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ABSTRACT

Satterlee, Cody Michael, MS, Department of Electrical and Computer Engineering, College
of Engineering and Architecture, North Dakota State University, April 2011. The Effects of
Spatial and Temporal Properties on a Viscoelastic Model of the Dyssynchronous Canine
Heart. Major Professor: Dr. Dan Ewert.

In this study, lumped parameter cardiovascular modeling has been used to understand
the influence of muscle properties on mechanical dyssynchrony (MD) as well as general
muscle dynamics. Incorporating viscous influence into the model allowed for an expanded
view when analyzing muscle parameter response to MD. A unique method of ventricle
segmentation was introduced that allowed fast analysis of regional and global ventricular
properties. This segmentation process produced a ventricle with four identical sections
each consisting of separately tunable muscle properties in the form of minimum and
maximum elastance, elastance waveform delay, and myocardial viscous friction, yet these
regional sections remained globally dependent. Elastance waveform delay proved to be
the most influential property on MD as measured by internal flow fraction (IFF), followed
by regional elastance magnitude, and finally regional viscosity influence. Due to the
unique segmentation of this model, two metrics for IFF were derived; 1) the “true” IFF
(IFF-4seg) and 2; the IFF as would be measured by an ideal conductance catheter (IFF-CC).
The results of IFF-CC versus IFF-4seg show that conductance catheters are not capable of
measuring IFF during a side-to-side volume transfer within the stacked cylinder under
measurement. Finally, unique energetic situations were observed with this model that

point to likely myocardium remodeling situations.
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INTRODUCTION

Cardiovascular disease (CVD) is a leading cause of death in the industrialized
world. Medical research has led to the development of devices designed to attenuate the
impact of CVD. These include ventricular assist devices (VAD), pacemakers, artificial
hearts, and defibrillators. Current efforts to improve the impact of these devices on
patients continue. Methods to evaluate these devices include human studies, animal
studies, and modeling of various system and intracellular structures. However, animal
studies are difficult, expensive, and lack the ability to easily manipulate parameters and
can have large variation in effects that may be seen due to various biological differences.
Previously, cardiovascular modeling has been approached from both an electrical and
mechanical standpoint. In 1998, Nebot et al. described a quantitative approach to
cardiovascular and central nervous system (CNS) modeling(Nebot, 1998). Others have
modeled various aspects of the circulatory system by deriving an electrical analog
(Sagawa, 1988; Beneken, 1996; Abdolrazaghi, 2010). Hunter et al. (Hunter, 2003) created
a computational framework of the heart to describe the integrated effects of individual
myocytes. Nielsen et al. {Nielsen, 1991) constructed a geometric mode! based on a
truncated ellipsoid. Furthermore, transmural geometric modeling has surfaced as a very
useful tool with the ability to mathematically describe the epicardial and endocardial
surfaces of the heart.

One area of interest within the field of modeling is ventricular mechanical

dyssynchrony (VMD). Mechanical dyssynchrony is widely believed to be a strong predictor



of heart failure and a basis for selecting patients for cardiac resynchronization therapy
(CRT) (Steendijk, 2003; Lang, 2006; Helm, 2005; Cleland, 2006). VMD leads to reduced
cardiac output due to ventricular inefficiencies originating at the whole heart and cellular
level. QRS widening has been the key variable used to select patients for CRT. Several
publications point to the lack of precision this variable provides (Vollmann, 2006; Gorcsan,
2007). However, CRT has shown to be remarkably successful in treating patients with
LBBB and HF, even with the imperfections that come with using QRS. QRS widening can be
caused by cardiac remodeling or causes the remodeling: the net effect of mechanical
dyssynchrony, hence various responses to CRT can be found(Tang, 2008).

Cardiac resynchronization therapy (CRT) is a form of ventricular pacing for NYHA
class IlI-IV heart failure patients that has shown to restore heart function when a
conduction disturbance is present(Cleland, 2006). It has been previously reported that
approximately 30% of patients do not respond to conventional CRT(McAlister, 2007).
However, response is not a binary variable. To classify a patient as a non-responder due to
the absence of improvement in NYHA, EF or quality of life while they are alive at 2 years
post implant is short sighted. It is possible that response is lower in patients with ischemic
HF or the presence of a myocardial infarct. In summary, the impact of mechanical
dyssynchrony on ventricular function continues to be an area of interest and the use of
modeling may lead to improvements in the response rate for all patients.

Several methods of analyzing ventricular mechanical dyssynchrony exist. Methods
of quantifying mechanical dyssynchrony include tissue Doppler imaging (TD!), magnetic

resonance imaging {MRI), speckle tracking, and conductance catheter. Additionally, three
2



proven indices of mechanical dyssynchrony have been developed for use with
conductance catheter-derived data.(Steendijk, 2003) These indices utilize the
conductance catheter-derived volume signals based on short-axis slices of the heart and
exhibit a radial shortening effect that is quantified by comparative analysis over global
volume. According to Steendijk et al. (Steendijk, 2003), these metrics of mechanical
dyssynchrony are highly correlated with tissue Doppler-derived septal-to-lateral delay, yet
produce an easily quantifiable result.

Previous computational models of mechanical dyssynchrony have been developed.
Kerckhoffs et al. (Kerckhoffs R. P., 2003) constructed a three-dimensional finite element
model of a canine heart using mechanics based on passive tissue stress, strain, and
balancing momentum components. Kerckhoffs’ model neglected inertial forces and
utilized three-element Windkessel models for the arterial and venous sides. From this
model, electromechanics were studied to better wunderstand pacing site
timing/myocardial function interactions. Separately, Kerckhoffs et al. (Kerckhoffs R. P.,
2003) used a modified geometrical ellipsoid, as shown in Figure 1B, to simplify the
myofiber orientation of the above finite element model. The result was used to
investigate depolarization delay patterns, for which it was determined that
“electromechanical delay times are heterogeneously distributed, such that a contraction
in a normal heart is more synchronous than depolarization”. Later, a more complete three
dimensional finite element model of ventricular mechanics was developed by Kerckhoffs
et al. (Kerckhoffs R. M., 2006}, as shown in Figure 1C, in which a method for integrating a

ventricular model within a complete model of the circulatory system was implemented.
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evaluating the relative importance of viscous influence on muscle dynamics. Authors such
as Huxley and Hiedergerke(Huxley A. R., 1954) and Huxley and Hanson(Huxley H. E., 1954)
suggests that viscous influence can be omitted due to its negligible effects. However,
significant research points to the contrary (Ewert, 2004; Hill, 1938; Goldsmith, 2002;
Granzier, 2004; Zhang, 2005). For liquids, Newton’s Law may be used to determine the
hydrodynamic properties, while Hooke’s Law may be used for solid elastic materials.
Biological tissue, however, can exhibit characteristics of both materials indicating a visco-
elastic approach must be utilized. Ewert et al. (Ewert, 2004) contends that “viscosity
estimates have been too readily discounted based on too simplistic a model.”

This thesis introduces a ventricular computational model with the capability to
analyze the effects of various heart parameters on mechanical dyssynchrony. Regional
ventricular interactions were analyzed with the use of viscous and elastic parameters to
ensure accuracy. The scope of the model is to allow for a quick and visual representation
of ventricular flow, pressure, volume, and dyssynchrony metrics. Additionally,
conductance catheter derived dyssynchrony calculations were investigated for

comparative analysis purposes.



METHODS

Model Overview

The left ventricular model, consistent with a lumped parameter approach, is
illustrated in Figure 2. The model is constructed on the basis of force balancing at the
ventricular wall to analyze mechanical properties of the left ventricle (LV). Previously
developed mathematical relationships for hydromotive pressure (HMP), elastance (g),
myocardial resistance (R), left ventricular pressure (LVP), LV volume (LVV), and aortic flow
(AoF) were used to develop the force generation characteristics of the ieft ventricle
(Ewert, 2004). The left ventricular geometry is mathematically separated into several
compartments that are sensitive to regional muscle parameters as well as global heart
function. These compartments do not act independent of global LV function, but rather
allow for regional analysis of LV mechanics versus global function by creating an imaginary
centerline and force balancing at each juncture.

Consistent with the pressure, elastance, volume relationship of a purely elastic
ventricle as expressed in Eq. 1, a time-varying elastance waveform is generated consisting
of a systolic phase governed by a predefined maximum elastance value and a diastolic
phase governed by a predefined minimum elastance value. The elastance waveform can
be mapped over any multiple of cycles, resulting in the simulation of the resuiting number
of cardiac cycles. For this reason, perfect initial values were unnecessary as the model self
corrects on each successive loop and eventually reaches steady state.

LVP(t) = € :(t)*{V1(t) - Vo} (1)






degree of freedom, thereby simplifying the model for conceptual clarity. The 2-element
Windkessel consists of a resistor and capacitor in parallel. Total peripheral resistance was
modeled through the Ohm’s Law relationship of resistance where R determines blood
flow. The parallel capacitor models the compliance of the venous system. The compliance
of the venous system allows continuous peripheral blood flow and acts as a storage
chamber during systole.

LV valve mechanics for the mitral and aortic valve were modeled by using an
exponential variable resistor to simulate the restriction of blood flow during periods of
valve closure. Finally, the complete system dynamics were computationally solved in
Simulink (MATLAB R2009b) implicitly using the included dormand-prince ODEA45 solver.

Hill Muscle Model

The three-element Hill muscle model, popular for its application to skeletal
muscle, simulates lumped parameter muscle mechanical response. Several investigators
have shown that the Hill model can be adapted to cardiac muscle (Ewert, 2004; Glantz,
1975; Landesberg, 1994). Although there are variations in the modifications used to
adapt Hill’'s muscle model to cardiac muscle, the variation used by (Ewert, 2004) depicted
in Figure 3 is implemented in the LV model due to its incorporation of Thevenin
equivalence and a variable myocardial friction element.

The benefit of using the modified Hill model is twofold. First, by transforming the
mechanical Hill model to an electrical analog, the Thevenin equivalence can combine

Sunagawa’s impedance relationships, which incorporates kinetic energy loss due to












The three phases of a purely elastic ventricle are broken down as follows:

Ejection: - %va = AoF , LA noF(t) = -%vam ()
Filling: <“—"" = Siyv(y) (s)
Isovolumic (contraction and relaxation) :
%LVV(t) =0, LWV(t) = Vas(t) + Via(t),
d d
0-= E?Vel(t) + ;;VA](t) (6)

From the diagram in Figure 5, individualized elastance waveforms may be
selected to represent regional changes in myocardium parameters resulting from
alterations such as heart failure or remodeling. Unbalanced elastance waveforms
have the net effect of inversely altering the regional volume waveform as LVP is
determined globally. Equation 3 can be manipulated to represent regional
parameters as shown below. The derivatives of the two resulting regional
equations are subsequently shown below and are useful for solving the dynamics
for the ejection, filling, and isovolumic phases.

LVP(t) = € a1 (t)*Vas(t) (7)

LVP(t) = € g1(t)*Vaa(t) (8)

d d
Ear () LVP(L) = LVP(t) e (1)

d
IVAl(t) = ey (9)
- Ep1 () e LVP(t)= LVP(t )5t g (1) 0
o ga(t) = 300 (10)

Ejection
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The ejection phase consists of the time period when LVP exceeds AoP. The
pressure gradient forces the aortic valve open, allowing flow out of the ventricle. When
LVP drops below AoP, the aortic valve closes and ejection ceases. In this model, the after-
load of the ventricle is produced from a two-element Windkessel mode! of the arterial

system described later in this section. Mathematically, ejection can be related to an
electrical analog whereby LVP(t) and AoP(t) are considered voltages and %va(t) is flow. R
[¢

is the combined resistance of the aortic valve and arterial system during ejection only.
Ohm’s Law states that V/R = |; where V is voltage, R is resistance, and | is current. The
flow as a function of time for both sides of the equation must be the same as in the
electrical sense, following the law of conservation of energy. The right side of the

equation is negative because ejection produces a decreasing left ventricular volume.

LVP(t)=AOP(t) _

d
- S LWVIY) (4)

From above:
Substitute Equations 7 — 10 into the right hand side of eq. 4 and simplify by
. d
solving for d—tLVP(t).

yields
_

d o
£yt byt ,
LVP(!)-{H-‘Z/“I +d42”:[ i’h A('L'('
d Eat U .
;;vae)echon(t) = i (11)
Eqyits gyt
Integrate equation 11
yields
—_—
d d .
a0t gt ,
LVP(t)-g‘uzAll +‘“2’“! %;+ e
far't tpy Y
LVPE]E(T!On(t) = f T 1 +C (12)
£410t) Egyit
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Where Cis the initial ejection pressure, in this case LVP = AoP at the onset of
ejection. Equation 4 is valid during ejection.
Filling

The filling phase consists of the time period when LVP is less than LAP. In the case
of filling, a negative pressure gradient with respect to the ventricle forces the mitral valve
open, allowing flow into the ventricle. Similar to the ejection phase, the filling phase can
be represented through a relationship between pressure, flow, and resistance. The
pressure gradient of LAP — LVP is acting on a mitral valve resistance R. The electrical

analog of flow on the left side of Equation 5 must be equal to the change in left

ventricular volume {:—tLVV(t)}. This relationship is only valid during the filling phase.

LAP=LVP(t) _

From above: %LVV(t) (5)

Substitute Equations 7 — 10 into the right hand side of Equation 5 and simplify by

solving for %LVP(t).

yields
—_—

£ it (_1, ‘t
LVP(t)-gl- deAr D du '%-’_f'ﬁ
2 R
d Rooe5 0 Eh, U
_vaflllm (t) = (13)
g 1 1
at zm:’tfz,“w’r
Integrate Equation 13
ytelds
e
d; it d; it
LVP(U-M_ aat gl LA
[R 4,0 Ep,y 't g R
vafnﬂmg(t) = f 1 1 + C (14)

+
fa1't, tgy't

Where C = LAP, in this case LAP is a steady state preload.
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Isovolumic

The two isovolumic phases consist of the time periods when LAP<LVP<AoP for
isovolumic contraction and LAPSLVP<AOP for isovolumic relaxation. During the isovolumic
phases, the mitral valve and aortic valve are closed indicating no net flow in or out of the
ventricle. The volume within the ventricle is at a maximum during the isovolumic phases,
also known as the end diastolic volume. During the isovolumic phases, regional flow back

and forth may occur but no net external flow takes place. This is described by Equation 6.
d d d
From above: 0= ;va(t) = ;;VB](t) + d—tv/u(t) (6)
Substitute Equations 7 — 10 into the right hand side of Equation 6 and simplify by

solving for %LVP(t)

yields
_—

d d

-t (ty —t (fy

drt Al di-m )
~LVP(t)'[ s ,di
| S €5, (0

d
;valsovol(t) = T 1 (15)

T I

Integration of Equation 15

yletds
_—

dr f dt ‘('
Lvp()) TALD @ L
[ et ehy

LVPisovalt) = f T 1 +C (16)

a1ty £yl

Where C = LAP for Isovolumic contraction {or) C = AoP for Isovolumic relaxation
Add the LVP from 3 phases described above:

va(t) = vae;ect|0ﬂ(t) + vaﬁ\\vng(t) + LVP'SCVO|(t)

15



The purely elastic ventricle as described above can be easily constructed in
Simulink requiring minimal computational power. The equations are correctly solved by
cycling through the correct phase and turning off the unneeded phases according to the
variables LAP, LVP, and AoP as defined above for each phase.

Mechanics of a Visco-Elastic Ventricle

In addition to creating a computational model of the left ventricle with the
capability of analyzing mechanical dyssynchrony, this work also aims at addressing the
effects of viscous influence on mechanical dyssynchrony. Although computationally
expensive, adding viscous influence allows the researcher a more detailed and accurate
picture of ventricular dynamics. The relationship between pressure, volume, elastance,

and viscous resistance can be represented by Equation 17 (Ewert, 2004).

LVP(t) = &,4(t)*V,(t) + Ry(t)*=V4(1) (17)

Where R(t) = K;*LVP(t), K; = viscous resistance constant {ml/sec)

A diagram of a visco-elastic ventricle is shown below in Figure 6. Similar to the
purely elastic ventricle previously discussed, the visco-elastic ventricle is separated into
compartments by an imaginary line that serves the purpose of allowing regional analysis
of ventricular dynamics. The addition of the dashpots R; and R; on either side represent
the viscous influence. The dashpots and elastic elements are attached to the heart wall or
piston on one side and an immobile wall on the other. As the ventricle fills and ejects, the
elastic elements and dashpots are compressed and expanded creating the necessary

dynamics to model the proposed equations. Via the diagram, flow enters and leaves as
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Equations governing a visco-elastic ventricle:

LVV(t) = Vay(t) + Vgi(t) (18)
LVP(t) = € a1 (t)*Var(t) + Ras(t) <V (1) (19)
LVP(t) = € a(t)*Vaa(t) + Rea(t)* —Vea(t) (20)
MF(t) — AoF(t) = ALVV(t) (21a)

mmHgssec

Where Ray(t) = Ka; *LVP(t) and Rg;(t) = Kg-*LVP(t) in units of —

Equation 21 is valid throughout the cardiac cycle since during filling mitral flow will
result in a positive ALVV(t} while aortic flow is cut off and during ejection ALVV(t) will be
negative as indicated in the equation whereas mitral flow will be cut off. It is interesting to
note that while there is no global volume change during isovolumic phases, inter-
segmental volume changes can occur as indicated from Equation 18. Equation 21a now

becomes the basis for governing all flow characteristics of the ventricular model as well as

forming the foundation for simultaneously solving Equations 18-21.

Solve:
d
MF({t) — AoF(t) =;LVV(t) {21b)
LAP—=LVPit) LVP(t)—AoP(L} d d
- = —Vft) + =Vit) (22)
R (8) Rao(t) dt dt
LAP—LVP(t) LVP{1)=A0P(t) LVP(t)= £5a,(1)*V 4;,(1) . LVPIt)= SEg (U V (1) (23)
R () Rao(t) Ray(t) Ryt

Implicitly solve for LVP(t) and simplify:

yields
_

18



LAP AoP(1) “’Al(”'VAl(”+’flj1‘“‘v[11'”

LVP(t)Z R () Raptly Ray () Ryttt
Ray (0 Ry (DR A IO+ Ry (O-R i ((6oR 4,10+ Ry ((TOR A TRy (0 + R (O R TR 4,10

Rap ()R (s Ryt Rag )

(24)
Where Rmq(t) is defined as a decaying exponential function: R,,.(LAP-LVP(t)) and

Raolt) is defined as a decaying exponential function: Ra {LVP(t)-AoP(t)}

_(LAI’—I,VI’

Ron(t) = 0.05% e U0 )+ 0.1 (25)
_(LVP—AUP)

Raolt) = 0.05%¢ \ " v/ +0.1 (26)

One of the main goals of this work is to investigate the viability of using a
conductance catheter to extract data for assessing mechanical dyssynchrony. A
conductance catheter separates the ventricle into several stacked cylinders from apex to
base. To accurately represent this feature, the model as described in Figure 6 is
insufficient. An additional “layer” or slice must be added to the model to accurately
represent the stacked cylinder functionality of conductance catheter derived data as
simply as possible. Such a model was previously shown in Figure 2. Simitar to Equations

18-21, but varying in parameter values are Equations 27-29 shown below:

LVV(t) = Vai(t) + Vay(t) + Var(t) + Ve(t) (27)
LVP(t) = € aalt) Vaalt) + Raalt) *5-Vslt) (28)
LVP(t) = € g2(t)*Vea(t) + Re(t)* %ng(t) (29)

While not directly provided here, the solution set to the model described in Figure

2 closely relates to Equation 24 previously derived, with the difference being two

19



additional sets of equations (Equation 28 and Equation 29) that are combined in parallel
with the previous model. As before, Equation 21 is manipulated to include all four
segments of the new model. The end result is a ventricular model with four uniquely
independent chambers that all contribute equally to global performance. From this point
forward, all reference will be based on the mode! represented in Figure 2.

Simulation and Data Analysis

The complete system dynamics were computationally solved in Simulink (MATLAB
R2009b) implicitly using the included dormand-prince ODEA4S solver. Maximum
integration step size was set at 10°. The multi-segment visco-elastic model was simulated
on a 64-bit Windows based platform with an AMD Phenom Il X3 720 processor and 8.0GB
of RAM. Average simulation time including all analysis computations was 1.1 min for a
total of 9 consecutive beats. In comparison, the coupled FE model constructed by
Kerckhoffs et al. required a simulation time of 156h and 25 min to complete 30 beats of
data using a Linux based platform and 3.2 GHz Intel Pentium 4 processor (Kerckhoffs R.
M., 2006). Baseline muscle parameters used in simulation are listed in Table 1.

Various hemodynamic and two mechanical dyssynchrony metrics were
incorporated through Matlab to form the basis for this analysis. Cardiac output (CO),
ejection fraction (EF), external work (EW), pressure volume area (PVA), efficiency
(EW/PVA), stroke volume (SV), and internal flow fraction calculated in two variations
where the standard metrics. Three new global metrics were incorporated to illustrate key

concepts related to mechanical dyssynchrony. Those key metrics include work done by
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was utilized to closely mimic the results of such analysis and such calculations will be
referred to as IFF-C.C. In reference to Figure 2, volumes V,; and Vg, were summed to
account for “segment 1” of a conductance catheter approach, and volumes V,, and Vy,
were summed to account for “segment 2”. The end result mimics a stacked cylinder
approach for analyzing the volume waveforms for a cardiac cycle. The 2" variation of IFF
included treating all four volume compartments as individual segments and will be
referred to as IFF-4seg in this work for clerical purposes. Both variations utilize Equation

30 and are otherwise identical.
v
Wmyo is calculated by integrating LVP‘(—;:’Q and summing together all segments

for only time points where that segment was ejecting as indicated by a segmental volume
derivative < 0. The result closely mimics EW, but incorporates work due to internal flows
between segments and eliminates diastolic work. Ploss is defined as the power lost due to
myocardium losses and can be correlated in the electrical sense to I”*R losses. All

calculations for Wa,o, Pioss, and PVA,,, considered a four-segment analysis.

gy (AOPZLVP

(1V\(,( ! 7
Pioss =212 a1 LVP>AGP k.se,g,x «LVP(t) ~ {—'&71_({)}‘ (31)

PVAmyo is calculated through the following equation:
PVALo = PW + Piogs + Wiy (32)

,where PW is defined as potential work.
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Integration Error
Figure 7 illustrates the integration error inherent in the Simulink model for varying
step sizes of the Dormand-Prince solver. The waveform in green represents the sum of all

four segmental time derivatives:

: B2 WVsegilt) _dVT(t)
_ \B2 seg.t -
Green waveform = ¥if,, ——2=— = — (29)

The embedded blue waveform represents the calculated flow as shown in
Equation 30 and previously derived from the left hand side of Equation 21:
Blue waveform = MF — AofF (30)
The lower two plots represent a decreased step size of sufficient magnitude to
indicate symmetry and data tracking of the blue waveform by the green waveform. in the
top two plots, inflection points can be seen during transition between mitral flow and
aortic flow which could account for undesirable manipulation of dyssynchrony and
hemodynamic metrics. For all analysis, a step size of 10 was used to strike a balance
between acceptable flow tracking and computation time as seen in the lower left plot of

Figure 7.
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RESULTS

Model Validation

As outlined earlier, the ventricular model was designed to mimic the general
hemodynamic properties of a canine heart, with the exception of arterial preload which
was kept constant. Figure 8 shows an excerpt of pressure, volume, and flow waveforms
that represent an “ideal” canine ventricle of perfectly matched regional elastance values.
While atrial kick has not been accounted for in this model, a very small and brief flow
reversal can be seen causing aortic valve closure. This small flow reversal is the direct
result of the aortic valve equation defined earlier and could possibly be manipulated to
simulate varying degrees of valvular regurgitation.

For analysis purposes, initial starting values for pressure and volume were
appropriately matched and tuned to the heart mode! to ensure steady state was reached
with sufficient accuracy. Six seconds of data was recorded per simulation at a heart rate of
90bpm, indicating nine beats of data. This standardization was carried throughout testing
to ensure consistency between results. A bootstrapping technique of setting a single
regional elastance maximum and minimum to zero while all other values remain
standardized, and cycling through all four ventricle regions was implemented to ensure
consistency of results and accuracy in model calculations. The desired result of the
bootstrapping test is to show that all four segments perform identical under similar

loading conditions, for which was validated by this test.
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DISCUSSION

This thesis describes a technique of lumped parameter ventricular modeling that is
designed to look at the complex nature of mechanical dyssynchrony as it relates to muscle
parameters and hemodynamic metrics. Computation power and model complexity can
often times inhibits researchers as they investigate trends in modeled muscle dynamics.
As a result, a multitude of solutions to modeling whole heart dynamics have been
proposed by various researchers. Kerckhoffs et al. (Kerckhoffs R. M., 2006) constructed a
3D finite element model that was coupled to a lumped parameter circulatory system in an
effort to obtain cardiac phase independence, which assumes the net effect of enabling
multiple cardiac cycle simulations by conservation of blood mass and also the ability to
simulate valvular or septal pathologies. Rolle et al. (Rolle, 2007) utilized a tissue-level
approach and an identification algorithm that maps the strain energy function over an
ellipsoid. Dou et al. (Dou, 2009) constructed a ventricular model utilizing the dynamic cell
model first proposed by Winslow et al. (Winslow, 1999) through a finite element method
for the analysis of bundle branch block. Completely encompassing the complex nature of
heart mechanics through a computational model is exceedingly difficult, if not impossible,
due to the fact that the heart is a load dependent source and receives input from a
multitude of receptors and feedback loops for which their influences are still not fully
understood.

A lumped parameter system such as the one in this study allows for the

integration of viscous influence without substantially inhibiting computation viability.
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Myocardial viscous influence is left unaccounted for in several recent models such as
those proposed by Kerckhoffs et al. (Kerckhoffs R. A., 2009) and Dou et al. (Dou, 2009),
most likely due to the additional computational expense. The debate of finite element
versus lumped parameter lies completely with the researcher’s requirement for detail and
computation speed requirements. In 1931, scientist and philosopher Alfred Korzybski
famously expressed that “the map is not the territory”(Korzybski, 1933). In cardiovascular
modeling we must construct representations of how the heart functions based on our
perception of reality and not necessarily what is actually happening; else we would be
working on a live heart. Extending further, you can never have a perfect map nor would it
be beneficial to have one analogous to the idea of using a satellite imagery map to
navigate a densely populated city.

By isolating certain load dependencies, attention can be focused in a specific area
of interest; in this case mechanical dyssynchrony. For this reason, a reactive preload was
eliminated from this model by using a steady state left atrial pressure. While a reactive
afterload was implemented to ensure integrity of flow dynamics, a 2-element Windkessel
diminished the reactive effects of muitiple element circulatory systems used by other
authors(Arai, 2010; Kerckhoffs R. M., 2006).

By examining the results obtained from Figure 17.A and 17.B, it becomes clear that
the properties most influential to mechanical dyssynchrony are elastance segmental
delay, elastance magnitude, and myocardial viscous friction, in that order. From Figure
17.A, a delay in segment Al of 40ms produced an IFF-C.C. value of over 30% compared to

a maximum excursion of about 7% through large alterations in segment A1 maximum
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elastance, and from Figure 17.B the component of viscous friction accounted for
negligible amounts of dyssynchrony in comparison at roughly 3%.

Due to the relationship between CO and SV, and the fact that HR remained
constant throughout all simulations, one can expect similar results to emerge. Indeed,
Figure 18.A and 18.C compare favorably with 22.B and 22.D. While no parameter showed
to have strong influence on CO and SV, the myocardial viscous friction component (k)
possibly accounts for the greatest degree of change due to the its inhibitory effects of
excess energy waste for high k values, preventing the myocardium from reaching its true
end diastolic volume.

In terms of ejection fraction, no clear property was magnified, very similar to the
results seen with CO and SV. This is likely due to the relatively small changes in global EDV
and ESV for varying parameters even in such cases as high mechanical dyssynchrony.
Besides Figures 18.B and 18.D, this relatively stable nature of EDV and ESV for substantial
mechanical dyssynchrony can be seen in Figures 10-13.

When analyzing EW and PVA as a function of elastance, delay, and viscous friction,
an overall lack of response consistent with high degrees of mechanical dyssynchrony may
indicate that these standard metrics are ill fit for reliably measuring myocardium health in
an ideal situation. The problem is that while the heart may be producing adequate
external work, the amount of energy required to produce that work in the form of oxygen
consumption has gone up significantly. This is certainly the case for the simulation in
Figure 13 which produced IFF-C.C. of 32.5% and IFF-4seg of 52.7%. The solution taken in

this work was to calculate work of the myocardium (Wn,,) and PVA.,.. In particular, W,
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takes into account the work by each segment individually. In the case where internal
flows of blood do not directly result in ejection, work may normally go unaccounted for.
Defined by equation 31, P\, accounts for any power lost by each segment from friction
due to tissue interactions at the sarcomere level. The response between EW, PVA, W,
PVAn,o, as well as Pios can be seen in Figures 19, 20, and 22.A and C. A strong example of
unaccounted for work is the simulation shown in Figure 13. Further consulting table 6
reveals that P, and Wp,, for segment Al (Pio5a1 and Wemyoa: respectively) account for
over 53% of losses and 44% of myocardium work of the whole ventricle, clearly
unsustainable amounts!
Conductance Catheter Response

By observation of Figure 12 and Table 5, it is shown that segmental conductance
catheter signals effectively do not measure some forms of abnormal regional wall motion
contained within a particular short axis volume slice. Even though clear mechanical
dyssynchrony is visible in Figure 12, IFF-C.C. reported 0.0% dyssynchrony while IFF-4seg
revealed 18.7% dyssynchrony. One of the reasons why conductance catheters can
produce differing results stems from their design and the contraction of a heart. The
conductance catheter segments the left ventricle into multiple short-axis slices and
determines volume of this slice through parallel conductance. While the catheter can
detect a change in volume of the slice, it does not have the ability to determine to what
extent the slice moved back and forth without volume change. This is the situation that
has been successfully simulated in Figure 12. Steendijk et al. (Steendijk, 2003) came to a

similar conclusion when developing three novel indices of mechanical dyssynchrony as
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well as indicating that the proposed metrics “may underestimate phase changes obtained
by comparing regional lateral and septal wall motions”.
Limitations

This cardiovascular model is based on a simplified version of a canine heart that
lacks many of the complexities found in various finite element models. Furthermore, a
very simple approach towards system mechanics was used in a 2-element Windkessel
afterload and a steady-state preload. For researchers exploring other pathways of heart
failure outside of mechanical dyssynchrony, changes to the system mechanics and broad
model overview may be necessary.

This model examines mechanical dyssynchrony based on a radial wall motion
approach. While this view of the heart encompasses the majority of heart contraction,
recent research has expanded focus on various methods of breaking down the anatomy of
a contraction such as longitudinal contraction and left ventricular twist (Sade, 2008;
Gorcsan, 2007). Analyzing longitudinal dyssynchrony may be of little value as these
metrics generally have a very tight dynamic range, unlike that of radial motion (Sade,
2008). LV twist however, has been shown to be a major component of contraction
(Sonnenblick, 1967) and beneficial for early detection of heart failure (Wang, 2008). The
importance of LV twist lies within the structural changes that can occur for imbalances of
the torque generated by the myocardial fibers of the endocardium and epicardium
(Wang, 2008). There could be strong potential for this analysis to be implemented in a

model of the heart.
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CONCLUSION

In this study, a method of lumped parameter cardiovascular modeling has been
developed. The method allows for extremely fast computation of muscle dynamics and a
broad spectrum of tests that are not feasible with other models due to time restrictions.
The mechanical property of elastance delay was the most influential property that was
tested in response to mechanical dyssynchrony in the form of IFF-C.C. and IFF-4seg.
Alterations in the magnitude of the elastance waveform and the myocardial component
of viscous friction produced successively less influence on mechanical dyssynchrony
through IFF calculations for both IFF-C.C. and IFF-4seg. Additionally, the model has
demonstrated that conductance catheters tend to filter out regional wall motion when an
offsetting wall motion is realized within the same circumferential slice. Unanticipated
results were found in a variety of cases where high mechanical dyssynchrony did not
necessarily equate to significant curtailment in output metrics such as CO, EW, and PVA.
This was largely due to the increased burden taken on by one segment and represents

scenarios where remodeling is almost certain to occur if the heart condition was left

unabated.
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Code Generating Monte Carlo Simulation Data

The code shown below runs the Simulink simulation 'multi_viscoelastic.md!'
through the MATLAB workspace as well as calculating all cardiovascular performance
metrics and indices discussed in this study. The code will run 2000 simulations as denoted
by the MATLAB variable ‘size’ with each representing unique combinations of maximum
elastance, minimum elastance,elastance waveform delay, and myocardial viscous friction
‘k’ for all 4 segments of the model. The code also automatically plots Figures 15 and 16.
The muscle parameters, sample rate, and heart rate are initialized below by the
corresponding MATLAB variable. Final results for each simulation are automatically saved

to the directory and filename
'C:\Users\Cody\Documents\thesis\programs\paramsweep15\param15_'. All terminating
workspace data is saved to the file and directory path

‘C:\Users\Cody\Documents\thesis\programs\paramsweep15\workspacedata’.

sample = 100000; %“check in config paramcters of simulink
model to match!! This is very important!!!

r = 100; . decimation facter te reduce sicred
memory/file size

fs = sample/r; =% effective sample rate after decimation

HR = 90; ¢ Heart Rate in Beuts Per Minute

HRrad = 2*3.14159* (HR/60); This is ferd intoe the
simulink model to ¢ontrol the elastarnce waveforn

size = 2000; omanually oot the # o f pacsuived sims
determined below-->

filename = 'multi viscoelastic.mdl';

final matrix = zeros(20,5); ' -~ preallocate to increase
speed

matrixl = zeros(l,size);

matrixl total = zeros(l,size);

CO = zeros(1l,size);

SV = zeros(1l,size);

EF zeros(1l,size);

EW = zeros(1l,size);

PVA = zeros(l,size);

EFF = zeros(l,size);

il

EFFmyo = zeros(l,size);
Wmyo = zeros(l,size);

Wloss = zeros(l,size);
PVAmyo = zeros(l,cize);
WmyoAl = zeros(l,size);
WmyoBl = zeros(l,size);
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WnmyoA2 = zeros(l,size);

WmyoB2 = zeros(1l,size);
WlossAl = zeros(l,size);
WlossBl = zeros(l,size);
WlossA2 = zeros(l,size);
WlossB2 = zeros(l,size);
PVAmyoAl = zeros(l,size);
PVvAmyoBl = zeros(l,size);
PVAmyoA2 = zeros(l,size);
PVAmyoB2 = zeros(l,size);
PW = zeros(l,size);

for n = l:size
Eal max = random('.ni:f', 18, 54);
Eal min = random('unit' .45, 7)) ;
Ebl max = random('unlf', 18, 54);
Ebl min = random(' init', .45, .7);
EaZ max = random('anif', 18, 54);
Ea2 min = random('unif', .45, .7);
Eb2 max = random('unif', 18, 54);
Eb2 min = random('unit', .45, .7);

tdl = random('unif', 0, .02);
td2 = random('urif', 0, .02

)
td3 = random{'unift', 0, .02);
td4 = random('unif', 0, .02)
kl = random('unif', .001, ) ;
k2 = random('unif', .001, .01);
k3 = random('unif', .001, ) ;
k4 = random('unif', .001, )

Eeq = 1/Eal max + 1/Ebl max + 1/Ea2 _max + 1/Eb2 max;
Eeq 1/Eeq:;

simOut = sim(filename);

base = 'v_.scl';
numframe = num2str(n):;

visco. (genvarname (['vaiu~s' numframe])) = [Eal max
Eal min Ebl max Ebl min Ea2 max EaZ min Eb2 max Eb2 min tdl
td2 td3 td4 k1 k2 k3 k4]:

data(n).values = [Eal max Eal min Ebl max Ebl min Ea2_max
Ea2 min Eb2 max Eb2 min tdl td2 td3 td4 kl k2 k3 k4];
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visco. (genvarname ([ 'lvp' numframe])) =
decimate (values.signals.values(:,1),r);
visco. (genvarname (['a.p' numframe])) =

decimate(values.signals.values(:,2),r);

visco. (genvarname ({'u>{"' numframe])) =
decimate(values.signals.values(:,3),r);

visco. (genvarname ([ 'mf' numframe]) =
decimate (values.signals.values(:,4),r);

visco. (genvarname ([ 'Val' numframe] =
decimate(values.signals.values(:,5),r);

visco. (genvarname ([ 'Vbl' numframe] =
decimate (values.signals.values(:,6), ),

visco. (genvarname(['vVaz' numframe])) =
decimate (values.signals.values(:,7),r);

visco. (genvarname ([ 'VbI' numframe])) =
decimate(values.signals.values(:,8),r);

visco. (genvarname ([ 'VT' numframe]) =
decimate (values.signals.values(:,9),r);

visco. (genvarname (| 'Fal’ numframe])) =
decimate (values.signals.values(:,10),r);

visco. (genvarname ([ 'tk 1’ numframe]) =
decimate (values.signals.values(:,11),r);

visco. (genvarname ([ 'Ea’’ numframe]) =
decimate (values.signals.values(:,12),r);

visco. (genvarname ([ 'Eb/"' numframe]) =
decimate (values.signals.values(:,13),r);

visco. (genvarname(['Z7/I" numframe])) =
diff (visco. (genvarname(['VT' numframe])))*fs,

visco. (genvarname (['DVT' numframe])) (1:500) = O;

visco. (genvarname ([ 'Llvpa’' numframe])) =
diff (visco. (genvarname(['lvp' numframe])));

visco. (genvarname ([ 'D1lvy' numframe])) =
diff (visco. (genvarname(['lvo' numframe])))

visco. (genvarname ([ 'Dlvp’ numframe]))(l 7000) = 0;

visco. {genvarname ([ 'aksCVT' numframe])) =
abs (visco. (genvarname ([ 'DVT' numframe]))):

visco.(genvarname([':?al' numframel])) =
diff(visco. (genvarname(['Va.' numframe])))*fs;

visco. (genvarname ([ 'LVE1l' numframe])) =
diff (visco. (genvarname(['Vk.' numframe])))*fs;

visco. {genvarname ([ 'DVaZ' numframe])) =
diff(visco. (genvarname({'VaZ' numframe])))*fs;

visco. {genvarname (['DVc2' numframe}l)) =
diff (visco. (genvarname([' ts' numframe])))*fs;

visco. {genvarname{['LVal' numframe])) (1:500) = 0;

visco. {genvarname ([ 'IF.' numframe])) (1:500) = O;
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[r effmyo,c _effmyo,v effmyo] =

EFFmyosort (1,1));

final matrix(
final matrix(
final matrix(
final matrix(4,
final matrix(1l1,1i)
final matrix( i)
final matrix( i)
final matrix( i)
final matrix( i)
final_matrix(l6 i)
final matrix(17,1)
final matrix(18,1)
final matrix(19,1)
final matrix(20,1)
final matrix(21,1)
(22,1
(23,1
(24, 1
(
(
(
(
(
(

final matrix )
)
)
25,1)
)
)

final matrix
final matrix
final matrix
final matrix (26,1
final matrix (27,1
final matrix(28,1)

il

find (EFFmyo

matrixl(1,1i);
cl;

matrixl total(l,1i);
cl t;
= COsort(1l,1):
c_co;
SVsort (1,1);
cC_sv;

= EFsort(1l,1);
= c_ef;
EWsort (1,1);
C_ew;
= PVAsort(1l,1i);
c_pva;
= EFFsort(1,1i):
c_eff;
= Wmyosort (1,1);
= C_Wmyo;
Wlosssort(1l,1);
c_wloss;
= PVAsort(1l,1i);
C_pvamyo;

Il

final matrix(29,1i) = EFFmyosort(1l,1);
final matrix(30,i) = c_effmyo:
end
for 1 = (size=-20):size
[rl,cl,v]l] = find(matrix2 == matrixl(l,1i)):

[r1 t,cl t,vl t] =
matrixl total(l,1i));
[r_co,c_co,v_co] =
[r_sv,c_sv,v_sv]
[r ef,c_ef,v_ef]
[r ew,Cc_ew,v_ew] =
[r pva,c_pva,v_pva
[r eff,c_eff,v_eff

[r wmyo,c_wmyo,Vv_wmyo] =
[r wloss,c_wloss,v _wloss]) =

Wlosssort (1,1));

[r pvamyo,c_pvamyo,V_pvamyo]

PVAmyosort (1,1i)):

(r effmyo,c_effmyo,v_effmyo]

EFFmyosort(1l,1)):

]
]

find(matrix2 total ==

find(CO == COsort(1l,1i)):
find(SV == SVsort(1l,1i)):
find (EF == EFsort(1,1i)):
find (EW == EWsort(l i)
= find(PVA == PVAsort(l,1i)):
= find(EFF == EFFsort(l,1i)):

find (Wmyo
find (Wloss ==

find (PVAmy

I

find (EFFmyo ==
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Wmyosort (1,

i)):






end

for

end

n = l:round(max (matrixl))

if(n-1 <= matrixl(1l,1i) && matrixl(1l,i) < n)
dysplot(n,1l)= dysplot(n,1l) +1;

end

dysplot_t = zeros(round(max (matrixl total)),1l);
preallocate

for

n)

end

for

end

for

end

for

end

for

i =
for

end

i =
for

end

Il

i
for

end

it

i
for

end

l:size
n = l:round(max(matrixl total))
if(n-1 <= matrixl total(l,1i) && matrixl total(l,1i)

dysplot_t(n,1)= dysplot t(n,1) +1;
end

l:size

n = l:round (max (CO))

if(n-1 <= CO{(1l,1i) && CO(1l,1) < n)
dysplotCO(n,1l)= dysplotCO(n,1) +1;

end

l:size

n = l:round(max(SV))

1f(n-1 <= SV(1,1i) && SV{(1l,1i) < n)
dysplotSVi(n,1l)= dysplotSV(n,1) +1;

end

l:size

n = l:round(max(EF))

if(n~-1 <= EF(1,1i) && EF(1l,1) < n)
dysplotEF (n,1l)= dysplotEF(n,1) +1;

end

l:size
n = l:round(max (EW)*100)
1f(n-1 <= EW(1,1)*100 && EW(1,i)*100 < n)
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