
K-ANONYMIZATION IMPLEMENTATION USING APACHE SPARK

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Pratik Tortikar

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

January 2019

Fargo, North Dakota

North Dakota State University

Graduate School

Title

K-ANONYMIZATION IMPLEMENTATION USING APACHE SPARK

 By

Pratik Tortikar

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

 Dr. Simone Ludwig

 Chair

Dr. Kenneth Magel

Dr. Bakhtiyor Rasulec

 Approved:

 March 7, 2019 Kendall Nygard

 Date Department Chair

iii

ABSTRACT

This experiment attempts on data which can reveal a person’s identity to anonymize with

k-1 anonymity principle. "Given person-specific field-structured data, produce a release of the data

with scientific guarantees that the individuals who are the subjects of the data cannot be re-

identified while the data remain practically useful”. The attempt to value the sensitivity and

meaningful information with huge amount of data concerning privacy-preserving techniques are

maintained to overcome fears with everyone’s delicate data. With this paper, we study the k-

anonymity principle algorithm in the context of big data, and introduce a top-down k-

anonymization, L-diversity and t-closeness solutions for Apache spark using Java. In the era of

volumes of data, science needs more scalable and efficient methods to overcome data leakage,

where there is information like public health, diagnosis, sensitive information like name, zip, race,

education which leaks the information and would be against privacy of one’s data.

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Simone Ludwig, for her continuous support and

guidance throughout the project without her feedback and encouraging words I would not have

come this far to completion of the project. I’d also like to thank my graduate committee members,

Dr. Kenneth Magel and Dr. Bakhtiyor Rasulev for their support with the study. Finally, I wish to

acknowledge my family for their unfailing support.

v

DEDICATION

I would like to dedicate this project to my mother, father, brother and sister who’ve

encouraged and supported me through every decision in my life.

vi

TABLE OF CONTENTS

ABSTRACT……………………………………………………………………………….. iii

ACKNOWLEDGEMENTS……………………………………………………………….. iv

DEDICATION……………………………………………………………………………... v

LIST OF TABLES ……………………………………………………………………...…. viii

LIST OF FIGURES ………………………………..……………………………….……... ix

1. INTRODUCTION …………………………………………………………….………... 1

 1.1. Data Management…………………………………….………………...…….. 2

 1.2. Clustered Computing……………………...…….………………………...….. 3

2. OVERVIEW ON BIG DATA …………………………………………………………... 5

 2.1. Traditional Approach ……………………………………………………….... 5

3. APACHE SPARK ………………………………….…………………………………… 7

3.1. Spark Eco-System……………………………………………………...…... 7

3.2. Resilient Distributed Dataset ………………………………………………... 7

3.3. Apache Spark SQL…..……………………………………….......................... 8

3.4. Spark Streaming…………………………………………………………….... 8

4. K-ANONYMITY ALGORITHM………………………………………………………. 10

 4.1. Related Definitions For K-Anonymization Algorithm …...……….…………. 12

 4.1.1. K-Minimum Generalization after Adding Suppression ……........... 12

 4.2. Anonymity Principles …………………………………………………….….. 12

 4.3. Materials and Methods ………………………………………………...…….. 15

 4.3.1. Basic Definitions…………………………….….………………… 15

 4.4. Methodology…………………………………………………………...…….. 16

vii

5. EXPERIMENTS….…………………………………………………………………... 17

 5.1. Datasets Overview………………………………………………………….. 17

 5.2. Data Cleaning and Expansion……………………………………………….. 18

6. IMPLEMENTATION…………………………………………………………………… 19

 6.1. Steps………………………………………………………………………...... 19

 6.2. Result…………………………………………………………………………. 20

 6.2.1. Adult Dataset Experimental Output .……..…………...................... 20

 6.2.2. Census Income Data Experimental Output .………….................. 23

7. CONCLUSION ………………………………………………………………………… 27

8. REFERENCES…………………………………………………………………………. 28

viii

LIST OF TABLES

Table Page

1. The original data with key attribute ruled out……….………………………………... 11

2. Suppressed data over original data ….….………………………..…………………… 11

3. Sensitive information vs anonymized information .………………..………………… 13

4. Indicates the L-Diversity and T-Closeness principles ……………..………………… 15

ix

LIST OF FIGURES

Figure Page

1. High-level overview of big data with three V’s ……………..………………………. 2

2. General clustering for big data …………………….………………………………… 4

3. Traditional approach of a big data before hadoop ..……………………...…………. 5

4. MapReduce basic algorithm flow …………………………………………………... 6

5. Brief architecture to spark …………………………………………………………... 8

6. Distinct L-Diversity with “L” well represented sensitive attribute ………………… 14

7. L-Diversity example illustration ……………………………………..……………… 14

8. Basic system architecture of generalized K-Anonymity algorithm …………...………

16

9. The original “adult” data Set from UCI Library after data cleaning ………………… 20

10. The output generate dataset after running through the algorithm …..……….………. 21

11. Bar graph of result with 4 cores – adult data set ….…………………..……………… 21

12. Line graph shows more accurate time span taken for the first adult dataset …...……. 22

13. Bar graph of result with 8 cores – adult data …….………………….………………. 22

14. Line graph shows more accurate time span taken for the first adult dataset …..……... 23

15. Bar graph of result with 4 cores – census-income data set ……………..…………… 24

16. Line graph shows more accurate time span taken for census-income dataset …… 24

17. Bar graph of result with 8 cores – census-income data set: K=4, L>=2 and T=2…… 25

18. Line graph shows more accurate time span taken for census-income dataset………. 26

1

1. INTRODUCTION

When there is large amount of data involved, be it structured or unstructured or semi-

structured, big data tends to solve these problems by different solution approach. It is not just about

handling the data, it is about organizing and understanding the complex data which can be analyzed

for insights which lead to better decisions and strategic business moves. [1]

While the term “big data” is relatively new, the act of gathering and storing large amounts

of information for eventual analysis is ages old. The concept gained momentum in the early 2000s

when industry analyst Doug Laney articulated the now-mainstream definition of big data as the

three Vs. A high-level overview of big data’s three V’s is presented in Figure 1.

Volume. Organizations collect data from a variety of sources, including business

transactions, social media and information from sensor or machine-to-machine data. In the past,

storing the data would have been a problem – but new technologies (such as Hadoop) have eased

the burden.

Variety tends to different kinds of data present in the market like structured or organized

data but with very large volume where normal database cannot handle the operations. And there is

text data, unreadable data and other kinds of data which has lots of important information for the

business.

Velocity. Data streams at an unprecedented speed must be dealt with in a timely manner.

RFID tags, sensors and smart metering are driving the need to deal with torrents of data in near-

real time.

2

Figure 1. High-level overview of big data with three V’s [2]

1.1. Data Management

As computing moved into the Software industry rapidly, data was stored in flat files that

imposed no structure. When those organizations needed to get to a level of detailed understanding

about customers, they had to apply brute-force methods, including very detailed programming

models to create some value. Later things changed with the invention of the relational data model

and the relational database management system (RDBMS) that imposed structure and a method

for improving performance. Most importantly, the relational model added a level of abstraction

(the structured query language (SQL), report generators, and data management tools) so that it was

easier for programmers to satisfy the growing business demands to extract value from data. Data

management was all about to try and solve a specific type of data related problem. Each of these

problems or phases evolved because of cause and effect, for example, a new technology or

solutions are introduced in the market, they require the discovery of new approaches/advices.

When they are first introduced, the approaches needed a set of tools to allow managers to study

the relationship between data elements. When companies started storing semi-structure and

3

unstructured data, analysts needed new capabilities such as natural language–based analysis tools

to gain insights that would be useful to business, to gain value from that data required new

innovative tools and approaches [3].

The relational model of the database has an ecosystem of tools from a large number of

emerging software products. It filled a growing need to help companies better organize their data

and be able to compare transactions from one geographical location to another. In addition, it

helped business managers who wanted to be able to examine information such as inventory and

compare it to customer order information for decision-making purposes. But a problem emerged

from this exploding demand for answers: Storing this growing volume of data was expensive and

accessing it was slow. Making matters worse, lots of data duplication existed, and the actual

business value of that data was hard to measure. [4].

Big data is a traditional term for the strategies and technologies needed to collect, organize,

process, and form meaningful insights from large datasets. While the problem of working with

data that exceeds the computing power or storage of a single computer is not new, the

pervasiveness, scale, and value of this type of computing has greatly expanded in recent years.

In this per say "large dataset" means a dataset too large to reasonably process or store with

traditional tools or on a single computer which a relational Database cannot process or handles the

volume of real time data analysis; which means that the common scale of big datasets is constantly

shifting and may vary significantly from organization to organization. [5]

1.2. Clustered Computing

When considering the qualities and large quantities of big data, individual computers are

usually incapable of computing the data at most of the stages due to limited memory management

and speed. To better handle these kinds of huge data, computer clusters like distributed systems

4

are beneficial. Several smaller computers are combined or clustered which can provide data

computing or management of resource pooling, high availability, fault tolerance, maintainability

and scalability.[6]

The general clustering technique in distributed data fashion is shown is Figure 2. It often

acts as a foundation which other software interfaces process the data. The computers involved in

the clustering are also typically involved with the management of a distributed storage system with

different clustering techniques. [7]

Figure 2. General clustering for big data [8]

5

2. OVERVIEW ON BIG DATA

Big Data technologies are important to analyze more data, which can lead to better

decision-making cost reductions, lesser risk for the business, and efficiency. To enhance the power

of big data, we would require an infrastructure that can manage and process huge volumes of

structured and unstructured data in real-time and can protect data privacy and security. [9]

2.1. Traditional Approach

The traditional approach is presented in Figure 3. In this approach, a computer might be

deployed to store and process big data, where the large volumes of data is stored in relational

database management systems like an Oracle database or a Microsoft SQL server, etc. And

software to interact with these databases or servers. It has a limitation where these kind of

databases works well when there is less volume of data which are usually accommodated by

traditional database servers or has limits on the processor in it. When it comes to dealing with huge

volumes of data, it is considered a tedious task to analyze and process such volumes of data. [10]

Figure 3. Traditional approach of a big data before hadoop [11]

Google came up with a solution using an algorithm called MapReduce programming,

which divides bigger tasks into smaller chunks and assigning those to individual computer in a

cluster connected over a network and collects the result to a final dataset.

6

Figure 4. MapReduce basic algorithm flow [12]

The basic MapReduce algorithm flow is presented in Figure 4. With the solution of big

data using the MapReduce algorithm an open source project was started called Hadoop by Apache.

Hadoop runs applications using MapReduce algorithms, where the data is processed in a

distributed cluster across a network. The Hadoop framework is capable to develop, analyze and

process applications capable of running on clusters of computers and they could perform complete

statistical analysis for a huge amount of data.

7

3. APACHE SPARK

Apache Spark was developed a faster alternative to Hadoop. Fact that Apache Hadoop

reads and writes data from the disk which apparently slows down the process, Spark on the other

hand stores the data in-memory and reduces the read-write cycles which makes Spark 100 times

faster than Hadoop. [13] Spark is known to design and to cover a wide range of workloads which

previously required separate distributed systems, including batch applications, iterative

algorithms, interactive queries, and streaming which is necessary in data analysis. Spark can also

run on Hadoop clusters and access any Hadoop data source, including Cassandra (NoSQL database

management system), Yarn, Pig, Hive, etc.

Spark’s core execution system is built in different languages like Scala, Python, Java and

R. It also has capabilities to run various machine learning algorithms using Spark MLlib.

3.1. Spark Eco-System

Spark Core component is the foundation of distributed processing of large datasets. It also

has responsibilities of all basic spark functions such as input/output, scheduling and monitoring

the jobs on clusters, tasks, networking with various storage systems, which has fault tolerance and

efficient memory management. [14] This is responsible to deliver speed by providing in-memory

computation capability.

3.2. Resilient Distributed Dataset

Spark core is also embedded with a special type of collection named as Resilient

Distributed Dataset commonly known as RDD. RDD are among the abstraction of Spark which

handles partitioning the input data among the available clusters by dividing them equally or with

respect to the size. It basically has two operations which are Transformations and Actions.

Transformation: These are the functions which produces new RDD from an existing RDD.

8

Actions: These produce non-RDD values only after the transformations are performed, and returns

a value of any type but RDD.

3.3. Apache Spark SQL

Apache Spark SQL is a distributed framework for structured data analysis and processing

which helps in computation and information on the structure of the data, with use of distributed

SQL query engine.

3.4. Spark Streaming

Spark allows fault tolerant stream processing of live data streams or also called as real-

time data. It uses micro batching techniques which allows the task to treat a data stream as a

continuous sequence of small batches of data. [15]

Figure 5. Brief architecture to spark [16]

The architecture of Apache Spark is shown in Figure 5 with spark core and different type

of data handling and processing. Apache Spark boosts the existing Bigdata tools for analysis rather

than reinventing data analytics. The Apache Spark Ecosystem Components makes it more popular

9

than other Bigdata frameworks. Hence, Apache Spark is a common platform for different types of

data processing. For example, real-time data analytics, structured data processing, graph

processing, etc. [17]

In this paper, we implement the K-Anonymization algorithm using Apache spark and Java

to analyze the data, process it according to the algorithm. The algorithm is implemented in two

modes which are local mode cluster, and GPU clusters with partitions, which can be compared to

check the efficiency and performance.

10

4. K-ANONYMITY ALGORITHM

The tremendous growth of data including personal data that can be collected and analyzed

for research purposes is retrieved from various repositories. Data mining tools were most often

used to analyze these kinds of data which infer trends and patterns. [18] With these speeds of

growth in data more and more attention is given to privacy protection of data being released.

Therefore, when releasing the data, we should ensure more privacy and integrity as much as

possible [19] and the use of data containing personal information must be restricted in order to

protect individual privacy. One possible solution is that instead of releasing the entire database of

information on people or companies or health care, the database owners can aggregate or filter the

data by eliminating or hiding private sensitive information. [20] However, many of the data-mining

tasks are not much reliable when privacy of data is a concern and researchers need to extensively

analyze the data to discover data aggregation queries of interest. In such cases, query auditing and

secure function evaluation techniques does not provide complete solution, as we need to release

an anonymized view of the database that ensures the non-sensitive query aggregates, perhaps with

some error or uncertainty. [21]

K-anonymity is an important model that prevents joining attacks in privacy protection. The

Anonymization algorithm makes use of sanitization techniques to hide the exact values of the data.

[22] Even after suppressing the sensitive information, the data can still identify attributes and

extract identities with respect to private information. For example:

11

Table 1. The original data with key attribute ruled out [23]

Age Race Gender Zip Code Diseases

47 white Male 21004 Flu

35 Hispanic Female 21004 Migrane

27 Black Male 58105 Aids

Table 1 shows a high-level representation of generalization after removing the social

security number and name which are the most sensitive data to identify someone. When we join

this table to a public database like a voter-list then the columns in the above table can be used to

identify individuals.

To ensure the data privacy or protection, we adopt the k-anonymity model that was

proposed by Samarati and Sweeney over the simple anonymization algorithm [24]. Suppose we

have a table consisting of n tuples each having m quasi-identifying attributes (Age, Race, Gender

and Zip Code in the above table), and let k > 1 be an integer. The k-Anonymity algorithm

anticipates the generalization of entries in addition to suppression in the table to ensure for each

tuple in the output table there must be at least k-1 other tuples that are identical along the quasi

identifiers. For example,

Table 2. Suppressed data over original data [24]

Age Race Gender Zip Code Diseases

* * * 21004 Flu

35 Hispanic * * Migrane

* * Male 58105 Aids

12

Table 2 shows the K-Anonymized table where K=2 anonymous dataset that ensures the

protection of individual privacy such that, even if the data table has all the quasi-identifying

attributes of the individuals it will be very difficult to track down any individuals records than n

set of k records. It also prevents record linkages with publicly available database and keeps the

individual’s records or data hidden in a crowd of k-1. The parameter of k should be chosen

depending on the application and data. [25]

4.1. Related Definitions for k-Anonymization Algorithm

4.1.1. K-Minimum Generalization after Adding Suppression

 Suppose Ti , Tj are two data tables and Ti >Tj ,we set MaxUp as the specified inhibition rate

[5]. Then Tj is Ti ’s K-minimal generalization if and only if the following conditions are true:

 Tj Satisfies K anonymity

 There does not exist a Tz : Ti <Tz ,Tz satisfies k-anonymity and DVz< DVi

where DVz and DVi are the distance vector of Ti and Tj, these conditions state that if

generalization Tj is the smallest, then there does not exist a generalization which has a

generalization relationship between their distance vectors, or they have the same distance vector

and they have a smaller inhibition rate. [26]

4.2. Anonymity Principles

During the dataset publication, failing to preserve the individual privacy information might

lead to various consequences. This is the main reason this type of algorithm is being used and the

dataset should be anonymized and sanitized. In this section, we include commonly used principles

for anonymity related to k-anonymization.

13

K-Anonymity: The attributes in the dataset are noted into four types namely sensitive

attributes, Key identifiers, Quasi-identifiers, non-sensitive attributes that does not identify a person

necessarily, and other non-sensitive attributes publicly accessible data attributes.

Table 3. Sensitive information vs anonymized information [27]

Race Zip:z0 Race: R1 Zip: z0 Race: r0 Zip: z1

asian 94142 person 94142 asian 9414*

asian 94141 person 94141 asian 9414*

asian 94139 person 94139 asian 9413*

asian 94139 person 94139 asian 9413*

asian 94138 person 94138 asian 9413*

black 97546 person 97546 black 9754*

black 94141 person 94141 black 9414*

white 98432 person 98432 white 9843*

Table 3 represents sensitive vs anonymized information, in which the zip code can be

converted into a common, generalized column, which can be difficult to reveal an individual’s zip

code. l-Diversity: k-anonymity is commonly used to solve only record-linkage kind of privacy

attacks and hence lacks to solve all kinds of privacy protection. In a k-anonymized dataset the

records with the same quasi-identifiers can have the same value for the sensitive attribute. The L-

diversity privacy principle [28] makes sure that the sensitive attribute has diverse values within

every quasi-identifier groups. In other words, l-diversity solves the attribute linkage problem. In

practice, l-diversity is applied as additional security or anonymity to k-anonymization. For

example: the race column is being anonymized in Figure 8.

L-Diversity: A table to is said to have l-diversity if every equivalence (i.e) considering

sensitive attributes) class of the table has l-diverse value (i.e) there must be at least “l” well

represented values for sensitive attribute. Figure 7 shows the distinct L-diversity does not prevent

probabilistic inference attacks. Machanavajjhala et al. [29] give several interpretations of the term

“well-represented”. In Figure 7, the sensitive attributes are in a well-represented form where it is

14

categorized into different values as shown, HIV diseases in one group and other closely related

into other groups. These records are chosen with respect to L “well-represented” sensitive

attributes. These can be grouped together when Quasi Identifiers are wisely chosen, and these quasi

identifiers depend on the dataset being used, as it can be different for different kinds of data.

Disease

...

HIV

HIV

HIV

pneumonia

...

...

bronchitis

...

Figure 6. Distinct L-Diversity with “L” well represented sensitive attribute [30]

Figure 6 shows One sensitive attribute with two values: HIV+(1%)/HIV- (99%). Suppose

one class has equal number of HIV+ and HIV- Satisfies any 2-diversity requirement. Anyone in

the class has a 50% probability of being HIV+ (compare it to 1% chance in overall population).

Figure 7 represents the generalization of race as an example for t-closeness when the

attribute is needed and cannot be ignored.

Figure 7. L-Diversity example illustration [31]

8 records have HIV

2 records have other values

10 records

15

T-Closeness: T-Closeness privacy principle is further refined by the k-anonymity and l-

diversity principles such as rounding up the age column, etc, which is represented in table 4.

Suppose there are two aspects "Gender" and "ZIP Code" of a relation T. The value of this attribute

Gender at level-0 of T-closeness can be "Male" and "Female". To consider level 1 of closeness

with respect to attribute Gender we must generalize the values, generalizing these two values

"Male" and "Female" to another value, say, "Person/ human being". By generalizing the values of

attribute Sex to "Person" we achieve level 2 of T-Closeness. Similarly is the ZIP code but the level

can be increased. By combining different levels of generalization of different attributes we can

form the domain. Figure 7 shows an example on how every race is considered into one category

without losing the information in the data.

Table 4. Indicates the L-Diversity and T-Closeness principles [32]

Zip Code Age Race Diagnosis

1305* <40 * Heart infection

1305* <41 * Viral infection

1305* <42 * Hypertension

1485* <=40 * Pneumonia

1485* <=41 * Flu

1485* <=42 * Cancer

5810* >40 * Cancer

5810* >41 * Flu

5810* >42 * Flu

4.3. Materials and Methods

4.3.1. Basic Definitions

a. Sensitive attributes:

Can also be named as Key identifiers depending on the dataset. This tells us the

information like name, SSN number, email ID, etc.

16

b. Quasi-Identifier Attribute:

A quasi-identifier set is a minimal set of attributes in table T that can be joined with

external information to de-identify individual records. For example, Table 1 can

have all the attributes combining to a quasi-identifier set.

c. Non-Sensitive attributes:

These kinds of data are not included with other attributes does not leak or indicate

any sensible information like simple medical records, common occupation.

 4.4. Methodology

The basic system architecture of K-Anonymity algorithm is represented in Figure 8. The

aim for the experiment is to study the anonymity algorithm with l-diversity, t closeness using java

and apache spark integrated and comparing the execution of various datasets differed in sizes and

the privacy of datasets. The objectives of this study are referred to by the following methodology

using 3 steps:

1) Study of the raw dataset

2) Installation of the software,

3) Java code for K-anonymity algorithm and output metrics.

Figure 8. Basic system architecture of generalized K-Anonymity algorithm [33]

17

5. EXPERIMENTS

To experiment with this algorithm, we need to install certain software and other

requirements. This section discusses about all the factors involved in this experiment. For local

machine experiment, we install Windows operating system [34], along with Java [35]. We have

used Microsoft Visual Studio Code to write the Java code [36], which can run on any operating

system. Apache Spark is a framework we have used, which is the main reason for this experiment

to study on. We do not need to install any third-party software to run java application using Apache

spark [37]. The Spark shell is used to run all the application or jobs which is written in Scala or

Java. Once all these software’s are installed, we need to set the appropriate environment variables

to integrate these to be used on single application alongside, for this we use path variables which

are commonly referred as variables available in operating system that specifies the directories or

path where the executable programs are written and store.

5.1. Datasets Overview

 The Adult dataset [38] used in this project has 17,012,800, 8,506,400, 5,103,840, 4,253,200

records for 2gb,1gb, 600mb and 500mb, respectively. It has a binomial label indicating a salary of

<50K or >50K USD. In this dataset, 76% of the records in the dataset have a class label of <50K.

There are total of 14 attributes which consists of 8 categorical and 6 continuous attributes. The

employment class represents the type of employment such as self-employment, private offices or

federal and occupation describes the employment type such as farming, field works, clerks or in

management. Education mentions the highest level of education attained such as bachelors,

masters or doctorate. The relationship attribute has categories such as unmarried or husband and

marital status has categories such as married or separated. The other nominal attributes are country

of residence, gender and race. People with similar demographic characteristics should have similar

weights, etc.

18

 The census income dataset [39] used in this project has 3,990,460, 1,995,230, 1,197,138,

99,761 records for 2gb,1gb, 600mb and 500mb, respectively. This data set contains weighted

census data extracted from 1994 and 1995 from the population surveys conducted by the U.S.

Census Bureau. It contains 41 different demographic and employment related variables. The

instance weight indicates the number of people in the population that each record represents due

to stratified sampling.

5.2. Data Cleaning and Expansion

We have expanded the datasets Adult and Census Income by multiplying the records to

500MB, 600MB,1GB and 2GB, respectively.

19

6. IMPLEMENTATION

 For experimenting, we used two different datasets Adult and census income with k=4

anonymity value to compare the K-Anonymized algorithm with L-diversity where L>=2 value and

t-closeness where T=2 using Apache spark. The adult dataset is computer from UCI machine

learning repository. The Adult dataset contained 28,961 rows and several attributes as columns.

And the census income dataset contained 48,888 rows and different set of attributes. The

experiments are performed on a local machine first with 8GB memory and 500GB hard disk and

on GPU machine with configuration: Nvidia Tesla K40 with 12GB of global memory, 2,880

stream processors memory bandwidth of 288 GB/sec.

6.1. Steps

1) Generate all generalizations of the private table

2) Discard those that violate k-anonymity

3) Find all generalizations with the highest precision

4) Return one based on some preference criteria (worst case)

We have used Java code to implement the anonymity algorithm in Apache spark using

Visual studio code. We would like to emphasize the internal parameter of data partitions and

worker nodes to compare the different execution time and efficiency with respect to the output

parameters generated.

An adult dataset contained different columns specifying information with k=4 anonymity

value, L>=2 and T=2 on medical records from health insurance data from a region where Race,

Birth Year, Gender and Zip Code together constitute the quasi-identifier and diagnosis is the

sensitive attribute, and, we have ruled out the key attributes such as name, email ID and SSN

number.

20

With Census-income dataset pertaining columns which specifies information on income of

the individual from certain region with their personal information like Age, Work Class, Zip Code,

Education, Education-Num, Marital Status, Occupation, Relationship, Race, Sex, Balance,

Unknown, Hours Per Week, Country, Salary where other key attributes where ruled out in data

cleaning process like name and work company with quasi identifiers such as age, work class, zip

code, education, marital status.

6.2. Results

6.2.1. Adult Dataset Experimental Output

The Adult data set was extracted in 1994 from general data of the United States. It contains

continuous and nominal attributes, describing some social information (age, race, sex, marital

status) about the citizens registered. The original dataset from UCI library after cleaning and

removing the unwanted attributes has several columns out of which the quasi identifiers are age,

zip code, race, place, occupation is shown in Figure 9.

Figure 9. The original “adult” data Set from UCI Library after data cleaning

Figure 10 shows the output data stored in the disk after running the original dataset form

k-Anonymizer algorithm to get an anonymized dataset. This output generally stores only the first

100 records when run through apache spark, but we have increased the result set size and store the

entire dataset in the output folder. Also, the output dataset contains different age groups like <40,

>40, >20 and <40 etc.

21

Figure 10. The output generate dataset after running through the algorithm

Figure 11 shows the experiment on the Adult dataset with local cores 4 with driver memory

16g, 22g and 32g. As we can see, the run time for this algorithm on 4 cores has a longer run time,

also there are different run times for different driver memory with respect to data partitions. When

we use the 2gb dataset with 17,012,800 records the time taken for the GPU machine with 4 nodes

using 16g driver memory is real 63m50.299s, user 16m11.968s and sys 2m49.224s. Here, we can

see the improvement when we use more partitions and nodes with increasing data sizes.

Figure 11. Bar graph of result with 4 cores – adult data set

The above bar graph in Figure 11 represents the execution time taken for the adult data set

with minimal driver memory has a greater execution time for Adult Data Set: K=4, L>=2 And T=2

0
500

1000
1500
2000
2500
3000
3500
4000
4500

500 600 1000 2000

R
u

n
 t

im
e

 (
se

co
n

d
s)

Size of dataset (MB)
Driver memory 16g Driver memory 22g Driver memory 32g

22

Figure 12. Line graph shows more accurate time span taken for the first adult dataset

Figure 12 shows the line graph of the results from the experiment on the Adult dataset with

driver memory 16g, 22g and 32g with a local core number of 8.

Figure 13. Bar graph of result with 8 cores – adult data

The above bar graph with k=4, L>=2 and T=2 in Figure 13 with 8 cores partitioned has a

significant change in the execution time for different scenarios.

0
500

1000
1500
2000
2500
3000
3500
4000
4500

500 600 1000 2000

R
u

n
 t

im
e

 (
se

co
n

d
s)

Size of dataset (MB)

Driver memory 16g Driver memory 22g Driver memory 32g

0

1000

2000

3000

4000

5000

6000

500 600 1000 2000

R
u

n
 t

im
e

 (
se

co
n

d
s)

Size of dataset (MB)

Driver memory 16g Driver memory 22g Driver memory 32g

23

Figure 14. Line graph shows more accurate time span taken for the first adult dataset

The line graph in Figure 14 represent the overall growth in the larger dataset with 16g as

the driver memory as compared to minimal change in 22g and 32g driver memory.

6.2.2. Census Income Data Experimental Output

Figure 15 shows the results of the experiments on the census dataset for local cores equals

4 with driver memory 16g, 22g and 32g. Here, the run time for larger dataset is much higher than

for the Adult dataset, which is around 72 minutes. The performance increases with an increase in

partitions and cluster nodes. If the 2gb dataset uses 16g driver memory with less partitions the run

time may increase by 40-45 mins. This algorithm gives different results for different data sets

accordingly.

0

1000

2000

3000

4000

5000

6000

500 600 1000 2000

R
u

n
 t

im
e

 (
se

co
n

d
s)

Size of dataset (MB)

Driver memory 16g Driver memory 22g Driver memory 32g

24

Figure 15. Bar graph of result with 4 cores – census-income data set

The bar graph in Figure 15 explains the consequent increase in execution time with higher

amount of dataset with 4 cores.

Figure 16. Line graph shows more accurate time span taken for census-income dataset

Figure 16 shows the results of the experiments on the Census dataset with driver memory

16g, 22g and 32g with several local cores of 8. As we can see, the run time for this algorithm with

8 cores is higher. Here depending on the data partitioned within the nodes, the run time varies

0

1000

2000

3000

4000

5000

6000

500 600 1000 2000

R
u

n
 t

im
e

 (
se

co
n

d
s)

Size of dataset (MB)

Driver memory 16g Driver memory 22g Driver memory 32g

0

1000

2000

3000

4000

5000

6000

500 600 1000 2000

R
u

n
 t

im
e

 (
se

co
n

d
s)

Size of dataset (MB)

Driver memory 16g Driver memory 22g Driver memory 32g

25

accordingly. The time taken for 8 nodes and 2gb data with 20 million records is higher which is

real 72m04.243s, user 14m10.960s and sys 2m49.224s as compared to 1gb data with 10 million

records real12m12.385s, user3m50.036s and sys0m38.144s. Figures 15 and 16 show similar

trends.

Figure 17. Bar graph of result with 8 cores – census-income data set: K=4, L>=2 and T=2

The graph above in Figure 17 clarifies the different between smaller and larger dataset with

same 8 cores.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

500 600 1000 2000

R
u

n
 t

im
e

 (
se

co
n

d
s)

Size of dataset (MB)

Driver memory 16g Driver memory 22g Driver memory 32g

26

Figure 18. Line graph shows more accurate time span taken for census-income dataset

The line graph in Figure 18 explains that the larger dataset has a much slower execution

time with partitions considered with driver memory.

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

500 600 1000 2000

R
u

n
 t

im
e

 (
Se

co
n

d
s)

Size of dataset (MB)

Driver memory 16g Driver memory 22g Driver memory 32g

27

7. CONCLUSION

This is the big data era and the volume and variety of data across the industries are

increasing by tera bytes every day. To match this rapid growth of big data processing Apache

Hadoop and Spark have been used to analyze and process data in order to achieve high scalability.

Because of this approach many algorithms are being implemented using these big data tools to

ensure the quality, scalability and security. And of course, privacy and security algorithms are not

any different from other applications. Researchers have already implemented various

anonymization algorithms on different platforms and in Hadoop. This study used Apache spark

and showed how the result can be obtained much faster. We have considered two datasets from

the UCI repository with different data and ran the K-Anonymity algorithm, L-Diversity and T-

closeness with K=4, L>=2, and T=2 values on both datasets to privatize the data as much as

possible with the highest efficiency. At first, the data was cleaned and unnecessary columns were

cleaned, and the dataset size was increased from 28,000 records to a few million records with

different sizes. We have ran the algorithm with l-diversity and t-closeness concepts along with k-

anonymity to ensure the data is anonymous enough to avoid data leak with regards to the columns

race, age etc. generalized by using the generalization concept. The efficiency of the algorithm

using Apache spark has shown improved results with different size of datasets.

28

8. REFERENCES

[1] SAS Institute, “What is Big data?”, 2016, Https://Www.Sas.Com/En Us/Insights/Big-

Data/What-Is-Big-Data.Html Last Retrieved On October 2018

[2] Xiaomeng Su, “Introduction to Big Data”, 2012,

Https://Www.Ntnu.No/Iie/Fag/Big/Lessons/Lesson2.Pdf Last Retrieved on October

2018

[3] Yinghui, Alan Nugent, “Big Data For Dummies,” 2007

Https://Eecs.Wsu.Edu/~Yinghui/Mat/Courses/Fall%202015/Resources/Big%20data%20

for%20dummies.Pdf Last Retrieved On October 2018

[4] Judith Hurwitz, Marcia Kaufman, “Big Data,” 2015,

Https://Eecs.Wsu.Edul%202015/Resources/Big%20data%20for%20dummies.Pdf

Last retrieved on October 2018

[5] Justin Ellingwood, “Big Data Concepts And Terminology”, 1997,

Https://Www.Digitalocean.Com/Community/Tutorials/An-Introduction-To-Big-Data-

Concepts-And-Terminology” Last Retrieved On October 2018

[6] Neal Barcelo, Nick Legg, “Performance Of Big Data Machine Clusters”, 2000,

Https://Personal.Denison.Edu/~Bressoud/Barceloleggbressoudmcurcsm2.Pdf Last

Retrieved On October 2018

[7] B. Babcock, M. Datar, “Computer Clustering”, 1997,

Http://Infolab.Stanford.Edu/~Ullman/Mmds/Ch7.Pdf Last Retrieved On October 2018

[8] Min Chen, Simone A. Ludwig, “General Clustering for Big Data”, 2017,

Https://Pdfs.Semanticscholar.Org/2ab0/D4ded091959f0ed7140b85c90bef49d9ab1b.Pdf

Last Retrieved On October 2018

https://www.digitalocean.com/community/tutorials/an-introduction-to-big-data-concepts-and-terminology
https://www.digitalocean.com/community/tutorials/an-introduction-to-big-data-concepts-and-terminology
https://personal.denison.edu/~bressoud/barceloleggbressoudmcurcsm2.pdf
http://infolab.stanford.edu/~ullman/mmds/ch7.pdf
https://pdfs.semanticscholar.org/2ab0/d4ded091959f0ed7140b85c90bef49d9ab1b.pdf

29

[9] Tutorial point, “Big Data Overview”, 2004,

Https://Www.Tutorialspoint.Com/Hadoop/Hadoop_Big_Data_Overview.Htm Last

Retrieved On October 2018

[10] Margaret Rouse, “Traditional Approach For RDBMS”, 1996,

Https://Searchdatamanagement.Techtarget.Com/Definition/RDBMS-Relational-

Database-Management-System Last Retrieved On November 2018

[11] RDBMS, “Traditional Database Management”, 2009,

Http://Www.Assignmentpoint.Com/Business/Management/Relational-Database-

Design.Html Last Retrieved On November 2018

[12] Tutorial point , “MapReduce”, 2005,

Https://Www.Tutorialspoint.Com/Hadoop/Hadoop_Mapreduce.Htm Last Retrieved On

November 2018

[13] Suvro Banerjee, “Introduction To Spark”, 2018,

Https://Www.Kdnuggets.Com/2018/07/Introduction-Apache-Spark.Html Last Retrieved

On November 2018

[14] Dezyre, “Apache Spark Ecosystem”, 2017, Https://Www.Dezyre.Com/Article/Apache-

Spark-Ecosystem-And-Spark-Components/219 Last Retrieved On November 2018

[15] Dataflair Team, “Spark Components”, 2016, Https://Data-Flair.Training/Blogs/Apache-

Spark Last Retrieved On November 2018

[16] Data Bricks, “What Is Apache Spark?,” 2016, Https://Databricks.Com/Spark/About

Last Retrieved On November 2018

[17] Dataflair Team , “Spark Ecosystems”, 2016, Https://Data-Flair.Training/Blogs/Apache-

Spark-Ecosystem-Components/ Last Retrieved On November 2018

https://www.tutorialspoint.com/hadoop/hadoop_big_data_overview.htm
https://searchdatamanagement.techtarget.com/definition/RDBMS-relational-database-management-system
https://searchdatamanagement.techtarget.com/definition/RDBMS-relational-database-management-system
http://www.assignmentpoint.com/business/management/relational-database-design.html
http://www.assignmentpoint.com/business/management/relational-database-design.html
https://www.tutorialspoint.com/hadoop/hadoop_mapreduce.htm
https://www.kdnuggets.com/2018/07/introduction-apache-spark.html
https://www.dezyre.com/article/apache-spark-ecosystem-and-spark-components/219
https://www.dezyre.com/article/apache-spark-ecosystem-and-spark-components/219
https://data-flair.training/blogs/apache-spark
https://data-flair.training/blogs/apache-spark
https://databricks.com/spark/about
https://data-flair.training/blogs/apache-spark-ecosystem-components/
https://data-flair.training/blogs/apache-spark-ecosystem-components/

30

[18] Gagan Aggarwal, Tomas Feder, “K Anonymity”, 2000,

Http://Theory.Stanford.Edu/~Kngk/Papers/K-Anonymity-Jopt.Pdf Last Retrieved On

November 2018

[19] Vaidya, J., Clifton, C.: Privacy-Preserving Data Mining: Why, How, And When. IEEE

Security & Privacy 2(6), 19–27 (2004) Last Retrieved On November 2018

[20] Kleinberg, Papadimitriou, And Raghavan, “Query Auditing”, 2003,

Https://Www.Researchgate.Net/Publication/246388337_How_Auditors_May_Inadverte

ntly_Compromise_Your_Privacy Last Retrieved On November 2018

[21] Gagan, Agarwal, “K Anonymization Principle”, 2000,

Http://Stanford.Edu/~Kngk/Papers/K-Anonymity-Jopt.Pdf Last Retrieved On November

2018

[22] Agrawal And Srikant, “Approximation Algorithms For K-Anonymity”, 2000,

Http://Theory.Stanford.Edu/~Kngk/Papers/K-Anonymity-Jopt.Pdf Llast Retrieved On

November 2018

[23] Krishnaram Kenthapadi, Rajeev Motwani, “Approximation K-Anonymity Algorithm”,

2002, Http://Theory.Stanford.Edu/~Kngk/Papers/K-Anonymity-Jopt.Pdf Last Retrieved

On November 2018

[24] Pierangela Samarati, Latanya Sweeney “Protecting Privacy When Disclosing

Information: K-Anonymity And Its Enforcement Through Generalization And

Suppression”, 2003,

Https://Epic.Org/Privacy/Reidentification/Samarati_Sweeney_Paper.Pdf Last Retrieved

On November 2018

http://theory.stanford.edu/~kngk/papers/k-anonymity-jopt.pdf
http://stanford.edu/~kngk/papers/k-anonymity-jopt.pdf
http://theory.stanford.edu/~kngk/papers/k-anonymity-jopt.pdf
https://epic.org/privacy/reidentification/Samarati_Sweeney_paper.pdf

31

[25] Samarati And Sweeney, “K-Anonymity”, 1996,

Https://Dataprivacylab.Org/Dataprivacy/Projects/Kanonymity/Kanonymity2.Pdf Last

Retrieved On November 2018

[26] U. Sopaoglu And O. Abul, "A Top-Down K-Anonymization Implementation For

Apache Spark," 2017, Https://Ieeexplore.Ieee.Org/Abstract/Document/8258492 Last

Retrieved On November 2018

[27] Zhaofeifei, Donglifeng, “K-Anonymity”, 2002, Https://Ac.Els-

Cdn.Com/S187538921201406X/1-S2.0-

S187538921201406Xmain.Pdf?_Tid=E53c2ef3-7fb1-4929-

990a14700c3c3c4d&Acdnat=1543684700_4eac80f0041d81f19bea38d5297f701c Last

Retrieved On November 2018

[28] N. Li, T. Li, And S. Venkatasubramanian, “T-Closeness: Privacy Beyond Kanonymity

And L-Diversity,” 2007,

Https://Www.Cs.Purdue.Edu/Homes/Ninghui/Papers/T_Closeness_Icde07.Pdf Last

Retrieved On November 2018

[29] Jianmin Han, Huiqun Yu, “An Improved L-Diversity Model For Numerical Sensitive

Attributes”, 2001, Https://Ieeexplore-Ieee-

Org.Ezproxy.Lib.Ndsu.Nodak.Edu/Stamp/Stamp.Jsp?Tp=&Arnumber=4685178 Last

Retrieved On November 2018

[30] James Joshi, “Information Security & Privacy”, 1999,

Http://Www.Sis.Pitt.Edu/Jjoshi/Courses/IS2150/Spring15/Lecture12.Pdf Last

Retrieved On November 2018

https://dataprivacylab.org/dataprivacy/projects/kanonymity/kanonymity2.pdf
https://ieeexplore-ieee-org.ezproxy.lib.ndsu.nodak.edu/stamp/stamp.jsp?tp=&arnumber=4685178
https://ieeexplore-ieee-org.ezproxy.lib.ndsu.nodak.edu/stamp/stamp.jsp?tp=&arnumber=4685178
http://www.sis.pitt.edu/jjoshi/courses/IS2150/Spring15/Lecture12.pdf

32

[31] K. Lefevre, D. J. Dewitt, And R. Ramakrishnan, “Mondrian Multidimensional K-

Anonymity,” 2006,

https://www.utdallas.edu/~muratk/courses/privacy08f_files/MultiDim.pdf Last

Retrieved On November 2018

[32] Ugur Sopaoglu, Osman Abul, “A Top-Down K Anonymization”, 2017,

Https://Ieeexplore-Ieee-

Org.Ezproxy.Lib.Ndsu.Nodak.Edu/Stamp/Stamp.Jsp?Tp=&Arnumber=8258492 Last

Retrieved On November 2018

[33] P. Usha, Shriram Raghunathan, “Anonymity Model For Privacy Preserving Data

Mining”, 2004,

Https://Www.Researchgate.Net/Publication/258789893_Modified_Anonymity_Model_

For_Privacy_Preserving_Data_Mining Last Retrieved On November 2018

[34] Microsoft, “Windows Installation”, 2018, “Https://Www.Microsoft.Com/En-

Us/Software-Download/Windows10startfresh” Last Retrieved On February 2018

[35] Oracle, “Java Installation”, 2018,

Https://Www.Java.Com/En/Download/Help/Download_Options.Xml Last Retrieved On

February 2018

[36] Microsoft, “Visual Studio Documentation”, 2018, Https://Code.Visualstudio.Com/Docs

Last Retrieved On January 2018

[37] Apache, “Get Apache Spark”, 2018, Https://Spark.Apache.Org/Docs/Latest/ Last

Retrieved On February 2018

[38] Adult Dataset, “Uci Machine Learning Repository.”, 1997,

Ftp://Ftp.Ics.Uci.Edu/Pub/ Last Retrieved On February 2018

https://ieeexplore-ieee-org.ezproxy.lib.ndsu.nodak.edu/stamp/stamp.jsp?tp=&arnumber=8258492
https://ieeexplore-ieee-org.ezproxy.lib.ndsu.nodak.edu/stamp/stamp.jsp?tp=&arnumber=8258492
https://www.researchgate.net/publication/258789893_Modified_Anonymity_Model_for_Privacy_Preserving_Data_Mining
https://www.researchgate.net/publication/258789893_Modified_Anonymity_Model_for_Privacy_Preserving_Data_Mining
https://www.microsoft.com/en-us/software-download/windows10startfresh
https://www.microsoft.com/en-us/software-download/windows10startfresh
https://www.java.com/en/download/help/download_options.xml
https://code.visualstudio.com/docs
https://spark.apache.org/docs/latest/
ftp://ftp.ics.uci.edu/pub/

33

[39] Census Income Dataset, ”Uci Machine Learning Repository” ,1997,

Https://Archive.Ics.Uci.Edu/Ml/Datasets/Census+Income Last Retrieved On June 2018

https://archive.ics.uci.edu/ml/datasets/census+income

	A Paper
	Pratik Tortikar
	In Partial Fulfillment of the Requirements
	Major Department:
	Computer Science
	Fargo, North Dakota

