
APPLICATION OF SWAT FOR IMPACT ANALYSIS OF SUBSURFACE DRAINAGE ON 

STREAMFLOWS IN A SNOW DOMINATED WATERSHED 

A Thesis 

Submitted to The Graduate Faculty 

of the 

North Dakota State University 

of Agriculture and Applied Science 

By 

Mohammed Mizanur Rahman 

In Partial Fulfillment of the Requirements 

for the Degree of 

MASTER OF SCIENCE 

Major Department: 

Agricultural and Biosystems Engineering 

November 2011 

Fargo, North Dakota 



North Dakota State University 
Graduate School 

Title 

Application of SWAT for impact analysis of subsurface drainage on streamflows in a snow dominated watershed 

By 

Mohammed Mizanur Rahman 

The Supervisory Committee certifies that this disquisition complies with North Dakota State 
University's regulations and meets the accepted standards for the degree of 

MASTER OF SCIENCE 

North Dakota State University Libraries Addendum 

To protect the privacy of individuals associated with the document, signatures have been 
removed from the digital version of this document. 



ABSTRACT 

Rahman, Mohammed Mizanur, M.S., Department of Agricultural and Biosystems 
Engineering, College of Engineering and Architecture, North Dakota State University, 
November 2011. Application of SWAT for Impact Analysis of Subsurface Drainage on 
Streamflows in a Snow Dominated Watershed. Major Professor: Dr. Zhulu Lin. 

The wet weather pattern since the early 1990's has created two problems for the 

people living in the Red River Valley (RRV): (1) wet field conditions for farmers and (2) 

more frequent major spring floods in the Red River system. Farmers in the region are 

increasingly adopting subsurface drainage practice to remove excess water from their 

fields to mitigate the first problem. However, it is not clear whether subsurface drainage 

will deteriorate or mitigate the spring flood situation, the second problem. 

The Soil and Water Assessment Tool (SWAT) model was applied to evaluate the 

impacts of tile drainage on the Red River's streamflows. The model was calibrated and 

validated against monthly streamflows at the watershed scale and against daily tile flows 

at the field scale. The locations and areas of the existing and potential tile drained (PTD) 

areas were identified using a GIS based decision tree classification method. 

The existing and maximum PTD areas were found to be about 0.75 and 17.40% of 

the basin area, respectively. At the field scale, the range of Nash-Sutcliffe efficiency (NSE) 

for model calibration and validation was 0.34-0.63. At the watershed scale, the model 

showed satisfactory performance in simulating monthly streamflows with NSE ranging 

from 0.69 to 0.99, except that the model under-predicted the highest spring flood peak 

flows in three years. 
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The results of modeling a 100% tiled experimental field showed that about 30-40% 

of water yield was produced as tile flow. Surface runoff and soil water content decreased 

about 34% and 19%, respectively, due to tile drainage. However, the impact of subsurface 

drainage on evapotranspiration (ET) and water yield was mixed. ET slightly decreased in a 

wet year and slightly increased in a dry year, while the pattern for water yield was 

opposite to that of ET. The watershed-scaled modeling results showed that a tiling rate of 

0. 75-5. 70% would not have significant effects on the monthly average streamflows in the 

Red River at Fargo. For the 17.40% tiling rate, the streamflow in the Red River at Fargo 

might increase up to 1% in April and about 2% in fall (September to November), while 

decreasing up to 5% in the remaining months. 

This SWAT modeling study helped to better understand the impact of subsurface 

drainage on the water balance and streamflows in the Red River of the North basin. The 

findings will also help watershed managers in making decisions for the purpose of 

managing agricultural drainage development in the RRV and other snow dominated 

watersheds around the world. 
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1. INTRODUCTION 

The Red River of the North Basin (RRNB) has been in a wet weather pattern since 

early 90s (Novotny and Stefan, 2007; Pates, 2011). As a result, farmers in the Red River 

Valley (RRV) have been experiencing wetter than normal working conditions and 

increasing soil salinity problems in their lands. Installation of subsurface (or tile) drainage 

systems helps to remove excess water to improve field conditions, to alleviate salinity 

problems, and to increase crop yield. Since more and more farmers in the RRV are 

adopting tile drainage practices, field tiling is becoming a burgeoning business in the 

region. It is estimated that the percentage of tiled fields in the RRV has increased from 

nearly nonexistent to about 7% during the same time period and the number is increasing 

(Pates, 2011). According to a report prepared by the North Dakota State Water 

Commission (NDSWC), about 40% of the area laid on glacial aquifer along the western 

part of the Red River has the potential to be tiled (Schuh, 2008). 

When the farmers in the RRV are experiencing wetter field conditions, the residents 

along the rivers in the RRNB have also witnessed more and more frequent major spring 

floods. For example, in the century-long stream stage history, five out of the ten highest 

historic crests in the Red River at Fargo occurred in the past 15 years (Koehler, 2010). 

Therefore, a question often asked is whether the increasingly adopted tile drainage 

agricultural water management practices will further increase the chances of spring flood 

in the area or will mitigate the spring flood situation? The Red River Retention Authority 

formed the Basin Technical and Scientific Advisory Committee (BTSAC) to investigate the 

potential impact of tile drainage on peak streamflows and subsequently to provide 

1 



scientific and technical advice for the purpose of managing agricultural drainage 

development in the RRV (BTSAC, 2011}. It is believed that subsurface drainage systems 

normally promote drainage from the waterlogged root zone of agricultural lands and 

consequently increase water yield (Moriasi et al., 2007; Sugg, 2007; Sands et al., 2008}. On 

the other hand, it is also argued that tiling in this region would reduce water yield during 

spring snowmelt time by holding more snowmelt water for a longer period of time in 

previously (in fall} tile drained, dry soils (Luick, 2011). 

These arguments are mainly based on the scientific evidence supported by field 

scale studies that were conducted in different regions and under various climatic 

conditions (Gowsami et al., 2008; Sands et al., 2008). It is less well known how the 

subsurface drainage will affect the land-phase hydrology and more importantly the 

streamflows in the RRNB from a watershed-scaled perspective (Sands, 2001). It has been 

shown that, for a tile drained watershed having a high groundwater table like in the RRNB, 

subsurface flow (tile flow and/or base flow) will significantly influence streamflows in 

terms of peak flow, time to peak, and flow volume (Sands et al., 2008; Kiesel et al., 2010}. 

Therefore, it is important to study the potential impact of tile drainage on streamflows in 

the RRNB through watershed hydrologic modeling. 

The Soil and Water Assessment Tool (SWAT), a continuous, physically-based, semi­

distributed, watershed model developed by USDA-ARS (Arnold et al., 1993), has been 

successfully used to assess the impacts of land use and climate change on streamflows at 

the basin and watershed scales throughout the world, including in cold regions (Bena man 

et al., 2005; Wang and Melesse, 2005; Srivastava et al., 2006; Ahl et al., 2008; 
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Chaponniere et al., 2008; Sexton, 2010). This model has been used through GIS 

(Geographic Information Systems) interfaces, e.g., ArcSWAT and MWSWAT. In recent 

years, SWAT's applications can also be seen in tile drained watersheds, especially in the 

USA (Du et al., 2005; Green et al., 2006; Sui and Frankenberger, 2007). Although the 

present tile drainage algorithm of SWAT (ArcSWAT2009) is based on a simple exponential 

equation requiring four parameters, it still gives reasonable results reported in the 

references cited above. However, the reliability of this algorithm should not be judged on 

the basis of the past few studies. Some ignored important parameters, for example, 

spacing of tile lines, size, drainage coefficient of soils need to be considered in the tile 

drainage algorithm if more reliable simulations are desired (Moriasi et al., 2007). Though 

DRAIN MOD (Skaggs, 1978) is a reliable model for tile flow simulation and considers all 

important parameters associated with tile drainage, its use is yet limited for the field scale 

modeling. An on-going area of research is trying to incorporate the Hooghoudt-Kirkham 

tile drainage algorithm, adopted in DRAIN MOD (Skaggs, 1978), into the SWAT model 

(Daniel Moriasi, 2011, personal communication; see also Moriasi et al., 2007). It is 

reasonable to assume that the SWAT model, with a more reliable tile drainage algorithm, 

will have a greater applicability to analyze the impacts of tile drainage on quantitative and 

qualitative hydrology at the watershed scale. Other commonly used hydrologic and water 

quality models with tile drainage algorithms also include Root Zone Water Quality Model 

(RZWQM; USDA-ARS, 1992), Agricultural Drainage and Pesticide Transport model (ADAPT; 

Alexander, 1988), and CoupModel (Jansson and Karl berg, 2011), but their applications are 

limited to field scale. 
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One of major obstacles for modeling tile drainage flow with SWAT is the difficulty to 

accurately identify the existing tile drained areas within the watershed of interest because 

there is no reliable database of the existing tile drained areas for USA (Sugg, 2007). In 

recent years, several methods based on GIS and remote sensing techniques have been 

proposed to map tile drained areas (Suggs, 2007; Naz and Bowling, 2008; see also the 

discussions in the Literature Review Section). However, none of these tile mapping 

approaches has been applied in hydro logic simulation with SWAT. The purpose of the 

study is to apply SWAT to analyze the impact of the subsurface drainage on the 

streamflows in the Upper Red River of the North Basin (URRNB) which drains at Fargo. The 

specific objectives of this study include: 

(i) To develop the SWAT model for simulating the streamflows in the Upper Red 

River of the North basin; 

(ii) To map the existing tile drained areas in the URRNB using a GIS-based decision 

tree classification method; 

(iii) To conduct scenario analyses of the impacts of tile drainage on streamflows in 

the URRNB. 
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2. REVIEW OF LITERATURE 

Existence of tile drains overlying a shallow aquifer can imbalance the seasonal 

hydrology. In such an environment, subsurface drainage will be the principal competitor 

of surface runoff if the topography of the land surface is flat. Studies have shown that tile 

flow could reduce as much as 70% of surface flow by allowing more precipitated water to 

be infiltrated into soils (Green et al., 2006). Numerous modeling studies have been done 

previously to understand how subsurface drainage flow influences water balance of land 

phase hydrology and which water balance components are sensitive to tile flow (Jin and 

Sands, 2003; Du et al., 2005; Helmers et al., 2005; Luo et al., 2008). This section is aimed 

at providing a review for past research studies on subsurface drainage modeling at the 

watershed scale. 

2.1. Effect of subsurface drainage on watershed water balance 

Comprehensive field studies on how tile drained flow affects the water balance 

components of watershed are hardly seen, because measuring all components at the 

watershed scale is impractical. To some extent, the nature of redistribution of water 

among land phase hydrologic components due to tile installation may be explained by 

physically based models. Du et al. (2005) conducted a modeling experiment with modified 

SWAT (SWAT-M) in the Walnut Creek watershed (Iowa) where 74% oftotal area was tile 

drained. They found that the contribution of surface runoff, tile flow, and baseflow to 

average annual streamflow were about 30, 33 and 37 %, respectively. These results were 

thought to be reliable as the associated errors were reduced adequately by calibrating 

this model against measured streamflow and actual evapotranspiration (ET). Later, Green 
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et al. (2006) applied the same model in the South Fork watershed of Iowa where about 80% 

of land was tile drained. When the SWAT-M was tested with and without tile drainage 

conditions, it was shown that including the tile drainage in the model improved the 

streamflow predictions by decreasing average annual surface runoff and ET by about 68 

and 11%, respectively. These findings revealed that significantly less surface runoff would 

be generated in the intensely tile drained watersheds located in Midwest USA. 

The amount of discharge at tile outlets is affected by many factors along the air-soil­

tile drain route traveled by the infiltrated water. The dominant factors include rainfall 

characteristics, land use, soil properties, size, and the arrangement of tile lines. Tile 

drainage responds rapidly and proportionally to rainfall during early cropping stage when 

ET demand is low. But during the vegetative stage when ET demand is higher, tile flow is 

small (Tom Scherer, 2011, personal communication; see also Randall and Mulla, 2001; Jin 

and Sands, 2003; Helmers et al., 2005; Luo et al., 2008; Kiesel et al., 2010). In a field 

experiment in Minnesota, Sands et al. (2008) found that on average 82% of tile drainage 

water flowed in April-June and 9% in July-October. If the preceding cropping season 

experiences a drought, then in the following spring a major portion of snowmelt water 

will replenish the dry soils. In this situation the yielded subsurface drainage flow will be 

comparatively less (Sands et al., 2008). 

In cold climates, soil temperature is an important factor affecting tile flow through 

the freeze-thaw thawing processes. When air temperature rises in early spring, snowpack 

(if present) will be melting first leaving less heat available to be transferred into soil, 

which will delay the thawing of the frozen soil and limit infiltration (Mitchell and Warrilow, 
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1987). In another study Baker (1997) showed that in early spring snowmelt water often 

refroze at the interface of snowpack and soil surface; and consequently infiltration was 

obstructed. However, some studies showed that even though snow was present, 

infiltration occurred immediately after snowmelt because the soils were not frozen near 

the surface (Cherkauer and Lettenmaier, 1999; Pitman et al., 1999). Iwata et al. (2010) 

showed that thicker snowpack resulted in thinner frozen soils and thinner snowpack 

resulted in thicker frozen soils. They concluded that thick frozen soils impeded infiltration 

and produced more spring surface runoff whereas thinner frozen soils comparatively 

produced less surface runoff. Therefore, in snow dominated areas, soil temperature 

should be taken into consideration in hydrologic modeling. When modeling five 

watersheds in Canada during the winter season, Belanger et al. (2009) showed that SWAT 

simulated lower soil temperature than observed and that the lag coefficient of soil 

temperature equation adopted in SWAT had greater influence on soil temperature in the 

deeper layers than in the surface layers. 

The timing of peak flow has the same of importance as the discharge of peak flow in 

watershed assessment and flood analysis. How rapidly tile flow will be seen at an outlet 

mostly depends on the soil drainage properties (Du et al., 2005; Kiesel et al., 2010). From 

a controlled field experiment in two watersheds in Illinois, Gowsami et al. (2008) showed 

that about 77% of the tile drained water flowed during recession period of hydrograph 

and therefore, it should reduce peak flows in receiving streams. The conjecture is that 

after a rainfall, the previously much deeper groundwater table took a longer time to reach 

above tile lines and thus the tile flow lagged behind peak streamflow. 
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2.2. Subsurface drainage algorithms and models 

Many models with different subsurface drainage algorithms have been developed in 

the past to simulate tile drainage flow. In the following paragraphs, some commonly used 

models (field or watershed scale) having tile algorithms are discussed with regard to their 

relative advantages and disadvantages. 

The DRAIN MOD model (Skaggs, 1978) is widely used in field-scale subsurface 

drainage modeling and the tile drainage algorithm used in DRAINMOD has been 

incorporated into several popular models like the Chemicals, Runoff, Erosion from 

Agricultural Management Systems (CREAMS; Knisel, 1980; Parsons and Skaggs, 1988; 

Wright et al., 1992; Saleh et al., 1994), the Groundwater Loading Effects of Agricultural 

Management Systems (GLEAMS; Leonard et al., 1987; Knisel, 1993; Thooko et al., 1994), 

and the Root Zone Water Quality Model (RZWQM; Ahuja and Hebson, 1992). DRAINMOD 

(Skaggs, 1978) uses a modified Green-Ampt equation to estimate infiltration and the 

Hooghoudt equation (Hooghoudt, 1940) to estimate tile drainage flux. If the water table is 

at the ground surface then Kirkham's steady state flow equation (Kirkham, 1957) is used 

to estimate drainage flow rate. The required inputs are hourly rainfall, maximum and 

minimum air temperature, crop, and soil data. Over the last 30 years DRAIN MOD has 

been improved significantly. One of the latest versions, DRAIN MOD 5.1, can model the 

processes of snowmelt, and freezing and thawing of soil moisture in cold environments 

(Luo et al., 2000). This latest DRAINMOD model was found to be effective in Canada 

(Dayyani et al., 2009), but less effective in simulating peak flow in Illinois (Christopher and 

Cooke, 2003). Christopher and Cooke (2003) also suggested that DRAINMOD5.1 needs 
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more attention in regards to modifying its temperature parameters. Northcott et al. (2002) 

integrated DRAINMOD with GIS software to be used at the watershed scale and tested the 

GIS-interfaced model in the Upper Little Vermilion River watershed in east-central Illinois. 

The model was successful in estimating tiled flow but was not recommended for total 

hydrology simulation at the watershed scale because of its over-sensitivity to saturated 

soil hydraulic conductivity (Parsons et al., 2001) and an inefficient ET module (Northcott 

et al., 2002; Dai et al., 2010). Sammons et al. (2005) also indicated that the Green-Ampt 

equation of DRAIN MOD ignored land use effects on infiltration. 

The Agricultural Drainage and Pesticide Transport Model (ADAPT), developed by 

Alexander (1988), is a field scale drainage model. Although both DRAINMOD and ADAPT 

models use Hooghoudt and Kirkhams's equations for tile flow, ADAPT uses the Soil 

Conservation Service-Curve Number (SCS-CN) method for infiltration, and the energy 

balance method for snowmelt hydrology. Sands et al. (2003) found that ADAPT 

underestimated tile drainage flow during snowmelt periods but gives good results during 

periods of rainfall. 

The Root Zone Water Quality Model (RZWQM), a lumped field scale model, was 

developed by USDA-ARS in the 1990's to simulate the physical, chemical, and biological 

processes in cropped fields. The Green-Ampt equation is used to model infiltration and 

the Hooghoudt equation is used for tile flow simulation. Generally, RZWQM was found to 

be able to predict subsurface drainage flow (Johnsen et al., 1995; Kumar et al., 1998a, and 

b; Bakhsh et al., 1999). This model also considers macropore's effect on the field water 

balance (Singh et al., 1996; Kumar et al. 1998b; Bakhsh et al., 1999). However, 
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Abrahamson et al. (2005) reported that the calibrated RZWQM model did not show 

significant differences in simulated tile flow when modeling with and without considering 

macropore's effect. In modeling a river basin in Canada, Ahmed et al. (2007) found that 

the RZWQM was not able to simulate streamflows fed by spring snowmelt very well. It is 

also worth mentioning that a GIS-based interface was also developed for RZWQM (Wang 

and Cui, 2004). 

An earlier version of SWAT estimated tile flow using the following equation: 

tilewtr = (SW - FC) (1 - exp [ . - 24 ]) if SW> FC 
tllectrain 

(2.1) 

where tilewtr is the tile drained water from soil profile; SW is soil water content, FC is field 

capacity, and tilectrain is the time to drain to FC of soil. These variables are expressed on a 

daily basis and units are in mm. In equation (2.1), it is hypothesized that if soil water 

exceeds field capacity for a given soil layer, then tile flow will occur. However, whether a 

tile drain will have any drainage flux or not also depends on the relative position of the 

water table and the tile drain. The current SWAT version (SWAT2009) uses the modified 

form of equation (2.1) (Neitsch et al., 2009}: 

tilewtr = (hwtbi-hctrain)(SW - FC) (1 - exp [ . - 24 ]) if hwtb1 > hctrain (2.2) 
hwtbl t1lectrain 

where hwtbl and hctrain are height of water table (mm) and tile drains (mm) above an 

impervious layer, respectively. Ignoring tile line spacing, perhaps, is one of the major 

drawbacks of equation (2.2). The current SWAT'S tile algorithm was found to be less 

effective compared to DRAIN MOD when a significant amount of modeling area was 

covered by tile drains (Chikhaoui et al., 2010). The present SWAT's tile module can be 

replaced by the Hooghoudt and Kirkham's subsurface drainage equations to enhance 
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SWAT's capability in modeling tile drainage. Moriasi et al. (2007} has incorporated these 

equations into SWAT and has showed improved model performance. 

In SWAT, the tile flow is estimated either at the entire basin level if it is completely 

under tile drained or at the Hydro logic Response Unit (HRU) level if the basin is partially 

tile drained. An HRU is a unique combination of soil, land use and slope within each 

sub basin, which, in turn, is a smaller unit of the entire basin. For a partially tile drained 

basin, SWAT requires spatial location of tile drained areas. 

2.3. Mapping tile drained areas 

In the Midwest region of the USA, a significant amount of agricultural land is drained 

by subsurface drainage systems as natural drainage is impaired by fine textured soils, flat 

topography, and high ground water tables {Sugg, 2007). However, there is often a lack of 

information about the tile drained areas and the characteristics of the tile drainage 

systems (Sogbedji and Mcisaac, 2002; Ruark et al., 2009). Although the National Resource 

Inventory (NRI) had surveyed tile drained areas along with surface drained areas in 1992, 

the dataset was not recommended for use because the dataset was outdated and was 

based on remote sensing imagery and aerial photographs without any physical validation 

(Sugg, 2007). Neither the State Soil Geographic database {STATSGO) nor the Soil Survey 

Geographic database (SSURGO}, developed by NRCS, has incorporated tile drainage 

information (Sugg, 2007). Subsurface tile lines installed 50 or more years ago throughout 

the USA have no registry about their locations (Naz and Bowling, 2008). 

At the field and small farm scales, the locations and areas of the tile drained fields 

have been identified by locating the outlets and vents of tile lines, analyzing crop 
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symptoms, applying GPS (Global Positioning System) techniques (Ruark et al., 2009), and 

using ground penetrating radar technologies (Allred et al., 2004). However, these 

approaches will no longer be practical for a watershed of which a large portion is tiled. 

Instead, GIS-based and remote sensing methods are recommended for such a purpose 

(Sugg, 2007; Naz and Bowling, 2008). Sugg (2007) identified the tile drained area by 

overlaying row crops data from the National Land Cover Dataset 1992 (NLCD 1992) and 

poorly drained soil data of STATSGO in a GIS environment for eighteen leading subsurface 

drainage States. This method is called soil drainage class (SOC), which assumes that the 

tile drainage systems have been or will be potentially installed in areas where crops 

cannot grow or are less productive due to high ground water table in poorly drained soils. 

The SOC method produced good agreement for heavily tile drained states (e.g., Ohio, 

Iowa, and Illinois); but produced an inferior agreement for those less heavily tiled areas 

(Arkansas, Mississippi, Missouri, Louisiana, and Red River Valley of the North). Although 

surface slope information was not used in the SOC method, Sugg (2007) recommended 

the inclusion of slope information for more realistic results. 

Similar approaches to Sugg (2007) were applied to estimate the potential tiled area 

in the North Dakota side of the RRV (Schuh, 2008), in which soil and aquifer properties 

rather than land use information were used. In the first approach, USDA aquic soil was 

assumed to be an indicator of the potential tile drainage areas as this soil represents the 

properties of a shallow groundwater table. In the second approach, if any of the three 

drainage soils such as very poorly, poorly and somewhat poorly drained in SSURGO 

overlays a shallow aquifer; then the corresponding area was considered suitable for 
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subsurface drainage. Both methods showed that about 35-40% of the North Dakota RRV 

could be tile drained. 

To identify the location of a tile drainage area, Kiesel et al. (2010) used a probability 

method. In this method, potential grid cells with high possibility for tile drainage were first 

selected by overlaying soil and topographic spatial data. Then, a probability function of 

subsurface drainage was developed based on the existing subsurface drainage data. 

Finally, the estimated tile drained area was obtained by multiplying the potential grid cells 

with the probability function. The authors applied the above technique with SWAT 

modeling and found this approach should not be used in watersheds where no sufficient 

quantitative information about existing tile drainage is available to develop a reliable 

probability function. 

Remotely sensed data, either from aircraft or from satellite, are thought as one of 

the promising alternatives to identifying individual tile lines (Verma et al., 1996; Northcott 

et al., 2000; Varner et al., 2002). The accuracy of remote sensing is greatly affected by the 

types of electromagnetic spectrum and their reflectivity from the earth's surface. The 

degree of this reflectance depends on soil moisture, texture, organic matter, and tillage 

practices. In principle, the soils above or close to the tile lines will dry faster than 

surrounding soils; and consequently, the dried soils will reflect more spectrum leaving a 

lighter color in the resultant imagery. On the basis of this principle, Verma et al. (1996) 

successfully delineated tile line locations for an area of 259 hectares using color infrared 

aerial photographs. They suggested that optimal results could be achieved if images were 

taken after 2 or 3 days of a 2.54 cm rainfall event. However, the presence of organic 
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matter in soils may make soils wetter, thus false tile lines may be identified along moist 

soils (Jensen, 2000). 

Naz and Bowling (2008) also applied GIS and image processing techniques to identify 

tile lines from aerial photographs in Tippecanoe County, Indiana. The potential tile 

drained area, where the possibility of being tiled is high, was identified by overlaying land 

use, soil, and surface slope data in a GIS environment using the decision tree classification 

approach. Subsequently, an aerial image of the potential areas was processed to refine 

the locations of the tile lines. However, they found that this image processing approach 

was rather limited: (1j other features like roads and field boundaries appeared like tile 

lines in aerial photographs and could cause an overestimation of the actual tiled areas;(2) 

in a harvested area where crop residues were still left in the field the low spectral 

resolution pixels of aerial image could not be used to differentiate between dry soils and 

crop residues (Baird and Baret, 1997; Daughtry, 2001; Streck et al., 2002; Varner et al. 

2002). 

The research studies discussed in this chapter have highlighted the influence of tile 

drainage on different water balance components of hydrology mostly at field scale 

whereas few studies have focused at watershed scale. However, a distinct study on how 

tile drainage can impact on seasonal peak streamflows has not yet been conducted at 

watershed scale. Moreover, identification of scattered tiled field is one of the major 

limitations in hydrological modeling at watershed scale. The present study was conducted 

to bridge the aforesaid gaps in perspective of the URRNB. 
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3. MATERIALS AND METHODS 

3.1. Soil and Water Assessment Tool (SWAT) model 

The GIS based SWAT model, ArcSWAT2009 (Neitsch et al., 2009), was used in this 

study. To set up a SWAT model three primary GIS data layers are required: (1) topography 

of the watershed, commonly known as digital elevation model (DEM), (2) land use/land 

cover, and (3) soils. SWAT divides a watershed into the number of subbasins based on 

DEM, and for each subbasin a stream is created by the principle of flow accumulation and 

direction. The model further divides a subbasin into smaller model units known as 

hydrologic response unit (HRU), from the information of land use, soil, and surface slope. 

Each HRU is homogeneous with respect to these three variables. This special feature 

allows SWAT to account for spatial variation within a watershed and to take less 

computing time. The outlet location of the delineated watershed is defined by the user to 

compare observed streamflow with modeled streamflow. 

SWAT divides the hydrology of a watershed into two major phases. The first phase is 

the estimation of different hydrologic components at the HRU level and then the amount 

of respective hydrologic component generated by all HRUs within a subbasin are summed 

to get a total load for that subbasin. This phase determines how much water will be 

available for streamflow in each subbasin and this total water is called water yield (figure 

3.1 and equation 3.1). The second phase is channel routing, which transfers the 

streamflow generated by each subbasin to the watershed outlet through channel 

networks. The major hydrological components are precipitation, surface runoff flow, 

abstraction by pond/ wetland, percolation, groundwater flow from shallow aquifer, lateral 
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flow, tile drainage flow, evapotranspiration, soil moisture storage, and flow to deep 

aquifers. If there is any impermeable layer with sufficient gradient towards a stream 

between the groundwater table and the root zone then lateral flow occurs. If an HRU is 

assigned as tile drained, SWAT will estimate the corresponding tile flow using the relevant 

properties of that HRU. This generated tile flow is treated as lateral flow and ultimately it 

contributes to streamflow or potholes (if applicable). The accuracy of tile flow simulation 

depends on how precisely the user can identify the specific HRUs where tile drains exist if 

the basin is partially tile drained. 

Precipitation 

~ 
Pond 

WT y 

ET 
SURQ 
~ 

Channel 

Figure 3.1. Components of water yield in SWAT (WT- Groundwater water table, ET­
Evapotranspiration, SURQ- Surface runoff, LATQ - Lateral flow, TILEQ -Tile flow, and 
GWQ - Groundwater flow). 

Water yield is expressed as the following equation, 

WYLD = SURQ + GWQ + LATQ + TILEQ -TLOSS - Pond abstraction (3.1) 

where TLOSS is transmission loss through the bed of tributary channel i.e., net surface 

runoff contribution to the main channel and other terms have already been discussed. 
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Observed weather data are required for the model. If the Hargreaves method is 

used to estimate evapotranspiration (ET) then only daily precipitation and temperature 

data are to be provided. On the basis of ambient temperature SWAT determines whether 

precipitation will be treated as rainfall or snowfall which in turn accumulates as snowpack. 

Snowpack may melt or sublimate according to air temperature, and this melted snow is 

reconsidered as rainfall to the soil. The SWAT's snowmelt algorithm is a function of air 

temperature, snowpack temperature, snow melting rate, and areal coverage of snow. 

SWAT also estimates daily soil temperature to increase the reliability of the SWAT model 

to be used in the cold climate region where subsurface hydrology is influenced by soil 

temperature. The amount of snowmelt is estimated by 

(3.2) 

where SNOmit is the amount of snowmelt (mm/d), bmit is the melt factor (mm/d-0 C), 

SNOcov is the fraction of HRU area covered by snow, Tsnow is the snowpack temperature 

( 0 C), T mx is the maximum air temperature (0 C), and T mlt is the base temperature above 

which snow melt is allowed (0 C). 

3.2. Tile drainage algorithms in SWAT 

3.2.1. Simple tile drainage algorithm 

The current SWAT version (SWAT2009) uses equation (2.2) to estimate daily drained 

water from the soil profile above the tile drain (Neitsch et al., 2009). The tile drained 

water estimated by equation (2.2) is then routed to the main channel (figure 3.1) by 

following equation. 
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Qwe = Qtile + Qtilestor,i-1 [ 1 - exp (T;t:,J] (3.3) 

where Otiie is the amount tile flow (mm) discharging into the main channel on a given day, 

Utile is the amount of tile flow (mm) generated from soil profile within a subbasin on a 

given day, G.tuestor,i-l is the amount of the lagged tile flow (mm) from the previous day and 

TTwe is the travel time (days) of tile flow to reach the main channel. 

The tile travel time (TTtiie) is calculated according to following equation: 

TT . == tile1ag 
tile 24 

where tile1ag is the lag time (hours) for a tile drain. 

3.2.2. Hooghoudt-Kirkham tile algorithm 

(3.4) 

The simple tile algorithm adopted by the current version of SWAT does not take into 

consideration spacing between the tile drains and size of the tile drains. Moriasi et al. 

(2007) recently incorporated the more robust Hooghoudt (1940) and Kirkham (1957) tile 

drain equations into the SWAT model. These two equations are also used in DRAINMOD 

model (Skaggs, 1978) to simulate subsurface drainage flow at the field scale. The relevant 

equations of the Hooghoudt and Kirkham algorithms are presented in the following 

paragraphs as described by Moriasi et al. (2007). The main assumption for the Hooghoudt 

and Kirkham algorithms is that tile flow will occur laterally when upper soil layer of tile 

drain is saturated. There are three conditions under which tile flow may occur. 

Condition-I: If the groundwater table exists below soil surface (figure 3.2) and the 

depth of ponded water in surface depressions are less than the maximum depressional 

storage S1 (figure 3.3) at which surface water can not directly contribute to tile drains, 
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then the following Hooghoudt (1940) steady-state equation will be used to estimate 

drainage flux. 

(3.5) 

where q is drainage flux (mm/h), m is the midpoint water table height above the drain 

(mm), Ke is effective lateral hydraulic conductivity (mm/h), Lis distance between drains 

(mm), C is the ratio of the average flux between the drains to the flux midway between 

the drains and is assumed to be unity (C=l) in this model, and de is equivalent depth 

substituted ford (height of the drain from the impervious layer) in order to correct for 

convergence near the drains (mm). 

Rainfall 

f \ \\ \ \ \ \ \ \ \\\ \ \ \ \ \ \ \ \ \\ t 

D3 

,-·- - -· 

~/ 

K2 
-··-···- ··- ..... ---... ------·-·- ········- -···- --- ·1· --·- t· 

L ~ ~ 
- - - - - --- ·- - -·-·- -·-·- - - - - - ---·-·-·-·- - - - - - - --- - --- ___ .. ;,_ I ~ Impervious soil layer I ~ 
///////~/ ////////. 

Figure 3.2. Schematic diagram of subsurface drainage system when water table exists 
below ground surface (Hooghoudt's equation). 

The equivalent depth (de) is calculated by the Moody's (1966) equations: 

D 
de = 0 { 8 ( 0 ) } for OS D/L S 0.31 1+- -In - -a 

L 1r r 
(3.6) 

where D is the thickness of soil layer, and r is the radius of drain tube. 

19 



Or, de = 8{ (L) } for D/L > 0.31 
- In - -1.15 
Tt r 

L (3.7) 

h i 
d 

L 

////// I I /Ill 

Figure 3.3. Schematic diagram of subsurface drainage system with a ponded surface. 

For layered soils, composite horizontal hydraulic conductivity (Ke) will be calculated 

with the equation: 

(3.8) 

where d1 is the depth of the saturated soil in the layer where water table intersects (figure 

3.2). If the water table exists in the second layer (D2), then d1 will be zero and D2 is 

denoted as d2, and so forth. 

Condition-II: If ponded depth in surface depression is greater than S1 (figure 3.3) and 

water table rises over the ground surface and stays for a long time, then the Kirkham 

(1957) equation is used. 

4nKe(t+b-r) 
q = gL (3.9) 
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where tis the depth of ponded water, b is the depth from soil surface to the center line 

of the drain, and g is a dimensionless factor expressed as a function of d, L, actual depth of 

soil profile (h) and radius oftile tube (r). All linear dimensions are expressed in mm and Ke 

is expressed in mm/day. 

Condition-Ill: If the estimated drainage flux by the above two equations is greater 

than the drainage coefficient (DC, mm/day), the flux (mm/day) will be equal to DC as 

expressed by the following equation. 

q = DC (3.10) 

3.2.2.1. Maximum depressional storage (S1 or Sd ) 

Maximum depressional storage (S1 or Sd in cm) is calculated by the equation of Onstad 

(1984). 

Sd = 0.112RR + 0.031RR2 - 0.012RR * S (3.11) 

where RR is the random roughness (cm), and Sis the slope of the land (%).The RR is a 

function of tillage, orientation of ridges, and weather where RR is taken from Saleh and 

Fryrear (1999). 

RR= O.lRRi * efDF(-o.0009cuME1-o.0001cuMR)J (3.12) 

where RR (cm) is the random roughness at any time t (days) after a tillage operation, RRi is 

the random roughness (mm) immediately after a tillage operation, CUMEI is cumulative 

rainfall erosivity (MJ mmha-1h-1), CUMR is cumulative rainfall (mm) since last tillage 

operation, and DF is decay factor estimated based on clay(%) (CLAY) and organic matter 

(OM) in the soils using the following equation. 

OF = e[0.943-0.07CLAY+0.0011CLAY2 -0.670M+0.120M2] {3.13) 
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3.3. Study area 

The Upper Red River ofthe North Basin (URRNB) is situated at southeastern North 

Dakota and mid-western Minnesota. This basin drains into Red River of the North (RRN) 

at USGS stream gauge station 05054000 located at the City of Fargo, North Dakota 

(figure 3.4). Only about 7% of its total 16,500 square km drainage area is located within 

the State of South Dakota. The URRNB consists of five USGS 8-digit HUC's, namely, 

Mustinka River, Bois de Sioux River, Otter Tail River, Western Wild Rice River, and the 

Upper Red River. 

Llgend 

-RIYers 
iflCltles 
0 USGS 1-dlQlt HUC watersheds 

o 20 40 eo Kli0me19rs 
l I I I I I I I I 

Upper Red River of the North Basin 

Figure 3.4. Geographical loc:ition ofthe Upper Red River of the North Basin (URRNB). 
Data sources: The National Hydrography Datasets and the North Dakota Geographic 
Information Systems database. 
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The topography of the basin is relatively flat except for the upstream portions of the 

Western Wild Rice River watershed and the Otter Tail River watershed. The major land 

uses in the URRNB are row crop agriculture {65%), followed by pasture/hay {11%), 

water/wetlands (10%), forest (9%), and urban (5%) (Lin et al., 2011). The hydrology of 

this region can be classified as snow hydrology during November through March; and 

rainfall hydrology during April through October. Mean annual precipitation varies from 

510 to 560 mm and about 75% of the annual precipitation occurs from April through 

September. 

3.4. Input data 

3.4.1. DEM data 

For this study, 10-m resolution DEM data were provided by the International Water 

Institute (2011). These DEM data were prepared using Light Detection And Ranging (LiDAR) 

approach under the Red River Basin Mapping Initiative. 

3.4.2. River network 

SWAT has two input options to define river/stream networks in the basin: (1) a 

generated stream network based on DEM or (2) a user given real stream network. 

However, the DEM based network does not always represent the real stream network due 

to various constraints, for instance, generation of false rivers from coarser resolution DEM 

data. In this study, the actual stream networks were provided by the National 

Hydrography Datasets (2010) (figure 3.4). 
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3.4.3. Reservoirs and wetlands 

The Otter Tail River watershed (figure 3.5) has many wetlands and reservoirs 

compared to other watersheds. If a subbasin has more than 5% of its area as open water 

then a wetland was considered in the model and the surface area of the wetland was 

optimized during model calibration. If a reservoir exists in the downstream of any rivers 

then the model was allowed to consider reservoir's effects on streamflows. As shown in 

figure 3.5, three reservoirs, namely, the Orwell Dam, White Rock Dam, and North Bay 

Dam, were modeled at the downstreams of Otter Tail River, Bois de Sioux River, and 

Western Wild Rice River, respectively. The observed outflow data from the Orwell Dam 

were collected from the database of US Army Corps of Engineers (2011). 

3.4.4. Soil data 

The STATSGO soil dataset was used for SWAT for the URRNB. The resolution of 

STATSGO soil data was 1:250,000. STATSGO classifies soil into four hydrologic soil groups 

(i.e., A, B, C, and D soils) on the basis of runoff potential of the soil where A has the lowest 

runoff potential due to high sand (above 90%) whereas D has the highest runoff potential 

with more than 40% clay. Moreover, D represents a high groundwater table with an 

impermeable soil horizon near to soil surface. It is evident that some of tiled areas are 

also seen in well drained soils (C or B) in URRNB where a high ground water table exists 

due to glacial aquifers (Schuh, 2008). Therefore, both D and C soils were considered as 

poorly drained soils in this study. 
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Figure 3.5. Location of different gauge stations and land use pattern within the URRNB 
(WETN-Wetland non-forested, WETF-Wetland forested, WATR-Open water body, RNGE­
Range land, FRST-Mixed forest, FRSE-Evergreen forest, FRSD-Deciduous forest, and AGRR­
Agricultural land). 
Data sources: The National Hydrography Datasets, the North Dakota Geographic 
Information Systems database, the Multi-Resolution Land Characteristics Consortium 
database, the USGS water database, the National Oceanic and Atmospheric 
Administration's weather database and the North American Regional Climate Change 
Assessment Program database. 
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3.4.5. Land use/land cover data 

The National Land Cover Dataset 2001 (NLCD 2001) developed by the Multi­

Resolution Land Characteristic Consortium (MRLC) was used in this study for the purpose 

of HRU definition. The NLCD 2001 represents all cultivated crops under a single group 

coded as row crops whereas the land use database of National Agricultural Statistics 

Service (NASS) delineates all major crops separately. The row crops of the NLCD2001 

dataset were divided into two major crop groups (i.e., corn and soybean) based on the 

NASS 2006 database. It can be mentioned that the NASS data prior to 2006 were not 

available for the entire basin. 

3.4.6. Streamflow and tile flow data 

The monthly observed streamflows for 22 years (from 1988 to 2009) were collected 

at the five U. S. Geological Survey (USGS) gauge stations (figure 3.5). These stations were: 

(1) USGS 05051300 at Bois de Sioux River near Doran, MN, draining Bois de Sioux and 

Mustinka watersheds, (2) USGS 05046000 at Otter Tail River near Fergus Falls, MN, 

draining Otter Tail River watershed, (3) USGS 05051500 at Red River of the North at 

Wahpeton, ND, draining above three watersheds, (4) USGS 05053000 at Western Wild 

Rice River near Abercrombie, ND, draining Wild Ricer River watershed, and (5) USGS 

05054001 at Red River of the North at Fargo, ND, draining the entire URRNB. Two years 

(2008 - 2009) of daily tile flow data were collected from the 20 ha experimental field 

located in Fairmount, Richland County, ND (Pang et al., 2010). This field was under 

controlled subsurface drainage and subirrigation systems. The field has C soils. 
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3.4. 7. Weather data 

The weather data (precipitation and temperature) for 22 years (1988 - 2009) were 

collected from the database of Cooperative Observer Network (COOP) of National 

Oceanic and Atmospheric Administration (NOAA). For every delineated subbasin, SWAT 

uses the weather data from the nearest station. Thirteen weather stations within and 

near the basin's boundary were used for this study (figure 3.5). These stations, having less 

missing data and with uniformly distributed over the basin, were chosen so that the 

spatial variability of climate data would be minimized. 

3.4.8. Projected future weather data 

Though the goal of this study was not directly related to climate change, the future 

climate scenarios were taken into account when the impacts of projected tile drained 

areas on streamflows were analyzed. The climate estimates available for the period of 

2040 - 2070 were collected from the database of the North American Regional Climate 

Change Assessment Program (NARCCAP) (2011). For convenience, the 2040-2070 climate 

data sets will, hereafter, be called as mid 21st century or simply 2050 climate . However, 

only the RCM3-GFDL climate model generated estimates were used, where RCM3 stands 

for the Regional Climate Model version-3 and GFDL (a General Circulation Model) stands 

for the Geophysical Fluid Dynamics Laboratory. RCM3-GFDL means that the future global 

climate estimates projected by the GFDL model were downscaled by the RCM3 regional 

model. As shown in figure 3.5, there were seven RCM3-GFDL grid points within or near 

the study area and the spatial resolution of these grids was 50 by 50 km. The raw 
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precipitation data generated by the RCM3-GFDL model were at a 3 hrs interval and were 

converted to the daily values. 

3.5. Watershed delineation and HRU definition 

As shown in figure 3.6, the URRNB was delineated into 31 subbasins and 937 HRU's. 

While defining the HRU, the threshold values for land use/land cover, soil and slope were 

assigned as of 4, 10, and 15%, respectively. If the percentage of any class within each 
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Figure 3.6. Delineated subbasins in the URRNB. 
Data sources: The National Hydrography Datasets, the North Dakota Geographic 

Information Systems database and USGS water database. 
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variable (land use, soil orslope) is below the threshold value then that particular class will 

not be considered in modeling rather that class will be merged proportionally with 

remaining classes. For example, if in a HRU urban land use class is below 4% then the 

model will not consider this urban land use rather it will be proportionally merged among 

others having equal to or more than 4% of areal coverage. 

3.6. Mapping tile drained areas 

If only a portion of the basin area is under subsurface drainage then the information 

about the locations and areas of the tile drained subbasins needs to be provided to model 

tile flow in SWAT. In this study, a GIS based decision tree classification method (OTC; see 

also Sugg, 2007; Naz and Bowling, 2008) was applied to identify the approximate tile 

drained areas in the URRNB. The processes of mapping tiled area and selecting tiled HRUs 

are shown in figure 3.7. Firstly, soil (STATSGO) and land use/land cover (NLCD2001) data 

layers were overlaid to obtain the raster cells (10 m x 10 m), in which, row crops grow at 

the poorly drained soils. Since flat topography (slope~ 1%) that impedes quick surface 

runoff is another reason for tile drainage, land with less than or equal to 1% surface slope 

was overlaid with the previously created crop-soil raster data layer. The resultant layer 

was the potential tile drained (PTO) area for the URRNB. For C and O soils, the PTD area 

was mapped separately; and for simplicity, they are called C-PTO and 0-PTO areas. The 

existing tiled area was determined based on 0-PTO area only. The PTO area was laid with 

the delineated watershed map (figure 3.6) to identify the PTO sub-basins, the sub-basins 

that overlap with the PTO areas. 

29 



Land use data Soil data 

Slope data 

Figure 3.7. Flow diagram of tile drained area mapping and identifying tiled HRUs. 
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The percentages of the current tile drainage acreages in different counties estimated 

by Schuh {2008) for the North Dakota side and by Sugg (2007) for the Minnesota side 

were used to estimate the actual tile drainage areas in URRNB. The county based existing 

tile drained area reported by Schuh (2008) and Sugg (2007) were distributed 

proportionally among the PTO subbasins within each county. Since the exact spatial 

locations of these existing tile drained areas within a county were unknown, their 

locations were modeled within the boundary of the PTO areas mapped by the decision 

tree classification method. 

Since SWAT computes water balance components at the HRU level, the model 

requires specifying which HRUs are tile drained. The HR Us with crop land use, soil O or C, 

and slope less than or equal to zero were identified from each PTO subbasin; and these 

HR Us were termed as PTO HR Us. Desired numbers of the tiled HR Us were selected from 

the PTO HRUs of each PTO sub-basin so that the total area encompassed by the HRU's 

equaled the estimated area of the existing tiled fields in that sub-basin. 

3. 7. Model calibration and validation 

The two versions of SWAT with different tile drainage algorithms were first 

calibrated and validated against the daily tile flow dataset from Fairmount. The calibration 

and validation time periods were 2008 and 2009, respectively. The calibrated tile drainage 

parameters were then transferred to the SWAT model for the entire URRNB. The URRNB 

model was then calibrated and validated against the monthly stream discharges recorded 

at the five USGS stream stations. The calibration and validation periods are 1990-2000 and 

2001-2009, respectively. The calibrated SWAT models were then used to analyze the 
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impact of tile drainage on the water budget and streamflows in the URRNB under 

different scenarios. 

3.8. Statistical indicators to evaluate model's performance 

The model's performance was evaluated by the following indicators. 

3.8.1. Nash-Sutcliffe efficiency (NSE) 

The NSE (Nash and Sutcliffe, 1970) is the measure of how closely the simulated 

values match with the observed values. It is represented by 

(3.14) 

where Oi and Si are the ith observed and predicted streamflows, respectively; 0 is the 

average observed streamflows; and n is the number of observations. The NSE takes a 

value from -oo to l, with greater values indicating better agreement. 

3.8.2. Coefficient of determination (R2) 

The R2 represents the variation associated with the observed data to be explained 

by the model. 

(3.15) 

where S is the average model-predicted streamflows and other symbols are defined as 

the same as in equations (3.14). 

32 

-·---



3.8.3. Percent of bias (PBIAS) 

PBIAS stands for the percent of bias that indicates the average tendency of over 

prediction or under prediction by the model. 

(3.16) 

3.9. Future tile drainage and climatic scenarios 

It was postulated that the extent of tile drainage area would be increasing in the 

RRV to improve agricultural production. Two different tile drainage scenarios are 

combined with two different future climate conditions (with or without climate change) to 

create four different future scenarios (see Table 3.1) to simulate the impact of tile 

drainage on streamflows in the URRNB in the future. The two different tile drainage 

scenarios are the D soil PTD area (5.7% of the basin area); and the sum ofthe C soil PTD 

area and the D soil PTD area (17.4% of the basin area). The PTD areas were described in 

Section 3.6. 

Table 3.1. Design offuture scenarios. 

Tiled drained area 

D soil PTD area 

(5.70% of basin) 

(C+D) soil PTD area 

(17.40% of basin) 

Without climate change With climate change 

Scenario - 1 Scenario - 3 

Scenario - 2 Scenario - 4 
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4. RESULTS AND DISCUSSION 

4.1. Tile drained area estimation 

Figure 4.1 shows the spatial extents of the C- PTD area (purple colored) and the D­

PTD area (red colored) in the URRNB estimated using the DTC technique. As shown in the 

figure, the major portion of the D- PTD area was found along the Red River main stem 

covering about 940 km2, which is about 5.7% ofthe entire basin area. The existing tile 

drained area in URRNB was estimated to be 125 km2, equivalent to 0.75% of the total 

basin area. The estimated total area of the existing tiled fields was as same as those 

reported in Schuh (2008) and Sugg (2007). However, the tile drained areas estimated in 

this study were assumed to be overlaid with D soil, which does not necessarily reflect 

reality. Some existing tiled fields are overlaid with C soils. For example, the 20 ha 

experimental tiled field in Fairmount (Richland County, ND) was on C soils. The total (C + 

D) - PTD area was about 2876 km2 (or 17.40% ofthe basin area). Srinivasan et al. (2010) 

found that it was satisfactory when SWAT was applied, in conjunction with the DTC 

method, to model the impact of subsurface drainage in the Upper Mississippi River Basin; 

whereas Sugg (2007) suggested that the estimation of tiled area by the OTC method was 

more reliable for heavily tiled area than for less tiled area. 

4.2. Comparison of tile drainage algorithms 

The SWAT model was first calibrated and validated against 2 years tile flow daily 

measurements collected at the Fairmount experiment site to compare the two tile 

drainage algorithms adopted in different versions of SWAT. The calibrated values of the 

parameters associated with the two tile drainage algorithms are provided in Table 4.1. 
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Figure 4.1. Potential tile drained areas in the URRNB estimated by the decision tree 
classification method. 
Data source: As mentioned in figure 3.4. 

Table 4.1. Calibrated parameters of simple and Hooghoudt-Kirkham tile algorithms. 

Parameters Description Simple Hooghoudt-Kirkham 
algorithm algorithm 

TORAIN Time to drain soil to FC (hrs) 48 
GDRAIN Drain tile lag time (hrs) 168 
DEP _IMP Depth to impervious layer in soil 1250 1250 

profile (mm) 
RE Radius of tile drains (mm) 30 
DC Drainage coefficient (mm) 13 

LATKSATF Conversion factor for saturated 1.5 
hydraulic conductivity 
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The comparisons of calibration (2008) and validation (2009) are shown in Figures 4.2 and 

4.3, indicating a similar overall performance for both algorithms. The simple algorithm 

had slightly greater Nash-Sutcliffe coefficients than the Hooghoudt-Kirkham algorithm 

during both calibration and validation periods. It is also noticeable that Hooghoudt­

Kirkham algorithm had a better performance than the simple algorithm during the late 

spring and early summer, while it had a worse performance than the latter during the 

early fall season. Both algorithms produced trace tile flow during the winter and the 

growing season when the tile flow was not actually observed. During the calibration time 
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Figure 4.2. Simulation performance of two tile algorithms during calibration (2008) 
(a) Simple and (b) Hooghoudt-Kirkham. 
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Figure 4.3. Simulation performance of two tile algorithms during validation (2009) 
(a) Simple and (b) Hooghoudt-Kirkham. 

period the simulated tile flow time series ended about one month later than the observed 

(figure 4.2); while during the validation period, the tile flows simulated by both algorithms 

started about two weeks earlier than the observed flow (figure 4.3). This is because the 

field was under controlled subsurface drainage systems and the sump pump operation 

time was not simulated. For example, the simulated tile flow starting about two weeks 

earlier than the observed was because the land owners were asked by the local water 

board to turn off their sump pumps when the area was experiencing a historic flood in 

spring 2009. 
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Overall, both algorithms were able to simulate the pattern of the observed tile flow; 

and did well in the summer (June-August) and in mid-fall (October). However, both 

algorithms over-predicted the tile flow during late spring (April-May) and under-predicted 

during the early fall season (September). Four major possible reasons for the model's 

deficiency are suggested: First, there was lack of accurate weather inputs (precipitation 

and temperature). The nearest weather station was about 13.5 km away from the tiled 

field. Second, SWAT was limited in modeling soil temperature and soil water movement 

during spring snowmelt time. SWAT estimates soil temperature at different depths based 

on air temperature. The modeled average lag time between air and deeper soil 

temperatures was found to be 25-27 days. In a field study in the Red River basin, Jin et al. 

(2008) found that only the temperature of the upper 30 cm soil was influenced by air 

temperature and the lag time to reach the minimum temperature at the deeper soil was 

about 40 days. Similar results were also found in an experiment at Valdai, Russia (Luo et 

al., 2003). Furthermore, SWAT does not take into account the influence of snowpack 

thickness on the vertical soil temperature profile which may also affect infiltration 

processes during snowmelt (Luo et al., 2003, Iwata et al., 2010). Third, the 

underestimation in the beginning of fall (mid September - mid October) simulation might 

be due to higher soil water provided by subirrigation in mid July-August. Fourth, SWAT 

used an artificially created perched water table to generate lateral tile flow by assuming 

an impervious soil layer at 1250 mm, which did not reflect the reality of the glacial aquifer 

of RRNB. SSURGO database (NRCS web soil survey, www.websoilsurvey.nrcs.usda.gov) 

suggests that, for Doran soil in the Fairmount experiment site, the depth to impervious 
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layer is about 2000 mm and the depth to groundwater table fluctuates from 457 to 1066 

mm. 

4.3. Model calibration and validation at the watershed scale 

Given that both algorithms had a similar performance in simulating tile flow in the 

field scale and that the SWAT model with the simple algorithm ran faster during execution 

in computer than the SWAT model with Hooghoudt-Kirkham algorithm, the SWAT model 

with the simple algorithm was chosen to model the impact of tile drainage on 

streamflows in the URRNB at the watershed scale. The values of the parameters 

governing the tile drainage process were directly transferred into the watershed-scale 

SWAT model for the URRNB while the model parameters governing other hydrological 

processes (i.e., land hydrology and channel routing) were calibrated against the 

streamflow measurements at the five USGS stream stations at a monthly time step. The 

calibrated values and the ranges of the important SWAT model parameters are listed in 

Table 4.2. 

In addition to curve number (CN2), the parameters associated with snowmelt 

algorithm mostly controlled the overall performance of the model. The basin level 

parameters of SMTMP, TIMP and SURLAG mostly controlled the model's performance in 

simulating the spring snowmelt driven streamflows (Wang and Melesse, 2005; Wang et 

al., 2008}. The HRU level parameter ESCO took a value of unity (1.0), indicating that no 

evaporation was allowed from deep soils. Similarly, EPCO took a value of unity, indicating 

that plants were allowed to draw water from deep soils. These calibrated parameters 

(ESCO and EPCO) ensured sufficient water in the root zone so that crop experienced less 
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water stress. In the Otter Tail River watershed, the most sensitive parameters were 

related to surface water and groundwater interaction. The relative lower values of AWC 

and GW_DELAY ensured sufficient and rapid shallow aquifer recharge, while the relative 

higher value for ALPHA_BF and GW_SPYLD allowed fast groundwater discharge. 

Table 4.2. Calibrated parameters of SWAT model with their default values. 

Parameters Description SWAT default Calibrated 
values values 

Basin level 
SFTMP Snowfall temperature (0C) 1.00 0.00 
SMTMP Snowmelt temperature (0C) 0.50 1 

TIMP Snowpack temperature lag factor 0.2 1 
SURLAG Surface runoff lag time (day) 4 0.2 

Otter Tail 
watershed 

AWC Available water capacity (mm/mm) 0.11-0.20 0.01- 0.08 
GW SPYLD Specific yield of shallow aquifer (m3 /m 3) 0.003 0.3 
ALPHA_BF Baseflow factor (days) 0.048 0.5 
GW DELAY Groundwater delay (days) 31 5 

SHALLST Initial depth of water in shallow aquifer (mm) 0.5 1000 
HRU Level 

CN2 Curve number 42-90 30-78 
ESCO Soil evaporation compensation factor 0.0 1.0 
EPCO Plant uptake compensation factor 0.0 1.0 

TORAIN Time to drain soil to FC (hrs) 48 
GDRAIN Drain tile lag time (hrs) 168 
DEP _IMP Depth to impervious fayer in soil profile (mm) 1250 

Reservoirs 
RES VOL Initial volume (m3) 300,0000 -

405,0000 
RES_PVOL Volume at principal spillway (m3) 405,0000-

700,0000 

4.3.1. Model performance for long-term simulation 

Table 4.3 lists the performance indicators ofthe SWAT model in simulating the 

streamflows at the five USGS gauge stations during the calibration (1990-2000) and 
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validation (2001-2009) periods. The consistently high values for both NSE and R2 at all five 

stations indicate that the SWAT model was able to simulate the monthly streamflows in 

URRNB reasonably well. The model showed the best performance for the Otter Tail River 

watershed and the worst performance for the Wild Rice River watershed. An average 

tendency of overestimation of streamflows was reflected by the positive PBIAS values, 

shown in almost all stations except for the Otter Tail River watershed, where a slight 

underestimation was observed. 

Table 4.3. Performance of SWAT in streamflow simulation at five USGS stations. 

USGS streamflow gauge stations Calibration Validation 

NSE R2 PBIAS NSE R2 PBIAS 
(%) (%) 

Bois de Sioux River at Doran 0.72 0.74 26 0.70 0.75 27 
Red River at Wahpeton 0.83 0.84 11 0.86 0.86 6 
Otter Tail River at Fergus Falls 0.99 0.99 -1 0.98 0.98 -2 
Wild Rice River at Abercrombie 0.69 0.85 40 0.72 0.72 9 
Red River at Fargo 0.84 0.93 8 0.87 0.89 2 

Figures 4.4-4.8 shows the graphical comparisons of the model simulated and 

observed monthly average streamflows at the five USGS gauge stations. In the Bois de 

Sioux watershed, the model generally underestimated snowmelt driven spring 

streamflows with the worst performance in 2004 and 2005 (figure 4.4). But, the record 

high spring flood in 1997 was nearly perfectly simulated. The Lake Traverse created by the 

White Rock Dam (see figure 3.5) at the upstream of Bois de Sioux River may be partly a 

cause of the deficient model performance during 2004 and 2005. The errors associated 

with the calibrated parameters (e.g., volume, depth of water, hydraulic conductivity) of 

this lake might be the reason of model's poor performance as there was no observed 
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lake's outflow data. The streamflows of the Red River at Wahpeton were predominantly 

influenced by the Bois de Sioux River watershed, so the model performance at the 

Wahpeton station was similar to that the Bois de Sioux River (comparing figures 4.4 and 

4.5). 
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Figure 4.4. Comparison of simulated and observed streamflows of the Bois de Sioux River 
at Doran (a) calibration and (b) validation. 

The Otter Tail River is unique in the sense that it flows all year long and does not 

respond to extreme precipitation events as rapidly as other rivers in URRNB (see figure 

4.6). This may be due to the extensive presence of scattered wetlands, reservoirs, lakes, 

and the shallow glacial aquifer in the Otter Tail River watershed, which had made the 

hydrological modeling of this watershed difficult (see Wang et al., 2008). When modeling 

the inflows to the Orwell Dam Reservoir using SWAT, Wang et al. (2008) was only able to 
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achieve NSE values of 0.36 and 0.15 for model calibration (1969-1972) and validation 

(1972-1974), respectively. In this study, the model's performance was dramatically 

improved by allowing for surface water and groundwater interactions, which indicated 

that the glacial shallow aquifer played an important role in regulating the streamflows in 

the Otter Tail River. 
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Figure 4.5. Comparison of simulated and observed stream flows of the Red River at 
Wahpeton during (a) calibration and (b) validation. 
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Figure 4.6. Comparison of simulated and observed stream flows of the Otter Tail River at 
Fergus Falls during (a) calibration and (b) validation. 

Figures 4.7-4.8 compared the model simulated and observed streamflows in 

Western Wild Rice River at Abercrombie and in Red River at Fargo, respectively. The 

model performance was generally satisfactory except that the model underpredicted the 

highest snowmelt driven spring flood peaks in 1997, 2001, and 2009. It should be noted 

that inclusion of Lake Tewaukon in the Western Rice River, created by the North Bay Dam, 

greatly improved the model performance. 
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4.3.2 Model performance for spring flood simulation 

To understand the underperformance of SWAT in simulating the highest spring flood 

peak flows, the calibrated SWAT model was run at a daily time step to simulate the 

streamflows in Red River at Fargo for three individual years (1997, 2007, and 2009) with 

severe flood records (figure 4.9). The model was able to simulate the 2007 spring flood 

reasonably well, but not for spring floods in 1997 and 2009, which were among the all­

time highest records. A couple of reasons were suggested to explain the model's poor 

performance in modeling the spring flood peak flows. First, SWAT was not able to 

simulate the intermittent snowmelt process (Wang and Melesse, 2005). In late winter, 

daily air temperature was fluctuating around the freezing point. For example, air 

temperature may rise above O QC around noon, resulting snowmelt; then the air 

temperature may fall below O QC at night, causing the snowmelt water to freeze before 

reaching streams. The SWAT model was not able to simulate this intermittent snowmelt 

process resulting over-prediction during late winter and under-prediction during early 

spring (see figure 4.9(a)). 

Another possible reason is that SWAT overestimates snowpack sublimation. When 

the snowmelt temperature factor (SMTMP) was increased from Oto 1.5 QC to intensify the 

snowmelt process in a relatively short time period snowpack sublimation, rather than the 

desired snowmelt water, increased by about 7%. If SWAT had the provision to control 

sublimation it may be possible to improve the model's snowmelt hydrology. It should be 

mentioned that the estimated ET, which accounted for about 69% of the average annual 
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precipitation, was comparable to another SWAT modeling study in Minnesota (David 

Mulla, 2011, personal communication}. 
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Figure 4.9. Comparison of simulated and observed daily stream flows of the Red River at 
Fargo (Outlet of URRNB} (a} 1997, (b) 2007, and (c} 2009. 
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4.4. Impacts of tile drainage on water balance and streamflows 

The calibrated SWAT model for the Fairmount experimental site was run with and 

without tiles to analyze the impact of tile drainage on water balance at the field scale 

whereas the calibrated SWAT model for the upper Red River of the North basin was run 

with and without tiles to analyze the impact of tile drainages on the water balance at the 

watershed scale and the stream flows of the RR at Fargo. 

4.4.1. Impacts of tile drainage on water balance at field scale 

The Fairmount experimental field was considered a prototype on evaluating how tile 

drainage can impact the other water balance components of hydrology. This field was 

fully under tile drained condition. Precipitation is the principal driving force of other 

hydro logic components at this site and its variation may produce different results of tile 

drainage's impact on other water balance components. The model was tested using two 

years of precipitation data - a higher than normal annual precipitation (793.8 mm) in 2008 

followed by a lower than normal annual precipitation (646.4 mm) in 2009. 

Tables 4.4 and 4.5 respectively showed the simulated annual water balance 

components with and without tiles in 2008 and 2009. In 2008, the tiled field produced 

147mm (H20) in tile flow, which was equivalent to 19% of the annual precipitation and 40% 

of the annual water yield. In 2009, the tile field produced 84 mm (H 20) in tile flow, which 

was about 13% of the annual precipitation and 30% of the annual water yield. From a 5 

year field scale study conducted in the same region Sands et al. (2008) found that about 

17% of annual precipitation was converted to subsurface drainage. Kladivko et al. (2004) 
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showed that 8- 26% of the annual precipitation could be converted into subsurface 

drainage based on a field study in Indiana. 

Table 4.4. Changes in annual water balance components due to tile drainage in 
experimental plot (2008). 

Water balance Without tile With tile Changes Relative 
components (mm) (mm) (mm) changes 

{%) 

Precipitation 793.8 
Tile flow 147.1 

Surface runoff 330.7 217.3 -113.3 -34.3 
Lateral flow 0.5 0.2 -0.4 -71.2 
Water yield 331.2 364.5 33.3 10.1 

Groundwater 0.00 0.00 0.00 0.00 
recharge 

Transmission loss 0.01 0.01 0.00 0.00 
Evapotranspiration 399.9 399.2 -0.7 -0.2 
Soil Water content 277.7 225.4 -52.3 -18.8 

Table 4.5. Changes in annual water balance components due to tile drainage in 
experimental plot (2009). 

Water balance Without tile With tile Changes Relative 
components (mm) (mm) (mm) changes 

(%) 

Precipitation 646.4 
Tile flow 84.0 

Surface runoff 290.6 192.5 -98.1 -33.8 
Lateral flow 0.8 0.15 -0.6 -81.4 
Water yield 291.4 276.6 -14.7 -5.1 

Groundwater 0.00 0.00 0.00 0.00 
recharge 

Transmission loss 0.01 0.01 0.00 0.00 
Evapotranspiration 356.2 372.0 15.8 4.4 
Soil Water content 280.3 227.0 -53.3 -19.0 

49 



In both years surface runoff and soil water contents were significantly affected by 

tile drainage, whereas groundwater recharge and transmission loss were unaffected. 

Since an impervious soil layer at the depth of 1250 mm was created in the model, deep 

percolation to the deep groundwater aquifer was not allowed. Therefore, groundwater 

recharge was not simulated in the tiled field. Lateral flow appeared to be greatly impacted 

by tile drainage in terms of relative changes (-71% in 2008 and -81% in 2009). But, the 

absolute changes were small, decreasing by 0.4 mm in 2008 and 0.6 mm in 2009 after the 

field was tiled. 

It is interesting to see that, in both years, annual surface runoff decreased by about 

34% and soil water content measured at the end of the simulation time decreased by 

about 19%. It was, however, a different story for evapotranspiration and water yield. 

Evapotranspiration decreased about 0.2% 2008 (wetter year), while it increased about 4.4% 

in 2009 (drier year). The pattern for water yield was just the opposite. Water yield 

increased by about 10% in 2008 and decreased by about 5% in 2009. 

Although it is yet to be corroborated by further studies, it appeared that tile 

drainage might have made the wet year wetter and the dry year drier in terms of water 

yield from a 100% tiled field. Figure 4.10 compared the impact of tile drainage on water 

yield at a monthly basis in 2008 and 2009. Water yield during winter months (December -

February) was negligible. Both years saw a decrease in water yield in early spring (March) 

and during the growing season (July-September) and an increase in late spring (April) and 

fall (October and November) due to tiles. The decrease of water yield due to tiles in 

March may be because the snowmelt water was able to infiltrate into the unsaturated 
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soils drained by the tiles in the previous fall, referring to the increased water yield in 

October and November. The decrease of water yield due to tiles in the growing season 

was caused by lowest soil water content, which, in turn, was caused by highest ET. Though 

the total ET in growing season was not affected by tile drainage, the decreased soil water 

content even less than field capacity created extra buffer room in soil profile to hold more 

infiltrated water and resulted less water yield. In tiled field crop faced less water stressed 

(0.4 and 1.8 in 2008 and 2009, respectively) condition compared to un-tiled field which 

indicated a better crop growth indeed. The difference between the two years is that the 

water yield in May and June of 2008 increased after tiling, while that of 2009 decreased 

after tiling. 
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Figure 4.10. Impacts of tile drainage on monthly water yield in 2008 and 2009 (WYLD­

Water yield and ET- Evapotranspiration). 

4.4.2. Impacts of tile drainage on streamflows in Red River at Fargo 

As discussed earlier, the SWAT model was less reliable when simulating the highest 

spring flood peak flows in the Red River. Therefore, our analysis of impact of tile drainage 
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on streamflows was based on monthly average streamflows over a 10-yr simulation time 

period (2000-2009). Figure 4.11 displays the monthly average streamflows in the Red 

River at Fargo for zero tiling (0%) and the three different tiling rates in the basin - 0. 75%, 

5.70%, and 17.4%. The tiling rate of 0.75% refers to the percentage of the current tiled 

areas; 5. 7% tiling rate means that the projected future tiled areas will be mostly limited 

within the coverage of D soils; and 17.4% means that the projected future tiled areas will 

be limited within the coverage of both C and D soils. 
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Figure 4.11. Impacts of tile drainage on 10 years (2000-2009) average monthly 
streamflows in Red River at Fargo. 

Figure 4.12 shows the percentages of the changes in streamflow for the three 

different tiling rates versus zero tiling. As shown in figure 4.12, 0.75 and 5.70% tiling rates 

would not have significant effects on the monthly average streamflows in Red River at 

Fargo and the effect of the 17 .4% tiling rate would be small as well. For a 17 .40% tiling 

rate the streamflow might increase up to 1% in April and about 2% in fall (September to 

November). On the other hand, streamflow would decrease in the remaining months of 

the year. 
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Figure 4.12. Changes in 10 years (2000-2009) average monthly streamflows in Red River at 
Fargo due to tile drainage. 

4.5. Impact of tile drainage under future climate 

4.5.1. Projected future precipitation and temperature 

The five-year moving average of annual precipitation in URRNB increased about 14% 

in the past 15 years (from 1990 to 2005). RCM3-GFDL projected the average annual 

precipitation of the study area to increase from the current 600 mm to 920 mm in mid-

21st century, i.e., about 53 % of increase. However, these predicted increases in 

precipitation seemed elevated. For example, when assessing the future scenarios of 

climate change in the Upper Mississippi River Basin, Jha et al. (2006) assumed a maximum 

20% increase in precipitation based on the average projected values from six general 

circulation models (i.e., CISRO-RegCM2, CCC, CCSR, CISRO-Mk2, GFDL, and HadCM3). 

Since the goal of this research was not about climate change, we simply used RCM3-

GFDL's projection as a reference of the future climate data to study the combined impact 

of tile drainage and climate change on streamflows in the Red River. As shown in figure 

4.13, the monthly average precipitation increased in 2050 except for the month of 
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October. The monthly average precipitation of the present climate were calculated based 

on the recorded precipitation at thirteen weather stations within the URRNB for the past 

10 years (2000-2009), while those of 2050 were calculated based on the RCM3-GFDL 

projection for the 30-year time slice of 2040-2070. Figure 4.14 also shows the standard 

deviation of the monthly average precipitation in the 2050 for the study region. The 

variations during summer months were about 40% while those during the winter months 

were about 55%. 
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Figure 4.13. Comparison of monthly 
average precipitation between baseline 
period and mid 21st century. 
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Figure 4.14. Variation of precipitation within 
a month in mid 21st century. 

Figure 4.15 shows the comparison of monthly average temperatures between the 

present and 2050; and figure 4.16 shows their relative changes. The monthly average 

temperatures of the present and 2050 were calculated in the same way of calculating the 

monthly average precipitation. The monthly average temperature increased in March, 

May, and November while that in other months decreased except for April when monthly 

temperature remained the same. 
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Figure 4.16. Changes in monthly average 
temperature by mid 21st century w. r. to 
corresponding baseline period's value. 

4.5.2. Impacts of tile drainage under future climate 

The possible changes in water balance impacted by tile drainage under future 

climate scenarios are shown in Table 4.6. These changes were estimated with respect to 

present climate scenario. The RCM3-GFDL climate model estimated that the annual 

average precipitation would increase by about 285 mm (47.54%) with respect to the 

present 10-yr average (2000-2009). Although the 17.40% tiling rate generated more tile 

flow when compared to 5.70% tiling rate, the former produced lower water yield than the 

latter. It is also interesting to show that the increase in ET for 17.4% tiling was actually 

lower than that for 5.7% tiling rate. 

Table 4.6. Impacts of climate change on average annual water balance components for 
different tiling scenarios. 

Water balance components 

Precipitation 

Tile flow 

Surface runoff 

Evapotranspiration 

Water yield 

5.7% tiling 
Increase in mm (%) 

285 (47.54) 

1.48 (243) 

177 {189) 

21.73 (5.32) 

198.22 (166) 
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17.4% tiling 
Increase in mm (%) 

285 (47.54) 

6.57 {94) 

170 {178) 

3.92 (0.96) 

188(153) 
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5. CONCLUSIONS 

5.1. Conclusions 

A SWAT model was set up to analyze the impact of tile drainage on water balance 

and streamflows in the upper Red River of the North basin (16,500 km2). The model was 

calibrated at both field and watershed scales. At the field scale, the model was calibrated 

and validated with two years of daily tile flow data collected at the Fairmount 

experimental site in Richland County, ND. The Nash-Sutcliffe efficiencies (NSE) for the field 

scale calibration and validation were 0.34-0.63. At the watershed scale, the model was 

calibrated and validated against 20 years monthly average streamflows recorded at five 

USGS gauge stations. The values of NSE for model calibration and validation ranged from 

0.69 to 0.99, indicating that the SWAT model was reliable in predicting the monthly 

average streamflows in URRNB. But, the SWAT model's performance in predicting the 

highest spring flood peak flows was less satisfactory. 

One of the challenges faced was to select an appropriate tile drainage algorithm to 

model tile flows in the watershed scale. In this modeling exercise two algorithms were 

compared: (1) the simple empirical algorithm, and (2) the Hooghoudt-Kirkham algorithms 

that were adopted in two different versions of SWAT. Although the Hooghoudt-Kirkham 

algorithms were physically-based and required comprehensive data about the field 

physical properties for parameterization, it did not perform as well as the simple 

algorithm did. 

Another challenge was to identify the locations and to estimate the areas of the 

existing tile drained areas and the potential tile drained areas in the Red River Valley. The 
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GIS-based decision tree classification (DTC) method was used for such a purpose. The 

basic assumption of the OTC method is that soils that have the potential to be tiled are 

flat and poorly drained. Less than one percent (0.75%) of the basin area was estimated to 

be currently tiled and these currently tiled areas were mainly located in the Red River 

floodplain with poorly drained D soils. It was also estimated that up to 17.4% basin areas 

could be tiled in the future if assuming the potential tiled area to be on the NRCS classified 

C and D soils. 

When modeling the 20 ha tiled field near Fairmount using 2008 (wetter year) and 

2009 (drier year) data, the impacts of tile drainage on the water balance at the field scale 

results include: 

1. Thirteen to nineteen percent (13-19%) of annual precipitation {or 30-40% of 

water yield} was produced as tile flow, which was consistent with the 

findings of Sands et al. (2008} who found that about 17% of annual 

precipitation was converted to subsurface drainage during a 5 years field 

scale study conducted in the same region. 

2. Annual surface runoff decreased by about 34% and soil water content 

measured at the end of simulation time decreased by about 19% during both 

years. 

3. Evapotranspiration decreased about 0.2% in 2008 and increased about 4.4% 

in 2009; while water yield increased by about 10% in 2008 and decreased by 

about 5% in 2009. 
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4. Monthly analysis showed that water yield decreased in March and during 

July-September (growing season); and increased in April and during October­

November. 

At the watershed scale the modeling results showed that a tiling rate of 0. 75-5. 70% 

would not have significant effects on the monthly average streamflows in Red River at 

Fargo. For the 17.40% tiling rate, the streamflow in Red River at Fargo might increase up 

to 1% in April and about 2% in fall (September to November), while decreasing up to 5% in 

the remaining months. 

5.2. Suggestions for future research 

1. The current SWAT model needs to be further studied in snow hydrology, 

particularly on the process of sublimation from snowpack and distribution of soil 

temperature in frozen soils. 

2. Using remote sensing techniques and groundwater table information may give 

more realistic results in tiled area mapping. 

3. A comparative study between SSURGO and STATSGO soil data is highly desirable 

to see their performance in simulating tile drainage flow by SWAT. 

4. Accurate river geometry is very essential for river hydraulics. It seemed SWAT's 

DEM based river geometry was sometimes unrealistic. So, incorporation of HEC­

RAS with SWAT may improve river flow modeling. 
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