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ABSTRACT 

 
This experiment attempts on data which can reveal a person’s identity to anonymize with 

k-1 anonymity principle. "Given person-specific field-structured data, produce a release of the data 

with scientific guarantees that the individuals who are the subjects of the data cannot be re-

identified while the data remain practically useful”.  The attempt to value the sensitivity and 

meaningful information with huge amount of data concerning privacy-preserving techniques are 

maintained to overcome fears with everyone’s delicate data.  With this paper, we study the k-

anonymity principle algorithm in the context of big data, and introduce a top-down k-

anonymization, L-diversity and t-closeness solutions for Apache spark using Java.  In the era of 

volumes of data, science needs more scalable and efficient methods to overcome data leakage, 

where there is information like public health, diagnosis, sensitive information like name, zip, race, 

education which leaks the information and would be against privacy of one’s data.   
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1. INTRODUCTION  

When there is large amount of data involved, be it structured or unstructured or semi-

structured, big data tends to solve these problems by different solution approach. It is not just about 

handling the data, it is about organizing and understanding the complex data which can be analyzed 

for insights which lead to better decisions and strategic business moves. [1] 

While the term “big data” is relatively new, the act of gathering and storing large amounts 

of information for eventual analysis is ages old. The concept gained momentum in the early 2000s 

when industry analyst Doug Laney articulated the now-mainstream definition of big data as the 

three Vs. A high-level overview of big data’s three V’s is presented in Figure 1. 

Volume. Organizations collect data from a variety of sources, including business 

transactions, social media and information from sensor or machine-to-machine data. In the past, 

storing the data would have been a problem – but new technologies (such as Hadoop) have eased 

the burden.  

Variety tends to different kinds of data present in the market like structured or organized 

data but with very large volume where normal database cannot handle the operations. And there is 

text data, unreadable data and other kinds of data which has lots of important information for the 

business. 

Velocity. Data streams at an unprecedented speed must be dealt with in a timely manner. 

RFID tags, sensors and smart metering are driving the need to deal with torrents of data in near-

real time.  



2 
 

 

Figure 1. High-level overview of big data with three V’s [2] 

1.1. Data Management 

As computing moved into the Software industry rapidly, data was stored in flat files that 

imposed no structure. When those organizations needed to get to a level of detailed understanding 

about customers, they had to apply brute-force methods, including very detailed programming 

models to create some value. Later things changed with the invention of the relational data model 

and the relational database management system (RDBMS) that imposed structure and a method 

for improving performance. Most importantly, the relational model added a level of abstraction 

(the structured query language (SQL), report generators, and data management tools) so that it was 

easier for programmers to satisfy the growing business demands to extract value from data. Data 

management was all about to try and solve a specific type of data related problem. Each of these 

problems or phases evolved because of cause and effect, for example, a new technology or 

solutions are introduced in the market, they require the discovery of new approaches/advices. 

When they are first introduced, the approaches needed a set of tools to allow managers to study 

the relationship between data elements. When companies started storing semi-structure and 
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unstructured data, analysts needed new capabilities such as natural language–based analysis tools 

to gain insights that would be useful to business, to gain value from that data required new 

innovative tools and approaches [3]. 

The relational model of the database has an ecosystem of tools from a large number of 

emerging software products. It filled a growing need to help companies better organize their data 

and be able to compare transactions from one geographical location to another. In addition, it 

helped business managers who wanted to be able to examine information such as inventory and 

compare it to customer order information for decision-making purposes. But a problem emerged 

from this exploding demand for answers: Storing this growing volume of data was expensive and 

accessing it was slow. Making matters worse, lots of data duplication existed, and the actual 

business value of that data was hard to measure. [4]. 

Big data is a traditional term for the strategies and technologies needed to collect, organize, 

process, and form meaningful insights from large datasets. While the problem of working with 

data that exceeds the computing power or storage of a single computer is not new, the 

pervasiveness, scale, and value of this type of computing has greatly expanded in recent years. 

In this per say "large dataset" means a dataset too large to reasonably process or store with 

traditional tools or on a single computer which a relational Database cannot process or handles the 

volume of real time data analysis; which means that the common scale of big datasets is constantly 

shifting and may vary significantly from organization to organization. [5] 

1.2. Clustered Computing 

When considering the qualities and large quantities of big data, individual computers are 

usually incapable of computing the data at most of the stages due to limited memory management 

and speed. To better handle these kinds of huge data, computer clusters like distributed systems 
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are beneficial. Several smaller computers are combined or clustered which can provide data 

computing or management of resource pooling, high availability, fault tolerance, maintainability 

and scalability.[6] 

The general clustering technique in distributed data fashion is shown is Figure 2. It often 

acts as a foundation which other software interfaces process the data. The computers involved in 

the clustering are also typically involved with the management of a distributed storage system with 

different clustering techniques. [7] 

 

Figure 2. General clustering for big data [8] 
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2. OVERVIEW ON BIG DATA 

Big Data technologies are important to analyze more data, which can lead to better 

decision-making cost reductions, lesser risk for the business, and efficiency. To enhance the power 

of big data, we would require an infrastructure that can manage and process huge volumes of 

structured and unstructured data in real-time and can protect data privacy and security. [9]  

2.1. Traditional Approach 

The traditional approach is presented in Figure 3. In this approach, a computer might be 

deployed to store and process big data, where the large volumes of data is stored in relational 

database management systems like an Oracle database or a Microsoft SQL server, etc. And 

software to interact with these databases or servers. It has a limitation where these kind of 

databases works well when there is less volume of data which are usually accommodated by 

traditional database servers or has limits on the processor in it. When it comes to dealing with huge 

volumes of data, it is considered a tedious task to analyze and process such volumes of data. [10] 

 

Figure 3. Traditional approach of a big data before hadoop [11] 

Google came up with a solution using an algorithm called MapReduce programming, 

which divides bigger tasks into smaller chunks and assigning those to individual computer in a 

cluster connected over a network and collects the result to a final dataset.  
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Figure 4. MapReduce basic algorithm flow [12] 

The basic MapReduce algorithm flow is presented in Figure 4. With the solution of big 

data using the MapReduce algorithm an open source project was started called Hadoop by Apache. 

Hadoop runs applications using MapReduce algorithms, where the data is processed in a 

distributed cluster across a network. The Hadoop framework is capable to develop, analyze and 

process applications capable of running on clusters of computers and they could perform complete 

statistical analysis for a huge amount of data. 
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3. APACHE SPARK 

Apache Spark was developed a faster alternative to Hadoop. Fact that Apache Hadoop 

reads and writes data from the disk which apparently slows down the process, Spark on the other 

hand stores the data in-memory and reduces the read-write cycles which makes Spark 100 times 

faster than Hadoop. [13] Spark is known to design and to cover a wide range of workloads which 

previously required separate distributed systems, including batch applications, iterative 

algorithms, interactive queries, and streaming which is necessary in data analysis. Spark can also 

run on Hadoop clusters and access any Hadoop data source, including Cassandra (NoSQL database 

management system), Yarn, Pig, Hive, etc. 

Spark’s core execution system is built in different languages like Scala, Python, Java and 

R. It also has capabilities to run various machine learning algorithms using Spark MLlib.  

3.1. Spark Eco-System 

Spark Core component is the foundation of distributed processing of large datasets. It also 

has responsibilities of all basic spark functions such as input/output, scheduling and monitoring 

the jobs on clusters, tasks, networking with various storage systems, which has fault tolerance and 

efficient memory management. [14] This is responsible to deliver speed by providing in-memory 

computation capability.  

3.2. Resilient Distributed Dataset 

Spark core is also embedded with a special type of collection named as Resilient 

Distributed Dataset commonly known as RDD. RDD are among the abstraction of Spark which 

handles partitioning the input data among the available clusters by dividing them equally or with 

respect to the size. It basically has two operations which are Transformations and Actions. 

Transformation: These are the functions which produces new RDD from an existing RDD. 
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Actions: These produce non-RDD values only after the transformations are performed, and returns 

a value of any type but RDD.  

3.3. Apache Spark SQL 

Apache Spark SQL is a distributed framework for structured data analysis and processing 

which helps in computation and information on the structure of the data, with use of distributed 

SQL query engine. 

3.4. Spark Streaming 

Spark allows fault tolerant stream processing of live data streams or also called as real-

time data. It uses micro batching techniques which allows the task to treat a data stream as a 

continuous sequence of small batches of data. [15] 

 

Figure 5. Brief architecture to spark [16] 

The architecture of Apache Spark is shown in Figure 5 with spark core and different type 

of data handling and processing. Apache Spark boosts the existing Bigdata tools for analysis rather 

than reinventing data analytics. The Apache Spark Ecosystem Components makes it more popular 
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than other Bigdata frameworks. Hence, Apache Spark is a common platform for different types of 

data processing. For example, real-time data analytics, structured data processing, graph 

processing, etc. [17] 

In this paper, we implement the K-Anonymization algorithm using Apache spark and Java 

to analyze the data, process it according to the algorithm. The algorithm is implemented in two 

modes which are local mode cluster, and GPU clusters with partitions, which can be compared to 

check the efficiency and performance.  
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4. K-ANONYMITY ALGORITHM 

The tremendous growth of data including personal data that can be collected and analyzed 

for research purposes is retrieved from various repositories. Data mining tools were most often 

used to analyze these kinds of data which infer trends and patterns. [18] With these speeds of 

growth in data more and more attention is given to privacy protection of data being released. 

Therefore, when releasing the data, we should ensure more privacy and integrity as much as 

possible [19] and the use of data containing personal information must be restricted in order to 

protect individual privacy. One possible solution is that instead of releasing the entire database of 

information on people or companies or health care, the database owners can aggregate or filter the 

data by eliminating or hiding private sensitive information. [20] However, many of the data-mining 

tasks are not much reliable when privacy of data is a concern and researchers need to extensively 

analyze the data to discover data aggregation queries of interest. In such cases, query auditing and 

secure function evaluation techniques does not provide complete solution, as we need to release 

an anonymized view of the database that ensures the non-sensitive query aggregates, perhaps with 

some error or uncertainty. [21] 

K-anonymity is an important model that prevents joining attacks in privacy protection. The 

Anonymization algorithm makes use of sanitization techniques to hide the exact values of the data. 

[22] Even after suppressing the sensitive information, the data can still identify attributes and 

extract identities with respect to private information. For example:  
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Table 1. The original data with key attribute ruled out [23] 

Age Race Gender Zip Code Diseases

47 white Male 21004 Flu

35 Hispanic Female 21004 Migrane

27 Black Male 58105 Aids  

Table 1 shows a high-level representation of generalization after removing the social 

security number and name which are the most sensitive data to identify someone. When we join 

this table to a public database like a voter-list then the columns in the above table can be used to 

identify individuals. 

To ensure the data privacy or protection, we adopt the k-anonymity model that was 

proposed by Samarati and Sweeney over the simple anonymization algorithm [24]. Suppose we 

have a table consisting of n tuples each having m quasi-identifying attributes (Age, Race, Gender 

and Zip Code in the above table), and let k > 1 be an integer. The k-Anonymity algorithm 

anticipates the generalization of entries in addition to suppression in the table to ensure for each 

tuple in the output table there must be at least k-1 other tuples that are identical along the quasi 

identifiers. For example, 

Table 2. Suppressed data over original data [24] 

Age Race Gender Zip Code Diseases

* * * 21004 Flu

35 Hispanic * * Migrane

* * Male 58105 Aids  

 



12 
 

Table 2 shows the K-Anonymized table where K=2 anonymous dataset that ensures the 

protection of individual privacy such that, even if the data table has all the quasi-identifying 

attributes of the individuals it will be very difficult to track down any individuals records than n 

set of k records. It also prevents record linkages with publicly available database and keeps the 

individual’s records or data hidden in a crowd of k-1. The parameter of k should be chosen 

depending on the application and data. [25] 

4.1. Related Definitions for k-Anonymization Algorithm 

4.1.1. K-Minimum Generalization after Adding Suppression 

 Suppose Ti , Tj are two data tables and Ti >Tj ,we set MaxUp as the specified inhibition rate 

[5]. Then Tj is Ti ’s K-minimal generalization if and only if the following conditions are true: 

 Tj Satisfies K anonymity 

 There does not exist a Tz : Ti <Tz ,Tz satisfies k-anonymity and DVz< DVi 

where DVz and DVi are the distance vector of Ti and Tj, these conditions state that if 

generalization Tj is the smallest, then there does not exist a generalization which has a 

generalization relationship between their distance vectors, or they have the same distance vector 

and they have a smaller inhibition rate. [26] 

4.2. Anonymity Principles 

During the dataset publication, failing to preserve the individual privacy information might 

lead to various consequences. This is the main reason this type of algorithm is being used and the 

dataset should be anonymized and sanitized. In this section, we include commonly used principles 

for anonymity related to k-anonymization. 
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K-Anonymity: The attributes in the dataset are noted into four types namely sensitive 

attributes, Key identifiers, Quasi-identifiers, non-sensitive attributes that does not identify a person 

necessarily, and other non-sensitive attributes publicly accessible data attributes. 

Table 3. Sensitive information vs anonymized information [27] 

Race Zip:z0 Race: R1 Zip: z0 Race: r0 Zip: z1

asian 94142 person 94142 asian 9414*

asian 94141 person 94141 asian 9414*

asian 94139 person 94139 asian 9413*

asian 94139 person 94139 asian 9413*

asian 94138 person 94138 asian 9413*

black 97546 person 97546 black 9754*

black 94141 person 94141 black 9414*

white 98432 person 98432 white 9843*  

Table 3 represents sensitive vs anonymized information, in which the zip code can be 

converted into a common, generalized column, which can be difficult to reveal an individual’s zip 

code. l-Diversity: k-anonymity is commonly used to solve only record-linkage kind of privacy 

attacks and hence lacks to solve all kinds of privacy protection. In a k-anonymized dataset the 

records with the same quasi-identifiers can have the same value for the sensitive attribute. The L-

diversity privacy principle [28] makes sure that the sensitive attribute has diverse values within 

every quasi-identifier groups. In other words, l-diversity solves the attribute linkage problem. In 

practice, l-diversity is applied as additional security or anonymity to k-anonymization. For 

example: the race column is being anonymized in Figure 8. 

L-Diversity: A table to is said to have l-diversity if every equivalence (i.e) considering 

sensitive attributes) class of the table has l-diverse value (i.e) there must be at least “l” well 

represented values for sensitive attribute. Figure 7 shows the distinct L-diversity does not prevent 

probabilistic inference attacks. Machanavajjhala et al. [29] give several interpretations of the term 

“well-represented”. In Figure 7, the sensitive attributes are in a well-represented form where it is 
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categorized into different values as shown, HIV diseases in one group and other closely related 

into other groups. These records are chosen with respect to L “well-represented” sensitive 

attributes. These can be grouped together when Quasi Identifiers are wisely chosen, and these quasi 

identifiers depend on the dataset being used, as it can be different for different kinds of data. 

  

Disease

...

HIV

HIV

HIV

pneumonia

...

...

bronchitis

...
  

Figure 6. Distinct L-Diversity with “L” well represented sensitive attribute [30] 

Figure 6 shows One sensitive attribute with two values: HIV+(1%)/HIV- (99%). Suppose 

one class has equal number of HIV+ and HIV- Satisfies any 2-diversity requirement. Anyone in 

the class has a 50% probability of being HIV+ (compare it to 1% chance in overall population). 

Figure 7 represents the generalization of race as an example for t-closeness when the 

attribute is needed and cannot be ignored. 

 

Figure 7. L-Diversity example illustration [31] 

8 records have HIV 

2 records have other values 

10 records 
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T-Closeness: T-Closeness privacy principle is further refined by the k-anonymity and l-

diversity principles such as rounding up the age column, etc, which is represented in table 4. 

Suppose there are two aspects "Gender" and "ZIP Code" of a relation T. The value of this attribute 

Gender at level-0 of T-closeness can be "Male" and "Female". To consider level 1 of closeness 

with respect to attribute Gender we must generalize the values, generalizing these two values 

"Male" and "Female" to another value, say, "Person/ human being". By generalizing the values of 

attribute Sex to "Person" we achieve level 2 of T-Closeness. Similarly is the ZIP code but the level 

can be increased. By combining different levels of generalization of different attributes we can 

form the domain. Figure 7 shows an example on how every race is considered into one category 

without losing the information in the data. 

Table 4. Indicates the L-Diversity and T-Closeness principles [32] 

Zip Code Age Race Diagnosis

1305* <40 * Heart infection

1305* <41 * Viral infection

1305* <42 * Hypertension

1485* <=40 * Pneumonia

1485* <=41 * Flu

1485* <=42 * Cancer

5810* >40 * Cancer

5810* >41 * Flu

5810* >42 * Flu   

4.3. Materials and Methods 

4.3.1. Basic Definitions 

a. Sensitive attributes: 

Can also be named as Key identifiers depending on the dataset. This tells us the 

information like name, SSN number, email ID, etc. 
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b. Quasi-Identifier Attribute:  

A quasi-identifier set is a minimal set of attributes in table T that can be joined with 

external information to de-identify individual records. For example, Table 1 can 

have all the attributes combining to a quasi-identifier set. 

c. Non-Sensitive attributes: 

These kinds of data are not included with other attributes does not leak or indicate 

any sensible information like simple medical records, common occupation. 

 4.4. Methodology 

The basic system architecture of K-Anonymity algorithm is represented in Figure 8. The 

aim for the experiment is to study the anonymity algorithm with l-diversity, t closeness using java 

and apache spark integrated and comparing the execution of various datasets differed in sizes and 

the privacy of datasets. The objectives of this study are referred to by the following methodology 

using 3 steps: 

1) Study of the raw dataset 

2) Installation of the software, 

3) Java code for K-anonymity algorithm and output metrics.  

 

Figure 8. Basic system architecture of generalized K-Anonymity algorithm [33] 
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5. EXPERIMENTS 

To experiment with this algorithm, we need to install certain software and other 

requirements. This section discusses about all the factors involved in this experiment. For local 

machine experiment, we install Windows operating system [34], along with Java [35]. We have 

used Microsoft Visual Studio Code to write the Java code [36], which can run on any operating 

system. Apache Spark is a framework we have used, which is the main reason for this experiment 

to study on. We do not need to install any third-party software to run java application using Apache 

spark [37]. The Spark shell is used to run all the application or jobs which is written in Scala or 

Java. Once all these software’s are installed, we need to set the appropriate environment variables 

to integrate these to be used on single application alongside, for this we use path variables which 

are commonly referred as variables available in operating system that specifies the directories or 

path where the executable programs are written and store. 

5.1. Datasets Overview 

 The Adult dataset [38] used in this project has 17,012,800, 8,506,400, 5,103,840, 4,253,200 

records for 2gb,1gb, 600mb and 500mb, respectively. It has a binomial label indicating a salary of 

<50K or >50K USD. In this dataset, 76% of the records in the dataset have a class label of <50K. 

There are total of 14 attributes which consists of 8 categorical and 6 continuous attributes. The 

employment class represents the type of employment such as self-employment, private offices or 

federal and occupation describes the employment type such as farming, field works, clerks or in 

management. Education mentions the highest level of education attained such as bachelors, 

masters or doctorate. The relationship attribute has categories such as unmarried or husband and 

marital status has categories such as married or separated. The other nominal attributes are country 

of residence, gender and race. People with similar demographic characteristics should have similar 

weights, etc. 
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 The census income dataset [39] used in this project has 3,990,460, 1,995,230, 1,197,138, 

99,761 records for 2gb,1gb, 600mb and 500mb, respectively. This data set contains weighted 

census data extracted from 1994 and 1995 from the population surveys conducted by the U.S. 

Census Bureau. It contains 41 different demographic and employment related variables. The 

instance weight indicates the number of people in the population that each record represents due 

to stratified sampling.  

5.2. Data Cleaning and Expansion 

We have expanded the datasets Adult and Census Income by multiplying the records to 

500MB, 600MB,1GB and 2GB, respectively.   
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6. IMPLEMENTATION 

             For experimenting, we used two different datasets Adult and census income with k=4 

anonymity value to compare the K-Anonymized algorithm with L-diversity where L>=2 value and 

t-closeness where T=2 using Apache spark. The adult dataset is computer from UCI machine 

learning repository. The Adult dataset contained 28,961 rows and several attributes as columns. 

And the census income dataset contained 48,888 rows and different set of attributes. The 

experiments are performed on a local machine first with 8GB memory and 500GB hard disk and 

on GPU machine with configuration: Nvidia Tesla K40 with 12GB of global memory, 2,880 

stream processors memory bandwidth of 288 GB/sec. 

6.1. Steps 

1) Generate all generalizations of the private table 

2) Discard those that violate k-anonymity 

3) Find all generalizations with the highest precision 

4) Return one based on some preference criteria (worst case) 

We have used Java code to implement the anonymity algorithm in Apache spark using 

Visual studio code. We would like to emphasize the internal parameter of data partitions and 

worker nodes to compare the different execution time and efficiency with respect to the output 

parameters generated. 

An adult dataset contained different columns specifying information with k=4 anonymity 

value, L>=2 and T=2 on medical records from health insurance data from a region where Race, 

Birth Year, Gender and Zip Code together constitute the quasi-identifier and diagnosis is the 

sensitive attribute, and, we have ruled out the key attributes such as name, email ID and SSN 

number. 
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With Census-income dataset pertaining columns which specifies information on income of 

the individual from certain region with their personal information like Age, Work Class, Zip Code, 

Education, Education-Num, Marital Status, Occupation, Relationship, Race, Sex, Balance, 

Unknown, Hours Per Week, Country, Salary where other key attributes where ruled out in data 

cleaning process like name and work company with quasi identifiers such as age, work class, zip 

code, education, marital status.  

6.2. Results 

6.2.1. Adult Dataset Experimental Output 

The Adult data set was extracted in 1994 from general data of the United States. It contains 

continuous and nominal attributes, describing some social information (age, race, sex, marital 

status) about the citizens registered. The original dataset from UCI library after cleaning and 

removing the unwanted attributes has several columns out of which the quasi identifiers are age, 

zip code, race, place, occupation is shown in Figure 9. 

 

 

Figure 9. The original “adult” data Set from UCI Library after data cleaning 

Figure 10 shows the output data stored in the disk after running the original dataset form 

k-Anonymizer algorithm to get an anonymized dataset. This output generally stores only the first 

100 records when run through apache spark, but we have increased the result set size and store the 

entire dataset in the output folder. Also, the output dataset contains different age groups like <40, 

>40, >20 and <40 etc.  
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Figure 10. The output generate dataset after running through the algorithm 

Figure 11 shows the experiment on the Adult dataset with local cores 4 with driver memory 

16g, 22g and 32g. As we can see, the run time for this algorithm on 4 cores has a longer run time, 

also there are different run times for different driver memory with respect to data partitions. When 

we use the 2gb dataset with 17,012,800 records the time taken for the GPU machine with 4 nodes 

using 16g driver memory is real 63m50.299s, user 16m11.968s and sys 2m49.224s. Here, we can 

see the improvement when we use more partitions and nodes with increasing data sizes. 

 

 

Figure 11. Bar graph of result with 4 cores – adult data set  

The above bar graph in Figure 11 represents the execution time taken for the adult data set 

with minimal driver memory has a greater execution time for Adult Data Set: K=4, L>=2 And T=2 
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Figure 12. Line graph shows more accurate time span taken for the first adult dataset 

Figure 12 shows the line graph of the results from the experiment on the Adult dataset with 

driver memory 16g, 22g and 32g with a local core number of 8.  

 

Figure 13. Bar graph of result with 8 cores – adult data  

The above bar graph with k=4, L>=2 and T=2 in Figure 13 with 8 cores partitioned has a 

significant change in the execution time for different scenarios. 

  

0
500

1000
1500
2000
2500
3000
3500
4000
4500

500 600 1000 2000

R
u

n
 t

im
e

 (
se

co
n

d
s)

Size of dataset (MB)

Driver memory 16g Driver memory 22g Driver memory 32g

0

1000

2000

3000

4000

5000

6000

500 600 1000 2000

R
u

n
 t

im
e

 (
se

co
n

d
s)

Size of dataset (MB)

Driver memory 16g Driver memory 22g Driver memory 32g



23 
 

 

Figure 14. Line graph shows more accurate time span taken for the first adult dataset 

The line graph in Figure 14 represent the overall growth in the larger dataset with 16g as 

the driver memory as compared to minimal change in 22g and 32g driver memory.  

6.2.2. Census Income Data Experimental Output 

Figure 15 shows the results of the experiments on the census dataset for local cores equals 

4 with driver memory 16g, 22g and 32g. Here, the run time for larger dataset is much higher than 

for the Adult dataset, which is around 72 minutes. The performance increases with an increase in 

partitions and cluster nodes. If the 2gb dataset uses 16g driver memory with less partitions the run 

time may increase by 40-45 mins. This algorithm gives different results for different data sets 

accordingly.  
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Figure 15. Bar graph of result with 4 cores – census-income data set 

The bar graph in Figure 15 explains the consequent increase in execution time with higher 

amount of dataset with 4 cores. 

 

Figure 16. Line graph shows more accurate time span taken for census-income dataset  

Figure 16 shows the results of the experiments on the Census dataset with driver memory 

16g, 22g and 32g with several local cores of 8. As we can see, the run time for this algorithm with 

8 cores is higher. Here depending on the data partitioned within the nodes, the run time varies 
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accordingly. The time taken for 8 nodes and 2gb data with 20 million records is higher which is 

real 72m04.243s, user 14m10.960s and sys 2m49.224s as compared to 1gb data with 10 million 

records real12m12.385s, user3m50.036s and sys0m38.144s. Figures 15 and 16 show similar 

trends. 

 

Figure 17. Bar graph of result with 8 cores – census-income data set: K=4, L>=2 and T=2 

The graph above in Figure 17 clarifies the different between smaller and larger dataset with 

same 8 cores.  
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Figure 18. Line graph shows more accurate time span taken for census-income dataset 

The line graph in Figure 18 explains that the larger dataset has a much slower execution 

time with partitions considered with driver memory. 
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7. CONCLUSION 

This is the big data era and the volume and variety of data across the industries are 

increasing by tera bytes every day. To match this rapid growth of big data processing Apache 

Hadoop and Spark have been used to analyze and process data in order to achieve high scalability. 

Because of this approach many algorithms are being implemented using these big data tools to 

ensure the quality, scalability and security. And of course, privacy and security algorithms are not 

any different from other applications. Researchers have already implemented various 

anonymization algorithms on different platforms and in Hadoop. This study used Apache spark 

and showed how the result can be obtained much faster. We have considered two datasets from 

the UCI repository with different data and ran the K-Anonymity algorithm, L-Diversity and T-

closeness with K=4, L>=2, and T=2 values on both datasets to privatize the data as much as 

possible with the highest efficiency. At first, the data was cleaned and unnecessary columns were 

cleaned, and the dataset size was increased from 28,000 records to a few million records with 

different sizes. We have ran the algorithm with l-diversity and t-closeness concepts along with k-

anonymity to ensure the data is anonymous enough to avoid data leak with regards to the columns 

race, age etc. generalized by using the generalization concept. The efficiency of the algorithm 

using Apache spark has shown improved results with different size of datasets.  
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