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ABSTRACT 

The Strength Pareto Evaluation Algorithm (SPEA) (Zitzler and Thiele 1999) is one of the 

prominent technique for approximating the pareto-optimal set for the Multiple Objective 

Optimization (MOO) algorithm. The Strength Pareto Evaluation Algorithm 2 (SPEA2) is an 

improved version of SPEA that was introduced in the year 2001. SPEA2 in contrast to SPEA 

incorporates a fine-grained fitness assignment strategy, an improved archive truncation 

technique, and a density assessment procedure. In this paper, we studied the influence of the 

optimization ability of SPEA2 on different benchmark functions by evaluating different 

performance metrics. The benchmark functions used in the paper include 10 constrained 

functions (CF’s) and 10 unconstrained functions (UF’s), through which, by varying parameters 

such as number of iterations, variable size, population and archives, we performed our 

experiments. 
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1. INTRODUCTION 

Multiobjective Evolutionary Optimization (MEO) was first introduced in 1984 by 

Schaffer [1], after which several Pareto-based evolutionary algorithms had been proposed. 

Among them are Multi-Objective Genetic Algorithm (MOGA) [2], Niched Pareto Genetic 

Algorithm (NGPA) [3,4], and Non-Dominated Sorting Genetic Algorithm (NSGA) [5] which 

proved the ability of MEO algorithms to estimate the pair of optimal adjustments in a single 

optimization run. But the main drawback with these algorithms is that they did not include 

elitism explicitly. Elitism’s importance was recognized when Strength Pareto Evaluation 

Algorithm (SPEA) [6] and Pareto Archived Evolution Strategy (PAES) [7] were presented. 

SPEA clearly outperformed the then existing alternative methods under consideration. Later 

NSGA-II and the Pareto Envelop-based Selection Algorithm (PESA) had proven to outperform 

SPEA on certain test cases. Later, SPEA2, a modified version of SPEA was introduced to 

eliminate the potential weaknesses of its antecedent to design a dominant and improved MEO 

algorithm. 

1.1. Differences between SPEA and SPEA2 

The main differences between SPEA [7] and SPEA2 [8] are: 

1) Improved fitness assignment scheme is used. 

2) Search process has become more precise as the nearest neighbor density estimation 

technique is incorporated in SPEA2.  

3) New archive truncation method is presented that assures the protection of boundary 

solutions. 
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1.2. Objectives and Outline 

The main goal of this paper is to study the optimization ability of SPEA2 on different 

benchmark functions using a performance metric. The benchmark functions used in the paper 

include 10 constrained functions (CF’s) [10,11] and 10 unconstrained functions (UF’s) [10], 

through which, by varying parameters such as number of iterations, variable size, population and 

archives, we performed our experiments. 

The outline of my paper is organized as follows. In Chapter 2, a detailed background on 

Multiobjective Evolutionary Optimization (MEO) is given. In Chapter 3, the SPEA2 algorithm is 

described in detail. In Chapter 4, benchmark functions are listed. In Chapter 5, experimental 

methods and results are discussed. In Chapter 6, conclusions are made. 
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2. LITERATURE REVEW 

Evolutionary Algorithms (EA) in general are stochastic optimization methods that mimic 

the natural evolution process. Several of the evolutionary algorithms have been proposed since 

the 1970’s, among which are genetic algorithms, evolution strategies and evolutionary 

methodologies [1]. The main principle of all these methods is that they optimize a set of 

solutions. Using some approximations, the set of solutions is modified by mainly two principles: 

selection and variation. The selection mimics the reproduction and variation mimics the natural 

competence of producing new beings by means of mutation and recombination. Even though the 

fundamental principles are simple, these algorithms have proven themselves as a general, robust 

and powerful search mechanism. Moreover, EAs seem to be especially suited to multi-objective 

optimization because they can capture several pareto-optimal solutions in a single run and may 

escape likenesses of solutions by recombination.  

2.1. Evolutionary Approaches to Multiobjective Optimization 

A general MEO problem can be defined as a vector or a functional form f that maps a list 

of n parameters (decision variables) to a list of k objectives. A mathematical form can be 

represented as follows: 

min/max  𝑦 = 𝑓(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑘(𝑥))  

            subject to 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝑋 

𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑘) ∈ 𝑌 

 

  

where x is called the decision vector and y is called the objective vector. 

 The set of solutions of a MEO problem contains all the decision vectors that cannot be 

improved in any objective without degradation in other objectives, such a vector is called as 

Pareto-optimal. Mathematically it can be represented as follows: 



 

4 

∀𝑖∈ {1,2, … , 𝑛} ∶  𝑓𝑖(𝑎) ≥ 𝑓𝑖(𝑏)   ∩   ∃𝑗  ∈ {1,2, … , 𝑛} ∶  𝑓𝑗(𝑎) > 𝑓𝑗(𝑏) 

where, a and b are the two decision vectors belonging to X. We can say that a dominated b if and 

only if above equation is valid. All those decision vectors that are not dominated are called as 

nondominated or Pareto-optimal and the set of solutions that are formed is denoted as Pareto-

optimal set or front. It denotes the tradeoff surface with respect to the n objectives. 

 

Fig 2.1. Illustration of a general Multiobjective optimization problem [9] 

  

Most of the MEOs have concentrated on this approximation of the Pareto set. 

Accordingly, the outcome of these algorithms is considered to be a set of mutually nondominated 

solutions, in short, called as Pareto set approximation. 

2.1.1. Plain Aggregating Approach 

EA can be applied to problems where individual objectives are combined or aggregated 

to form a scalar function. Moreover, combining the objectives has the advantage of producing a 

single optimized solution, requiring no further interaction with the decision maker. Several 

applications of such approaches have been reported in literature. For example, the use of the 
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popular weighted sum approach by Jakob et. al., 1992 [12]. Likewise handling constraints with 

penalty functions is another example where the functions are problem-dependent, the method 

developed by Richardson et. al., 1989 [13]. 

2.1.2. Population Based Non-Pareto Approach 

In a single EA run, the possibility of exploiting populations of multiple non-dominated 

solutions concurrently was recognized for the first time by Schaffer and Grefenstette (1985) [14]. 

Their approach was named as Vector Evaluated Genetic Algorithm (VEGA), in which sub-

populations of next generations were selected from the pool of old generations separately, based 

on the objectives. After shuffling these sub-populations, crossover and mutation were applied, 

the non-dominated individuals were then identified by monitoring the population. 

Fourman (1985) also introduced non-aggregating population based MEO [15]. In his 

method, selection was performed by comparing pairs of individuals, each pair according to one 

of the objectives. This is also practiced by Ben-Tal (1980) by the name lexicographic ordering 

[16]. Objectives were assigned different priorities at first by the user and then individuals were 

compared according to the objective with high priority. If this results in a tie, the objective with 

the second highest priority was used and so on. 

Similarly, Hajela and Lin (1992) also exploited population based non-pareto approach 

based on the weighted sum method by explicitly including the weights in the chromosome and 

promoting their diversity in the population through fitness sharing [17].  

2.1.3. Pareto Based Approach 

All the methods discussed in the previous section like Schaffer, Fourman, Ben and Hajela 

and Lin [14-17] promote the generation of multiple non-dominated solutions. But, none of them 

use the actual definition of pareto-optimality. The first proposed pareto based fitness assignment 
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was made by Goldberg (1989) [18]. It involved assigning rank 1 to the non-dominated 

individuals and removing them from contention, then finding a new set of non-dominated 

individuals by ranking them 2 and so forth.  

Later in 1993, Fonsea and Fleming [19] have proposed a slightly different approach, 

when an individual’s rank is corresponding to the number of individual in the current population 

by which it is dominated. Therefore, the non-dominated individuals are all ranked the same, 

while the dominated ones are penalized according to the population density in the corresponding 

region of the trade-off surface.  

Similarly, Sinivas and Deb (1994) [5] have proposed a pareto based approach identical to 

the Goldenberg’s version of ranking population. Additionally, they have provided a means of 

evolving only a given region of the trade-off surface. During the search, goal values were 

changed that alter the fitness landscape accordingly and allows the decision maker to direct the 

population. 

Several other pareto-based approaches have been proposed similar to the ones discussed 

above. However, none of these methods did incorporate the concept of elitism explicitly. Few 

years later, the importance of elitism in multiobjective search was recognized and experimentally 

supported by Parks and Miller (1998) [20] and Zitzler, Deb and Thiele (2000) [22]. Among them 

are the SPEA that was introduced by Zitzler and Thiele (1998) [21] and Zitzler, Deb and Thiele 

(2000) [22] and PAES by Knowles and Corne (1999) [7]. 

2.2. The Strength Pareto Evolution Algorithm 

As SPEA is the basis for SPEA2, in this section, a brief overview of SPEA is described. 

SPEA uses a mixture of established and new techniques to approximate Pareto-optimal solution 

set. The following are the basic techniques, on which SPEA is based: 
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• It stores the individuals externally that represent a non-dominated front among the 

other solutions that are under consideration. 

• It uses the principle of Pareto dominance to assign a scalar fitness value to individual. 

• To reduce the number of individuals that are externally stored, clustering is 

performed without destroying the characteristics of the trade-off surface. 

• The above three techniques are combined in a single algorithm. 

• Although the populations dominate each other, the fitness assignment of a population 

number is determined only from the external set of individuals. 

• All the external set of individuals participate in selection. 

• To preserve the diversity in the population, a new Pareto based niching method is 

introduced. 

The following steps are the flowchart of the SPEA algorithm. 

Input:   N (population size) 

𝑁̅ (maximum size of external set) 

T (maximum number of generations) 

pc (crossover probability) 

pm (mutation rate) 

Output:  A (nondominated set) 

Step 1:  Initialization: Generate an initial population P0 and create the empty 

external set 𝑃̅0 = Ø. Set t = 0. 

Step 2:  Update of external set: Set the temporary external set 𝑃̅′ = 𝑃̅𝑡 

a) Copy individuals whose decision vectors are nondominated 

regarding m(Pt) to 𝑃̅′: 𝑃̅′ = 𝑃̅′ + {i | i ∈ Pt ^ m(i) ∈ p(m(Pt))} 
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b) Remove the individuals from 𝑃̅′ whose corresponding decision 

vectors are weakly dominated regarding m(𝑃̅′), i.e., as long as 

there exists a pair (i , j) with i,j ∈ 𝑃̅′ and m(i) ≥ m(j) do 𝑃̅′= 𝑃̅′ −

{𝑗}. 

c) Reduce the number of individuals externally stored by means of 

clustering, i.e., call Clustering Algorithm with parameters 𝑃̅′ and 

𝑁̅, and assign the resulting reduced set to 𝑃̅𝑡+1. 

Step 3:  Fitness assignment: Calculate fitness values of individuals in Pt and 𝑃̅𝑡 by 

invoking Fitness Assignment Algorithm (see below). 

Step 4:  Selection: Set 𝑃′ = Ø. For 𝑖 = 1, … , 𝑁 do 

a) Select two individuals i,j ∈ Pt + 𝑃̅𝑡 at random. 

b) If F(i) < F(j) then 𝑃′ =  𝑃′ + {𝑖} else 𝑃′ =  𝑃′ + {𝑗}. Note that 

fitness is to be minimized here. 

Step 5:  Recombination: Set 𝑃′′ = Ø. For 𝑖 = 1, … ,
𝑁

2
 do 

a) Choose two individuals i,j ∈ 𝑃′and remove them from 𝑃′. 

b) Recombine i and j. The resulting children are k, l ∈ I 

c) Add k, l to 𝑃′′ with probability pc. Otherwise add i, j to 𝑃′′ 

Step 6:  Mutation: Set 𝑃′′ = Ø. For each individual i ∈  𝑃′′ do 

a)  Mutate i with mutation rate pm. The resulting individual is j ∈ I 

b) Set 𝑃′′′ =  𝑃′′′ +  {𝑗}   

Step 7:  Termination: Set Pt+1 = 𝑃′′′and t = t+1. If t ≥ T or another stopping 

criterion is satisfied then set A = p(m(𝑃̅𝑡)) else go to Step 2. 
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In Step 2, the external set 𝑃̅ is updated and reduced if its maximum size 𝑁̅ is overstepped. 

In Step 3, the individuals in 𝑃̅ and P are evaluated interdependently from each other and assigned 

fitness values. In Step 4, the selection phase is made where individuals from 𝑃̅ + P (union of 

population and external set) are selected in order to fill the mating pool, in which binary 

tournament selection with replacement is used. Finally, the recombination and mutation 

processes are applied as usual. Fitness assignment and clustering are described next: 

2.2.1. Fitness Assignment 

The fitness assignment is performed as follows: 

Input:   Pt (population) 

𝑃̅𝑡 (external set) 

Output:  F (fitness values) 

Step 1:  Each individual i ∈ 𝑃̅𝑡 is assigned a real value S(i) ∈ [0,1), called 

strength; s(i) is proportional to the number of population members 

𝑆(𝑖) =  
|{𝑗 | 𝑗 ∈ 𝑃𝑡 ∩ 𝑚(𝑖) ≥ 𝑚(𝑗)}| 

𝑁 + 1
 

 The fitness of i is equal to its strength: F(i) = S(i) 

Step 2:  The fitness of an individual j ∈ Pt is calculated by summing the strengths 

of all externally stored individuals i ∈ 𝑃̅𝑡 whose decision vectors weakly 

dominate m(j). We add one to the total in order to guarantee that members 

of 𝑃̅𝑡have better fitness than members of Pt (note that fitness is to be 

minimized here, i.e., small fitness values correspond to high reproduction 

probabilities): 

𝐹(𝑗) = 1 +  ∑ 𝑆(𝑖)

𝑖∈𝑃𝑡,̅̅̅̅ 𝑚(𝑖)≥𝑚(𝑗)

𝑤ℎ𝑒𝑟𝑒 𝐹(𝑗) ∈ [1, 𝑁) 
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This mechanism intuitively reflects the idea of preferring individuals near the Pareto-

optimal front and distributing them at the same time along the trade-off surface. The main 

difference with fitness sharing is that niches are not defined in terms of distance but Pareto 

dominance. This renders the setting of a distance parameter superfluous, although the parameter 

𝑁̅ influences the niching capability, as will be discussed in the next section. 

2.2.2. Clustering Procedure 

In certain problems, the Pareto-optimal set can be extremely large or even contain an 

infinite number of solutions. However, from the DM’s point of view, presenting all 

nondominated solutions found is useless when their number exceeds reasonable bounds. 

Moreover, the size of the external set influences the behavior of SPEA.  

A method that has been applied to this problem successfully and studied extensively in 

the same context is cluster analysis, and was initially introduced by Morse (1980). In general, 

cluster analysis partitions a collection of p elements into q groups of relatively homogeneous 

elements, where q < p. The average linkage method, a clustering approach that has proven to 

perform well on this problem (Morse 1980), has been chosen here. 

Input:   𝑃̅′ (external set) 

𝑁̅ (maximum size of external set) 

Output:  𝑃̅𝑡+1 (updated external set) 

Step 1:  Initialize cluster set C; each individual i ∈ 𝑃̅′ constitutes a distinct cluster: 

𝐶 =  ⋃ {{𝑖}}𝑖 ∈ 𝑃̅′  

Step 2:  If |C| ≤  𝑁̅, go to step 5, else go to step 3 
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Step 3: Calculate the distance of all possible pairs of clusters. The distance dc of 

two clusters 𝐶1 and 𝐶2 ∈ C is given as the average distance between pairs 

of individuals across the two clusters 

𝑑𝑐 =
1

|𝐶1||𝐶2|
. ∑ 𝑑(𝑖1, 𝑖2)

𝑖1∈ 𝐶1,𝑖2∈𝐶2

 

 where the function d reflects the distance between two individuals 𝑖1 and 

𝑖2 (here the distance in objective space is used). 

Step 4: Calculate Determine two clusters 𝐶1 and 𝐶2 with minimal distance dc; the 

chosen clusters merge into larger cluster: C = C \ {𝐶1, 𝐶2} ∪ {𝐶1 ∪ 𝐶2}. 

Go to Step 2. 

Step 5: Per cluster, select a representative individual and remove all other 

individuals from the cluster. We consider the centroid (the point with 

minimal average distance to all other points in the cluster) as the 

representative individual. Compute the reduced nondominated set by 

uniting the representatives of the clusters: 𝑃̅𝑡+1 = ⋃ 𝑐𝑐∈𝐶 . 

2.2.3. Elitist Multiobjective Evolutionary Algorithm 

The elitism mechanism used in SPEA can be generalized for incorporation in arbitrary 

multiobjective evolution algorithm (MOEA) implementations. The only difference is that the 

population and the external set are already united before (and not after) the fitness assignment 

phase. This guarantees that any fitness assignment scheme can be used in combination with this 

elitism variant. 

Input:   N (population size) 

𝑁̅ (maximum size of external set) 
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T (maximum number of generations) 

pc (crossover probability) 

pm (mutation rate) 

Output:  A (nondominated set) 

Step 1:  Initialization: Set 𝑃̅0 = Ø. Set t = 0. Initialize P0 

Step 2:  Update of external set: Set the temporary external set 𝑃̅′ = 𝑃̅𝑡 

a) Copy individuals whose decision vectors are nondominated 

regarding m(Pt) to 𝑃̅′: 𝑃̅′ = 𝑃̅′ + {i | i ∈ Pt ^ m(i) ∈ p(m(Pt))} 

b) Remove the individuals from 𝑃̅′ whose corresponding decision 

vectors are weakly dominated regarding m(𝑃̅′), i.e., as long as 

there exists a pair (i , j) with i,j ∈ 𝑃̅′ and m(i) ≥ m(j) do 𝑃̅′= 𝑃̅′ −

{𝑗}. 

c) Reduce the number of individuals externally stored by means of 

clustering, i.e., call Clustering Algorithm with parameters 𝑃̅′ and 

𝑁̅, and assign the resulting reduced set to 𝑃̅𝑡+1. 

Step 3:  Elitism: Set 𝑃̅𝑡 = 𝑃𝑡 + 𝑃̅𝑡 

Step 4:  Fitness assignment: … 

Step 5:  Selection: … 

Step 6:  Recombination: . . . 

Step 7:  Mutation: . . . 

Step 8:  Termination: Set Pt+1 = 𝑃′′′and t = t+1. If t ≥ T or another stopping 

criterion is satisfied then set A = p(m(𝑃̅𝑡)) else go to Step 2. 
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2.2.4. Potential Weaknesses of SPEA 

Although, SPEA performed well in different comparative studies (Zitzler and Thiele 

1999; Zitzler, Deb, and Thiele 2000), there is still room for improvement as recent studies 

(Corne, Knowles, and Oates 2000; Deb, Agrawal, Pratap, and Meyarivan 2000) have shown. 

Particularly, the following issues are identified as the potential weaknesses of SPEA: 

• Fitness Assignment: The dominating individuals of the same archive have matching 

fitness values. In other words, in the case when the archive contains only a single 

individual, all population members have the same rank irrespective of whether they 

dominate each other or not. Due to this, the selection pressure is reduced substantially 

and in this particular case SPEA behaves almost like some random search algorithm. 

• Density Estimation: If most of the individuals of the current generation are identical, 

i.e., do not dominate each other, none or very little information can be obtained based 

on the partial order defined by the dominance relation. Particularly, in this situation, 

that is very likely to occur in presence of more than two objectives, density 

information must be used to guide the search more efficiently. In such a case, 

clustering will be of great use, but not to the population and only with regard to the 

archive. 

• Archive Truncation: The clustering technique used in SPEA can be used to reduce 

the nondominated set without terminating its features, but it may miss external 

solutions. Nevertheless, these solutions should be kept in the archive in order to 

obtain a decent spread of nondominated solutions. 

In the next chapter, the SPEA2 algorithm, which is an improved version of SPEA is 

detailed, which was designed to overcome the aforementioned issues.  
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3. THE SPEA2 ALGORITHM 

In distinction to SPEA, SPEA2 uses a fine-grained fitness assignment approach which 

implements density information that will be described in the following sections. Additionally, the 

archive size is fixed, that means, whenever the number of nondominated individuals is fewer 

than the predefined archive size, the archive is filled up by dominated individuals; with SPEA, 

the archive size may vary over time. Moreover, the clustering technique, which is raised when 

the nondominated front surpasses the archive limit, has been replaced by an alternative 

truncation method which has similar characteristics but does not loose boundary points. Lastly, 

another difference between SPEA and SPEA2 is that in SPEA2, only archive members 

contribute in the mating selection method. 

The flow of the SPEA2 algorithm is as follows: 

Input:   N (population size) 

𝑁̅ (maximum size of external set) 

T (maximum number of generations) 

Output:  A (nondominated set) 

Step 1:  Initialization: Generate an initial population P0 and create the empty 

external set 𝑃̅0 = Ø. Set t = 0. 

Step 2:  Fitness assignment: Calculate fitness values of individuals in Pt and 𝑃̅𝑡 by 

invoking Fitness Assignment Algorithm. 

Step 3:  Environmental Selection: Copy all non-dominated individuals in Pt and 

𝑃̅𝑡 to 𝑃̅𝑡+1. If size of 𝑃̅𝑡+1 exceed 𝑁̅ then reduce 𝑃̅𝑡+1 by mean of the 

truncation operator; otherwise if size of 𝑃̅𝑡+1 is less than 𝑁̅ then fill 𝑃̅𝑡+1 

with dominated individuals in Pt and 𝑃̅𝑡. 
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Step 4:  Termination: If t ≥ T or another stopping criterion is satisfied then set A 

to the set of decision vectors represented by the non-dominated individuals 

in 𝑃̅𝑡+1. Stop. 

Step 5:  Mating Selection: Perform binary tournament selection with replacement 

on 𝑃̅𝑡+1 in order to fill the mating pool. 

Step 6:  Variation: Apply recombination and mutation operators to the mating 

pool and set 𝑃̅𝑡+1 to the resulting population. Increment generation 

counter (t = t+1) and go to step 2. 

3.1. SPEA2 Fitness Assignment 

In contrast to SPEA, in SPEA2 both the dominating and dominated solutions are taken 

into consideration to avoid the situation where the same archive members can have identical 

fitness values. Here, each individual i in the archive At and Population Pt is assigned a strength 

value S(i). Also at each S value, the raw fitness R(i) was determined. Additionally, the density 

information is implemented to discriminate between individuals having identical raw fitness 

values. This technique of incorporating density information was adapted from the k-th nearest 

neighbor method. 

The run time of the fitness assignment method is dominated by density estimator 

(O(L2logL)). Moreover, the S and R values are calculated at O(L2) complexity, where L = M+N. 

3.2. SPEA2 Environment Selection 

Update of the archive is operated differently in SPEA2 when compared to SPEA. In case 

of SPEA2, over time, the numbers of individuals contained in the archive become constant and 

also the truncation method prevents the boundary solutions being removed. 
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4. BENCHMARK FUNCTIONS 

In this paper, a set of 10 unconstrained (bound constrained) and 10 constrained 

multiobjective optimization test instances were used to perform optimization.  

4.1. Unconstrained Multiobjective Test Problems 

4.1.1. Unconstrained Problem 1 

The two objectives to be minimized in this problem are: 

𝑓1 = 𝑥1 +  
2

|𝐽1|
 ∑ [𝑥𝑗 − sin (6𝜋𝑥1 +  

𝑗𝜋

𝑛
)]

2

𝑗 ∈ 𝐽1

  

𝑓2 = 1 −  √𝑥1 +  
2

|𝐽2|
 ∑ [𝑥𝑗 − sin (6𝜋𝑥1 +  

𝑗𝜋

𝑛
)]

2

𝑗 ∈ 𝐽2

 

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}.  

The search space is [0,1]  × [−1,1]𝑛−1 

Its Pareto Front (PF) is 

𝑓2 = 1 −  √𝑓1,    0 ≤  𝑓1 ≤ 1   

Its Pareto Set (PS) is 

𝑥𝑗 = sin (6𝜋𝑥1 +  
𝑗𝜋

𝑛
) ,   𝑗 = 2, … , 𝑛,    0 ≤  𝑥1 ≤ 1  

 

4.1.2. Unconstrained Problem 2 

The two objectives to be minimized in this problem are: 

𝑓1 = 𝑥1 +  
2

|𝐽1|
 ∑ [𝑦𝑗]

2

𝑗 ∈ 𝐽1

  

𝑓2 = 1 − √𝑥1 +  
2

|𝐽2|
 ∑ [𝑦𝑗]

2

𝑗 ∈ 𝐽2
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where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n} and 

𝑦𝑗 =  {
𝑥𝑗 − [0.3 𝑥1

2 cos (24𝜋𝑥1 +
4𝑗𝜋

𝑛
) + 0.6𝑥1] cos (6𝜋𝑥1 +

𝑗𝜋

𝑛
) ,      𝑗 ∈  𝐽1 

𝑥𝑗 − [0.3 𝑥1
2 cos (24𝜋𝑥1 +

4𝑗𝜋

𝑛
) + 0.6𝑥1] cos (6𝜋𝑥1 +

𝑗𝜋

𝑛
) ,      𝑗 ∈  𝐽2

 

The search space is [0,1]  × [−1,1]𝑛−1 

Its PF is 

𝑓2 = 1 −  √𝑓1,    0 ≤  𝑓1 ≤ 1   

Its PS is 

𝑥𝑗 =  {
[0.3 𝑥1

2 cos (24𝜋𝑥1 +
4𝑗𝜋

𝑛
) + 0.6𝑥1] cos (6𝜋𝑥1 +

𝑗𝜋

𝑛
) ,   𝑗 ∈  𝐽1 

[0.3 𝑥1
2 cos (24𝜋𝑥1 +

4𝑗𝜋

𝑛
) + 0.6𝑥1] cos (6𝜋𝑥1 +

𝑗𝜋

𝑛
) ,   𝑗 ∈  𝐽2

     

 0 ≤  𝑥1 ≤ 1   

4.1.3. Unconstrained Problem 3 

The two objectives to be minimized in this problem are: 

𝑓1 = 𝑥1 +  
2

|𝐽1|
 (4 ∑ [𝑦𝑗]

2

𝑗 ∈ 𝐽1

− 2 ∏ cos (
20𝑦𝑗𝜋

√𝑦
) + 2)

𝑗∈ 𝐽1

 

𝑓2 = 1 −  √𝑥1 +  
2

|𝐽2|
 (4 ∑ [𝑦𝑗]

2

𝑗 ∈ 𝐽2

− 2 ∏ cos (
20𝑦𝑗𝜋

√𝑦
) + 2)

𝑗∈ 𝐽2

 

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n} and 

𝑦𝑗 =  {
𝑥𝑗 − [0.3 𝑥1

2 cos (24𝜋𝑥1 +
4𝑗𝜋

𝑛
) + 0.6𝑥1] cos (6𝜋𝑥1 +

𝑗𝜋

𝑛
) ,      𝑗 ∈  𝐽1 

𝑥𝑗 − [0.3 𝑥1
2 cos (24𝜋𝑥1 +

4𝑗𝜋

𝑛
) + 0.6𝑥1] cos (6𝜋𝑥1 +

𝑗𝜋

𝑛
) ,      𝑗 ∈  𝐽2

 

𝑦𝑗 =  𝑥𝑗 − 𝑥1

0.5(1.0+
3(𝑗−2)

𝑛−2
)
,   𝑗 = 2, … , 𝑛, 

The search space is [0,1]𝑛 
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Its PF is 

𝑓2 = 1 −  √𝑓1,    0 ≤  𝑓1 ≤ 1   

Its PS is 

𝑥𝑗 = 𝑥1

0.5(1.0+
3(𝑗−2)

𝑛−2
)
,   𝑗 = 2, … , 𝑛,    0 ≤  𝑥1 ≤ 1 

4.1.4. Unconstrained Problem 4 

The two objectives to be minimized in this problem are: 

𝑓1 = 𝑥1 +  
2

|𝐽1|
 ∑ ℎ(𝑦𝑗)

𝑗 ∈ 𝐽1

  

𝑓2 = 1 − 𝑥1
2  +  

2

|𝐽2|
 ∑ ℎ(𝑦𝑗)

𝑗 ∈ 𝐽2

 

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n} and 

𝑦𝑗 =  𝑥𝑗 −  sin (6𝜋𝑥1 +
𝑗𝜋

𝑛
) ,  𝑗 = 2, … , 𝑛, 

and 

ℎ(𝑡) =  
|𝑡|

1 + 𝑒2|𝑡|
 

The search space is [0,1]  × [−2,2]𝑛−1 

Its PF is 

𝑓2 = 1 −  𝑓1
2,    0 ≤  𝑓1 ≤ 1   

Its PS is 

𝑥𝑗 =  sin (6𝜋𝑥1 +
𝑗𝜋

𝑛
) ,  𝑗 = 2, … , 𝑛.      

0 ≤  𝑥1 ≤ 1   
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4.1.5. Unconstrained Problem 5 

The two objectives to be minimized in this problem are: 

𝑓1 = 𝑥1 + (
1

2𝑁
+ 𝜀) |sin (2𝑁𝜋𝑥1)| +  

2

|𝐽1|
 ∑ ℎ(𝑦𝑗)

𝑗 ∈ 𝐽1

  

𝑓2 = 1 − 𝑥1 + (
1

2𝑁
+ 𝜀) |sin (2𝑁𝜋𝑥1)| + 

2

|𝐽2|
 ∑ ℎ(𝑦𝑗)

𝑗 ∈ 𝐽2

 

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}. N is an integer, 𝜀 > 0, 

𝑦𝑗 =  𝑥𝑗 −  sin (6𝜋𝑥1 +
𝑗𝜋

𝑛
) ,  𝑗 = 2, … , 𝑛, 

and 

ℎ(𝑡) =  2𝑡2 − cos(4𝜋𝑡) + 1 

The search space is [0,1]  × [−1,1]𝑛−1 

Its PF has 2N+1 Pareto Optimal solutions: (
𝑖

2𝑁
, 1 −

𝑖

2𝑁
) , for i =  0,1, … ,2N.  

4.1.6. Unconstrained Problem 6 

The two objectives to be minimized in this problem are: 

𝑓1 = 𝑥1 + max {0,2 (
1

2𝑁
+ 𝜀) sin(2𝑁𝜋𝑥1)} +  

2

|𝐽1|
 (4 ∑ [𝑦𝑗]

2

𝑗 ∈ 𝐽1

− 2 ∏ cos (
20𝑦𝑗𝜋

√𝑗
) + 2)

𝑗∈ 𝐽1

  

𝑓2 = 1 − 𝑥1 + max {0,2 (
1

2𝑁
+ 𝜀) sin(2𝑁𝜋𝑥1)} +  

2

|𝐽2|
 (4 ∑ [𝑦𝑗]

2

𝑗 ∈ 𝐽2

− 2 ∏ cos (
20𝑦𝑗𝜋

√𝑗
) + 2)

𝑗∈ 𝐽2

 

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}. N is an integer, 𝜀 > 0, 

𝑦𝑗 =  𝑥𝑗 −  sin (6𝜋𝑥1 +
𝑗𝜋

𝑛
) ,  𝑗 = 2, … , 𝑛, 

The search space is [0,1]  × [−1,1]𝑛−1 

Its PF consists of  
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• One isolated point, (0,1), and 

• N disconnected pairs: 

𝑓2 = 1 − 𝑓1, 𝑓1  ∈  ⋃ [
2𝑖 − 1

2𝑁
,

2𝑖

2𝑁
] .

𝑁

𝑖=1

  

4.1.7. Unconstrained Problem 7 

The two objectives to be minimized in this problem are: 

𝑓1 = √𝑥1
5 +  

2

|𝐽1|
 ∑ 𝑦𝑗

2

𝑗 ∈ 𝐽1

  

𝑓2 = 1 −  √𝑥1
5 +  

2

|𝐽2|
 ∑ 𝑦𝑗

2

𝑗 ∈ 𝐽2

 

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n} and 

𝑦𝑗 = 𝑥𝑗 −  sin (6𝜋𝑥1 +
𝑗𝜋

𝑛
) , 𝑗 = 2, … , 𝑛  

The search space is [0,1]  × [−1,1]𝑛−1 

Its PF is 

𝑓2 = 1 − 𝑓1,    0 ≤  𝑓1 ≤ 1   

Its PS is 

𝑥𝑗 =  sin (6𝜋𝑥1 +
𝑗𝜋

𝑛
) , 𝑗 = 2, … , 𝑛 .    0 ≤  𝑥1 ≤ 1   

4.1.8. Unconstrained Problem 8 

The three objectives to be minimized in this problem are: 

𝑓1 = cos(0.5𝑥1𝜋) cos(0.5𝑥2𝜋) +  
2

|𝐽1|
 ∑ [𝑥𝑗 − 2𝑥2sin (2𝜋𝑥1 +  

𝑗𝜋

𝑛
)]

2

𝑗 ∈ 𝐽1

  

𝑓2 = cos(0.5𝑥1𝜋) sin(0.5𝑥2𝜋) +  
2

|𝐽2|
 ∑ [𝑥𝑗 − 2𝑥2sin (2𝜋𝑥1 +  

𝑗𝜋

𝑛
)]

2

𝑗 ∈ 𝐽2
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𝑓3 =  sin(0.5𝑥1𝜋) +  
2

|𝐽3|
 ∑ [𝑥𝑗 − 2𝑥2sin (2𝜋𝑥1 +  

𝑗𝜋

𝑛
)]

2

𝑗 ∈ 𝐽3

 

where  

J1 = {j|3 ≤ j ≤ n, and j-1 is a multiplication of 3}  

J2 = {j|3 ≤ j ≤ n, and j-2 is a multiplication of 3} 

J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3} 

The search space is [0,1]2  × [−2,2]𝑛−2 

Its PF is 

𝑓1
2 + 𝑓2

2 + 𝑓3
2 = 1,    0 ≤  𝑓1, 𝑓2, 𝑓3 ≤ 1   

Its PS is 

𝑥𝑗 = 2𝑥2 sin (2𝜋𝑥1 +  
𝑗𝜋

𝑛
) ,   𝑗 = 3, … , 𝑛. 

4.1.9. Unconstrained Problem 9 

The three objectives to be minimized in this problem are: 

𝑓1 = 0.5[max{0, (1 + 𝜀)(1 − 4(2𝑥1 − 1)2)} + 2𝑥1]𝑥2 +
2

|𝐽1|
 ∑ [𝑥𝑗 − 2𝑥2sin (2𝜋𝑥1 +  

𝑗𝜋

𝑛
)]

2

𝑗 ∈ 𝐽1

  

𝑓2 = 0.5[max{0, (1 + 𝜀)(1 − 4(2𝑥1 − 1)2)} + 2𝑥1]𝑥2 +
2

|𝐽2|
 ∑ [𝑥𝑗 − 2𝑥2sin (2𝜋𝑥1 +  

𝑗𝜋

𝑛
)]

2

𝑗 ∈ 𝐽2

 

𝑓3 =  1 − 𝑥2 +  
2

|𝐽3|
 ∑ [𝑥𝑗 − 2𝑥2sin (2𝜋𝑥1 +  

𝑗𝜋

𝑛
)]

2

𝑗 ∈ 𝐽3

 

where  

J1 = {j|3 ≤ j ≤ n, and j-1 is a multiplication of 3}  

J2 = {j|3 ≤ j ≤ n, and j-2 is a multiplication of 3} 

J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3} 
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and 𝜀 = 0.1, also can take any positive value 

The search space is [0,1]2  × [−2,2]𝑛−2 

Its PF has two parts, the first part is: 

0 ≤  𝑓3 ≤ 1 ,  

0 ≤  𝑓1 ≤
1

4
(1 − 𝑓3), 

𝑓2 = 1 − 𝑓1 − 𝑓3;  

and the second part is:  

0 ≤  𝑓3 ≤ 1 ,  

3

4
(1 − 𝑓3) ≤  𝑓1 ≤ 1, 

𝑓2 = 1 − 𝑓1 − 𝑓3; 

Its PS also has two parts that are disconnected: 

𝑥1 ∈ [0, 0.25] ∪ [0.75, 1], 0 ≤ 𝑥2 ≤ 1  

𝑥𝑗 = 2𝑥2 sin (2𝜋𝑥1 +  
𝑗𝜋

𝑛
) ,   𝑗 = 3, … , 𝑛. 

4.1.10. Unconstrained Problem 10 

The three objectives to be minimized in this problem are: 

𝑓1 = cos(0.5𝑥1𝜋) cos(0.5𝑥2𝜋) +  
2

|𝐽1|
 ∑ [4𝑦𝑗

2 − cos(8𝜋𝑦𝑗) +  1]

𝑗 ∈ 𝐽1

  

𝑓2 = cos(0.5𝑥1𝜋) sin(0.5𝑥2𝜋) +  
2

|𝐽2|
 ∑ [4𝑦𝑗

2 − cos(8𝜋𝑦𝑗) +  1]

𝑗 ∈ 𝐽2

 

𝑓3 =  sin(0.5𝑥1𝜋) +  
2

|𝐽3|
 ∑ [4𝑦𝑗

2 − cos(8𝜋𝑦𝑗) +  1]

𝑗 ∈ 𝐽3

 

where  
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J1 = {j|3 ≤ j ≤ n, and j-1 is a multiplication of 3}  

J2 = {j|3 ≤ j ≤ n, and j-2 is a multiplication of 3} 

J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3} 

and 

𝑦𝑗 =  𝑥𝑗 − 2𝑥2 sin (2𝜋𝑥1 +  
𝑗𝜋

𝑛
) ,   𝑗 = 3, … , 𝑛 

The search space is [0,1]2  × [−2,2]𝑛−2 

Its PF is 

𝑓1
2 + 𝑓2

2 + 𝑓3
2 = 1,    0 ≤  𝑓1, 𝑓2, 𝑓3 ≤ 1   

Its PS is 

𝑥𝑗 = 2𝑥2 sin (2𝜋𝑥1 +  
𝑗𝜋

𝑛
) ,   𝑗 = 3, … , 𝑛. 

4.2. Constrained Multiobjective Test Problems 

4.2.1. Constrained Problem 1 

The two objectives to be minimized in this problem are: 

𝑓1(𝑥) = 𝑥1 +  
2

|𝐽1|
 ∑ [𝑥𝑗 − 𝑥1

0.5(1.0+
3(𝑗−2)

𝑛−2
)
]

2

𝑗 ∈ 𝐽1

  

𝑓2(𝑥) = 1 −  √𝑥1 +  
2

|𝐽2|
 ∑ [𝑥𝑗 − 𝑥1

0.5(1.0+
3(𝑗−2)

𝑛−2
)
]

2

𝑗 ∈ 𝐽2

 

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}.  

The constraint is  

𝑓1 + 𝑓2 − 𝑎|sin [𝑁𝜋(𝑓1 − 𝑓2 + 1)]| − 1 ≥ 0 

where N is an integer and a ≥
1

2𝑁
.  

The search space is [0,1]𝑛 
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Its PF in the objective space consists of 2N+1 points: 

(
𝑖

2𝑁
, 1 −

𝑖

2𝑁
) , 𝑖 = 0,1, . . . ,2𝑁.   

4.2.2. Constrained Problem 2 

The two objectives to be minimized in this problem are: 

𝑓1 = 𝑥1 +  
2

|𝐽1|
 ∑ [𝑥𝑗 − sin(6𝜋𝑥1 +  

𝑗𝜋

𝑛
)]

2

𝑗 ∈ 𝐽1

  

𝑓2 = 1 −  √𝑥1 +  
2

|𝐽2|
 ∑ [𝑥𝑗 − cos(6𝜋𝑥1 +  

𝑗𝜋

𝑛
)]

2

𝑗 ∈ 𝐽2

 

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}.  

The constraint is  

𝑡

1 + 𝑒4|𝑡|
 ≥ 0 

where  

𝑡 =  𝑓2 +  √𝑓1 − asin[𝑁𝜋(√𝑓1 − 𝑓2 + 1)] − 1 

The search space is [0,1] × [−1,1]𝑛−1 

Its PF in the objective space consists of 

• An isolated Pareto Optimal solution (0,1) in the objective space and 

• N disconnected parts, the i-th part is: 

𝑓2 = 1 −  √𝑓1, (
2𝑖 − 1

2𝑁
)

2

≤ 𝑓1 ≤ (
2𝑖

2𝑁
)

2

, 𝑖 = 1, . . . , 𝑁.   
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4.2.3. Constrained Problem 3 

The two objectives to be minimized in this problem are: 

𝑓1 = 𝑥1 +  
2

|𝐽1|
 (4 ∑ [𝑦𝑗]

2

𝑗 ∈ 𝐽1

− 2 ∏ cos (
20𝑦𝑗𝜋

√𝑗
) + 2)

𝑗∈ 𝐽1

 

𝑓2 = 1 −  √𝑥1 +  
2

|𝐽2|
 (4 ∑ [𝑦𝑗]

2

𝑗 ∈ 𝐽2

− 2 ∏ cos (
20𝑦𝑗𝜋

√𝑗
) + 2)

𝑗∈ 𝐽2

 

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}, and  

𝑦𝑗 =  𝑥𝑗 −  sin (6𝜋𝑥1 +
𝑗𝜋

𝑛
) ,  𝑗 = 2, … , 𝑛. 

The constraint is  

 𝑓2 +  𝑓1
2 − asin[𝑁𝜋(𝑓1

2 − 𝑓2 + 1)] − 1 ≥ 0 

The search space is [0,1] × [−2,2]𝑛−1 

Its PF in the objective space consists of 

• An isolated Pareto Optimal solution (0,1) in the objective space and 

• N disconnected parts, the i-th part is: 

𝑓2 = 1 −  𝑓1
2, √(

2𝑖 − 1

2𝑁
) ≤ 𝑓1 ≤  √

2𝑖

2𝑁
, 𝑖 = 1, . . . , 𝑁.   

4.2.4. Constrained Problem 4 

The two objectives to be minimized in this problem are: 

𝑓1 = 𝑥1 +   ∑ ℎ𝑗(𝑦𝑗)

𝑗 ∈ 𝐽1

  

𝑓2 = 1 − 𝑥1 +  ∑ ℎ𝑗(𝑦𝑗)

𝑗 ∈ 𝐽2

 

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}. 
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𝑦𝑗 =  𝑥𝑗 −  sin (6𝜋𝑥1 +
𝑗𝜋

𝑛
) ,  𝑗 = 2, … , 𝑛, 

The search space is [0,1] × [−2,2]𝑛−1 

ℎ2(𝑡) =  {|𝑡|                                        𝑖𝑓 𝑡 <
3

2
(1 −

√2

2
)

0.125 + (𝑡 − 1)2                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and 

ℎ𝑗(𝑡) = 𝑡2 

for 𝑗 = 3,4, … , 𝑛. 

The constraint is: 

𝑡

1 + 𝑒4|𝑡|
 ≥ 0 

where  

𝑡 = 𝑥2 − sin (6𝜋𝑥1 +
2𝜋

𝑛
) − 0.5𝑥1 + 0.25. 

The PF in the objective space is: 

𝑓2 = {

1 − 𝑓1                                          𝑖𝑓 0 ≤ 𝑓1 ≤  0.5

−0.5𝑓1 +
3

4
                                     𝑖𝑓 0.5 ≤ 𝑓1 ≤  0.75

1 − 𝑓1 + 0.125                            𝑖𝑓 0.75 ≤ 𝑓1 ≤  1 

 

4.2.5. Constrained Problem 5 

The two objectives to be minimized in this problem are: 

𝑓1 = 𝑥1 +   ∑ ℎ𝑗(𝑦𝑗)

𝑗 ∈ 𝐽1

  

𝑓2 = 1 − 𝑥1 +  ∑ ℎ𝑗(𝑦𝑗)

𝑗 ∈ 𝐽2

 

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}. 
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𝑦𝑗 =  {
𝑥𝑗 −  0.8𝑥1 cos (6𝜋𝑥1 +

𝑗𝜋

𝑛
) ,         𝑖𝑓 𝑗 ∈  𝐽1 

𝑥𝑗 −  0.8𝑥1 sin (6𝜋𝑥1 +
𝑗𝜋

𝑛
) ,          𝑖𝑓 𝑗 ∈  𝐽2,

 

ℎ2(𝑡) =  {|𝑡|                                        𝑖𝑓 𝑡 <
3

2
(1 −

√2

2
)

0.125 + (𝑡 − 1)2                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

and  

ℎ2(𝑡) = 2𝑡2 − cos(4𝜋𝑡) + 1 

for 𝑗 = 3,4, … , 𝑛. 

The search space is [0,1] × [−2,2]𝑛−1 

The constraint is: 

𝑥2 −  0.8𝑥1 sin (6𝜋𝑥1 +
2𝜋

𝑛
) − 0.5𝑥1 + 0.25 ≥ 0 

The PF in the objective space is: 

𝑓2 = {

1 − 𝑓1                                          𝑖𝑓 0 ≤ 𝑓1 ≤  0.5

−0.5𝑓1 +
3

4
                                     𝑖𝑓 0.5 ≤ 𝑓1 ≤  0.75

1 − 𝑓1 + 0.125                            𝑖𝑓 0.75 ≤ 𝑓1 ≤  1 

 

4.2.6. Constrained Problem 6 

The two objectives to be minimized in this problem are: 

𝑓1 = 𝑥1 +   ∑ (𝑦𝑗)2

𝑗 ∈ 𝐽1

  

𝑓2 = (1 − 𝑥1)2 +  ∑ (𝑦𝑗)2

𝑗 ∈ 𝐽2

 

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}, and 
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𝑦𝑗 =  {
𝑥𝑗 −  0.8𝑥1 cos (6𝜋𝑥1 +

𝑗𝜋

𝑛
) ,         𝑖𝑓 𝑗 ∈  𝐽1 

𝑥𝑗 −  0.8𝑥1 sin (6𝜋𝑥1 +
𝑗𝜋

𝑛
) ,          𝑖𝑓 𝑗 ∈  𝐽2,

 

The search space is [0,1] × [−2,2]𝑛−1 

The constraint is: 

𝑥2 −  0.8𝑥1 sin (6𝜋𝑥1 +
2𝜋

𝑛
) − sin (0.5(1 − 𝑥1)) − (1 − 𝑥1)2√|0.5(1 − 𝑥1) − (1 − 𝑥1)2|  ≥ 0 

and 

𝑥4 −  0.8𝑥1 sin (6𝜋𝑥1 +
4𝜋

𝑛
) − sin (0.25√(1 − 𝑥1)

− 0.5(1 − 𝑥1))√|0.25√(1 − 𝑥1) − 0.5(1 − 𝑥1)|  ≥ 0 

 

The PF in the objective space is: 

𝑓2 = { 

(1 − 𝑓1)2                                                  𝑖𝑓 0 ≤ 𝑓1 ≤  0.5
0.5(1 − 𝑓1)                                     𝑖𝑓 0.5 ≤ 𝑓1 ≤  0.75

0.25√1 − 𝑓1                                     𝑖𝑓 0.75 ≤ 𝑓1 ≤  1 

 

4.2.7. Constrained Problem 7 

The two objectives to be minimized in this problem are: 

𝑓1 = 𝑥1 +   ∑ ℎ𝑗(𝑦𝑗)

𝑗 ∈ 𝐽1

  

𝑓2 = (1 − 𝑥1)2 +  ∑ ℎ𝑗(𝑦𝑗)

𝑗 ∈ 𝐽2

 

where J1 = {j|j is odd and 2 ≤ j ≤ n} and J2 = {j|j is even and 2 ≤ j ≤ n}, and 

𝑦𝑗 =  {
𝑥𝑗 −  cos (6𝜋𝑥1 +

𝑗𝜋

𝑛
) ,         𝑖𝑓 𝑗 ∈  𝐽1 

𝑥𝑗 −  sin (6𝜋𝑥1 +
𝑗𝜋

𝑛
) ,          𝑖𝑓 𝑗 ∈  𝐽2,
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ℎ2(𝑡) = ℎ4(𝑡) = 𝑡2 

and  

ℎ𝑗(𝑡) = 2𝑡2 − cos(4𝜋𝑡) + 1 

for 𝑗 = 3,5,6, … , 𝑛. 

The search space is [0,1] × [−2,2]𝑛−1 

The constraints are: 

𝑥2 −  sin (6𝜋𝑥1 +
2𝜋

𝑛
) − sin (0.5(1 − 𝑥1)) − (1 − 𝑥1)2√|0.5(1 − 𝑥1) − (1 − 𝑥1)2|  ≥ 0 

and 

𝑥4 − sin (6𝜋𝑥1 +
4𝜋

𝑛
) − sin(.25√(1 − 𝑥1) − .5(1 − 𝑥1))√|.25√(1 − 𝑥1) − .5(1 − 𝑥1)|  ≥ 0 

 

The PF in the objective space is: 

𝑓2 = { 

(1 − 𝑓1)2                                                  𝑖𝑓 0 ≤ 𝑓1 ≤  0.5
0.5(1 − 𝑓1)                                     𝑖𝑓 0.5 ≤ 𝑓1 ≤  0.75

0.25√1 − 𝑓1                                     𝑖𝑓 0.75 ≤ 𝑓1 ≤  1 

 

4.2.8. Constrained Problem 8 

The three objectives to be minimized in this problem are: 

𝑓1 = cos(0.5𝑥1𝜋) cos(0.5𝑥2𝜋) +  
2

|𝐽1|
 ∑ [𝑥𝑗 − 2𝑥2sin (2𝜋𝑥1 +  

𝑗𝜋

𝑛
)]

2

𝑗 ∈ 𝐽1

  

𝑓2 = cos(0.5𝑥1𝜋) sin(0.5𝑥2𝜋) +  
2

|𝐽2|
 ∑ [𝑥𝑗 − 2𝑥2sin (2𝜋𝑥1 +  

𝑗𝜋

𝑛
)]

2

𝑗 ∈ 𝐽2

 

𝑓3 =  sin(0.5𝑥1𝜋) +  
2

|𝐽3|
 ∑ [𝑥𝑗 − 2𝑥2sin (2𝜋𝑥1 +  

𝑗𝜋

𝑛
)]

2

𝑗 ∈ 𝐽3

 

where  
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J1 = {j|3 ≤ j ≤ n, and j-1 is a multiplication of 3}  

J2 = {j|3 ≤ j ≤ n, and j-2 is a multiplication of 3} 

J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3} 

The search space is [0,1]2  × [−4,4]𝑛−2 

The constraint is 

𝑓1
2 + 𝑓2

2

1 − 𝑓3
2 − 𝑎 |sin [𝑁𝜋 (

𝑓1
2 + 𝑓2

2

1 − 𝑓3
2 + 1)]| − 1 ≥ 0  

Its PF will have 2N+1 disconnected parts: 

𝑓1 = [
𝑖

2𝑁
(1 − 𝑓3

2)]

1
2
 

𝑓2 = [1 − 𝑓1
2 − 𝑓3

2]
1
2 

0 ≤ 𝑓3 ≤ 1 

4.2.9. Constrained Problem 9 

The three objectives to be minimized in this problem are: 

𝑓1 = cos(0.5𝑥1𝜋) cos(0.5𝑥2𝜋) +  
2

|𝐽1|
 ∑ [𝑥𝑗 − 2𝑥2sin (2𝜋𝑥1 +  

𝑗𝜋

𝑛
)]

2

𝑗 ∈ 𝐽1

  

𝑓2 = cos(0.5𝑥1𝜋) sin(0.5𝑥2𝜋) +  
2

|𝐽2|
 ∑ [𝑥𝑗 − 2𝑥2sin (2𝜋𝑥1 +  

𝑗𝜋

𝑛
)]

2

𝑗 ∈ 𝐽2

 

𝑓3 =  sin(0.5𝑥1𝜋) +  
2

|𝐽3|
 ∑ [𝑥𝑗 − 2𝑥2sin (2𝜋𝑥1 +  

𝑗𝜋

𝑛
)]

2

𝑗 ∈ 𝐽3

 

where  

J1 = {j|3 ≤ j ≤ n, and j-1 is a multiplication of 3}  

J2 = {j|3 ≤ j ≤ n, and j-2 is a multiplication of 3} 

J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3} 
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The search space is [0,1]2  × [−2,2]𝑛−2 

The constraint is 

𝑓1
2 + 𝑓2

2

1 − 𝑓3
2 − 𝑎 |sin [𝑁𝜋 (

𝑓1
2 − 𝑓2

2

1 − 𝑓3
2 + 1)]| − 1 ≥ 0  

Its PF consists of: 

• A curve: 

𝑓1 = 0 

0 ≤ 𝑓2 ≤ 1 

𝑓3 = [1 − 𝑓2
2]

1
2 

• N disconnected nonlinear 2-D surfaces, the i-th one it: 

0 ≤ 𝑓3 ≤ 1 

{
2𝑖 − 1

2𝑁
(1 − 𝑓3

2)}
1
2  ≤ 𝑓1  ≤  {

2𝑖

2𝑁
(1 − 𝑓3

2)}
1
2  

𝑓1 = [1 − 𝑓1
2 − 𝑓2

2]
1
2.  

4.2.10. Constrained Problem 10 

The three objectives to be minimized in this problem are: 

𝑓1 = cos(0.5𝑥1𝜋) cos(0.5𝑥2𝜋) +  
2

|𝐽1|
 ∑ [4𝑦𝑗

2 − cos(8𝜋𝑦𝑗) +  1]

𝑗 ∈ 𝐽1

  

𝑓2 = cos(0.5𝑥1𝜋) sin(0.5𝑥2𝜋) +  
2

|𝐽2|
 ∑ [4𝑦𝑗

2 − cos(8𝜋𝑦𝑗) +  1]

𝑗 ∈ 𝐽2

 

𝑓3 =  sin(0.5𝑥1𝜋) +  
2

|𝐽3|
 ∑ [4𝑦𝑗

2 − cos(8𝜋𝑦𝑗) +  1]

𝑗 ∈ 𝐽3

 

where  

J1 = {j|3 ≤ j ≤ n, and j-1 is a multiplication of 3}  



 

32 

J2 = {j|3 ≤ j ≤ n, and j-2 is a multiplication of 3} 

J3 = {j|3 ≤ j ≤ n, and j is a multiplication of 3} 

and 

𝑦𝑗 =  𝑥𝑗 − 2𝑥2 sin (2𝜋𝑥1 +  
𝑗𝜋

𝑛
) ,   𝑗 = 3, … , 𝑛 

The search space is [0,1]2  × [−2,2]𝑛−2 

The constraint is 

𝑓1
2 + 𝑓2

2

1 − 𝑓3
2 − 𝑎 |sin [𝑁𝜋 (

𝑓1
2 − 𝑓2

2

1 − 𝑓3
2 + 1)]| − 1 ≥ 0  

Its PF consists of: 

• A curve: 

𝑓1 = 0 

0 ≤ 𝑓2 ≤ 1 

𝑓3 = [1 − 𝑓2
2]

1
2 

• N disconnected nonlinear 2-D surfaces, the i-th one it: 

0 ≤ 𝑓3 ≤ 1 

{
2𝑖 − 1

2𝑁
(1 − 𝑓3

2)}
1
2  ≤ 𝑓1  ≤  {

2𝑖

2𝑁
(1 − 𝑓3

2)}
1
2  

𝑓1 = [1 − 𝑓1
2 − 𝑓2

2]
1
2.  
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5. RESULTS AND DISCUSSION 

Performance metrics of all the functions that are mentioned in Chapter 4 are tested and 

the results were tabulated by running the code each time by varying either a) number of 

iterations, b) number of variables, c) population size, and d) archive size. In each of these runs, 

the rest of the parameters were kept constant to understand the role of each of these factors. 

In the first study, as shown in Table 5.1, the number of iterations (nIter) were set to 50, 

100, 150 and 200 in each run by keeping the number of variables, population size and archive 

size constant. It was observed that the standard deviation decreases as the iterations increase, 

suggesting that more iterations are needed to reduce the error in the standard deviation. 

In the second study, as shown in Table 5.2, the variable size was varied keeping the rest 

of the factors constant. Even here, it was observed that with the increase in variable size, there 

was a substantial decrease in the standard deviation. 

In the third set of studies, the population size was changed by keeping variable size, 

iterations and archive size constant. In this case, with the increase in the size of population, there 

was a significant increase in the standard deviation. 

In the fourth set, the archive size was varied keeping the remaining factors constant. In 

this case, as the archive size was increased, there was a decrease in the standard deviation. 
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Table 5.1. Effect of nIter with constant variable size of nVar 30, nPop 50, nArchive 50 

    Objective #1  Objective #2 Objective #3 

No. of 

Iterations Function  Min Max Range St.D. Mean  Min Max Range St.D. Mean  Min Max Range St.D. Mean 

50 

UF1 0.032 1.130 1.098 0.425 0.537 0.050 1.252 1.201 0.444 0.562           

UF2 0.062 1.526 1.465 0.456 0.572 0.063 1.399 1.336 0.392 0.599           

UF3 0.816 0.882 0.067 0.020 0.850 0.567 0.652 0.086 0.023 0.600           

UF4 0.743 0.919 0.175 0.048 0.794 0.571 0.910 0.338 0.092 0.688           

UF5 1.122 3.542 2.420 0.612 1.972 0.793 2.704 1.912 0.622 1.619           

UF6 0.671 1.546 0.875 0.360 1.028 0.490 1.037 0.547 0.177 0.691           

UF7 0.079 1.048 0.968 0.203 0.305 0.044 1.032 0.988 0.199 0.785           

UF8 0.028 1.340 1.312 0.275 0.949 0.048 0.983 0.934 0.246 0.320 0.056 1.148 1.092 0.275 0.342 

UF9 0.027 1.087 1.060 0.279 0.297 0.026 1.634 1.608 0.321 0.416 0.477 1.318 0.841 0.232 0.755 

UF10 1.017 2.580 1.563 0.381 1.629 0.396 2.607 2.211 0.538 0.967 1.636 3.329 1.693 0.432 2.397 

CF1 0.031 1.079 1.048 0.453 0.509 0.049 1.048 0.999 0.436 0.540           

CF2 0.045 1.095 1.050 0.317 0.722 0.029 1.000 0.971 0.269 0.286           

CF3 0.726 1.228 0.502 0.119 0.841 0.497 0.947 0.450 0.130 0.662           

CF4 0.194 1.810 1.616 0.549 0.852 0.646 2.813 2.167 0.756 1.650           

CF5 7.063 17.057 9.994 3.480 10.934 1.137 19.800 18.663 6.422 5.959           

CF6 0.697 6.056 5.359 1.371 2.491 0.315 5.004 4.689 1.064 1.442           

CF7 5.737 12.457 6.720 1.702 8.374 3.252 11.899 8.647 2.000 4.612           

CF8 0.026 1.596 1.570 0.410 0.893 0.026 1.270 1.244 0.344 0.520 0.031 1.083 1.053 0.330 0.318 

CF9 0.025 1.760 1.735 0.465 0.877 0.026 1.346 1.320 0.361 0.365 0.053 1.197 1.144 0.399 0.419 

CF10 0.478 3.188 2.710 0.671 1.488 0.623 2.098 1.475 0.323 1.321 0.512 3.143 2.631 0.841 2.005 

100 
UF1 0.021 1.049 1.027 0.361 0.306 0.041 1.041 1.000 0.380 0.684           

UF2 0.052 1.414 1.362 0.414 0.545 0.044 1.064 1.021 0.306 0.487           
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  Table 5.1. Effect of nIter with constant variable size of nVar 30, nPop 50, nArchive 50 (continued) 

    Objective #1  Objective #2 Objective #3 

No. of 

Iterations 
Function  Min Max Range St.D. Mean  Min Max Range St.D. Mean  Min Max Range St.D. Mean 

100 

UF3 0.747 0.931 0.183 0.051 0.815 0.560 1.750 1.190 0.190 0.707      

UF4 0.704 0.901 0.197 0.061 0.812 0.579 0.667 0.089 0.025 0.622           

UF5 1.394 1.420 0.026 0.006 1.399 1.237 1.323 0.085 0.031 1.259           

UF6 0.701 0.809 0.108 0.031 0.738 0.633 0.889 0.255 0.078 0.739           

UF7 0.014 0.941 0.927 0.165 0.273 0.112 1.038 0.925 0.159 0.786           

UF8 0.055 1.261 1.207 0.317 0.795 0.009 1.115 1.106 0.193 0.147 0.080 1.112 1.033 0.324 0.689 

UF9 0.042 1.255 1.213 0.308 0.453 0.040 1.065 1.025 0.277 0.471 0.429 1.179 0.750 0.152 0.586 

UF10 0.534 2.345 1.812 0.456 1.373 0.646 2.533 1.887 0.492 1.292 0.580 3.701 3.121 0.744 1.831 

CF1 0.011 1.036 1.025 0.480 0.464 0.030 1.034 1.004 0.467 0.557           

CF2 0.014 1.024 1.010 0.367 0.229 0.036 1.051 1.015 0.380 0.785           

CF3 0.745 0.890 0.145 0.042 0.795 0.558 0.713 0.155 0.050 0.627           

CF4 0.189 1.201 1.012 0.294 0.680 0.385 1.398 1.013 0.284 0.928           

CF5 7.369 20.936 13.566 3.697 15.140 0.561 3.998 3.437 0.604 1.552           

CF6 0.706 3.591 2.886 0.879 1.617 0.254 2.378 2.125 0.597 1.146           

CF7 7.378 8.643 1.265 0.303 7.609 4.328 4.845 0.517 0.146 4.478           

CF8 0.024 1.473 1.449 0.319 0.960 0.001 1.199 1.197 0.297 0.248 0.017 1.134 1.118 0.349 0.374 

CF9 0.047 1.712 1.665 0.386 1.127 0.004 1.233 1.229 0.355 0.290 0.012 1.160 1.147 0.322 0.301 

CF10 0.620 2.712 2.092 0.575 1.628 0.725 2.035 1.309 0.307 1.422 0.745 3.151 2.406 0.622 1.573 

150 

UF1 0.016 1.038 1.021 0.358 0.304 0.020 1.038 1.017 0.384 0.663           

UF2 0.022 1.621 1.599 0.473 0.595 0.026 0.958 0.932 0.297 0.438           

UF3 0.725 0.878 0.152 0.044 0.803 0.501 0.625 0.124 0.038 0.577           

UF4 0.732 0.892 0.160 0.045 0.802 0.531 0.794 0.263 0.064 0.616           

UF5 1.492 1.944 0.452 0.124 1.632 1.383 1.774 0.390 0.121 1.577           

UF6 0.719 0.749 0.031 0.007 0.727 0.656 0.787 0.131 0.040 0.724           

UF7 0.017 0.844 0.826 0.184 0.262 0.217 1.015 0.799 0.176 0.777           
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  Table 5.1. Effect of nIter with constant variable size of nVar 30, nPop 50, nArchive 50 (continued) 

    Objective #1  Objective #2 Objective #3 

No. of 

Iterations 
Function  Min Max Range St.D. Mean  Min Max Range St.D. Mean  Min Max Range St.D. Mean 

UF8 0.193 1.507 1.314 0.269 0.942 0.013 2.305 2.292 0.667 0.673 0.028 1.102 1.074 0.264 0.336 

UF9 0.009 0.776 0.767 0.235 0.257 0.014 0.938 0.923 0.275 0.401 0.486 1.112 0.626 0.184 0.672 

UF10 0.919 1.588 0.669 0.160 1.083 0.777 1.427 0.650 0.127 0.920 1.396 2.842 1.445 0.299 2.311 

CF1 0.011 1.019 1.008 0.314 0.207 0.033 1.041 1.008 0.342 0.766           

CF2 0.021 1.073 1.052 0.433 0.601 0.016 1.011 0.994 0.409 0.392           

CF3 0.770 0.885 0.115 0.032 0.821 0.492 0.698 0.206 0.059 0.558           

CF4 0.083 1.274 1.191 0.415 0.611 0.071 1.212 1.141 0.414 0.677           

CF5 4.845 14.600 9.754 3.764 7.945 1.046 9.450 8.405 2.823 6.395           

CF6 0.744 4.171 3.427 1.053 1.966 0.267 1.976 1.710 0.411 0.839           

CF7 7.656 19.441 11.785 2.588 10.189 5.578 11.756 6.178 1.676 8.835           

CF8 0.085 1.274 1.189 0.299 0.817 0.015 1.123 1.108 0.262 0.232 0.025 1.216 1.191 0.392 0.548 

CF9 0.047 1.216 1.170 0.293 0.793 0.006 0.770 0.765 0.141 0.098 0.064 1.156 1.092 0.346 0.644 

CF10 0.571 2.000 1.429 0.539 1.087 1.094 1.993 0.899 0.264 1.489 0.503 2.571 2.068 0.794 1.645 

200 

UF1 0.005 1.008 1.004 0.264 0.125 0.019 1.022 1.003 0.291 0.840           

UF2 0.014 1.198 1.183 0.385 0.422 0.101 1.035 0.934 0.283 0.554           

UF3 0.777 0.921 0.144 0.045 0.834 0.545 0.689 0.145 0.045 0.603           

UF4 0.693 0.892 0.199 0.048 0.791 0.556 0.670 0.114 0.034 0.616           

UF5 1.082 1.563 0.482 0.166 1.357 1.045 1.745 0.700 0.256 1.390           

UF6 0.725 0.814 0.089 0.026 0.758 0.688 0.915 0.228 0.069 0.782           

UF7 0.042 0.875 0.833 0.137 0.283 0.232 1.017 0.785 0.128 0.777           

UF8 0.013 1.152 1.139 0.287 0.796 0.001 0.562 0.560 0.113 0.084 0.013 1.104 1.090 0.365 0.533 

UF9 0.015 1.531 1.516 0.327 0.334 0.013 0.816 0.803 0.218 0.328 0.441 1.274 0.832 0.225 0.704 

UF10 0.670 2.224 1.554 0.529 1.374 0.384 1.065 0.681 0.204 0.687 0.466 1.609 1.143 0.502 1.029 

CF1 0.020 1.024 1.005 0.315 0.181 0.013 1.031 1.018 0.332 0.803           
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  Table 5.1. Effect of nIter with constant variable size of nVar 30, nPop 50, nArchive 50 (continued) 

    Objective #1  Objective #2 Objective #3 

No. of 

Iterations 
Function  Min Max Range St.D. Mean  Min Max Range St.D. Mean  Min Max Range St.D. Mean 

CF2 0.017 1.054 1.037 0.414 0.312 0.004 1.029 1.025 0.424 0.677           

CF3 0.715 0.918 0.203 0.060 0.809 0.549 0.676 0.127 0.041 0.598           

CF4 0.162 1.508 1.346 0.377 0.616 0.346 1.526 1.180 0.380 0.981           

CF5 5.168 21.897 16.729 6.496 15.004 1.452 12.519 11.067 4.551 4.333           

CF6 0.672 2.049 1.376 0.427 1.179 0.663 2.123 1.460 0.386 1.119           

CF7 4.659 12.491 7.831 2.630 9.517 6.213 10.303 4.090 1.359 7.689           

CF8 0.099 1.114 1.014 0.265 0.806 0.006 0.771 0.765 0.161 0.150 0.045 1.088 1.042 0.375 0.535 

CF9 0.050 1.142 1.092 0.249 0.805 0.002 1.855 1.852 0.555 0.405 0.038 1.188 1.150 0.332 0.516 

CF10 0.797 2.137 1.340 0.486 1.241 1.143 1.839 0.696 0.195 1.376 0.618 1.800 1.181 0.485 1.372 

 

Table 5.2. Effect of nVar with constant Number of iterations 100, nPop 50, nArchive 50  

    Objective #1  Objective #2 Objective #3 

nVar Function  Min Max Range St.D. Mean  Min Max Range St.D. Mean  Min Max Range St.D. Mean 

10 

UF1 0.000 1.025 1.025 0.358 0.491 0.003 1.085 1.083 0.343 0.480           

UF2 0.001 1.618 1.617 0.338 0.271 0.072 1.155 1.083 0.255 0.627           

UF3 0.600 2.226 1.626 0.580 1.134 0.407 0.519 0.112 0.038 0.470           

UF4 0.322 0.605 0.282 0.073 0.563 0.408 2.380 1.972 0.647 0.675           

UF5 0.666 1.324 0.658 0.180 0.868 0.570 1.006 0.436 0.116 0.931           

UF6 0.681 1.515 0.834 0.117 0.705 0.441 0.717 0.275 0.038 0.697           

UF7 0.017 0.939 0.922 0.186 0.225 0.110 0.989 0.878 0.180 0.782           
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Table 5.2. Effect of nVar with constant Number of iterations 100, nPop 50, nArchive 50 (continued) 

    Objective #1  Objective #2 Objective #3 

nVar Function  Min Max Range St.D. Mean  Min Max Range St.D. Mean  Min Max Range St.D. Mean 

10 

 

UF8 0.068 1.480 1.412 0.305 0.783 0.000 1.513 1.513 0.358 0.317 0.001 1.080 1.079 0.346 0.472 

UF9 0.001 2.088 2.087 0.495 0.506 0.000 0.692 0.692 0.214 0.207 0.385 1.851 1.466 0.400 0.743 

UF10 0.298 3.985 3.687 1.110 1.247 0.079 2.343 2.264 0.622 0.845 0.172 4.113 3.942 1.052 1.639 

CF1 0.001 1.009 1.008 0.350 0.310 0.001 1.030 1.029 0.364 0.598           

CF2 0.004 1.048 1.044 0.386 0.499 0.007 1.091 1.084 0.387 0.459           

CF3 0.591 0.831 0.240 0.066 0.670 0.395 2.605 2.210 1.021 1.902           

CF4 0.000 1.000 1.000 0.336 0.435 0.011 1.065 1.054 0.304 0.660           

CF5 0.596 6.926 6.330 2.123 3.916 0.000 1.933 1.933 0.524 0.369           

CF6 0.000 2.168 2.168 0.605 1.109 0.013 1.181 1.169 0.391 0.384           

CF7 1.134 2.144 1.010 0.292 1.509 0.701 0.838 0.137 0.039 0.743           

CF8 0.000 1.462 1.462 0.322 0.667 0.000 0.991 0.991 0.302 0.394 0.002 1.099 1.097 0.327 0.677 

CF9 0.000 1.690 1.690 0.361 0.754 0.000 1.429 1.429 0.420 0.388 0.005 1.122 1.117 0.372 0.495 

CF10 0.161 4.043 3.882 0.819 1.041 0.000 4.204 4.204 1.430 1.228 1.139 7.463 6.324 1.159 1.810 

20 

UF1 0.009 1.082 1.072 0.453 0.361 0.031 1.090 1.059 0.466 0.673           

UF2 0.017 1.323 1.306 0.362 0.480 0.045 1.252 1.207 0.283 0.503           

UF3 0.703 1.018 0.315 0.090 0.933 0.533 0.749 0.216 0.067 0.654           

UF4 0.641 0.768 0.127 0.041 0.683 0.573 0.719 0.146 0.043 0.634           

UF5 0.637 0.978 0.341 0.099 0.735 1.169 2.276 1.107 0.365 1.865           

UF6 0.774 1.223 0.449 0.166 0.871 0.569 0.719 0.150 0.060 0.681           

UF7 0.033 0.937 0.905 0.178 0.229 0.096 0.982 0.886 0.171 0.791           

UF8 0.059 1.242 1.183 0.295 0.751 0.000 1.014 1.014 0.212 0.191 0.031 1.402 1.371 0.364 0.734 

UF9 0.041 1.744 1.703 0.465 0.615 0.016 1.377 1.360 0.359 0.439 0.404 1.644 1.240 0.259 0.627 

UF10 0.357 2.016 1.659 0.538 0.693 0.677 1.350 0.673 0.194 0.936 0.564 2.050 1.486 0.470 1.576 

CF1 0.008 1.016 1.008 0.348 0.437 0.028 1.096 1.068 0.381 0.506           

CF2 0.012 1.026 1.014 0.354 0.226 0.013 1.029 1.016 0.368 0.744           

CF3 0.815 1.257 0.442 0.133 1.111 0.377 0.689 0.312 0.103 0.569           
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Table 5.2. Effect of nVar with constant Number of iterations 100, nPop 50, nArchive 50 (continued) 

    Objective #1  Objective #2 Objective #3 

nVar Function  Min Max Range St.D. Mean  Min Max Range St.D. Mean  Min Max Range St.D. Mean 

CF4 0.048 1.264 1.216 0.377 0.939 0.333 1.321 0.988 0.372 0.657           

CF5 4.047 12.408 8.361 2.419 8.290 0.418 0.870 0.452 0.084 0.489           

CF6 0.617 2.502 1.884 0.590 1.305 0.216 1.681 1.464 0.407 0.743           

CF7 4.108 5.875 1.767 0.526 4.809 2.726 4.266 1.540 0.457 3.245           

CF8 0.009 1.339 1.330 0.296 0.899 0.003 1.599 1.596 0.420 0.421 0.004 1.143 1.138 0.313 0.365 

CF9 0.031 1.185 1.154 0.283 0.792 0.012 1.607 1.595 0.461 0.427 0.013 1.075 1.062 0.381 0.450 

CF10 0.458 2.682 2.224 0.772 1.430 0.367 2.341 1.974 0.558 1.130 0.318 3.323 3.004 0.932 1.833 

50 

UF1 0.054 1.144 1.090 0.322 0.306 0.070 1.107 1.037 0.362 0.745           

UF2 0.093 1.185 1.091 0.331 0.596 0.092 1.066 0.973 0.291 0.479           

UF3 0.687 0.844 0.157 0.046 0.744 0.457 0.741 0.285 0.077 0.556           

UF4 0.735 0.800 0.065 0.018 0.759 0.489 0.532 0.043 0.013 0.507           

UF5 1.199 2.180 0.981 0.326 1.415 1.190 2.392 1.201 0.334 2.163           

UF6 0.798 0.807 0.009 0.003 0.801 0.608 0.619 0.011 0.003 0.611           

UF7 0.065 1.145 1.080 0.298 0.415 0.085 1.177 1.092 0.290 0.770           

UF8 0.099 1.323 1.224 0.257 1.062 0.017 0.595 0.578 0.142 0.176 0.047 1.243 1.196 0.269 0.306 

UF9 0.053 0.650 0.597 0.152 0.214 0.050 0.569 0.519 0.136 0.221 0.622 1.231 0.609 0.161 0.857 

UF10 1.689 2.680 0.991 0.260 2.095 1.196 2.391 1.195 0.341 1.720 1.179 2.897 1.718 0.488 2.199 

CF1 0.036 1.058 1.023 0.414 0.360 0.072 1.085 1.013 0.410 0.691           

CF2 0.037 1.055 1.018 0.373 0.473 0.056 1.067 1.012 0.388 0.545           

CF3 0.762 0.809 0.047 0.014 0.782 0.481 0.517 0.036 0.011 0.495           

CF4 0.703 1.832 1.129 0.369 1.161 0.761 1.968 1.207 0.366 1.495           

CF5 13.548 32.210 18.662 5.161 24.973 2.438 13.365 10.927 2.449 4.202           

CF6 1.164 5.585 4.421 1.506 2.763 1.272 6.072 4.800 1.514 3.164           

CF7 12.384 34.445 22.060 6.227 17.688 12.000 22.235 10.235 2.359 17.019           

CF8 0.087 1.199 1.113 0.213 0.989 0.028 1.231 1.203 0.265 0.202 0.059 1.044 0.986 0.301 0.471 

CF9 0.019 1.625 1.606 0.356 0.963 0.025 1.561 1.536 0.400 0.577 0.058 1.156 1.098 0.278 0.310 



 

 

4
0
 

Table 5.2. Effect of nVar with constant Number of iterations 100, nPop 50, nArchive 50 (continued) 

    Objective #1  Objective #2 Objective #3 

nVar Function  Min Max Range St.D. Mean  Min Max Range St.D. Mean  Min Max Range St.D. Mean 

CF10 1.070 2.954 1.884 0.493 1.939 1.004 2.678 1.675 0.479 1.807 0.849 3.047 2.198 0.642 1.714 

 

Table 5.3. Effect of nPop with constant Number of iterations 100, nVar 50, nArchive 50 

    Objective #1  Objective #2 Objective #3 

nPop Function  Min Max Range St.D. Mean  Min Max Range St.D. Mean  Min Max Range St.D. Mean 

10 

UF1 0.170 1.242 1.072 0.385 0.660 0.097 1.203 1.106 0.388 0.561           

UF2 0.209 1.494 1.285 0.377 0.797 0.055 1.397 1.342 0.395 0.490           

UF3 0.977 1.235 0.258 0.081 1.082 0.573 0.900 0.327 0.090 0.708           

UF4 0.889 0.918 0.029 0.009 0.899 0.581 0.615 0.034 0.008 0.586           

UF5 1.587 2.240 0.653 0.240 1.908 1.797 2.537 0.740 0.232 2.029           

UF6 0.863 0.903 0.040 0.013 0.875 0.736 0.845 0.109 0.031 0.774           

UF7 0.122 1.289 1.167 0.319 0.551 0.136 1.328 1.191 0.322 0.856           

UF8 0.084 2.057 1.973 0.528 1.038 0.063 0.974 0.911 0.231 0.386 0.088 1.251 1.163 0.378 0.416 

UF9 0.017 0.730 0.713 0.190 0.224 0.035 0.666 0.631 0.161 0.274 0.620 1.118 0.498 0.099 0.797 

UF10 1.157 1.755 0.598 0.145 1.343 0.761 1.213 0.452 0.151 1.004 2.353 3.169 0.816 0.220 2.705 

CF1 0.129 1.229 1.100 0.362 0.598 0.124 1.220 1.096 0.391 0.641           

CF2 0.130 1.204 1.074 0.394 0.744 0.084 1.208 1.124 0.368 0.464           

CF3 0.860 0.886 0.026 0.008 0.871 0.635 0.699 0.064 0.021 0.658           

CF4 0.955 3.145 2.190 0.736 1.894 0.291 2.398 2.107 0.709 1.033           

CF5 7.675 22.153 14.478 5.681 12.316 2.698 8.383 5.686 1.796 5.016           

CF6 0.901 6.379 5.478 1.404 2.263 0.566 3.381 2.815 0.801 1.818           

CF7 6.489 17.969 11.480 3.032 11.392 7.525 24.439 16.914 5.384 13.004           

CF8 0.047 1.179 1.132 0.454 0.652 0.061 0.567 0.505 0.207 0.338 0.022 1.064 1.042 0.480 0.420 
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Table 5.3. Effect of nPop with constant Number of iterations 100, nVar 50, nArchive 50 (continued) 

    Objective #1 Objective #2 Objective #3 

nVar Function  Min Max Range St.D. Mean  Min Max Range St.D. Mean  Min Max Range St.D. Mean 

 CF9 0.071 1.528 1.457 0.336 0.962 0.062 1.169 1.107 0.261 0.500 0.084 1.237 1.152 0.307 0.298 
 

CF10 1.037 2.580 1.543 0.385 1.556 0.609 1.754 1.146 0.332 1.088 1.890 3.044 1.153 0.304 2.524 

20 

UF1 0.051 1.053 1.002 0.373 0.291 0.039 1.077 1.038 0.387 0.778           

UF2 0.099 1.302 1.203 0.369 0.587 0.079 1.462 1.383 0.345 0.525           

UF3 0.858 0.928 0.070 0.019 0.885 0.607 0.672 0.064 0.016 0.626           

UF4 0.881 0.930 0.050 0.015 0.898 0.600 0.716 0.116 0.036 0.644           

UF5 0.929 2.088 1.159 0.410 1.535 1.427 2.216 0.789 0.217 1.707           

UF6 0.696 0.765 0.070 0.020 0.727 0.662 0.932 0.270 0.072 0.728           

UF7 0.034 1.131 1.097 0.247 0.309 0.056 1.090 1.034 0.235 0.811           

UF8 0.024 1.417 1.393 0.336 0.975 0.031 0.723 0.692 0.201 0.274 0.025 1.130 1.105 0.294 0.280 

UF9 0.047 0.979 0.931 0.245 0.365 0.023 0.748 0.725 0.180 0.259 0.536 1.141 0.605 0.122 0.704 

UF10 1.025 3.181 2.156 0.624 2.108 0.853 3.778 2.925 0.494 1.583 0.891 2.257 1.366 0.398 1.529 

CF1 0.040 1.116 1.076 0.404 0.528 0.102 1.252 1.150 0.406 0.599           

CF2 0.031 1.156 1.124 0.349 0.524 0.087 1.338 1.250 0.372 0.584           

CF3 0.726 1.226 0.500 0.138 0.872 0.544 1.118 0.574 0.166 0.763           

CF4 0.723 1.059 0.337 0.159 0.953 0.245 0.645 0.400 0.183 0.381           

CF5 6.508 16.779 10.271 3.879 11.180 1.627 7.017 5.390 1.725 3.267           

CF6 0.842 6.535 5.694 1.464 1.915 0.412 2.721 2.309 0.645 1.529           

CF7 8.560 26.078 17.518 6.101 14.139 7.216 20.792 13.576 4.847 11.287           

CF8 0.011 1.483 1.472 0.275 1.061 0.018 0.814 0.796 0.206 0.269 0.019 1.041 1.021 0.211 0.202 

CF9 0.020 1.757 1.737 0.353 1.063 0.038 1.496 1.458 0.338 0.558 0.038 1.066 1.028 0.172 0.180 

CF10 0.812 4.527 3.715 0.830 2.474 0.990 4.269 3.279 0.692 2.260 0.940 4.591 3.651 0.830 2.282 

40 

UF1 0.016 1.054 1.038 0.445 0.541 0.027 1.053 1.026 0.440 0.471           

UF2 0.008 1.350 1.343 0.406 0.505 0.062 1.206 1.144 0.330 0.541           

UF3 0.714 0.972 0.258 0.074 0.853 0.497 1.100 0.603 0.118 0.608           

UF4 0.669 0.908 0.239 0.077 0.799 0.568 0.682 0.114 0.032 0.619           
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Table 5.3. Effect of nPop with constant Number of iterations 100, nVar 50, nArchive 50 (continued) 

    Objective #1 Objective #2 Objective #3 

nVar Function  Min Max Range St.D. Mean  Min Max Range St.D. Mean  Min Max Range St.D. Mean 

UF5 1.432 2.124 0.692 0.312 1.693 1.125 1.813 0.688 0.297 1.501           

UF6 0.690 1.361 0.671 0.290 0.903 0.549 1.028 0.479 0.158 0.743           

UF7 0.029 1.052 1.023 0.217 0.352 0.040 1.032 0.992 0.204 0.730           

UF8 0.148 1.493 1.344 0.301 0.920 0.005 1.133 1.128 0.347 0.301 0.058 1.450 1.392 0.449 0.573 

UF9 0.034 0.808 0.774 0.222 0.303 0.028 0.828 0.800 0.241 0.372 0.527 1.175 0.648 0.161 0.693 

UF10 0.494 2.724 2.229 0.754 1.410 0.740 2.244 1.503 0.370 1.394 0.997 3.137 2.140 0.598 1.960 

CF1 0.034 1.128 1.093 0.409 0.518 0.027 1.098 1.071 0.410 0.509           

CF2 0.022 1.067 1.045 0.394 0.446 0.018 1.105 1.087 0.394 0.530           

CF3 0.783 0.968 0.185 0.049 0.846 0.530 0.702 0.172 0.051 0.593           

CF4 0.633 1.380 0.747 0.138 0.943 0.347 1.037 0.689 0.138 0.792           

CF5 6.077 20.485 14.408 3.078 9.061 1.290 6.930 5.641 1.086 4.787           

CF6 0.651 5.595 4.943 1.418 2.189 0.237 3.354 3.117 0.790 1.301           

CF7 3.072 13.023 9.951 4.084 7.353 6.051 15.792 9.740 3.645 10.528           

CF8 0.485 1.511 1.025 0.215 0.989 0.022 1.927 1.905 0.461 0.409 0.040 1.144 1.103 0.295 0.342 

CF9 0.054 1.501 1.447 0.325 1.001 0.002 0.897 0.894 0.178 0.145 0.022 1.115 1.093 0.386 0.463 

CF10 0.537 3.446 2.910 0.923 1.833 0.283 2.901 2.618 0.478 1.021 0.608 3.570 2.962 0.732 2.054 

50 

UF1 0.018 1.095 1.077 0.403 0.375 0.026 1.158 1.132 0.419 0.648           

UF2 0.023 1.288 1.265 0.322 0.441 0.049 1.041 0.993 0.244 0.509           

UF3 0.719 0.953 0.235 0.071 0.821 0.529 0.947 0.418 0.118 0.630           

UF4 0.677 0.905 0.228 0.068 0.791 0.560 0.690 0.131 0.036 0.613           

UF5 1.191 1.270 0.079 0.024 1.218 1.366 1.477 0.111 0.030 1.416           

UF6 0.743 0.848 0.105 0.031 0.800 0.540 0.871 0.331 0.084 0.619           

UF7 0.043 0.905 0.862 0.167 0.272 0.257 1.000 0.743 0.146 0.776           

UF8 0.026 1.245 1.219 0.319 0.794 0.007 0.448 0.441 0.099 0.097 0.030 1.164 1.135 0.368 0.671 

UF9 0.011 0.757 0.746 0.227 0.286 0.021 0.633 0.612 0.160 0.210 0.524 1.062 0.537 0.143 0.709 

UF10 0.628 1.711 1.084 0.317 1.053 0.601 1.772 1.171 0.325 0.980 1.295 1.996 0.702 0.199 1.619 
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Table 5.3. Effect of nPop with constant Number of iterations 100, nVar 50, nArchive 50 (continued) 

    Objective #1 Objective #2 Objective #3 

nVar Function  Min Max Range St.D. Mean  Min Max Range St.D. Mean  Min Max Range St.D. Mean 

CF1 0.007 1.121 1.115 0.393 0.366 0.020 1.074 1.054 0.408 0.617           

CF2 0.022 1.025 1.003 0.371 0.345 0.051 1.060 1.009 0.393 0.648           

CF3 0.726 0.898 0.172 0.050 0.813 0.547 0.574 0.027 0.006 0.558           

CF4 0.218 1.568 1.350 0.340 0.728 0.843 2.404 1.562 0.401 1.522           

CF5 4.727 13.719 8.991 3.559 7.781 0.713 5.872 5.159 1.672 4.100           

CF6 0.787 4.556 3.770 1.045 1.968 0.326 2.828 2.502 0.690 1.273           

CF7 5.745 19.021 13.276 2.088 6.645 7.721 13.460 5.739 1.796 11.706           

CF8 0.093 1.704 1.610 0.360 0.888 0.013 1.258 1.245 0.378 0.358 0.066 1.420 1.354 0.397 0.502 

CF9 0.031 1.409 1.378 0.279 0.899 0.022 2.098 2.076 0.465 0.294 0.029 1.216 1.186 0.340 0.469 

CF10 0.507 2.614 2.107 0.562 1.329 0.448 1.678 1.230 0.360 0.917 1.157 3.117 1.960 0.485 2.067 

 

Table 5.4. Effect of nArchive with constant Number of iterations 50, nVar 30, nPop 50 

    Objective #1  Objective #2 Objective #3 

nArchive Function  Min Max Range St.D. Mean  Min Max Range St.D. Mean  Min Max Range St.D. Mean 

25 

UF1 0.058 1.115 1.057 0.421 0.609 0.029 1.048 1.020 0.402 0.459           

UF2 0.030 1.132 1.102 0.289 0.334 0.095 1.184 1.089 0.309 0.693           

UF3 0.754 0.972 0.218 0.060 0.860 0.537 0.696 0.159 0.049 0.599           

UF4 0.739 0.878 0.139 0.044 0.825 0.580 1.080 0.500 0.138 0.680           

UF5 1.322 2.160 0.837 0.228 1.500 1.318 1.960 0.643 0.174 1.688           

UF6 0.740 0.761 0.021 0.006 0.746 0.606 0.609 0.003 0.001 0.607           

UF7 0.027 0.975 0.948 0.239 0.315 0.133 1.069 0.937 0.236 0.771           

UF8 0.055 1.097 1.041 0.360 0.754 0.011 0.240 0.229 0.069 0.118 0.129 1.300 1.171 0.379 0.707 

UF9 0.034 0.975 0.941 0.277 0.290 0.061 1.212 1.151 0.247 0.298 0.533 1.324 0.792 0.248 0.854 
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Table 5.4. Effect of nPop with constant Number of iterations 100, nVar 50, nArchive 50 (continued) 

    Objective #1 Objective #2 Objective #3 

nArchive Function  Min Max Range St.D. Mean  Min Max Range St.D. Mean  Min Max Range St.D. Mean 
 

UF10 1.244 2.284 1.040 0.216 1.462 1.100 2.970 1.870 0.364 1.243 1.357 2.196 0.839 0.158 1.932 

 

CF1 0.039 1.051 1.012 0.393 0.468 0.077 1.116 1.039 0.403 0.582           

CF2 0.068 1.117 1.049 0.420 0.502 0.045 1.055 1.010 0.411 0.558           

CF3 0.729 0.925 0.195 0.065 0.799 0.592 0.893 0.302 0.118 0.717           

CF4 0.637 1.090 0.453 0.178 0.833 1.066 1.552 0.486 0.185 1.313           

CF5 8.358 19.049 10.691 3.311 12.571 0.963 3.169 2.206 0.677 1.832           

CF6 0.892 1.862 0.970 0.271 1.134 1.036 2.451 1.414 0.429 1.808           

CF7 8.837 20.434 11.597 4.183 14.711 4.418 14.908 10.490 3.282 9.080           

CF8 0.057 1.264 1.207 0.310 0.950 0.022 0.514 0.491 0.127 0.160 0.065 1.175 1.110 0.347 0.491 

CF9 0.112 1.483 1.371 0.275 1.150 0.059 1.256 1.197 0.263 0.301 0.069 1.076 1.006 0.262 0.319 

CF10 0.578 2.735 2.156 0.607 1.629 0.775 2.638 1.864 0.548 1.681 0.645 2.684 2.039 0.756 1.771 

50 

UF1 0.018 1.084 1.066 0.374 0.517 0.056 1.111 1.055 0.380 0.511           

UF2 0.025 1.307 1.282 0.327 0.382 0.073 1.196 1.123 0.322 0.651           

UF3 0.803 1.162 0.359 0.099 0.923 0.457 0.828 0.371 0.105 0.603           

UF4 0.828 0.887 0.059 0.021 0.857 0.509 0.551 0.041 0.013 0.531           

UF5 1.089 2.135 1.046 0.270 1.904 0.934 2.579 1.644 0.509 1.436           

UF6 0.746 0.806 0.061 0.015 0.760 0.640 0.799 0.158 0.055 0.722           

UF7 0.041 1.042 1.001 0.270 0.360 0.060 1.070 1.010 0.257 0.767           

UF8 0.037 1.500 1.463 0.246 1.027 0.019 0.653 0.635 0.192 0.279 0.048 1.108 1.060 0.267 0.294 

UF9 0.022 0.773 0.751 0.198 0.312 0.010 0.687 0.677 0.189 0.197 0.557 1.100 0.543 0.117 0.698 

UF10 0.766 3.606 2.840 0.815 1.986 0.844 2.754 1.911 0.439 1.530 0.717 3.584 2.867 0.684 2.025 

CF1 0.051 1.127 1.076 0.365 0.553 0.069 1.098 1.029 0.340 0.496           

CF2 0.038 1.066 1.029 0.430 0.549 0.063 1.083 1.021 0.414 0.506           

CF3 0.771 1.007 0.236 0.067 0.859 0.502 0.863 0.361 0.100 0.643           

CF4 0.166 0.690 0.524 0.233 0.452 1.260 1.957 0.697 0.260 1.569           

CF5 6.436 14.902 8.467 2.647 9.896 1.887 10.458 8.571 2.727 3.980           
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Table 5.4. Effect of nPop with constant Number of iterations 100, nVar 50, nArchive 50 (continued) 

    Objective #1 Objective #2 Objective #3 

nArchive Function  Min Max Range St.D. Mean  Min Max Range St.D. Mean  Min Max Range St.D. Mean 

CF6 0.756 4.406 3.650 1.249 1.898 0.612 3.462 2.850 0.778 1.506           

CF7 7.273 15.142 7.869 2.040 10.865 6.191 19.823 13.632 4.944 9.871           

CF8 0.683 1.469 0.786 0.197 1.062 0.052 1.176 1.125 0.285 0.375 0.025 0.526 0.501 0.125 0.178 

CF9 0.043 1.450 1.407 0.277 1.003 0.023 0.902 0.879 0.255 0.425 0.024 1.135 1.110 0.207 0.151 

CF10 0.715 2.131 1.416 0.435 1.375 0.437 1.602 1.165 0.337 0.932 0.678 2.808 2.130 0.511 1.766 

75 

UF1 0.036 1.118 1.082 0.411 0.510 0.025 1.073 1.048 0.392 0.496           

UF2 0.059 1.534 1.475 0.406 0.573 0.043 1.291 1.248 0.351 0.574           

UF3 0.749 0.918 0.169 0.052 0.817 0.528 0.857 0.329 0.096 0.642           

UF4 0.830 0.959 0.129 0.036 0.899 0.520 0.573 0.053 0.012 0.537           

UF5 1.069 2.387 1.317 0.374 1.632 0.854 3.117 2.263 0.780 1.623           

UF6 0.696 0.815 0.119 0.033 0.748 0.619 0.868 0.249 0.062 0.705           

UF7 0.017 1.159 1.142 0.272 0.384 0.049 1.062 1.013 0.253 0.722           

UF8 0.035 1.431 1.396 0.327 1.006 0.016 0.695 0.679 0.158 0.238 0.024 1.077 1.053 0.316 0.269 

UF9 0.020 0.931 0.911 0.234 0.335 0.031 0.535 0.504 0.149 0.182 0.526 0.888 0.363 0.087 0.697 

UF10 0.753 3.610 2.857 0.731 1.484 0.473 2.260 1.788 0.492 1.243 0.724 3.634 2.911 0.879 2.224 

CF1 0.047 1.176 1.128 0.401 0.499 0.029 1.153 1.124 0.412 0.585           

CF2 0.037 1.068 1.031 0.359 0.459 0.056 1.060 1.004 0.362 0.569           

CF3 0.755 1.079 0.325 0.110 0.887 0.482 0.812 0.330 0.106 0.585           

CF4 0.207 1.281 1.073 0.353 0.895 0.308 2.025 1.717 0.601 0.995           

CF5 3.991 15.278 11.286 4.214 8.201 1.035 7.330 6.296 1.845 3.908           

CF6 0.854 6.676 5.822 2.001 3.236 0.432 3.894 3.462 1.124 1.538           

CF7 8.017 20.943 12.926 5.777 15.228 4.181 9.934 5.753 1.912 6.063           

CF8 0.043 1.405 1.361 0.231 1.045 0.031 1.707 1.675 0.314 0.368 0.027 1.045 1.017 0.264 0.236 

CF9 0.014 1.402 1.387 0.362 0.922 0.022 1.001 0.980 0.187 0.302 0.029 1.226 1.197 0.333 0.271 

CF10 0.385 3.328 2.942 0.748 1.612 0.700 3.052 2.352 0.599 1.780 1.007 3.079 2.071 0.561 2.026 
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6. CONCLUSION 

In conclusion, we have studied the influence of the optimization ability of SPEA2 on 

different benchmark functions by evaluating them using different performance metrics. The 

benchmark functions used include 10 constrained functions (CF’s) and 10 unconstrained 

functions (UF’s). The results of the performance metrics running several experiments was 

obtained by varying parameters such as number of iterations, variable size, population and 

archives. Inclusion of these benchmark functions were implemented successfully in the code and 

performance studies were conducted.  

We observed that an increase in the number of iterations decreased the standard deviation 

error proving that Pareto optimal values are obtained at high numbers of iterations. An increase 

in the number of variable size was also able to reduce the standard deviation value dramatically. 

With the increase in the number of population size, we observed a significant increase in the 

standard deviation suggesting that an optimal value is obtained at lower population sizes or there 

should be more number of iterations needed at higher population sizes to have reduced standard 

deviation values. Additionally, an increase in the archive size also decreases the standard 

deviation suggesting that archive size is essential for obtaining optimal solutions. 

To extend this work, our next step is to compare the performance of benchmark functions of 

SPEA2 to that of other evolution algorithms. This will allow us to comment on the overall 

performance of several algorithms. Also, applying the SPEA2 algorithm to real world problems 

such as financial time series will be a potential future aspect such as Niched Pareto Genetic 

Algorithm (NGPA), which has already been used to find patterns in this field. 
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