
CONDITIONAL RANDOM FIELDS WITH LASSO AND ITS APPLICATION TO THE

CLASSIFICATION OF BARLEY GENES BASED ON EXPRESSION LEVEL AFFECTED BY

FUNGAL INFECTION

A Dissertation
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Xiyuan Liu

In Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Major Department:
Statistics

April 2019

Fargo, North Dakota

NORTH DAKOTA STATE UNIVERSITY

Graduate School

Title

CONDITIONAL RANDOM FIELDS WITH LASSO AND ITS APPLICATION

TO THE CLASSIFICATION OF BARLEY GENES BASED ON EXPRESSION

LEVEL AFFECTED BY FUNGAL INFECTION

By

Xiyuan Liu

The supervisory committee certifies that this dissertation complies with North Dakota State Uni-

versity’s regulations and meets the accepted standards for the degree of

DOCTOR OF PHILOSOPHY

SUPERVISORY COMMITTEE:

Prof. Gang Shen

Chair

Prof. Megan Orr

Prof. Bong-Jin Choi

Prof. Shaobin Zhong

Approved:

09 April 2019

Date

Rhonda Magel

Department Chair

ABSTRACT

The classification problem of gene expression level, more specifically, gene expression anal-

ysis, is a major research area in statistics. There are several classical methods to solve the clas-

sification problem. To apply Logistic Regression Model (LRM) and other classical methods, the

observations in the dataset should fit the assumption of independence. That is, the observations

in the dataset are independent to each other, and the predictor (independent variable) should be

independent. These assumptions are usually violated in gene expression analysis. Although the

Classical Hidden Markov Chain Model (HMM) can solve the independence of observation problem,

the classical HMM requires the independent variables in the dataset are discrete and independent.

Unfortunately, the gene expression level is a continuous variable. To solve the classification prob-

lem of Gene Expression Level data, the Conditional Random Field(CRF) is introduce. Finally,

the Least Absolute Selection and Shrinkage Operator (LASSO) penalty, a dimensional reduction

method, is introduced to improve the CRF model.

iii

ACKNOWLEDGEMENTS

This thesis was supported by Dr. Gang Shen, who provided insight and expertise that

greatly assisted the thesis.

I would also like to show my gratitude to Dr. Megan Orr, Dr. Bong-Jin Choi, and Dr.

Shaobin Zhong for their time and feedback.

I thank Neville Tammi for comments and language support that greatly improved the

manuscript.

This thesis would not have been done without my family behind me. I am indebted for

the mental and physical support they have provided that has spurred me on through tough times

during not only my thesis but also my entire graduate study. I am thankful for their love and

prayers.

iv

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

1. INTRODUCTION . 1

2. LITERATURE REVIEW . 3

3. PLANT SCIENCE DATA . 6

4. METHODOLOGY . 7

4.1. Hypothesis test . 7

4.2. The simulation of the extreme value distribution . 8

4.3. False discovery rate . 10

4.4. Benjamini-hochberg . 11

4.5. Conditional random field . 12

4.6. CRF training . 13

4.6.1. Gradient descent . 14

4.7. LASSO . 18

5. NUMERIC EXPERIMENT . 21

5.1. Binary response data . 21

5.1.1. The result . 22

5.2. Ternary response data . 24

5.2.1. Label 1 . 24

5.2.2. Label 0 . 24

5.2.3. Label -1 . 25

5.2.4. Additional setting . 25

5.2.5. Result . 27

v

5.2.6. Accuracy prediction of the label . 28

5.2.7. l1 norm between the estimator and the true parameter 31

5.3. Numeric experiment summary . 31

6. CRF WITH PLANT SCIENCE DATA . 33

6.1. Prepare the data . 33

6.2. Data result summary . 36

REFERENCES . 37

APPENDIX A. THE GENE STATUS . 39

APPENDIX B. CODE . 41

vi

LIST OF TABLES

Table Page

4.1. The quantiles for both simulated and theoretical . 9

5.1. Binary numeric experiment . 23

5.2. CRF model for the scenario 20 out of 1000 . 28

5.3. CRF and GLM for the scenario 20 out of 1000 . 29

5.4. CRF model for the scenario 500 out of 1000 . 29

5.5. CRF and GLM for the scenario 500 out of 1000 . 29

5.6. CRF model for the scenario 980 out of 1000 . 30

5.7. CRF and GLM for the scenario 980 out of 1000 . 30

5.8. l1 norm between GLM and CRF . 31

6.1. The FDR for different λ . 36

vii

LIST OF FIGURES

Figure Page

4.1. The extreme value distribution under the null hypothesis when ρ = 0.05. 8

4.2. The theoretical PDF and the simulated data . 10

5.1. The changed genes’ expression level . 22

5.2. Ternary response data . 27

6.1. Gene labeled as 0 . 34

6.2. Gene labeled as 1 . 34

6.3. Gene labeled as -1 . 35

6.4. The training data ratio plot . 35

viii

1. INTRODUCTION

There are several classical models to solve classification problem of gene expression level, for

example Logistic regression model, Mixture Model, and hypothesis test with Benjamini-Hochberg

method. To apply these classical models, the observation in the dataset should fit the assump-

tion of independence. That is, the observations in the dataset are independent to each other.

However, when it comes to gene expression analysis, or similarly, natural language processing

[Sha and Pereira, 2003], it is impossible to assume the independence for each of the observations.

In addition, the classical models are only widely used when the dependent variable has only two

possible outcomes. When the dependent variables have more than two possible outcomes, these

classical models cannot be used directly. Hence, to solve these problems, the Hidden Markov Chain

Model (HMM) was introduced.

Because HMM assumes that the dependent variables have the Markov Chain structure, it is

suitable for a dataset that fails to assume independence. The HMM has three assumptions. First,

it assumes that the dependent variable (or, in this study, the label) cannot be observed directly.

But the outcomes for the dependent variable, which are independent variables, can be observed.

Second, the HMM assumes that the labels for each of the observations have correlations. Third, the

outcomes (independent variables) are independent of each other. Based on these three assumptions,

the HMM can be divided into two major components.

The first component is the transition probability. The transition probability is a function

that describes the relationship between different labels. The second component for the HMM is the

emission probability. The emission probability describes the relationship between the independent

variables and the dependent variables. For the classical HMM, when both dependent and indepen-

dent variables are discrete, the emission probability is easy to estimate. Unfortunately, for the gene

expression analysis of the gene expression level, the independent variable is continuous. Hence, the

classical HMM is not very useful in this case. To design a model that could fit the gene expression

dataset, Conditional Random Field (CRF) was introduced.

The CRF is a very generalized Machine Learning Model that is designed to solve the classi-

fication problem. The CRF does not contain the assumption of independence, and does not require

1

the independent variable to be discrete. Furthermore, both HMM and LRM for the classification

problems are special cases for the use of CRF [Sutton and McCallum, 2012]. Because of the flexi-

bility, the CRF can adapt itself into different models to fit different datasets. However, the number

of dimensions for the parameters in the CRF is very large, which will cause problems during the

training step. To solve this problem, least absolute shrinkage and selection operator (LASSO)

penalty is applied.

LASSO is very widely used for the dimensional reduction problem. It can improve any

generalized linear model and Support Vector Machines (SVM) by reducing predictors while keeping

the accuracy of the predictions [Hastie et al., 2015]. Applying LASSO to CRF will largely decrease

the number of dimensions for the parameters of the CRF and hence, improve the CRF.

This study demonstrated the flexibility of the CRF and improved it with the LASSO penalty.

A CRF model was designed for the barley gene expression data, which was collected in order to

classify different reactions of host genes under pathogens to improve the immunity of barley. Since

the gene expression level for each host gene may have strong correlations, the classical classification

method was not appropriate. Furthermore, since the outcomes (i.e. the independent variables)

in the gene expression data were not discrete variables, the classical HMM was also not suitable.

Hence, CRF with a proper design for this dataset was introduced.

This thesis contains several sections to explain the CRF in detail. The literature review

chapter explains the problems of the CRF and why LASSO can improve the CRF. The methodology

chapter shows the technical details about how to design the CRF for this barley data and how to

implement the LASSO into the CRF. The numeric experiment chapter demonstrates the reliability

of the CRF and compare it with the classical generalized linear model. The data analysis chapter

applies the CRF to the barley dataset and provides the conclusion for the results. Finally, we will

introduce further research areas for the study.

2

2. LITERATURE REVIEW

The Conditional Random Field (CRF) was first introduced by Lafferty and McCallum

in 2001 [Lafferty et al., 2001] in order to classify natural-language data. Furthermore, the paper

pointed out that CRF can be developed for different data structures. Ten years later, Sutton

and McCallum published a summary paper to provide a more complete explanation of the model

[Sutton and McCallum, 2012] and its applications. As a flexible probabilistic model, CRF can

adapt itself into several different scenarios, such as text process [Ammar et al., 2014], bioinformatics

[Thiagarajan and Bremananth, 2015], image process [Qianwen et al., 2018], etc.

There are two components to CRF: feature functions and the normalization function

[Sutton and McCallum, 2012]. Feature functions are function with two arguments, a dependent

variable (usually is a countable finite variable) and independent variables. Although there are no

strict roles on how to define the feature function, the function is usually constructed with one indi-

cating function and one Real number function. This design is called the Label-observation features

[Sutton and McCallum, 2012]. In the case of HMM, there are two types of feature functions. One

is the joint probability between dependent variables and independent variables, and the other is

the transition probability between dependent variables. On the other hand, in the case of classical

Logistics Regression, the feature function is a linear function between dependent variables and

independent variables. Because of the flexibility of the feature function design, the CRF is very

handy in almost every circumstance.

The other important component of the CRF is the normalization function. The normaliza-

tion function is a marginal function, which only depends on the independent variables. In order

to design a conditional probability function for the classification problem given independent vari-

ables (i.e. p(y|x)), we need to know two functions: The joint probability function, which contains

independent and dependent variables (i.e. p(x, y)), and the marginal function of the independent

variable (i.e. p(x)). Using the feature functions, we can define p(x, y). On the other hand, to

obtain the marginal function, we need to integrate out the dependent variable in p(x, y). When

the dependent variable is a scalar that has only a few possible countable outcomes, it is easy to

integrate out the dependent variable and compute the p(x). However, when the dependent vari-

3

able is a finite vector, in which each element has 2 outcomes, the set of possible outcomes for the

dependent variable can be expend exponentially. Hence, one problem of the CRF is to find an ef-

ficient way to compute the marginal function. Sutton [Sutton and McCallum, 2012] proposed that

using a backward-forward algorithm (more specifically, Viterbi Algorithm) can solve the problem

efficiently. However, to compute the marginal function via Viterbi Algorithm, the parameters for

p(x, y) are required. Hence, another problem for the CRF is how to estimate parameters. Maxi-

mum Likelihood Estimation (MLE) and Least Square Estimation (LSE) are two of the most well

known estimation methods for this problem. Yet, due to the nature of the CRF (i.e. high dimen-

sional parameters), classical computational methods, such as the Newton-Raphson method, are not

practical. Sutton [Sutton and McCallum, 2012] proposed Gradient Descent to solve the problem.

Unlike the Newton-Raphson Method, which needs to compute both the first and second

derivatives for the object function (e.g. log-likelihood function), Gradient Descent only needs to

compute the first derivative. However, the Gradient Descent still needs a sequence to substitute

the second derivative. Kiefer and Wolfowitz [Kiefer and Wolfowitz, 1952] proved that the sequence

for Gradient Descent belongs to l2 norm but does not belong to l1 norm. That means the critical

aspect to approaching the problem is to select a sequence with a proper convergence speed.

Another problem of the CRF is the a large number of parameters it contains (i.e. high

dimensional parameters). This is because of the flexibility of the feature function design. Containing

a large number of parameters will cause the model to over fit the data. In addition, it is not very

practical to estimate these many parameters through traditional computational methods. Besides,

within these many parameters, it is possible that some of them may not have a significant influence

of the model. Hence, it is very important to eliminate these parameters to avoid the risk of over

fit and make the model more efficient. To solve this problem, LASSO is introduced.

LASSO, a dimensional reduction technique, can improve any generalized linear model or

Support Vector Machines (SVM) by reducing the number of predictors while keeping the accuracy

of the predictions [Hastie et al., 2015]. Additionally, as a classical High Dimensional Data Anal-

ysis tool, LASSO is widely used in may areas, such as Neural Networks [Cui and Wang, 2016],

Bioinformatics [J Motyer et al., 2011], Biostatistics, etc.

The combination of both CRF and LASSO can indeed, largely improve the efficiency and

accuracy of the statistical analysis for big data. For the next section, some basic settings for the

4

barley dataset are introduced then the methodology is provided for the CRF with respect to the

dataset.

5

3. PLANT SCIENCE DATA

A barley experiment was conducted in order to determine what genes in the plant genome

will be affected by a fungus. If the study can identify genes in the plant genome that are associated

with plant disease resistance, then the study will provide more information about the interaction

between pathogen and host, and hence provide better control of the disease.

In this study, there are two treatments: Barley cv. Bowman infected by the original isolate

(ND90Pr), which is highly virulent on Bowman, and the plants infected by the mutated isolate

with low virulence on Bowman. The mutant was generated by deleting a NPS gene conforming

high virulence of the isolate. For each treatment, 3 leaf samples were collected at 0, 6, 12, 18,

24, 36, 48, and 72 hours after inoculation. Hence, a total of 48 samples, that is, 3 replicates in 2

treatments at 8 time points were used to generate the dataset.

In the dataset there are 6325 differential expressed genes. Each gene contains 8 time points

records. When the gene expression level is missing in some of the 8 hours records, we assume that

the gene has a very low gene expression level and set the level to 0. To analyze the data, the ratio

between two treatments gene expression levels, namely, relative gene expression level, was used.

The relative gene expression level is

gj =
g′j + 10−6

g′0 + 10−6
,

where j = 0, 6, 12, 18, 24, 36, 48, 72, gj is the relative gene expression level on the time j, and g′j

is the raw gene expression level on the time j. To avoid the denominator of gj equaling 0, 10−6

is added. The Methodology section will introduce both Hypothesis testing with the Benjamini-

Hochberg method, which is a classical method for gene expression analysis, and CRF model for

this dataset.

6

4. METHODOLOGY

4.1. Hypothesis test

The purpose of the hypothesis test is to classify the gene data into two groups. First

group contains the plant genes that have no reaction with the fungus. Second group contains the

plant genes that have relation with the fungus. The classical method that serves this purpose is

hypothesis test. In order to apply the hypothesis test, the log-fold of the gene expression level is

introduced. The log-fold is the nature log of the result calculated from the division of the current

gene expression level by the previous one. There are some basic assumptions for the log-folds:

• the log-folds of an unchanged gene expression level are following NT (0̃,Σ)

• the log-folds of a changed gene expression level are following NT (µ̃,Σ) where maxt |µt| > 0,

t = 1, 2, · · · , T .

Both 0̃ and µ̃ are T dimensional vectors, where there are T + 1 records for each gene including the

record at time 0. Furthermore,

0̃ =

0

0

:

0

T

,

and Σ is the covariance matrix for the distribution. Based on these assumptions, the hypothesis

test will be conducted, that is:

• Ho: maxt |µt| = 0

• Hα: maxt |µt| > 0.

Notice that the hypothesis test only works when the distribution under the Ho hypothesis is known.

However, in this case, the distribution under the null hypothesis (Ho) is an extreme value distri-

bution whose CDF is impossible to be calculated directly. To solve this problem, a simulation for

this extreme value distribution is introduced.

7

4.2. The simulation of the extreme value distribution

To establish a hypothesis test for the maximum log-fold, the extreme value distribution

under the null hypothesis has to be known. However, it is difficult to derive the exact CDF for

the extreme value distribution. This is because the current gene activities can be affected by the

previous one, hence the data cannot be simply treated as independent. Therefore, the extreme

value distribution under the null hypothesis can only be obtained by simulation. This simulation

draws 100,000 random variables from N(0̃,Σ), where:

0̃ =

0

0

0

0

0

0

, and Σ =

1 ρ 0 0 0 0

ρ 1 ρ 0 0 0

0 ρ 1 ρ 0 0

0 0 ρ 1 ρ 0

0 0 0 ρ 1 ρ

0 0 0 0 ρ 1

.

An example of the histogram for the simulated data under the null hypothesis is shown below.

Figure 4.1. The extreme value distribution under the null hypothesis when ρ = 0.05.

After the extreme value distribution under the null hypothesis test is simulated, the critical

value, which is observed from the 95% quantile, is used to determine when to reject the null

8

hypothesis test. To prove that the simulation data under the null hypothesis is correct, a comparison

between the theoretical quantile and the simulated quantile is necessary. To obtain the theoretical

quantile, a theoretical CDF is necessary. Although it is impossible to derive the CDF for the

extreme value distribution in general, it is possible to derive the CDF for the extreme distribution

when all variables are independent.

Assume φ(·) is the PDF of N(0, 1) and xt
iid∼ N(0, 1), where t = 1, 2, ..., 6. The CDF of

maxt |xt| is

F (y) = Pr(max
t
|xt| < y) = [

∫ y

0
2φ(z)dz]6 ,where y ≥ 0.

The value of the theoretical quantile can be easily calculated using the theoretical CDF since

1− α = F (y),

y = Φ−1(
1

2
[1 + (1− α)

1
6]),

where y is the theoretical quantile for the upper αth percentile, and Φ−1(·) is the inverse function

for the CDF of N(0, 1).

The table of the simulation quantiles and the theoretical quantiles for the upper 95%, 97.5%,

and 99% are shown below.

Table 4.1. The quantiles for both simulated and theoretical

upper percentile 95% 97.5% 99%
simulated quantile 2.63 2.86 3.15
theoretical quantile 2.63 2.86 3.14

To visualize the relationship between the distribution of simulated data and the theoretical

distribution, a histogram is presented. The histogram is based on the PDF of y that can be derived

according to the theoretical CDF of y. The PDF of y is shown below.

f(y) = 12φ(y)[

∫ y

0
2φ(z)dz]5 ,where y ≥ 0,

9

and φ(·) is the PDF of N(0, 1).

The histogram of the simulation dataset and the theoretical PDF is shown below.

The extreme value distribution

exp.max

De
ns

ity

0 1 2 3 4 5

0.0
0.2

0.4
0.6

0.8
Theoretical PDF

Figure 4.2. The theoretical PDF and the simulated data

Figure 4.2 show that the theoretical CDF and PDF for the extreme value distribution fit

the simulation value. That is, both quantiles in the table are almost the same, and the theoretical

PDF fits the histogram.

Although the problem for the hypothesis test is solved, the hypothesis test still cannot be

conducted directly. It is because of the family-wise type one error in the hypothesis test cannot

be ignored. The hypothesis test is testing all 6325 genes, which means 6325 tests are conducted.

Because of the large number of the tests, the family-wise type one error is too large to be ignored.

To solve this problem, the false discovery rate, which is used to measure the family-wise type one

error in multiple hypothesis testing, needs to be introduced first.

4.3. False discovery rate

The false discovery rate (FDR) is a well known measurement for the family-wise type one

error. FDR is the ratio between the number of false positives, which means reject the null hypothesis

when the null is true, and the number of rejected null hypotheses. The FDR is defined as

Qe = E(Q) = E

[
R− S
R

]
,

10

where R is the number of rejected null hypotheses and S is the number of true positives, which

means the null hypothesis is rejected when the alternative hypothesis is true. Hence, the FDR

measures the model’s accuracy, the model that contains a smaller FDR is preferred.

Given the definition of FDR, the problem of how to control the family-wise type one error

is transferred into the problem of how to control (minimize) the FDR. This problem is solved by

the Benjamini-Hochberg method.

4.4. Benjamini-hochberg

The purpose of the Benjamini-Hochberg method (B-H) is to control the FDR by controlling

every type one error for the hypothesis tests. In this study, the B-H method is modified since

the distribution of null hypothesis is unknown. Therefore, instead of comparing the p-value with

α, which the significant level for the hypothesis test, maxt |x′t| and the quantile for the simulated

distribution are compared. The steps for this Benjamini-Hochberg method are shown below.

1. Find the xn = maxt |x′t|, t = 1, 2, · · · , T , where x′t is the observed log-fold at time t. xn is the

maximum of the absolute log-fold for gene n, n = 1, 2, · · · , N .

2. Rank xn by ascending order, x(1) < x(2) < ... < x(n).

3. Reject all H(i), where i = 1, 2, ..., k when

x(k) ≥ Crit = quantile(
k

N
α),

where α is the significance level that controls the family-wise error. Usually, α = 0.05. The

critical value is the k
nαth quantile for the simulated distribution.

4. Stop rejecting until x(k) < Crit, where Crit is the k
Nαth quantile for the simulated distribu-

tion.

Up to this point, the hypothesis test for the plant gene expression level is well defined. However,

as mentioned above, this hypothesis test contains two limitations. First, the hypothesis test can

only solve the problem when there are only two possible outcomes for the classification problems.

Second, the hypothesis test needs to have the iid normal distribution assumption for the independent

variables. Hence, when the classification problem tries to separate the observations into three

11

groups, and the independent variables have no assumptions, the hypothesis test is not suitable. In

addition, the hypothesis test only uses maxt |µt| to determine the groups for each gene; Therefore,

it wastes the remaining 6 records. To solve all these problems, the Conditional Random Field is

introduced.

4.5. Conditional random field

Conditional Random Field (CRF) is a Machine Learning model that is designed specifically

for the classification problem. As mentioned in the plant science data chapter, each gene expression

level has 8 records. Without reducing the 8 dimensional instance into 1 a dimensional instance,

the CRF model is applied. The CRF model contains two major functions, the feature function and

the normalization function. To construct this model, the feature function fl(x
′
ij , y), needs to be

defined first. For this study, the feature function is defined as:

fl(x
′
ij , y) = I{y=m}x

′
ij ,

where l = 1, 2, 3, y is the label of the gene, x′ij is the ratio between the original relative gene

expression level on time i, (i = 1, 2, · · · , 8), and the mutant relative gene expression level on time

j, (j = 1, 2, · · · , 8), that is,

x′ij =
gi.original
gj.mutant

,

where i ≥ j. There are 36 different combinations for the ratio. Returning to the feature function,

I{y=m} is the indicating function such that,

I{y=m} =

1 if y = m

0 if y 6= m

,

and m is the label that indicates the relation between the plant gene and the specific fungus gene

where:

• m = 0: No relation between the plant gene and the specific fungus gene,

• m = 1: Positive relation between the plant gene and the specific fungus gene, and

• m = −1: Negative relation between the plant gene and the specific fungus gene.

12

We will define no relation, positive relation, and negative relation in the data analysis chapter.

To simplify the notation for the 36 combinations of x′ijs, we denoted x′ij into xi. Hence, the

feature function fl(x
′
ij , y) above is changed to

fl(xi, y) = I{y=m}xi, where i = 1, 2, · · · , 36.

After defining the feature function, the normalization function is well defined as

Z(x) =
∑
y

exp{
∑
i,l

θi,lfl(xi, y)},

where θi,l are the coefficients for each xi, i = 1, 2, · · · 36. The footnote l = 1, 2, 3 corresponding to

the m = 0, 1,−1, which is the possible outcome of y. Z(x) is the normalization function, adding

Z(x) can promise
∑

y p(y|x) = 1, where
∑

y means the sum of all the possible outcomes for y. Since

both the feature and normalization functions are introduced, the CRF model is completed, that is,

p(y|x) =
1

Z(x)
exp{

∑
i,l

θi,lfl(xi, y)} =
1

Z(x)
exp{

∑
i,l

θi,lI{y=m}xi}.

There are two steps to determine the label for each gene via p(y|x). First, the training step.

In this step, the parameters of of p(y|x), which are θi,ls will be estimated by the training data.

After estimating the θi,ls, the model can be applied to the second step, testing step. In the testing

step, for each gene, the label that is determined by the CRF model is compared to the label that

is well known. However, there are several difficulties for each steps. The next section will discuss

the first step (i.e. training step) for the CRF.

4.6. CRF training

The major problem in the first step is how to estimate the θi,ls. In this study, maximum

likelihood is applied. That is, instead of directly estimating θi,ls in p(y|x), we maximize the log-

likelihood, l(θ). In this study, the log-likelihood is:

l(θ) =

n∑
k=1

log p(y(k)|x(k)) =

n∑
k=1

∑
i,l

θi,lfl(x
(k)
i , y(k))− logZ(x(k))

 ,

13

where x
(k)
i and y(k) are the ratio and the label for gene k, respectively. Furthermore,

θ = (θ1,1, θ2,1, · · · , θ36,1, θ1,2, · · · θ36,2, θ1,3 · · · , θ36,3)

is a 108 dimensional vector. As mentioned in the introduction chapter, since the number of pa-

rameters for CRF is large, estimating the parameters via traditional computational methods is not

practical. Hence, gradient descent is applied in order to maximize the log-likelihood function.

The gradient descent needs to compute the partial derivatives for l(θ) with respect to each

θi,l. The main difficulty of computing the log-likelihood and the derivative for the log-likelihood

is computing Z(x(k)). This is because, for the general linear-chain CRF, y(k) is not required to

be independent. As a result, instead of being a one dimension number (i.e. a scalar), y(k) is a n

dimension vector, where n ≥ 2. Therefore, it is very difficult to permute all the possible outcomes

for y(k), which is a required process to compute Z(x(k)). However, in this study, we assume y(k)s

are independent, hence, the difficulty of computing Z(x(k)) is eliminated. Therefore, we only need

to focus on the gradient descent to maximize l(θ).

4.6.1. Gradient descent

As mentioned above, one of the most common methods to maximize l(θ) is gradient descent.

Gradient descent is a first-order iterative algorithm to find the minimum of the objective function.

Assuming the objective function f(x) : R → R is differentiable and the global minimum

can be achieved. Then, by applying the update rule:

x(t+1) = x(t) − s(t)f ′(x(t)),

where f ′(x(t)) is the first derivative of f(x) at point x(t), t is the current iteration, and s(t) is the

step length at time t, the minimum of f(x) can be achieved after T th iterations, that is:

f(x(T)) = min f(x), and f ′(x(T)) = 0.

14

In this study, the objective function is l(θ), to maximize l(θ) is equivalently to minimize −l(θ),

hence, the objective function for gradient descent in this study is :

−l(θ) =
n∑
k=1

logZ(x(k))−
∑
i,l

θi,lfl(x
(k)
i , y(k))

 .

Furthermore, the first derivative of −l(θ) with respect to θi,l is:

−∂l(θ)
∂θi,l

=
n∑
k=1

(
x
(k)
i p(y = m|x(k), θi,l)− I{y=m}x

(k)
i

)
,

where x(k) = (x
(k)
1 , x

(k)
2 , · · · , x(k)36), i = 1, 2, · · · , 36, l = 1, 2, 3 and

p(y = m|x(k), θi,l) =
1

Z(x)
exp{

∑
i,l

θi,lI{y=m}xi},

with Z(x) =
∑

y exp{
∑

i,l θi,lfl(xi, y)} and m as the label corresponds to l. Therefore, the update

rule for θi,l is:

θ
(t+1)
i,l = θ

(t)
i,l − s

(t)
n∑
k=1

(
x
(k)
i p(y = m|x(k), θ(t)i,l)− I{y=m}x

(k)
i

)
.

Notice that when m only has two outcomes, that is, m = 0, 1, l = 1, 2, and i = 1, 2, · · · , I, the first

derivatives of l(θ) with respect to θi,1 and θi,2 are:

−∂l(θ)
∂θi,1

=
n∑
k=1

(
x
(k)
i p(y = 0|x(k), θ(t)i,1)− I{y=0}x

(k)
i

)
−∂l(θ)
∂θi,2

=
n∑
k=1

(
x
(k)
i p(y = 1|x(k), θ(t)i,2)− I{y=1}x

(k)
i

)
=

n∑
k=1

(
x
(k)
i [1− p(y = 0|x(k), θ(t)i,1)]− I{y=1}x

(k)
i

)
=

n∑
k=1

(
(x

(k)
i − I{y=1}x

(k)
i)− x(k)i p(y = 0|x(k), θ(t)i,1)

)
=

n∑
k=1

(
I{y=0}x

(k)
i − x

(k)
i p(y = 0|x(k), θ(t)i,1)

)
= −

(
∂ − l(θ)
∂θi,1

)
.

15

Hence, the update rule for l(θ) when m = 0, 1 is

θ
(t+1)
i,1 = θ

(t)
i,1 − s

(t)−∂l(θ)
∂θi,1

θ
(t+1)
i,2 = θ

(t)
i,2 + s(t)

−∂l(θ)
∂θi,1

Therefore, when the initial value for θi,l = 0, where ∀i ∈ {1, 2, · · · I} and ∀l ∈ {1, 2}, we have

θ
(T)
i,1 = −θ(T)i,2 , ∀i = 1, 2, · · · , I

after T several iterations.

After computing the first derivative, the step-size function (i.e. s(t)) need to be defined.

The classical sequence of s(t) requires two criteria [Kiefer and Wolfowitz, 1952]

∑
t s

(t) =∞ and
∑

t(s
(t))2 <∞

These two criteria imply that s(t), as an infinite dimensional vector, must belong to l2 norm but

cannot belong to l1 norm. Therefore, s(t) must converge as t → ∞ but cannot converge very fast.

For a more practical reason, the sequence of s(t) is defined as:

s(t) =
1

p(t0 + t)
,

where p and t0 are two user-defined constant numbers [Bottou, 2010]. Hence, Considering both

theoretical and the practical reasons, s(t) in this study is defined as

s(t) =

√
1

108(0.005 + t)
.

Therefore, s(t) will decrease when the number of iterations increases, which ensures that the vector

belongs to l2 norm. Furthermore, the square root will ensures s(t) can converge in a not very fast

way.

After both the step-size function and the first derivative of l(θ) are known, the gradient

descent for maximizing the l(θ) is well defined. However, there is another difficulty to estimate θi,l

16

for CRF. As shown above, the CRF model is defined as:

p(y|x) =
1

Z(x)
exp{

∑
i,l

θi,lfl(xi, y)},

where

Z(x) =
∑
y

exp{
∑
i

θi,lfl(xi, y)}.

Apply the equation for the feature function fl(xi, y) = I{y=m}xi, we have:

p(y|x) =
exp{

∑
i,l θi,lI{y=m}xi}

exp{
∑

i θi,1xi}+ exp{
∑

i θi,2xi}+ exp{
∑

i θi,3xi}
.

Let θa,1 = θa,2 = θa,3 = C for some a ∈ {1, 2, · · · , 36} and C ∈ R, we have:

p(y|x) =
exp{

∑
i,l θi,lI{y=m}xi}

exp{
∑

i θi,1xi}+ exp{
∑

i θi,2xi}+ exp{
∑

i θi,3xi}

=
exp{

∑
i∈/a,l(θi,lI{y=m}xi) + (θa,1I{y=−1} + θa,2I{y=0} + θa,3I{y=1})xa}

exp{
∑

i∈/a θi,1xi + θa,1xa}+ exp{
∑

i∈/a θi,2xi + θa,2xa}+ exp{
∑

i∈/a θi,3xi + θa,3xa}

=
exp{

∑
i∈/a,l(θi,lI{y=m}xi) + (CI{y=−1} + CI{y=0} + CI{y=1})xa}

exp{
∑

i∈/a θi,1xi + Cxa}+ exp{
∑

i∈/a θi,2xi + Cxa}+ exp{
∑

i∈/a θi,3xi + Cxa}

=
exp{

∑
i∈/a,l(θi,lI{y=m}xi) + Cxa}

exp{
∑

i∈/a θi,1xi + Cxa}+ exp{
∑

i∈/a θi,2xi + Cxa}+ exp{
∑

i∈/a θi,3xi + Cxa}

=
exp{

∑
i∈/a,l(θi,lI{y=m}xi)}

exp{
∑

i∈/a θi,1xi}+ exp{
∑

i∈/a θi,2xi}+ exp{
∑

i∈/a θi,3xi}
,

where /a = {1, 2, · · · , a− 1, a+ 1, · · · , 36}. Hence, when θa,1 = θa,2 = θa,3 = C, the observation xa

is not useful in the model. Therefore, in order to reduce the dimension, we need to force C = 0.

Therefore, when θa,1 = θa,2 = θa,3 appears, we have

θa,1 = θa,2 = θa,3 = 0.

To further reduce the number of dimensions for θ, we set a baseline for the model. That is, let

θi,1 = 0, i = 1, 2, · · · , 36. θi,1 is the parameters when y = 0. Hence, p(y|x) will be changed into

p(y|x) =
exp{

∑
i,l θi,lI{y=m}xi}

1 + exp{
∑

i θi,1xi}+ exp{
∑

i θi,2xi}

17

where l = 1, 2 with respect to m = −1, 1. That is, θi,1 represents the parameter with respect to xi

and y = 1, and θi,2 represents the parameter with respect to xi and y = −1. These actions above

are called dimensionality reduction. To achieve the goal, Least Absolute Selection and Shrinkage

Operator (LASSO) is introduced.

4.7. LASSO

As mentioned above, LASSO can reduce the dimensions of θ, that is, force

θa,1 = θa,2 = θa,3 = 0

when θa,1 = θa,2 = θa,3 = C, for some a ∈ {1, 2, · · · , 36} and C ∈ R. The LASSO method used

l1-norm and Lagrange multiplier to achieve the goal. That is, instead of only minimizing −l(θ), we

minimize

L(θ) = −l(θ) + λ ‖θ‖1 ,

where θ is the 108-dimensional vector (as 3× 36 = 108) with θi,l as its elements, λ ∈ [0,∞) is the

Lagrange multiplier, and ‖·‖1 is the norm-1 that is defined as:

‖θ‖1 =
∑
i,l

|θi,l|.

Notice that when λ is large enough, the norm-1 penalty will force θ = 0, where 0 = (0, 0, 0 · · · , 0)

is a 108-dim vector. Hence, by applying an appropriate λ, the CRF model can provide more

efficient and less confusing information about the correlation between the label y and xi, where

i = 1, 2, · · · , 36. Because of the duality of the Lagrange form, minimizing L(θ) is equivalent to

solving the problem of

minθ −l(θ)

subject to ‖θ‖1 ≤ t, for some t ∈ [0,∞).

Since −l(θ) and the norm function are both convex functions, it implies that a unique solution for

the problem exists.

However, there are mainly two difficulties when LASSO is applied. The first problem is,

assuming the λ is given, the Lagrange function (L(θ)) is not differentiable when θi = 0, for some

18

i ∈ {1, 2, · · · , 108}. As a result, the gradient descent method, which is mentioned above, can not

be applied directly. To solve the problem, proximal gradient descent is introduced.

Proximal gradient descent is a general case for the projected gradient method. The idea

is: First, use traditional gradient descent to find the solution for −l(θ), which is a differentiable

function, then, use the project function to project the result onto the restrict function. In this case,

the restrict function is the norm-1 function. The proximal gradient descent can effectively avoid

the problem of non-differentiable function L(θ). The project function for this study is defined as:

Proxτ (t)(z
(t)
i,l) = sign(z

(t)
i,l)(|z(t)i,l | − τ

(t))+,

where

z
(t)
i,l = θ

(t)
i,l − s

(t)
n∑
k=1

(
x
(k)
i p(l|x(k), θ(t)i,l)− I{y=m}x

(k)
i

)
,

and τ (t) = λs(t). At this point, the proximal gradient descent is well defined, and the update rule

can be rewritten as:

1. z
(t)
i,l = θ

(t)
i,l −

√
1

108(0.005+t)

∑n
k=1

(
x
(k)
i p(l|x(k), θ(t)i,l)− I{y=m}x

(k)
i

)
2. θ

(t+1)
i,l = sign(z

(t)
i,l)(|z(t)i,l | − λ

√
1

108(0.005+t)
)+,

where λ is the Lagrange multiplier,

sign(x) =

1 x > 0

0 x = 0

−1 x < 0

, and (x)+ = max{0, x}.

The next difficulty is the choice of λ. To solve the problem, Pathwise Coordinate Descent (PCD)

is applied. That is, first, select a λ large enough, say λ0, so that the result of proximal gradient

descent, θ(0) = 0. Then, reduce the λ a little bit, say λ1, re-apply the proximal gradient descent

using the result for the previous proximal gradient descent, (i.e. θ(0)) as the initial value to apply

PCD again. After several iterations, find the best λ.

By applying both Proximal Gradient Descent and Pathwise Coordinate Descent, the LASSO

method is complete. Hence, the Conditional Random Field can now, be applied. Up to this point,

the CRF with LASSO regulation can be computed. To test the accuracy of the CRF, a numeric

19

experiment is necessary. The numeric experiment will discuss the results under two different types

of data.

20

5. NUMERIC EXPERIMENT

5.1. Binary response data

To demonstrate the efficiency of classical method and the CRF, the simulation under two

possible outcomes situation was conducted. The gene simulation included 5 plants. Each plant

contained 500 genes. There were 3 different scenarios in the Experiment. First, 10 out of 500 genes

genes were changed by the fungus. Second, 250 out of 500 genes were changed. Last, 490 out of

500 genes were changed by the fungus.

The simulation assumed that these genes’ activities were observed 7 times during the ex-

periment period and the gene activity data was read and qualified into gene expression level by

CUFFLINK and CUFFDIFF [Trapnell et al., 2012]. The dataset selected out the maximum log-

fold from all the log-folds of the gene’s expression level. The log-fold was the nature log of the result

that calculated by dividing the previous gene expression level from the current one. In addition, the

simulation assumes that the log-fold was following a normal distribution (N6(0̃,Σ)) when the gene

cannot pass the threshold. Otherwise, the log-fold was following a normal distribution (N6(µ̃,Σ)),

where maxt |µt| > 0. The Σ of both distributions was the covariance matrix that

Σ =

1 ρ 0 0 0 0

ρ 1 ρ 0 0 0

0 ρ 1 ρ 0 0

0 0 ρ 1 ρ 0

0 0 0 ρ 1 ρ

0 0 0 0 ρ 1

,

where ρ is set to be 0.5.

21

The following plots are the log-fold of those 10 genes that are changed by the fungus.

Figure 5.1. The changed genes’ expression level

The plots have 5 different situations, and each situation has different replications depends

on the scenarios, which are mentioned above. Moreover, to simulate the sensitive of the model, the

magnitude, which is set from 1 to 3 by 1, are also added in the maximum log-fold dataset.

The dataset that simulated based on the setting above is used to test the efficiency of the

CRF.

5.1.1. The result

After introducing the data simulation situation, both Benjamini-Hochberg method (B-H)

and CRF are applied. This binary numeric experiment focus on comparing two models’ accuracy

with respect to different scenario and different magnitude of the data.

22

In this numeric experiment, the B-H method used α = 0.05 and the CRF used p(y =

1|x) > 0.65 as criteria to determine and label the changed genes. The table below shows the result

generated from the binary numeric experiment using both B-H method and CRF method.

Table 5.1. Binary numeric experiment

Scenario (changed/total) Magenitude
B-H CRF

Reject Success FDR Reject Success FDR λ

10/500

1 21 4 0.810 3 1 0.667 0.987
2 25 10 0.600 5 5 0.000 7.562
3 20 10 0.500 5 5 0.000 6.576

250/500

1 104 96 0.077 297 240 0.192 12.821
2 256 244 0.047 293 250 0.147 12.493
3 258 250 0.031 274 250 0.088 12.821

490/500

1 224 224 0.000 476 472 0.008 12.821
2 482 482 0.000 494 490 0.008 12.821
3 490 490 0.000 490 490 0.000 10.849

There are 4 conclusions can be draw from table 5.1. First, in the scenario of 10 out of 500

genes are changed by fungus, the FDRs of CRF are lower than the FDRs of B-H method under

all 3 magnitudes. However, B-H detected all 10 genes whereas the CRF detected only 5 when the

magnitude set to 2 and 3.

Second, The B-H methods performs better than CRF when the scenario was set to 250

out of 500 genes are changed. However, CRF detected all 250 changed genes when the magnitude

equals 2.

Third, When the scenario was set to 490 out of 500 genes are changed, both methods had

a good performs. Moreover, CRF detected all 490 genes when magnitude equals 2 and 3.

Last, when magnitude increased, the FDR for both B-H method and CRF decreased.

In summary, when the data is under a normal scenario, that is, greater than 50% of the

genes can be detected as changed genes, the B-H method has a stable and relatively efficient

performance. However, when it comes to a more extreme case, the CRF outperforms the classical

method. Furthermore, although the CRF did not have a lower FDR comparing with B-H method

for the normal scenarios, it still has a relatively accurate predictions.

The purpose of this binary numeric experiment is to compare the efficiency of the traditional

classification method for the gene expression analysis (i.e. B-H method) and the CRF. However,

23

since the purpose of the study is to classify the gene in the plant genome into three groups, the

ternary numeric experiment is necessary.

5.2. Ternary response data

As mentioned above, the final goal is to separate the gene into three groups (positive

reaction, no reaction, and negative reaction) using CRF. In order to estimate the accuracy of the

CRF, the simulation study is very necessary. The dataset of the simulation is conducted in a

scenario of a 1000 observations with 100 features. The observations is labeled into three groups: 0,

1 and -1. The first 5 features of the observation determines the label. Therefore, the rest of 95-dim

features are useless.

5.2.1. Label 1

For the observation of label 1, we have

x1 ∼ U(0.075, 1.025), x2 ∼ N(4x1, 0.0252), x3 ∼ U(x2 + 1.075, x2 + 2.025),

x4 ∼ N(7, 0.052), x5 = x4 + U(0.075, 1.025)

For the other dimensions of the observation, we have

(x6, x7, x8) ∼ N3((6, 7, 8),Σ0) and (x15, x16, · · · , x100) ∼ N86(8,Σ1),

8 are vectors, in which each element is 8. The covariance matrix

Σ0 =

0.05 0.025 0.01

0.025 0.05 0.01

0.01 0.01 0.05

 and Σ1 = diag(1)86×86.

Letting the rest of 95 dimensions independent from the first 5 dimensions will let the

parameters of these dimensions equal to 0. Notes that, the mean of the first 5 dimensions is

increasing, this is because the label 1 is simulating the positive affect for the gene expression.

5.2.2. Label 0

For the observation of label 0, we have

x1 ∼ N(1, 0.052), x2 ∼ N(2, 0.0252), x3 ∼ U(x2 − 0.025, x2 + 2.025),

x4 ∼ U(x3 − 1.025, x3 − 0.075), x5 ∼ N(x4 + 1, 0.052)

For the other dimensions of the observation, we have

24

x6 ∼ U(7, 8), (x7, x8, x9) ∼ N3((7, 8, 9),Σ2), (x15, x100) ∼ N86(8,Σ1),

where 8 are vectors, in which each element is 8. The covariance matrix

Σ2 =

0.05 0.01 0.01

0.01 0.05 0.01

0.01 0.01 0.05

Again, letting the rest 95 dimensions independent from first 5 dimensions will let the parameters

of these dimensions equal to 0. Notes that, the mean of the first 5 dimensions is neither increasing

nor decreasing, this is because the label 0 is simulating the no reaction for the gene expression.

5.2.3. Label -1

For the observation of label -1, we have

x1 ∼ N(8, 0.052), x2 ∼ N(x1 − 2, 0.0252), x3 ∼ U(3.075, 4.025),

x4 ∼ U(x3 − 1.025, x3 − 0.075), x5 ∼ N(x4 − 2, 0.0252)

For the other dimensions of the observation, we have

x6 ∼ U(7, 8), (x7, x8, x9) ∼ N3((7, 8, 9),Σ2), (x15, x100) ∼ N86(8,Σ1),

where the covariance matrix

Σ2 =

0.05 0.01 0.01

0.01 0.05 0.01

0.01 0.01 0.05

Notes that, the mean of the first 5 dimensions is decreasing, this is because the label 0 is simulating

the negative effect for the gene expression.

5.2.4. Additional setting

For x9 in label 0, x10, · · · , x14, we designed as following:

• x9 ∼ N(9, 0.052) in label 0.

• x10 ∼ N(x9, 0.052).

• x12 ∼ U(x11 − 0.025, x11 + 0.025).

• x14 ∼ U(x13+x15−0.052 , x13+x15+0.05
2).

25

• x11, x13, x14 ∼ N(8, 0.052)

Moreover, Similar to the scenario settings for the binary numeric experiment, the ternary numeric

experiments contains 3 different scenarios.

1. 20 out of 1000 genes are changed by the fungus

• 10 out of 1000 observations have 98.5% chance to be label 1.

• 10 out of 1000 observations have 97.6% chance to be label -1.

• 980 out of 1000 observations have 94.8% chance to be label 0.

2. 500 out of 1000 genes are changed by the fungus

• 250 out of 1000 observations have 98.5% chance to be label 1.

• 250 out of 1000 observations have 97.6% chance to be label -1.

• 500 out of 1000 observations have 94.8% chance to be label 0.

3. 980 out of 1000 genes are changed by the fungus

• 490 out of 1000 observations have 98.5% chance to be label 1.

• 490 out of 1000 observations have 97.6% chance to be label -1.

• 20 out of 1000 observations have 94.8% chance to be label 0.

26

The following plot is the mean of 100-dim features for label 0, label 1, and label -1.

0 20 40 60 80 100

5
10

15

dimension

x

label 1

label 0

label −1

Figure 5.2. Ternary response data

In figure 5.2, the black line is the mean of 100-dim features labeled as 1. This line is

simulating the positively changed genes. The red line is the mean of 100-dim features labeled as

0, which is simulating the unchanged genes. The blue line is the mean of 100-dim features labeled

as -1, which is simulating the negatively changed genes. As the plot shows, after 5th dimension,

the features tends to be alike, therefore, the feature after 5th dimension are useless. The CRF

model results is generated under this simulation setting. In order to compare the result with some

classical model, the Generalized Linear Model (GLM) under the assumption of multinomial is used.

5.2.5. Result

For the simulation, The λ in CRF is designed in the range from 500 to 0.01 since when

λ = 500, θi,l ≈ 0, ∀i = 1, 2, · · · , 100,∀l = 1, 2.

To illustrate the efficiency of the CRF model, the classical generalized linear model (GLM)

under the assumption of multinomial is used. There are mainly 2 aspects to analyze, the accuracy

prediction of the label, and l1 norm between the estimator and the true parameter.

27

5.2.6. Accuracy prediction of the label

The accuracy report for the model, that is, the proportion of accurately predict the obser-

vation when the model labels the observation as 1 or -1. There are two comparisons for this aspect:

All CRF using different λ values, and the accuracy between the best CRF and the GLM model.

First, All CRF using different λ values. The following table shows the result under the

scenario 20 out of 1000 genes are changed by fungus. The λ for the CRF model is in between 4.274

and 2.960.

Table 5.2. CRF model for the scenario 20 out of 1000

λ 4.274 3.946 3.617 3.288 2.960

n′1 10 10 10 10 10
n1 9 9 9 9 9
n′2 7 0 10 10 10
n2 7 0 10 10 10

r1 0.900 0.900 0.900 0.900 0.900
r2 1.000 NA 1.000 1.000 1.000

FDR 0.059 0.100 0.050 0.050 0.050

This table reports the result when λ is in a range from 2.960 to 4.274. The n′1 and the n′2

represent the number of data that are labeled as 1 and −1 by the CRF respectively and the n1 and

the n2 are the number of correct reports within those reports. r1 and r2 are the true ratio for label

1 and label -1 respectively, which are

r1 =
n′
1
n1

and r2 =
n′
2
n2

.

Lastly, the FDR is computed by the formula

FDR = 1− n1+n2
n′
1+n

′
2

The table shows that when λ is in between 2.960 and 3.617, the CRF gives the best result. That is,

within 10 observations reported as label 1, 9 of them are correct. Also, 10 out of 10 observations

reported as -1 are correct. For the rest λ, there are two problems, either no report for label 1 and

label -1 or shows higher FDR.

As mentioned in the methodology LASSO section, when λ is increasing, the estimator

will closer to 0, hence, will have more 0 dimensions. For this simulation, since the CRF with

28

2.960 ≤ λ ≤ 3.617 have the same result, the model with higher λ is more efficient (use less

dimensions to predict the accurate result). Hence, the CRF with λ = 3.617 is selected.

The next comparison is between CRF and GLM. The following table shows the result:

Table 5.3. CRF and GLM for the scenario 20 out of 1000

Model n′1 n1 n′2 n2 FDR

CRF λ = 3.617 10 9 10 10 0.05
GLM 47 0 19 0 1

Table 5.3 implies that the CRF is more accurate since the FDR for CRF is 0.05 whereas

the FDR for GLM is 1.

The next table shows the result of CRF for the scenario that 500 out of 1000 genes are

changed by the fungus.

Table 5.4. CRF model for the scenario 500 out of 1000

λ 89.752 76.932 64.111 51.291 38.471

n′1 198 240 250 250 250
n1 184 225 234 234 234
n′2 0 10 250 250 250
n2 0 8 219 219 219

r1 0.929 0.938 0.936 0.936 0.936
r2 NA 0.800 0.876 0.876 0.876

FDR 0.071 0.068 0.094 0.094 0.094

Similar to the first scenario, λ = 64.111 was selected because CRFs with 38.471 ≤ λ ≤

64.111 has the smallest FDR with the largest λ. The next table shows the result for the comparison

between CRF and GLM.

Table 5.5. CRF and GLM for the scenario 500 out of 1000

Model n′1 n1 n′2 n2 FDR

CRF λ = 64.111 250 234 250 219 0.094
GLM 246 197 278 214 0.216

29

Table 5.5 implies that the CRF has a more accurate prediction since it contains the smallest

FDR (FDR = 0.094).

The next table shows the result of CRF for the scenario that 980 out of 1000 genes are

changed by the fungus.

Table 5.6. CRF model for the scenario 980 out of 1000

λ 141.033 128.213 115.392 102.572 89.752

n′1 490 490 490 490 490
n1 460 460 460 460 460
n′2 308 478 490 490 490
n2 258 420 431 431 431

r1 0.939 0.939 0.939 0.939 0.939
r2 0.838 0.879 0.880 0.880 0.880

FDR 0.100 0.091 0.091 0.091 0.091

Table 5.6 implies that when λ is in the range of 89.752 ≤ λ ≤ 128.213, the FDR for CRF

corresponds to the λ are the same. Moreover, when λ = 115.392, r2 reached to the highest value

(i.e. 0.880). Hence, the CRF with λ = 115.392 was selected in the study.

The next table is the comparison result between CRF with λ = 115.392 and GLM

Table 5.7. CRF and GLM for the scenario 980 out of 1000

Model n′1 n1 n′2 n2 FDR

CRF λ = 115.392 490 460 490 431 0.091
GLM 408 382 389 358 0.072

Unlike previous two scenarios, the GLM in the scenario 980 out of 1000 generated a more

accurate result. That is, the FDR in GLM is smaller than the FDR in CRF, (0.072 < 0.091).

Two conclusions can be drawn when combining all three scenarios together. First, the

FDR in GLM largely decreased when the ratio of changed gene increased. (1 ≥ 0.216 ≥ 0.072).

Furthermore, the FDR for GLM in the last scenario is less than the one for CRF. Hence, the GLM

is suitable for the data in which there are significant proportion of changed genes. Second, the CRF

outperformed GLM when the ratio of changed/total genes is small. In addition, although the FDR

30

for the GLM is smaller than the one for CRF in the last scenario, the difference between these two

FDR is not that significant (0.019). Hence, the CRF is suitable for overall scenarios. The next

important study for the model is to demonstrate the effectiveness of LASSO penalty.

5.2.7. l1 norm between the estimator and the true parameter

To determine the effectiveness of the LASSO, the l1 norm distance between the true pa-

rameter and the estimated parameter is used. As discussed in the previous section, the comparison

is between the CRF and the GLM model. The following table shows the result.

Table 5.8. l1 norm between GLM and CRF

Scenario (changed/total) GLM CRF

20/1000 170502.800 140.357
500/1000 456889.900 141.258
980/1000 3686.477 140.578

The large difference of l1 norm between GLM and CRF is expected. For example, under

the first scenario, the l1 distance between the true parameter and the CRF is 140.357, whereas

the distance between the true parameter and the estimator of GLM model is 170502.800. The

large different between these two distance is because the true parameter only have 5 dimensions

of the data are not equal to 0. The estimator of CRF parameter contains 65 dimensions that are

estimated as 0. On the other hand, GLM assumed 31 dimensions are not significantly equals 0,

which leads to a higher l1 distance.

5.3. Numeric experiment summary

By analyzing these two data scenarios, which are binary and ternary response data, there

are 2 conclusions. First, the CRF was outperformed both the Hypothesis test with B-H method and

the GLM under the extreme data scenario. Although those classical method were more accurate

when the changed-total ratio is large, the CRF still had a relatively good result. Second, the CRF

with LASSO effectively reduced the dimensions of the parameters so that the model can use less

variable to make a relatively accurate prediction.

31

Since the numeric experiment provided enough evidence of the usefulness and the effec-

tiveness of CRF with LASSO, the CRF with LASSO can now be applied to the plant science

dataset.

32

6. CRF WITH PLANT SCIENCE DATA

6.1. Prepare the data

After demonstrating the effectiveness of the CRF, the model can be applied to the plant

science dataset, whose details are introduced in the plant science data section. Before applying the

model, there are two problems that need to be solved. First, the range of the data is too large (from

4.5 × 10−11 to 1.4 × 1010). Because of the range problem, the CRF can not be applied directly.

Hence, it is very important to shrink the range of the data to a reasonable size. In this study, the

range was shrank in to the range from 8.2× 10−17 to 25000.

In addition to the range problem, the second problem is, this data have no training dataset,

that means, we need to manually label some of the observations to create a training dataset.

The problem of the manually labeling is that it is very time consuming and can only label these

observations by visually check the observation’s plot. Because of this, the training data was not

totally certified by the plant science, and the result can only be used as a suggestion for the future

analysis. We selected 200 observations and labeled it as following:

• Label 0: The gene expression have no significant different pattern in both environments,

which are original isolate and mutant isolate.

• Label 1: The gene expression does not change in the mutant isolate environment and have

changes in the original one.

• Label -1: The gene expression does not change in the original isolate environment and have

changes in the mutant one.

Finally, 171 out of 200 genes were labeled as 0, 19 out of 200 genes were labeled as 1, and 10 out

of 200 genes were labeled as -1.

33

The plot for one example of the raw training data that is labeled as 0 is shown below.

1 2 3 4 5 6 7 8

0
2

4
6

8

XLOC_000765

or
ig

in
al

1 2 3 4 5 6 7 8

0
1

2
3

4
5

6

XLOC_000765

m
ut

an
t

Figure 6.1. Gene labeled as 0

Figure 6.1 shows that if the gene shows no significant different pattern between different

environments, then the gene is labeled as 0.

The plot for one example of the raw training data that is labeled as 1 is shown below.

1 2 3 4 5 6 7 8

0e
+

00
1e

+
08

2e
+

08
3e

+
08

4e
+

08
5e

+
08

XLOC_000165

or
ig

in
al

1 2 3 4 5 6 7 8

0.
6

0.
8

1.
0

1.
2

1.
4

XLOC_000165

m
ut

an
t

Figure 6.2. Gene labeled as 1

Figure 6.2 shows that if the gene shows activities in original isolate environment and shows

no activities in mutant isolate environment, then the gene is labeled as 1.

34

The plot for one example of the raw training data that is labeled as -1 is shown below.

1 2 3 4 5 6 7 8

0.
6

0.
8

1.
0

1.
2

1.
4

XLOC_001272

or
ig

in
al

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

XLOC_001272

m
ut

an
t

Figure 6.3. Gene labeled as -1

Figure 6.3 shows that if the gene shows activities in mutant isolate environment but shows

no activities in original isolate environment, then the gene is labeled as -1.

The training step of CRF used these 200 genes and their gene expression ratio, which is

introduced in the plant science data section, as the training data to train the CRF model, and the

training data ratio plot is shown below.

0 5 10 15 20 25 30 35

0
10

20
30

40
50

dimension

x

label 0

label 1

label −1

Figure 6.4. The training data ratio plot

35

Figure 6.4 shows 3 ratio patterns with respect to three different labels. Although these

patterns showed less significant difference comparing with the simulation data, the CRF model

with λ = 0.001 still can classify the data with a reasonable low FDR. The following table is the

FDR ratio for the CRF model with different λ.

Table 6.1. The FDR for different λ

λ 51.283 38.462 25.642 12.821 0.001

n′1 1 1 1 1 1
n1 1 1 1 1 1
n′2 0 0 0 1 3
n′2 0 0 0 0 2

r1 1 1 1 1 1
r2 NA NA NA 0 0.67

FDR 0 0 0 0.5 0.25

Table 6.1 shows that the only useful CRF is when λ = 0.001 as the rest of λ cannot

accurately label -1. In addition, the FDR for the CRF when λ = 0.001 is 0.25, which is acceptable.

When λ = 0.001, the CRF can correctly detect one gene labeled as positive, 2 out of 3 genes labeled

as negative. After determined the CRF model, the model was applied to label the rest of the data.

6.2. Data result summary

The CRF model with λ = 0.001 was applied to the rest 6125 genes. Within these data, the

model labeled 41 genes as positively affected. 263 genes as negatively affected. The plant science

has more interest in the positively affected gene since these genes have a relatively high activities

under the environment of original isolation, which is highly virulent on Bowman.

Although the training data were not totally certified by plant science, the result for the data

analysis still can provide some research directions for plant science. 28 out of 41 are certified by

visually check. 3 out of 41 should belongs to negative group, and 10 out of 41 cannot be certified by

visually check. Up to this point, this study suggest that these 28 genes should be further studied,

and 10 genes that cannot be certified by visually check also can be studied. The result can be found

in the appendix.

36

REFERENCES

[Ammar et al., 2014] Ammar, W., Dyer, C., and Smith, N. A. (2014). Conditional random field

autoencoders for unsupervised structured prediction. In Ghahramani, Z., Welling, M., Cortes,

C., Lawrence, N. D., and Weinberger, K. Q., editors, Advances in Neural Information Processing

Systems 27, pages 3311–3319. Curran Associates, Inc.

[Ash and Doleans-Dade, 1999] Ash, R. B. and Doleans-Dade, C. A. (1999). Probability and Measure

Theory. Harcourt/Academic Press, second edition.

[Bottou, 2010] Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent.

In in COMPSTAT.

[Casella and Berger, 2001] Casella, G. and Berger, R. (2001). Statistical Inference. Duxbury Re-

source Center.

[Ciuperca, 2016] Ciuperca, G. (2016). Adaptive lasso model selection in a multiphase quantile

regression. Statistics, 50(5):1100–1131.

[Cui and Wang, 2016] Cui, C. and Wang, D. (2016). High dimensional data regression using lasso

model and neural networks with random weights. Inf. Sci., 372:505–517.

[Hastie et al., 2015] Hastie, T., Tibshirani, R., and Wainwright, M. (2015). Statistical Learning

with Sparsity: The Lasso and Generalizations. Chapman & Hall/CRC.

[Izenman, 2008] Izenman, A. J. (2008). Modern Multivariate Statistical Techniques: Regression,

Classification, and Manifold Learning. Springer Publishing Company, Incorporated, 1 edition.

[J Motyer et al., 2011] J Motyer, A., McKendry, C., Galbraith, S., and Wilson, S. (2011). Lasso

model selection with post-processing for a genome-wide association study data set. BMC pro-

ceedings, 5 Suppl 9:S24.

[Kiefer and Wolfowitz, 1952] Kiefer, J. and Wolfowitz, J. (1952). Stochastic estimation of the

maximum of a regression function. The Annals of Mathematical Statistics, 23.

37

[Lafferty et al., 2001] Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001). Conditional

random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings

of the Eighteenth International Conference on Machine Learning, ICML ’01, pages 282–289, San

Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

[Montgomery, 2006] Montgomery, D. C. (2006). Design and Analysis of Experiments. John Wiley

& Sons, Inc., USA.

[Qianwen et al., 2018] Qianwen, L., Qingchuan, T., Yalin, Z., and Manxiao, L. (2018). Sketch sim-

plification based on conditional random field and least squares generative adversarial networks.

Neurocomputing, 316.

[Sha and Pereira, 2003] Sha, F. and Pereira, F. (2003). Shallow parsing with conditional random

fields. In Proceedings of the 2003 Conference of the North American Chapter of the Association

for Computational Linguistics on Human Language Technology - Volume 1, NAACL ’03, pages

134–141, Stroudsburg, PA, USA. Association for Computational Linguistics.

[Shalev-Shwartz and Ben-David, 2014] Shalev-Shwartz, S. and Ben-David, S. (2014). Understand-

ing Machine Learning: From Theory to Algorithms. Cambridge University Press, New York, NY,

USA.

[Shao, 2003] Shao, J. (2003). Mathematical Statistics. Springer Texts in Statistics. Springer.

[Sutton and McCallum, 2012] Sutton, C. and McCallum, A. (2012). An introduction to conditional

random fields. Found. Trends Mach. Learn., 4(4):267–373.

[Thiagarajan and Bremananth, 2015] Thiagarajan, B. and Bremananth, R. (2015). Brain image

segmentation using conditional random field based on modified artificial bee colony optimization

algorithm.

[Trapnell et al., 2012] Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., R Kelley, D., Pi-

mentel, H., Salzberg, S., Rinn, J., and Pachter, L. (2012). Differential gene and transcript

expression analysis of rna-seq experiments with tophat and cufflinks. Nature protocols, 7:562–78.

[Zaki and Jr, 2014] Zaki, M. J. and Jr, W. M. (2014). Data Mining and Analysis: Fundamental

Concepts and Algorithms. Cambridge University Press, New York, NY, USA.

38

APPENDIX A. THE GENE STATUS

Gene id Status Gene name

XLOC 000165 Sure gene:MLOC 34615
XLOC 000206 Sure gene:MLOC 70053
XLOC 000446 Sure gene:MLOC 53979
XLOC 001271 Sure gene:MLOC 38003
XLOC 001548 Sure gene:MLOC 81846
XLOC 002973 Sure gene:MLOC 2643
XLOC 003663 Sure gene:MLOC 45012
XLOC 005291 Sure gene:MLOC 77287
XLOC 007644 Sure gene:MLOC 7939
XLOC 008226 Sure gene:MLOC 56670
XLOC 008882 Sure gene:MLOC 14530
XLOC 010024 Sure gene:MLOC 3643
XLOC 010931 Sure gene:MLOC 56924
XLOC 012053 Sure gene:MLOC 59105
XLOC 012661 Sure gene:MLOC 63737
XLOC 013304 Sure gene:MLOC 44080
XLOC 014150 Sure gene:MLOC 62978
XLOC 014369 Sure gene:MLOC 4747
XLOC 015012 Sure gene:MLOC 44410
XLOC 015369 Sure gene:MLOC 35028
XLOC 015734 Sure gene:MLOC 19822
XLOC 016272 Sure gene:MLOC 68290
XLOC 017008 Sure gene:MLOC 37653
XLOC 017070 Sure gene:MLOC 64575
XLOC 017078 Sure gene:MLOC 60337
XLOC 017510 Sure gene:MLOC 28088
XLOC 017817 Sure gene:MLOC 9498
XLOC 020205 Sure gene:MLOC 7742

39

Gene id Status Gene name

XLOC 004384 Error gene:MLOC 37835
XLOC 007363 Error BBBI
XLOC 020189 Error gene:MLOC 65964

XLOC 001594 Not sure gene:MLOC 7036
XLOC 005095 Not sure gene:MLOC 60152
XLOC 006087 Not sure gene:MLOC 61500
XLOC 006876 Not sure gene:MLOC 55637
XLOC 006995 Not sure gene:MLOC 70921
XLOC 009096 Not sure gene:MLOC 37446
XLOC 016348 Not sure gene:MLOC 78460
XLOC 021823 Not sure gene:MLOC 61260
XLOC 024611 Not sure psbK
XLOC 025581 Not sure gene:MLOC 47215

40

APPENDIX B. CODE

############## The true parameters and the data ##############

theta.true = matrix(c(0, 0, 0, 0, 0, rep(0, 95),

-23.5, -16.6, 32, 10, -6, rep(0, 95),

-7.7, -8.7, 8.4, -5, 7, rep(0, 95)),

nrow = 3, byrow = T)

#

data = read.table(file = "data/simulation data test.txt", header = T)

theta.new = matrix(rep(0, 300), nrow = 3, byrow = T)

theta.ini = theta.new

Function sections

#-------------- Create p(y|x) --------------

#---------- Input ----------

theta: The parameters of theta_{ij}, a 2X100 matrix where

theta =

theta_01 theta_02,..., theta_(0 100)

theta_11 theta_12,..., theta_(1 100)

#

data: The data frame that includes:

label (i): The label corresponds to the gene

X1-X100: The observed variable for the gene:

x_{i1}, x_{i2},..., x_{i 100}

#---------- Output ----------

output: The data frame includes:

theta.x: The data frame include:

p.0: p(y = 0|x)

p.1: p(y = 1|x)

41

other treatments the same as data.

#---

p.y.x = function(theta, data){

x = as.matrix(data[, -1])

temp = theta%*%t(x)

temp[temp>=709] = 709

temp[2,] = temp[1,]+temp[2,]

temp[3,] = temp[1,]+temp[3,]

result = exp(temp)

p.y.x = apply(result, 2, sum)

p.0 = result[1,]/p.y.x

p.1 = result[2,]/p.y.x

p.2 = result[3,]/p.y.x

result = t(rbind(p.0, p.1, p.2))

theta.x = data.frame(result, data)

names(theta.x)[1:3] = c("p.0", "p.1", "p.2")

theta.x$p.0[theta.x$p.0 == -Inf] = 0

theta.x$p.1[theta.x$p.1 == -Inf] = 0

theta.x$p.2[theta.x$p.2 == -Inf] = 0

theta.x$p.0[theta.x$p.0 == Inf] = 1

theta.x$p.1[theta.x$p.1 == Inf] = 1

theta.x$p.2[theta.x$p.2 == Inf] = 1

return(theta.x)

}

new.data = p.y.x(theta.ini, data)

42

new.data = p.y.x(theta.new, data)

sapply(new.data[1:10, 1:3], mean)

sapply(new.data[11:20, 1:3], mean)

sapply(new.data[21:30, 1:3], mean)

rm(new.data)

#-------------- The first derivative of log(p(y|x)) --------------

Require: the outcome from p.y.x

#---------- Input ----------

new.data: The data frame that generated by p.y.x function with:

p.0: p(y = 0|x)

p.1: p(y = 1|x)

label (i): The label corresponds to the gene

X1-X100: The observed variable for the gene:

x_{i1}, x_{i2},..., x_{i 100}

#---------- Output ----------

output: The matrix of d(log(p(y|x))/theta_{ij} where

i = 0, 1

j = 1, 2,...,100

#---

d.log = function(new.data){

new.data.temp = data.frame(new.data,

I.1 = 0,

I.2 = as.numeric(new.data$label == 1),

I.3 = as.numeric(new.data$label == -1))

x = as.matrix(new.data[-(1:4)])

p = t(as.matrix(new.data[1:3]))

p[1,] = 0

ncol = dim(new.data.temp)[2]

43

I = t(as.matrix(new.data.temp[(ncol-2):ncol]))

d.log = p%*%x-I%*%x

return(d.log)

}

d.l = d.log(new.data)

rm(d.l)

#-------------- The L(theta) = sum_n^N(log(p(y|x))) --------------

#---------- Input ----------

theta: The parameters of theta_{ij}, a 2X2 matrix where

theta =

theta_01 theta_02,..., theta_(0 100)

theta_11 theta_12,..., theta_(1 100)

#

data: The data frame that includes:

label (i): The label corresponds to the gene

X1-X100: The observed variable for the gene:

x_{i1}, x_{i2},..., x_{i 100}

#---------- Output ----------

output:

L(theta) = sum_n^N(log(p(y|x)))

#---

log.l = function(theta, data){

new.data = data.frame(data,

I.1 = 1,

I.2 = as.numeric(data$label == 1),

I.3 = as.numeric(data$label == -1))

x = t(as.matrix(data[-1]))

ncol = dim(new.data)[2]

44

I = t(as.matrix(new.data[(ncol-2):ncol]))

theta.x = theta%*%x

Ix = I*theta.x

result.1 = exp(Ix[1,])

result.2 = exp(Ix[2,])

result.3 = exp(Ix[3,])

z = result.1+result.1*result.2+result.1*result.3

log.l = sum(Ix)-sum(log(z))

if(log.l == -Inf){log.l = -2^31-1}

return(log.l)

}

l.l = log.l(theta.true, data)

l.l = log.l(theta.ini, data)

rm(l.l)

#-------------- The Proximal gradient method --------------

The proximal gradient method specially for the CRF

with L1 norm restrict. The initial guess is 0.

This function needs:

p.y.x(theta.new, data)

d.log(new.data)

log.l(theta.new, data.label)

#

#---------- Input ----------

theta.new: The parameters of theta_{ij}, a 2X2 matrix where

theta =

45

theta_01 theta_02,..., theta_(0 100)

theta_11 theta_12,..., theta_(1 100)

#

data: The data frame that includes:

label (i): The label corresponds to the gene

X1-X100: The observed variable for the gene:

x_{i1}, x_{i2},..., x_{i 100}

#

lambda: The Lagrangian multiplier parameter [0, 1] for lasso restriction

Stepwise: The length for one steps with the formula

(stepwise = 10^8 by default): eta = 1/stepwise*(m0+m)

m0: The initial length for one steps with the formula

(m0 = 0.005 by default): eta = 1/stepwise*(m0+m)

#---------- Output ----------

output:

A list of:

Time: How many iterations for the algorithm

theta.est: The parameters estimated

#---

Proximal = function(theta.new, data, lambda, stepwise = 10^8, m0 = 0.005){

m = 0; criteria = 2^31-1; ll.list = c(); lagrange = c()

while (criteria >= 10^-5){

theta = theta.new

new.data = p.y.x(theta, data)

d.l = d.log(new.data)

ll.old = log.l(theta, data)

theta.old = theta

46

ll.list = c(ll.list, ll.old)

lagrange = c(lagrange, -ll.old+lambda*sum(abs(theta.old)))

eta = sqrt(B^2/(rho^2*m))

eta = sqrt(1/(stepwise*(m0+m)))

z = theta.old-eta*d.l

z.minus.tau = abs(z)-eta*lambda

z.minus.tau[z.minus.tau<0] = 0

theta.new = sign(z)*z.minus.tau

ll.new = log.l(theta.new, data)

if(max(is.na(theta.new))|sum(abs(theta.new-theta.old))<=10^-5){

if(max(is.na(theta.new))){

cat("m = ", m, " and theta is NULL or theta is unchanged", "\n")

break

}else{

theta.sum = theta.sum+theta

if(ll.new == -2^31-1 & ll.old == -2^31-1){

criteria = 2^31-1

}else{

criteria = abs(ll.old-ll.new)

}

cat("m = ", m, ", and diff = ", criteria, ",

and -L(theta) = ", -ll.new, ",and lambda = ", lambda, "\n")

m = m+1

}

}

Time = m-1

return(list(Time = Time, theta.est = theta.new,

47

ll.list = ll.list, lagrange = lagrange))

}

Proximal(theta.true, data, 500)

Proximal(theta.ini, data, 500)

#-------------- The function computes the label --------------

Require: p.y.x(theta, data)

#---------- Input ----------

theta.new: The parameters of theta_{ij}, a 2X2 matrix where

theta =

theta_01 theta_02,..., theta_(0 100)

theta_11 theta_12,..., theta_(1 100)

#

data: The data frame that includes:

label (i): The label corresponds to the gene

X1-X100: The observed variable for the gene:

x_{i1}, x_{i2},..., x_{i 100}

#---------- Output ----------

output:

A data set of the labels for observed data

#---

test = function(theta, data, p.value){

test = p.y.x(theta, data)

test = data.frame(test[, 1:4])

test$label.est = NA

test$label.est[test$p.1>=p.value] = 1

test$label.est[test$p.2>=p.value] = -1

48

return(test)

}

test.est = test(theta.true, data)

sum(test.est$label.est == data$label)

#------ The function computes the log-likelihood

#------ and the first derivation of log-l ------

Require: p.y.x(theta, data)

#---------- Input ----------

theta =

theta_01 theta_02,..., theta_(0 100)

theta_11 theta_12,..., theta_(1 100)

#

data: The data frame that includes:

label (i): The label corresponds to the gene

X1-X100: The observed variable for the gene:

x_{i1}, x_{i2},..., x_{i 100}

#---------- Output ----------

output:

ll: Log-likelihood

d.l: First derivation of log-likelihood

#---

Log.l.d.log = function(theta, data){

new.data = p.y.x(theta, data)

ll = log.l(theta, data)

d.l = d.log(new.data)

return(list(ll = ll, d.l = d.l))

}

49

#----- The function computes the maximum of lagrange -----

#---------- Input ----------

data: The data frame that includes:

label (i): The label corresponds to the gene

X1-X100: The observed variable for the gene:

x_{i1}, x_{i2},..., x_{i 100}

#---------- Output ----------

output:

ll: the maximum of lagrange

#---

lagrange.max.function = function(data){

N = length(data[, 1])

dim.x = dim(data)[2]

p.0 = sum(data[, 1]==0)/N

p.1 = sum(data[, 1]==1)/N

data.x0 = as.matrix(data[data[, 1]==0, -1])

data.x1 = as.matrix(data[data[, 1]==1, -1])

n0 = dim(data.x0)[1]

n1 = dim(data.x1)[1]

I.0 = matrix(1, ncol = 1, nrow = n0)

I.1 = matrix(1, ncol = 1, nrow = n1)

lambda.0 = t(data.x0)%*%(p.0*I.0)

lambda.1 = t(data.x1)%*%(p.1*I.1)

50

lambda.max = max(c(lambda.0, lambda.1))

return(lambda.max)

}

setwd("/Users/xiyuanliu/Desktop/temp_cluster/CRF_real")

library(MASS)

rm(list = ls())

load("The_CRF_functions.RData")

####### Import the data #######

data.org = read.csv(file = "training_data.csv", header = T)

data = data.org[, -1]

Main Section

theta.new = matrix(rep(0, 108), nrow = 3, byrow = T)

theta.ini = theta.new

Result = Proximal(theta.ini, data, 500)

test(Result$theta.est, data, 0.85)

new.data = p.y.x(theta.ini, data)

lambda.list = seq(500, 0.001, length.out = 40)

l = length(lambda.list)

theta.est.list = list()

start.time = c()

end.time = c()

Time.list = c()

i = 1

while(i<=l){

51

lambda = lambda.list[i]

start.time[i] = Sys.time()

Result = Proximal(theta.new, data, lambda)

end.time[i] = Sys.time()

theta.new = Result$theta.est

theta.est.list[[i]] = theta.new

Time.list[i] = Result$Time

i = i+1

}

time.data1 = data.frame(start = start.time,

end = end.time, elapsed = end.time-start.time)

lambda.first = lambda.list[39]

lambda.list = seq(lambda.first, 0.001, length.out = 40)

l = length(lambda.list)

theta.new = theta.est.list[[38]]

#

theta.est.list = list()

start.time = c()

end.time = c()

Time.list = c()

#

i = 1

while(i<=l){

lambda = lambda.list[i]

start.time[i] = Sys.time()

Result = Proximal(theta.new, data, lambda)

end.time[i] = Sys.time()

theta.new = Result$theta.est

52

theta.est.list[[i]] = theta.new

Time.list[i] = Result$Time

i = i+1

}

#

time.data2 = data.frame(start = start.time, end = end.time,

elapsed = end.time-start.time)

save.image("Real_data.RData")

53

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	LITERATURE REVIEW
	PLANT SCIENCE DATA
	METHODOLOGY
	Hypothesis test
	The simulation of the extreme value distribution
	False discovery rate
	Benjamini-hochberg
	Conditional random field
	CRF training
	Gradient descent

	LASSO

	NUMERIC EXPERIMENT
	Binary response data
	The result

	Ternary response data
	Label 1
	Label 0
	Label -1
	Additional setting
	Result
	Accuracy prediction of the label
	l1 norm between the estimator and the true parameter

	Numeric experiment summary

	CRF WITH PLANT SCIENCE DATA
	Prepare the data
	Data result summary

	REFERENCES
	APPENDIX A. THE GENE STATUS
	APPENDIX B. CODE

