous 

conjugated estrogens. However, hydrolysis reactions in the environment are primarily 

governed by the bacterial enzymes fi-glucuronidase or sulfatase for glucuronide and sulfate 

conjugation, respectively (Khanal et al., 2006). 

Studies from several wastewater treatment plants (WWTPs) indicated that estrogen 

glucuronides can easily transform back into their free estrogen forms. However, sulfate 

conjugates of estrogens are found to be more recalcitrant, persisting longer in septic tanks 

and manure storage ponds (Liu et al., 2009). There is a large variation in the reported 

deconjugation efficiencies for estrogen glucuronides in WWTPs. For example, researchers 

in separate studies found estrone-3-glucuronide removal by deconjugation at 84(/c: 

(D'Ascenzo et al., 2003), 10017c (Reddy et al., 2005), and 0-51 c1c: (Kobayashi et al., 2006). 

Reported removal efficiencies for estradiol-3-glucuronide were highest at I O(Y/c: 

(D'Ascenzo et al., 2003; Reddy et al., 2005 J and lowest at O-J 9c/c (Kobayashi et al .. 2006). 

Deconjugation efficiencies for estrone-3-sulfate in WWTPs ranged from 27.6 (le (N. 

Nakada et al.. 2006) to 99.1 Ck (Reddy et al.. 2005 ), and from 48.4clc (N. Nakada et al., 

2006) to 10017c (D'Ascenzo et al.. 2003: Reddy et al., 2005) for E2-3S. Compared to 

WWTPs, there is not much data on conjugated estrogens in the waste of animal feeding 

operations ( AFO ), where animal excreta are stored in pits or lagoons prior to their land 

application. \Vaste storage ponds and lagoons at AFOs are typically used as holding 

resen oirs or anaerobic reactors for animal excreta. and unlike sewage treatment plants. 
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there is generally no treatment before the waste is applied to the land as fertilizers 

(Hutchins et al., 2007). Hutchins et al. (2007) found estrogen conjugates contributed to 27 

- 35% of the total estrogens in swine (Sus scmfa domesticus) nursery, beef (Bos taurus) 

feedlot, and poultry (Gallus gal/us) primary lagoons; 57% for a dairy lagoon; and 95% for 

a tertiary poultry lagoon. The predominant estrogen conjugates were El and E2 sulfates or 

glucuronides, which were determined indirectly from enzyme hydrolysis. Furthennore, 

direct analysis using LC/MS/MS indicated the sulfate conjugates were still intact, 

indicating their persistent nature (Hutchins et al., 2007). 

Sources of steroidal estrogens and their conjugates in the environment 

Humans 

The amount of natural estrogens in human excretion varies with sex and age. The 

highest estrogen excretion rates occur in pregnant females with 259 µg d- 1 of E2, 600 µg d- 1 

of El, and 6,000 µg d- 1 ofE3 (Ying et al., 2002). In menstruating females, excretion rates 

are reported to be 3.5, 8.0, and 4.3 µg d- 1 for E2, E 1, and E3, respectively (Ying et al., 

2002). For menopausal females, E2, EI, and E3 excretion rates are 2.3, 4.0, and 1.0 µg d- 1
, 

respectively. Male excretion rates are 1.6, 3.9, and 1.5 µg d- 1 for E2, El, and E3, 

respectively (Ying et al., 2002). Even though the excretion of estrogens are generally 

reported in terms of free estrogens, the majority of the steroid estrogens are excreted in 

their conjugated forms from humans (Gomes et al., 2009). An Italian study found E3 (21 

µg d- 1
) was the only free estrogens detected in the urine of 73 women ranging in age from 

18 to 74 years (D'Ascenzo et al., 2003 ). In this Italian study, all estrogens were conjugated, 

predominantly as glucuronides. Sulfates estrogen conjugates were 23, 20, and 22% of the 

6 



total estrogen derivatives excreted from menstruating, menopausal, and pregnant women, 

respectively. In a study of gender based distribution of estrogen conjugates, glucuronides 

conjugates, not sulfates, were found to be more dominant in males ( 85%) than in females 

(65%) in human urine (de Mes et al., 2005). 

Synthetic hormonal formulations, such as 17a-ethynylestradiol (EE2) and mestranol 

(MeEE2), used as female oral contraceptives are excreted into urine predominantly as 

glucuronide conjugates (Ranney, l 977). A daily excretion rate of 35 µg d- 1 for EE2 has 

been reported for females using EE2 contraception (Ying et al., 2002). Considering all 

types of oral contraceptive usage, the environmental load of synthetic estrogens has been 

estimated to be 720 Kg yea{ 1, assuming a mean rate of excretion of 60% ( Combalbcrt and 

Hemandez-Raquet, 2010). Though the figures are reported in the free forms of synthetic 

estrogens, actual release from the human body occur in the conjugated forms, as 

glucuronides (Ranney, 1977). 

Wildlife 

In comparison to humans and livestock, not much is known about the environmental 

loading of estrogens from wildlife. In one study, 14C labeled E2 was injected into female 

cotton-top tamarins (Saguinus oedipus oedipus), and estrogen excretion was measured. 

Estradiol was excreted predominantly through the urinary route (87%), and estrone was 

excreted in the urine (57%) and feces (43%). Furthermore, 59% of 14C E2 was excreted as 

an E2 conjugate and 41 % as an E 1 conjugate (Ziegler et al., 1989). 
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Livestock 

In livestock, the estrogen excretion amount, route, and type including conjugation 

pattern varies with sex, age, and species. Cattle excrete estrogens mostly in feces (56c/c) 

(Ivie et al., 1986), whereas swine (96%) and poultry ( 69c/c) excrete estrogens 

predominantly through the urinary route (Hanselman et al., 2003 ). Estrogen excretion for 

non-pregnant cattle is evenly distributed between urinary and fecal routes, at about 500 µg 

d- 1 per l 000 Kg live animal mass. During late stages of pregnancy in cattle, estrogen 

excretion through urinary and fecal routes increase by a factor of 326 and IO, respectively. 

compared to non-pregnant cattle (Hanselman et al.. 2003). In a survey of hormone 

activities in animal manures, Lorenzen et al. (2004) used recombinant yeast assays to 

measure E2 estrogenic activity in the manure and detected the highest levels from finishing 

pigs (5965 ng g- 1 dry weight) and the lowest levels from steers (0.43 ng g I dry weight). 

Hormonal implant use and diet are also factors contributing to the estrogenic activities in 

the manure (Lorenzen et al.. 2004 ). 

The potential contribution of estrogens to the environment by farm animals dwarfs that 

of humans. In the U.S. and the European Cnion alone, ctn estimated 82 tons of estrogens 

were excreted by livestock in 2000 (Lange et al.. 2002). Even though considerable land 

area in the United States is still dernted to rangeland grazing of cattle. commercialization 

of animal agriculture in US has resulted in the increase of confined animal feeding 

operations (CAFOs). A confined animal feeding operation is defined by the US EPA as an 

operation where animals are confined at least 45 days in a 12-month period and there is no 

grass or ,egetation in the confined area during the normal grO\ving season. Concentrated 

animal feeding operations meet the requirement to be an AFO and a size threshold (number 

8 



of animals) distinguishes a CAFO as large, medium, or small. A large CAFO. for example. 

would house I 000 or more cattle; I 0,000 or more sheep or lambs: I 0,000 or more swine 

(weighing 55 pounds or less); or 30,000 or more laying hens or broilers (USEPA, 2004). In 

the United States, CAFOs generate more than 40 times the amount of waste than human 

bio-solids generated from WWTPs (Graham and Nachman, 2010). In the United Kingdom. 

the combined farm animal population was estimated to generate about four times more 

estrogens than the human population (Johnson et al., 2006). In China, an estimated 3.2 

billion tons of animal waste was generated in 2003, which was 3 times the industrial solid 

waste generated in the country (Li et al., 2009). A study of manure born estrogens from 

dairy and beef cattle operations in northeast China found that 24 CAFOs generated 16 

times more estrogens than the human population in the same study area (Wei et al., 2011 ). 

Most endocrine disruption studies have focused on the aquatic environment 

downstream point sources such as sewage treatment plants (STPs) (Desbrow et al.. 1998: 

Jin et al., 2008: Wang et al., 20 IO), industrial wastewater discharges (Pothitou and Voutsa. 

2008: Snyder et al., 2001 ). and runoff receiving waters from urban areas (Cargouet et al.. 

2004: Vulliet et al.. 2011 ). However. data on CAFOs a,·e limited and so are the studies on 

the associated endocrine disruption studies of aquatic organisms downstream CAFOs. 

Table I presents some examples of studies that measured estrogens related to CAFO waste. 

These data highlight potential of en\'ironmental loading of potent hormones originating 

from CAFOs. 
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T bl I E a e strogen concentrations m I erent concentrate d amma If d. ee mg operations. 

Estrogen Concentrations (ng L I 
J 

Facility Study 
El E2 E3 Total 

Creek near a CAFO (mixed') 7.4-1267 0-313.6 0 - 210 (a) 

Primary lagoon. swine CAFO 
I 

I 000 - 21,000 (h) 

Secondary dairy cattle effluent 370 - 550 

Secondary beef cattle effluent 22 - 24 

Dairy farm effluent 0 - 3123 0 - 331 ( C) 

Swine lagoon 24.900* 3000* 10.420* (d) 

-
'Broiler chickens, laying hens, pigs, and cattle: *max values; (a)= Chen ct al. (2010). 
(b) = Hutchins et al. (2007), (c) = Sarmah et al. (2006). (d) = Fine et al. (2003) 

Ecotoxicology 

Relative potencies 

In terms of the capacity to disrupt the endocrine systems of sensitive organism. E2 is 

the most potent among natural estrogens. Conjugated estrogens have very little potency 

compared to free estrogens. Table 2 presents the relative potencies of some estrogen 

glucuronides and the free estrogens. based on E-screen assays (Gadd et al.. 20JOJ. 

Table 2. Relati,e potencies of glucuronide conjugated and free estrogens. 

Compound Relative Potency* 

E2-3G 

EI-3G 

E2 

EI 

"'Gadd et al. ,20101 

10 

l.30x J(f' 

2.90x l O 'i 

1.00 

2.40x 10 2 



Impact on different organisms 

Fish. Vitellogenin production is a reproductive disruption in the male fish 

resulting from exposure to estrogens. Vitellogenin is a female-specific protein that is a 

precursor to an egg yolk protein, and is synthesized in the liver of oviparous vertebrates 

(Jobling et al., 1998). In female fish the expression of genes to produce vitellogenin is 

regulated by endogenous estrogens such as E2 (Desforges et al., 20 I 0). Even though 

estrogen levels in male organisms are insufficient to produce vitellogenin under normal 

circumstances, production of the vitellogenin can be induced by exogenous estrogens 

(Bjorkblom et al.. 2008). Concentrations of E2 as low as IO ng L I can induce vitellogenin 

production in the male fish in the laboratory when continuously exposed for 21 d 

(Routledge et al., 1998). Kitamura et al (2009) conducted a study on the induction of 

vitellogenin in Japanese Medaka ( Ory::.ias latipes) and observed the lowest effect 

concentrations (LOECs) of EI and E2 to be 31.6 and 5.0 ng L 1
• respectively: and the E2 

equivalent (EEQ) LOEC value of El to be 5.2 ng-E2 L· 1
• In the field. HXY/c: intersex male 

roach fish (Rutilus mtilus) was observed in the sewage-contaminated rivers. Nene and 

Aire, in the UK. compared with 47c intersex males fror,1 laboratory controls and field 

reference locations (]obiing et al.. 1998). The reproductive capability of male fish with 

morphological defects caused by endocrine disruption was investigated by Jobling et al. 

(2002). Compared to an unaffected male fish. they found gamete quality was reduced by as 

much as 507c in terms of sperm motility and 7SC!c in fertilization success. In a 7-year, 

whole-lake experiment at the Experimental Lakes Area in northwe'>tern Ontario. Kidd et al. 

(1007 J obser,ed a near extinction of fathead minnow ( Pimeplzales promelas) as a re'>ult of 
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chronic exposure to low concentrations of EE2 (5-6 ng L-1), which impacted gonadal 

development in males and altered oogenesis in females. 

Birds. Eggshell thinning, leading to reproductive failure, is one of the most serious 

ecotoxicological effects observed in avian wildlife (Berg et al., 2004 ). Exposure to 

exogenous estrogens can disrupt the expression of carbonic anhydrase, a key enzyme in the 

process of shell formation that controls the supply of the carbonate ions, in the adult shell 

gland (Holm et al., 200 I). Berg et al. (2004) showed that eggshell thinnning in domestic 

hen (Gallus domesticus) is induced when embroy is exposed to EE2. Hens exposed to EE2 

in ovo (20 ng i 1 per egg) produced eggs with thinner shells and reduced strength. 

Exposure to exogenous estrogens can also result in the disruption in sexual development. 

Biau et al. (2007) exposed chick embryos to 600 ng g- 1 E 1 and 600 ng g- 1 E3, which are 

relatively higher concentrations compared to environmental values, and found 

morphological defects of the urogenital system. The impacts of E3 were greater than EI, 

where E3 caused the persistence of Miillerian ducts in 48% of male embryos and 

hypertrophic oviduct in 71 % of females. The E 1 caused 18% persistence of the M i.illerian 

ducts in male embryos and 49% of hypertrophic oviduct in female embryos. Numerous 

studies on quail (Coturnix coturnix) have shown that the male reproductive behavior can be 

permanently demasculinized by in ovo exposure to E2 (Abdelnabi and Ottinger, 2003; 

Panzica et al., 1998). Estrogens are also shown to alter the behavioral response of female 

songbirds. A dose-response study on the development of the female zebra finch (Poephila 

guttata) song system, administered 50, 15, 5 and 0-µg of E2 via subcutaneous implants, and 

found that 15 µg E2 was sufficient to masculinize several aspects of the song system 

(Grisham et al., 2008). Svec et al. (2009) explored the behavioral response to E2 exposure 
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on song pattern of female zebra finch and found decreased long-distance calls and visual 

scanning behavior. 

Reptiles. In many reptiles, incubation temperature of the egg impacts the gonadal 

sex determination (Bull, 1987 ). Estrogen can also serve as the physiologic equivalent of 

incubation temperature, where exposure to estrogens has been shown to have similar 

effects as temperature-dependent sex determination (TSD) (Crews et al., 1995). In a study 

on leopard geckos (Eublepharis macularius), a TSD reptile, Janes et al. (2007) exposed 

eggs to 5 µL of E2 (6.1 µM) and hatched them at a male-producing incubation temperature 

of 32.5°C. The estrogen-treated groups produced more females than the negative control 

group. Similarly, significantly more males were produced when eggs were treated with E2 

and were incubated at cooler. female-producing, temperature (Janes et al., 2007 ). Birth 

defects in wildlife and the associated role of environmental contaminants have been studied 

extensively (Hamlin and Guillette, 2010). A study in Lake Apopka, one of the most 

polluted lakes in Florida. found juvenile alligators to be feminized, and exposure to 

estrogenic compounds was implicated as the cause (Guillette et al., 1994). Also. ovarian 

abnormalities were observed in female alligators. with ..:levated in vivo E2 concentrations 

compared to normal female alligators (Guillette et al.. 1994). 

Amphibians. Since amphibians spend their embryonic life stage in aquatic 

medium. their embryos are exposed to en\'ironmental contaminants. Population declines in 

amphibians (Stuart et al.. 2004) ha\'e resulted in increased concern over environmental 

exposures to exogenous estrogens. Courtship beha\'iors in frogs are found to be related to 

the sex hormones concentrations. where there are relation<. between hormonal 

concentration variation and "inacti\'e .. and '"approaching .. frogs. In a study on the courtship 
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behavior of crested newts (Triturus carnifex), "inactive" males showed higher levels of 

testosterone compared to those involved in various degree of courtship, while E2 was low 

in such males (Zerani et al., 1992). In a study on basal water absorption (BW A) on 

Japanese tree frogs (Hyla japonica), injected E2 reduced the BW A in males, whereas 

injected testosterone increased the BW A in females ( Kohno et al., 2004 ). According to 

these authors, since BW A regulates the concentration of body fluids under normal 

conditions, these results have important implications in understanding normal 

osmoregulation in frogs. 

Humans. Impacts on human health from the exposure to environmental 

concentrations of natural hormones are not clear; however, there is an urgency to quantify 

exposures, which has instigated several U.S. congressional bills (Congress. 2005; 

Congress. 2008). Humans are not sensitive to low doses of estrogens typically found in the 

environment. Aheme and Briggs ( 1989) reported that the synthetic hormone EE2 

concentrations found in sewage effluent. reservoirs, rivers and potable water were unlikely 

to present significant risks to human health. Christensen ( 1998) estimated a daily worst 

case environmental intake of EE2 of 85 ng da/ for a 70-Kg person, and concluded that it 

was unlikely to contribute to any significant risk. Andersson and Skakkebaek ( 1999) 

contended that there could be possible biological significance from estrogen intake from 

meat consumption. and raised concern for expO',ure to exogenous estrogens and in 

particular for prepubescent males. The benefits of hormone replacement therapy <HRTJ 

(estrogen. progesterone. or both) to relie\"e menopausal symptoms in women are 

outweighed by the risk of breast cancer (Rossouw et al.. 2002). Typical HRT consists of a 

combined estrogen and progesterone. such as conjugated equine estrogens (CEEJ (0.625 
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mg ct·') plus medroxyprogesterone acetate (2.5 d- 1
) in one tablet (Rossouw et al., 2002). To 

date, the prescription and marketing of HRT in the USA and other countries have 

dramatically decreased as a result of its risks (Krieger et al., 2005 ). Medroxyprogesterone 

acetate is a synthetic variant of the human hormone progesterone (Cordeaux et al., 2010), 

while CEE is a complex formulation containing the conjugates of at least IO estrogens such 

as EI, I 7a-E2, E2, and equilin, to name a few (Zhao and Brinton, 2006 ). An indication of 

the relative hormone concentration in HRT can be made by comparing the HRT dose of 

estrogens (0.625 mg d- 1
) to the conjugated estrogens (E2, El, and E3) excreted daily by a 

cycling woman (about 54 µg d 1 (D'Ascenzo et al.. 2003 )), which is about 12 times greater. 

Compared to the environmental concentrations of E2 that have been reported for soil. at 

150 ng Kg- 1 on control fields and 650 ng Kg I on manured plots (Finlay-Moore et al.. 

2000), or surface water. at 9 ng L I median concentration (Kolpin et al.. 2002). the 

concentration of estrogens in HRT is very high. 

Outside HRT. studies have shown that increased prenatal exposures to endogenous 

estrogens may also increase the risk of breast cancer (Park et al.. 2008). In one study, 

young women who were considered at high risk for bre...tst cancer because of family 

history. also exhibited a significantly different urinary estrogen profile than the control 

group (Fishman et al.. 1979 ). The authors linked the low urinary estrogen glucuronide with 

women at risk for familial breast cancer. and suggested that a change in conjugation could 

be the endocrine feature distinguishing women at risk of familial cancer risk. One of the 

expected outcome of the CS congressional Breast Cancer and Environmental Research Act 

of 2008 of the CSA is to eliminate knov, ledge gaps in research to impro\·e the re1,earch 

portfolio in breast cancer (Congress. 2008). 
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Fate and transport of estrogen conjugates 

Studies on fate and transport of estrogen conjugates are few, and focus on municipal 

waste treatment by STPs and/or WWTPs (Chen and Hu, 2010; D'Ascenzo et al., 2003; 

Gomes et al., 2009; Schlusener and Bester, 2008). D'Ascenzo et al. (2003) qualified and 

quantified the conjugated forms of estrogen in six activated sludge STPs in Italy and 

observed complete deconjugation of glucuronide conjugates of estrogen; however, the 

removal efficiency of estrone-3S (E l-3S) was only 64%, indicating its relatively 

recalcitrant character. D'Ascenzo et al. (2003) also found E 1 was the main degradation 

product in the STP effluent and attributed it to the oxidation of E2 and partial 

deconjugation ofE1-3G and El-3S. Schlusener and Bester (2008) studied removal 

efficiencies of E2-3S, E 1-3S, and other free estrogens, in three different WWTPs in 

Germany. They found elimination efficiencies differed greatly, where activated sludge 

WWTP was better able to eliminate steroid hormones compared to the trickling filter 

WWTP. Gomes et al. (2009) investigated the fate of sulfate and glucuronide conjugated 

estrogens in batch studies using activated sludge grown from sewage, and found 

glucuronide conjugates of estrogen were deconjugated after 8 h, while sulfate conjugates 

persisted after 8 h in significant concentrations. The authors concluded that deconjugation 

was a biotic process based on the results from biotic and abiotic experiments. Also, Gomes 

et al. (2009) observed sulfate conjugated ethinylestradiol 3-sulfate (EE2-3S) 8 h after crude 

sewage samples were spiked with EE2-3G alone, and attributed the presence of EE2-3S to 

the initial cleavage of the glucuronide moiety followed by the sulfate conjugation of the 

free estrogen. These results were not obtained for the crude sewage spiked with El-3G, but 

only occurred when it was spiked with EE2-3G. Deconjugation first order reaction rates of 
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0.32, 0.24, and0.35 h- 1 for 17a-EE2-3G, E3-16a-G, and EI-30, respectively were 

determined for these batch studies. Chen and Hu (2010) investigated the adsorption of 

natural estrogens and their conjugates by activated sludge, and found that while the 

adsorption capacities of EI and E2 was influenced by the pH (highest at neutral pH, lower 

at pH 2 and 11.5), the adsorption of the estrogen conjugates, E l-3S and E2-3S, were 

similar at pH 5, 7, and 9. Freundlich sorption isotherm accurately described both estrogen 

and estrogen conjugate sorption in the batch studies. Soil sorption coefficient nonnalized to 

organic carbon content of the soil, or Jog K,c values, for EI, E2, E l-3S, and E2-3S were 

reported at 3.31, 3.12, 2.21, and 2.46 L Kg OC 1
, respectively. 

To date, studies on the fate and transformation of estrogen conjugates in agricultural 

soil has remained mostly an untouched research area. So far, two studies exist that 

investigate fate and transport of estrogen sulfates in pasture soils (Scherr et al., 2009a; 

Scherr et al., 2009b ). Incubation laboratory experiments were conducted on E2-3S using 

three pasture soils at three temperatures (7.5, 15, and 25°C) and showed first-order kinetics 

of E2-3S degradation, as well as temperature dependence of the rate constants (Scherr et 

al., 2009b ). The result also showed that the rate constants across the soils were significantly 

correlated to the arylsulphatase activity at 7.5 and 15°C. The authors concluded that the 

arylsulphatase activity in the soil microbial biomass was responsible for the degradation of 

E2-3S. Scherr et al. (2009a) also conducted a study on sorption of E 1-3S in a CaCb 

solution and an artificial urine (pH 7.2, EC 1.4 ds m· 1
; KHC03, KCI, K2S04, (NH2)2CO, 

and C2H5N02) using pastoral soils of New Zealand. All the three soils used in the study 

were of high OC content (4 - 8.2%), and no sterilization agents were used. Given the 

apparent non-linearity observed in the sorption, the authors reported a concentration-
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dependent effective distribution coefficient (Kt1 = K1C" N-J) for E l-3S were an order of 

magnitude lower than that for free E 1. 

Research Gap 

Estrogens are hydrophobic compounds. Extensive laboratory studies on these 

compounds over the past decade have shown E2 and El to be highly sorptive and immobile 

in soil (Casey et al., 2003: Casey et al., 2005: Fan et al.. 2007: Hildebrand et al .. 2006: 

Karnjanapiboonwong et al., 20IO), and E2 to be highly labile (Colucci et al., 200 I: Fan et 

al., 2007). These results are, however, disparate with the relatively high detection 

frequencies of E2 and other estrogens in surface water ( Kol pin et al.. 2002: Lei et al.. 

2009 ). Detection of E2, above the LOAEL in over 40C,/c of rivers ( 139) sampled across 38 

U.S. states (median concentration 9 ppt; maximum concentration 93 pptJ (Kolpin et al.. 

2002) and similar trend elsewhere (Lei et al., 2009), indicate that there are other 

overlooked processes contributing to estrogen fate and transport in the environment. 

Estrogen conjugates are more polar than their free counterparts, which may make them 

more mobile and increase their potential for downstream transport to the receiving water 

bodies. Furthermore. urinary excretion of estrogens is predominantly as conjugates. 

Animals in the U.S. in 2000 contributed about 2 I tons of estrogen conjugates to the 

environment (Lange et al.. 2002). The research question. therefore. is whether conjugates 

could contribute to enYironmental detectiom. of free estrogens. 
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Dissertation Objective 

The hypothesis of the study was that if conjugated estrogens eliminated by animals are 

more persistent and mobile in soil compared to their unconjugated free form'.'>. then 

estrogen conjugates could contribute significantly to the environmental estrogen loads. To 

test this hypothesis, the sorption, fate and transformation of a manure-borne estrogen 

conjugate in soil-water system, and the effect of soil sterility and OC were inve'.'>tigated. 

The specific objectives were (I) to synthesize a radiolabeled estrogen glucurnnide 

conjugate and conduct in-depth characterization of the '.'>ynthe'.'>ized material: (2) to de,elop 

a laboratory analysis method capable of detecting both the e'.'>trogen conjugate and ih 

possible metabolites by using high performance liquid chromatography (HPLC) and liquid 

scintillation counting (LSC): (3) to identify/verify the study compound and its metabolite'.'>. 

by means of liquid chromatography- mass spectrometry/quadrupole time of flight (LC­

MS/QTOFJ: ( 4) to investigate the sorption behavior of conjugate and conjugate-derived 

estrogens: (5) to investigate the degradation of the conjugate with respect to the soil 

organic carbon: (6) to investigate the degradation/tran'.'>formation pathways of E2-3G in the 

biotic and abiotic conditions. and (7) to de,elop a mathematical model to determine the 

process parameters invoh·ed in the fate and tramformation of the model e'.'>trogen 

conjugate. 
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PAPER 1. SYNTHESIS AND CHARACTERIZATION OF RADIOLABELED 

17fl-ESTRADIOL CONJUGATES1 

Abstract 

The use of radioactive tracers for environmental fate and transport studies of emerging 

contaminants, especially for those that are labile, offers convenience in tracking study 

compounds and their metabolites, and in calculating mass balances. The aim of this study 

was to synthesize radiolabeled glucuronide and sulfate conjugates of 17/J-estradiol (E2). 

The conjugates I 7/J-[4- 14C]estradiol-3-glucuronide ([ 14C]E2-3-G) and I 7/J-[4- 14C]estradiol­

l 7-sulfate ([ 14C]E2-17-SJ were synthesized utilizing immobilized enzyme and chemical 

syntheses. respectively. Microsomal proteins from the liver of a phenobarbital induced pig 

(Sus scrofa damestica) were harvested and used to glucuronidate E2. Synthesis of [ 14C] E2-

l 7-S consisted of a three-step chemical process - introducing a blocking group at the C-3 

position of [ 14C] E2. sulfation at C-17 position, and subsequent deblocking to yield the 

desired synthetic product. Successful syntheses of [ 14C] E2-3-G and [ 14C J E2- I 7-S were 

achieved as verified by liquid chromatography. radiochemical analyses. quadrupole-time­

of-tlight (QTOFJ mass spectrometry. and 1H and 1'C nuclear magnetic resonance (:--..:\1R) 

spectroscopy. Radiochemical yields of 84 and 44 percent were achieved for E2-3-G and 

1 This paper has been reproduced from my puhli,hed paper Shrestha et al. (2011) a, per the permitted use 
from the publisher. Other co-authors are \b. Xuelian Bai. Dr. Da\id Smith. Dr. Heldur Hakk. Dr. Franci, 
Casey. Dr. Gerald Larsen. and Dr. G. Padmanabhan. The hulk of the work has been done hy me a, part of my 
Ph.D. research to synthesize the study compound required for my experiment. The style of the manu,cript ha, 
been modified for keeping uniformit;> with the re,t of the di<,<,ertation. 
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E2- l 7-S, respectively. Synthetic products were purified using high performance li4uid 

chromatography (HPLC) and radiochemical purities of 98% or greater were obtained. 

Introduction 

Medical research has used radiolabeled estrogenic compounds to study breast and 

uterine cancers (Mull et al., 2002), estrogenic receptors (Cummins, 1993 ). and as imaging 

agents in breast tumors (Dence et al., 1996). More recently though, the radiolabeled 

14 . i-tc i-1c1 c t hormonal compounds (e.g. [ C]estrad10!, [ ]estrone, and [ testosterone ( asey ct a .. 

2003; Casey et al.. 2004: Fan et al., 2006: Fan et al.. 2007; Sangsupan et al., 2006) and 6.7-

"'H-estradiol (Sangsupan et al., 2006)) have been used to study the fate and transport of 

steroids in the environment. Exposures to exogenous reproductive hormones have been 

associated with adverse effects in certain aquatic ( Desbrow et al., 1998: Larsson et al., 

1999: Teles et al.. 2005) and terrestrial (Lintelmann et al., 2003; Park et al.. 2009: Prezio"i, 

1998)species. Human waste treatment and animal feeding operation<, (AFOs) are sources 

of estradiol (E2). estrone (El). and estriol (E3J to the environment. Estradiol is the most 

potent of these natural estrogens (Legler et al., 2002: M:itsui et al., 2000; Palme et al., 

1996: Payne and Talalay. 1985 ). 

Laboratory studies suggest estrogens should have little to no mobility and should 

not persist in the en\·ironment because they bind rapidly and strongly to soil and degrade 

within hours (Casey et al.. 2CXJ3: Fan et al.. 2(XJ7: Holthaus et al.. 2002). Field studies. 

howe\'Cr. ha\'C indicated that estrogens are present in the en\ironment at frequencies and 

concentrations that imply they are moderately mobile and per<,istent (Kolpin et al.. 2(XJ2: 

Schuh. 2008). Estrogen conjugates. which ha\e different water solubilities. sorption 
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coefficients, and degradation rates relative to their "free" estrogen counterpa11s. may offer 

insights into why steroidal estrogens are frequently detected in the environment ( Kol pin ct 

al., 2002). Swine (Sus scr(ifa domesticus), poultry (Gallus domestirns). and cattle ( Bos 

taurus) excrete 96clc, 699c, and 42c1c, respectively. of the urinary estrogens as conjugate'> 

(Hanselman et al., 2003). In fact, appreciable amounts of 17/J-estradiol ( 17/J-E2) in 

conjugated forms have been measured in swine manure slurry (liquid urine and feces) from 

AFO manure storage lagoons (Hutchins et al., 2007 ). Conjugates form a major portion of 

total environmental estrogen loading from AFOs and might play a significant function in 

the detections of "free" steroidal estrogens in the environment. Although, estrogen 

conjugates are biologically inactive (Khanal et al.. 2006), they can potentially be cleaved 

by microbial enzymes to form the more potent parent compound (Khanal et al., 2006). 

Conjugation reactions are a common vertebrate mechanism in which hormones. drugs. 

toxicants. and non-nutritive organic molecules are eliminated ( Amdur et al., 200 I). During 

conjugation a charged. polar moiety is attached to a hydrophobic compound (e.g. estrogen). 

which increases its water solubility and excretion in urine or bile ( Amdur et al.. 200 I). 

Estrogens are typically conjugated with glucuronic or sulfuric acid at the C-3 and/or the C-

17 positions (Khanal et al.. 2006) <Figs. 1 & 2). Glucuronidation of estrogen is catalyzed 

by uridine 5'-diphospho-glucurono'-.yltramferase (CGTJ enzymes in the endop]a'-.mic 

reticulum and sulfation is catalyzed by cyto'-.olic '-.Ulfotramferase'-. (SUL Ts) (;'\;i'-.hiyama et 

al.. 2002). 

The en,ironmental fate of estradiol conjugate'-. has not been extensi,ely studied. 

possibly because radiolabeled conjugates are not commercially a,ailable. The a\ailability 

of radiolabeled conjugated hormones would enable studies to be conducted that would 

22 



improve the understanding of the fate and transport of these labile compounds in the 

environment. The objective of this paper is to provide a method to synthesize carbun-14 

labeled 17P-E2-3-G and 17P-E2-17-S. 

Experimental 

Materials 

[
14C] labeled E2 (55 mCi/mmole) was purchased from American Radiolabeled 

Chemicals (St Louis, MO). Unlabeled E2, UDP glucuronic acid, magnesium chloride. 

ethanol, potassium phosphate monobasic. potassium phosphate dibasic. potassium 

hydroxide. hydrochloric acid, ethyl acetate, pyridine. sodium hydroxide, chlorosulfonic 

acid and acetic acid were obtained from Sigma-Aldrich. Triethylamine (Fluka): benzoyl 

chloride (Bayer): trisodium phosphate (Mallinkrodt. Paris, KY) were obtained from other 

sources. Acetonitrile ( ACN) was obtained from EMO Chemicals (Gibbstown. NJ). 

Scintillation fluid EcoLite 1\ 1 was obtained from MP Biomedicals (Santa Ana. CA). SPE 

cartridges Bond Elut'" Cl8 (6 g. 20 mLJ and Sep-Pak'", Yac CI8 were obtained from 

Varian (Harbor City. CA) and Waters (Milford. MAJ, respectively. 

Cridine 5'-diphospho-g:Jucuronosvltransferase (UGTJ 

A castrated. cross-bred hog weighing 24.4 Kg was used as the source of the CGT 

enzymes. following L'SDA Animal Care and L'se Committee guidelines. The hog was 

intramuscularly (2 d) then intraperitoneally dosed (2 dJ with approximately 20 mg Kg 1 

phenobarbital for four consecuti,e days. after which. the hog was euthanized. The li\er 

was homogenized and microsomes were isolated \ ia differential centrifugation. Proteins 
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were solubilized and immobilized onto Sepharose beads (Pallante et al., 1986) and were 

stored in a I: I suspension with 0.1 M Tris buffer (pH 7.4) at 4°C until use. 

Liquid scintillation counting 

Radioactivity was quantitated with a Packard 1900 CA scintillation analyzer (Downers 

Grove, IL), and samples were dissolved in EcoLiten1 scintillation cocktail. 

Hieh-performance liquid chromatography 

Analytical HPLC for E2-3-G was performed using a Waters 600E System Controller 

and pump (Milford, MAJ, equipped with a Jasco FP 920 fluorescence detector (Jasco. 

Easton, MD) with the following conditions: Phenomenex-C 18, 4.6 x 250 mm, 5 µm: A: 

I OS7c ACN in 50 mM ammonium acetate (pH 4.5 ). B: 90C/r ACN in 50 mM ammonium 

acetate (pH 4.5): gradient: 20 to IOOlJc- B. 29 min. IOOC/r B, 3 min hold. 1.0 ml/min. 

excitation and emission wavelengths of 280 and 312 nm. respectively. Prep-HPLC was, 

performed on Jones Chromatography-C 18. IO x 250 mm, 5 µm: A: SC!r ACN in 50 mM 

ammonium acetate (pH 4.5 ). B: 90C/r AC:'.\/ in water: isocratic 85c/r s,olvent A, I 5c7r s,olvent 

B: 4.7 mUmin. 

For E2-17-S. analytical HPLC was, performed on a Gibon Sys,tem 45NC Gradient 

Analytical in'>trument (Gibon Medical Electronics,. Middleton. WI) equipped with a 

variable wawlength CV detector with the following conditions,: Radial-Pak-C 18. 8 x I (}(J 

mm (Waters Associates. Milford. MA): A: 10:90 methanol/v.ater. B: 90: I 0 

methanol/water: gradient: 20C/r B to I (XY!r B. 28 min .. 4 min hold: 1.0 ml/min 220 nm. 

HPLC for E2-3-benzoate was conducted using following conditions: Radial-Pak-C 18. 8 x 
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100 mm; A: 10:90 methanol/water, B: 90: 10 methanol/water; gradient: 20% B to I 00% B, 

30 min, 15 min hold; 1.0 ml/min, UV 220 nm. 

Mass spectral analysis 

Negative ion LC/MS was performed with a Waters Alliance 2695 HPLC (Symmetry­

C 18, 2.1 x 100 mm; A: 40% ACN in water, B: 60% ACN in water; gradient: 40 to 1001Yo 

B, 10 min, 5 min hold, 0.2 mL/min), and a Waters Micromass QTOF (API-US in a ES­

mode, MassLynx software, FWHM: 6500, source temperature 120°C, desolvation 

temperature 350°C, cone voltage 35 V, capillary voltage 2500 V, collision energy 5 eV for 

sulfate and 20 eV for glucuronide conjugates. 

NMR spectra 

A Bruker AM-400 spectrometer (Billerica, MA) operating at either 400.13 MHz or 

100.61 MHz was used to record the 1H- and 13C-NMR spectra respectively. 1H-NMR 

spectra were run in fully coupled mode with 128 scans and an acquisition time of 3.9713 s. 

13C-NMR spectra were run in CPD mode, with 64K scans obtained with an acquisition 

time of 1.307 s. The chemical shifts for the NMR spectra for E2 were 13C NMR (MeOH­

cL) 8: 155.84, 138.8, 132.32, 127.22, 116.05, 113.72, 82.49, 51.26, 45.34, 44.35, 40.5, 

38.00, 30.72, 30.68, 28.83, 27.53, 24.03, 11.71. 1H NMR (MeOH-cL) D (aromatic A-ring 

protons): 7.06 (d), 6.53 (d), 6.47 (s) (Table 7 in Appendix I). 

Synthesis of 17P-(4-14C)estradiol-3-glucuronide 

FiYe mL of0.1 M phosphate buffer (pH 7.4) was added to 20 mL of pre-rinsed 

microsomal proteins immobilized on Sepharose beads. Forty microliter of 2.63 M 

magnesium chloride. 63 mg of UDP glucuronic acid (5 mM final concentration), and 164.7 
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µg of [ 14C] labeled E2 (0.60 µmole: 33 µCi: dissol\'ed in 567 µL ethanol) and 6477 µg of 

unlabeled E2 (23. 78 µmole. dissolved in 540 µL ethanol) were added to the reaction flask. 

The reaction flask was slowly stirred on a Roto-Yap (Buchi, FlawiL Switzerland) without 

vacuum at 37°C for 24 h determined a priori. The enzymatic glucuronidation reaction is 

shown in Fig. I. The aqueous fraction was collected by filtration. 17fi-[4- 14C]estradiol-3-

glucuronide was partially purified on a Bond Elut"' C 18 SPE cartridge preconditioned with 

ACN and nanopure water by eluting with 20:80 ACN-water. The final radiochemical 

purity was 990'c obtained after preparative HPLC. 1'C NMR (MeOH-d4 ) 8: 176.52. 156.99. 

135.66. 127.20, 117.96, 115.41. 102.65, 82.47. 77.71. 76.68. 74.74. 73.59. 51.26. 45.41. 

44.32. 40.34. 38.97. 37.97. 30.69. 30.04. 28.40. 27.51. 24.00. 11.67. 1 H NMR (MeOH-d 4 J 

8 (aromatic A-ring protons): 7.18 (d). 6.87 (d). 6.81 (s) (Table 7 in Appendix IJ. LC/MS­

QTOF: M-H =447.21. m/z 271.17. 175.03. 113.02 ffig. 19 in Appendix IJ. 

CH3 OH 

~: 
UGT 

,, l' J....: ; ·. + UDP Glucuronic acid -------­
,/'~ "/ ---_, (Immobilized Enzyme) 

a ! 
HO~ 

E2 E2-G 

Figure I. Glucuronidation of the hydroxyl group at C-3 of J 7fi-estradiol by uridine 5'­
diphospho-glucuronosyltransferase ( L"GT ). 
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Synthesis of 17 P-[ 4- 14C]estradiol-17-sulfate 

Synthesis of [ 14C] E2- J 7-S consisted of a three-step chemical process that involved 

introducing a blocking group at the C-3 position of [ 14C] E2. sulfation at C-17 position. and 

subsequent deblocking to yield the desired synthetic product <Fig.2). 

HO 

1 Tn«hylamine C H3C N 

2 ~chlondo 

NoOH 

MeOH 

HO 

OH 
I 

O=S=O 
I 

CH3 0 

Figure 2. Chemical synthesis of [
14

C]l7j3-estradiol-17-sulfate conjugate from [ 14CJ17/J­
estradiol. 

f 14Cl 176-estradiol-3-benzoate 

Radiolabeled E2 <259.5 µg. 0.95 µmole. 47.7 µCiJ was mixed with unlabeled E2 ( 11.43 

mg. 42 µmole J in ethanol and the soh ent \\ a'> e\ aporated (Hooijerink et al .. 2005 J. The 

re'>idue was re-di'>sohed in 2 ml of acetonitrile. and 13 µL triethylamine and 11 µL 

benzoyl chloride ( 13.3 mg. 94.7 µmole) were added: the reaction mixture was '>tirred at 
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room temperature for 2 h and subsequently dried under a stream of nitrogen. To the 

resulting residue, 4 mL of 0.1 M trisodium phosphate solution was added and the mixture 

was sonicated for 30 min resulting in a light yellow suspension. The suspension was 

extracted with ethyl acetate (3 mL x 3), and the organic solvent was evaporated under a 

stream of nitrogen. The residue (E2-3-benzoate) was dissolved in ethyl acetate (3 mL) and 

water ( I mL) for further purification using HPLC. The yield of E2-3-benzoate was 59.Y/r 

and radiochemical purity was 98flc-. uC NMR (MeOH-d .. i) 8: 165.94, 150.13, 139.49. 

139.38, 134.86, 130.99, 130.99, 129.83. 129.83, 127.47, 122.63, 119.79, 82.45. 51.33, 

45.55, 44.34, 40.14, 37.99, 30.69, 30.56. 28.27. 27.48. 24.04. 11.68. 1H NMR (MeOH-d.iJ 8 

(aromatic A-ring protons): 7.44 (d), 6.94 (d). 6.89 (d); 8 (benzoate protons): 8.14 (d). 7.66 

(dd), 7.54 (dd). LC/MS-QTOF: M-H = 375.21. m/z 361.21. 356.85. 334.82, 332.82. 

r i.iCJ 17 B-estradiol-3-benzoate-17-sulfate 

Sulfur trioxide-pyridine complex was synthesized in-how,e (itoh et al., 1999) by adding 

chlorosulfonic acid ( 138 µL 2.07 µmoles) with stirring to dry pyridine ( 1.66 mLJ at (fC. 

The solution was allowed to warm to room temperature. followed by dilution v.ith dry 

pyridine (623 µL). 17,8-estradiol-3-benzoate was di<.solved into 1.1 mL of pyridine. and the 

solution was heated to 50°C. to which -.ulfur trioxide-pyridine complex. abo heated to 

50°C. was added. The mixture wa<. <.tirred for 30 min at 50°C followed by solvent 

evaporation under nitrogen. addition of water ( 4 mLJ. and adju<.ting to pH 8 ( I .\1 '.\'a OH). 

The mixture was partially purified with a Sep-Pak
0

' Yac C 18 cartridge and E2-3-benzoate-

l 7-sulfate eluted with methanol. 1 'C '.\'~1R (.\iteOH-d.i) 8: 166.95. 150.11. 139.42. 139.27. 

134.95. 130.85. 130.85. 129.89. 129.89. 127.52. 122.64. 119.84. 88.22. 50.78. 45.41. 
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44.23, 40.29, 37.98, 30.53, 29.22, 28.18, 27.47, 24.11, 12.24. 1H NMR (MeOH-d4 ) 8 

(aromatic A-ring protons): 7.30 (d), 6.90 (d), 6.86 (s): 8 ( benzoate protons): 8.13 (d). 7.66 

(dd), 7.52 (dd). LC/MS-QTOF: M-H = 455.10, m/z 351.12. 

17 8-[ 4- 14C]estradiol- l 7-sulfate 

Hydrolysis (Kirdani, 1965) ofE2-3-benzoate-17-sulfate was accomplished hy adding 

5% NaOH in methanol (5 mL), stirring for I hat room temperature. then neutralization 

with 109c acetic acid, and evaporation under nitrogen. After purification by HPLC. 21 µCi 

( 18.9 µmoles: 7.1 mg: 93c7r pure) of E2- J 7-S was obtained (overall yield: 44</r- ). 1 'C NMR 

(Me0H-d4 ) 8: 155.89. 138.76, 132.54. 127.26. 116.04. 113.76. 88.19. 50.78. 45.3. 44.24. 

40.34. 38.00. 30.71, 29.22. 28.48. 27.48. 24.10. 12.19. 1H NMR (MeOH-d4 J 8 (aromatic A­

ring protons): 7.06 (d). 6.53 (d). 6.47 (s) <Table 7 in Appendix I). LC/MS-QTOF: M-H = 

351.07. m/z 96.96. 

Results and Discussion 

Synthesis of 17 P-[ 4-14C]estradiol-3-glucuronide 

A one-step enzymatic synthesis of E2-3G is described that permitted regioselective 

attachment of a glucuronide acid moiety to E2. Since the reaction occurred in a buffered 

solution. reaction progress (Scheme I. as shown in Fig. I J could be readily followed by 

re\'ersed-phase HPLC. The radiolabeled parent peak (E2) at 27.57 min dropped steadily in 

intensity while the increase in peak intensity at 5.55 min occurred for the desired product 

(E2-3G) <Fig. 3). The reaction was essentially complete by 24 h. C-18 SPE purification 

yielded a radiochemical purity of 9Y/r-: semipreparati\e HPLC impro\ed radiochemical 

purity to 99c7c. LC/\1S-QTOF analysis of the peak at 5.55 min showed ions at m/z 44 7 .21. 
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271.17, 175.03, and 113.02, representing the molecular ion of E2-3G and ions of E2. 

glucuronic acid, and a glucuronide fragment, respectively (Fig. 19 in Appendix I). 

l:2cctlon 
-A...---------

-;;, 

" ..c 
-::!: 
~ 

0.. 

['(' 
_L_J_·-_' ----

0 (Kl "'~ 
Tune (min) 

t IX h 

Figure 3. Progress of enzymatic synthesis of 17/J-estradiol-3-glucuronide (E2-3G) with 
time and the concurrent consumption of 17(1-estradiol (E2J. 

To determine the site of conjugation. 1'C-:'\Y1R spectra of E2 and E2-G were compared 

to each other and with literature \"alues of E2 ! Dionne et al.. 1997: Kashi ma et al.. 20 IO) 

and bisphenol A glucuronide /Kurebayashi et al.. 2003). Glucuronidation was indicated hy 

the presence of an additional 6 carbom in the 1 'C-'.\YIR spectrum of E2-G: and the site of 

conjugation was indicated by the downfield -,hift of C-3 from 132.32 to 135.66 ppm in the 

'-pectrum of E2-G !Table 7 in Appendix I J. Chemical -,hifh in the I H-'.\YIR spectrum of 

E2-G were abo comistent with giucuronidation at C-3. For example. proton" ortho and 

meta to C-3 were -,hifted downfield 6.53 to 6.87. 7.06 to 7.18. and 6.47 to 6.81 ppm) for E2 

and E2-G. respecti,ely ff able 7 in Appendix I). In addition. a" one of the mmt diagnmtic 
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components of a sugar conjugated spectrum. an anomeric singlet at 4.30 ppm also confirms 

the formation of E2-3-G. Chemical shift assignments for the C-17 remained invariant for 

E2 and E2-3-G. 

Diglucuronide conjugation was theoretically possible due to two hydroxyl groups in 

E2, one a phenolic in the A-ring, and the other an aliphatic on the D-ring. However. only 

one site of conjugation was expected because enzyme-catalyzed reactions are usually 

regio- and stereospecific (Alonen et al., 2009). UGT enzymes are divided into two distinct 

subfamilies. UGTl and UGT2 (Kiang et al., 2005: King et al., 2000). Phenobarbital 

treatment of hepatoma cell lines is known to induce hepatic bilirubin UGTs (Brierley et al.. 

1996). which show a strong selectivity for phenolics ( Lepine et al.. 2004 ). 

Product yield of E2-3-G was 84ck. and was attributed to the induction of UGT' s by 

Phenobarbital (Watanabe and Yoshizawa. 1982). The same microsomal proteins also were 

active at glucuronidating hydroxylated polybrominated diphenyl ether metabolites. 

triclosan. and ractopamine hydrochloride. 

Synthesis of 17 P-[ 4- 1.iC]estradiol-17-sulfate 

The synthesis of E2- l 7-S. presented in Scheme 2 ( a-. -.hown in Fig. 2 ). wa-. initiated by 

blocking the more reactive C-3 hydroxyl in E2. which was accomplished with a 59.Y/r 

product yield to form the intermediate E2-3-benzoate. The negative ion LC/:v1S analysis of 

E2-3-benzoate resulted in a molecular ion at 375.21. a methyl loss fragment at 36 I .2 I. and 

a water Joss at 356.85. Losses of propanyl and propenyl groups were consistent with 

fragments at m/z 332.82 and 334.82. respecti\·ely. 1 H-'.\;VIR ::malysis of E2 and E2-3-

benzoate indicated shifts in protons ortho- and meta- to C-3 occurred in E2-3-benzoate 

relative to E2 (6.53 to 6.94: 7.06 to 7.44: 6.47 to 6.89 ppm) <Table 7 in Appendix I). 
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Benzoate protons were present at 8.14, 7.54, and 7.66 ppm of E2-3-benzoate. The 
11

C­

NMR spectrum confirmed that the blocking had occurred at C-3 because carbons onho­

and meta- to C-3 of E2-3-benzoate were shifted downfield relative to their chemical shift 

position in E2 (113.72 to 119.79: 132.32 to 134.86: 116.05 to 122.63 ppm) <Table 7 in 

Appendix I). 

The formation of E2-3-benzoate- l 7-S was confirmed by a molecular ion at 455.09 in 

the LC/MS spectrum, and was accompanied by a prominent fragment at m/z 351. 12. which 

was consistent with a benzoate fragment loss. Sulfation at C-17 was suggested by 

significant downfield chemical shifts for the C-17 proton <3.67 to 4.31 ppm) and carbon 

(82.45 to 88.22 ppm) in the I Hand 1~C NMR spectra of E2-3-benzoate andE2-3-henzoate­

l 7-S. respectively. A radiochemical purity of 9SCk was achieved and was com,idered 

satisfactory for the next step. 

The purification of the final product (E2-17-S) yielded 21 µCi (18.9 µmoles: 7.1 mg) of 

93c1c radiochemical purity. The formation of E2- I 7-S v,ias confirmed hy a molecular ion at 

351.07 and the sulfate moiety ion at m/z 96.96 in the LC/MS spectrum of E2- I 7-S. 
11

C 

NMR analyses of E2-l 7-S indicated a significant upfield chemical shift of C-3 relati\e to 

E2-3-benzoate-17-S (132.54 from 134.95 ppm). as, well as, for carbons ortho to C-3 ( 116.04 

from 122.64: 113. 76 from 119.84 ppm). Cpfield s,hifts of the aromatic protons, between 

E2- I 7-S and E2-3-benzoate- I 7-S were obsen ed ( 6.53 from 6.90: 7 .06 from 7 .30: 6.4 7 

from 6.86 ppm). but no chemical shift difference was obsen·ed for the C-17 proton (Table 

7 in Appendix I). Collectiwly. the physical data pro\ide comincing C\idence that sulfation 

ofE2 had occurred at C-17. The O\erall \ield of E2-17-S was 44c1r. which pm<,ibly could 
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have increased if the reaction conditions had been optimized; however optimization was 

not an immediate objective. 

Conclusions 

[ 
14C]Radiolabeled l 7fi-E2-3-G and 17fi-E2- I 7-S were successfully synthesized using 

enzymatic and chemical approaches, respectively, which permitted their use for laboratory 

scale fate and transport experiments in soil-water systems. Though the current study 

objective was measuring and modeling the movement of endocrine disrupting compounds 

in the environment. these studies are but a small portion of the potential studies in which 

radiolabeled conjugates could be used. Since glucuronidation and sulfation are the major 

conjugation pathways in vertebrates for not only steroid hormones. but other xenobiotic-. 

(Dutton. 1980), it is hypothesized that radiolabeled glucuronides and sulfates of other 

emerging contaminants can also be synthesized following the approaches provided in this 

paper. or with appropriate modifications of them. 

Acknowledgements 

The authors wish to thank Colleen Pfaff. Dee Anne Ellig. Barb \1agelky. \1ike 

Giddings. Grant Harrington. Jason Holthusen <L'SDA-ARSJ. and Nathan Derby (Soil 

Science Dept.. :'\DSC J for their support in the laboratory work and Glenn Wittenberg 

(CSDA-ARS) for his IT -,upport. Thi-, re-,earch was ba-,ed upon work '>Upported by the 

:'\"ational Science Foundation under Grant :'\"o. 0730492. Any opinions. findings. and 

conclusion-, or recommendation'> expre-,.,ed in thi-, material are tho'>e of the authors and do 

not nece-,sari I y reflect the \ iev." of the :'\ ational Science Foundation. The me of trade. 

33 



firm, or corporation names in this publication is for the information and convenience of the 

reader. Such use does not constitute an official endorsement or approval by the United 

States Department of Agriculture or the Agricultural Research Service of any product or 

service to the exclusion of others that may be suitable. 

References 

Alonen, A., M. Gartman, 0. Aitio, M. Fine!, J. Yli-Kauhaluoma, and R. Kostiainen. 2009. 

Synthesis, structure characterization, and enzyme screening of clenbuterol 

glucuronides. Eur. J. Phann. Sci. 37:581-587. 

Amdur, M.O., J. Doull, and C.D. Klassen. 2001. Casarett and Doull's Toxicology: The 

Basic Science of Poisons. 6th ed. Mcgraw-Hill, New York. 

Brierley, C.H., S.B. Senafi, D. Clarke, M.-H. Hsu, E.F. Johnson, and B. Burchell. 1996. 

Regulation of the human bilirubin UDP-glucuronosyltransferase gene. Adv. Enzyme 

Regul. 36:85-97. 

Casey, F.X.M., G.L. Larsen, H. Hakk, and J. Simunek. 2003. Fate and transport of 17 beta­

estradiol in soil-water systems. Environ. Sci. Techn0l. 37:2400-2409. 

Casey, F.X.M., H. Hakk, J. Simunek, and G.L. Larsen. 2004. Fate and transport of 

testosterone in agricultural soils. Environ. Sci. Technol. 38:790-798. 

Cummins, C.H. 1993. Radiolabeled steroidal estrogens in cancer-research. Steroids 

58:245-259. 

Dence, C.S., E. Napolitano, J.A. Katzenellenbogen, and M .J. Welch. 1996. Carbon- I I -

labeled estrogens as potential imaging agents for breast tumors. Nucl. Med. Biol. 

23:491-496. 

34 



Desbrow, C., E.J. Routledge, G.C. Brighty, J.P. Sumpter, and M. Waldock. 1998. 

Identification of estrogenic chemicals in STW effluent. I. Chemical fractionation and 

in vitro biological screening. Environ. Sci. Technol. 32: 1549-1558. 

Dionne, P., B.T. Ngatcha, and D. Poirier. 1997. D-ring ally! derivatives of l 7[beta ]- and 

l 7[alpha]-estradiols: Chemical synthesis and l 3C NMR data. Steroids 62:674-681. 

Dutton, G.J. (ed.) 1980. Glucuronidation of Drugs and Other Compounds. CRC Press, 

Boca Raton, FL. 

Fan, Z.S., F.X.M. Casey, G.L. Larsen, and H. Hakk. 2006. Fate and transport of 1278-

TCDD, 1378-TCDD, and 1478-TCDD in soil-water systems. Sci. Total Environ. 

3 71 :323-333. 

Fan, Z.S., F.X.M. Casey, H. Hakk, and G.L. Larsen. 2007. Persistence and fate of 17 bcta­

estradiol and testosterone in agricultural soils. Chemospherc 67:886-895. 

Hanselman, T.A., D.A. Graetz, and A.C. Wilkie. 2003. Manure-Borne Estrogens as 

Potential Environmental Contaminants: A Review. Environ. Sci. Technol. 37:5471-

5478. 

Holthaus, K.I.E., A.C. Johnson, M.D. Jurgens, R.J. Williams, J.J.L. Smith, and J.E. Carter. 

2002. The potential for estradiol and ethinylestradiol to sorb to suspended and bed 

sediments in some English rivers. Environ. Toxicol. Chem. 21 :2526-2535. 

Hooijerink, H., A. Lommen, P.P.J. Mulder, J.A. van Rhijn, and M.W.F. Nielen. 2005. 

Liquid chromatography-electrospray ionisation-mass spectrometry based method for 

the determination of estradiol benzoate in hair of cattle. Anal. Chim. Acta 529: 16 7-

172. 

35 



Hutchins, S.R., M.V. White, F.M. Hudson, and D.D. Fine. 2007. Analysis of lagoon 

samples from different concentrated animal feeding operations for estrogens and 

estrogen conjugates. Environ. Sci. Technol. 41 :738-744. 

ltoh, Y., N. Matsuda, K. Harada, K. Takanashi, K. Watanabe, H. Takagi, S. ltoh, and I. 

Yoshizawa. 1999. Synthesis of 6- and 7-hydroxyestradiol 17-sulfates: the potential 

metabolites of estradiol 17-sulfate by female rat liver microsomes. Steroids 64:363-

370. 

Kashima, Y., T. Kitade, and Y. Okabayashi. 20 I 0. Development of an Automated 

Synthesis System for Preparation of Glucuronides Using a Solid-Phase Extraction 

Column Loaded with Microsomes. Chem. Phann. Bull. 58:354-358. 

Khanal, S.K., B. Xie, M.L. Thompson, S. Sung, S.-K. Ong, and J. van Leeuwen. 2006. 

Fate, Transport, and Biodegradation of Natural Estrogens in the Environment and 

Engineered Systems. Environ. Sci. Technol. 40:6537-6546. 

Kiang, T.K.L., M.H.H. Ensom, and T.K.H. Chang. 2005. UDP-glucuronosyltransfcrases 

and clinical drug-drug interactions. Pharmacol. Ther. I 06:97-132. 

King, C.D., G.R. Rios, M.D. Green, and T.R. Tephly. 2000. UDP­

glucuronosyltransferases. Curr. Drug Metab. I: 143-161. 

Kirdani, R.Y. 1965. The synthesis and characterization of estradiol sulfates. Steroids 

6:845-853. 

Kolpin, D.W., E.T. Furlong, M.T Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, and 

H.T. Buxton. 2002. Pharmaceuticals, hormones. and other organic wastewater 

contaminants in U.S. streams, 1999-2000: A national reconnaissance. Environ. Sci. 

Technol. 36: 1202 -1211. 

36 



Kurebayashi, H., H. Betsui, and Y. Ohno. 2003. Disposition of a low dose of C-14-

bisphenol A in male rats and its main biliary excretion as BPA glucuronidc. Toxicol. 

Sci. 73:17-25. 

Larsson, D.G.J., M. Adolfsson-Erici, J. Parkkonen, M. Pettersson, A.H. Berg, P.E. Olsson, 

and L. Farlin. 1999. Ethinyloestradiol -- an undesired fish contraceptive? Aquat. 

Toxicol. 45:91-97. 

Legler, J., A. Jonas, J. Lahr, A.O. Vethaak, A. Brouwer, and A.J. Murk. 2002. Biological 

measurement of estrogenic activity in urine and bile conjugates with the in vitro ER­

CALUX reporter gene assay. Environ. Toxicol. Chem. 21 :473-479. 

Lepine, J., 0. Bernard, M. Plante, B. Tetu, G. Pelletier, F. Labrie, A. Belanger, and C. 

Guillemette. 2004. Specificity and Regioselectivity of the Conjugation of Estradiol, 

Estrone, and their Catecholestrogen and Methoxyestrogen Metabolites by Human 

Uridine Diphospho-glucuronosyltransferases Expressed in Endometrium. J. Clin. 

Endocrinol. Metab. 89:5222-5232. 

Lintelmann, J., A. Katayama, N. Kurihara, L. Shore, and A. Wenzel. 2003. Endocrine 

disruptors in the environment - (IUPAC Technical R~port). Pure Appl. Chem. 75:631-

681. 

Matsui, S., H. Takigami, T. Matsuda, N. Taniguchi, J. Adachi, H. Kawami, and Y. 

Shimizu. 2000. Estrogen and estrogen mimics contamination in water and the role of 

sewage treatment. Water Sci. Technol. 42: 173-179. 

Mull, E.S .. V.J. Sattigeri, A.L. Rodriguez, and J.A. Katzenel!enbogen. 2002. Ary) 

cyclopentadienyl tricarbonyl rhenium complexes: Novel ligands for the estrogen 

37 



receptor with potential use as estrogen radiophannaceuticals. Bioorg. Med. Chem. 

10:1381-1398. 

Nishiyama, T., K. Ogura, H. Nakano, T. Kaku, E. Takahashi, Y. Ohkubo, A. Hiratsuka, S. 

Kadota, and T. Watabe. 2002. Sulfation of environmental estrogens by cytosolic human 

sulfotransferases. Drug Metab. Phannacokinet. 17:221-228. 

Pallante, S.L., C.A. Lisek, D.M. Dulik, and C. Fenselau. 1986. Glutathione conjugates­

immobilized enzyme-synthesis and characterization by fast-atom-bombardment mass­

spectrometry. Drug Metab. Dispos. 14:313-318. 

Palme, R., P. Fischer, H. Schildorfer, and M.N. Ismail. 1996. Excretion of infused 14C-

steroid hormones via faeces and urine in domestic livestock. Anim. Reprod. Sci. 

43:43-63. 

Park, K.J., C.T. Muller, S. Markman, 0. Swinscow-Hall, D. Pascoe, and K.L. Buchanan. 

2009. Detection of endocrine disrupting chemicals in aerial invertebrates at sewage 

treatment works. Chemosphere 77: 1459-1464. 

Payne, D.W., and P. Talalay. 1985. Isolation of novel microbial 3 alpha-, 3 beta-, and 17 

beta-hydroxysteroid dehydrogenases. Purification, characterization, and analytical 

applications of a 17 beta-hydroxysteroid dehydrogenase from an Alcaligenes sp. J. 

Biol. Chem. 260: 13648-13655. 

Preziosi, P. 1998. Endocrine disrupters as environmental signallers: an introduction. Pure 

Appl. Chem. 70:1617-1631. 

Sangsupan, H.A., D.E. Radcliffe, P.G. Hartel. M.B. Jenkins, W.K. Vencill, and M.L. 

Cabrera. 2006. Sorption and Transport of 17P-Estradiol and Testosterone in 

Cndisturbed Soil Columns. J. Environ. Qual. 35:2261-2272. 

38 



Schuh, M.C. 2008. M.S. Thesis. North Dakota State University, Fargo. 

Teles, M., M. Oliveira, M. Pacheco, and M.A. Santos. 2005. Endocrine and metabolic 

changes in Anguilla anguilla L. following exposure to [beta]-naphthoflavonc--a 

microsomal enzyme inducer. Environ. Int. 3 I :99- I 04. 

Watanabe, K., and I. Yoshizawa. I 982. Estradiol I 7 /3-sulfate as a substrate for 2-

hydroxylation enzyme of rat liver microsomes (clinical analysis on steroids). XX. J. 

Pharrnacobiodyn. 5:340-347. 

39 



PAPER 2. A HIGH MASS RECOVERY ANALYTICAL METHOD FOR FATE 

AND TRANSPORT STUDIES OF LABILE ESTROGENS 

Abstract 

The aim of this research was to present a suit of analytical methods that provide 

simultaneous analysis of a glucuronide conjugate of estrogen. 17/j-estradiol-3-glucuronide 

(E2-3G), and its metabolites under the context of an environmental fate and transport study 

in a complex matrix. The challenge for these types of studies is achieving adequate 

quantification and qualifications of labile compounds in complex matrices while 

maintaining excellent mass balances. A radioassay technique was used to track the estrogen 

conjugate and its metabolites in the aqueous. sorbed. and gaseous phases in a matrix of ..,oil 

and water. An analytical method was developed to separate E2-3G and its metabolites 

using high performance liquid chromatography <HPLC ). Liquid scintillation counting 

(LSC) was used to quantify the distribution of E2-3G and its metabolites in the aqueous 

and reversibly sorbed phases. Reversibly and irre\'ersibly sorbed fractions were accounted 

for by solvent extraction and a 1.,ample oxidizer. respecti, ely. followed by LSC. while ga1., 

chromatography followed by LSC was used to measure radioactivity in the gas phase. ~ass 

spectral analysis using liquid chromatography with tandem mass spectrometry <LC­

~S/\1SJ was used to confirm the E2-3G metabolite peaks eluted from the HPLC. The 

combined HPLC-LSC method was capable of simultaneously quantifying the study 

compound. E2-3G. and it'i metabolite<,. e',{rone-3-glucuronide <El-3G1. 17/1-e'itradiol /E2/ 

and estrone /El). E'itriol !E3) was not detected. but could be U'ied with this method. The 

total mass recowry achie\·ed from the aqueous and bound phases ranged from 99.0 to 
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105.5 9'c for all eight time points throughout 336 h. The limits of 4uantitation (LOQ) were 

0.24±0.03 µg L- 1 for E2-3G and E l-3G and 0.15±0.02 µg L 1 for E2 and EI in the aqueou-. 

phase. The sorbed phase LOQs were 1.22±0.17. 1.21±0.17. 0.74 ±0.10. and 0.73 ±0. JO µg 

Kg" 1 for E2-3G, El-3G, E2. and EL respectively. 

Introduction 

Natural and synthetic steroidal estrogen-. have been fre4uently detected in the 

environment (Kol pin et al.. 2002) and po-.e a great concern becau-.e of their high potential 

to disrupt the endocrine sy-.tem of a4uatic organism-. (Routledge et al.. 1998) at 

concentrations as low as I ng L 1 
( Hansen et al.. 1998 J. There i-. a need for method-. to 

study these labile compounds and their metabolite-. to under-.tand their fate and trans,prn1 in 

the environment (Gorog. 2011 ). Howe\·er. the labile nature of e"1rogen-.. and their 

conjugates. poses many analytical challenges that make -.tudying them difficult. 

Gas chromatography (GC) ha.-, been a popular analytical techni4ue for organic 

pollutants. but its use is mainly s,uited for non-polar and moderately polar organic 

compounds. Although polar compound-. -.uch as alkylphenols and -.teroid sex hormones 

ha\e been analyzed using GC methods (Pacakma et al.. 2009). derivatization of steroid 

compounds is usually re4uired to imprme the stability of the analytes (Gabet et al.. 2007 J. 

Abo. direct analy-.is of conjugated -.teroids is not possible using the GC technique without 

hydrolyzing the conjugates to their free forms. The difference of GC derived concentration 

\ alues before and after the hydrolysis .step i-. presumed to be contributed from the 

conjugate. High performance liquid chromatography (HPLCJ in combination with photo 

spectrometric (PS) detectors ha-. been med a-. a cheaper alternative to the more -.en-.iti \ e 

41 



mass spectrometers (MS) (Ingerslev and Halling-S~1rensen. 2003). Use of HPLC will 

eliminate the need of derivatization as well as the hydrolysis of the conjugates. although 

some researchers have preferred to hydrolyze the conjugates (Mao et al.. 2004) perhaps 

because there was insufficient separation between the conjugates and free estrogens. 

However, matrix effects can affect the resolution of the analytes, especially when 

extracting from a complex matrix, such as soil (Tso et al.. 2011 ). Analytical advance-, u-,ing 

LC mass spectrometry (LC-MS) or tandem mass spectrometry ( LC-MS/MSJ have also 

been utilized in the environmental analysis of estrogen'>. which offer detection limits in the 

low ng L- 1 range. However, the higher cost\ of these instruments pose con-,traints. 

Additionally, even these high-end analytical tools cannot be used to quantify what i-, 

irreversibly bound on soil or what has been com·erted to gas (Fan et al.. 2007 ). 

Use of alternative techniques. such as radioas-.ay. may provide -.olution-. to the 

analytical problems and allow detailed experiment\ in the laboratory that can di-.cern the 

complicated fate and transport processe-.. Liquid -.cintillation counting, a method to 

quantitate radioactivity. i-. not -.ubject to matrix i-.-,ue-.. unlike LC MS technique-.. l\'o other 

anal)tical methods can directly quantify what i-, irre\ersibly -.orbed and what i-. comerted 

to gas via methanogene-.i-. or mineralization <Fan et al.. 2007). Since all major fate 

dispo-.itions (i.e .. dis-.olved. bound. and ga-.eou-.) are directly quantifiable with radiological 

methods. an excellent ma-.s balance clo-.ure can be achie\·ed. Aqueous phas,e radioacti\ity 

can be meas,ured directly u-.ing LSC. Re\ er..,ibly bound fractions. extracted using organic 

sohent. can also be quantified U<.,ing LSC. The irre\er-,ibly bound fraction<., can he 

mea'>ured by combu"1ing "oil <.,ample-. in a oxidizer. trapping the radioactive CO:. and 

conducting LSC on the trapped CO~ (Zitnick et al .. 2011 J. Ga'> pha"e (mineralized) fraction 
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of the labile estrogen can be quantitated by sampling head-space gas and either by trapping 

the radioactive CO2 gas followed by LSC (Fan et al., 2007 ). or by analyzing air samples 

with GC followed by LSC. 

There is, however, a major drawback of the radioa-,say method in regard to speciation 

analysis. Even though thin layer chromatography (TLC J can be used for speciation 

information (Fan et al.. 2007 ). it requires high concentrations ( Zitnick et al.. 20 I I J 

compared to other method (e.g. HPLCJ. and it is often difficult to obtain good 

quantification of all metabolites. Combination of HPLC separation capahility with the 

quantitation capability of LSC can provide a very comenient laboratory method to 1.,pcciatc 

and effectively track metabolites. Furthermore. HPLC and LSC are relatively inexpensi,e 

and common equipment. where GC- or LC-\1S/\1S are more expensive and less a,ailahle. 

There is a need for a simple laboratory method that can pro,ide a complete mass, 

balance as well as detailed .1,peciation of labile emerging contaminant.'> . .1,0 that critical fate 

and transport experiments can be conducted with eas,e. E,en though the combinations of 

radioassay with HPLC haw been u.1,ed for some em·ironmental contaminant.'> 1.,uch as 

pesticide-, (McDonald et al.. 2006). such a method ha-, nut been developed in ca1.,e of highly 

labile sex hormones,. and especially for e<,trogen conjugates. In this, 1.,tudy. a suit of 

anal)tical method-, with an excellent ma.1,.1, recm ery and complete .1,peciation capabilities is 

presented to imestigate the fate of a glucuronide conjugated estrogen. E2-3G. in an 

agricultural soil-water -,y-,tem. 
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Material and Methods 

Reagent and chemicals 

The study compound 17 fi-[ 4- 14C]-estradiol-3-glucuronide (E2-3G) (99r/r radiochemical 

purity; specific activity 103. 13 Bq µt') was synthesized using radiolaheled and unlaheled 

E2 and other chemicals as described by Shrestha et al. (2011 ). Acetonitrile. ammonium 

acetate, hydrochloric acid. calcium chloride dihydrate and formaldehyde (all analytical 

grades) were purchased from Sigma-Aldrich and were used as received. Carbo-Sorh E and 

Permatluor were purchased from PerkinElmer (Waltham. MA) and scintillation cocktail. 

Ecolite. was obtained from MP Biomedicals (Santa Ana. CA). All aqueous <,o]utiom were 

prepared using analytical reagent grade nanopure water. 

Individual a<, well as composite standards of E2-3G. E2. and El. were prepared in 

methanol ensuring enough mass to produce sati.,factory detection. The standard had mass 

concentrations of 0.73. 0.50. and 2.5 ng µL 1 and 5. 182. and 1045 dpm µL I radioacti\ity 

for E2-3G. E2. and El re<.,pectively. A 50 µL injection rnlume wa<., used a<, the standard 

volume. The <.,tandards were <.,tored at -20° C when not u<.,ed. 

Batch soil experiments 

The laboratory method" pre<,ented in this study are in the context of a s,oil batch s,tudie,. 

but can be extrapolated to other media. ,uch a" "ediment. manure<,. or himolid..,. The <,oil 

used for the batch <,tudie<., came from the <.,urface horizon(() - 6 cm/ of a Hamar "erie" "oil 

(sandy. mixed. frigid typic EndoaquolJ<.,J. The "and:..,ilt:clay distribution was, 83: 10:7. 

organic carbon content was l.3SC/r. pH was 7.0. and CEC wa" 9.3 meq 100g 1
• The "oil \\a" 

air-dried and sie\ed through a 2 mm <.,ie\e and "1ored in a jar until u<.,ed. 



The mass balance of the total radioactivity in the soil-water batch experiments took into 

consideration the radioactive fractions in gaseous and aqueous phases. as well as the 

reversibly and irreversibly sorbed phase fractions. Figure 4 presents the mass balance 

schematic along with the analytical techniques used to quantify each compa11ment. 

Compartment 

GASEOUS 

AQUEOUS 

REVERSIBLY 

SORBED 

IRREVERSIBLY 

SORBED 

Possible Species in the Compartment 

E2 

Analytical Method 

C 

"'co. trapped 

• LSC 

LSC • HPLC • LSC 

H,O & Acetone 

Extraction 

LSC • HPLC • LSC 

Combu1t1on 

'co, trapped 

LSC 

Figure 4. \1ass balance and analy1ical methods u-.ed in each compartment. Possible 
metabolites of E2-3G ( abbre\·iated as E2G) are shov.·n in each compartment: X is 
unidentified metabolites registering radioacti\'ity. Radiolabeled E2-3G is administered to 
the aqueous phase of the soil-water slurry to initiate the batch study. 

Radiolabeled E2-3G was spiked into \iab containing 1.6 g of soil and 8 ml of 0.01 \1 

CaCl~in each \·iaL to attain a final concentration of 3.7 µg ml 1
• Three \ials were 

designated for aqueous phase sampling through time. while additional 7 Yials (hereafter 

referred to as ·stop· \ials) \\ere de\oted for the analysis of sorbed phase radioacti\ity by 
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destructive sampling of one vial at each sampling time. Method blanks contained no 

analyte (E2-3G), while control blanks contained no substrate (soil) and were dosed at 0.5 

mg L- 1 to check the stability of the analyte during the experimental period. Triplicate dosed 

vials, method blanks, and control blanks, along with seven 'stop' vials were agitated (360° 

every 5 seconds) on a rotor and were stopped briefly to take samples at 4, 8, 24, 48, 72, 

168, and 336 h. 

At each sampling time, the vials were removed from the rotor and centrifuged at 1700 

rpm (380xg) for 20 min. One of the 'stop' vials was also removed and retired at each 

sampling time. From the triplicate vials, a 100-µL aliquot and 120 µL duplicate aliquots 

were taken from each vial using sterile syringes, for the analysis of the bulk radioactivity 

and speciation (metabolite formation), respectively, in the aqueous phase. The 120 µL 

duplicate aliquots were filtered through a 0.45 µm PTFE glass filter, to which 37 µL of 

37% (13.3 M) formaldehyde (2.7% final volume) was added to inhibit any microbial 

activity, and were stored at -20°C until analysis. Liquid scintillation counting was used to 

analyze the bulk radioactivity, while HPLC and LSC were used to investigate the 

speciation in the aqueous phase (Fig. 4 ). 

The aqueous phase from the retired 'stop' vial was separated from the soil to analyze 

the sorbed phase radioactivity. To preserve the samples, formaldehyde was applied to the 

aqueous and soil separates (2.7% final volume) and the samples were then stored at -20',C 

until analysis. Water and acetone extraction, followed by analysis with LSC and HPLC 

were used to analyze reversibly sorbed phase radioactivity and speciation (Fig. 4 ). 

Irreversibly sorbed radioactivity was measured by com busting sample soil from the 'stop' 

,·ials that had already been extracted with water and acetone. 
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To analyze the gas phase radioactivity, the heads pace of the retired 'stop' viab and the 

triplicate dosed vials were sampled (500 µL). 'Stop' vial headspace was sampled 

immediately after the vial was retired, while the triplicate dosed vials were sampled at the 

end of the batch study. The air samples were analyzed with GC and LSC ( Fig. 4 ). 

Analytical techniques 

Liquid scintillation counting (LSC) 

A 1900 CA scintillation counter (Packard, Downers Grove, IL) was used for LSC with 

EcoLite scintillation cocktail. The LSC was calibrated with 14C standards before w,e. For 

each sample. 100 µLin the case of bulk radioactivity analysis and I mL for fraction 

collected HPLC eluent, 4 mL of the scintillation fluid were added in a 5-mL HOPE 

scintillation vial. The vials were capped. shaken (-IO seconds in a vortex shaker). and 

stored overnight in the dark to stabilize the effects of induced chemiluminescence and 

photoluminescence. The vials were wiped with an antistatic sheet before loading into the 

LSC to minimize static charge build up on the plastic vials due to dry weather or by 

handiing with latex glove'>. Sample \'ial acti,ity wa" counted for a period of JO min. 

Measured activity wa'> corrected for background activity in blank viab. The background 

Ie\-el of radioactivity\\ a'> measured e,ery day with 5 '>cintillation viab containing 4 mL of 

the scintillation cocktail. 

Hi~h performance liquid chromatmzraphv /HPLC) 

The HPLC compri'>ed of a \Vater'> 600E Sy.,tem Controller and pump /\1ilford. \1A J. a 

C 18 re\ er'>e phase anal:,tical column <Phenomenex. 4.6 x 250 mm. 5 mm J. a Ja<,co FP 920 

tluore"cence detector /J a"co. Ea"ton. ~10 ). a Waters 717 Pl u" auto-sampler . and a Waters 
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746 Data Module integrator. The HPLC was coupled with a fraction collector (Gibon FC 

204, Middleton, WI). Both ultraviolet (UY) and fluorescence (FLO) detectors were 

investigated for suitability, with an on-column injection of 40 ng of the study compound. 

Initial settings for the UV and the FLO wavelengths were selected from the published 

literature but were later modified to suit our experimental conditions. The column 

temperature was maintained at 25°C during analysis. 

A gradient elution was adopted based on the hydrophobicity of E2-3G and its expected 

metabolites, E2 and El. Various gradients were tested to allow the analy,is of both the 

conjugate and the expected free metabolites in a single run. Mobile phases used for 

gradient elution comprised of solvent A (90c/r 50 mM ammonium acetate at pH 4.5 and 

107c acetonitrile), and solvent B (90C/r acetonitrile with HY!r 50 mM ammonium acetate at 

pH 4.5 ). Both the solvents A and B were degassed daily by helium sparging at a gas flow 

rate of 30 ml min I for 30 min prior to use with the HPLC. A flow rate of 1.0 mL min 1 

with an operating pump pressure of approximately 3.98 MPa wa.s used. Run times were 

systematically adjusted based on mobile phase responses. At least one injection of mobile 

phase was made to remm e co-extracti,·es from the injector and the column before a 

standard was injected. 

Peaks in the chromatogram were synchronized with fraction collection by correcting 

the lag time between the column and fraction collector. c..,ing LSC of the fraction<, 

collected from a radioactive injection bypa<,sing the column. a lag time of 0.6 min wa<, 

determined for the conduit "Y"tem. Interference in the target peak of E2-3G from ().(JI .\1 

CaCl 2 solution. <.oil solution matrix. and the bactericide formaldehyde were a]-,o te"1ed. but 

were determined to be negligable. 
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Analysis of reversibly sorbed fraction 

Soil bound radioactivity (i.e. radiolabeled E2-3G or ih metabolites) on the re\'ersible 

sorption locations was extracted from the soil with nanopure water ( 3x4 mL) and acetone 

(3x4 mL) using a sonication bath for 30 min followed by centrifuging at 380 x g for 30 

min. The nanopure water and acetone from the extractions were decanted to separate \ iah 

and 500 µL aliquots were analyzed in triplicate for bulk radioactivity in the LSC. 

Calculated volumes of extracted supernatants (bulk radioactivity> 200 dpm) were 

evaporated in gentle stream of nitrogen. reconstituted in 50:50 acetonitrile and nanopure 

water, and filtered through a 0.45 µm filter to prepare for HPLC analysis. 

Quantification of irreversibly sorbed fraction 

To quantify the irreversibly sorbed phase fraction (i.e. unextractable radioactivity 

bound to soil). activity in the water-and-acetone-extracted soil residues v.ere determined by 

total sample oxidation using a Packard 307 sample oxidizer (Packard Chemicals. Meridan. 

CT). The soil residues were completely air-dried under a hood for a week. Five replicates 

of 0. I g of soil from each sample were weighed in paper combustion cones. to which J 00 

µL of Combmtaid was added to enhance combw,tion. and then the <,ample.., were capped 

with combustion pad.., for analy"i" in the sample oxidizer. Trapping efficiency of 14C from 

the combu..,tion proce..,.., wa-. e-.tabli-.hed before -.ample combu"1ion. The recm·ery of 

duplicate aliquot-. of 14C-Spec-chec -.olution combu-.ted in the oxidizer wa.., e-.tabli..,hed to 

be greater than 9Wk. Blank-. were also run before and after the -.ample combu-.tion. 

Resulting 14CO: ga.., from the sample combustion was eluted from the ... ample oxidizer\\ ith 

8 mL of Carbosorb E. which wa<, then combined with 12 mL of Permafluor -.cintillation 



cocktail in 20 mL glass scintillation vials. The vials were capped, shaken, and ..,torcd 

overnight before counting for the activity in the LSC. Samples were counted with 

automatic background deduction. 

Gas chromatography (GC) 

Gas phase radioactivity due to possible methanogenesis or minerali1.ation of E2-3G (or 

its metabolites) was investigated by GC analysis of the head-space samples. The GC wa.., 

an HP 5790A gas chromatograph (Avondale. PA) and the column was a JO-foot gla1.,.., 

column ( 1.5 mm id and 7.0 mm od) packed with 31k OY-17. Temperature gradient wa.., 

30°C at the initial condition. hold for 2 min. then rai1.,ed to l 80°C with a ramping rate of 30 

deg min· 1
• and held at l 80°C for 5 min. Fi\'e hundred microliter of the head-1.,pace air 

sample was injected into the GC. The effluent of the column wa1., split 1.,0 that 42 1/r would 

be directed to the flame ionization detector for the determination of chemical ma,1.,. and the 

remaining 58(/c was directed into a 740°C O\'en containing Cum JO. which con\'erted the 

[ 
14C]methane into [ 14C]CO:. The radiolabeled carbon dioxide wa.., trapped hy Carho-Sorh E 

(8 ml). then diluted with of Permatluor ( 12 mLJ and counted for radioactivity by LSC. The 

integrating recorder was an HP 3390A. 

Liquid chromato!!raphY-tandem ma..,., spectrometrv \·erification 

To identify metabolite peak., re..,ulting from the tran..,formation of E2-3G. LC-\1S/\1S 

anaJy..,is was employed. A Water.., Alliance 2695 HPLC 1.,y1.,tem coupled to a Water-. 

~1icroma-.s quadrupole time-of-flight (Q-TOFJ tandem ma-.-. 1.,pectrometer was u-.ed to 

identify the metabolite1., of E2-3G in thi.., '-.ludy. A Water-. 2996 photodiode array detector 

\\ a-. u-.ed in the HPLC. The LC -.eparation \\ a-. carried out ming a re,er,e pha-.e Symmetry 
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CI8 column (3.5µm, 2. Ix JOO mm) equipped with a 2. lxlO mm guard column. FiH~ to 20 

µL of each sample was injected onto the column. The mobile phase, operating at a tlow 

rate of 0.2 mL min·', consisted of nanopure water and acetonitrile at 60:40 v/v as sohent A 

and 40:60 v/v as solvent B. A linear gradient from 40-1 OOC/r solvent B in IO min. a 5 min 

hold at 1ooc1r B, and return to 4oc7r solvent Bin 0.1 min was used to resolve the 

compounds. A 9.9 minute equilibration time ,vas provided before a new injection wa., 

made. The column effluent flow was split 3: I to waste and to the MS/MS system. 

The Q-TOF tandem mass spectrometer (QTOF API-USJ was equipped with 

electrospray ionization (ES!). Negati,·e ionization (NI) mode was used for this study -.ince 

NI is generally a method of choice for estrogen detection hy LC/ESI MS-MS (Dfaz-Cruz et 

al.. 2003 ). The Q-TOF operating conditions were as follows: a source temperature of 

120°C. a desolvation temperature of 350°C. a capillary \oltage of 2500 Y. and a cone 

voltage of 35 Y. The TOF pn)\'ided accurate mass measurement (within 2mDa) of collision 

induced fragments of quadrupole-.,elected parent iom. at a moderately high resol\'ing 

power at full width at half maximum of 6500. Data were acquired in the continuum mode 

with a mass range of ml; I 00-S(X) Da and a scan ti me of 0. I s. and proces,sed using 

\1assLynx \'.-+.2 software. The MS/MS acquisitions were performed with a collision energy 

of 20 eY. and then at 50 eY to allow both identification of -.mall neutral los-.e-. and the 

ob'>er. at ion of diagno'>tic fragment ion'>. 
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Results and Discussion 

Simultaneous analysis of conjugate and free estrogens 

Both UV and fluorescence detectors were inYestigated for better detection of E2-3G 

and free estrogens E2 and El. Although UV detection is almost exclusively m,ed to anal)'le 

steroid hormone formulations in drugs. fluorescence detection is reported to offer high 

sensitiYities for estrogens possessing native fluorescence. such as ethinylestradiol (Gorog. 

2011 ). Most of the estrogens are reported to have a weak native fluorescence ( Mao et al.. 

2004: Wang et al.. 2011 ), requiring fluorescent derivati1.ation prior to analysis. such as pre­

column derivatization with p-nitrobenrnyl chloride (.\1ao et al.. 2004). In our study. 40 ng 

of E2-3G and E2 produced satisfactory peaks in the chromatogram: however. the fLD 

response of estrone was low due to its lower efficiency of native fluorescence (Bramhall 

and Britten. 1976). Since quantitation was based on the scintillation counting of trapped 

radioactive peaks. sufficient FLO response for the EI peak in the HPLC chromatograph 

was not an absolute requirement. Satisfactory peak detection was obtained with an 

injection of 36.5. 25. and 125 ng for E2-3G. E2. and El. respectiYely. without fluorescent 

derivatization <Fig. 5-A). Brarn et al. (2005) abo succes'>fully analyzed E2 with intrinsic 

fluorescence U'>ing HPLC flow injection. 

Fluorescence detection wa<, chosen because it demonstrated Jess matrix interference 

compared to the CV detection method. The FLO excitation O""' J and emi'>'>ion O""ml 

\\a\elengths of 280 and 312 nm. respectiwly. were sufficient for the detection of E2-3G 

and free e'-lrogen'>. The'>e ,alue-, \\ere clme to \1ao et al. (2004) <i"", and ;.'"l·m at 282 and 
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315 nm, respectively), who analyzed free estrogens including E:2 and EI: however. they 

enhanced the native fluorescence by derivatization with p-nitrobenzoyl chloride. 

A gradient elution scheme was adopted due to the wide variation in the hydrophobicity 

of the compounds. Some researchers have opted for two different isocratic elution '>chemcs 

to be used separately for either analyzing the conjugate or the free e'>trogens. Gatti ct al. 

( 1998 ), for example, used triethanolamine (TEA) phosphate buffer ( pH 4.0: 0.05 

M)/acetonitrile (70:30. v/v) at a flow rate of 1.0 ml min- 1 for conjugated e-,trogem. while 

for free estrogens the mobile phase compo-,ition wa-, TEA pho-,phate huller (pH 4.0: 0.05 

M)/acetonitrile (66:34. v/v) at a flow rate of 1.3 ml min- 1
• The mohile pha-,e gradient of 

this study was optimized in a systematic manner for each of the compound-, u-,ing '>tandarJ-, 

of E2-3G. E2. and EI. and then with a composite '>tandard of all three e-,trogcn-,. Soh·ent 

elution was also te-,ted with different gradient -,hape (linear. concave) in order to rc-,ohe 

the expected hydrophobic metabolites ( E2 and EI) with rea.-..onable retention time.-... and at 

the same time capture the early eluting E2-3G at a retention time in cxce.,., of the .-..ol\'ent 

front. At the -,elected excitation and emi.-.."ion wawlengths. the optimum .-..eparation among 

E2-3G. E2 and El were achie\ed with the gradient: 20Cli to J(){J</c Bin 29 min in concave 

gradient hhallow at fir.-..t. ... teep toward" the end: cun·e number 7 ). I ()()<lc B for 3 min. and a 

linear return to 2Wlc B mer 3 min. all at 1.0 ml min 1
• For the HPLC run of 35 min. the 

elution times for E2-3G. E2. and EI are pre..,ented in Figure 5-A. 

The HPLC re'>ulh showed an unknown peak at 8.40 min in ,ample.-.. collected at 4 h 

/Fig. 22 in Appendix II J and 8 h of the batch <.,tudy. Figure5-B pre.-..ents a typical aqueou'> 

pha.,e <.peciation in .-..ample., collected at 8 h. The FLO re'>pon,e \,a., poor. e\en though the 

radiochromatogram ,howed con,iderable ma""· Since thi1, \, a'> comi<.,tent with the lcJ\, FLO 
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re pon e ob erved with El, we u pected thi peak to be the e trone glucuronide. Further 

the elution time of thi peak near E2-3G indicated it may be a conjugate as well. Accurate 

ma of the M-H ion for this peak wa obtained u ing the Q-TOF. A pooled ample f the 

unknown from multiple replicate sample was evaporated to drynes , and recon tituted in 

50:50 acetonitrile and water to yield a concentration of 0.5 ng L.1
• Other HPLC peaks that 

corre ponded to the E2-3G, E2, and El tandards were al o collected by HPLC method 

and prepared for MS/MS verification. 

[A] ' [BJ .... "' "! .... I "' 18 2 
ori S! 2 1 ~ 

Jj__ 
- ·-

Figure 5. Chromatographic eparation of the tandard, and a typical chromatogram of 
peciation of an aqueou ample taken at 8 b from the batch tudy. The left panel how 
tandard elution of 17/)-e tradiol-3-glucuronide (peak 1) and i expected metabolite 17/3-

e tradiol (peak 2), and estrone (peak 3) with on-column mass of 36.5, 25, and 125 ng, 
re pectively. The panel on the right bow peciation of an 8 h aqueou ample in the batch 
tudy with an unknown radioactive peak (peak 4) at 8.40 min. 

Compound identification/verification 

The E2-3G metabolite that eluted between 27-29 and 29-31 min coincided with elution 

times for E2 and El re pecti ely. They were characterized u ing LC-QTOF mas pectral 

analy i . The 27-29 min fraction bowed ion at m/z 271 183 145 repre eating the 

molecular ion of E2 and two prominent fragments re pectively. The 29-31 min fraction 
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was identified as El, with ion at m/z (269.17, 183, 145 corre ponding to the molecular 

ion of El, and the ame two prominent fragment ion . 

The radioactive peak at 8.40 min in the HPLC chromatogram was identified a El-3G 

with a mas spectrum con isting of ion at 445.21 (molecular ion of El-3G), 269.17 

(molecular ion of El), 175.03 (glucuronic acid), and 113.02 (a glucuronide fragment), 

re pectively (Fig. 6). 

113.02'5 

175JX322 
:269 1710 

-- ·-
... -

... .. -
Figure 6. Quadrupole Time of Flight (QTOF) pectrum of unknown 8.40 min 
peak in the HPLC of 8 h aqueou ample in the batch tudy. 

Mass balance 

Combining the HPLC eparation of the analyte and liquid cintillation counting of the 

HPLC fraction allowed for the tracking of the E2-3G and its metaboUte with ease. The 

limit of quantitation (LOQ) was defined as 3 time the tandard deviation of the 

background noi e u ing repetitive counting of the 4 mL of cintillation cocktail . The 

aqueous phase WQ were 0.24±0.03 µg L-1 for E2-3G and El-3G and 0.15±0.02 µg L-1 for 

E2 and El. The orbed phase LOQ were 1.22±0.17 1.21±0.17, 0.74 ±0.10 and 0.73 ±0.10 

µg Kf1 for E2-3G El-3G, E2, and El , respecti ely. 
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The time course results ofE2-3G and its metabolites for aqueous and sorbed phases 

based on the HPLC-LSC analyses are presented in Figure 7. The matrix effects from soil 

did not affect our results using the HPLC-LSC combined analysis. The HPLC 

chromatographic peaks were used only to associate the radioactivity measured in each 

fraction-collected vial. Since no quantitative information was derived from the 

chromatograms, no calibration or validation studies were performed. However, as a quality 

control, the standards containing radiolabeled E2-3G, E2, and El were run every day. 

Mass Balance 

168 336 

Time (h) 

Figure 7. Speciation in the aqueous and sorbed phase in the batch study, along with mass 
balance recovery through time. Aqueous phase values are average of triplicate vials (± std 
error), others are single observations. Mass balance of 14C is shown as concentrations in 
total aqueous, reversibly sorbed, irreversibly sorbed, and total recovery. Scale in X axes 
has been adjusted to highlight the changes in early time points. 

Mass balance of the radioactivity in the aqueous, reversibly sorbed, and irreversibly 

sorbed fractions produced an excellent total recovery, ranging from 99.0 to 105.5 percent 

(Fig. 7). Total aqueous radioactivity was calculated as the sum of the bulk radioactivity in 

the aqueous phase sampling and the additional radioactivity recovered from the soil by 

aqueous extraction. Gas phase radioactivity was negligible and did not contribute to the 

total mass balance recovery. Fan et al. (2007) in their incubation experiment of E2, found 

6% and 0.9% of applied dose of E2 mineralized to 14C02 under the aerobic and anaerobic 
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conditions, respectively using soil from the same location. For the current study. the 

conditions would have had a limited supply of oxygen, hence mineralization was probably 

not a significant process. 

Conclusions 

A simple, robust, and reliable method to study fate and transfom1ation of E2-3G was 

presented in this study. Although this method was developed primarily for the study of the 

fate of E2-3G in a laboratory soil-water batch experiment, it can be easily expanded for 

similar studies for other estrogens and different environmental substrates, such as sediment 

and manure. The method presented here increased analytical capabilities by offering 

increased resolution in the qualification and quantification of different metabolites in both 

the aqueous and reversibly sorbed phases, which is very important to study fate and 

transport of labile pollutants such as estrogens. The method presented here can separate 

both polar and nonpolar estrogens and their conjugates in a single run, offering the 

versatility of simultaneous monitoring all these estrogenic compounds. Furthermore, by not 

requiring a hydrolysis step prior to chromatographic sep1ration through HPLC, this method 

saves the experimental time and adds to the accuracy of the analysis. The simplicity of the 

method is reflected in not requiring specific solvents to use for conjugate and free estrogens 

separately, and not needing fluorescent derivatization of the study compound. In addition. 

the combination of HPLC and LSC offers relatively easier tracking of the metabolites as 

well as the direct measurement of the mass in all compartments with an excellent mass 

balance. 
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PAPER 3. ESTROGENIC CONTRIBUTIONS IN AGRICULTURAL SOIL-WATER 

SYSTEMS BY AN ESTROGEN CONJUGATE 

Abstract 

Animal agriculture produces large amounts of estrogen conjugates, which can be 

transformed in the environment into highly potent endocrine disrupting free estrogens. The 

objective of this study was to obtain a better understanding of the conjugate derived 

estrogenicity in agricultural soil-water systems using a prototype conjugate of l 7fi-estradoil 

(E2). Batch experiments were conducted using natural topsoil and subsoil with radiolabeled 

[
1~C] 17fi-estradiol-3-glucuronide (E2-3G). Biphasic dissipation of total aqueous phase 1~C 

was observed in the soil-water batch results. The composition of the total 1.;C included 

glycones (E2-3G and its metabolite estrone glucuronide (El-3G)) and aglycones (E2 and 

estrone (EI)). Hydrolysis of the glycones dominated the initial phase of the biphasic 

dissipation (-24 h for the topsoil, -168 h for the subsoil), and sorption equilibria of the 

aglycones dominated the second portion of the biphasic dissipation. Calculated 

bioavailable estrogenicity values (E2 equivalent; EEQ) for the topsoil were maximum 

value (52.3 to 972.0 µg eq-E2 L- 1
) when glycones deconjugation was completed, and were 

minimum when apparent sorption equilibrium occurred (72 h). The EEQ was persistent in 

the topsoil for the entire duration of the experiment, with 29.5 to 516.5 µg eq-E2 L 1 in the 

aqueous phase at 672 h. In the subsoil, with lower organic matter (OM) and microbial 

activities. the E2 concentrations were two or more times greater than EI concentrations. 

which caused significantly high aqueous EEQ in the subsoil even though molar 

concentrations of aglycones were generally less compared to the topsoil. Further, intact 
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glycones still ranged from I to 21 c7c of the applied dose at 336 h in the subsoil, which 

would cause a greater potential for estrogen mobility and EEQ in the environment. 

Introduction 

In the environment, exogenous estrogens are highly potent endocrine disrupters, with 

lowest observed adverse effect levels (LOAEL) of less than 10 ng L I for some aquatic 

organisms (Routledge et al., 1998 ). Detections of estrogen compounds at concentrations 

greater than the LOAELs in river systems (Kolpin et al.. 2002; Lei et al., 2009), effluent 

streams (Zhao et al., 20 I 0), shallow and deep groundwater ( Bartelt-Hunt et al., 20 I I; Fine 

et al., 2003 ), and throughout the deep (>30 m) vadose zone below an ani ma! feeding 

operation (AFO) lagoon (Amon et al., 2008) have raised concerns over 'ecosystem health' 

(Huschek and Hansen, 2006). Endocrine disruptions in aquatic organisms may take -.everal 

forms such as intersex in fish (]obiing et al., 2002), poor osmoregulation and altered 

courtship behaviors in frogs (Kohno et al., 2004; Zerani et al., 1992), and reproductive 

abnormalities in alligators (Guillette and lguchi, 2003 ). 

The ecotoxicology of endocrine disrupting compounds (EDCs) that interfere with the 

female sex-steroid (estrogen) signaling is typically investigated using biomarkers such as 

vitellogenin expression in male fish (Hansen et al.. 1998). Estrogenicity. or the estrogenic 

potential of an EDC, is quantitatively expressed as I 7fi-estradiol (E2) equivalents (EEQJ 

(Hutchins et al.. 2007 ). Vitellogenin is normally synthesized by females and is a precursor 

protein in the production of eggs. Based on E-screen a-.says, the estrogenicity or relati\e 

potency of the natural estrogens E2. estrone (EI). and estriol (E3 J are 1.0. 0.024 and 0.054. 

respecti,ely (Gadd et al.. 2010). 17a-ethynyl estradiol (EE2J. the synthetic estrogen used in 
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contraceptive pills, has an EEQ value of 1.2 (Legler et al., 2002). These EEQ values from 

exogenous steroidal hormones are much greater than other estrogenic environmental 

pollutants such as 4-nonylphenol and 4-tertbutyl-phenol ( detergent components in sewage 

effluents) that have EEQs of 9.00x 10-6 and l.60x 104, respectively (]obiing and Sumpter. 

1993). Bisphenol A (BPA), a chemical widely used in many industrial applications. has an 

EEQ of 0.004 (Sumpter and Johnson, 2005) . 

A number of studies have been conducted on the fate and transport of estrogens 

generated from municipal waste, with a focus on sewage treatment plants (STPs) and waste 

water treatment plants (WWTPs) (Chen and Hu, 20 IO; D'Ascenzo et al.. 2003; Gomes et 

al., 2009). Even though potential estrogen contribution to the environment by animal 

agriculture far exceed that from human sources (Combalbe11 and Hernandez-Raquet. 20 l OJ, 

very few studies (e.g. Chen et al., 2010; Zheng et al., 2008) have been conducted on the 

fate and transport of steroid hormones with respect to animal agriculture. Estrogens are 

relatively immobile in soil resulting from their low aqueous solubilities ( e.g. 1.51 mg L 1 

for E2 and 1.30 mg L- 1 for El (Shareef et al.. 2006JJ and high sorption potentials, (e.g. the 

organic carbon (OC) normalized partition coefficients (logKd for E2 and El are of 2.94 

and 2.99, respectively (Casey et al., 2005)). On the other hand, conjugates of estrogens are 

quite water soluble (e.g., theoretical value of 0.35 g L I for E2-3G calculated from 

ALOGPS 2.1 (Tetko et al.. 2005)). and therefore have much higher potentials to be mobile 

in the soil-water systems compared to their free deconjugated forms. 

Estrogen conjugates are produced by the body by attaching polar moieties ( a 

glucuronide, a sulfate. or both J to the estrogen molecule (Gibson and Skett, 200 I). 

Estrogen conjugates are largely innocuous. with relative potency values of I .30x l 0-', 
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2.90x 10-5, 2.60x IO-\ and l .20x 10-5 for 17/J estradiol-3-glucuronide (E2-3G), estrone-3-

glucuronide (El -3G ), 17 /J estradiol-3-sulfate (E2-3S ), and estrone-3-sulphate (E l-3S ). 

respectively (Gadd et al., 2010). The polar moieties are readily cleaved from the steroidal 

estrogen molecules by the enzymes, /J-glucuronidase and aryl-sulfatase, transforming the 

compounds into a highly potent EDC. Furthermore, the enzymes that cause this 

deconjugation are ubiquitous in soil (Khanal et al., 2006). D'Ascenzo et al. (2003) found 

very little or no persistence of glucuronide estrogen conjugates and estimated their removal 

efficiencies to be 84 to 10oc1c in six STPs. Sulfate conjugates, however, are found to he 

more recalcitrant with 28 to 48% removal efficiencies at STPs (Nakada et al., 2006). To 

date, only two studies have conducted fate and transport studies on estrogen conjugates in 

the context of agricultural soil-water systems, and both investigated estrogen sulfates in 

pasture soils (Scherr et al., 2009a; Scherr et al., 2009b). Incubation experiments on E2-3S 

showed first-order kinetics of E2-3S degradation. as well as temperature dependence of the 

rate constants (Scherr et al.. 2009a). Sorption studies on E l-3S indicated a concentration­

dependent effective distribution coefficient <Ki"11 = KiC,"· 1
) for E l-3S that was an order of 

magnitude lower than that for free El (Scherr et al.. 2009b). 

Estrogens are excreted by humans mostly as conjugates (Gomes et al.. 2009). where as 

swine ( Sus scrofa domesticus ), poultry ( Ga! !us gal !us). and cattle (Bos tau rus) wi 11 excrete 

96. 69. and 460'c of their estrogens as conjugates. respectively (Hanselman et al., 2003 ). 

Gadd et al. (2010) measured conjugated estrogens concentrations between 12 ng L 1 and 

320 ng L-1 in most samples from the effluent of 18 dairy farm sheds. Hutchins et al. (2007 J 

found estrogen conjugates to contribute at leaq a third of the total estrogen load in the 

lagoons of AFOs. The authors found estrogen conjugates contribute 27c1c to 3SC!c of total 
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estrogen loads for swine nursery, beef feedlot, and poultry primary lagoons; 57c1r for a 

dairy lagoon; and 95% for a tertiary poultry lagoon (Hutchins et al., 2007 ). Detection of EI 

in rivers that received discharges from concentrated AFOs have been partially attributed to 

the cleavage of glucuronide conjugates (Chen et al., 2010; Ternes et al., 1999 ). Also, Chen 

et al. (2010) attributed increases in spring detections of E2 and E3 downstream a 

concentrated AFOs compared to winter to higher microbial activities that caused more 

conversion of conjugates to free estrogens. 

The objective of this study was to investigate the dissipation of a glucuronidated 

estrogen, using17Ji-estradiol-3 glucuronide (E2-3G) as a model compound, and the 

resulting estrogenicity in agricultural soil-water systems with varying organic carbon 

contents. Such investigations may give valuable information on the biological availability 

of estrogenicity so that best management practices can be developed for proper handling 

and application of animal manure on agricultural lands. 

Material and Methods 

Soil 

Soil from the Hamar series (sandy, mixed, frigid typic EndoaquollsJ was collected near 

Milner, North Dakota, which was representative of soils upon which manures from a local 

hog farm were regularly applied as a soil nutrient amendment. Samples were collected 

from the top 6 cm (topsoil) and from 18-24 cm (subsoil) of the field and stored 

immediately at 4°C upon arrival to the laboratory. The soils were collected from a location 

that had not recei,·ed an application of animal manure in over five years, and were the same 

used in the pre\'ious laboratory (Fan et al.. 2007; Schuh et al., 2011; Zitnick et al., 2011 J 
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and field studies (Schuh et al., 2011; Thompson et al., 2009) on the topic of free estrogen 

fate and transport. Soil physical and chemical properties of this Hamar soil are presented in 

Table 3. Prior to conducting the batch experiments, the soil was air dried for 48 h, large 

clods were gently broken, and then the soil was passed through a 2-mm sieve. 

Table 3. Selected physical and chemical properties of soil samples. 

OM content (o/c) 

Total Carbon (TC), o/c 

Inorganic carbon (10), o/c 

Organic carbon (OC), C/c 

pH 

Cation-exchange capacity, CEC (meq JOog· 1
) 

Particle size distribution (sand:silt:clay) 

Bulk density (g cm-~) 

Mn (ma Ka- 1
) c C 

Soil surface area (m 2
) 

Chemicals 

Topsoil 

(0-6cm) 

2.10 

1.35 

0.00 

1.35 

7.0 

9.3 

83: 10:7 

1.4 

254.6 

49.81 

Subsoil 

(18-24cm) 

0.40 

0.32 

0.00 

0.32 

7.4 

9.8 

90:4:6 

1.8 

154.4 

49.41 

The study compound, 17/1-[ 4- 14CJ-estradiol-3-glucuronide (E2-3G) was synthesized 

with a 99o/c radiochemical purity and specific activity of I 03.13 Bq µg 1 (Shrestha et al.. 

2011 ). Ammonium acetate, hydrochloric acid. acetonitrile, calcium chloride dihydrate and 

formaldehyde (all analytical or better grades) were purchased from Sigma-Aldrich (St. 

Lois. MO) and were used as recei\'ed. CarboSorb E (2-methoxy ethylamineJ and the 

scintillation cocktail used after soil combustion were obtained from PerkinElmer 
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(Permafluor; Waltham, MA), and the general purpose scintillation fluid EcoLite was 

purchased from MP Biomedicals (Ecolite; Santa Ana, CA). 

Synthesized E2-3G was dissolved in ethanol and stock solutions of 18 to 889 mg L 1 

were prepared for the batch studies. Radiolabel standards were prepared in ethanol for E2-

3G, E2 and El with an on-column mass of 40, 25, and 125 ng, respectively, for the HPLC. 

While the stock solution and standards were not in use, they were stored at -20°C to 

minimize evaporation and degradation. 

Batch sorption experiment 

Batch sorption experiments were conducted in triplicate at 25°C. In I 0-mL clear glass 

vials, 1.6 g of soil and 8 mL of 0.0 I M CaCl 2 solution were added, fitted with Teflon caps, 

and then E2-3G doses were spiked to obtain concentrations of 0.0, 0.5, 3.7, 9.1, and 22.5 

mg L- 1
• These concentrations were selected to ensure HPLC resolution of E2-3G and its 

possible metabolites in the aqueous and sorbed phase in the batch samples throughout the 

study period. A weak salt solution (i.e., 0.01 M CaCl 2) was used to ensure that soil 

aggregates would not be dispersed. The amount of ethanol introduced by way of spiking 

the doses was 0.1257c. Ethanol concentrations of less than 0.57c are not shown to affect the 

sorption of an organic pollutant to soil (Wauchope and Koskinen, 1983). Control blank 

vials were dosed at 0.5 mg L- 1 with 8 mL of 0.0 I M CaC1 2 and contained no soil. To 

analyze the sorbed-phase speciation. a series of 'stop· vials were prepared identical to other 

batch vials at initial E2-3G concentration of 3.7 mg L-' in order to retire and destructively 

sample one \·ial for each treatment (i.e. topsoil and subsoil) at each sampling time. Batch 

soil-water slurries \Vere agitated by mechanical rotation (360° every 5 s), stopping only to 

take samples at 4. 8. 24. 48. 72, 168. 336. 504. and 6 72 hours. At each sampling. \ ials were 
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centrifuged at 380 x g for 20 minutes, and triplicate I 00 µL aliquots were withdrawn 

through septa using sterile syringes and were assayed for radioactivity. Additional 120 µL 

aliquots were also withdrawn for HPLC analysis, filtered through a 0.45 µm glass filter into 

HPLC vials, to which formaldehyde (2.7c/c final volume) was added to inhibit any 

microbial activity and were stored at -20°C until analyzed. To each retired stop-vial. the 

aqueous layer was transferred into a separate vial and formaldehyde (2.7% final volume) 

was added to both the aqueous and sorbed phases. 

To complete the mass balance, gas phase was also sampled from the stop-vials at each 

sampling time, and at the end of the batch experiments for other experimental vials. Head 

space samples of 500 µL were collected through the septa of the vials using sterile syringes 

for subsequent analysis. 

Analytical methods 

Analytical techniques used in this study are described in detail in Paper 2 in this 

dissertation. Bulk radioactivity (i.e. total 
14

CJ in the aqueous phase was measured by liquid 

scintillation counting (LSC; 1900 CA scintillation counter, Packard, Downers Grove, IL). 

To assay the radioactivity, each sample was mixed with 4 mL of scintillation fluid 

(EcoLite) and the disintegration per minute (dpm; I Bq = 60 dpm) was counted for IO 

minutes with zero background deduction. Background dpm was determined by averaging 

the dpm counts of 5 blank vials. The limit of detection (LOD)/limit of quantitation (LOQJ. 

determined by measuring replicate blank samples, were 0.24±0.03 µg L I for E2-3G and 

estrone glucuronide (El-3G)J. and 0.15±0.02 µg L. 1 for E2 and EI in the aqueous phase: 

and 1.22±0.17. 1.21±0.17. 0.74 ±0.10. and 0.73 ±0.10 µg Kg" 1 for E2-3G, El-3G, E2. and 

El, respectively. in the sorbed phase. 
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High performance liquid chromatography (Waters 600 E System Controller, Waters 

717 Plus auto-sampler, Waters 746 Data Module integrator, Jasco FP 920 fluorescence 

detector, C 18 Phenomenex analytical column (250x4.6 mm) with 5 µm particle size) was 

used with a gradient elution to separate estradiol glucuronide from its metabolites. Mobile 

phases A and B consisted of 10% acetonitrile (ACN) in 100 mM ammonium acetate buffer 

(pH 4.5), and 90% ACN in 100 mM ammonium acetate buffer (pH 4.5), respectively. The 

gradient conditions were 20% B increased to I 00% B over 29 minutes with a slightly 

concave curve, then 29 to 32 min isocratic, and linear return to the starting condition over 3 

min (flow rate 1 mL min 1 
). The excitation and emission wavelengths of 280 and 312 nm. 

respectively, were used on the fluorescence detector. The standards E2-3G, E2, and EI 

eluted from the HPLC at 5.7, 27.6, and 29.9 min, respectively. A Gilson FC 204 Fraction 

Collector was used to collect the eluent in I min interval for subsequent radioas<,ay. 

Overall, over 11,000 fractionated samples were collected for LSC analysis. 

Identification of unknown metabolites and compound verification in the aqueous and 

reversibly sorbed phases were done using liquid chromatography tandem mass 

spectrometry (LC-MS/MS) on a Waters/Micromass API US Q-TOF mass spectrometer. 

interfaced to Waters Alliance 2695 HPLC (Symmetry-C 18, 2.1 x I 00 mm, Waters 2996 

photodiode array detector). Solvent A was 4CJC/c ACN in nanopure water, solvent B was 

60% ACN in nanopure water, and the gradient was 40 to l OOC/c B over l O min. 5 min hold 

at 100% B \Vith 0.2 mL min- 1 solYent flow. Analytes were characterized in negative 

ionization (ES-) mode. The glucuronide conjugate and metabolites were analyzed at 

collision energy of 20 and 50 eV. respecti\·ely. The :v1assLynx software was used for 

acquiring and analyzing the mass spectrometry information. 
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Reversibly sorbed fraction in the soil was analyzed by acetone extractions from the s,oil 

followed by LSC for total 14C, and HPLC and LSC for speciation. The soil was extracted 

first with nanopure water (4 mLx3) by ultrasonication for 30 minutes and centrifugation at 

380 x g for 30 minutes, decanting the aqueous fraction in a separate glass vial: and then 

extracted with acetone (4 mLx3), following similar procedure. The extracted soils were 

completely dried under a hood for a week and then the irreversibly sorbed fraction was 

determined by combusting 6 replicates of 0.1 g of soil in an oxidizer (Model 307 Oxidizer: 

Packard, Meridan, CT). The radiolabelled carbon dioxide produced in the oxidizer was 

trapped by Carbo-Sorb (8 mL), and assayed in the LSC with 12 mL of scintillation cocktail 

Permatluor. 

To account for the gas phase radioactivity, headspace air samples from the batch vials 

were analyzed in a gas chromatograph (GC) (HP 5790A, Avondale, PA). The GC had a JO­

foot glass column ( 1.5 mm id and 7.0 mm od) packed with 3Cfc- OV-17. Temperature 

gradient was 30°C at the initial condition, hold for 2 min, then linearly raised to I 80°C (30 

deg min- 1 
), and held at 180 °C for 5 min. The radiolabeled carbon dioxide was trapped and 

assayed following the same method as for irreversibly sorbed fraction. The integrating 

recorder was an HP 3390A. 

Data analysis 

Aqueous phase speciation data were obtained as dpm \'alues for each minute fraction 

from the 50 µL injections to the HPLC. followed by the LSC. Only the values greater than 

LOQ (aYerage background dpm + 3 times standard deviation) were considered for further 

analysis. Average background radioacti\'ity on each measurement day ,,vas deducted to 

obtain the net dpm. Radioacti\'ity fraction collected from the HPLC effluent at time 
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increments of 5-7, 7-9, 27-29, and 29-31 min were determined to be E2-3G. estrone 

glucuronide (El-3G), E2, and El, respectively, using HPLC and LC-MS/MS analyses. The 

dpm values for all the HPLC fractions were adjusted to IOOC/r recovery. based on the bulk 

LSC analysis of 100 µL of the sample replicates. The adjusted dpm values were then 

converted to the molar concentrations, using the specific activity of E2-3G and molar 

weights of respective metabolites. Estrogenicity, defined as the concentration of equivalent 

E2 to cause the same estrogenic effect (ng eq-E2/L), was calculated using the relative 

potency of each metabolite. 

Two-factor analysis of variance (ANOVA) with replication was performed to analyze 

the concentration effect on the total 14C dissipation through time. Initial applied 

concentration and time of sampling were the two factors considered in each soil. An alpha 

level of 0.05 was used and p :S 0.01 were considered significant. 

Results and Discussion 

Aqueous phase dissipation 

In both the topsoil and subsoils, the total 14C in the aqueous phase declined through 

time (Fig. 8). The aqueous phase dissipation of 14C consisted of two phases: (i) a rapid 

first-order dissipation phase (Table 4), and (ii) a flat segment, where apparent sorption 

equilibrium was achieved (Fig. 8). The initial first-order decline in the total aqueous 14C 

was greater in the topsoil compared to the subsoil (Table 4 ). Additionally, the onset of the 

second phase occurred at 72 h for the topsoil. which was much earlier than observed ('2 

504 h) in the subsoil (Fig. 8). Additionally. significant differences in total aqueou" 14C 
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dissipation were seen for the different initial concentrations for topsoil (p:S0.001) and 

subsoil (p:S0.00 I). 

121; 

C 
1 0 

0 

~ 08 
c 
Q) 
(.) 
C 06 
0 
(.) 

Q) 
> 04 

""§ 
ai 
a: 02 

00 
·~~~. --,--- --------,-------/--- ~---~-- -------- --r -------,------.~-· ~ ,,:----~-----

0 4 8 24 48 72 168 336 504 672 0 4 8 24 48 72 1f:ib 336 504 £72 

Time (h) 

Figure 8. Aqueous phase concentration (normalized) of 14C through time in natural 
topsoil and subsoil with different initial concentrations of 17/J estradiol-3-glucuronide. 
Data represent average of at least two independent observations of three replicates. 
with error bars representing standard errors. Scale in X axis has been adjusted to 
highlight the changes in early time points. 
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The distinctions observed in total aqueous 14C between the topsoil and subsoils 

(Fig. 8 and Table 4) were caused by differences in E2-3G transformation processes (Fig. 9) 

and hydrophobic sorption interactions (Lee et al.. 2003). The higher OC topsoil would ha\'e 

higher microbial activities compared to the lower OC s,ubsoil (Watts et al.. 20 I 0). Natural 
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soils with higher OC would have greater abundance of enzymes, such as /J-glucuronidase, 

that would hydrolyze the glucuronjde from the estrogen conjugate to form free 

deconjugated estrogens (Khanal et al., 2006). Furthermore, the difference in the aqueous 

phase dissipation of the different concentrations (Fig. 8) was attributed to the rate-limited 

capacity of the enzymatic hydrolysis process, where the capacity of the enzymes to 

hydrolyze the glucuronic acid is saturated. Additionally, once the polar, glucuronide 

conjugate of estrogen is transformed to a non-polar, lower-solubility, free estrogen; greater 

distinctions between the hydrophobic sorption interactions (Lee et al., 2003) will be 

observed. The higher OC of the topsoil would have higher hydrophobic sorption of the free 

estrogens compared to the lower OC subsoil. 
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Figure 9. Aqueous phase speciation pattern in natural topsoil and subsoil. 17 /J estradiol-3-
glucuronide (E2-3G) in aqueous phase dissipated following a 151 order decay with best fit 
at 24 h for topsoil and 168 h for subsoil. Primary y-axis represents relative aqueous phase 
concentration of E2-3G and total concentrations, while the metabolites of E2-3G are 
shown in secondary y-axis. Data represent average of at least two independent 
observations of three replicates, at E2-3G applied concentration of 3.7 mg L-1

• Error bar 
represent standard errors. Scale in X axis bas been adjusted to highlight the changes in 
early time points. 
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Applied E2-3G metabolized to estrone glucuronide (El-3G), E2, and El (Fig. 9) and 

some unknown metabolites in the aqueous phase that comprised of up to 8.8% in the 

topsoil and 6.6% in the subsoil of the applied 14C doses. Oxidation on manganese-oxides 

reaction sites (Sheng et al., 2009) caused the transformations of E2-3G to El-3G and of E2 

to El, which has been observed under terile conditions in these same oils (Zitnick et al., 

2011). The deconjugation of the glucuronic acid from E2-3G to form E2, and from El-3G 

to form El was a result of enzymatic hydrolysis. Based on their similar hydrophobicity, 

E2-3G and El-3G were broadly categorized as glycones, and E2 and El a aglycones. For 

the topsoil and for all the initial concentrations, the glycones essentially vani hed from the 

aqueous pha e within the first 24 h (Fig. 10). For the subsoil, the dissipation of the 

glycones varied for the different initial concentrations, taldng between 168 h to 672 h to 

completely dissipate in the aqueous phase. The earlier peaking of the aglycones 
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Figure 10. Trends of metabolite concentration in aqueous phase through time in natural 
topsoil and ubsoil with different initial concentrations of 17 p estradiol-3-glucuronide. 
Dashed line represent glycone and olid lines represent aglycone concentrations. 
Glycone are hown in primary axis and the secondary axis for aglycones, both in nmole 
L- 1 (in thousands). Data points are average of at least two independent observations of 
three replicates. Error bars represent standard error . Scale in X axi has been adjusted to 
highlight the changes in early time points. 
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(before complete dissipation of the glycones) in the aqueous pha e of the ub oil was 

attributed to the smaller hydrophobic sorption potential of this low OM soil. The lower 

hydrophobic sorption potential was also indicated by a more gradual decrease in the 

aqueous phase concentration of the aglycones through time in the subsoil compared to the 

topsoil (Fig. 10). The composition of the total 14C in the aqueou pha e wa almo t entirely 

aglycones after 24 h for the topsoil; however, glycones persisted in the aqueous phase in 

the subsoil up to 336 h to 672 h (Fig. 10). 

Estrogenicity 

Distinction between the glycone and aglycone aqueous concentrations in top oil and 

subsoils are important, as the mobility in the environment and estrogenic activitie are tied 

to these observations. Furthermore, the aqueous concentrations were considered because 

they are the most important bearing in mind exposures to organisms and toxicological 

implications. The sum of the estrogenic activities of glycone and aglycone were calculated 

through time (Fig. 11) using the relative potencies, or EEQ values of 0.0013 , 2.9x10·5, 

1.00, and 0.0240 for E2-3G, El-30, E2, and El , respectively, reported by Gadd et al. 

(2010). The calculated initial estrogenicity introduced into the aqueous phase by the E2-3G 

dosing was 2.9 µg eq-E2 L·', 7.2 µg eq-E2 L·' , and 17.8 µg eq-E2 L·' for the initial 

concentrations of 3.7 mg L·', 9.1 mg L ·' , and 22.5 mg L·', re pectively. The EEQ for the 

control blank (0.5 mg L.1
) was at 0.4 µg eq-E2 L·'. 

The aqueous estrogenicity increased earlier in the topsoil compared to the ubsoil, 

which suggested the higher enzymatic activities of the topsoil could cleave the polar 

moieties from the glycones to form more potent aglycones at a faster rate. By 8 h, the 

e trogenicity in the aqueou phase in the topsoil bad increased by 12-fold and was more 
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than double that of the subsoil. For the topsoil, the maximum EEQ value coincided with the 

completion of the deconjugation of E2-3G at 24 h (Figs. 10 and 11). Thereafter, EEQ in the 

aqueous phase declined steeply as the more hydrophobic aglycones (E2 and El) were 

rapidly sorbed (Fig. 10). When apparent equilibrium was achieved at 72 h the EEQ reached 

its lowest value but then increased (Fig. 8 and Fig. 11). The increase wa greater than 

indicated by the change in molar concentration of total aglycones. For example, for initial 

concentration of 22.5 mg L-1, aglycones in the aqueous phase of the topsoil comprised of 

62 nmole L-1 of E2 and 4,146 nmole L-1 of El at 72 h; however, at 168 h, E2 desorbed and 

its concentration increased to 1,360 nmole L-1 in the aqueous phase, while El sorbed and its 

aqueous concentration became 4,048 nmole L-1
• Such a change in E2 concentration, with 

its much higher relative estrogenicity than El, could increase the EEQ value substantially. 

A major finding of this study was the persistence of estrogenicity in the aqueous phase 

even at 28 days after the start of the experiment. 
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Figure 11 . Trends in estrogenicity in aqueous phase through time in natural topsoil and 
subsoil with different initial concentration of 17 p estradiol-3-glucuronide. 
Estrogenicity values for all treatment are shown in ng eq-E2/L on the primary axis, 
and the secondary axis for the control blank. Data points are averages of at least two 
independent ob ervations of three replicates, with error bars representing tandard 
error . Scale in X axi has been adjusted to highlight the changes in early time point . 
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The trend of estrogenicity in the subsoil was markedly different from the topsoil, which 

resulted from lower OM content and reduced microbial activities of the subsoil (Fig. I I). In 

the topsoil with greater OM content, E2 and EI concentrations from O to 48 h were al most 

similar, whereas in the subsoil, E2 concentrations were almost two or more times greater 

than El concentrations (Fig. 9). Oxidation of E2 would occur slower in the subsoil because 

of lower microbial activity (Colucci et al., 200 I). More importantly, lower OM values in 

the subsoil would mean lesser hydrophobic interaction with soil OC (Das et al., 2004 ), 

which would reduce abiotic oxidative surface reactions that convert E2 to EI (Sheng et al.. 

2009). 

Even though EEQ started to decline after 48 h in the subsoil (Fig. 11 ), intact E2-3G still 

composed the major portion of the total 14C in the aqueous phase (Figs. 9 and 10). which. if 

hydrolyzed, would raise the EEQ by a factor of 769. Since glycones are more polar than 

aglycones, they have much greater potential to be transported downstream as a precursor to 

the potent aglycones. Thus. the greater mobility and EEQ conversion potential may add to 

the risk of potential EEQ contributions to environmental systems from an applied estrogen 

conjugate source in the subsoil. 

Conclusions 

The major contributing factors in the fate of the conjugate-derived estrogenicity in soil 

appeared to be the soil OM and. with the positive association of microbial activities with 

soil OM (Watts et al., 2010). microbial activities. The initial concentration of the E2-3G 

also influenced the dissipation of estrogenicity. Results from this study show that an 

estrogen conjugate can result in the significant increase in estrogenicity to environments 
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compared to free estrogens, which dissipate on the order of a few hours (Casey et al.. 2003: 

Colucci et al., 2001 ). Compared to the subsoil, more rapid E2-3G deconjugation in the 

topsoil was likely caused by the higher microbial activities, which resulted in rapid aqueous 

phase dissipation dominated by aglycone hydrophobic sorption dynamics. In case of the 

subsoil, transformation of E2-3G to free estrogens was slower, and E2-3G transformation 

and sorption of aglycones were equivalent processes. Respectively, for the topsoil and 

subsoil, the first 24 h and up to 14 d were critical periods for the potential estrogenic 

contribution to the environment from intact glucuronide conjugates. For the topsoil, the 

persistence of estrogenicity in the aqueous phase up to 28 days indicated that even with 

high sorption capacity of the high OC topsoil. conjugate-derived estrogenicity may be a 

significant source of bioavailable estrogenicity. The risk of estrogenicity to the 

environment from surface application of manures containing conjugates could be more 

from surface runoff. Furthermore. the results of this study may have practical management 

implications of manure especially for the practice of subsurface injection of manures. 

When manure containing conjugates are injected into lower OC subsoils, the speciation of 

E2-3G in the lesser oxidative environment may favor more E2 than EI, which would result 

in the increased estrogenicity. Also, longer persistence of intact E2-3G in the subsoil may 

increase the potential mobility of E2-3G through the soil and to downstream locations 

where it can be hydrolyzed to potent E2 or El. With the majority of estrogen excretion as, 

conjugates from animals. results of this study highlight the need to comider the overlooked 

risk of glycone derived EEQ to the emironment. 
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PAPER 4. THE POTENTIAL ROLE OF CONJUGATES IN THE FATE AND 

TRANSPORT OF ESTROGENS IN THE ENVIRONMENT 

Abstract 

Natural and synthetic estrogens are the most potent endocrine disrupters in the 

environment. Although these hydrophobic compounds are very labile and immobile in soils 

and sediments, they are frequently detected in the environment at relatively high 

concentrations, which suggests they are mobile and persistent. Using soil batch 

experiments and numerical modeling we demonstrate how a prototype estrogen conjugate. 

17/J-estradiol-3-glucuronide (E2-3G), can persist intact to greatly increase the potential 

mobility of the highly potent estrogens, 17~-estradiol (E2 J and estrone (E 1 ). Intact 

conjugates are much more soluble than free estrogens, and therefore may be readily 

transported to receiving waters where they can undergo deconjugation to form endocrine­

disrupting free estrogens. Given that mammals excrete estrogen conjugates in large 

quantities, results of this study provide a mechanism to explain the concentrations and 

detection frequencies of estrogens found in environmental samples contrary to the 

expectation. 

Introduction 

From the feminization of male fish downstream waste water treatment plants (WWTPsJ 

(Routledge et al., 1998) to the collapse of a fish population in an experimental lake. (Kidd 

et al.. 2007 ). steroidal estrogens ha\'e drawn much concern and considerable debate about 

their potential impact on the em ironment and human health (Sterne, 1994 ). Lowest 
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observed adverse effect levels (LOAEL) for natural and synthetic estrogens are repo11ed to 

be below 10 parts per trillion (ppt) for aquatic organisms (Routledge et al.. 1998 ). A survey 

of 139 rivers across the U.S. frequently detected reproductive hormones (>4Wk detection 

rate) and found E2, the most potent natural estrogen, well above the LOAEL (median= 9 

ppt; maximum= 93 ppt) (Kolpin et al., 2002). There is an urgency to understand the fate 

and transport of these compounds because of their potency, and the frequency and 

concentrations they are found in the environment. Legislation in the U.S. (Congress. 2005; 

Congress, 2008) illustrates the increased awareness of this issue and the need to minimize 

adverse human and environmental impacts. 

The global human population of 6. 9 billion (Bureau. 20 I I) is estimated to release 4.4 

Kg yr 1 estrogen per million inhabitants (Combalbel1 and Hernandez-Raquet, 20 IO J. or 

30,500 Kg yr I total; and an additional 700 Kg yf I of synthetic estrogens from 

contraceptive usage (Combalbert and Hernandez-Raquet, 2010). Much focus has been 

given to human waste management with a number of studies conducted on estrogen 

removal efficiencies of WWTPs. However, potential estrogen contributions to the 

environment by farm animals dwarf that of humans. An estimated 81,000 Kg yr I of 

estrogens are released by farm animals in the U.S. and European Union alone (Lange et al.. 

2002). Indeed, animal feeding operations ( AFOsJ were recognized as potential sources of 

water contamination by synthetic steroidal hormones over thi11y years ago (Knight. 1980 ). 

Subsequent studies have found associations between AFOs and natural steroidal estrogens 

in surface (Finlay-Moore et al., 2000) and subsurface (Amon et al., 2008) water. 

Laboratory studies find estrogens to be sho11-lived (Colucci et al., 2001; Fan et al.. 

2007) and immobile (Das et al.. 2004; Fan et al.. 2008) in soil, which contradicts the 
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relatively high detection frequency and concentrations in surface waters (Kolpin et al.. 

2002; Lei et al., 2009). These divergent results between laboratory and field studies may he 

related to estrogen conjugates, the environmental fate of which is not clearly understood. 

Mammals enzymatically conjugate glucuronic acid or sulfate moieties to the hydrophobic 

estrogen molecule, increasing its solubility and facilitating urinary or biliary excretion 

(Khanal et al., 2006). Mammals excrete estrogens primarily as conjugates. For example. 

humans excrete estrogens predominantly as conjugates (D'Ascenzo et al., 2003). while 

swine (Sus scrofa domesticus), poultry (Gallus gal/us), and cattle (Hos Taurus) excrete%. 

69, and 42% of their estrogens as conjugates, respectively (Hanselman et al., 2003 ). 

Although estrogen conjugates are considered innocuous (Zhu and Conney, 1998 ). they may 

hydrolyze to form free, potent estrogens ( Khan al et al.. 2006 ). Further. being more water 

soluble, the transportability of the intact estrogen conjugates in the environmental waters 

would be greater than that of the more hydrophobic free estrogens. Conjugated estrogens 

from human wastes are effectively hydrolyzed and metabolized by the rich biota in WWTP 

sludge (D'Ascenzo et al., 2003). However, animal-excreted conjugates may have an 

entirely different fate and transport processes. In waste holding ponds of concentrated 

AFOs, estrogen conjugates can account for a third of the total estrogens (Hutchins et al., 

2007). Under the context of AFO waste management, where large amounts of conjugates 

are produced and untreated manures are applied directly to soils, the potential 

environmental threat of conjugated estrogens is largely unknown. 

The research hypothesis \Vas that if conjugated estrogens eliminated by animals are 

more persistent and mobile in soil compared to their free forms (e.g. E2, EI. estriol (E3)). 

then estrogen conjugates could contribute significantly to environmental estrogen loads. 
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Using soil-water batch experiments and numerical modeling, the sorption and fate of a 

prototype estrogen conjugate, a 14C radiolabeled E2-3G with a specific activity of I 03.13 

Bq µg- 1 (Shrestha et al., 2011), was investigated. Experiments were conducted using 

natural and sterilized topsoil (0-6 cm) and subsoil ( 18-24 cm) to identify the effects of soil 

microbial activity and soil organic carbon (OC) content on the fate of E2-3G and its 

metabolites. The soil (Hamar series; sandy, mixed, .fi·igid l_\pic Endoaquolls) was collected 

near a swine farm in southeastern North Dakota and was used in previous laboratory ( Fan 

et al., 2007; Zitnick et al., 2011) and field studies (Schuh et al., 2010; Thompson et al., 

2009) that identified the fate and transport of free steroidal hormones (e.g., E2, EI. 

testosterone). 

Results and Discussion 

Biphasic aqueous phase dissipation 

Aqueous-phase dissipation is the reduction of aqueous concentrations through ti me 

from individual or multiple processes (e.g. sorption. degradation). Aqueous dissipation of 

E2-3G and its metabolites were found to result from interactions between biotic hydrolysi'>, 

abiotic oxidation, and physicochemical sorption processes. Experimental factors that 

influence the dissipation were the soil OC, soil sterility, and initial E2-3G concentration. 

Furthermore, aqueous dissipation of E2-3G and its metabolites generally followed a 

biphasic kinetic pattern. where there was an initial rapid decline in aqueous concentrations 

followed by a second slower phase (Fig. 12). The initial dis'>ipation phase, which la'>ted 

about 24 h for the topsoil and 168 h for the subsoil. was dominated by the hydrolysis of the 

glucuronide moiety from the estrogen steroid molecule. The second slower phase was 
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dominated by sorption equilibrium of the deconjugated hydrophobic compounds. EI and 

E2(Fig.12-B, 12-E, 12-H,and 12-K). 

Modeling fate and transformation processes 

A model was developed to capture the kinetic biogeochemical sorption and 

transformation processes of E2-3G in the batch studies (Fig. 13 and Supplemental 

Information). Using this model, fate and transformation processes for E2-3G and ih 

metabolites in the aqueous and bound phases were discerned and quantified by employing 

an inverse global-optimization method (Runarsson and Xin, 2000). Several model 

restrictions were used to maximize uniqueness of process parameters ( see Supplemental 

Information). The model provided parameter estimates that compared well with 

independently determined values (Yu et al., 2004) and had narrow 9Ylc- confidence 

intervals (Table 5). Additionally, the model's fit to the data was considered highly 

satisfactory, with a modified index of agreement (d 1) (Willmott et al., 1985) value of0.86 

for all data. 

Hydrolysis of the conjugates 

Hydrolysis was observed through time as a rapid decline in the aqueous conjugates. E2-

3G and estrone-glucuronide (E l-3G J, along with the concomitant formation of E2 and El 

(Fig. 12-A, 12-D, 12-G, and 12-J ). Aqueous phase hydrolysis is primarily a biological 

process go\'erned by bacterial /J-glucuronidases (Fan et al., 2008; Harms and Bo<,ma. 

1997 ). Hydrolysis rates of the conjugates were greater in the top"oil ( e.g. C!l" 12.,c; = 3.55 h· 1 

for natural topsoil) compared to the <,ubsoil ( 0J".12 ,c; = 0.012 h· 1 ), with higher 0.\1 content 

in the topsoil associated with higher biological activity ( Aon and Colaneri, 2001 J. 
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Figure 12. Batch concentration of aqueous and reversibly and irrever ibly sorbed 
estrogens in natural and sterile topsoil (0-6 cm) and subsoil (18- 24 cm). Symbols in 
the aqueous phase represent means of triplicates (±standard errors). The plots 
represent the data with initial concentration of 17/J estradiol-3-glucurocide of 3.7 mg 
L-1. 

Although we did not find degradation rate of E2-3G in the soil-water batch studies to 

compare our value with, Gomes et al. (2009) found deconjugation first order reaction rate 

of 0.35 h-1 for El-3G in batch study conducted with activated sludge grown from sewage, 

which is about two times the value obtained in this study for El-3G using natural topsoil 
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(Table 5). The difference can be explained in light of possibly higher microbial activity in 

their study matrices grown from sewage than the soil used in this study, which was an 

agricultural soil without prior application of animal manure for past five years before the 

sample collection. 
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Figure 13. Conceptual model and governing equations for the fate and transformation 
of 17P estradiol-3-glucuronide and its metabolites in soil and water in the batch study. 

Hydrolysis was also observed in the sterile soils (Fig. 12-G & 12-J), albeit at a 

distinctly slower rate. Irradiation terilization (7.6 kGy) would have been sufficient to kill 

all soil biota but it may not have denatured enzymes released from lysed cells that could 

have hydrolyzed the glucuronide conjugates. 
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Oxidation of the conjugate and free estrogen 

Under conditions of lower microbial activity (e.g. sterile. subsoil), abiotic oxidation 

was observed, similar to that reported by Colucci et al. (2001 ). Such a conversion has heen 

reported to occur on Mn-oxide reaction sites in the soil (Xu et al., 2008). Manganese-oxide 

concentrations ranged from 154 to 255 µg t 1 in the soil, following the method of Chao 

(1972). Oxidation was observed as the conversion of E2-3G to E l-3G and E2 to EI in hoth 

natural and sterile soils (Fig 12-A, 12-D, 12-G, & 12-J). The oxidation rates in the topsoil 

(e.g. w,.1:2-Jc,=0.815 h- 1
) with higher OC was lower compared to the subsoil (<il,.1 2 ,r;= 1.n4 

h- 1 
). because higher OC in the topsoil reduces the oxidative potential of the Mn-oxide 

reaction sites (Xu et al., 2008). 

Sorption 

Compared to the free estrogens (E2 and El). estrogen conjugates had low potential to 

bind to the soil. and thus have higher mobility potentials in the environment. Sorption of 

free estrogens is primarily a hydrophobic process (Das et al., 2004). Compared to E2 the 

sorption partitioning coefficients <K.1) of E2-3G were one and three orders of magnitude 

lower for the topsoil and subsoil. respectively (Table 5). Moreover. estrogen conjugate'> 

extraction from the sorbed phases were nearly non-exi-,tent, indicating their lmv -,orption 

potentials (Fig. 12-B. 12-E. 12-H. and I 2-KJ. There is not much data in the literature on the 

fate and transformation of E2-3G to compare our value with. Nevertheles'>. the Kd rnlue of 

E2-3G for the natural topsoil obtained in this study through inverse modeling (435 L Ki 1 J 

compares well \Vith the experimental \·alue of l l 4 L Kg- 1 for sorption capacity of E2-3G 

obtained by Kobayashi et al. (2006) (re\'iewed in (Liu et al.. 2009 J. 
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Factors that had the greatest influence on estrogen conjugate fate and tran port were 

soil OC, soil microbial activities, and initial E2-3G concentrations. Values of orption 

partitioning(~). sorption kinetics (a), and biotic transformation rate (row) were one to 

two orders of magnitude greater in the high OC topsoil compared to the subsoil (Table 5). 

Additionally, E2-3G per isted in the aqueous phase seven time longer in the natural 

subsoil (per i tence=168b, balf-life=31 h) with lower QC and lower biological activity 

compared to the natural topsoil (persi tence=24 h, half-life=4 h) (Fig. 12-A and 12-D). The 

persistence of intact E2-3G was exacerbated at higher initial concentrations (Fig. 14), 

which may indicate the saturability of the enzymatic hydrolysis. Half-lives for aqueou E2-

3G in the natural subsoil increased from 31 to 133 ha initial concentrations increased 

from 3.7 to 22.5 µg rnL-1
, taking 21-28 d to completely dissipate E2-3G at the highe t 

initial concentration (Fig. 14). 

nme(h) 

Figure 14. Aqueous phase concentration of 17/3 e tradiol-3-glucuronide in natural and 
terile topsoil and ub oils. Symbol repre ent means of triplicate (± tandard error ). 

Scales in X and Y axes have been adju ted to highlight the change 
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Table 5. The model parameter estimates for 17~ estradiol-3-glucuronide and it 
b li al d ·1 ·1 b anki I meta 0 tes m natur an sten e SOI s usmg stoc astlc r ng evo ut1on strategies. 

Natural Sol I 
K, I a I ... I ... K, I a I p I ... I .. . 

Lg"' I h·' Lg·• I h·' 

lZB es:&cidlgl:3- 1h.1a.icaolde 1Ul..u1Lldlw 

'5 OplirruJed value 0.435 J 0.059 I 3.545 I 0.815 3.040 I 0.080 

I 
1.048 I 9.79x10.. I 0.788 

a 95%0t 0.380-0.49 0.050-0.068 3.36&-3. 722 0.640-0.989 3.017-3.062 0.079-0.080 0.827-1.270 8.23xlO""- 1.13x10·l 0.620-0.9S6 
{= 120: tstu1mhJ- 1hw.1cooldc ~ 

Optinued value 0.043J 0.181 I 0.178 I 3.024 J 0.681 I 3.S6xlO" I 5.20xl0.. I 0 

95%0 0.039-0. 0.136-0.227 0.17S-O.l81 3.0()> 3.044 0.551-0.811 (3.51-3.6l)xl0 .. (4.70-5.69)xl0 .. 

lZB eltcadk:tl:3· 1luammld.c 1Ul..u1Lldlw 
Optinued value 0.007J 0.008 I o.ou I 1.734 2.990 I 3.33x10·· I 4.149 

I 
4.15x10·' 

I 
3.553 

1 95% 0 O.OOS-0. 0.006-0.010 O.OU-0.013 l.537-1.931 2.969-3.0U (3.31-3.36Jx10·• 3.857-4.441 (3.37-4.93)x10·1 3.289-3.816 
.D 

178 estrnoe:3- rtururookk: ~ ~ 
Optirriz<d vulue 0.034 !j 0.002 11 0.099 , I 2.946 J 2.29xl0" J 3.5xl0.. J 0.083 I 8.89xl0 .. 

95%0 0.029-0.03 0.002-0.003 0.089-0.109 2.910-2.982 (2.23-2.34)x10.. (2.27~.73)xl0 .. 0.079-0.087 (8.82-8.97)xl0 .. 

Sterile Soll 
K, I a I ... I ... K, I a I p I ... I ... 

Lg· I h·' Lg·' I h·' 

lZB citradlgl::3- &:IWJ.lcRDkk 12A.nUldJQl 

l Optirril.ed value 0.435 J 0.059 I l.571 I 0.815 3.040 I 0.080 I l.048 I I 0.788 

95%0 0.380-0.49 0.050-0.068 1.489-1.653 0.64().0.989 3.017-3.062 0.079-0.080 0.827-1.270 0.620-0.956 
{= 12B CUUIW:·3:: ah.ta.tcaakk 

I 3.56~ I Optinmdvalue 0.043J, 0.181 I 0.025 I 3.024 J 0.681 I 0 

95%0 0.039-0. 0.136-0.227 0.02S-0.025 3.00S-3. 044 0.551-0.811 (3.51-3.61)x10 .. 

11B Httldlol:3- a:.h.1wc12Dkk: ~ 

OplirruJed value o.oo7J 0.008 I 0.010 I 1.734 2.990 I 3.33x10·• 

I 
4.149 

I I 
3.553 

1 95%0 O.OOS-0. 0.006-0.010 0.010-0.010 1.537-1.931 2.969-3.011 (3.31-3.36)x10·• 3.857~.441 3.289-3.816 

~ 178 eurone-3- gtururooidc ~ 

Optinmd value 0.034 ,J 0.002 . t 0.039 I 2.946 ii 2.29 xlO.. I 3.50 xl0-1 I I 8.89 .10" 
95%0 0.029-0.0 0.002-0.003 0.033-0.040 2.910-2.982 (2.23-2.34)x10.. (2.27-4.73)x10.a (8.82·8.97)x10 .. 

r K,i 1s the linear sorpt.Jon d1stnbut.Jon coefficient, a and /3 are the sorptton mass transfer coefficient 
between liquid and reversibly sorbed phases, and liquid and irreversibly sorbed phases, respectively; Olw 

and ro, are first-order transformation rates in the liquid and on the solid phase, respectively. 
1cI = confidence interval 

Conclusions 

Comparing results from the present study with the results from our previous field and 

laboratory studies, the apparent disparities between the two can be explained in light of the 

conjugate-aided transport of the estrogens. Although the soils used for all these 

experiments were the same, the field studies frequently detected E2 in soil drainage, 

groundwater, and widely distributed throughout the soil profile (Schub et al., 2011 a; Schuh 

et al., 201 lb; Thompson et al., 2009), whereas the laboratory studies found unconjugated 

estrogens (E2 and El) degraded within minutes and bound strongly and irreversibly to the 
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soil (Fan et al., 2007; Fan et al., 2008; Zitnick et al., 2011). Other re earcher have made 

similar observances for field (Kolpin et al., 2002; Lei et al., 2009) and laboratory (Colucci 

et al., 2001; Das et al., 2004) studies. When conjugates are considered, the current study 

shows that they can persist intact in natural soil for long durations of time (21-28 d) and 

their mobility potential is much higher than free estrogens (E2 and El). Implications of 

these results on AFO manure management are unclear; however, under typical manure 

management schemes they can possibly explain the observations of unexpectedly high 

detection frequencies and concentrations (Kolpin et al., 2002; Schuh et al., 2010; 

Thompson et al., 2009). 

Based on the occurrence and fate and transformation of estrogen conjugates, major 

factors such as (i) the potential for large conjugated estrogens inputs from AFOs (-21,000 

Kg/ in USA alone (Hanselman et al., 2003; Lange et al., 2002)), (ii) their persistence in 

soil-water (up to 28 d), and (iii) their low soil sorption potentials suggest their contribution 

to the overall fate and transport of estrogens in the environment has been greatly 

overlooked. The current study presents results for a glucuronide estrogen conjugate alone; 

however, these results may have even greater implications for the more recalcitrant sulfate 

conjugates that can persist longer in the environment (Hutchins et al., 2007). 

Supplementary Information 

Materials and methods 

Soils, belonging to Hamar soil series (sandy, mixed, frigid typic Endoaquolls), were 

collected from a swine (Sus scrofa domestica) farm in southeastern North Dakota from the 
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surface (0 - 6 cm) and sub-surface (18 - 24 cm), and are referred to as top oil and sub oil, 

respectively. Selected soil characteristics are given in Table 3 of Paper 3 of this manu cript. 

Prior to conducting sorption and speciation studies, soils were air-dried for 48 h. Also, soil 

aggregates were gently broken and then passed through a 2-mm sieve. 

Chemicals 

The study compound, 17fi-[4-14C]-estradiol-3-glucuronide (99% radiochemical purity 

and specific activity 103.13 Bq µf 1
), abbreviated as E2-3G, was synthesized using 

radiolabeled 17fi-estradiol as described in detail by Shrestha et al. (2011). Ammonium 

acetate, hydrochloric acid, acetonitrile, calcium chloride dihydrate and formaldehyde (all 

analytical grades) were purchased from Sigma-Aldrich and were u ed as received for the 

synthesis and experimentation. Carbo-Sorb E and Permafluor were obtained from 

PerkinElmer (Waltham, MA) and scintillation fluid was purchased from MP Biomedicals 

(Ecolite; Santa Ana, CA). 

Study design 

The experimental variables for the soil batch studies were soil organic carbon (QC) 

content (n=2; 1.35 vs. 0.32% ), soil biological activity (n=2; natural vs. terile), initial 

concentration of E2-3G (n=5; 0.0, 0.5, 3.7, 9.1, and 22.5 µg mL·\ and sample time (n=9; 

4, 12, 24, 48, 72, 168, 336, 504, and 672 h). For each concentration level, triplicate vials 

were prepared with 1.6 g of soil and 8 mL of 0.01 M CaCh solution in each vial. Blanks 

were identically prepared with no E2-3G added, while control blank vials contained no 

soil. Additionally, a separate series of experimental vials, referred to a 'stop vials', were 

prepared following the same protocol for all oil treatments (top oil, subsoil, natural, and 
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sterile) with an initial E2-3G concentration of 3.7 µg rnL-1
• The ' top' vial were retired 

after each sampling time and extracted to obtain orbed-pha e concentrations of E2-3G and 

its metabolites. 

Soil was sterilized by irradiation, which has minimal impacts on oil tructure and 

organic matter compared to other methods (e.g. autoclaving) (Berns et al., 2008). 

Sterilization was achieved by irradiating the ealed vials containing oil and 0.01 M CaCh 

for 14 h with 7.6 kGy. The E2-3G do e volumes of 57 µLeach were prepared in 70% 

ethanol for sterile vials (200 µLin 20% ethanol for natural soil, both re ulting in the total 

organic solvent of 0.5% of aqueou volume) and different initial concentration of E2-3G 

were introduced into the sterilized vial by injection through the epta u ing sterile 

syringe . 

Batch vials were mechanically rotated (360° every 5 s), stopping only to take ample . 

At each ample time, vials were removed from the mechanical rotator and centrifuged at 

1700 rpm (380 x g) for 20 min. After centrifugation, 100-µL aliquot were withdrawn 

through the septa u ing sterile syringe to measure bulk radioactivity in the aqueous phase. 

Additional 120-µL aliquots were removed from each vial to identify E2-3G metabolite . 

The 120-µL aliquots were fir t passed through a 0.45 µm PTFE glas filter into HPLC 

vial , after which formaldehyde (2.7% final volume) wa added, and then ample were 

stored at -20 °C until analy i . The aqueous phase of each 'stop' vial was decanted and 

formaldehyde (2.7% final volume/weight) was added to both the soil and aqueou phase 

before they were stored at -20 °C. At the end of the experiment, head pace air was sampled 

and analyzed by gas chromatography (GC) combined with liquid cintillation counting 

(LSC). 
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Soils from the 'stop' vials were extracted with water (3x4 ml) and acetone (3x4 mL) 

using sonication for 30 min followed by centrifuging at 380 x g for 30 min. Extraction 

solvents were pooled, and triplicate 500 µL aliquots from each were assayed for bulk 

radioactivity. The acetone extract was evaporated under a stream of nitrogen. recom,tituted 

with I: 1 acetone:nanopure water, and filtered through a 0.45 µm PTFE glass filter prior to 

HPLC analysis. The air-dried soil residues that remained after extraction were then 

analyzed by combustion analyses of five soil replicates ( -0. l g) for each sample w,ing 

methods identical to (Casey et al., 2003 ). 

Analytical techniques 

Liquid scintillation counting. A Packard 1900 CA scintillation analyzer (Downer-. 

Grove, IL) was used to quantify radioactivity. Samples were dissolved in 4 ml of Ecolite 

scintillation cocktail and counted for IO minutes. The limit of detection/limit of 

quantitation were determined by measuring replicate blank -.amples and were 0.24±0.03 µg 

L· 1 (E2-3G and estrone glucuronide (El-3G)) and 0. I 5±0.02 µg L· 1 (E2 and E 1) for the 

aqueous phase and 1.22±0.17. 1.21±0.17, 0.74 ±0.10. and 0.73 ±0.10 µg Kg I for E2-3G. 

E l-3G, E2, and EI, respectively in the sorbed phase. 

High-performance liquid chromatography. Speciation analy-.is in the aqueous 

and reversibly sorbed phases were achieved by HPLC using a Waters 600E Systems 

Controller and pump (Milford, MA). a Jasco FP 920 fluorescence detector (Easton. MD). 

and a RP-HPLC column Phenomenex-Cl8, 4.6 x250 µm. Solvent A was IOC/c acetonitrile 

(ACN) in 50 mM ammonium acetate (pH 4.5) and solvent B was 9()c7c AC:'\ in 50 mM 

ammonium acetate (pH 4.5 ). Gradient elution consisted of 20-1 OOCk B over 29 min. a 3 
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min hold at 100% B, and a return to 20'/c B in 3 min. The solvent flow was 1.0 ml min 1
: 

excitation and emission wavelengths were set at 280 and 312 nm, respectively. The 

injection volume of the analyte was 50 µL, and the eluent was fraction collected at I mm 

interval. With this method, E2-3G and the free estrogens E2 and EI eluted at 5.55. 27 .57. 

and 29.90 min, respectively. The eluents were then analyzed by LSC to quantify the 

radioactivity in the known HPLC peaks of E2-3G, E2, and EI. Major Radioactive peaks 

were characterized by mass spectral analysis. 

Mass spectral analysis. Negative ion LC/MS/MS was performed to characterize 

analytes using a Waters Alliance 2695 HPLC (Symmetry-Cl}{. 2.1 x 100 mm). Sohenh 

were A: 409c ACN in nanopure water, B: 6CYk ACN in nanopure water and the gradient 

was 40-100% B over JO min, 5 min hold at IOOck B with 0.2 mL min I solvent flow. A 

Waters Micromass quadrupole time-of-flight (API-US) mass spectrometer was used in an 

ES- mode, with FWHM at 6500, source temperature I 20°C, desolvation temperature 

350°C, cone voltage 35 V, and capillary voltage 2500 V. The collision energy was found to 

be optimum at 20 and 50 eV to analyze glucuronide conjugate and metabolites. The 

MassLynx software was used for acquiring and analyzing the mass spectrometry 

information. 

Gas chromatography. Radioactivity in headspace samples from batch \ ials was 

analyzed using an HP 5790A gas chromatograph (Avondale. PA) with a IO-foot glas'> 

column (1.5 mm id and 7.0 mm od) packed with 3c1r OV-17. Temperature gradient <,cheme 

\Vas 30°C at the initial condition, hold for 2 min, rai-,ed at 30 deg min·' to 180 deg. and 5 

min hold. The effluent of the column was split '>O that 42ck would be directed to the flame 

ionization detector for the determination of chemical mass. and the 58CJc was directed into a 
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740°C oven containing Cu(ll)O, which would convert the [ 14C]methane into [ 14CJC02. The 

radiolabeled carbon dioxide was trapped by bubbling into Carbo-Sorb E (8 mL). then 

diluted with Permafluor ( 12 ml) and counted for radioactivity by LSC. The integrating 

recorder was an HP 3390A. 

Soil combustion analysis. A tissue oxidizer (Packard Model 307 Oxidizer: Packard 

Chemicals, Meridan, CT) was used for soil combustion analysis. Each sample \\as 

combusted and the resulting CO2 gas was trapped in the scrubber solution Carbo-Sorb E 

and mixed with Permafluor to measure the radioactivity by LSC. Blanks and standard" 

were run before and after the samples were combusted. 

Fate and transformation model 

A conceptual model (Fig. 13) was developed to elucidate the fate and transformation 

processes of E2-3G (abbreviated as E2G in the model J and its metabolites E l-3G 

(abbreviated as EIG in the model), E2, and El in the soil batch experiments. The ohjecti\e 

was to investigate the conversion of the relatively more hydrophilic conjugated estrogens 

(E2-3G and E l-3G) to its more hydrophobic free forms, or the deconjugated estrogens ( E2 

and El) in different OC contents and soil microbial activities. This is crucially imponant in 

understanding the risk of conjugate derived estrogenicity to the environment. Further. the 

modeling would also provide an insight into the dominant processes inrnl\ ed in the 

conversion and the bioavailability of the free estrogens that were derived from their 

conjugated precursors under the different experimental conditiom. 

A one-site sorption model with simultaneous transformation and sorption of E2-3G and 

its metabolites was considered and was similar to the approach of Fan et al. (2008). The 
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one-site consideration assumed that all sorption sites are time-dependent or rate limited. 

and was backed by experimental observation in this study. Mass distribution was limited to 

aqueous, reversibly sorbed, and irreversibly sorbed phases. Gas phase was not considered 

because mineralization was not discernable from the headspace analysis. The following 

system of differential equations describes the model. 

dCX M ( ' ) -- = (J) ,C,. + (V .C,1 - -a, Ki .. \ ex - s.1· dt " . C - "·' ,. V . ' 

dS El - ( (' ) a s· ---;;;- - a 4 K d .F, Cf_, - ,) t, - I' 2 • 1., + (J). _2 S 1. 2 

d~/ =a,(KJXCX -s\)-/3,S, +OJ,,St, 

d sf, ---ps 
dt - I f.2 

d 5 LI _ /3 s 
dt - 2 f.1 

dSX 
!-- = /3,51-
1 dt - -
l 
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The mass balance of the batch experiment was expressed as 

Cwral =Cuc; +CE1c; +Cu +C/:J +Cx 

stotul =Sue +SEIG +SE2 +Sn +S, +S1:2 +Sn +Sx 

-M dStotul = V dCtotal 
dt dt 

(4) 

Equations 1, 2, and 3 represent concentrations in a4ueous (C; µM L 1 
). reversibly 

sorbed (S; µM g-1}, and irreversibly sorbed (S; µMg 1
) fractions, respectively. Individual 

species are represented by their subscripted symbols, while symbol X represent-. 

unidentified polar metabolites. The symbol K.1 represents the linear distribution coefficient 

between the reversibly sorbed and aqueous phases (Lg 1 
); rn" and u), repre<,ent the fir.,t­

order transformation rate constants in the aqueous and sorbcd phases (h I J. respectively; u. 

and /J arc the mass transfer rate constants (h 
1
) between the aqueous and the rever-.ibl y­

sorbed, and the reversibly-sorbed and the irreversibly-sorbed phases. respectively. In the 

equations, Ki is used with the respective subscripted names to represent individual species. 

while the rate constants (mv., w,, a, and/J) are subscripted using numbers representing 

individual species as shown in Fig. 13 in the main document. Equations I through 4 were 

expanded to cover the soils in different horizon.~ (topsoil and subsoil) in natural and <,terile 

conditions in order to simultaneously optimize the parameters in all the experiments.. The 

objective of the simultaneous optimization \Vas to apply additional con.,trainh on the 

inverse solution so as to improve the reliability of parameter e'.->timates (Ca.,ey and 

Simunek. 200 I). 

Several model restrictions. based on known biogeochemical processes and scientific 

judgment. were applied in the conceptual model to improve the parameter uniquene-.s. The 
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model restrictions applied in this study are presented in Table 6 and also discussed in detail 

in the following paragraphs. 

Biodegradation was assumed only to occur in the aqueous phase in that the compound 

needs to be available for the degrading bacteria (Harms and Bosma, 1997 ). Differences in 

the free estrogen concentrations through time in the aqueous phase for different soil 

treatments (Fig. I 2-A, I 2-D, I 2-G, & 12-J) indicated that hydrolysis was different in the 

upper and lower horizon soils as well as in the natural and sterile soils. In ...terile ..,oils. 

enzymatic hydrolysis still occurred for E2-3G and El-3G, which was possibly due to 

residual enzymes released from lysed bacterial cells. Speciation in the sterile soils indicated 

that for the topsoil, the aqueous and sorbed phases consisted only of EI produced frorn the 

hydrolysis of E l-3G, and not the oxidation of E2 (Fig. l 2-G & 12-H ). In the .... uh<,oil. with 

OC an order of magnitude lower than the topsoil, the aqueous phase contained E2 and EI 

(Fig. 12-J) that were also assumed to be the hydrolyzed products of E2-3G and El-3G. 

respectively. Hence. biodegradation was considered only for the conjugated estrogens in 

the sterile soil. 

Oxidation was considered to be an abiotic <,urface proces" attributed to Mn02 ( Sheng et 

al., 2009) and was assumed to be the same for natural and sterile soils, since sterilization 

would not impact the mineral<,. Oxidation was considered different for the upper and lower 

horizon soils because higher OC in the topsoil would reduce oxidation by interfering with 

Mn-oxide surface reactions sites and/or competing with the sequestration of the 

hydrophobic compounds (Barrett and McBride. 2005: Stepniew<,ka et al.. 2004: Zitnick et 

al.. 2011 ). The a. Ki. and f] were con"idered to be functions of soil OC content, not 

impacted by sterility. and \>.:ere held constant between sterile and natural soils. 
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Table 6. Model restrictions applied in the simultaneous optimization of all soil treatments. 
Model Restriction Reference/ Assumption 

1. Biodegradation occurs in the aqueous 
phase. 

2. Oxidative conversion of estrogen occurs 
as a surface reaction. 

3. Biotic degradation (hydrolysis) in the 
natural topsoil is greater than that in the 
natural subsoil. 

4. Abiotic degradation (oxidation) in the 
subsoil is greater than that in the topsoil. 

5. Sorption capacity of the topsoil (higher 
OM content) is greater than that of subsoil 
(lower OM content). 

6. Sorptive potential of soil <Kx-) follows the 
order of EI 2: E2 > X 2: E l-3G 2: E2-3G; 
where X is unidentified polar compounds. 

7. For sterile soil, hydrolyses of estrogen 
conjugates were due to enzymatic 
hydrolysis. 

8. Abiotic degradation (oxidation) is same in 
the natural and sterile soil. 

9. Mass transfer rate constants a and /J. and 
sorption capacity K<l is same for the 
natural and sterile soils. 
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(Harms and Bosma, 1997) 

(Sheng et al., 2009) 

Greater microbial activities are associated 
with higher OM soil (Watts et al.. 2010). 

(Barrett and McBride. 2005) 

Sorption of the estrogem are go\'erncd hy 
hydrophobic processes (Das et al.. 2004 J 

Estrogen conjugate.s are more water 
soluble than free estrogens due to their 
polar moieties (Hanselman et al.. 200.h 
The reverse-phase HPLC elution of 
estrogens, as obtained in this study. 
would result in more polar compounds 
to elute before less polar compounds. 

Experimental evidence of hydrolysis 
of conjugate in sterile soil is, assumed 
to be due to remnant hydrolyzing 
enzymes from lysed microbial cells 
during y-sterilization. 

Sterilization would minimally affect 
soil OM. They-sterilized soils and 
fractions result in fewer/smaller 
changes in the soil OM 
(Berns et al., 2008) 

Sterilization by y-radiation would 
not impact soil OC. 



In total, there were 42 unknown process parameters in the model. The resulting 

equations were solved using a finite difference method, CVODE (Cohen and Hindm,m,h. 

1994) using a time step of 0.1 h. The batch model was applied inversely to match the 

model solutions to the experimental data by optimizing the model process parameters. The 

inverse problem was sought to minimize the objective function J that was defined as 

(5) 

In equation (5), n is the number of experiments: l is the number of data points for each 

experiment: C(14 C)iis the experimental concentration of 14C for each species in aqueous. 

reversibly sorbed, and irreversibly sorbed fractions; C(1 4 C\is the predicted concentration 

of 14C for each species in the respective fractions. For the batch experiment. n was set to 4 

to represent different soil treatments (topsoil, subsoil, natural, and sterile). and l was <,et to 

9 representing the nine time points (4, 8, 24, 48, 72, 168,336.504, and 672 h). 

Several parameters restrictions. based on known soil-physical relations related to 

sorption and on the experimental findings on rc>lative chromatographic elution were u<,ed in 

the model to improve parameter uniquene""· Following constraints were applied to the 

parameter optimization (Table 6). 

{ 

(Kd)i, topsoil > (Kd)i, subsoil 

(ws\ topsoil < (ws)i, subsoil 

(Kdh1 ? (Kd)Ez > (Kd)x ? (Kd)nc ? (Kdhzc 

where i represents each species. 
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Topsoils were considered to have higher sorptive capacities for all estrogen specie-, 

with greater hydrophobic partitioning by higher OC contents in the topsoils ( Da-, et al.. 

2004). For the reason already described above, higher OC in the topsoil would reduce the 

oxidation of estrogens by interfering with the surface reaction with Mn-oxide sites (Barrett 

and McBride, 2005; Stepniewska et al., 2004; Zitnick et al., 2011 ). Further, sorption 

capacity of soil would be lesser for the conjugates which would be more water soluble than 

unconjugated estrogens due to their polar functional groups (Hanselman et al.. 2001/. 

Elution order in the RP-HPLC was used to indicate the order of hydrnphohicity (hence K1) 

of different species as shown in equation (6). 

Owing to the large number of the process parameters to be optimized. a glohal 

optimization method was chosen over traditional inverse local optimization method1., to 

avoid local optima. Stochastic ranking evolutionary strategy (SRES) (Runarwm and Xin. 

2000), was used to solve this identification problem. SRES has been successfully med 

previously to estimate the process parameters to describe the fate and transport for 

unconjugated sex hormones (Fan and Casey, 2008; Fan et al., 2008) and in uniquely 

estimating 36 parameters of a nonlinear biochemical dynamic model to describe the 

metabolite concentrations with time (Moles et al., 2003 ). The program used in thi1., paper 

was written in ANSI C using the libSRES library (Ji and Xu, 2006) and run on a 

PC/Pentium IV (2.99 GHz. 1GB of RAM) with a Windows XP operating system. To 

optimize the computational time. the program was initially run with a lower bound of 

I .OOx 10-8 and an upper bound of I .00 until the parameter values stabilized. and then the 

parameter values were refined by introducing new upper and lower bounds as 3 and 0.3 
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times the old values; with the refining continued till there was no more changes in the 

parameter estimate. 

Table 5 presents the model parameter estimates for the study compound and its 

metabolites for the topsoil and subsoil with natural and sterile conditions. The final 

simulation was run 20 times to compute the 9SCk confidence interval. The goodness-of-fit 

of the model with observed data was evaluated using modified index of agreement. d 1 

(Willmott et al., 1985 ), a parameter given by 

~n IO· - P·I 
d1 = 1.0 - n L...1=1 l l 

Li=iCIPi - OI + 101 - OI) 
(7) 

where O and P are the observed and predicted data, 0 is the mean observed \"al uc. and 

n is the number of observation. The parameter d1 takes a value from Oto I. vvith I 

indicating a perfect fit. It may be interpreted similarly to R2 albeit considered -.upcrior. 

being less sensitive to outliers (Helmke et al., 2004), and has been applied to evaluate 

goodness of fit in soil studies (Helmke et al., 2004 ), and in hydrologic models / Legates and 

McCabe, 1999). 
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... 

GENERAL CONCLUSIONS 

The conjugate 17 /J-[ 4- 14C]estradiol-3-glucuronide ([ 14C] I 7/J-E2-3-G) was synthe-,i1ed 

using an enzymatic approach, with a high radiochemical yield of 84<k for use in the fate 

and transport experiments. The synthesis techniques developed in this study may also he 

used to synthesize radiolabelled conjugates of other emerging contaminants for their radio-

assay based environmental fate and transpo11 studies. 

A suit of analytical methods developed to study the labile conjugate allowed adeLJuate 

quantification and qualifications of its fate in complex matrices (i.e., soil), while 

maintaining excellent mass balances. The methods included development of an HPLC 

analysis that allowed simultaneous detection and quantification of the polar e-,trogen 

conjugate and its hydrophobic metabolites, E2 and El. Using thi-, method with top'>oil. total 

mass recoveries from the gaseous, aqueous, and bound fractions ranged from 99.0 to 

105.5%. These experiments can be expanded to include other difficult environmental 

matrices of concern (e.g. manure, sediment), and used for other labile estrogen'>. with some 

appropriate modifications. Furthermore, this method greatly expands the ability to s.tudy 

these labile compounds. 

The soil-water batch experiments using the natural topsoil and subsoil indicated a 

biphasic kinetic pattern of aqueous dissipation of E2-3G and its metabolites. E l-3G. E2. 

and EI. The initial dissipation phase (-24 h for the topsoil, -168 h for the subsoi 1) was 

dominated by the hydrolysis of the glucuronides. while the second slower phase \\ a'> 

dominated by sorption equilibria of the El and E2. Conjugate-derived estrogenicity in the 

aqueous phase (biologically available) was a function of soil organic matter as well a" 

initial concentration of the applied E2-3G. The persistence of intact E2-3G was 
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exacerbated at higher initial concentration , which may indjcate the aturability of the 

enzymatic hydrolysi . These re ults from oil were in contra t to other tudie that indicate 

rapid estrogen conjugate degradation in raw ewage from municipal treatment plan , and 

would have implication on the management of manure containing e trogen conjugate and 

the application of these manure to agricultural oil. 

Hydrolysi and otidation were the two main proce e for the tran formation of E2-3G 

and its metabolite . Depending upon whether the biotic or abiotic condition was dominant, 

the transformatjon pathway were di tinctly different, and impacted on the metabolite 

formation, a hown in Fig. 15. In the natural top oil, aqueous phase hydroly i was 

primarily a biological proce re ulting in E2, which was ub equently oxidized to El. In 

the terile oil, oxidation, primarily a urface proce s, wa the major pathway that re ulted 

in an intermediate conjugate El-3G, and was ubsequently hydrolyzed to El. 

(Oxidation) 

~-~>IE1-3G I 

(Hydrolysis) 

(Oxidation) 

Figure 15.Tran formation pathway of 17P-e tradiol-3-glucuronide 
and it metabolite in the biotic and abiotic condition . 

Glycone (E2-3G and El-3G) are innocuou , with their relative potential for 

e trogenicity at one to five order of magnitude lower than their unconjugated form ; but 

they are more water oluble compared to aglycone (E2 and El). Aqueou phase 
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dissipation of glycones indicated a critical period of I day for the topsoil and up to 14 days 

for the subsoil, where there is an increased potential of transport of intact glyrnnes in the 

environment. Aqueous phase concentrations of the aglycones (E2 and EI J accounted for 

the bulk of the estrogenic activity (EEQ). For the topsoil, maximum values of EEQ ranged 

from 52.3 to 972.0 µg eq-E2 C 1 in the aqueous phase throughout the experiment (28 days) 

for the applied E2-3G concentration range, and 29.5 to 516.5 µg eq-E2 L I EEQ remained 

in the aqueous phase on day 28, indicating that conjugate-derived EEQ may be a 

significant source of bioavailable estrogenicity even with high OC topsoils ( 1.4</r ). For the 

natural subsoil, half-lives for aqueous E2-3G were longer than the topsoil. ranging from:, I 

h to 133 h for initial concentrations of 3.7 µg mL I to 22.5 µg mL 1
• The longer persi..,tence 

of intact E2-3G in the subsoil may increase the potential mobility of E2-?,G through the "oil 

and to downstream locations where it can be hydrolyzed to potent E2 or EI. 

A kinetic biogeochemical model was developed to account for the complex pr<H.:esse.., 

involving the simultaneous sorption and degradation of the highly labile E2-?,G and its 

metabolites. Primarily, the modeling approach was sought to obtain a clear knowledge on 

the conversion of the relatively more hydrophilic conjugated estrogens (E2-3G and E J-3G J 

to its hydrophobic free forms, or the deconjugated estrogens (E2 and EI Jin different 

experimental conditions of OC contents and soil microbial activities. Such information is 

essential in better understanding the risk of conjugate derived estrogenicity to the 

environment. The basic conceptual model is presented in Fig. 16. 
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Sink/Source dC M d =-Sink+ Source - -a(KdC - S) 
t V 

Ww 
[Aqueous Phase] 

(Biotic degradation) dS 
dt = a(KdC - S) - Sink+ Source 

Ws [Reversibly Sorbed Phase] 

(Abiotic degradation) dS 
-={JS 
dt 

[Irreversibly Sorbed Phasel 

Figure 16. Basic model formulation considering simultaneous sorption. and hiotic and 
abiotic degradation of 17/J-estradiol-3-glucuronide and its metabolites. Symhols C. S. 
and S represent aqueous, reversibly sorbed and irreversibly sorbed conccntrati<m·< M 
and V are the mass of soil and volume of water used in the batch experiments: u and f) 
are reversible and irreversible sorption rate coefficients. and Kd is the linear sorption 
coefficient. 

The model results showed significant impacts of soil OM and microbial acti\ ities. with 

the dominant processes of hydrolysis, oxidation. and sorption. The hydrolysi-. rate of E2-

3G in the sterile topsoil was less than half the value in the natural top-.oi I: howe\ er. the 

difference was not significant in the subsoil. Values of sorption pa11itioning. -.orption 

kinetics, and biotic transformation rates for E2-3G were one to two orders of magnitude 

greater in the high OC topsoil compared to the subsoil. The sorption capacity of the 

glycone. E2-3G, was one and three orders of magnitude lower than the aglycone. E2. in the 

topsoil and subsoils. respectively. which indicated the highly polar nature of E2-3G. 

Although E2 can undergo both biotic and abiotic transformations into EI. the modeling 

indicated abiotic transformations (0.674 h- 1
) were much more significant than biotic 

transformations (9.86x 10-4 h- 1 
). 
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The contribution of estrogens to the environment from animals far exceeds that from 

humans. Further, majority of estrogens excreted by animals are in the form of conjugates. 

Results from the current studies suggest the potential contribution of estrogen glucuronide 

to the overall fate and transport of estrogens in the environment, under the context of 

agricultural soil-water systems. When conjugates are considered, estrogens in the 

conjugated forms may be introduced into the environment days after they arc applied in 

soils and may hydrolyze to the free forms. in stark contrast with the transport potential of 

land applied free form estrogens to water bodies where. studies have shown the free form 

estrogens to be short-lived and immobile. Thus. the current laboratory study provide, an 

important mechanistic link between dispensing of estrogen that occurs with manure 

application onto to agricultural lands or perhaps through grazing situation. and the 

consistent detections of estrogen in the water bodies that cannot be explained if only the 

transport of free form estrogens are considered. The risk of glycone derived e<,trogcnicity to 

the environment, which is mostly overlooked in the fate and transport of estrogen". may he 

too great to ignore. 

There were a few limitations in the study. The enzymatic activitie" in the <,()ils were not 

measured but it was assumed that the natural topsoil had higher enzymatic activity than the 

natural subsoil. However. result from literature was used to back the a1,sumption of higher 

microbial activity in the natural topsoil. The hydrolysis of the conjugate that occurred in 

the sterile soils was assumed to be caused by the antecedent enzymes in the soil or the 

enzymes that were lysed during the gamma-irradiation for soil sterilization. Additional 

experiment with autoclaved soil would ha\'e offered a definite answer to that assumption. 

Modeling results for total 14C in the aqueous phase for natural soils were comparati\'ely 
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inferior to that of the subsoils, especially in the later time points, indicating additional mon: 

complicated processes for natural soils. However, the objective of the modeling exercise 

was not to only numerically match the data points without understanding the processes 

involved. Overall, the current study has provided a very impo11ant ground work to 

understand the fate and transformation of conjugated estrogens in the environment. 

Further Studies 

The fate and transformation of E2-3G have been investigated in this research using 

soil-water batch studies. The degradation rate obtained in this study may represent a 

saturated field situation. Since enzymatic degradation of organic compound occurs, in 

aqueous phase (Harms and Bosma, 1997 ), the saturated rnndition would have enhanced the 

degradation rate compared to a natural soil-water system in the field condition. Therefore. 

an incubation study with the soil water content at field capacity may give more 

representative degradation rates. 

Soil irradiation was employed in this study to kill all biota in the soil prior to 

conducting sterile soil experiments. This method would help to preserve the -,oil .-.tructure 

as it does not impact soil water content compared to an autoclaving method. Howe\cr. 

some deconjugation of E2-3G was obsen·ed in the irradiated '>oil. The po-,-,ihility of 

chemical hydrolysis was ruled out -,ince the -,oil pH \va-, near neutral range wherea-. 

considerably lower pH ( < 2) is required for an acid hydroly-,i'> to occur. Perhap-, -.ome 

enzymes. lysed from the bacterial cell during the irradiation proce-.-.. or <..ome antecedent 

enzymes may have caused the deconjugation. Therefore. a similar experiment with 

autoclaved soil may help provide further insight into the mechanism of E2-3G hydroly,;,i-,. 
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Based on the results of this study. application of E2-3G in lower OC soils,. s,uch as, in 

the subsurface, may enhance the intact conjugate transport due to the longer pers,is,tcnce 

(from lesser microbial activity in the soil) and higher water solubility (compared to free 

estrogens) of the conjugate. In this study, intact conjugate was available up to 14 days, in 

the subsoil. A column study with the subsoil would provide further information on the 

transportability of the E2-3G in the vadose zone. 

Radiolabelled conjugate synthesis methods were developed in this "1udy for conjugate" 

of E2. The method can be extrapolated to synthesize radiolabeled conjugates, of other 

endocrine disrupting compounds such as anabolic steroid trenbolon acetate. and other 

compounds such as antibiotics that are used in animal agriculture. for example. This, will 

enable the conduct of radio-assay based fate and tram port 1,tudies on such compounds for 

which radiolabel version is commercially unavailable. 

In this study, the process parameters involved in the fate and transformation of E2-3G 

and its metabolites in soil-water systems have been obtained by following a modeling 

approach that used linear sorption and one-site compartment. More compartment 

complexities can be introduced in the model by considering two-1,ite or three-site 

assumptions. 
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APPENDIX I. THE EXPERIMENTAL DATA ON SYNTHE IS OF 

17P-ESTRADI0L-3-GLUCURONIDE 
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Date: 03-27-08 Notebook/Page S-Shrestha 11· 89 
Samples: Flask 3 < E2-0 Synthesis "20% CH3CN Rinse") Vol: ~ 
Column Length: 250 mm ID: 4.6 mm 
Packing: Phenomenex C18 Particle S~ze: ~ 
lsocratic: Gradient 1L. Flow: 1.0 mUmin 
Solvent A : 90% Am. Ac., pH 4.5, 10% CH3CN 

B: 10% Am. Ac., pH 4.5. 90% CH3CN 
Gradient: 80% A to 0% A @ 29 min: hold 3 min: return to 

80% A @ 35 min . 
Integrator Sensitivity: Attn 1024 Chart Speed:0.5 cm/min 
Fluorescence Detector (Jasco FP-920} 
Excitation A: 280 nm Emission A: 312 nm 
Gain: ~ Attenuation: ~ 

n) .,., 

Figure 17. Chromatogram of 17ft-estradiol glucuronide before purification. 
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Solvent A:. 9Q% Am. Ac., pH •,s. 10% CH3CN 
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Gracfien · 8Q% A to Q% AO 29 min: l>Pfd 3 miQ: ce:tum Jo 

8Q%AO 35mln 
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Figure 18. Chromatogram of 17 P-estradiol glucuronide after purification. 
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Figure 19. Mass spectra of 17,8-estradiol glucuronide (bottom) and 17,8-estradiol (top) 
obtained from the synthesized compound. 
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Table 7. Chemical nments of NMR s ectra of 17 -estradiol-3- lucuronide and 17 -estradiol-17-sulfate. 
Carbon/Proton E2" E2-3G E2-3-B E2-3-B-17-S E2-17-S Remark 

Q!mQn 127.22 127.20 127.472 127.52 127.26 E2-3-B = E2-3-Benzoate 
I 11 3.72 11 5.41 119.791 119.839 11 3.762 E2-3-B-17-S = E2-3-Benzoate-17-Sulfate 
2 155.84 156.99 150.127 150.105 155.892 E2- 17-S = E2-17-Sulfate 
3 11 6.05 117.96 122.626 122.638 116.053 
4 138.80 138.97 139.490 139.424 138.762 •carbon a signments based on the values provided by Dionne et al. 5 30.72b 30.69 134.857 134.947 132.535 (1997) for 17~-estradiol 6 28.83 28.40 28.268 28.177 28.477 
7 40.50 40.34 40.144 40.292 40.335 t>i'he ignal for C6 is masked under solvent peaks (Acetone -<16) in 
8 45.34 45.41 45.553 45.408 45.297 values provided by Dionne et al. (1997). The as ignment for C6 is 9 132.32 135.66 30.694 30.533 30.7 1 based on the MR spectrum obtained under MeOH solvent. 10 27.53 27.5 1 27.480 27.471 27.48 
11 38.00 37.97 37.992 37.98 1 38.00 S= singlet; d = duplet ; t= triplet 
12 44.35 44.32 44.343 44.225 44.236 
13 51.26 51.26 5 1.327 50.779 50.778 
14 24.03 24.00 24.043 24.106 24.1 

0 15 30.68 30.04 30.560 29.223 29.2 19 II 16 82.49 82.47 82.455 88.2 16 88.186 
17 11.7 1 11.67 11 .677 12.238 12.192 6' C-OH 

16 18 
ugar moiety carbons' - I' 102.65 

~ 2' 74.74 Vl 
3' 77.7 1 
4 ' 73.59 
5' 76.68 
6' 176.52 

~ 
[ Carbon (top figure) and Hydrogen (bottom) number, J H, 

H2 6.527(d.a) 6.870(d,a) 6.9375(d) 6.9035 (d) 6.527 (d) 
H, 7.058(d,b) 7.177(d.b) 7.4405(d) 7.3015 (d) 7.0605 (d) 
Hn 6.467(~. ) 6. 07(s.c) 6.8920(d) 6.855 (s) 6.4665 (s) 

3.669 (l) 4. 11 (l) 4.295 (!) 
Benzoate moiety 
arbons' 

B-1 165.936 166.953 
B-2 130.995 130. 53 
B-3 130.995 130.853 
0-4 129.827 129. 92 
B-5 129. 27 129. 92 
B-6 139. 85 139.265 
B-1 
8-2 
B-3 



APPENDIX Il. THE EXPERIMENT AL DATA OF FEW REPRE ENTATIVE 

IDGH PERFORMANCE LIQUID CHROMATOGRAPHY 
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Figure 20. Chromatogram of the standard mix containing 17,8-estradiol-3-glucuronide, 17,8-
estradiol, and estrone from method development. 
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Figure 21. Chromatogram of the standard mix during batch study as a quality control. 
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Figure 22. Chromatogram of aqueous phase speciation at 4 h in natural topsoil. 
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Figure 23. Chromatogram of aqueous phase speciation at 672 h in natural top oil. 
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Figure 24. Chromatogram of speciation of aqueous sample from control blank at 672 h. 
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Gradient: 80% A to 0% A @ 29 min: hold 3 min: retum to 

80% A @ 35 min 
Integrator Sensitivity: A!!o..R. Chart Speed:0 .5 an/min 
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Figure 25. Chromatogram of aqueous phase speciation at 4 h in sterile top oil. 
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Figure 26. Chromatogram of aqueous phase peciation at 8 h in terile top oil. 
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Figure 27. Chromatogram of aqueous phase speciation at 72 h in natural sub oil. 
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Figure 28. Chromatogram of aqueous phase peciation at 504 h in natural ub oil. 
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Figure 29. Chromatogram of aqueous phase speciation at 48 h in sterile subsoil. 

145 



Figure 30. Chromatogram of aqueous phase peciation at 672 h in sterile ub oil. 
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APPENDIX ill. THE EXPERIMENTAL DATA O BATCH EXPERIME 

WITH 17P-ESTRADI0L-3-GLUCURONIDE FOR 14C 

Table 8. The experimental data from liquid scintillation counting analy i of the agueou 
ehase through time for natural toesoil. 

Time (h) 

Treatmentt 0 4 8 24 48 72 168 336 504 672 
14C (dpm) in 100 µL 

High A 13940 9858 9053 3907 2904 2196 2102 1507 1601 1693 

High B 13940 9880 8618 3654 2734 2064 1942 1458 1554 1616 

High C 13940 9546 8423 3644 2748 2185 1993 1480 1615 1645 

M2 A 5615 3613 2971 1208 896 679 645 455 498 505 

M2 B 5615 3509 2910 1210 795 663 591 491 465 473 

M2 C 5615 3470 2761 1139 831 620 591 434 467 496 

Ml A 2301 1269 901 346 276 180 177 133 135 164 

Ml B 2301 1244 829 326 240 166 173 130 135 216 

MIC 2301 1220 811 314 276 227 195 193 202 211 

Ctr!. Blank A 331 419 344 283 325 323 346 313 303 346 

Ctr!. Blank B 331 329 343 343 328 327 331 332 315 317 

Ctr!. Blank C 331 288 317 331 302 311 326 323 336 289 

Low A 331 198 140 42 31 22 20 22 59 27 

Low B 331 188 121 35 28 45 21 ND 97 67 

39 31 18 21 17 39 Low C 331 167 111 
t High = 22.5 mg L-1, M2 = 9.1 mg L-1, M 1 = 3. 7 mg L·1, Ctr!. Blank= 0.5 mg L-1, Low= 0.5 mg L-

1
; 

35 

ND = not detected 
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Table 9. The experimental data from liquid cintillation counting analy i of the aqueou 
ehase through time for natural subsoil. 

Time (h) 

Treatmentt 0 4 8 24 48 72 168 336 504 672 
14C (dpm) in 100 µL 

High A 13940 13119 13203 12663 10718 9522 5981 3579 1882 1288 

High B 13940 13258 13279 12660 11099 9691 6992 4444 2482 1647 

High C 13940 13202 13361 12600 11311 9790 7008 4604 2638 1763 

M2 A 5615 5139 5114 4904 4163 3458 1615 552 358 329 

M2 B 5615 5217 5171 4986 4077 3360 1697 586 369 368 

M2 C 5615 5186 5191 5026 4157 3422 1684 573 368 364 

Ml A 2301 1921 1889 1846 1317 885 266 141 117 108 

Ml B 2301 1981 1933 1815 1334 907 273 114 99 110 

MIC 2301 1927 1964 1869 1366 1014 339 135 107 119 

Ctr!. Blank A 331 298 307 306 312 326 323 331 303 329 

Ctr!. Blank B 331 310 315 340 312 329 326 339 302 325 

Ctr!. Blank C 331 304 299 320 325 339 335 322 327 326 

Low A 331 274 285 224 150 90 28 16 12 12 

Low B 331 257 270 226 135 84 30 19 28 15 

Low C 331 274 262 225 131 84 34 20 ND ND 
t High= 22.5 mgL·1, M2 = 9.1 mgL·1

, Ml= 3.7 mgL·1, Ctrl. Blank.=0.5 mg L·\ Low= 0.5 mgL·1; 
1 ND = not detected 

148 



Table 10. The experimental data from liquid cintillation counting analy i of the aqueou 
ehase through time for sterile toe oil. 

Time (h) 

Treatmentt 0 4 8 24 48 72 168 336 504 672 
14C (dpm) in 100 µL 

High A 13940 12238 11477 9661 7118 5710 3804 3213 3126 2799 

High B 13940 12799 12225 9898 6849 5049 3500 3158 3063 2892 

High C 13940 12668 12165 9823 7428 4354 3070 2763 2695 2514 

M2 A 5615 4706 4292 3409 2268 1522 1061 930 883 909 

M2 B 5615 4767 4522 3100 1599 1158 1003 916 847 807 

M2 C 5615 4860 4516 3491 2279 1568 1104 969 892 7 0 

Ml A 2301 1701 1519 1118 615 394 350 297 283 261 

MlB 2301 1716 1563 NA1 NA NA NA NA NA A 

Ml C 2301 1764 1550 1088 667 458 376 307 284 256 

Ctrl. Blank A 331 304 298 318 315 286 327 296 310 310 

Ctr!. Blank B 331 314 316 328 318 310 312 299 335 302 

Ctr!. Blank C 331 327 324 324 315 308 307 304 314 321 

Low A 331 219 185 84 51 35 30 22 22 14 

Low B 331 218 189 116 57 33 30 20 22 13 

Low C 331 217 191 113 53 39 38 32 27 24 

t High= 22.5 mg L-1, M2 = 9.1 mg L·1, Ml= 3.7 mg C 1, Ctrl. Blank= 0.5 mg L-1, Low= 0.5 mg L"1; 
§NA= not available (the vial was broken and discontinued) 
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Table 11. The experimental data from liquid cintillation counting analy i of the ague u 
ehase through time for sterile subsoil. 

Time (h) 

Treatmentt 0 4 8 24 48 72 168 336 504 672 
14C (dpm) in 100 µL 

High A 13940 14594 14369 13823 13571 12937 10125 6280 5396 5094 

High B 13940 14932 14568 14454 13920 13199 8039 325 2883 3394 

High C 13940 14167 15060 13823 11374 8678 5178 3981 3398 3354 

M2 A 5615 5711 5727 5590 5276 5138 2808 2205 1758 1500 

M2 B 5615 NA§ NA NA NA NA NA NA NA NA 

M2 C 5615 5931 5714 5485 5141 4603 2207 958 676 741 

MIA 2301 2031 2086 1989 1729 1485 1109 827 591 482 

MIB 2301 2243 2120 2210 2144 2065 1418 1035 898 824 

MIC 2301 2319 2173 2139 1887 1645 1231 975 787 691 

Ctrl. Blank A 331 340 329 346 318 344 333 317 320 342 

Ctrl. Blank B 331 340 351 379 329 345 332 347 348 374 

Ctr!. Blank C 331 346 358 357 354 342 357 315 339 359 

Low A 331 278 278 230 201 193 114 35 24 21 

Low B 331 319 318 241 230 221 152 69 53 31 

Low C 331 311 307 256 225 214 143 46 41 35 
t High= 22.5 mg L-1

, M2 = 9.1 mg L-1, Ml= 3.7 mg L-1, Ctrl. Blank= 0.5 mg L·1• Low= 0.5 mg L"1; 'NA= 
not available (the vial was broken and discontinued) 
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APPENDIX IV. THE EXPERIMENTAL DATA O MAS BALANCE AN 

OF THE 'STOP' VIALS 

Table 12. The experimental data from mass balance analysis of the 'stop' vial through time 
for natural to:esoil. 

14C (dpm) 

Time Gaseous 
Aqueous Phase Sorbed Phase Total 

%Mas 
Phase Balance 

Water 
Non-(h) Aqueous extract- Aqueous Extractable 

extractable 
LSC ion from total (Acetone) 

(Combustion) 
soil 

0 184044 184044 184044 100.0 

4 NDt 99603 18248 117852 61978 14117 193948 105.4 

8 ND 65098 8188 73286 90287 23317 186890 101.5 

24 ND 19796 25735 45531 134680 29836 210047 114.l 

48 ND 14807 3275 18082 127388 48761 194231 105.5 

72 ND 13677 3041 16718 120954 51678 189350 102.9 

168 ND 9551 1170 10720 I 19239 56882 186841 101.5 

336 ND 8816 1404 10220 113663 58320 182202 99.0 

504 ND 21290 1638 22928 I 10231 60735 193893 105.4 

672 ND 12910 702 13612 I 18439 55213 187265 101 .8 

ND = not detected 

Table 13. The experimental data from mass balance analysis of the 'stop' vial through time 
for natural subsoil. 

14C (dpm) 

Time Gaseous 
Aqueous Phase Sorbed Phase Total 

% Mllss 
Phase BaJance 

(h) Aqueous 
Water 

Aqueous Extractable 
Non-

extraction extractable 
LSC 

from soil 
totaJ (Acetone) 

(Combu tion) 

0 184044 184044 184044 100.0 

4 NDt 150553 25675 176228 5346 3605 185180 100.6 

8 ND 144622 24427 169049 6570 4557 180177 97.9 

24 ND 133616 22940 156555 13706 8514 178775 97.1 

48 ND 93712 18892 I 12604 31542 32672 176818 96.1 

72 ND 63123 16853 79975 50821 37321 168117 91.3 

168 ND 19020 10990 30009 81522 53465 164997 89.7 

336 ND 8123 3999 12123 113422 52123 177668 96.5 

504 ND 6459 4079 10538 109990 54944 175472 95.3 

672 ND 6458 3719 10177 116139 47132 173449 94.2 
ND = not detected 
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Table 14. The experimental data from mas 
for sterile toesoil. 

balance analy i of the ' top' vial through tim 

14C (dpm) 

Time Gaseous 
Aqueous Phase Sorbed Phase %M 

Phase Total 
Balance 

(b) Aqueous 
Water 

Aqueous Extractable Non-
extraction ex traceable LSC 
from soil 

total (Acetone) 
(Combustion) 

0 184044 184044 184044 100.0 
4 NDt 133816 16741 150557 27734 7052 185343 100.7 
8 ND 115777 17996 133774 35702 9350 178825 97.2 
24 ND 79952 18516 98468 62424 12235 173127 94.1 
48 ND 44861 17789 62650 77637 34800 175087 95.1 
72 ND 28749 21420 50169 94515 37528 182212 99.0 
168 ND 23590 18836 42427 91699 42193 176318 95.8 
336 ND 18871 19580 38451 97440 46389 182281 99.0 

504 ND 17007 13077 30084 80695 54813 165592 90.0 
672 ND 14861 13341 28202 86304 52929 167435 91.0 

ND = not detected 

Table 15. The experimental data from mass balance analy i of the ' top' vial through time 
for sterile subsoil. 

14C (dpm) 

Time Gaseous 
Aqueous Phase Sorbed Phase Total 

% 
Phase Balance 

(h) Aqueous 
Water 

Aqueou Extractable 
on-

extraction extractable 
LSC from soil 

total (Acetone) 
(Combustion) 

0 184044 184044 184044 100.0 

4 ND' 170286 21028 191314 24()() 2079 195802 106.4 

8 ND 159444 20516 179960 1954 2007 183921 99.9 

24 ND 153138 21852 174990 3838 3658 182486 99.2 

48 ND 134374 23323 157697 10765 4815 173277 94.1 

72 ND 116865 31738 148602 29517 11210 189329 102.9 

168 ND 81407 14181 95589 38200 31991 165780 90.1 

336 ND 59093 13285 72378 75820 30287 178485 97.0 

504 ND 45511 25179 70690 45869 49788 166347 90.4 

672 ND 38268 13189 51458 66949 46442 164849 89.6 
ND = not detected 
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Table 16. The experimental data from high performance liquid chromatography and liquid 
scintillation counting for the aqueous phase peciation analy i of the • top' vial for natural 
tOQSOil. 

Aqueous Pha e 1~C (dpm 

Time 

17 /3-estradiol- Estrone-3-
17 /J-estradiol E trone Unidentified 

Total (b) 3-glucuronide glucuronide Metabolite 

0 184044 184044 
4 84382 14962 993 2056 15458 117852 
8 33341 14178 4014 4079 17609 73221 

24 NDt 2587 4346 18109 20385 45427 
48 1788 868 ND 8019 7355 18031 
72 3004 2351 588 5355 5290 16587 
168 3471 1626 2592 2988 ND 10676 
336 3927 957 ND 1007 4330 10220 
504 2729 6332 7643 6223 ND 22928 
672 1035 259 1863 9265 1190 13612 

ND = not detected 

Table 17. The experimental data from high performance liquid chromatography and Hquid 
scintillation counting for the aqueou phase peciation analysis of the ' top vial for natural 
subsoil. 

Aqueous Phase C (dpm) 

Time 

17,8-estradiol- Estrone-3- 17,8-estradiol Estrone Unidentified Total (h) 3-glucuronide glucuronide Metabolite 

0 184044 184044 

4 175321 NDt ND ND 907 176228 

8 153516 6774 4146 818 3796 169049 

24 109220 5889 32783 3341 5322 156555 

48 72452 4038 27534 5327 3253 112604 

72 39817 2510 21049 5305 11295 79975 

168 6479 1910 4229 4774 12618 30009 

336 1119 560 1616 1306 7522 12123 

504 ND 4058 720 ND 5760 10538 

672 ND 1445 ND ND 8732 10177 
ND = not detected 
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Table 18. The experimental data from high performance liquid chromatography and liquid 
scintillation counting for the aqueou phase peciation analy i of the ' top' vial for terile 
topsoil. 

Aqueous Pha e 14C (dpm) 

Time 

17 /J-estradiol- Estrone-3-
17 P-estradiol E trone Unidentified 

Total (h) 3-glucuronide glucuronide Metabolite 

0 184044 184044 
4 779 142856 260 2855 3807 150557 
8 NDt 96743 ND 8420 28697 133860 

24 ND 80781 ND 17687 ND 98468 
48 7779 15557 ND 31956 7358 62650 
72 4211 10708 ND 30920 4331 50169 
168 ND 2882 ND 39083 461 42427 
336 ND ND ND 38451 ND 38451 
504 ND ND 1589 24894 3602 30084 
672 ND ND 2178 26024 ND 28202 

ND = not detected 

Table 19. The experimental data from high performance liquid chromatography and liquid 
scintillation counting for the aqueous phase speciation analysi of the ' top' vial for terile 
ubsoil. 

Aqueous Phase C (dpm) 

Time 

17 /J-estradjo]- Estrone-3- 17 /J-e tradiol E trone Unidentified 
Total (h) 3-glucuronide glucuronide Metabolite 

0 184044 184044 
4 184701 232 928 NDt 5395 191256 
8 167154 5303 6318 ND 1185 179960 

24 142973 11924 8888 1325 9771 174880 
48 72267 16040 40013 15778 13512 157610 
72 8801 7967 61053 37892 32982 148695 
168 763 6966 3915 76064 7830 95538 
336 1325 816 3517 38839 27728 72225 
504 ND 2917 621 47168 19922 70628 
672 ND 721 ND 38271 12362 51355 

ND = not detected 
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Table 20. The experimental data from high performance liquid chromatography and Jiquid 
scintillation counting for the sorbed phase speciation analy i of the top' vial for natural 
topsoil. 

orbed Phase 14C (dpm) 

Time 

17 P-estradiol- Estrone-3-
17 P-e tradiol E trone 

Unidentified 
Total (h) 3-glucuronide glucuronide Metabolite 

0 

4 NDt ND 10590 32979 18409 61978 

8 ND ND 14084 53820 22383 90287 
24 ND ND 14204 120475 ND 134680 
48 ND ND 8125 81830 37433 ]27388 
72 ND ND ND 120954 ND 120954 
168 ND ND 16829 95606 6803 119239 
336 ND ND 21243 80593 l 1826 113663 

504 ND ND 27038 83194 ND 110231 

672 ND ND 33227 63060 22152 118439 
ND = not detected 

Table 21. The experimental data from high performance liquid chromatography and liquid 
scintillation counting for the sorbed phase speciation analy i of the ' top' vial for natural 
ubsoil. 

Sorbed Phase C (dpm) 

Time 

17 P-estradiol- E trone-3-
l 7 p-estradiol Estrone 

Unidentified 
Total (h) 3-glucuronide glucuronide Metabolite 

0 

4 228 NDt 1027 342 3750 5346 
8 211 ND 2428 554 3377 6570 

24 630 296 6038 1222 5519 13706 
48 654 654 7354 2860 20020 31542 
72 ND ND 16804 8607 25411 50821 
168 ND ND 34876 20054 26593 81522 
336 ND ND 21434 20541 71447 113422 

504 3687 ND 36254 18434 51615 109990 
672 ND ND 33874 21776 60489 116139 

ND = not detected 
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Table 22. The experimental data from high performance liquid chromatography and liquid 
scintillation counting for the orbed phase speciation analy i of the ' top' vial for teriJe 
topsoil. 

Sorbed Ph e 14C (dpm) 

Time 

17 /J-estradiol- Estrone-3-
17 /J-estradiol E trone Unidentified 

Total (b) 3-glucuronide glucuronide Metabolile 

0 
4 330 454 NDt 20471 6480 27734 
8 727 581 ND 31293 3100 35702 

24 ND ND ND 51974 10450 62424 
48 ND ND ND 66002 11635 77637 
72 ND ND ND 84524 9990 94515 
168 ND 1429 ND 66690 23580 91699 
336 ND ND ND 74544 22896 97440 
504 ND 1118 ND 56282 23295 80695 
672 ND 1046 1395 73053 10810 86304 

ND = not detected 

Table 23. The experimental data from high performance liquid chromatography and liquid 
scintillation counting for the sorbed phase speciation analy i of the ' top' vial for terile 
sub oil. 

Sorbed Phase C (dpm) 

Time 

17,8-estradiol- Estrone-3- 17/J-estradiol Estrone Unidentified Total (h) 3-glucuronide glucuronide MetaboJjte 

0 
4 NDt 229 592 1259 328 2409 
8 42 388 430 806 288 1954 

24 520 146 1249 1085 839 3838 
48 530 251 4825 3514 1645 10765 
72 383 638 2423 17787 8288 29517 
168 461 307 692 27439 9300 38200 
336 111 l ND 1944 34438 38327 75820 
504 ND ND 1867 32213 11788 45869 
672 D ND 3134 35896 27919 66949 

ND = not detected 
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APPENDIX V. THE EXPERIMENTAL DATA ON SPECIATION ANALYSIS OF 

BATCH VIALS 

Table 24. The experimental data from high performance liyuid chromatography and liquid 
scintillation counting analysis for 17,8-estradiol-3-glucuronide in the aqueuu-. pha-.e for 
natural toesoi 1. 

- ------------
nc (dpml from 17/i-1.:,tradioJ-.,-glucuron1d1.: pcal-. 111 :',() pl. ln1,·,t1<111 

(ad1uq1.:d to hatch rcco1c_!}__)__ _____________ 

Treatment T1n,c 1h1 
--~------------·----

() 4 8 24 .rn 72 I hS ,_,r, 'i(J..\ 1,72 

High A 6970 3997 360..\ _.:;_, 27 2() (i 7 2:'i :\I)' I l/ 

High B 6970 4451 37.19 30 2..\ _1,(J 2h 12 :\I> :...; 

High C 6970 4338 3668 1_1, (,l) ..\(i 2, 11 I I :\I> 

Ml A 2808 I 351 1077 :\l) ')') 12 I<, :\I> :\I> .\..\ 

M2 B 2808 1..\62 I 080 () 1., ')') :\I) :\ I l '.\I) '\ I J 

M2 C 2808 1.180 I 022 '-.;l) 7 '-.;I) '-.:!) -..; I l '-.:ll <, 

Ml A 1151 417 21 O '-.;I) 'I 20 S8 ..\..\ 2S ~ ~ 

Ml B 1151 494 173 '-.;I) () '-.;[) '\ [) ..\..\ '\ I) :,.; I J 

Ml C 1151 ..\2:'i 196 '\I) '-.;[) _, I :,.; I J .'\ I J :,.; I J '- I J 

Ctrl. Blank A 166 203 169 1-lf Ir,_- I<, I I 70 J.'i' l..\'J I..,~ 

Ctrl. Blank B 166 158 165 16-l Ir,_, !hi I <i:'i lh:'i I <.1, J'i:,., 

Ctrl. Blank C 166 137 IS6 I..\' 151 l'i..\ I<, I I 'ilJ lh7 J..\..\ 
- I I 

------T-~---- --, --

High= 22.5 mg L . M2 = 9.1 mg L . \11 = _1,_7 mg I. ·. Ctrl Blank=() 'i mg L '. '.\I J = not lktn ti:d 
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Table 25. The experimental data from high performance li4uid chromatography and li4uid 
scintillation counting analysis for estrone-3-glucuronide in the a4ueou-. pha-.e for n;Jtur;tl 

topsoil. 
14C (dpm) from eqrone-3-!!lucuronide peak in)() µL ln)L'l'l;~n -

____________ (_a_d~ju_,t_e_d_H_l_h_at_ch reco,en 1 -----··--­

Treatment 
C 

Time !11) 

High A 

High B 

High C 

M2 A 

M2 B 

M2 C 

Ml A 

Ml B 

Ml C 

Ctr!. Blank A 

() 

NM 

NM 

NM 

NM 

NM 

NM 

NM 

NM 

NM 

NM 

4 

430 

300 

257 
11 (1 

132 

118 

88 

72 

78 

ND 

8 24 48 

4-W 26 74 

318 41 lh 

252 4" .n 
151 I 'i '.\D 

U'i 9 ) 

122 11 '.\!) 

59 15 (i 

91 1., J., 

95 '\ I) '\I) 

ND :\I) '.\!) 

Ctrl. Blank B NM ND '.',;D ;\I) '\D 

Ctr!. Blank C NM 2 ND 1':D :\I) 

·High== 22.5 mg L 1
• M2 == 9.1 mg L 1

• Ml= ."1.7 nw L 1
• Ctr! 

11 ._ .... ._ ~ 

'ND== not detected 

15~ 

72 I h8 '_1,(l )(14 
---·------- -~ --

'.\J ()~ '·' 21 '.\I) 

28 ND ND y; 

2lJ ND '.\JI l \;!) 

'\I) \: I l ND '\I) 
., ,5 '.\[) .:'<I I 

:',;!) :\I) \; I) \:I> 

:\f) :-.:1> ;\I) ;\!) 

4() 4.:' .:I ,'\f) 

:\!) Nil ;\ () li5 

;\ I) \;() ;-,; r J ;-,; r > 

:\ f) \;() :\ () I 

'\ I J ;\() I 
. . ----·--r·-------

Bbnl-. = (J 'i m~ L 1
• NM= not measured; 

1,7 2 

14 

\:I l 

"l) 

7 

'\!) 

'.\I> 

Ii 

Nil 

'.\I> 

'\I> 

\: I J 



Table 26. The experimental data from high performance li4uid chromatography and liquid 
scintillation counting analysis for 17/J-estradiol in the ayueow, phase for natural tup,oil. n . . - c·· ~- -

C (dpml from 17 //-t:,tradiol pt:ak 111 50 pL ln1<:ctilln 
( adjw,tt:d to hatch rt:co\ t:r\' I 

Treatment· Timt: ( h I 
---~~-~~ ~--

0 4 8 24 48 72 lh8 11(\ 'i()..\ ()7: 

High A NM 34 133 'i27 47 NI{ 173 18() 2..\2 .2(1~ 

High B NM 29 72 ..\ 13 ..\lJ 14 20 I 1<,'i 2h..\ 22."> 

High C NM 54 I 08 460 66 12 I (J2 ll/\ 2..\(, 2<,'I 

M2 A NM :\0 77 I 06 ND <, (,..\ (1() 
') ·' ~,; 

M2 B NM .B 68 187 5 ') 55 _12 h..\ :,.; ' 
M2 C NM 7 38 74 8 I () <, I ,<, h2 <,2 

MI A NM 16 16 17 ND '.\I) "I) \;I) 11 ,:II 

Ml B NM ND 24 11 .'\ll "I) :--;I) :,.;!) (17 '\I> 

Ml C NM ND 31 18 '.\[) I// (17 :--:1> .'\I> ."::IJ 

Ctr!. Blank A NM ND ND :\I) '\ /) :\!) Nil .'\I> '.\IJ '- I l 

Ctr!. Blank B NM ND ND )';I) _'\!) .'\ I) .'\ I) \: I l \: I l \,I> 

Ctr!. Blank C NM ND '.'JD ND _'\!) "l) .'\IJ .'\ll :\ I l '- I J 

. High= 22.'i mg L . M2 = 9.1 mg L .Ml=>.7mgL . Ctr! 
----------r------r-- ----" -- -

B Jani--. = () 'i Ill):' I. ·. ·\;I) = llll! dckc tl'll 

Table 27. The experimental data from high performance liljuid chromatography and liljtlld 
scintillation counting analysis for estrone in the ayueous rha1,e for natL~riil_top,~lil. 

11C (dpm) from t:,lfOnl' pt:ak Ill 'i() pL lllJl'lll<lll 
(adju'1t:d to hatch rt:cmn, I ----------- ---

Treatment Timt: <h1 
- ----·--. 

0 4 8 2-l 48 72 168 :nr, :,()-l (1/~ 

High A NM 'i4 'ii 129."i 999 734 487 _145 ..\82 ,'J..\ 

High B NM 6 40 1176 958 4'i'i 'i<J4 _,x7 .. p, ..\..\'! 

High C NM '.\D~ .,,.,, 108k 694 53(1 611., 422 'i()j 'i()-l 

\12 A N\t 23 47 ..\16 307 21 > Ix_, 1.,4 j_'i(i 7, 

\12 B N\1 8 36 339 155 128 182 122 I,, I ,<, 

\12 C N\1 7 30 40 I 289 196 190 ()(, I'·' 12:'i 

\11 A N\1 '' 19 'ii 'i() j() _'\I) ,, 28 2..\ 

\11 B :\\1 9 24 77 66 4, 45 \;J) "[) I <1>< 

\11 C .'\\1 .'\D 28 70 6() -,,4 
·' I 

'.\() ,r, -,1 

Ctr!. Blank A N\1 .'\D :'\I) :'\I) :'\I) :'\I) .'\D _'\J) :'\[) .'\ [J 

Ctr!. Blank B .'\\1 .'\D .'\D .'\D .'\D .'\I) .'\D .'\I) .'\f) "lJ 

Ctr!. Blank C .'\\1 .'\D .'\D :-,.;[) ','I) \,'[) .'\l) .'\/) .'\f) \;/) 
---~·--~ 

- High = 22.'i mg L '. \12 = 9.1 mg L '. \11 = .~.7 mg L ·. Ctr!. Blank= //.5 mg L I NM = not measured; 

'.'\D = not detected 
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Table 28. The experimental data from high performance li4uid chromatography and li4uid 
scintillation counting analysis for unidentified metabolites in the a4ue1n1s phase fur natur;d 
topsoil. 

1l ' - - - - --------- --- --- -
C (dpm) from un1dentJ!1t:d metaholite, in 50 µL ln1ect1011 

(adj u,ted to hatch recoYer_I) ________ 

Treatment" Time ( h I 

0 4 8 24 48 72 l 68 _, _,() 5()4 h 7 2 
---~----- ----

High A NM' 414 299 53 _1.()5 _,_,5 29 l l 8_, 77 J.'i:,., 

High B NM 154 140 167 _,20 49(1 l 50 l (15 'i'i I 2 h 

High C NM 124 151 219 .'i02 . .\7() 17'1 114 'i() 'i(I 

M2 A NM 287 U4 67 l l 'J l ()() (i(J ,4 '.\ I l' 74 

M2 B NM 120 U6 hl 22() l (i(1 24 '12 1(1 IS 

M2 C NM 22.1. 169 84 112 l 04 4'i )-;_'i ,,1 'it, 

Ml A NM 92 147 9() .'il .'i4 '! 

Ml B NM 47 10.1. 62 _,2 '.\ j) '.\ I J '.\ I J '.\ I J 

Ml C NM 107 56 69 7S JlJ '.\ I J '17 .'\ l) I I, 

Ctr!. Blank A NM 7 -' '\ I) ' 4 ' '\ l) 

Ctr!. Blank B NM 7 7 8 l ' l 

Ctr!. Blank C NM .'i 3 23 '\!) 2 ' '\ l J 

- High= 22.5 mg L 1. M2 = 9.1 mg L 1. Ml"' J.7 mg L 1. Ctr!. 
--

i 
_T ____________ - --- -- -

Blank=()'> mg L NM:: not measured; 
~ ND = not detected 

Table 29. The experimental data from high performance liquid chromatography and liq1nd 
scintillation counting analysis for l 7fi-estradiol-3-glucuronidc in the aqueous phase lm 
natural subsoil. 

C ( dprn l from l 7 /f-ewadiol-J-g I ucuron ide peak Ill :'i() µL ln1ect1<lll 
I ad1u,ted to hatch reco1 en l ------. -- ·--

Treatment Time (h) 

() 4 8 24 48 72 Jh8 ,,11 'i(J4 ()/~ 
~-~----·-- - --

High A 6970 6.1.56 6_1.76 5566 4317 ,944 221() 'Jhh 177 ;.-:-

High B 6970 6526 6480 :'i6.'i8 4670 4277 2}-; I 2 141,() 41-14 s::: 
High C 6970 6376 6471 5633 4792 42:1.4 2766 I 4 7'J 5hl 1 l I 

\12 A 2808 2:1.73 2:1.65 1946 1547 127h _1.l)() 74 _, I lh 

\12 B 2808 2478 2458 2109 1570 1295 444 74 J:-S _'\I)' 

\12 C 2808 2540 2_,91 '\\1 1496 1254 4_,5 5() Tl _,.; 1) 

\11 A 115 l 961 860 622 _1,8() 215 2_, 18 '<1J '< I J 

\1] B 115 l 975 876 676 466 2 1., ,, '\J) '\I J '\1) 

\1] C 1151 964 891, 6J I 446 270 _'i() '\I) '\/) '\1J 

Ctr!. Blank .-'\ 166 149 154 15.< l 56 J 6_< 162 l (1fi l 'i2 1 r,_~ 

Ctr!. Blank B 166 155 158 1 70 156 I fi5 J(,_;, '\\1 I:, l 1 r,_, 

Ctrl. Blank C 166 152 J 5() J f,() ]6_1. 17'1 J6X I fi l I fi4 l r,, 

- High=22.'imgL!.\12=9.J mgL 1.\11=<.7mgL _ Ctr!. Blank=() 5 111f L '\\1 == not measured 

(vial lost);~ '-.'D = not detected 
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Table 30. The experimental data from high performance li4uid d1romatography and liquid 
scintillation counting analysis for estrone-3-glucuronide in the a4ueou-. ph:N' fpr natur;d 
subsoil. 

C (dpm) from l''>lrnnl'-.1-12JucuronH.lt· peak in _'i() µI. l!qt·c11"n 
1 :idju'1ed to hatch rt·cn~~}_ 

Treatment Time 1h1 

u 4 8 24 48 72 I <18 .,3<i )(14 ()7 ~ 

High A NM 94 l 18 192 J_'i(I 11.'i l/X 12.'i I 07 S4 

High B NM 70 80 123 170 I IO XI I fi"i I ::' ' S'I 

High C NM 173 l 14 .'i9 I .'i'I 154 IO I I<;' 141 I r12 

M2 A NM 143 91 9() x., .'i., 42 41 27 2 ' 
M2 B NM 117 99 4-i (i() II 8 4, 2') 2"i 211 

M2 C NM )_\ J !J '.'\M 132 Sl/ .'i4 4'1 2' '' 
Ml A NM ND'J 48 2S ,2 24 7 () IS s 

MI B NM ND 34 17 25 X 12 '\I> '' :-, 

Ml C NM ND 34 'i9 15 12 ') '\ l) ~' s 

Ctrl. Blank A NM ND ND ND '.\I) "J) '.;J) "I) '\ l) '\ I J 

Ctr!. Blank B NM ND ND .'-iD ]\I) 'l) ]\J) '\\I "!) .'\ I J 

Ctrl. Blank C NM ND ND ND '.',;!) ]\I) '.;!) ]\I) l\lJ l\lJ 

. High= 22 . .'i mg L I . M2 = 9.1 mg L I . MI = 3.7 mg L I . Ctrl. BLrnh = 11 'i me' l . . n'\\I = not measured, 
~ ND = not detected 

Table 31. The experimental data from high performance li4uid chromatography and li4uid 
scintillation counting analysis for 17/3-estr;.idiol in the ayueou, plw,e for natur,d '-llh'-oil~ 

11C 1dprn1 from 17 /f-e'>!radiol peak in SO µL lnJt-c11,1n 
( adj Ll',ted to hatch rl'CO\ LT_;_!_ ________ .. __ 

Treatment Timclhi 

0 4 8 24 48 72 ](18 ,_,() 'i()4 h72 
-~-- .. --- -

High :\ NM- l () 48 4.19 445 4'i7 247 21.'i I <1."i I 'J 

High B N.\1 6 36 421 549 248 214 JhS /"ii <; I 

High C '\.\1 11 17 494 53S 244 2.'i.'i 21 () /<() 12'1 

.\12 :\ :,..;\1 24 3.'i 28., 269 2kl 12., _,4 '\ I)' '\I! 

.\12 B :,..;,1 :,..;o 28 2)2 27.'i 12, I /18 21 '\I) '\ I J 

.\12 C :,..;\1 :,..;o 31 '\ .\I 216 24() 95 24 '\ I J '\I! 

\11 :\ :,..;,1 :,..;o 26 22() 164 12'.'- 12 '\ I J II '\I) 

.\ l J B :,..;,1 :\I) .,., l7> 14., J 17 2) ]\() "/) '\I) 

.\ 1 J C :,..;\1 :\[) 2-1 1,1.:6 184 127 29 26 '\I) ',I) 

Ctr!. Blank:\ :,..;\ 1 :\[) :-.;D :\D :\D :\I) '\!J ,· 1) ]\/) '\I) 

Ctr!. Blank B '\.\1 :\[) '\D :,..;[) :\!) :\!) :\/) :,..; .\ 1 '\IJ ]\/) 

Ctr!. Blank C '\.\ 1 ]\[) .'\ [) ]\[) :\D .'\!) .'\/) '\[) '\/) '\IJ 
··----·-

. High= 22.5 mg L; . .\12 == 9 I mg L . \11 = .<.7 mg L ·. Ctr! Blan).;= <15 mg L :: '.'\\1 = not measured; 

":,..;.\1= not measured (vial lost);~ :,..;o == not d.:tcc:ted 
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Table 32. The experimental data from high performance liquid d1rnmatography :rnd liquid 
scintillation counting analysis for estrone in the ayueou~a-.e fornatural suh-.oil. 

C idpm) from e,trnrn: peak 111 'iO µL lniL"L'l1<111 

radjw,ted tu hatch rel~-~-------

Treatment Time !hi 
-~--·---· ----

0 4 8 24 48 7-::_ J /J8 ' ,(i 'i(14 f,·: 2 

High A NM• ND~1 ND 29 78 )4 78 '18 124 111 

High B NM ND ND 27 72 ,() -;_, (1 'i J()'I :,.;<; 

High C NM ND ND 2., 4') 37 (1') 'Ill ,n l/() 

M2 A NM 11 ND _,4 _,,) 44 'i4 47 :,.; \l) 

M2 B NM ND ND 26 -;, 4<, n ,8 
I ' \I> 

M2 C NM ND ND :"\ .\1 )) (,'I n n 21 11 

Ml A NM ND 7 27 ,:,; _,' 21 'I \ll \ll 

Ml B NM ND ND 15 19 28 -::_o 12 \ll \ll 

Ml C NM ND 7 17 :q.; ,-::_ -::_<1 :,,:I) '.\ I l \ I l 

Ctr!. Blank A NM ND ND ND :\I) '.\ I l '.\I> '.\ I l \ll \I) 

Ctr!. Blank B NM ND ND 1\D :\I) :,.; I> :--:1> \\1 \I) '\ I l 

Ctr!. Blank C NM ND ND ND \,'I) :--:1> \: I J \;I) '.\ I J .\I) 

•-High= 22_5 mg L 1
• M2 = 9.1 mg L 1

• Ml= 3.7 mg L 1
• Ctr!. 

--------------! -- --- --
Blank = (I 'i Ill~ ( _ 

1
: NM = not measured; 

**NM= not measured (vial lost);~ ND = not detected 

Table 33. The experimental data from high performance liquid chromatography and liquid 
scintillation counting analysis for unidentified metabolite" in the a4ueou" pha\e Im 11:1tural 
subsoil. 

C <dpml from uniden1ified me1aholi1e, Ill 50 µL ]))jL"LtJ()J) 

(adju'1ed to hatch reco1en I 

Treatment Time rh1 

0 4 8 24 -18 72 I 6k ,v, 'ii)..( (,7 ~ 

High A l'i.\1 100 59 J 05 170 191 ,57 _,x7 <'18 ,<1, 
High B l\'M 27 -13 I() I k9 I 80 ,y, ,,n _<7' 'i]/1 

High C N.\1 40 78 91 119 22(, 314 :no ,xx 4-l'J 

.\12 A \,' .\1 18 66 99 J 4-1 75 192 7'J I 14 J 2_'i 

.\12 B N.\1 1., \.'!/ 62 81 98 I 8/J I <II 12s ]h4 

.\12 C '.',;.\f \.'D 61 :,.; .\ 1 l 8() 58 ]85 'JI I 11 ~ I .~-I 

.\1 I A \,' .\ 1 \,' [) _'i 26 4'i 45 71 ,4 2'! -l() 

.\11 B \.''.\I 15 _,..i 26 13 k7 62 -1 _'i ,-_, 4-

.\1 I C \,' .\ 1 \.'D 26 4, :,,,;!) 66 52 4, ,2 <,, 

Ctr!. Blank A. \,' ;\ 1 \.'D \.'D '.\D \.'D :\I) '.\ !) :,,,;[) \.'I> '\I) 

Ctr!. Blank B \,' .\ 1 \,'[) \,'[) :,,,;D ,u .,!) :,.;!) ·'-" :,.;I) '/) 

Ctrl. Blank C \,' ;\ 1 ,o :,,,;!) :,.;!) \,'!) :--;!) :,,,;I) :,.;I) :,,; !) :,.;!) 
-~-~~"-

- High= 22.5 mg L 1
• '.\12 = 9.1 mg L _ '.\1 I= ,_7 mg L . Ctrl. Blank = (1 5 Ill.I,' L : 'NM = not mea,ured; 

"NM= not measured (vial lost);~ :'\D = not de1ee1c:d 
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Table 34. The experimental data from high performance liyuiJ d1romatography ,md li4uid 
scintillation counting analysis for 17 /J-estraJiol-3-glucuroniJe in the ayucou" ph,N· for 
sterile topsoil. 

nc ldprnJ from 17 //-c,tradiol-3-1:ducurnnide 
·--- ··------ -- -

peak 111 )ll µI. lnJL'<l1<>n 
<adju,tcd to hatch reco,en 1 

---- - --- ----- - -

Treatment' Time (hi 

0 4 8 24 48 72 I (18 1 ,(1 )ll-1 ti72 
·------~----

High A 6970 2510 28 ND'1 I\ I) ND ND ;s;l) :\ I) '\I> 

High B 6970 2980 ND ;s;f) ND :\[) ;\11) 'ii) '\[) '.\[) 

High C 6970 NM l7 :\I) )\;[) :'J[) '" NI> :\ [) '\[) 

M2 A 2808 ND ND ND 4-l :\!) ') ;s;[) :\!) '\[) 

M2 B 2808 ND ND ND ]\;[) '\[) '\I> :\[) :\[) '\[) 

M2 C 2808 20 ND ND ;s;\1 '.\ I) :\[) '.\ I l :\[) '.\I> 

Ml A 1151 NM NM ND _,7 8 'J [) '.\ !) ;\)) .'\)) 

Ml B 1151 9 ND NM 1\M '.\ l\1 '.\\1 :\\1 '\\1 '\ \1 

Ml C I 151 ND ND )\I) '\\1 27 ;-.; I) '\I) '\ [) '\ [) 

Ctrl. Blank A 166 152 [-19 159 158 J-l.1 1(,-l I-IS J'i'i '·"" 
Ctrl. Blank B 166 157 158 16-l I <;lJ '"" !)(, I <;() I liri I"' 'I 

Ctr!. Blank C 166 16-l 162 NM 1\\1 IS4 1)-l I "2 I 'i, !11 I 

. High= 22.5 mg L 1
• M2 = 9.1 mg L 1

• Ml= 3.7 mg L 1
• Ctr! 

1
NM ::: not measured (vial lost);~ ND= not detected 

BlanJ..=//)rn;:L' . 

Table 35. The experimental data from high performance liyuid chromatography ,md liyu1J 
scintillation counting analysis for estrone-3-glucuronide in the aqucou" ph,i"e for \ILTik 
topsoil. ______ -~ 

C (dpm1 from c,tronc-3-glucurnmde peak 111 <;(1 µI. !nJL'L t1"n 
(adj u<,tcd to hatch reco, er\ 1 

--~------ --

Treatment Time !hi 

0 4 8 24 48 72 lh8 .,.,(i )(1-1 hi~ 
--------

High A NM' 3329 5218 4217 2843 1676 37 '\]/ \.;)) '\ I) 

High B NM 3190 5835 4294 2373 1412 18 \.;[) '\I) '\[) 

High C NM NM" 5768 4234 2851 183 21 .'\J) '\I) '\[) 

M2 A NM 2212 1857 1464 649 289 34 .'\ [) '\I l '\ I J 

M2 B NM 2278 2091 1417 ND 382 18 :\I) :\I> '\I) 

M2 C NM 2343 2149 1505 NM" 340 19 \.;I) ND ND 

\11 A NM NM" NM" 469 74 ND 25 ND ND ND 

\11 B NM 809 576 NM
11 

NM" NM" NM" NM" NM" NM" 

\11 C NM 842 550 481 NM" 89 \.;/) \.;!) :\!) :\I) 

Ctr!. Blank A NM :\[) :\D :\D :\D :\[) :\/) '\I) '\[) '\I l 

Ctrl. Blank B NM :\I) :\D :\[) :\I) :\[) :\[) :\[) '\[) '\I) 

Ctr!. Blank C NM :\[) :\D NM" NM" ND :\/) :\/) :\)) .'\/) 
·~---

- High= 22.5 mg L 1
• \12 = 9.1 mg L '. \11 = '-.7 mg L . Ctrl. Blank=() 5 mg L ·: 'NM= not measured; 

': :\D = not detected 
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Table 36. The experimental data from high performance liquid d1romatograph: ;rnd liquid 
scintillation counting analysis fen ,17 §-estrndiol '.n the ayue~u .... ~~1 .... e!_"o~ ',\L'.ri k tllp,lli I. 

C idpm) trom I 7/1-,,tr;id1ol p,;1k 111 :-,() pl. l111nt1,111 
____________ l_a_~d,__ju_,_t,-'-d_t~(1 hatd1 r,c51\tl}J_ ___ _ 

Treatment Timt: <hi 

High A 

High B 

High C 

M2 A 

M2 B 

M2 C 

Ml A 

Ml B 

Ml C 

0 

NM' 

NM 

NM 

NM 

NM 

NM 

NM 

NM 

NM 

4 8 

38 13 

26 7 

NM*' ND 

9 116 

ND ND 
ND ND 

NM*' NM" 

3 

ND 
ND 
ND 

24 
ND'1 

ND 
ND 
ND 
ND 
ND 
ND 

NM 11 

ND 

48 

ND 
ND 
ND 
ND 
ND 

NM" 

ND 
NM" 
NM" 

Ctrl. Blank A NM ND ND ND ND 

Ctrl. Blank B NM ND ND ND ND 

Ctrl. Blank C NM ND ND NM
11 

NM" 

72 

ND 
ND 
ND 
ND 
ND 
ND 
ND 

NM" 

ND 
ND 
ND 
ND 

ND 
ND 
23 

66 

ND 
ND 
ND 

NM" 

ND 
ND 
ND 
ND 

ND 
ND 
ND 
ND 
ND 
ND 
ND 

NM" 

ND 
ND 
ND 

ND 

17 

ND 
45 

74 

38 

109 

7 

NM" 

8 

ND 
ND 
ND 

( ~' 1 -

ND 
ND 
ND 
73 

ND 
91 

20 

NM" 

ND 
ND 
ND 
ND 

;- l --- ·- ·-·--·-. ---· --
; High= 22.5 mg L 1. M2 = 9.1 mg L 1

• Ml= 3.7 mg L 1
• Ctr!. Bbnk = II 5 mg I.': NM= not measured; 

uNM= not measured (vial lost);~ ND= not detect,d 

Table 37. The experimental data from high performance liquid chromatograph: and liquid 
scintillation counting anal~'sis for estronc in the ayueou;, eha..,e for "1erile 11_1~'--<_>lL _ 

11C (dpm) from es,trone pL·aJ... in S/J µI. ln1ect1on 
I ad1u,ted to hate h reco\ ery 1 

Treatment Time <hi 
----- ------·-· - -

0 4 8 24 48 72 lhk '<(1 5(1-I (1: 2 

High A NM' 45 136 454 656 1003 1709 1607 1494 1233 

High B NM 56 104 463 790 952 1572 1453 1361 1404 

High C NM NM 11 169 437 719 1326 1164 1318 1079 1245 

M2 A NM 54 115 240 249 431 409 406 357 136 

\12 B NM 59 96 315 825 382 409 485 373 353 

M2 C NM 42 88 241 NM" 320 533 485 318 283 

\11 A NM NM" NM" 70 152 134 143 149 107 111 

Ml B NM 19 55 NM" NM" NM" NM" NM" NM" NM" 

.\11 C NM 14 43 138 NM" 123 196 154 128 128 

Ctrl. Blank A NM ,o~ ND ND ND ND ND ND ND ND 

Ctrl. Blank B NM ND ND ND ND ND ND ND ND ND 

Ctrl. Blank C NM ND ND NM" NM" ND ND ND ND ND 

- High= 22.5 mg L 1
• \12 = 9.1 mg L 1

• \II=.' 7 mg I. . Crrl. Bl;mk = 11.5 mg L ':·NM= not measured; 

uNM= not measured (vial lost);~'.;[) = not detected 
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T~ble 38: The experimental data from high performance liquid dm,matography and liquid 
scmtillat10n counting analysis for unidentified metabolites in the aqLH:'ous ph;N' for '1erik 
toEsoil. 

11 --·-·-··-·· 
· C (dpm) from unidentified metahDlitc, in ."iO pl. l111cctJ<lll 

( adju,ted to hatch rcco1 en· I ___ . 

Treatment' Time ( h I 

0 4 8 24 48 72 UiH l 1/J .~,q (17 ~ 

NM* 
----------·--- -------~ ---------

High A 197 343 78 60 176 156 ,1 i' 52 167 

High B NM 148 167 192 262 146 160 116 170 42 

High C NM NMH 129 241 143 668 312 64 210 12 

M2 A NM 78 58 ND 191 41 13 59 11 245 

M2 B NM 47 71 14 315 21 124 ND 35 51 

M2 C NM 25 21 ND NM" 124 ND ND 19 ND 

Ml A NM NMH NMH ND 35 36 ND ND 28 ND 

Ml B NM 18 151 NM" NM" NM" NM" NM" NM" NM" 

Ml C NM 26 183 ND NM" ND 4 ND 6 ND 

Ctrl. Blank A NM ND ND ND ND ND ND ND ND ND 

Ctr!. Blank B NM ND ND ND ND ND ND ND ND ND 

Ctrl. Blank C NM ND ND NMU NM" ND ND ND ND ND 
'High= 22.5 mg L 1

• M2 == 9. l mg L 1
• Ml = >. 7 mg L 1

• Ctrl. Blank = () :'i m~ 1 
,-·r··. - -·-· . 
: NM= not measured; 

**NM= not measured (vial lost);~ ND== not detected 

Table 39. The experimental data from high performance liquid chromatography and liquid 
scintillation counting analysis for 17/J-estradiol-3-glucuronide in the aqueou-, pha"e for 
sterile subsoil. 

T rcatment 

High A 

High B 

High C 

.\12 A 

M2 B 

.\12 C 

:\1 l A 

\11 B 

\11 C 

Ctrl. Blank.-'\ 

Ctrl. Blank B 

Ctr!. Blank C 

0 

6970 

6970 

6970 

2808 

2808 

2808 

1151 

1151 

1151 

166 

166 

166 

C ( dpm I from l 7 /f-eqradiol-.~-glucuronidl' pl'ak in .~(Ip L I fl/l'c 11"11 

4 

7013 

7241 

6822 

2730 

NM
11 

2841 

977 

1054 

1153 

170 

170 

173 

( adJU'-lcd to hatch rl'cm cry 1 ·-··--·- ___ . 

Time (hi 

8 24 48 72 

6905 6225 5894 5266 

7166 6856 6142 5039 

7219 6359 NM" NM" 

2797 2618 2198 1911 

NM" NM" NM" NM" 

2663 2391 1895 943 

964 774 364 ~If 
1011 982 440 124 

988 834 465 95 

165 173 159 172 

176 190 165 172 

179 179 177 165 

168 

2788 NM" 
274 36 

NM" 27 

40 10 

NM" NM" 

29 25 

ND 11 

15 15 

ND ND 
167 159 

166 NM" 

179 158 

NM" 

44 

30 

10 

NM" 

28 

ND 
ND 
ND 
160 

174 

170 

59 

21 

26 

NM" 

33 

ND 
ND 
ND 
171 

187 

180 
--------------------~--------~~--------"---

High== 22 5 mg L 1 
• .\12 = 9. I mg L 1

• \11 = :1-.7 mg L 
1

• Ctr!. Blank= (J :'i mg L : · NM= not measured (vial 

lost);~ :\D == not detected 
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Table 40. The experimental data from high performance li4uiJ chrnrnatugraph:, ;111d l1qu1d 
scintillation counting analysis for estrone-3-glucuronide in the a4ueuu" pha"e tor ..,tn1k 
subsoil. 

C (dpm/ from e\lrone-3-!,'lucuronide pea).; Ill .'iO µL ln1n11"n 
I adj w-1ed to hatch rcC-'!__l_l'f}_)_ _~_-

Treatment Time 1h1 
-----·-----~-----·-- -

0 4 8 24 48 72 I (18 .<.'() 'i(l4 (1~ .:'. 

High A NM* 76 139 179 241 289 374 NM" NM" NM" 

High B NM 20 23 80 248 366 874 19 25 '.\!>' 

High C NM 35 48 175 NM" NM" NM" 31 36 ND 
M2 A NM 29 45 51 92 182 51 8 29 ND 
M2 B NM NMn NM

11 NM" NM" NM" NM" NM" NM" NM" 

M2 C NM 7 45 77 37 69 29 14 14 11 

Ml A NM 4 42 64 85 26 ND 8 17 ND 

Ml B NM ND 12 83 314 708 137 ND 24 14 

Ml C NM ND 40 69 99 60 ND 8 6 ND 

Ctr!. Blank A NM ND ND ND ND ND ND ND ND ND 

Ctr!. Blank B NM ND ND ND ND ND ND NM" ND ND 

Ctrl. Blank C NM ND ND ND ND ND ND ND ND ND 
I .M2=9.I muL 1.MI =3.7muL I . Ctr!. 

1NM = not measured, .- High= 22.5 mg L 
uNM= not measured (vial lost);~ ND= not detected" 

Blank= IJ .'i Ill!-' J_' 

Table 41. The experimental data from high performance li4uiJ chromatograph> :111J liquid 
scintillation counting analysis for l 7/J-estradiol in the aqueous phas,e for \ler~k "-llh"cid. 

Ile ldpml from 17//-estradiol peak in ."iO µL ln1n.t1on 
I a Ji u,ted to hatch recm en I 

Treatment Time lhJ 

(/ 4 H 24 4H 72 J(i)i ·''" 'i()..j li72 

High A NM* 42 62 192 247 638 1269 NM" NM" NM" 

High B NM 13 39 133 359 788 10S 15 49 16 

High C NM 102 141 149 NM" NM" NM" 15 36 :--1/ 

M2 A NM 9 ND 77 205 237 ND 7 ND 9 

,\12 B NM NM" NM" NM" NM" NM" NM" NM" NM" NM" 

,\12 C NM 29 66 181 414 585 511 16 ND ND 

,\11 A NM 9 37 87 232 300 24 30 10 ND 

,\f J B NM ND 37 13 17 8 23 24 ND ND 

,\f J C NM 7 38 61 227 359 30 15 ND rm 

Ctr!. Blan).; A NM ND ND ND ND ND ND ND ND ND 

Ctr!. Blank B NM ND ND ND ND ND ND NM" ND ND 

Ctr!. Blank C NM ND ND ND ND ND ND ND ND ND 
, __ -- -~------

High= 22.5 mg L '. \12 = 9.1 mg L : . ,\11 = _, 7 mg L . Ctr!. Blank=() .'i m;; L ·:"NM= not measured; 
"NM= not measured (vial lost);~ '.\D = not Jc.:tected 
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Table 42. The experimental data from high performance liquid chromatography and liquid 
scintillation counting analysis for estrone in the ayucou-. pha~ (ll~~leEil~_-.uhs.liil. 

'C <dpm) from t',trnne peak in :'iO pL ln1ect11,n 
( ad1u,tt'd lo hatchrt'C<__)_\__l'.TII_ 

Treatment Time < h) 
-----·---- ·-~-- -- ~ -------·-- ----

0 4 8 24 48 72 l (18 .,.~() '1114 ( - ' 
) -

NM* ND'1 
--·-----------~------

High A 5 19 31 62 302 NM" NM" NM" 
High B NM 15 ND 34 33 171 1542 1242 832 1098 

High C NM 12 9 41 NM" NM'' NM" 1375 1060 1220 

M2 A NM 13 ND 10 21 38 966 811 531 375 

M2 B NM NMU NMU NM" NM" NM" NM" NM" NM" NM" 

M2 C NM 7 ND 11 60 51 425 173 80 83 

Ml A NM ND ND 10 94 196 496 152 158 164 

Ml B NM ND ND ND 27 61 486 248 328 337 

Ml C NM ND ND 14 87 213 514 362 274 242 

Ctrl. Blank A NM ND ND ND ND ND ND ND ND ND 

Ctrl. Blank B NM ND ND ND ND ND ND NM" ND ND 

Ctr!. Blank C NM ND ND ND ND ND ND ND ND ND 
. High= 22.5 mg L 1

• M2 = 9.1 mg L 1. MI = 3.7 mg L 1
• Ctr!. Blank= II" mg L 

---r ·- -· ---
: NM= not measured; 

"NM= not measured (vial lost);~ ND = not dctt'cted 

Table 43. The experimental data from high performance liquid chromatograph~ and lilju1d 
scintillation counting analysis for unidentified metaholitcs. in the a4Ul'.llll'- pha.,c 1m '-krik 
subsoil. 

C tdpm1 from unidentified met;,holite, rn ~Ii pL ln1ect1<>11 
( adju'1l'd to hatch rccm ':!l' --~ ___ 

Treatment Time 1h1 
--------~-- - --

0 4 8 24 4k 72 I lik < \() "f!4 

High A NM' ;',;[)~ 78 296 374 126 330 NM" NM" 

High B NM ND 57 124 178 128 1225 315 491 

High C NM ND 113 188 NM" NM" NM" 542 535 

M2 A NM ND 22 39 123 156 346 266 308 

M2 B NM NM" NM" NM" NM" NM" NM" NM" NM" 

.\12 C NM ND 83 83 165 618 110 251 216 

.\11 A NM ND ND 59 90 226 34 213 111 

.\11 B NM ND ND 27 274 144 48 230 97 

.\11 C NM ND 21 91 65 130 72 101 113 

Ctr!. Blank A NM ND ND ND ND ND ND ND ND 

Ctr!. Blank B NM ND ND ND ND ND ND NM" ND 

Ctrl. Blank C NM ND ND ND ND ND ND ND ND 

( '""7') 
) -

NM" 

524 

436 

339 

NM" 

245 

77 

60 

103 

ND 
ND 
ND 

~---------· -------

- High= 22.5 mg L 1 
• .\12 = 9.1 mg L :_ .\11 = _,.7 mg L . Ctr!. Blank = fl.5 mg L :: 

1 NM = not measured; 

"NM= not measured (vial lost);~ :\D = not detectl'd 
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APPENDIX VI. THE C SOURCE CODE OR PAP R 4 

/ ********************************* ********************** **** *** ** 
*** 
** Code t o inversely estimate the fate and transformation parameters 
**bas ed on the data generated from the experimental value 
**************************** *** ** ************************* *** * ~* 
** / 

#inc lude <Stdio . h> 
#include <stdlib . h> 
#includ e <math . h> 

#include "sharefunc . h" 
#in clude "ESSRSort . h" 
#include "ESES . h" 

#include "llnltyps . h ' 
#include "cvode . h" 
#include "cvdense . h ' 
#include •nvector . h ' 
#include "dense . h" 

#define Ith(v , i) N_VIth(v , i-1) 
#define IJth(A , i , j) DENSE_ ELEM(A , i-1,j-1) 

#undef OUTPUT 
#undef REFINE 

#define MV 200 . 0 

#define WTl 10000 . 0 

int NEQ , tn , dim ; 

double RTOL , ATOL ; 
double TO , Tl , Tm ; 

ESfcnTrsfm * trsfm ; 

double wlun , w2un , 
double wlus , w2us , 
double wlln , w2ln , 
double wlls , w2ls , 

w3un , 
w3us , 
w3ln , 
w3ls , 

double slu , s2u, s3u ; 

w4un , 
w4us , 
w4ln , 
w4ls , 

double alu , a2u , a3u, a4u , aSu ; 
double blu , b2u , b3u , b4u , bSu ; 
double kdlu , kd2u , kd3u , kd4u , 
double sll, s21 , s31 ; 
double all , a21, a31 , a41, aSl ; 
double bll, b21 , b31 , b41, bSl; 

w5un; 
w5us; 
wSln ; 
wSls ; 

kdSu; 
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double kdll , kd21, kd31, kd41, kd51 ; 

double **w_mun, **w_mus, **w_mln, **w_mls; 
double **a_mun, **a_mus, **a_mln , **a_mls; 
double * c_mun , *c_mus , *c_mln, *c_mls; 

double transform(double x); 
void fitness(double *, double* double*) ; 
static void difeq(integer N, real t, N_Vector y, N_Vector ydot, void 
*f_data) ; 
double square(double xxx) ; 
double ** ReadWA(const char file[], canst int iRow, canst int iCol) ; 
double *ReadC(const char file(], canst int iRow) ; 

int main(int argc , char **argv) { 
inti , es , constraint , miu, lambda , gen, retry ; 
unsigned int seed ; 
double *ub, *lb, gamma, alpha, varphi, pf; 
double *sim_para; 

ESPararneter *param; 
ESPopulation *population; 
ESStatistics *stats; 

seed= shareDefSeed; 
gamma= esDefGamma; 
alpha= esDefAlpha; 
varphi = esDefVarphi ; 
retry= esDefRetry ; 
pf essrDefPf ; 
es= esDefESSlash; 

constraint= 1; 
dim= 56; 
rniu = 300 ; 
lambda= 3500; 
gen= 100000000; 

ub NULL; 
lb NULL ; 

ub ShareMallocMld(dim); 
lb ShareMallocMld(dim); 
sim_para = ShareMallocMld(dim); 

trsfrn = (ESfcnTrsfm *)ShareMallocMlc(dim * sizeof(ESfcnTrsfm)); 

for (i = O; i < dim ; i++) 
trsfm[i] = transform ; 

for (i = O; i < dim; i+...) { 
lb [i] le-8; 
ub[i] 1.0; 
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ub[22] = 
lb (22] = 
ub[25] = 
lb (25] 

#ifdef OUTPUT 

0 . 0 ; 
0 . 0 ; 
0 . 000000000001 ; 
0 . 000000000001 ; 

sim_para = ReadC('sim2_para . txt", dim) ; 

for ( i = 0 ; i < dim ; i + +) { 

ub[i) sim_para[i) ; 
lb [ i J = ub [ i J ; 

#endif 

# i fndef OUTPUT 

#ifdef REFINE 
sim_para = ReadC('sirn2_para . txt', dim); 

for (i = O; i < dim ; i++) { 
ub[i] sirn_para[i] * 3 . 0; 
lb[i] = sim_para(i] * 0 . 3 ; 

} 

#endif 

# ifndef REFINE 
lb[31] 0 . 0 ; 
ub[31] 0 . 0 ; 
lb(32] 0.0 ; 
ub(32J = 0 . 0; 

= 0 . 0; 
0 . 0; 

lb { 4 6] 
ub[ 46] 
lb[47] 
ub[47] = 

#endif 
endif 

#endif 

0 . 0; 
0 . 0 ; 

NEQ = 60; 
RTOL = le-4; 
ATOL = le-4; 
TO= 0 . 0; 
Tl 0 . 1; 
Tm= 674; 

w_ un = ShareMallocM2d(9, 5); 
w_ us ShareMalloc '12d ( 9, 5) ; 
w_mln ShareMallocM2d(9, 5); 
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w_mls ShareMallocM2d(9, 5) ; 

a_mun ShareMallocM2d(9, 5) ; 
a_mus = ShareMallocM2d(9 , 5) ; 
a_mln ShareMallocM2d(9, 5) ; 

a_mls ShareMallocM2d(9, 5) ; 

C _mun = ShareMallocMld(9); 
C - mus ShareMallocMld(9); 
c_mln ShareMallocMld(9) ; 
c_mls ShareMallocMld(9); 

w_mun = ReadWA ( "w_rnun . txt', 9, 5); 

w_mus = ReadWA { • w_rnus . txt • , 9, 5) ; 
w_mln = ReadWA { • w_rnln . txt • , 9, 5) ; 

w_mls ReadWA ( • w_ml s . txt • , 9, 5) ; 

a_mun = ReadWA { • a_mun . txt • , 9, 5) ; 

a _mus ReadWA ( • a_mus . txt' , 9, 5) ; 

a _mln ReadWA { • a_mln . txt • , 9 , 5) ; 

a _mls = ReadWA ( • a_mls . txt • , 9, 5) ; 

C _mun = Reade(•c_mun . txt•, 9); 
C _mus Reade ( • c_mus . txt • , 9) ; 
c_mln = Reade { • c_mln . txt • , 9) ; 
c_mls ReadC('c_mls.txt•, 9) ; 

ESinitial(seed, &param, trsfm, fitness, es, constraint, dim, ub, 
lb,miu, lambda, gen, gamma, alpha, varphi, retry, &population, 

&stats); 

while {stats->curgen < param->gen) 
ESStep(population, param, stats, pf); 

ESDeinitial(pararn, population, stats); 

ShareFreeMlc((char *) trsfm); 

ShareFreeMld(ub); 
ub = NULL; 
ShareFreeMld(lb); 
lb=- NULL ; 
ShareFreeMld(sim_para); 
sim_para = NULL; 
ShareFreeMld(c_mun); 
c_mun = NULL; 
ShareFreeMld(c_mus); 
c_mus = NULL; 
ShareFreeHld(c_mln); 
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c_rnln = NULL ; 
ShareFreeMld(c_rnls) ; 
c_rnls = NULL ; 

ShareFreeM2d(w_rnun, 9) ; 
w_rnun = NULL ; 
ShareFreeM2d(w_mus, 9) ; 
w_rnus = NULL ; 
ShareFreeM2d(w_rnln , 9) ; 
w_mln = NULL ; 
ShareFreeM2d(w_rnls , 9); 
w_mls = NULL ; 
ShareFreeM2d(a_rnun, 9) ; 
a_rnun = NULL ; 
ShareFreeM2d(a_rnus, 9) ; 
a_mus = NULL; 
ShareFreeM2d(a_rnln, 9) ; 
a_rnln = NULL ; 
ShareFreeM2d(a_rnls, 9) ; 
a_mls = NULL ; 

return O; 

void fitness(double *x, double *f , double *g ) 
real ropt[OPT_SIZEJ , reltol, t , tout ; 
long int iopt[OPT_SIZE] ; 
N_Vector y ; 
real abstol; 
double surnl, sum2 , sum3, sum4, sumr=O . O, aceton=0 . 0, combus-0 . 0 ; 
void *cvode_rnern; 
int iout , flag, i , iPos = -1, ii, kk ; 

#ifdef OUTPUT 
FILE • mun, *mus, *mln, *rnls ; 

if ((mun= fopen(•mun_output2 . txt•, 'w"}) == NULL) { 
printf(•fopen %s failed!\n , •mun_output.txt ') ; 
exit(-1) ; 

if ( (mus = fopen ( ·mus_output2. txt • , •w•}) ... NULL) { 
printf('fopen %s failed!\n', •mus_output.txt ') ; 
exit (-1); 

if ((mln = fopen("mln_output2.txt, 'w')} == NULL) { 
printf(•fopen %s failed!\n•, 'mln_output.txt ) ; 
exit (-1} ; 

if ((mls = fopen('mls_output2.txt•, 'w')) == NULL) { 
printf('fopen %s failed! n, ·mls_output .txt ); 
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exit(-1) ; 
} 

#endif 
suml 0 . 0 ; 
sum2 0 . 0 ; 
sum3 = 0 . 0 ; 
sum4 0 . 0 ; 
sumr 0 . 0 ; 

wlun (trsfm[OJ) (x[OJ) ; 
w2un (trsfm[l]) (x[l]) ; 
w3un ( trsfm [ 2 J } (x [ 2 J ) ; 
w4un (trsfm[3]) (x[3]) ; 
wSun (trsfm(4]) (x[4]} ; 

wlus (trsfm[SJ} (x[SJ) ; 
w2us ( trs fm [ 6 J ) ( x [ 6 J } ; 
w3us (trsfm[7]) (x[7]} ; 
w4us (trsfm[8]) (x[BJ} ; 
w5us (trsfm[9]) (x(9]) ; 

wlln (trsfm[lOJ} (x[lOJ); 
w2ln ( trsfm [ 11 J ) (x [ 11 J ) ; 
w3ln (trsfm[12]} (x[12]) ; 
w4ln (trsfm[13]) (x[13]) ; 
w5ln (trsfm{14)) (x[14)); 

wlls = (trsfm[lSJ} (x[15)) ; 
w2ls (trsfm[16)) (x (16)} ; 
w3ls ( trsfm [ 17 J ) (x [ 17 J } ; 
w4ls (trsfm[18]} (x[18]) ; 
w5ls (trsfm[19]) (x[19)) ; 

slu = ( trs fm [ 2 0 J ) ( x [ 2 0 J ) ; 
s2u = (trsfm[21)) (x[21]); 
s3u (trsfm[22)) (x[22)); 

sll = (trsfm[23]) {x[23)) ; 
s21 (trsfm[24]) (x[24]) ; 
s31 (trsfm[25]} (x[25]) ; 

alu = (trsfm[26)) (x[26]) ; 
a2u = (trsfm[27]) {x[27]); 
a3u (trsfm[28]) (x[28]) ; 
a4u = (trsfm[29]) (x[29]) ; 
aSu = (trsfm[30]) (x[30]); 

blu "' (trsfrn[31J) (x [31J) ; 
b2u = (trsfm[32)) ( x {32J) ; 
b3u = (trsfm[33]) (xf33J) ; 
b4u ( t rs fm [ 3 4 J ) ( x [ 3 4 ) ) ; 
bSu = (trsfm[35]) (x(35)) ; 
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kdlu (trsfrn(36)) (x [36]) ; 
kd2u (trsfrn[37)) (x [37J) ; 
kd3u (trsfrn[38)) (x[38)) ; 
kd4u ( trs frn [ 3 9 J ) (x [ 3 9) ) ; 
kd5u (trsfrn[40]) (x [40]) ; 

all (trsfrn[41)) (x [41)) ; 
a21 (trsfm[42]) (x (42]) ; 
a 31 (trsfm[43]) (x [43]) ; 
a41 (trsfrn[44]) (x [44)) ; 
a51 (trsfm(45]) (x [45]) ; 
bll (trsfm[46)) (x[46]) ; 
b21 (trsfm[47]) (x [47]) ; 
b31 = (trsfm[48]) (x [48]) ; 
b41 (trsfm[49J) (x[49]) ; 
b51 (trsfrn[50]) (x [50]) ; 

kdll (trsfm(51]) (x [51]) ; 
kd21 (trsfm[52]) (x[52]) ; 
kd31 = (trsfm(53]) (x [53]) ; 
kd41 (trsfm[54]) (x [54]) ; 
kd51 = (trsfm(55]) (x [SSJ) ; 

if (kd3u <= kd31 I I kd4u <= kd41) { 
( * f) = 800000000000 . 0 ; 
g[O) = 0 . 0 ; 
return 

if (kd2u <= kd21 I I kd2u <= kd21) { 
(* f) = 800000000000 . 0 ; 
g(OJ = 0 . 0 ; 
return 

} 

if (slu >= sll I I s2u >= s21 I I s3u >= s31) { 
( * f) = 800000000000 . 0 ; 
g[O] = 0 . 0 ; 
return 

if (kd3u < kd4u I I kd31 < kd41) { 
( * f) = 800000000000 . 0 ; 
g(O} = 0.0 ; 
return 

if (kd4u <= kdSu I I kd41 <= kd51) { 
(*f) = 800000000000 . 0 ; 
glOJ = 0 . 0 ; 
return ; 

} 

174 



if (kdSu < kdlu I I kdSu < kd2u I I kd51 < kdll I I kd5l < kd21) { 
(*f) = 800000000000 . 0; 
g(OJ = 0 . 0 ; 
return 

} 

y N_VNew(NEQ, NULL) ; 

for (i = 1 ; i <= NEQ ; i++) 
Ith ( y I i ) = 0 • 0 ; 

Ith(y , 1) = 1. 0 ; 
Ith(y , 16) 1. 0 ; 
Ith(y , 31) 1. O; 
Ith(y , 46) 1. O; 

reltol RTOL ; 
abstol ATOL ; 

cvode_mem = 
CVodeMalloc(NEQ , difeq, TO, y, BDF, NEWTON, ss, &reltol, 

&abstol , NULL , NULL, FALSE, iopt, ropt, NULL); 

if (cvode_mem == NULL) { 
printf(•cvodeMalloc failed . \n ' ); 
exit (1) ; 

} 

CVDense(cvode_mem, NULL, NULL) ; 

for (iout = l, tout= Tl; tout<= Tm; iout++, tout= iout * Tl) 

flag= CVode(cvode_mem, tout , y, &t, NORMAL); 

if (flag != SUCCESS) { 
(*f) = 800000000000 . 0; 
g(OJ = 0 . 0 ; 
return 

iPos = -1; 

if (iout == 40 . 0) 
iPos = O; 

if (iout == 80.0) 
iPos = l; 

if (iouc == 240 . 0) 
iPos • 2; 

if (iout == 480.0) 
iPos = 3; 
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if (iout == 720 . 0) 
iPos = 4 ; 

if (iout -- 1680 . 0) 
iPos = 5 ; 

if (iout -- 3360 . 0) 
iPos = 6 ; 

if (iout -- 5040 . 0) 
iPos = 7 ; 

if (iout -- 6720 . 0) 
iPos = 8 ; 

if ( iPos == 0 I I iPos == 1 I I iPos == 2 I I iPos == 3 I I iPos -· 4 I 1 
iPos == 5 I I iPos == 6 I I iPos == 7 I I iPos == 8) { 

aceton 
combus 

Ith(y , 6)+Ith(y , 7)+Ith(y,8)+Ith(y,9)+Ith(y , 10); 
Ith(y,ll)+Ith(y , 12)+Ith(y,13)+Ith(y,14)+Ith(y,15); 

if (iPos -- 0) 
sumr = sumr+(aceton/combus - 4 . 4) * 

if (iPos -- 1) 
sumr = sumr + (aceton/combus - 3 . 9) 

if (iPos -- 2) 
sumr = surnr + (aceton/combus - 4.5) 

if (iPos -- 3) 
sumr = sumr + (aceton/combus - 2 . 6) 

if (iPos == 4) 
sumr = sumr + (aceton/combus - 2 . 3) 

if (iPos == 5) 
sumr = sumr + (aceton/combus - 2 . 1) 

if (iPos -- 6) 
sumr = sumr + (aceton/combus - 1. 9) 

if (iPos -- 7) 
sumr = sumr + (aceton/combus - 1. 8) 

if (iPos -- 8) 
sumr = sumr +Caceton/corobus - 2 . 1) * 

WTl ; 

* WTl; 

* WTl; 

* WTl; 

*WTl; 

* WTl; 

* WTl; 

* WTl; 

WTl; 

suml = suml + square(Ith{y, 1) - w_mun(iPos] [OJ) + sguare(Ith(y, 2) -
w_mun[iPos](l]) + sguare(Ith(y, 3) - w_mun(iPos] {2]) 
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+ square(Ith(y, 4) - w_mun[iPos) [3]) + square(Ith(y, 5) -
w_mun[iPos) (4)) + square(Ith(y , 6) - a_mun[iPos] [OJ) • 
squa re(Ith(y , 7) - a_mun[iPos) (1]) + square(I h(y, 8) -
a _mun [ iPos] [2 J) + square (Ith (y , 9) - a_mun [ iPos] [ 3 J) + 
square(Ith(y , 10) - a_mun[iPos] (4])+ square(Ith(y, 11) + 
Ith(y , 12) + Ith(y , 13) + Ith(y, 14) + Ith(y , 15) -
c_mun[iPos]) ; 

#ifdef OUTPUT 

fprintf(mun , "%d\t" , iout) ; 

fprintf(mun , "%£\t %f\t %£\t %f\t %f\t\t' , Ith(y , 1), Ith(y, 2), 
Ith(y, 3) , Ith(y , 4) , Ith(y , 5)); 
fprintf(mun , '%f\t %f\t %f\t %£\t %f\t\t\t', w_;nun[iPosJ fOJ, 
w_mun[iPos] [1] , w_mun[iPos) (21, w_mun[iPos) [3), w_mun[iPos] [4]); 

fprintf(mun , '%f\t %f\t %f\t %f\t %£\t\t", Ith(y, 6), Ith(y, 7), 
Ith(y , 8) , Ith(y, 9) , Ith(y, 10)); 

fprintf(mun , "%£\t %£\t %£\t %£\t %f\t\t\t', a_mun[iPos) (OJ, 
a_mun[iPos) [1], a_mun[iPos) (2] , a_mun{iPos) [3] , a_mun[iPos] (4]); 

fprintf(mun , "%f\t %f\n', Ith(y, ll)+Ith(y, 12)+Ith(y, 
13) +Ith(y , 14) +Ith(y , 15), c_mun[iPos]); 

#endif 

sum2 = sum2 + square(Ith(y, 16) - w_mus[iPos] (0)) + square(Ith(y, 17) 
- w_mus[iPos) [1]) + square(Ith(y, 18) - w_mus[iPos] [2]) 
+ square(Ith(y, 19) - w_mus[iPos] [3)) + square(Ith(y, 20) 
w_mus[iPos) [4]) + square(Ith(y, 21) - a_mus[iPos] (OJ) + 
square(Ith(y, 22) - a_mus[iPosJ (1)) + square(Ith(y , 23) -
a_mus[iPos] {21) + square(Ith(y, 24) - a_mus[iPos) [3]) + 
square(Ith(y, 25) - a_mus(iPos] (4])+ square(Ith(y, 26) + 
Ith(y, 27) + Ith(y , 28) + Ith(y, 29) + Ith(y, 30) -
c_mus {iPos)); 

#ifdef OUTPUT 

fprintf(mus, "%d\t·, iout) ; 

fprintf(mus, "%f\t %f\t %f\t %f\t %f t\t', Ith(y, 16), Ith(y, 
1 7 ) , I th ( y , 18 ) , I th ( y , 19 ) , Ith ( y, 2 0 ) l ; 

fprintf(mus, "%f\t %f\t U\t %f\t %f\t\t\t •, w_mus(iPosJ {OJ, 
w_mus{iPos] (11, w_mus{iPos] [2), w_mus[iPos){3), w_mus[iPosJ [4]); 

fprintf(mus, "%f\t %f\t %f\t %f\t %f\t\t', Ith(y, 21), Ith(y, 
22), Ith(y, 23), Ith(y, 24), Ith(y, 25)); 

fprintf(mus, '%f\t %£ t %f\t %f\t %f\t\t\t•, a_mus[iPosJ [OJ, 
a_mus{iPosJ [1], a_mus[iPos) (21, a_m s{iPos) (3), a_;nus(iPos) (4)); 
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fprintf(mus, "%f\t %f\n•, Ith(y , 26) + Ith(y , 27) + Ith(y , 28) 
Ith(y, 29) + Ith(y , 30) , c_mus[iPos]) ; 

#endif 

sum3 = sum3 + square(Ith(y, 31) - w_mln[iPos] [OJ) + square(Ith(y , 32) 
- w_mln(iPos ] [ll) + square(Ith(y, 33) - w_mln(iPos)[2]) 
+ square(Ith(y, 34) - w_rnln[iPosJ (3)) + square(Ith(y , 35) 
w_mln[iPos] (4])+ square(Ith(y, 36) - a_mln[iPosJ [OJ) + 
square(Ith(y, 37) - a_mln[iPos] (1)) + square(Ith(y, 38) -
a_mln[iPos] [2])+ square(Ith(y, 39) - a_mln[iPos] [3]) + 

square(Ith(y, 40) - a_mln(iPos] [4))+ square(Ith(y , 41) + 

Ith(y, 42) + Ith(y , 43) + Ith(y , 44) + Ith(y , 45) -
c_rnln(iPos]); 

#ifdef OUTPUT 
fprintf(mln, "%d\t' , iout) ; 

fprintf(mln, '%f\t %f\t %f\t %f\t %f\t\t' , Ith(y , 31), Ith(y, 
32) I Ith(y , 33) I Ith(y, 34) I Ith(y, 35)) i 

fprintf (mln, • %f \t %f\ t %f\ t %f\ t %f\ t \t \t' , w_mln [ iPos) [OJ, 
w_mln[iPos] [1] , w_mln[iPos] [2] , w_mln[iPos] (3), w_mln[iPos) (4)) ; 

fprintf(mln, '%f\t %f\t %f\t %f\t %f\t\t', Ith(y , 36), Ith(y, 
37), Ith(y , 38), Ith(y , 39), Ith(y, 40)) ; 

fprintf(mln, '%f\t %f\t %f\t %f\t %f\t\t\t', a_mln[iPos][OJ, 
a_mln[iPos] (1) , a_mln[iPosJ [2], a_mln[iPosJ [3), a_mln(iPosJ (4)) ; 

fprintf(mln, "%f\t %f\n', Ith(y , 41) + Ith(y , 42) + Ith(y , 43) + 
Ith(y, 44) + Ith(y, 45), c_mln[iPosJ); 

#endif 

sum4 = sum4 + square(Ith(y, 46) - w_mls[iPos) (OJ) + square(Ith(y, 47) 
- w_rnls[iPos] (1)) + square(Ith(y, 48) - w_mls(iPos) [2]) 
+ square(Ith(y, 49) - w_mls[iPos] (3]) + square(Ith(y , 50) 
w_mls(iPos)[4])+ square(Ith(y, 51) - a_mls[iPosJ [OJ) + 

square(Ith(y , 52) - a_mls[iPos] [1)) 1 square(Ith(y , 53) -
a_mls(iPos] [2])+ square(Ith(y , 54) - a_mls(iPos) [31) + 
square(Ith(y, 55) - a_mls[iPos) [4))+ square(Ith(y , 56) + 

Ith(y, 57) + Ith(y , 58) + Ith(y, 59) + Ith(y, 60) -
c_mls[iPos]) ; 

#ifdef OUTPUT 

fprintf(rnls, "%d\t• , iout) ; 

fprintf(mls , %f\t %f\t %f\t %f\t %f\t\t•, Ith(y, 46), Ith(y, 
47), I::h(y , 48). Ith(y, 49), Ith(y, 50)) ; 
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fprintf(mls , •%f\t %f\t %f\t %f\t %f\t\t\t', w_mls[iPos] {01, 
w_mls[iPos) (1) , w_mls[iPos) [2] , w_mls[iPos] [3], w_mls[iPos] {4]); 

f p rintf(mls , '%f\t %f\t %f\t %f\t %f\t\t• , Ith(y, 51), I h(y, 
52) , Ith(y, 53) , Ith(y, 54), Ith(y , 55)) ; 

fprintf(mls , "%f\t %f\t %f\t %f\t %f\t\t\t" , a_mls[iPos] [0), 
a_mls[iPos) [1) , a_mls[iPos] (2) , a_rnls[iPos] [3), a_rnls[iPos] [4]); 

fprintf(mls , "%f\t %f\n' , Ith(y, 56) + Ith(y, 57) + Ith(y, 58) + 

Ith(y , 59) + Ith(y , 60) , c_rnls[iPos]) ; 

#endif 

g[OJ = 0 . 0 ; 
N_VFree(y) ; 
CVodeFree(cvode_rnem) ; 
(*f) = suml + surn2 + sum3 + sum4 + sumr ; 

#ifdef OUTPUT 
fclose (mun) ; 
fclose(mus) ; 
fclose (mln) ; 
fclose (mls) ; 
printf('%f\t %f\t %f\t %f\t %f\n" , suml, sum2 , sum3, sum4, suml 

+ surn2 + sum3 + sum4) ; 
ex it (0) ; 

#endif 

return ; 
} 

static void difeq(integer N, real t , N_Vector y , N_Vector ydot , void 
*f_data) { 

double Clun , C2un , C3un, C4un , CSun ; 
double Slun , S2un , S3un , S4un , S5un ; 
double SSlun , SS2un, SS3un, SS4un , SS5un ; 

double Clus , C2us , C3us , C4us , C5us ; 
double Slus , S2us, S3us , S4us , S5us ; 
double SSlus, SS2us, SS3us , SS4us, SS5us ; 

double Clln, C2ln, C3ln, C4ln, CSln ; 
double Slln, S2ln, S3ln, S4ln , S5ln ; 
double SSlln, SS2ln, SS3ln, SS4ln, SS5ln ; 

double Clls , C2ls, C3ls, C4ls, CSls ; 
double Slls, S2ls, S3ls, S4ls, S5ls ; 
double SS1ls, SS2ls , SS3ls, SS4 s, SS5ls; 

Clun = Ith(y, l); 
179 



C2un Ith(y , 2) ; 
C3un Ith(y, 3) ; 
C4un Ith(y, 4) ; 
C5un Ith(y, 5) ; 

Slun Ith(y, 6) ; 
S2un Ith(y, 7) ; 
S3un = Ith(y, 8); 
S4un Ith(y, 9); 
S5un Ith(y, 10) ; 

SSlun Ith(y, 11) ; 

SS2un Ith(y , 12) ; 
SS3un Ith(y, 13); 
SS4un Ith(y , 14) ; 
SS5un Ith(y , 15) ; 

Clus Ith(y , 16) ; 
C2us = Ith(y , 17) ; 
C3us Ith(y , 18) ; 
C4us Ith (y ' 19) ; 
C5us Ith(y , 20) ; 

Slus Ith(y , 21) ; 
S2us Ith(y , 22) ; 
S3us Ith (y , 23) ; 
S4us Ith(y , 24) ; 
S5us Ith(y , 25) ; 

SSlus Ith(y , 26) ; 
SS2us Ith(y, 27) ; 
SS3us Ith(y , 2 8) ; 
SS4us Ith(y I 29) ; 
SS5us Ith(y, 30) ; 

Clln = Ith(y , 31) ; 
C2ln Ith (y ' 32) ; 
C3ln Ith(y , 33) ; 
C4ln Ith(y, 34) ; 
C5ln Ith(y , 35) ; 

Slln = Ith(y, 36); 
S2ln = Ith(y, 37); 
S3ln Ith(y, 38) ; 
S4.ln = Ith(y, 39) ; 
S5ln Ith(y , 40) ; 

SS1ln = Ith(y, 41) ; 

SS2ln Ith(y, 42) ; 
SS3ln = Ith(y, 43); 
SS4ln Ith(y, 44) ; 
SS5ln Ith(y, 45); 

Clls = Ith (y, 46) ; 
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C2ls = Ith(y , 
C3ls Ith(y , 
C4ls = Ith(y, 
C5ls Ith(y , 

Slls Ith(y , 
821s = Ith(y , 
831s Ith (y, 
841s Ith(y , 
851s = Ith(y , 

SSlls = Ith(y , 
SS2ls Ith(y , 
SS3ls Ith(y, 
SS4ls Ith(y, 
SS5ls = Ith(y, 

Ith (ydot , 1) 
Ith(ydot , 2) 
Ith(ydot , 3) 

Ith(ydot , 4) 

Ith(ydot , 5) = 

Ith(ydot , 6) 

Ith(ydot , 7) = 

Ith (ydot , 8) 

Ith(ydot , 9) 

Ith(ydot , 10) 

Ith (ydot, 11) 

It.h(ydot, 12) 
Ith(ydot , 13) 
Ith (ydot, 14) 
Ith (ydot, 15) 

Ith (ydot , 16) 
Ith (ydot, 17) 
Ith(ydot , 18) 
Ith(ydot , 19) 
Ith (ydot , 20) 

Ith(ydot , 21) 

Ith (ydot, 22) 

4 7) ; 
48) ; 
49); 
50) ; 

51) ; 
52) ; 
53) ; 
54) ; 
55) ; 

56) ; 
57) ; 
58) ; 
59) ; 
60) ; 

-wlun * Clun - MV * alu * (kdlu * Clun - Slun); 
-w2un * C2un - MV * a2u * (kd2u * C2un - S2un); 
wlun * Clun - w3un * C3un - wSun * C3un - MV * 
a4u * (kd3u * C3un - S3un); 
w3un * C3un + w2un * C2un - w4un * C4un - MV * 
a3u * (kd4u * C4un - S4un) ; 
w5un * C3un + w4un * C4un - MV * a5u * (kd5u * 

= 

= 

= 

C5un - S5un) ; 

(alu * (kdlu * Clun - Slun) - slu * Slun - blu * 
Slun) * MV ; 
(a2u * (kd2u * C2un - S2un) + slu * Slun - b2u 
S2un) * MV ; 
(a4u * (kd3u * C3un - S3un) - s2u * S3un - b4u ... 

S3un) * MV; 
(a3u * (kd4u * C4un - S4un) + s2u * S3un - s3u * 
S4un - b3u * S4un) * MV ; 
(aSu * (kd5u * C5un - S5un) + s3u * S4un - bSu 

+ S5un) * MV; 

blu * Slun * MV; 
b2u * S2un * MV ; 
b4u * S3un MV ; 
b3u * S4un * MV ; 
bSu * S5un * MV ; 

-wlus * Clus - MV * alu * (kdlu Clus - Slus > ; 
-w2us * C2us - MV * a2u * (kd2u * C2us - S2us); 
wlus * Clus - MV * a4u * (kd3u * C3us - S3usl; 
w2us * C2us - MV * a3u * (kd4u * C4us - S4us); 
- MV + a5u * (kd5u * C5us - S5us) ; 

(alu * 
Slus) 
(a2u 
S2us) 

(kdlu 
* MV; 
(kd2u 

* MV; 

Clus - Slus) - slu * Slus - blu 

C2us - S2us) + slu + Slus - b2c * 
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Ith (ydot , 23) (a4u * (kd3u * C3us - S3us) - s2u * S3us b4u * 
S3us) * MV ; 

Ith( ydot , 24) = (a3u * (kd4u * C4us - S4us) + s2u * S3us s3u • 
S4us - b3u * S4us) * MV ; 

I th(ydo t , 25) = (aSu * (kdSu * C5us - S5us) + s3u * S4us - bSu 
* S5us) * MV ; 

Ith( yd o t , 26) 
Ith (ydot , 27) 
Ith (ydot , 2 8 ) 
Ith (y do t , 29) 
Ith( ydot , 30) 

Ith( ydot , 31) 
Ith(ydot , 32) 
Ith (y dot , 33) 

Ith (ydot , 34) 

Ith(ydot , 35) 

blu * Slus * MV ; 
b2u * S2us * MV ; 
b4u * S3us * MV ; 
b3u * S4us * MV ; 
b5u * S5us * MV ; 

-wlln * Clln - MV *all * (kdll * 
-w2ln * C2ln - MV * a21 * (kd21 * 
wlln * Clln - w3ln * C3ln - w5ln 
a41 * (kd31 * C3ln - S3ln) ; 

= w3ln * C3ln + w2ln * C2ln - w4ln 
a31 * (kd41 * C4ln - S4ln) ; 

= w5ln * C3ln + w4ln * C4ln - MV * 
C5ln - S5ln) ; 

Clln - Slln) ; 
C2ln - S2ln) ; 

C3ln - MV * 

* C4ln - MV * 

a51 * (kd51 * 

Ith(ydot , 36) = (all * (kdll * Clln - Slln) - sll * Slln - bll * 
Slln} * MV ; 

Ith(ydot , 37) (a21 * (kd21 * C2ln - S2ln) + sll * Slln - b21 * 
S2ln} * MV ; 

Ith(ydot , 38) (a41 * (kd31 * C3ln - S3ln) - s21 * S31n - b41 * 
S3ln} * MV ; 

Ith(ydot , 39) = (a31 * (kd41 * C4ln - S4ln) + s21 * S3ln - s31 
S4ln - b31 * S4ln} * MV ; 

Ith(ydot , 40) = (a51 * (kd51 * C5ln - S5ln) + s31 * S4ln - b51 
* S5ln) * MV ; 

Ith(ydot , 41) 
Ith(ydot , 42) 
Ith(ydot , 43) 
Ith(ydot , 44) 
Ith(ydot , 45) 

= bll * Slln * MV ; 
b21 * S2ln * MV ; 

= b41 * S3ln * MV ; 
b31 * S4ln * MV ; 

= b51 * S5ln * MV ; 

Ith(ydot, 
Ith(ydot, 
Ith (ydot, 
Ith(ydot , 
Ith (ydot, 

46) 
47} = 
48) 
49) 
50) 

-wlls * Clls 
-w2ls * C2ls 
wlls * Clls 
w2ls * C2ls 

- MV * a51 

- MV * all* (kdll * Clls - Slls); 
- MV * a21 * (kd21 * C2ls - S2ls}; 
- MV * a41 * (kd31 * C3ls - S3ls); 
- MV * a31 * (kd41 * C4ls - S4ls) ; 

* (kd51 * C5ls - S5ls) ; 

Ith(ydot , 51) (all* (kdll * Clls - Slls) - sll * Slls - bll * 
Slls) * MV ; 

Ith(ydot, 52) = (a21 * (kd21 * C2ls - S2ls) + sll * Slls - b21 * 
S2ls) * W./ ; 

Ith(ydot, 53) = (a41 * (kd31 * C3ls - S3ls) - s21 * S3ls - b41 * 
S3ls) * IN ; 

Itb(ydot, 54) = (a31 * (kd41 C4ls - S4ls) + s21 * S3ls - s31 • 
S4ls - b31 * S41s) * MV ; 
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Ith (ydot I 55) 

Ith (ydot , 56) 
Ith( ydo t , 57) = 
Ith (ydot , 58) 
Ith (ydot , 59) 
Ith (ydot , 60) 

} 

(a51 * (kd51 * C5ls - S5ls) + s31 * S4ls - bSl 
* S5ls) * MV ; 

bll * Slls * MV ; 
b21 * S2ls * MV ; 
b41 * S3ls * MV ; 
b31 * S4ls * MV ; 
b51 * S5ls * MV ; 

double transform(double x ) { 
double y ; 

Y = x; 

return y; 

double square(double xxx ) { 
return xxx * xxx * 10000 . 0 * 10000 . 0 ; 

double **ReadWA(const char file[] , canst int iRow, canst int iCol) { 
char buf[shareDefMaxLine] ; 
char **sl ; 
FILE *fp ; 
inti= 0 , n , k = O; 
double **pData = NULL ; 

if ( (fp = fopen(file , •r•)) := NULL) { 
printf(•fopen %s failed ! \n', file) ; 
exit (-1) ; 

} 

pData = ShareMallocM2d(iRow , iCol) ; 

while (fgets(buf , shareDefMaxLine , fp) != NULL) { 
ShareChop (buf) ; 

} 

sl = ShareSplitStr(buf , •\t• , &n, shareDefNullNo) ; 

if (n ! = iCol) { 
printf( line failed : %s\n' , buf); 
exit (-1); 

for (k = O; k < iCol ; k++) 
pData[i] (k] = atof (sl {k]) ; 

i i + 1 ; 

return pData; 
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double *ReadC(const char file[], canst int iRow) { 
char buf[shareDefMaxLine]; 
char **sl ; 
FILE *fp ; 
inti= 0 , n, k = O; 
double *pData NULL; 

if ( (fp = fopen(file, •r•)) == NULL) { 
printf('fopen %s failed!\n', file); 
exit (-1) ; 

pData = ShareMallocMld(iRow); 

while (fgets(buf, shareDefMaxLine , fp) NULL) { 
ShareChop (buf) ; 
sl = ShareSplitStr(buf, '\t• , &n, shareDefNullNo); 

if (n > 1) { 
printf( 'line failed: %s\n•, buf); 
exit (-1); 

pData(i] atof(sl[OJ); 
i = i + l; 

return pData; 

/*************************************************** 
****************** **** 
**Code ends here 

********* ** 

**************** *** ****************************************** *** * 
***********************/ 
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