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ABSTRACT  

Evidence suggests that even when sustained at a single location, spatial attention waxes 

and wanes over time. These fluctuations are cyclic, lasting about 125-200 ms (i.e., ~4-8 Hz), and 

are characterized by alternating periods of focused attention to a single location together with 

exploratory periods during which attention is prone to switching to a new source of stimulation. 

Despite an increasing interest in this temporal property of spatial attention, multiple aspects of 

rhythmic attentional sampling remain to be explored. In this dissertation, I introduce and 

examine three unexplored areas related to this topic. The first area, addressed in Experiment 1, 

concerns the potential neural oscillatory signatures of attentional rhythmicity. Precisely, it 

assesses the role of a well-established oscillatory correlate of selective attention, alpha band 

power, in rhythmic switching of attention over time. The second area focuses on the neural 

sources controlling rhythmic attentional sampling. More specifically, the goal of Experiment 2 is 

to establish causal evidence for the involvement of an important attentional hub in generating the 

attentional rhythm using transcranial magnetic stimulation. Finally, the last area examines the 

consequences of attentional rhythmicity on the encoding and storage of information in working 

memory. In particular, Experiment 3 provides evidence that rhythmic changes in spatial attention 

affect the quality with which information is encoded into working memory. Finally, Experiment 

4 assesses whether attention rhythmically cycles between items stored in WM in a manner 

similar to the cycling observed when attention is directed to the external world. In summary, the 

work included in this dissertation makes an important contribution to extending our understating 

of the attentional rhythm and introduces multiple avenues for further research necessary in this 

area.  
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INTRODUCTION 

The Role of Attention and its Implications for the Nature of Attentional Processing 

The visual systems of humans and other animals continuously receive stimulation from 

numerous sources that compete for the brain’s limited processing resources. In order to tackle 

such highly dynamic environments, attentional processes have developed to structure the 

moment-to-moment perceptual experience by selecting and facilitating the processing of only 

currently relevant information from the sensory stream (see Desimone & Duncan, 1995 for 

review). According to the classic view of attention, this metaphorically happens by moving a 

spotlight of attention around the visual field and facilitating the processing of stimuli within the 

‘beam of light’ (Crick, 1984; Posner & Petersen, 1990; Treisman, 1982). We all subjectively 

experience this between eye fixations when we overtly switch attention from one object or 

location in our visual space to another.  

Interestingly, more recent experimental findings show that even if overt attention is 

continuously sustained at a single location, covert selective attention continues to sample 

periodically from multiple potentially relevant sources, in a manner similar to the process of 

overt ocular exploration (see Zoefel & VanRullen, 2017 for a review). According to this newer 

view, the spotlight of attention is intrinsically rhythmic with periods of attention directed to the 

attended stimulus periodically overlaid with periods of “exploration” during which attention is 

prone to be attracted to other sources of stimulation (Figure 1A). This periodicity allows the 

spotlight to flexibly sample from multiple information sources at different phases of its 

oscillation (Figure 1B). Such attentional reweighting is not subjectively experienced under 

normal circumstances, but happens within a single and/or between multiple objects/locations 

every ~125-200 ms, i.e., at a frequency of 4-8 Hz, which corresponds to a theta oscillatory 
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rhythm (Fiebelkorn, Saalmann, & Kastner, 2013; Landau, Schreyer, van Pelt, & Fries, 2015; 

Song, Meng, Chen, Zhou, & Luo, 2014).  

Figure 1. Blinking spotlight of attention (VanRullen, 2016)1. To flexibly monitor the 
environment, attentional processing fluctuates rhythmically between cycles of directed attention 
and exploration resulting in periodic sampling of a single object/location (A) or rhythmic serial 
sampling between multiple sources/objects (B). 

Using psychophysics, the rhythmic sampling of attention can be revealed through the 

implementation of so-called attentional reset. If attention naturally oscillates between two 

different locations in a serial manner, i.e., sampling from one location at one point in time (i.e., at 

a particular phase of an ongoing oscillation) and sampling from the other location at a different 

point in time, an attention-grabbing stimulus presented near one of the locations/objects can be 

used to generate a consistent phase alignment across trials (Figure 2A). As a result of this reset, a 

measure of attentional allocation to the location on the same and opposite side of the resetting 

stimulus at different stimulus-onset-asynchronies (SOAs) reveals a pattern of cyclic fluctuations 
                                                
 

1 Reprinted from Trends in Cognitive Sciences, 20, VanRullen, R., Perceptual Cycles, 723–735, 
2016, with permission from Elsevier. 
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in performance (Figure 2C). This cyclic pattern is not generated by the resetting stimulus, but 

rather reflects an intrinsic rhythm present even in the absence of an external event (Busch & 

VanRullen, 2010; Landau & Fries, 2012).  

Figure 2.  Revealing the rhythmic fluctuations in attentional bias (Herbst & Landau, 2016)2. (A) 
An attention-grabbing stimulus is used to align the phase of ongoing attentional sampling across 
trials. (B) A measure of performance is collected at varying intervals following the reset stimulus 
and at locations congruent and incongruent with the flash. (C) Plotting behavioral performance at 
increasing SOAs following the resetting event reveals a pattern of attentional sampling shifting 
rhythmically between the two attended objects every ~200 ms. 

Attentional Rhythmicity and Oscillations  

The experimentally observed rhythm of attentional sampling seems to parallel 

physiological rhythms of brain activation referred to as neural oscillations. In fact, rhythmic 
                                                
 

2 Reprinted from Current Opinion in Behavioral Sciences, 8, Herbst, S., K., Landau, A., N., 
Rhythms for cognition: the case of temporal processing, 85–93, 2016, with permission from 
Elsevier. 
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attentional sampling is potentially a direct consequence of the oscillatory nature of neural 

activity. The resting membrane potential of individual neurons fluctuates over time and the firing 

rates of groups of interconnected neurons tend to naturally synchronize. According to the 

Communication Through Coherence theory (CTC; Fries, 2005, 2015), communication between 

neuronal groups is established through their rhythmic synchronization, which creates temporal 

windows during which transfer of information is more effective. Interestingly, it has been shown 

that the activity of neurons in early visual areas tends to vary with the phase of relatively slow 

oscillations (Spaak, Bonnefond, Maier, Leopold, & Jensen, 2012). Findings like these continue 

to demonstrate that the processing of incoming inputs varies systematically as a function of 

oscillatory phase (Buschman & Kastner, 2015; Siegel, Donner, Oostenveld, Fries, & Engel, 

2008), and the potential of neural oscillations to modulate the effectiveness of information 

transfer makes them an ideal candidate mechanism for implementing selective attention. 

Supporting the possibility of an oscillatory mechanism for attention, studies of selective 

attention by Mathewson et al. (2009) and Busch, Dubois, and VanRullen (2009) showed that 

participants were more likely to perceive hard-to-see targets at a single location when the targets 

were presented at a particular phase of a theta-alpha (4-10 Hz) oscillation and were more likely 

to miss them when presented at the opposite phase. In like manner, in a study by Busch and 

VanRullen (2010), participants were required to detect hard-to-see objects that could appear at 

two locations, one attended and one unattended. Even though behavioral and neural measures 

showed that attention was directed to the attended location, detection performance at the attended 

location was predicted by the phase of a theta (~7 Hz) oscillation. This suggests that, even when 

apparently ‘sustained’ at a single location, the effects of attention wax and wane over time in a 
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rhythmic fashion. These studies point towards the possibility that the cycling patterns of attention 

revealed in behavioral data are driven by underlying neural oscillatory activity.   

Extending the role of oscillatory rhythms in attention further, it has been proposed that 

the above-described attentional rhythm interacts with other brain oscillatory rhythms; more 

specifically, gamma and alpha oscillations. According to CTC (Fries, 2015), neural networks 

naturally synchronize in the alpha frequency band, which prevents communication and keeps the 

activity within the local network basically invisible to other networks. These “local” neural 

representations can be sampled (in theta rhythm) by attention, which releases the network from 

inhibition by de-synchronizing alpha (Clayton, Yeung, & Cohen Kadosh, 2015). Sampled 

representations are then represented in gamma band activity that effectively transfers information 

across the network. In line with this proposal, Landau et al. (2015) demonstrated that when two 

locations were simultaneously monitored, stimulus-related gamma-band (>40 Hz) oscillations 

were modulated by the phase of a 4 Hz theta oscillation.  

Unlike for gamma activity, evidence for the role of alpha activity in the attentional 

rhythm has yet to be well established (however, see discussion of Fiebelkorn, Pinsk, & Kastner, 

2018 below). The role of alpha-band activity is well studied in more traditional effects of 

attention. For example, numerous studies have reported decreases in alpha band oscillatory 

power (ABOP; i.e., alpha de-synchronization) in visual areas representing attended information 

and increased ABOP in areas representing distractors (e.g., Fries, Reynolds, Rorie, & Desimone, 

2001; Sauseng et al., 2005). In other words, alpha oscillations seem to enhance attentional 

selection through the inhibition of task-irrelevant information (Klimesch, 2012). However, the 

importance of alpha in generating rhythmic shifts in attention has not been examined.  
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Additionally, all of the studies providing evidence for the existence of the neural correlate 

of the attentional rhythm only explored the relationship between underlying neural oscillations 

and target-related processing; however, none of these studies directly tracked how changes in 

neural oscillations relate to rhythmic changes in attention over time. To begin exploring this, Jia, 

Liu, Fang and Luo (2017; see also Jensen & Vissers, 2017 for additional analyses of the data) 

tracked the allocation of attention following spatial cues that indicated the likely location of an 

upcoming target with different levels of validity (100%, 75% and 50%). At the same time, they 

used electroencephalography (EEG) together with temporal response function analysis to analyze 

the processing of two continuously visible objects over time. They found that attended and 

unattended objects were sampled sequentially depending on their task-relevance at a rate of 

about 2 Hz (Jensen & Vissers, 2017). To my knowledge, this is the only study to date that has 

focused on the neural signature of attentional rhythmicity in the temporal dimension. The 

majority of studies assessing neural correlates of attentional sampling focus on target-related 

processing and, as a result, provide important information about neural activity immediately 

preceding the target, but do not provide information about how these neural correlates unfold 

over time.  

To address the lack of research in this area, Experiment 1 examined the role of ABOP in 

rhythmic attention using an inverted encoding modeling approach (e.g., Foster, Sutterer, 

Serences, Vogel, & Awh, 2017) to track the rhythmic allocation of attention over time. 

Neural Substrates of the Rhythm of Attention 

The role of the brain’s oscillatory rhythms in generating the rhythmic signature of 

attention is becoming clearer; however, its neural source is still elusive. Generally, attention is 

supported by activity within a distributed network of brain regions that can be organized into two 
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systems (Corbetta & Shulman, 2002). The dorsal fronto-parietal network, including the frontal 

eye fields (FEF) and lateral intraparietal area (LIP), primarily supports top-down control of 

visual attention; i.e., selection of stimuli and responses on the basis of current goals. The ventral 

fronto-parietal network, including the ventral frontal cortex (VFC) and temporoparietal junction 

(TPJ) serves to ‘break’ the goal-directed activity supported by the first system and orient 

attention towards unexpected and potentially behaviorally significant stimuli. Because attention 

relies on a network of brain areas, communication between these different hubs is of crucial 

importance.  

As I described above, existing theories and empirical evidence suggest that oscillatory 

brain activity supports communication between different brain regions (Fries, 2005, 2015; 

Helfrich & Knight, 2016; Siegel, Donner, & Engel, 2012). Moreover, theta-band (4-8 Hz) 

oscillatory activity, which corresponds to the sampling frequency of selective attention revealed 

through psychophysics, is a likely candidate for implementing top-down control by directing the 

flow of relevant information through the brain (Cavanagh & Frank, 2014; Phillips, Vinck, 

Everling, & Womelsdorf, 2014; Sellers et al., 2016; Szczepanski et al., 2014). One possibility is 

that communication among the nodes of the proposed attentional network and its top-down 

influence on lower-level visual areas is driving the signature theta rhythm of attention. 

Two recent studies were among the first to attempt to address the question of the neural 

underpinnings of the attentional rhythm. In the first study, Helfrich et al. (2018) measured brain 

signals intracranially while participants performed an attention detection task. They showed that 

participants’ ability to detect targets was predicted by the phase of theta recorded from channels 

in the fronto-parietal network at the time of target appearance. Moreover, activity in higher 

frequency bands (gamma >30 Hz), which likely reflect neuronal spiking activity, were 
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rhythmically modulated at theta frequency providing additional evidence that fluctuations in 

detection performance were related to rhythmic changes in neural excitability. In the second 

study, Fielberkorn, Pink and Kastner (2018) recorded from two hubs of the fronto-parietal 

attentional network in two macaque monkeys, the FEF and LIP, and found that the dynamic 

interplay between these two areas accounted for the observed rhythmic shifts in spatial attention. 

More specifically, they found that the phase of theta oscillations in the fronto-parietal network 

coordinated two rhythmically alternating states of the network. The first state was characterized 

by suppressed shifting of attention; in other words, by a state of sustained attention to the cued 

location. This state was dominated by beta-band (16-35 Hz) activity in the FEF and gamma-band 

activity reflecting active processing and improved performance in the LIP. The second state, 

corresponding to a shifting focus of attention, was characterized by an increase of alpha-band 

activity in the LIP, which was proposed to reflect reduced processing of target stimuli and a 

worsening of behavioral performance. According to these results, theta oscillations generated in 

the FEF propagate to more posterior areas and serve the purpose of organizing activity within the 

attentional network, potentially generating the theta signature observed in behavioral data. In 

contrast to this proposal, a multi-unit recording study of activity in monkey extra-striate area V4 

showed that theta-rhythmic activity can arise from local competitive interactions within neuronal 

receptive fields, rather than reflecting long-range influences (Kienitz et al., 2018). Future studies 

will be needed to reconcile these findings. 

 Interestingly, the brain region implicated in directing attentional shifts in non-human 

primates, the FEF, has also been shown to exert feedback control over how information is routed 

through the cortex in humans (Popov, Kastner, & Jensen, 2017). Moreover, it has been shown 

that transcranial magnetic stimulation (TMS)-induced disruption of the FEF results in a reduction 
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of EEG correlates of anticipatory attention (Sauseng, Feldheim, Freunberger, & Hummel, 2011). 

Importantly, the extent of disruption of fronto-parietal communication indexed by fronto-parietal 

alpha coupling predicted decrements in behavioral performance, suggesting that this disruption 

had functional significance. Despite this clear link between the FEF and the allocation of 

attention, no human study has directly tested the role of FEF in mediating rhythmic shifts of 

attention. If FEF orchestrates the rhythmic shifts of attention, disruption of the FEF should result 

in a degradation of the attentional rhythm. This possibility was explored in Experiment 2.  

The Role of Attention in Working Memory 

Our ability to selectively attend to relevant information in the environment while ignoring 

information that is irrelevant is closely related to our ability to hold information “in mind” when 

it is no longer present in the environment, an ability known as working memory (WM; Baddeley, 

1992; D’Esposito & Postle, 2015). Previous evidence has shown that information we attend to is 

more likely to be stored in WM, and information that we hold in WM biases attention towards 

matching information in the environment (Downing, 2000; Downing & Dodds, 2004; Olivers, 

Peters, Houtkamp, & Roelfsema, 2011; Pashler & Shiu, 1999; Woodman & Luck, 2002). Despite 

the close relationship between attention and WM, and growing evidence for periodic fluctuations 

in attention, the effects of the proposed attentional rhythm on WM have not been well examined.  

There are several reasons to think that periodic fluctuations in attention may be relevant 

to WM. First of all, when and what we attend to in the environment influences the quality of 

what is encoded into WM (Awh & Pashler, 2000; Makovski & Jiang, 2007; Schmidt, Vogel, 

Woodman, & Luck, 2002; Vogel, Woodman, & Luck, 2005). For example, providing spatial 

cues about where a to-be-remembered object will be presented increases memory accuracy 

(Schmidt et al., 2002). As a result of the rhythmic nature of attentional allocation to space and 
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the relationship between WM encoding and attention, it could be the case that the efficiency of 

encoding information into WM fluctuates in a similar fashion. To test this prediction, 

Experiment 3 probed the effect of rhythmic attentional fluctuations on WM encoding.  

Secondly, research has shown that maintaining information in WM involves sustained 

attention to the internal representations of remembered objects in the same way that attention is 

allocated to sources of stimulation in the environment (Awh & Jonides, 2001; Awh, Jonides, & 

Reuter-Lorenz, 1998; Chun & Johnson, 2011). An unexplored aspect of attentional deployment 

during WM maintenance is whether attention is distributed equally across multiple maintained 

representations, or whether it switches periodically between representations in a manner similar 

to the cycling of attention between items in the external world. Experiment 4 explored whether 

such periodic switching exists among the items held in WM by testing whether an attentional 

reset presented during the active maintenance of information in WM reveals cyclic fluctuations 

in access to WM representations.  

In summary, this dissertation explores three different aspects of rhythmic attentional 

sampling. Experiment 1 assesses whether attentional sampling can be tracked over time using 

well-established oscillatory correlates of spatial attention (i.e., alpha band oscillatory power). 

Experiment 2 then explores the involvement of the frontal eye fields, an important attention 

network hub, in generating the attentional rhythm. Finally, Experiments 3 and 4 explore whether 

rhythmic attentional sampling also extends to the processes of encoding and storing information 

in WM. In particular, Experiment 3 tests whether the rhythmically changing allocation of 

attention in time and space affects the quality with which information is encoded into WM. 

Experiment 4 then explores whether attentional resources devoted to the active maintenance of 

information in WM are rhythmic in nature.   
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EXPERIMENT ONE: ASSESSING THE NEURAL OSCILLATORY SIGNATURES OF 

RHYTHMIC ALLOCATION OF SPATIAL ATTENTION  

Introduction 

Thus far, the majority of studies assessing the oscillatory correlates of rhythmic 

fluctuations in attention have adopted experimental designs in which an attention-grabbing 

stimulus is used to reset attentional sampling (Figure 2). This effectively resets the phase of the 

attention cycle, allowing us to know where attention is at a given moment in time. However, to 

date, the temporal evolution of the neural correlates underlying such attentional cycling have not 

been well characterized (for a first step in this direction, see Jia et al., 2017). Existing neural 

evidence for the presence of rhythmic attention cycling comes from studies examining target-

related activity (e.g., Busch et al., 2009; Landau et al., 2015). These studies are capable of 

capturing pre-stimulus neural activity (~500 ms prior to stimulus onset) and relating its 

characteristics to the subsequent detection of a target. However, they only provide a snapshot of 

ongoing dynamic neural activity at a moment in time.  

Previous studies assessing effects of directed spatial attention over time have shown 

sustained alpha band oscillatory power (ABOP) de-synchronization in the hemisphere 

contralateral to the attended location (e.g., Sauseng et al., 2005; Kelly, Lalor, Reilly, & Foxe, 

2006; Rihs, Michel, & Thut, 2007). Such sustained effects, however, seem to be at odds with the 

proposed rhythmically fluctuating nature of spatial attention. One possible explanation of these 

sustained ABOP effects is that they are a result of trial averaging. If attention samples between 

spatial locations and this sampling is not constrained in any way (e.g., by using a resetting 

stimulus), the time course of attentional allocation will vary between trials and will be obscured 

once trials are averaged to increase signal-to-noise ratio. If this is the case, using a resetting 
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stimulus should align the phase of the attentional rhythm and reveal rhythmic fluctuations in 

ABOP between hemispheres contralateral versus ipsilateral to the location of the resetting 

stimulus.  

Another possibility is that attentional sampling relies on oscillatory correlates that are 

different from the ones supporting directed spatial attention. Some studies exploring the 

rhythmic sampling of attention have reported general attentional benefits at the attended location 

(e.g., lower detection thresholds and larger attention-related event-related responses reported by 

Busch & VanRullen, 2010) in addition to rhythmic fluctuations of attentional effects. It may be 

the case that ABOP de-synchronization is a signature of this general effect of attention, but it 

may not track the rhythmic changes in attentional allocation. 

To explore the possibility that ABOP represents an oscillatory correlate of attentional 

sampling, the current experiment assessed the ABOP signature in an experimental design that 

was conducive to observing its rhythmic changes, possibly reflecting rhythmic sampling of 

attention. In addition to assessing changes of ABOP over time, the present experiment also used 

a more sensitive, multivariate inverted encoding modeling (IEM) approach to reconstruct the 

focus of spatial attention as it cycles between two locations over time. This approach assumes 

that stimulus representations can be reconstructed from neural signals measuring population-

level neural activity. In general, the IEM is trained to model a relationship between stimulus 

feature values (e.g., spatial location) and their associated neural activity based on a hypothesized 

neural response function. The derived model is then used to reconstruct the feature value of a 

novel stimulus feature based on its neural representation (Figure 3). In this particular case, the 

model takes advantage of the fact that the topographic distribution of alpha-band power over 

parietal and occipital brain regions changes depending on the current locus of spatial attention 
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(e.g., Sauseng et al., 2005; Kelly et al., 2006; Rihs et al., 2007) and uses it to reconstruct the 

attended location. Previous studies implementing IEM have shown that this approach can be 

used to successfully track the focus of spatial attention over the course of a trial (Foster, Sutterer, 

et al., 2017). More importantly, it is capable of tracking the allocation of attention to more than 

one location, in which case the derived index of attentional allocation is sensitive to which 

location is currently attended and unattended (Foster, Bsales, Jaffe, & Awh, 2017). These 

characteristics of the IEM make this approach suitable for assessing the rhythmicity of attention 

during sampling of two locations over time. 
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Figure 3.  A schematic depiction of the reconstruction of spatial positions using inverted 
encoding modeling (Foster, Sutterer, et al., 2017)3. (B) Eight spatial positions and (C) their 
hypothesized neural responses in eight spatially tuned channels. (D) During training, IEM uses 
the predicted spatial channel responses to generate a set of weights representing the relative 
contribution of each of the spatial channels to the observed data. (E) In the test phase, the derived 
weights are then used to reconstruct the feature value (represented by the channel tuning 
function; CTF) of a novel, independent stimulus feature from observed data. Reprinted from 
Foster et al. (2017). 

 The goal of Experiment 1 was to test whether well-established oscillatory correlates of 

directed attention (i.e., contralateral alpha band power desynchronization; e.g., Sauseng et al., 

2005; Kelly et al., 2006; Rihs et al., 2007) can be used to track the rhythmic sampling of 

attention over time and whether IEM utilizing the topographic pattern of ABOP can track the 
                                                
 

3 Reprinted from Psychological Science, 28, Foster, J. J., Sutterer, D. W., Serences, J. T., Vogel, 
E. K., & Awh, E., Alpha-Band Oscillations Enable Spatially and Temporally Resolved Tracking 
of Covert Spatial Attention, 929–941, 2017, with permission from SAGE Publications. 



 

15 

rhythmic allocation of attention to two spatial locations over the course of a trail. If ABOP can 

serve as a signature of attentional sampling, I hypothesized that a reset of attentional sampling 

should produce a pattern of ABOP de-synchronization and re-synchronization that alternate 

throughout the delay period. Additionally, because the reconstructed channel responses obtained 

through IEM are sensitive to the current focus of attention, I hypothesized that resetting the 

phase of attentional sampling should generate rhythmic fluctuations in observed channel tuning 

functions that are similar to fluctuations previously observed in behavioral data. In other words, 

topographic patterns of ABOP reflecting the momentary focus of attention should change in a 

rhythmic fashion over the course of a trial.  

Materials and Methods 

Participants. Fourteen undergraduate and graduate students (13 female; 20-32 years M = 

23.9, SD = 4.2) were recruited from North Dakota State University to participate in this study for 

course credit or monetary compensation ($15/hr). Three participants were dropped due to poor 

behavioral performance (the percentage of false alarms for two participants was >30% and, for 

one participant, the percentage of hits in RVF was <10%). One participant was dropped due to a 

high percentage of rejected trials due to EEG artifacts. All participants were required to have 

normal or corrected to normal vision, normal color vision and no prior or current neurological or 

mental disorders, determined by self-report. Each participant provided written informed consent 

and all experimental protocols were approved by the North Dakota State University IRB.  

Materials and procedure. Stimulus presentation and response recording were controlled 

by a PC running Matlab (Mathworks, Inc.) with Psychophysics Toolbox extensions (Brainard, 

1997; D.G. Pelli, 1997). Stimuli were presented on the surface of a 24” LCD monitor (BenQ 

Model XL2430-B) with a refresh rate of 144 Hz at a viewing distance of 57 cm.  
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Participants performed an attention task during which they were asked to report the 

presence of a target that could appear at one of two possible locations. The experimental stimuli 

consisted of two circular, black and white noise patches (black R=0, G=0, B=0; white R=255, 

G=255, B=255) subtending 1.6° of visual angle in diameter presented against medium gray 

background (R=128, G=128, B=128) and positioned 3.8° of visual angle from central fixation 

point, and a target stimulus, a black circle (0.8° of visual angle) appearing in the center of one of 

the noise patches with variable contrast. The two noise patches were presented around fixation in 

separate visual hemifields (angular positions of locations in the right visual field 40°, 90°, 140° 

and left visual field 220°, 270°, 320°) at locations that varied independently of one another. To 

reset attentional sampling, an unfilled white circle (R=255, G=255, B=255) with a border 0.1° of 

visual angle wide, was flashed for 33 ms around one of the noise patches.  

The target was present on only half of the experimental trials and was presented at a 

random time during the interval 200-1400 ms after the flash. In a separate session conducted 

prior to the main experimental session, the contrast of the target was adjusted for each participant 

to a 50% threshold (i.e., to a contrast that produces correct responses on 50% of trials) using a 

staircase procedure (Brainard, 1997; Denis G. Pelli & Farell, 1995; Watson & Pelli, 1983). 

Stimuli and overall task sequence for this phase of the experiment were identical to the 

experimental procedure described below, with the exception that the task-irrelevant flash was 

omitted.  

Experimental procedure. The sequence of trial events can be seen in Figure 4. A fixation 

cross was presented in the middle of the screen at the beginning of each block and remained on 

the screen until the block’s end. At the beginning of each trial, two noise patches were presented 

on the screen, one to the left and one to the right of fixation and remained on the screen until the 
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end of a trial. Following an interval of 1000-1300 ms, a task-irrelevant flash was presented for 33 

ms around one of the noise patches. This flash occurred randomly and with equal likelihood at 

the location of one of the two noise patches. On half of the experimental trials, a target was 

presented at the center of one of the noise patches following a variable SOA (200 – 1400 ms). 

The target was equally likely to appear at either of the two attended locations and appeared 

randomly with regards to the task-irrelevant flash (50% congruent, 50% incongruent). 

Participants were instructed to respond by pressing the space bar as soon as they saw the target 

or, if no target was present, to withhold a response, waiting until the noise patches disappeared at 

the end of the trial. Participants received feedback after each experimental block notifying them 

about the number of correctly (hits) and incorrectly (false alarms) reported targets. Participants 

with an overall false alarm rate higher than 15% and an overall hit rate lower than 20% were 

removed from further analysis. The experiment consisted of 576 total trials separated into 18 

blocks. Participants completed 16 practice trials prior to the experiment. The full experiment 

took ~2.5 h to complete. 
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Figure 4.  Behavioral task trial sequence for Experiment 1. Participants were asked to attend to 
two circular noise patches presented to the left and right of fixation and respond to the 
appearance of a target (target present on 50% of the trials). A task-irrelevant flash was used to 
reset attentional sampling prior to the appearance of the target. 

EEG data acquisition and preprocessing. EEG was recorded using active Ag/AgCl 

electrodes (BioSemi Active Two) positioned at the left and right mastoids and 64 scalp sites 

according to the standards of the modified international 10/20 system (American 

Electroencephalographic Society, 1994). The common mode sense (CMS) electrode was located 

at site C1, with a driven right leg (DRL) electrode located at site C2. To track eye movements 

and blinks, the electrooculogram (EOG) was recorded from electrodes placed above and below 

each eye and ~1cm to the left and right of the external canthi of each eye. EEG and EOG was 

recorded with a sampling rate of 512 Hz and band-pass filter of 0.01-100 Hz.  

Data were processed off-line using the EEGLab open source Matlab-based toolbox 

(Delorme and Makeig, 2004) and custom-written analysis scripts in Matlab (MathWorks, Inc., 
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Natic, MA, USA). All signals were re-referenced to the algebraic average of the left and right 

mastoids, downsampled to 256 Hz, and epoched into 4000-ms long segments (i.e., trials) 

spanning the time interval 2000 ms before to 2000 ms after the task-irrelevant flash. To detect 

eye movements and blinks in the epoched data, EOG signals were combined to derive bipolar 

vertical and horizontal channels. To avoid any contamination of data by eye blinks or muscle 

movements, any trials containing amplitude changes larger than 80 µV in the vertical bipolar 

EOG channel and 120 µV in any other channel within a moving window of 200 ms were 

removed. Additionally, to prevent contamination due to eye movements, a step function was 

used to detect amplitude changes larger than 25 µV in the horizontal bipolar EOG channel. 

Participants were removed from further analysis if the number of trials rejected exceeded 30% of 

total trials. The average rejection rate was 10.95±9.85% of total trials. 

Time-frequency analysis. All raw EEG data were Laplace transformed prior to time-

frequency analysis to reduce volume conduction and maximize the spatial resolution of the 

signal (Carvalhaes & de Barros, 2015). Oscillatory power was extracted in two different ways. 

For the purpose of analyzing the lateralized effects of attention, power in a range of frequencies 

between 2-50 Hz was extracted using Morlet wavelet convolution as implemented in the 

FieldTrip toolbox (Oostenveld, Fries, Maris, & Schoffelen, 2011). For the purpose of the IEM 

analysis, instantaneous alpha-band oscillatory power (ABOP) values were extracted by first 

bandpass-filtering (8-14 Hz) the Laplace transformed signal using a two-way least squares finite 

impulse response filter using EEGLab toolbox function eegfilt.m (see Foster, Sutterer, Serences, 

Vogel, & Awh, 2016 for the same approach). This function uses a zero-phase forward and 

reverse operation that eliminates phase shifting caused by the use of forward-only filters. The 

filtered data, ƒ(t), will then be Hilbert transformed (MATLAB Signal Processing Toolbox) to 



 

20 

produce the complex analytic signal, 𝐴 𝑡 𝑒!" ! , where 𝐴(𝑡) is the instantaneous amplitude and 

𝜑 𝑡  is the instantaneous phase. Frequency specific instantaneous amplitudes were extracted 

from the complex analytical signal using the following MATLAB syntax:  

 

𝒉𝒊𝒍𝒃𝒆𝒓𝒕(𝒆𝒆𝒈𝒇𝒊𝒍𝒕 𝒅𝒂𝒕𝒂,𝑭𝒔𝒂𝒎𝒑𝒍𝒆, 𝒇𝟏, 𝒇𝟐
!
)′ 

 

where 𝑑𝑎𝑡𝑎 is a 2D matrix of EEG data (number of trials x number of time points), 𝐹!"#$%& is 

the sampling frequency (256 Hz) and 𝑓! and 𝑓! are the lower and higher bounds of the frequency 

band of interest, respectively. Total power was calculated as the squared absolute value of the 

resulting complex signal.  

 Behavioral performance. Detection accuracy was calculated as the proportion of 

reported targets on target-present trials. Detection accuracy was calculated across all SOAs 

(average detection accuracy) and also separately for each SOA and the left and right visual field.  

Lateralized effects of attention. To test whether the task-irrelevant flash attracts 

attention and produces a reset in attentional sampling, post-flash lateralization of ABOP was 

examined in a subset of posterior electrodes symmetrically positioned to the left or right of 

midline. The electrodes of interest were determined by visually inspecting the topographic 

distribution of ABOP during the pre-flash interval (i.e., 1000 ms from the appearance of noise 

patches) across the flash-congruent and flash-incongruent conditions. Total power across these 

electrodes from trials with a task-irrelevant flash appearing in the left versus right visual field 

was averaged separately and normalized to decibels (10*log*10 (power/baseline power)) using a 

baseline of 500 - 100 ms before the flash. Significant differences in power between the subset of 

contralateral and ipsilateral electrodes for flash-right and flash-left conditions was evaluated 
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using a cluster-based permutation analysis applied to the time-frequency data using FieldTrip 

(Oostenveld et al., 2011). 

Inverted encoding model. To examine variations in location-based attentional 

prioritization between the two attended locations during the delay interval, IEM was used to 

reconstruct information about each spatial location from the topographic distribution of ABOP 

across posterior electrodes (Foster, Bsales, et al., 2017). The assumption behind this model is 

that the power recorded at each electrode corresponds to a weighted sum of the outputs of 

separate spatially tuned neural populations, with each of these populations or channels tuned to a 

different angular position. The response profile of each of spatial channel was modeled as a half 

sinusoid raised to the 5th power (number of location bins – 1): 

 

𝑹 = 𝒔𝒊𝒏 𝟎.𝟓𝜽 𝟓 

 

where 𝜃 is the angular position (ranging from 0 to 359°), and 𝑅 is the channel response in 

arbitrary units. The response profile was shifted so that the peak response of each spatial channel 

was centered over a different location bin (40°, 90°, 140°, 220°, 270°, 320°).  

 To recover spatial locations, the alpha-band power data were divided into separate 

training and test data sets using the following procedure. To equate the number of trials across 

location bins, the bin with the lowest number of trials was identified and this number was used to 

randomly subsample trials from all other bins. The trials were then divided into 3 blocks with 

equal number of trials and averaged. Data from 2 blocks were used as training data set (B1) and 

the 1 left-out block was used as test data set (B2). Importantly, no trial was ever assigned to both 

training and test data set making the sets independent. The process of subsampling and division 

of trials into blocks was repeated 10 times to ensure that all available trials were used. 
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Additionally, the partitioning of data into training and test data sets was cross-validated, which 

means that each block served as a training and test data set.  

 During training, the training data, B1, were used to estimate a weight matrix, W, which 

represents the relative contribution of the six spatial channels to the observed power at each 

electrode: 

𝑩𝟏 =𝑾𝑪𝟏, 

  

where 𝐵! is the training data (number of electrodes x number of training blocks), 𝐶! is the 

predicted channel response (6 spatial channels x number of training blocks), and 𝑊 is a weight 

matrix (electrodes x 6 spatial channels) that corresponds to a linear mapping between channel 

and electrode space. The weight matrix was derived using least-squares estimation using the 

following equation: 

𝑾 = 𝑩𝟏𝑪𝟏
𝑻 𝑪𝟏𝑪𝟏

𝑻 !𝟏
 

 

In the test stage, the model was inverted to transform the test data 𝐵! (number of electrodes x 

number of test blocks) into estimated channel responses 𝐶! (6 spatial channels x number of test 

blocks) with the use of the weight matrix 𝑊 derived during the training phase as follows: 

 

𝑪𝟐 = 𝑾𝑻𝑾
!𝟏
𝑾𝑻𝑩𝟐 

 

The resulting channel response functions were then circularly shifted to a common center such 

that the center channel (i.e., 0°) was the channel tuned for the location of the noise patch of 

interest (separately for flash-congruent and flash-incongruent locations). The shifted-channel-
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response function were then averaged to obtain CTFs averaged across the six stimulus location 

bins.  

 The IEM procedure was performed at each time point from 200 ms prior to 1400 ms after 

the task-irrelevant flash and for each participant separately. Note that CTFs were reconstructed 

separately for flash-congruent and flash-incongruent locations using only target-absent trials. 

When reconstructing the flash-congruent location, trials were organized into bins (1-6) based on 

the location of the noise patch that appeared in the same location as the flash. When 

reconstructing the flash-incongruent location, trials were organized into bins (1-6) based on the 

location of the noise patch opposite to the flash. 

 Channel Tuning Function Selectivity. To quantify how spatially selective the CTFs are, 

linear regression was used to estimate CTF slopes by averaging together spatial location 

channels equidistant from 0°. Greater CTF slope corresponds to greater spatial selectivity. 

 To evaluate the statistical significance of channel selectivity, obtained CTF slopes were 

compared to a surrogate null distribution separately for each time point. The null distribution was 

generated using a non-parametric Monte Carlo randomization procedure involving randomly 

reassigning bin labels across trials and estimating CTFs from the scrambled datasets using the 

same procedure as described above. This was repeated 1,000 times and the resulting CTF values 

were used to derive a null distribution of t-statistics for each time-point. One-tailed t-tests was 

used to evaluate the probability of obtaining a null distribution t-statistic that is greater than or 

equal to the observed t-statistic. If this probability was less than 0.01, CTF selectivity was 

considered statistically above chance.  

Spectral analysis of behavioral performance. To evaluate fluctuations in performance 

with respect to the location and time of the task-irrelevant flash, percentage of correctly detected 
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targets, i.e., detection accuracy was calculated separately for the flash-congruent and flash-

incongruent conditions and for left and right visual field. Because the timing of the target 

presentation was randomized, not all time points will contain behavioral estimates. To calculate a 

continuous time-series of behavioral performance, a 100-ms long moving window spanning 200 

ms to 1400 ms post flash in steps of 1 ms was used to yield a time-series with a sampling rate of 

1000 Hz (for similar approach, see Helfrich et al., 2018). The time-series was then smoothed, 

any missing data were interpolated using a 25-point boxcar moving average, and the resulting 

time-series was tapered by applying a Hanning window. Spectral estimates of the time-series 

data for individual subjects were obtained using Fast Fourier Transform (fft; Delorme & Makeig, 

2004). To increase frequency resolution, each 1200-ms epoch was zero-padded to obtain 10s of 

data per trial (4400 ms on each end of the epoch). The squared absolute value of the resulting 

complex number represented power values for frequencies f determined as follows:  

 

𝒇 =  𝒍𝒊𝒏𝒔𝒑𝒂𝒄𝒆 𝟎,
𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈 𝒓𝒂𝒕𝒆

𝟐
, 𝒇𝒍𝒐𝒐𝒓

𝒍𝒆𝒏𝒈𝒕𝒉 𝒅𝒂𝒕𝒂
𝟐

+ 𝟏  

 

where 𝑓 is a linearly spaced vector of values from 0 to Nyquist frequency (i.e., sampling rate 

divided by 2) with N points (i.e., length of the zero-padded data divided by two, rounded down 

and plus 1) (Cohen, 2014). Power values were scaled by 1/(sampling rate*data length) to 

calculate power spectral density (PSD), representing the power present in the signal as a function 

of frequency (i.e., the quantity of power for each frequency component). Normalized PSD was 

then calculated by dividing the spectral power by its maximum power value.  

Spectral analysis of CTF selectivity for flash-congruent and flash-incongruent 

locations. If CTF selectivity tracks shifts in attentional prioritization, CTF slopes should show 
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rhythmic fluctuations at a rate that mirrors that observed for behavioral estimates of attentional 

sampling between the two attended locations in the theta band (4-8 Hz). To test this prediction, 

the same analysis described above was applied to the CTF selectivity time-series from 400-1400 

ms after the flash event.  

Statistical significance of power spectrum distributions using non-parametric 

permutation testing. The statistical significance of the observed power spectrum distribution 

was evaluated against a null distribution generated by randomly shuffling the time-series 

(behavioral or CTF series) and repeating the FFT analysis described above 1,000 times. For 

every participant, the power spectrum distribution was z-scored relative to the median and 

standard deviation of the null-distribution (for similar approach, see Helfrich et al., 2018). The 

highest z-score within the 2-10 Hz range was selected as the individual peak frequency for each 

participant, and the observed mean z-score across participants was then compared against a one-

tailed p-value of .05 (z-score = 1.645). I also implemented irregular resampling (IRASA, Wen & 

Liu, 2016) as another way to account for background 1/f activity and non-oscillatory (fractal) 

components contributing to the power spectrum distribution (parameters: time window = 75% 

length of the original signal, step size = 50 ms). For each individual participant, individual peak 

frequency was defined as the strongest peak that exceeded the 1/f within a 2-10 Hz range. 

Phase-lag analysis of time-series data. If attention samples between the two locations in 

a serial manner, fluctuations in the time series data (behavioral performance, CTF slopes) for the 

flash-congruent and flash-incongruent conditions should have an anti-phase relationship. For this 

analysis, phase angle values were extracted from the complex numbers in individual peak 

frequencies determined during the spectral analysis described above. Phase differences between 

flash-congruent and flash-incongruent conditions were calculated. The angular difference was 
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then projected as a unit vector on a circle, generating a distribution of vectors. The extent to 

which these vectors were clustered (i.e., non-uniformly distributed) along a particular angle 

represented a phase-locking value calculated as the length of the average vector using the 

following formula 

 

phase-locking value  =  𝒂𝒃𝒔(𝒎𝒆𝒂𝒏 𝒆𝒙𝒑 𝟏𝒊 ∗ 𝒌 ) 

 

where k is a vector of the individual participant phase angle differences expressed as vectors in 

complex space (Cohen, 2014). The phase-locking value was compared to a null-distribution of 

phase-locking values calculated from angle differences generated during permutation testing (see 

above). The phase-locking value was considered statistically significant if it exceeded the 95th 

percentile of the null distribution (p < .05). The angle of the average vector defined the average 

phase lag between the flash-congruent and flash-incongruent conditions. A phase lag of 180° 

would suggest a perfect anti-phase relationship.  

Results 

Behavioral performance. To evaluate behavioral performance, average detection 

accuracy was first calculated as the average proportion of correctly reported targets across all 

SOAs and as function of congruency (flash-congruent, flash-incongruent). The average detection 

accuracy was M = .44, SD = 0.11. There were no significant differences in target contrast or in 

the average detection accuracy between the left (contrast: M = 33.90, SD = 7.05; detection 

accuracy: M = 40.00, SD = 11.63) and the right (contrast: M = 35.40, SD = 6.24; detection 

accuracy: M = 47.70, SD = 15.35) visual fields t(9) = -1.342, p =  0.213, d = 0.424, CI [-4.029, 

1.029], t(9) = -1.496 , p = 0.169, d = 0.473, CI [-19.343, 3.943] respectively.  
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To test for the presence of rhythmic fluctuations in behavioral performance, detection 

accuracy was calculated as a function of flash-to-target SOA. Permutation-based spectral 

analysis of the detection accuracy time series revealed a peak in the theta frequency range (4-8 

Hz) for both the left [flash-congruent: 6.74 Hz, z-score = 1.90, p = .03; flash-incongruent 6.51 

Hz, z-score = 1.74, p = .04] and the right visual field [flash-congruent 5.48 Hz, z-score = 2.19, p 

= .01; flash-incongruent: 6.17 Hz, z-score = 1.35, p = .09; Figure 5A] suggesting the presence of 

rhythmic fluctuations in attentional deployment to the two sampled locations. The IRASA 

procedure produced similar results (see Figure A1A). 

To analyze the phase relationship between the flash-congruent and flash-incongruent 

conditions, phase angle values were extracted for the peak frequency separately for the two 

conditions and LVF and RVF. Their angle difference was then calculated and projected onto a 

unit circle separately for each individual participant. The resulting mean vector direction 

revealed a phase lag of 112.61° between the flash-congruent and flash-incongruent fluctuation 

for the LVF and 302.88° for the RVF. However, neither of these phase lags was significant with 

respect to the null distribution (LVF: phase-locking value = 0.36, null distribution phase-locking 

value = .55, p > .05; RVF: phase-locking value = 0.20, null distribution phase-locking value = 

.53, p > .05; Figure 5B). 
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Figure 5.  The results of spectral and phase analysis of detection accuracy. (A) Detection 
accuracy data for the left and right visual fields. (B) Peak aligned power spectral density for the 
flash-congruent (blue) and flash-incongruent (red) detection accuracy for LVF (top) RVF 
(bottom). Peaks in theta range (4-8Hz) provide evidence for the presence of rhythmic 
fluctuations in detection accuracy. Z-scored power was derived using permutation testing. 
Shaded areas correspond to ±1 SEM. (C) Phase-lag analysis of the phase relationship between 
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the flash-congruent and flash-incongruent conditions for LVF and RVF. There was no significant 
shift in phase between the flash-congruent and flash-incongruent conditions (phase-locking value 
equal to p = .05 shown in purple, actual phase-locking value shown in green). 

Lateralized effects of attention. In line with previous evidence suggesting that ABOP 

tracks the allocation of attention, an attentional shift elicited by the task-irrelevant flash should 

result in a temporary de-synchronization of ABOP in electrodes contralateral to the visual 

hemifield where the flash occurred. To evaluate this possibility, first, a subset of electrodes 

sensitive to ABOP changes following the presentation of the two locations was selected using a 

section of data preceding the appearance of the flash and averaged across conditions. A total of 

14 electrodes was selected based on the topography of ABOP (Figure 6) that were symmetrically 

distributed over the left (P3,P5,P7,P9,PO3,PO7,O1) and right (P4,P6,P8,P10,PO4,P08,O2) 

hemisphere. 
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Figure 6.  Grand average of alpha band power (8-14 Hz). (A) The topographical distribution of 
the pre-flash average ABOP (0-1000 ms following the appearance of the two to-be-attended 
locations). (B) Time-frequency plots of power fluctuations following the appearance of the to-
be-remembered locations for the electrodes circled in green. Alpha frequency band (8-14 Hz) is 
marked by dashed lines. 

To test whether the task-irrelevant flash produced an attentional shift towards the location 

of the flash and whether this shift resulted in rhythmic shifts in attentional allocation between the 

two attended locations, cluster-based permutation analysis was applied to the contralateral-

ipsilateral difference in ABOP separately for the left and right flash conditions. Permutation 

testing yielded several clusters (Figure 7) among which there was a visible ABOP de-
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synchronization (decrease in alpha power in contralateral versus ipsilateral electrodes) following 

the initial evoked response (~100-300 ms) in theta frequency (4-8 Hz) band elicited by the flash. 

However, none of the clusters remained significant when corrected for multiple comparisons. 

This attentional shift was only temporary, lasting only up to ~500 ms following the flash, 

suggesting that the flash produced only a short-term attentional shift as was expected for an 

uninformative cue. In contrast to my prediction, however, there was no clear visible pattern of 

ABOP alternations, as would be expected if ABOP tracked rhythmic shifts in attention. 

Interestingly, a pattern of alternations in power was hinted at in lower frequencies (theta 

frequency band, 4-8 Hz), and appeared to occur every ~200 ms, in line with the rate of 

attentional sampling reported in behavioral studies.   

 

Figure 7.  Time-frequency plots of t-scores comparing contralateral versus ipsilateral power 
separately for the left and right flash conditions. Alpha frequency band (8-14 Hz) is marked by 
dashed lines. Clusters are not corrected for multiple comparisons. 

Channel tuning function selectivity. The pattern of evoked and total ABOP in the two 

clusters of posterior electrodes defined above (Figure 6) was used to reconstruct CTFs for the 

flash-congruent and flash-incongruent locations (Figure 8A). As expected, temporary allocation 

of attention to the flash-congruent location following the flash lead to more selective CTFs for 

the flash-congruent versus the flash-incongruent locations during the initial ~400 ms post-flash 
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(Figure 8B). This was true for the CTFs reconstructed from both evoked and total power. 

Importantly, total power CTF selectivity for both flash-congruent and flash-incongruent 

locations was above chance (with brief interruptions) until the end of the trial, suggesting that 

CTFs successfully tracked attentional allocation during the trial.  

 

Figure 8.  The results of inverted encoding modeling of the FOA using ABOP. (A) Center-
shifted channel response for evoked (top) and total (bottom) for the flash-congruent and flash-
incongruent locations. (B) CTF selectivity over time for flash-congruent (blue) and flash-
incongruent (red) locations separately for evoked and total power. Solid bars on the top of the 
plots correspond to CTF selectivity time intervals that were significantly above chance. Shaded 
areas correspond to ±1 SEM. 

Spectral analysis of total power CTF selectivity for flash-congruent and flash-

incongruent locations. To evaluate whether CTF selectivity (i.e., slopes) for the flash-congruent 

and flash-incongruent locations varied as a function of periodic attentional allocation towards the 
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two spatial locations, the total power CTF slopes time series were subjected to spectral analysis. 

The permutation-based spectral analysis yielded a significant peak in theta range (4-8 Hz) [flash-

congruent: 4.79 Hz, z-score = 11.13, p < .001; flash-incongruent 5.68 Hz, z-score = 8.53, p < 

.001; Figure 9A] suggesting the presence of rhythmic fluctuations in attentional deployment to 

the two sampled locations. The IRASA procedure produced similar results (see Figure A1B). 

Phase-lag analysis of total power CTF selectivity for flash-congruent and flash-

incongruent locations. To evaluate the relationship between the phases of the total power CTF 

slopes, phase angle values were extracted for the peak frequency for the flash-congruent and 

flash-incongruent location separately for each participant. The angle difference between the two 

values was then calculated and projected onto a unit circle separately for each individual 

participant. The resulting mean vector direction revealed a phase lag of 349.71°, pointing 

towards an in-phase rather than the expected anti-phase relationship. However, this phase lag 

was not significant with respect to the null distribution (phase-locking value = 0. 37, null 

distribution phase-locking value = .55, p > .05; Figure 9B). 
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Figure 9.  The results of spectral and phase analysis of total power CTF selectivity. (A) Peak 
aligned power spectral density for flash-congruent and flash-incongruent CTF selectivity. Both 
flash-congruent (left) and flash-incongruent (right) location’s CTF slopes contained a significant 
peak in theta frequency band. Z-scored power was derived using permutation testing. Shaded 
areas correspond to ±1 SEM. (B) Phase-lag analysis of the phase relationship between the flash-
congruent and flash-incongruent conditions. There was no significant shift in phase between the 
flash-congruent and flash-incongruent conditions (phase-locking value equal to p = .05 shown in 
purple, actual phase-locking value shown in green).  

Discussion 

 An important step in our understanding of the proposed attentional rhythm is uncovering 

its neural correlates. Previous studies examining the neural oscillatory correlates of attentional 

sampling have suggested that the phase of neural oscillations in theta band could drive rhythmic 

fluctuations in the effects of attention (e.g., target detection accuracy or target response times; 

Helfrich et al., 2018; Landau & Fries, 2012; Landau et al., 2015). At the same time, another line 

of research focusing on more traditional, sustained effects of attention has consistently assigned 

an important role to a different oscillatory band, specifically the alpha band (8-14 Hz) and its 

power. In these studies, changes in the topography of alpha band power were shown to track to 

the allocation of attention in space (Foster, Sutterer, et al., 2017). Despite these consistent reports 

of the importance of ABOP in attention, the role of ABOP in the sampling rhythm of attention 
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has not yet been established. The goal of Experiment 1 was therefore to examine the role of 

ABOP in attentional sampling and to assess the possibility of reconstructing rhythmic changes in 

attentional allocation over time from ABOP using inverted encoding models.  

In order to study the attentional rhythm in the neural signal, it was important to first 

establish its presence in behavior. The analysis of detection accuracy demonstrated the presence 

of previously reported rhythmic attentional sampling over the two attended locations in the theta 

frequency range (4-8 Hz). A closer examination of the behavioral data also revealed that 

individual participants varied in the rate of their attentional sampling as evidenced by between-

participant variability in the individual peak frequency (see Figure AF2). As a potential result of 

this individual variability in the time intervals between attentional samples, no clear rhythmic 

signature was observed in ABOP. Specifically, grand-averaged data of ABOP did not show 

rhythmic waxing and vanning between the contralateral and ipsilateral hemispheres as was 

expected.  

Surprisingly, there was a hint of a pattern of rhythmic fluctuations in lower frequencies, 

specifically in the theta frequency band (4-8 Hz) instead of the predicted alpha band (8-14 Hz). 

Similarly, one previous study published as a preprint (Crouzet & VanRullen, 2017) has reported 

a shift in the relative EEG power spectrum when participants were asked to monitor two instead 

of one image. The authors observed more power in the delta-theta band range when two images 

were monitored compared to relatively more power in the alpha band range when one image was 

attended. The authors have taken this as evidence for a splitting of the natural attentional “clock” 

that operates at 8 Hz in a way that each alternate cycle is directed to a different location, leading 

to a slower, 4 Hz cycle (see VanRullen, 2016 for more on this argument). This could suggest that 

the neural oscillatory frequency corresponding to attentional sampling may change depending on 
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the number of items that are sampled; however, this possibility was not directly tested here. The 

lack of rhythmic changes in ABOP may also indicate that this frequency is not be a suitable 

index for tracking the rhythmic sampling of attention, but may rather reflect more static aspects 

of attentional deployment (Busch & VanRullen, 2010). 

 In contrast to the findings from the hemispheric differences in ABOP, spectral analysis 

of the results of inverted encoding modeling of the focus of attention revealed the presence of 

attentional sampling in the theta frequency range. Unlike hemispheric differences in ABOP, 

evidence for the presence of rhythmic sampling in this case was established for each individual 

participant, which preserved differences in peak frequency across participants. However, there 

was no clear phase shift between the attentional fluctuations observed over the two locations in 

either the behavioral or neural data that would suggest that these two locations were sampled in a 

serial manner as previously proposed. One possible explanation for the lack of a phase shift 

could be that the flash did not effectively align the phase of the cycle. In fact, the temporary shift 

of attention evidenced by ABOP de-synchronization following the resetting stimulus was not 

significant at the group level, which could mean that the resetting stimulus may have not elicited 

a phase reset for all of the participants.  

In summary, Experiment 1 has successfully replicated previous behavioral results 

suggesting the presence of rhythmic sampling when attention was directed to two spatial 

locations. Additionally, the present experiment showed that, despite the lack of a group-level 

signature of rhythmic sampling in the pattern of hemispheric differences in ABOP, the pattern of 

individual participant ABOP topography could be used to reconstruct the time course of the 

allocation of the focus of attention. More importantly, this time course has shown signs of 

rhythmic fluctuations observed in the behavioral data. Future work will be necessary to address 
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and extend certain aspects of the current findings. First of all, it is necessary to clarify the 

reasons for the lack of the predicted phase-relationship between the flash-congruent and flash-

incongruent conditions. Secondly, future studies should replicate the findings from the inverted 

encoding modeling in a larger sample with larger trial numbers and directly test the relationship 

between the neural and behavioral rhythms. Finally, future research should examine the 

relationship between changes in ABOP and the phase of lower frequency oscillations that have 

been proposed to underlie the phasic influence of higher-order brain areas on perception 

(Cavanagh & Frank, 2014).  
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EXPERIMENT TWO: INVESTIGATING THE NEURAL SOURCES OF RHYTHMIC 

ATTENTIONAL SAMPLING 

Introduction 

 The goal of Experiment 1 was to identify the neural oscillatory correlates of rhythmic 

attentional sampling previously observed at the level of behavior. The goal of Experiment 2 was 

then to identify the neural mechanisms supporting this rhythmicity. Existing evidence from non-

human primates suggests that the FEF controls serial, covert shifts of attention during visual 

search (Buschman & Miller, 2009) and has been implicated as the source of a top-down signal 

directing the rhythmic sampling of attention (Fiebelkorn et al., 2018). Despite some 

corroborating evidence from humans pointing towards the role of fronto-central cortical areas in 

rhythmic sampling of attention (e.g., Busch et al., 2009; Dugué, Marque, & VanRullen, 2011), 

this evidence is correlational in nature. To more clearly establish a functional role for particular 

cortical areas in the rhythmic cycling of attention, causal evidence is necessary. Transcranial 

magnetic stimulation (TMS) is a non-invasive brain stimulation technique that can be used to 

temporarily induce a ‘virtual lesion’ in a targeted brain area, making it possible to assess its 

contribution to specific behaviors (Pascual-Leone, Bartres-Faz, & Keenan, 1999). 

In contrast to the lack of causal evidence for areas involved in attentional cycling, there is 

existing evidence suggesting a clear functional role for FEF in other, related aspects of attention, 

such as sustained attention and attentional disengagement. For example, Esterman et al. (2015) 

delivered repetitive TMS (rTMS) to either the left or right FEF while participants performed a 

go/no-go attention task and showed that disruption of activity in the right FEF resulted in a 

disruption of sustained attention. Another study by Heinen et al. (2017) tested the role of FEF in 

attentional disengagement from the current focus of attention using continuous theta burst 
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stimulation (cTBS), a type of TMS that has been shown to reduce activity in the targeted area for 

up to 30 minutes after application (Nyffeler et al., 2006). In their experiment, cTBS applied to 

the right FEF was found to impair visual discrimination selectively in the left hemifield when 

attention was sustained, but impaired visual discrimination in both hemifields following attention 

shifts. This suggests a bilateral role of right FEF in shifting attention and, potentially, in 

orchestrating rhythmic shifts of attention. 

 The goal of the current study was to test the role of the right FEF in the rhythmic cycling 

of spatial attention. The right FEF has been shown to predominantly control attention across the 

visual field, whereas the left FEF has shown only contralateral or limited impact (Hung, Driver, 

& Walsh, 2011; Ruff et al., 2008; Silvanto, Lavie, & Walsh, 2006). To assess the causal role of 

the FEF in attentional sampling, cTBS was applied offline (i.e., before the completion of the 

task) to the right FEF to temporarily attenuate its function, and the rhythm of attentional 

sampling was assessed behaviorally. TMS stimulation of the FEF has been found to increase the 

threshold for perceiving near-threshold targets (Chanes, Quentin, Tallon-Baudry, & Valero-

Cabré, 2013). This could produce differences in the difficulty of target detection tasks following 

TMS of the FEF versus a control area. To avoid this outcome, the proposed experiment 

implemented a behavioral task with easy-to-see targets, and analysis of periodic changes in 

reaction time (RT) to assess rhythmic sampling. FEF cTBS has also been shown to cause a 

general slowing of RT in tasks with fixed cue-target intervals (Marshall, O’Shea, Jensen, & 

Bergmann, 2015); however, the effect of such slowing on attentional sampling at variable cue-

target intervals has not been examined. If cTBS only causes general slowing in RT, but does not 

disrupt the sampling process, I expected to observe increased RTs across all stimulus onset 

asynchronies, but a preserved pattern of fluctuations (i.e., waxing and waning of RTs with 
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increasing SOA). If FEF plays a causal role in the generation of rhythmic shifts of spatial 

attention, the attentional rhythm should be disrupted following TMS. This disruption could be 

manifested in at least three ways: 1) by a total removal of rhythmic attentional sampling, which 

would be revealed by a lack of a significant frequency peak in the derived power spectrum, 2) by 

decreasing the strength of attentional sampling, which would be reflected in overall lower 

differences between the high and low peaks of the observed behavioral oscillation (i.e. by a 

reduction in the amplitude of observed oscillations), or 3) by causing a shift in the frequency of 

attentional sampling, which would be suggested by the presence of a significant frequency peak, 

but at a different frequency than observed in the no-TMS condition (e.g., decreasing from 4-5 

samples per second to only 1-2 samples).  

Materials and Methods 

Participants. Twelve undergraduate and graduate students (8 female; 19-36 years M = 

25.1, SD = 5.2) were recruited from North Dakota State University to participate in this study for 

course credit or monetary compensation ($20/h). Participant selection criteria and recruitment 

procedures were identical to those described for Experiment 1.  

Procedure. All participants eligible for the experiment completed three different 

experimental sessions on separate days. Prior to the experimental sessions, an anatomical 

magnetic resonance imaging (MRI) scan for each participant was acquired. During the first 

session, each participant completed a behavioral session without TMS stimulation to establish a 

baseline measure of individual attentional rhythm. Afterwards, a motor threshold was determined 

to set TMS intensity and the stimulation targets (right FEF and vertex) were localized 

anatomically. The right FEF anatomical coordinates were identified on the basis of individual 

anatomy from whole-brain T1-weighted anatomical MRIs for each participant separately prior to 
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the experimental session. The FEF was anatomically defined as the intersection of the superior 

precentral sulcus and the superior frontal sulcus (Paus, 1996). The vertex anatomical coordinates 

were defined as the junction of the two central sulci (Marshall et al., 2015). During the second 

and third sessions, TMS was applied to either the right FEF or the vertex prior to completion of 

the behavioral task, with the order of targets counter-balanced across participants.  

Attention task. Stimulus presentation and response recording was controlled by a PC 

running Presentation® (Version 18.0, Neurobehavioral Systems, Inc., Berkeley, CA, 

www.neurobs.com). Stimuli were presented on the surface of a 19” cathode ray tube monitor 

with a refresh rate of 100 Hz, at a viewing distance of 57 cm. 

Participants completed a reaction time behavioral task called the Starry Night Test (see 

Figure 10; Deouell, Sacher, & Soroker, 2005; Szczepanski et al., 2014; Helfrich et al., 2018), in 

which they were cued to covertly attend to either the left or right visual field (LVF and RVF 

respectively) using a centrally presented arrow. At a random time 1000-2000 ms after the cue, a 

small blue square (0.65° of visual angle) appeared at either the cued (60% of trials) or uncued 

(40% of trials) location and participants were asked to press a button as soon as they saw it. 

Targets appeared on a dynamic background of red distracters (0.4° visual angle) each appearing 

in a random location within a virtual cell (display was divided into a 6x7 invisible grid with 42 

virtual cells) and never overlapping a distracter. At the beginning of each trial, the distracters 

were randomly set to be visible or invisible. With random intervals of 50-250 ms throughout the 

trial, one distractor at a time was chosen at random and its status was flipped (if the distractor 

was previously visible, it became invisible and vice versa), giving the appearance of twinkling 

starlight. The task consisted of 480 total trials (+10 practice trials) separated into 12 blocks and 

lasted ~30 min. The length of the experiment was kept deliberately short to fit within the window 
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of maximal cTBS efficacy (Nyffeler et al., 2006). The average time necessary to complete the 

behavioral task following the stimulation was 35.61±1.93 minutes. There was no significant 

difference in the time necessary to complete the behavioral task between the FEF (M = 35.42, SD 

= 2.19) and vertex (M = 35.00, SD = 1.21) stimulation sessions: t(11) = 1.101, p = .295, d = 

0.321, CI [-0.417, 1.250]. 

Figure 10.  Starry Night Test trial sequence for Experiment 2. Each trial started with the 
appearance of a fixation cross in the middle of the screen and a set of distractors. Additionally, 
an arrow pointing either to the left or right was presented at fixation and remained on the screen 
until the end of the trial. Following a variable cue-target SOA (1000 - 2000 ms), a blue square 
appeared either to the left or right of fixation and remained on the screen for 2000 ms or until the 
participant responded. Participants were asked to only respond to targets appearing within the 
cued hemifield and withhold responses to targets appearing in the uncued hemifield. The 
response was followed by a 500 ms inter-trial interval. 

Structural MRI. Prior to participation, whole brain T1-weighted anatomical MRI scans 

were acquired for each participant with a GE Signa HD 1.5-T MRI scanner (206 axial slices, 

with a resolution of 1 mm).  
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Administration of TMS. TMS was delivered with a Magstim Super Rapid2 Plus 1 

magnetic stimulator fit with an air-cooled, focal bipulse, figure of eight 70-mm stimulating coil 

(Magstim, Whitland, UK). TMS targeting and online guidance was achieved using a Visor2 

neuronavigation system (Advanced Neuro Technology, Enschede, The Netherlands) that uses 

infrared-based frameless stereotaxy to map the position of the coil and the participant’s head 

within the reference space of the individual’s high-resolution anatomical MRI. During right FEF 

stimulation, the coil was held at a 45° angle from the vertical midline. During vertex stimulation, 

the coil was held in line with the longitudinal fissure separating the hemispheres, with the coil 

handle facing backwards. 

Determination of resting motor threshold. For each individual participant, active motor 

threshold (AMT) was determined as the minimum stimulator output required to produce a finger 

movement on 5/10 single pulses delivered to the hand area of the primary motor cortex prior to 

the experiment. The average resting motor threshold was M = 47.50, SD = 0.09. 

FEF cTBS. cTBS stimulation was delivered offline to FEF and vertex (in separate 

sessions) prior to the completion of the behavioral task. Specifically, short 50 Hz bursts of three 

pulses were applied at a frequency of 5 Hz (i.e., a 200 ms intertrain interval) for 40 s (i.e., 600 

pulses in total) at 80% of each participant’s AMT (Huang et al., 2005). During the cTBS and for 

1 min afterward, participants remained seated and maintain fixation. 

Eyetracking. Eye movements of the left eye were tracked using the Eyelink 1000 system 

(SR Research Ltd., Mississauga, Canada). Trials contaminated by eye movements, defined as a 

deviation from central fixation larger than 1° of visual angle during the period 500 ms prior to 

target until response, were excluded from further analysis. The average rejection rate was 

9.76±1.75% of trials). There were no significant differences [F(2,22) = 1.266, , p = .302, ηp
2 = 
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.103] in rejection rates between the baseline (M = 10.36, SD = 1.83), FEF (M = 9.35, SD = 1.48) 

and vertex (M = 9.58, SD = 1.90) conditions. 

Spectral analysis of behavioral performance. To evaluate fluctuations in reaction time 

(RT) with respect to the length of the cue-target SOA, a time series of RTs was calculated. Prior 

to calculation, any RTs 2 SDs longer than the mean were removed from the analysis. Because the 

timing of the target presentation was randomized, not all time points contained behavioral 

estimates. To calculate a continuous time-series of behavioral performance a 100-ms long 

moving window spanning 1000 ms to 2000 ms post cue in steps of 1 ms was used to yield a 

time-series with a sampling rate of 1000 Hz (for similar approach, see Helfrich et al., 2018). The 

time-series were then smoothed and any missing data interpolated using a 25-point boxcar 

moving average. Spectral estimates of the time-series data for individual subjects were obtained 

using Fast Fourier Transform (fft; Delorme & Makeig, 2004) and corrected for background 1/f 

activity and non-oscillatory (fractal) components, as described in Experiment 1. Statistical 

significance of individual power spectrum distributions was evaluated using non-parametric 

permutation testing, as described for Experiment 1.  

Comparison of power and frequency of individual peak frequencies between 

experimental conditions. Firstly, to assess whether cTBS to right FEF disrupted the rhythm of 

attentional sampling by decreasing its amplitude (i.e., the difference between high and low 

peaks), power for individual peak frequencies were compared between baseline, control and 

cTBS conditions using repeated measures ANOVA. Secondly, to test whether cTBS to right FEF 

disrupted the rhythm of attentional sampling by shifting its sampling frequency, individual peak 

frequencies were compared between baseline, control and cTBS conditions using repeated 

measures ANOVA.  
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Results 

Reaction Time (RT). Reaction time was calculated as the time elapsed between the 

appearance of a target and the response. Mean RT (averaged across all cue-target SOAs) was not 

significantly different [F(2,22) = 3.067, p = .067, ηp
2 = .218] between the baseline (M = 536.79, 

SD = 26.35), FEF (M = 520.93, SD = 44.02) and vertex (M = 521.75, SD = 32.54) conditions, 

suggesting that cTBS delivered to the FEF did not produce a general slowing of RT. Mean RTs 

were also analyzed separately for the right and left visual fields to evaluate whether right FEF 

stimulation produced a hemifield-specific disruption. There was no evidence for a hemifield-

specific disruption (see Figure 11) for either the left visual field [F(2,22) = 1.314, p = .289, ηp
2 = 

.107] or the right visual field [F(2,22) = 5.045, p = .016, ηp
2 = .314; RTs in baseline condition (M 

= 541.49, SD = 27.07) were significantly slower compared to the vertex condition (M = 520.84, 

SD = 30.65, p = .017), but not the FEF (M = 521.39, SD = 43.25, p = .076), no difference 

between the vertex and FEF conditions (p = .948)]. 

Figure 11.  Mean RTs for baseline, FEF and vertex conditions plotted across visual fields and 
separately for the LVF and RVF. There were no significant differences in RTs between 
conditions suggesting the presence of cTBS-triggered RT slowing. There was a significant 
difference in RTs between the baseline and vertex condition (marked with an ‘*’) in the RVF 
that potentially resulted from task practice. Error bars correspond to 95% CI. 
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Spectral analysis of behavioral performance. To evaluate the presence of rhythmic 

fluctuations in RTs, the RT time series were subjected to spectral analysis that yielded an 

estimate of peak frequency (in Hz) for each individual participant (see example from a single 

participant in Figure 12 or Figure A4 for all participants). The peak frequency was selected as 

the largest peak with respect to a permutation-generated null distribution (i.e., a peak with the 

largest z-score) and the amplitude of this peak corresponded to the z-scored power of the peak 

(Figure 13A). To evaluate whether cTBS resulted in a significant shift in the frequency of 

attentional sampling, the peak frequencies were compared across the three conditions (baseline, 

FEF, vertex). There was no significant difference in peak frequency [F(2,22) = 0.258, p = .775, 

ηp
2 = .023] between the baseline (M = 6.34, SD = 2.23), FEF (M = 6.46, SD = 2.20) and vertex 

(M = 7.11, SD = 2.52) conditions (Figure 13B). This suggests that cTBS delivered to the right 

FEF did not significantly affect the frequency of rhythmic sampling. However, cTBS seemed to 

affect the power of the rhythmic fluctuations. Specifically, the combined z-scored power for the 

peak frequency for both the baseline (Mz-score = 1.77, SDz-score = 1.21, p = .04) and vertex (Mz-score 

= 1.83, SDz-score = 1.04, p = .03) conditions were significant, suggesting the presence of a 

rhythmic fluctuation in the theta range (baseline: 6.34 Hz, vertex: 7.11). However, there was no 

significant oscillation present for the FEF condition (Mz-score = 1.12, SDz-score = 0.85, p = .13), 

suggesting a lack of theta-rhythmic fluctuation for this condition. The individual z-score power 

values for the different conditions were also compared using a repeated-measures ANOVA. 

Because the FEF-specific disruption was driven by a subset of participants, the ANOVA did not 

yield a significant drop in power in FEF compared to baseline and vertex [F(2,22) = 1.606, p = 

.223, ηp
2 = .127; Figure 13B]. A direct comparison between the two TMS conditions (FEF versus 

vertex) showed a marginally significant group-level difference between the two conditions: t(11) 
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= -2.10, p = .06, d = .607, CI [-1.454, 0.034]. A similar pattern of results was produced when 

spectral estimates were corrected for 1/f noise using IRASA procedure compared to permutation 

testing described above (see Figure A3).  

 

Figure 12.  An example of individual participant data and the results of the spectral analysis for 
the baseline (gray), FEF (purple) and vertex (orange) conditions. (A) Time-series of z-scored 
RTs for the three experimental conditions. (B) PSD for the three experimental conditions. 
Dashed lines represent mean PSD for the null-distribution. Shaded areas correspond to 95% CI.  
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Figure 13.  The results of spectral analysis of RT time series for baseline, FEF and vertex 
conditions. (A) Peak aligned power spectral density for the three conditions. Z-scored power was 
derived using permutation testing. Shaded areas correspond to ±1 SEM. (B) Bar plots of the 
average peak frequency and power for baseline, FEF and vertex conditions. There is a visible 
decrease in z-scored power in the FEF condition compared to the baseline and vertex conditions. 
Even though the drop in power in the FEF conditions rendered this combined peak insignificant 
(p = .13), this decrease did not render the power observed in the FEF condition statistically 
different from the power observed in the baseline and vertex conditions. Error bars correspond to 
95% CI. 

Discussion 

 The goal of Experiment 2 was to evaluate the role of the right FEF in rhythmic sampling 

of attention. FEF has previously been shown to play an important role in orienting visual 

attention as well as controlling eye-movement behavior (Vernet, Quentin, Chanes, Mitsumasu, & 

Valero-Cabré, 2014), but no published study has tested its involvement in the generation of 

rhythmic sampling of attention. To do so, I used cTBS to temporarily disrupt the function of the 
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right FEF and behaviorally evaluated the presence of attentional sampling following TMS 

stimulation. The results of the FEF condition were then compared to a condition with no TMS 

stimulation (baseline) and a condition in which TMS was delivered to a control area (vertex). I 

predicted that if FEF is causally involved in the generation of the attentional rhythm, disruption 

of this area could result in three different scenarios: 1) a complete removal of rhythmic sampling, 

2) a reduction in the amplitude of the attentional sampling, and/or 3) a shift in the rate 

(frequency) of attentional sampling. 

 In line with the first hypothesized scenario, cTBS delivered to the right FEF resulted in a 

lack of a significant rhythmic signature that was specific to this condition, suggesting that TMS-

induced disruption of the FEF lead to a degradation of the sampling rhythm. This disruption was 

driven by a decrease in amplitude of the sampling rhythm following TMS delivered to the right 

FEF in a subset of participants (scenario 2). Interestingly, there was no significant change in the 

rate of the sampling (scenario 3) providing no evidence for a shift in the sampling frequency 

resulting from FEF disruption. Overall, these findings point towards a role of the right FEF in the 

generation of the attentional rhythm.  

 It is important to note that the TMS-induced disruption of the attentional rhythm was only 

present in some of the participants (5 out of 12) and it remains unclear why this was the case. 

One potential explanation could be that the function of the right FEF was only successfully 

disrupted in these participants. This possibility is not unusual given that previous studies 

attempting to localize the FEF reported failure to produce disruption in FEF for a proportion of 

participants (e.g., 3 out of 10 participants in Ro, Farnè, & Chang, 2002). Because no independent 

measure of FEF disruption was collected, this possibility cannot be ruled out or confirmed. In 

contrast to a previous study by Marshall et al. (2015), there was also no effect of TMS on the 
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average RT in either the entire group or in the subgroup that could be used as an indicator of 

TMS efficiency. Future studies will be needed to examine the relationship between the effect of 

TMS on attentional sampling and other measures of FEF function, such as saccade slowing (Ro 

et al., 2002) and EEG correlates of attentional deployment (Marshall et al., 2015).   

To summarize, the findings of the current study are among the first pieces of causal 

evidence suggesting the involvement of the FEF in the generation of rhythmic sampling of 

attention (see also preprint by Dugue, Beck, Marque, & VanRullen, 2018). Future studies will be 

needed in order to establish the exact cause of the degradation of the attentional rhythm 

following TMS to the right FEF. For example, disengagement of the FEF could result in a 

weaker deployment of attentional resources during different phases of the attentional cycle, 

leading to decreased benefits and detriments observed at different phases (i.e., decrease in 

amplitude of the rhythm). Another possibility could be that the FEF acts to reset attentional 

sampling, and its disruption leads to a poor alignment of the phase of attentional sampling. 

Additionally, the effect of FEF disruption will need to be examined with respect to other neural 

indices of this process, such as the strength and phase of oscillatory coupling between frontal and 

posterior brain areas (Fiebelkorn et al., 2018; Helfrich et al., 2018).  
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EXPERIMENT THREE: UNDERSTANDING THE IMPLICATIONS OF 

ATTENTIONAL RHYTHMICITY ON ENCODING INTO WORKING MEMORY  

Introduction 

The amount of information that can be maintained in WM is strictly limited (~3-4 simple 

objects; Cowan, 2001; Luck & Vogel, 1997), and as a result, the focus of attention at any given 

moment has a strong influence on what information is encoded and ultimately stored in WM 

(Schmidt et al., 2002; Woodman, Vecera, & Luck, 2003). For example, when provided with 

spatial cues about where task-relevant information will be presented, humans are capable of 

selectively allocating attention to only this information (e.g., Vogel, McCollough, & Machizawa, 

2005), thus reducing the overall number of items stored. An unanswered question is whether, in 

the absence of such information, the natural rhythmic sampling of attention causes variability in 

encoding across the sampled locations. More specifically, information presented at the sampled 

location in the “good” phase of the attention cycle should be encoded into WM more accurately 

compared to information presented at the “poor” phase of the cycle (i.e., when attention is 

deployed to other locations). In line with the rationale of this prediction, a study by Myers et al. 

(2014) has shown that natural fluctuations in neural excitability are correlated with the accuracy 

of WM recall.  

A recent study by Emrich, Lockhart and Al-Aidroos (2017) suggested that the allocation 

of spatial attention during WM encoding determines the resolution with which the information is 

stored. In keeping with previous findings suggesting that attention samples between different 

locations in space approximately once every 200 ms (~4-8 Hz; e.g., Landau & Fries, 2012; Song 

et al., 2014; VanRullen, Carlson, & Cavanagh, 2007), Experiment 3 aimed to determine whether 

the phase of the cycle underlying attentional sampling of space affects the encoding of 
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information into WM. To do this, to-be-encoded information was presented at one of two 

sampled locations at different time intervals following an attention-resetting stimulus. I predicted 

that information would be encoded more efficiently during particular phases of an ongoing 

oscillation. This would be evidenced by a pattern of rhythmic fluctuations in the fidelity of 

memory recall with respect to the location of the resetting stimulus (flash-congruent and flash-

incongruent) and the time elapsed between the reset and the presentation of the information 

(SOA). 

Methods and Materials 

Participants. Twenty undergraduate and graduate students (7 male, age: M = 19.05, SD 

= 1.36) were recruited from North Dakota State University to participate in this study for course 

credit or monetary compensation ($10/h). Participant selection criteria and recruitment 

procedures were the same as described in Experiment 1. 

Materials and procedure. Stimulus presentation and response recording were controlled 

by a PC running Matlab (Mathworks, Inc.) with Psychophysics Toolbox extensions (Brainard, 

1997; D.G. Pelli, 1997). Stimuli were presented on the surface of a 24” of a LCD monitor with a 

refresh rate of 144 Hz, at a viewing distance of 57 cm.  

The behavioral task consisted of a short-term memory recall task. The experimental 

stimuli consisted of two circular gray placeholders (R=140, G=140, B=140) subtending 4° of 

visual angle in diameter presented 5° eccentrically to the left or right of central fixation against 

medium gray background (R=128, G=128, B=128) filled with black and white noise patches 

(black R=0, G=0, B=0; white R=255, G=255, B=255). The sample stimulus consisted of one 

oriented grating (black R=0, G=0, B=0; white R=255, G=255, B=255) subtending 3.8° of visual 

angle in diameter presented inside one of the two placeholders. Orientation of the grating was 
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randomly drawn from 180° orientation space. The stimulus was overlaid with a semi-transparent 

Gaussian mask (R=128, G=128, B=128; alpha = 220) to reduce afterimages. A contrasting task-

irrelevant flash (R=180, G=180, B=180) was used to reset attentional sampling prior to the 

presentation of the sample display. The flash was presented with equal likelihood and in a 

random order over one of the placeholders, producing flash-congruent and flash-incongruent 

trials. At test, participants were asked to recall the orientation of the sample grating by moving 

mouse crosshairs around the outline of the placeholder to adjust the orientation of the grating to 

match the orientation of the sample grating. The orientation of the grating was updated as the 

participant moved the crosshairs.  

Experimental procedure. The sequence of trial events can be seen in Figure 14. Prior to 

the beginning of each block, participants were asked to place their chin in a chin rest and were 

instructed to maintain fixation on a fixation cross positioned at the center of the screen. For each 

block, following the appearance of the fixation cross, two unfilled circles were presented to the 

left and right of the fixation cross. At the beginning of each trial, the two circles were filled with 

random noise. At a variable time after the appearance of the noise patches (1000 - 1500 ms), one 

of the two circles briefly flashed (33 ms), generating a task-irrelevant resetting event. Following 

a variable SOA (randomly selected from 10 different time bins spanning the interval 200-700 ms 

after the resetting event: 200 ms, 256 ms, 311 ms, 367 ms, 422 ms, 478 ms, 533 ms, 589 ms, 644 

ms, 700 ms), a sample display was presented for 100 ms. The sample display consisted of a 

single grating presented inside one of the two circles to the left or right of fixation. Participants 

were asked to recall the orientation of the grating following a 1000-ms delay interval. After 

providing their answer by clicking the mouse, participants received feedback in the form of a red 

bar marking the true orientation of the sample grating. The experiment consisted of 1200 total 
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trials separated into 40 blocks split into two experimental sessions that were completed on 

separate days. Participants completed 30 practice trials prior to the experiment. The full 

experiment took ~3 h to complete. 

Figure 14.  Behavioral task trial sequence for flash-congruent (top) and flash-incongruent 
(bottom) conditions for Experiment 3. Each trial started with the presentation of two circular 
noise patches to the left and right of fixation. Following a variable pre-stimulus interval, a task-
irrelevant flash surrounding one of the two locations was used to reset attentional sampling. 
Following a variable SOA, a sample grating was presented at one of the two locations. Following 
a 1000 ms delay, the participants were asked to recall the orientation of the sample stimulus.  

Angular error. A measure of WM accuracy was calculated as the mean absolute angular 

error between the sample and reported orientation (0-90 degrees). Angular error was calculated 

separately for each SOA, congruency (flash-congruent, flash-incongruent) and visual field (left, 

right). A difference time-series was calculated by subtracting flash-incongruent from flash-

congruent angular error and averaging across visual fields. 

Spectral analysis. To test whether WM performance (i.e., angular error) varied with 

respect to the task-irrelevant flash, spectral amplitude for a range of frequencies was calculated. 

To extract spectral amplitude, Fourier transform (fft; EEGLAB; Delorme and Makeig, 2004) was 

applied to an epoch of data (values of angular error) in an ascending order of SOAs from 200-

700 ms, detrended, Hanning tapered and zero-padded (50 points before and after). The absolute 
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value of the resulting complex number represented amplitude values for frequencies, which were 

determined as in Experiment 1. 

Statistical significance of the observed amplitude values was evaluated using a 

permutation test (for similar approach, see Dugué, Xue, & Carrasco, 2017; Dugué, Roberts, & 

Carrasco, 2016). A null distribution of spectral amplitude was generated by randomly assigning 

SOAs to the angular error values for each condition and for each participant separately. After 

randomization, the same analysis as the one described above was performed on the randomized 

data. This procedure was repeated 10,000 times and the resulting amplitude values were ordered 

from lowest to highest separately for each frequency. Spectral amplitude was considered 

statistically significant if the amplitude extracted from the real data was higher than the 95% 

confidence interval (CI) determined based on the 9,500th amplitude generated from the permuted 

data (corresponds to one-tailed p-value of .05). Benjamini-Hochberg correction for multiple 

comparisons was implemented. Probability less than p = .05 was considered statistically 

significant. 

Phase-lag analysis. In addition to analyzing the spectral amplitude of angular error 

fluctuations in the flash-congruent and flash-incongruent conditions, the phase relationship 

between these two conditions was examined using the analysis described in Experiment 1.  

Results 

Average angular error. The angular difference between the sample and reported 

orientation across all SOAs and congruency conditions, i.e., the mean average angular error, was 

10.67 ± 3.61 degrees. The resetting flash resulted in a significantly lower mean average angular 

error, t(19) = -3.078, p = .006, d = 0.694, CI [-0.906, -0.173], for the flash-congruent condition 

(M = 10.40, SD = 3.55) compared to flash-incongruent condition (M = 10.94, SD = 3.71; Figure 
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15A), This means that the sample orientations appearing in the same location as the flash were 

recalled more precisely compared to sample orientations appearing in the location opposite to the 

resetting flash. As expected for non-predictive cues, the cueing benefit was short-lived and the 

significant difference between flash-congruent and flash-incongruent conditions was driven by a 

significant advantage in the congruent condition in the two shortest flash-to-sample SOAs [200 

ms: p = .007, 260 ms: p = .029; Benjamini-Hochberg corrected for multiple comparisons; Figure 

15B].  

 

Figure 15.  Behavioral performance for flash-congruent and flash-incongruent conditions. (A) 
Mean average angular error for flash-congruent and flash-incongruent conditions averaged 
across LVF and RVF and all SOAs. Error bars correspond to 95% CI. (B) Average angular error 
for different flash-to-sample SOAs for flash-congruent and flash-incongruent conditions 
(averaged across LVF and RVF). Flash-to-sample SOAs that were significantly different are 
marked with ‘*’ (Benjamini-Hochberg corrected for multiple comparisons). Error bars 
correspond to ±1 SEM. 

Spectral analysis of angular error.  In order to test whether WM recall accuracy varied 

rhythmically at theta frequency (4-8 Hz) as a function of flash location and the length of the 

SOA, mirroring the attentional cycle, the time series of angular error differences between flash-

congruent and flash-incongruent conditions was subjected to spectral analysis. The results 
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suggested that recall accuracy varied rhythmically in theta frequency: 6.6 Hz (p < .001 against 

null-distribution generated using permutation testing, Figure 16A). This finding supports the 

hypothesis that fluctuations in external attention rhythmically affect the encoding of information 

into WM.  

Phase-lag analysis. If attention samples spatial locations in a serial manner, sampling of 

each location is expected to happen at opposite phases (180°) of the attentional cycle, resulting in 

an anti-phase relationship in WM recall accuracy between the flash-congruent and flash-

incongruent fluctuations. To analyze the phase relationship between flash-congruent and flash-

incongruent conditions, phase angle values were extracted for the peak frequency (6.6 Hz) 

separately for the two conditions (flash-congruent, flash-incongruent) and for each participant. 

There was a marginally significant phase difference between the flash-congruent and flash-

incongruent-conditions (parametric Watson-Williams test: F = 3.69, p = 0.06) indicating the 

possible presence of a phase lag. To further evaluate the phase shift, the calculated angle 

difference was projected onto a unit circle separately for each individual participant. The 

resulting mean vector direction suggested a phase lag of 104.25° between the flash-congruent 

and flash-incongruent fluctuation. Rayleigh’s test for non-uniformity of circular data showed that 

the phase angle differences were not distributed uniformly around the circle (p = .24), suggesting 

the presence of clustering. However, a more rigorous comparison of the phase against a null 

distribution did not provide evidence for a significant phase shift (phase-locking value = 0.27, 

null distribution phase-locking value = .39, p > .05; Figure 16B). 
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Figure 16.  Spectral analysis of the difference in angular error between flash-congruent and flash-
incongruent conditions. (A) Difference in angular error time series calculated as a difference 
between flash-congruent and flash-incongruent angular error collapsed across left and right 
visual fields. Spectral analysis of the difference in angular error time series showed a significant 
rhythm in theta range (6.6 Hz). Shaded areas correspond to ±1 SEM. (B) Phase-lag analysis of 
the phase relationship between the flash-congruent and flash-incongruent conditions. The lag in 
phase between the flash-congruent and flash-incongruent conditions was 104.25° suggesting a 
shift in the phase of the rhythms generated by the flash presented at the congruent and 
incongruent location. This shift was, however, not significant (phase-locking value equal to p = 
.05 shown in purple, actual phase-locking value shown in green). 

Discussion 

The goal of Experiment 3 was to test whether rhythmic fluctuations in attentional 

allocation in space affect the quality with which information is encoded into WM. More 

specifically, I tested whether presenting to-be-remembered information at different phases of the 

attentional cycle leads to different recall outcomes depending on whether information is 

presented in the “good” phase of the cycle and at the currently sampled location. To achieve this, 

I used an attention-grabbing flash to reset the phase of attentional sampling and presented a to-

be-remembered orientation at either the same or opposite location and at different intervals 

following the flash. The purpose of this manipulation was to obtain samples of behavioral 

performance at different phases of the attentional cycle. If attentional allocation at encoding 
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affects the quality with which information is encoded in WM, rhythmic changes in attentional 

allocation in space should produce rhythmic fluctuations in WM performance.  

The results of Experiment 3 showed a significant fluctuation in WM recall performance 

following an attentional reset for the to-be-remembered orientations presented at both flash-

congruent and flash-incongruent locations. This suggested that the phase of attentional sampling, 

i.e., where attention was allocated at a particular point in time, affected the quality with which 

the information presented was remembered. In line with previous findings supporting the 

presence of an attentional rhythm in the theta band, WM recall performance also fluctuated in the 

theta range with a peak at 6.6 Hz, suggesting that the WM effect observed here was likely driven 

by the same process. 

According to previous evidence, another consequence of rhythmic attentional sampling is 

that two locations are sampled at the opposite phases of the cycle, i.e., when attention is allocated 

to one location, less attention is allocated at the other location (Fiebelkorn et al., 2013). The 

analysis of the phase relationship between the flash-congruent and flash-incongruent conditions 

has suggested a shift in phase between the two conditions. However the amount (angle) of the 

phase shift has not been consistent across participants, resulting in an insignificant phase lag of 

~104°. An insignificant phase lag could be a result of an incomplete reset of attentional sampling 

for some participants or could suggest that the two locations were not sampled in a sequential 

manner. Future studies will be needed to answer this question. 

In summary, the results of this experiment further extend findings suggesting that 

selective spatial attention influences storage of information in WM. It is not only the case that 

WM is impacted by predictive spatial cues that can improve WM for the information presented 

at the cued location (and worsen WM for the information presented at the uncued locations), but 
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WM performance is also affected by rhythmic sampling of attention across space in the absence 

of predictive cues.   
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EXPERIMENT FOUR: ASSESSING THE PRESENCE OF RHYTHMIC 

ATTENTIONAL CYCLING DURING WORKING MEMORY MAINTENANCE 

Introduction 

In addition to attention playing an important role during the encoding of information into 

WM, attention also serves to support the active maintenance of information in WM by switching 

its focus between remembered items to prevent forgetting, a process referred to as attentional 

refreshing (Barrouillet, Bernardin, & Camos, 2004; Barrouillet, Bernardin, Portrat, Vergauwe, & 

Camos, 2007; Barrouillet & Camos, 2007, 2012; Vergauwe & Cowan, 2015). In line with the 

idea that attention supports maintenance, existing evidence suggests that during spatial WM, 

attention continues to be deployed at the currently maintained locations (Awh & Jonides, 2001). 

Moreover, decreases in oscillatory alpha-band power have been observed in occipital regions of 

the hemisphere contralateral to the hemifield of the remembered item (Dijk, Werf, Mazaheri, 

Medendorp, & Jensen, 2010; Medendorp et al., 2007), which is similar to alpha-band de-

synchronization observed when attention is directed during perceptual processing (e.g., Thut, 

Nietzel, Brandt, & Pascual-Leone, 2006). In fact, these changes in the topographic distribution of 

alpha-band power are specific enough that the topography of alpha can be used to decode spatial 

representations being actively held in WM (Foster et al., 2016). 

Studies of attentional cueing effects in WM have shown that attention can be selectively 

directed to specific internal representations in a goal-directed manner, improving memory for 

task-relevant representations relative to task-irrelevant ones (for review see Souza & Oberauer, 

2016). Importantly, representations initially rendered task-irrelevant can be brought back to the 

focus of attention, resulting in improved representation accessibility (Lewis-Peacock & Postle, 

2012). However, the temporal aspect of attentional prioritization in the absence of clear 
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differences in behavioral relevance of the maintained items remains to be explored. It is possible 

that attention is distributed equally across the remembered representations, or it could sample 

periodically between them in a manner similar to attentional sampling in the perceptual world. In 

line with the second premise, attentional refreshing is thought to be happening sequentially, by 

cycling through all remembered representations (Portrat & Lemaire, 2015). To address this 

question, Jafarpour et al. (2017) tracked attentional refreshing of three remembered objects with 

equal likelihood of being tested and found that resources tended to be directed to the weakest 

encoded item during maintenance. This finding is in line with a recent computational modeling 

study suggesting that the process of attentional refreshing likely operates on a schedule, in which 

the least activated memory trace at a given time is refreshed at that time (Lemaire, Pageot, 

Plancher, & Portrat, 2017). Even though Jafarpour et al. (2017) did not find evidence for 

sequential replay of items in WM following the refreshing of the weakest encoded item, their 

findings do not rule out WM replay as a potential mechanism for maintenance. 

A separate line of research that points towards the potential cyclic nature of WM involves 

studies exploring a theta-based mnemonic code (Heusser, Poeppel, Ezzyat, & Davachi, 2016; 

Lisman & Jensen, 2013; Lubenov & Siapas, 2009; Vertes, 2005). According to the idea of theta-

coupled periodic replay (Fuentemilla, Penny, Cashdollar, Bunzeck, & Düzel, 2010; Lisman, 

2010; Lisman & Idiart, 1995), each individual item maintained in WM is represented by a spatial 

pattern of cells firing in the gamma frequency range (~30-80 Hz) and occurring within a specific 

phase of an ongoing theta oscillation. This arrangement allows the neural representation of each 

item to remain distinct because each memory becomes active in a different gamma cycle, and 

also preserves their sequential order due to the pairing with a specific theta phase. Theta-gamma 

coupling has been found to support the sequential, periodic replay of maintained items in WM 
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(Bahramisharif, Jensen, Jacobs, & Lisman, 2018; Fuentemilla et al., 2010), and the strength of 

theta-gamma coupling was shown to be correlated with the accuracy of later memory recall 

(Osipova et al., 2006; Tort, Komorowski, Manns, Kopell, & Eichenbaum, 2009).  

The idea that all items are refreshed within a single cycle of a theta-band oscillation 

might seem at odds with the idea that attentional sampling occurs at a rate of one item per theta 

cycle. A computational modeling study assessing the plausibility of these two modes in 

attentional processing has suggested that both modes can be implemented by the brain and may 

support switching between more exploratory and selective modes of attention (McLelland & 

VanRullen, 2016). It is possible that maintenance of representations in WM is supported through 

a theta-based mnemonic code, whereas attention to WM representations may be deployed within 

individual theta cycles. 

The goal of Experiment 4 was to examine the rhythmic properties of attention during 

WM maintenance. More specifically, I tested whether periodicity observed in external attention 

is present during the deployment of internal attention to WM representations during active 

maintenance. A recent pre-print by Peters, Rahm, Kaiser, and Bledowski (2018), provided initial 

evidence for the possibility that attentional allocation during WM is in fact rhythmic, with an 

oscillatory cycle of ~6 Hz. Specifically, the authors demonstrated that the speed of participants’ 

ability to determine whether a spatial test probe belonged to one of two remembered objects 

varied rhythmically. Additionally, these rhythmic fluctuations depended on whether the probe 

was testing a location within a previously cued (same) or uncued (different) object.  
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Figure 17.  The experimental design and results of Peters et al. (2018)4. (A) Participants were 
asked to remember two sample objects defined by their endpoint positions. An informative cue 
was presented during maintenance indicating which position (B: same-object position, cued 
position, different-object position) would likely be tested (percentage of trials testing each 
position tested shown in C). At test, participants were presented with a probe and were asked to 
respond whether the probe matched or mismatched the remembered position. (D) As expected, 
participants responded faster and more accurately to probes presented at the valid position, but 
also for probes presented at the same-object position. This static effect of attention on RT and 
accuracy was present in addition to the presence of rhythmic fluctuations in RTs.  

One potential shortcoming of this design is that the rhythmic fluctuations in RT observed 

in this study could be driven by the fact that participants’ ability to respond to the test probe 

depends on the allocation of external attention at the time the test probe appears. More 

specifically, external attention might be sampling the locations where the target could be 

presented, leading to faster responses when the test probe appeared at the currently attended 

location; in other words, this effect could arise purely as a result of spatial attention directed to 

                                                
 

4 Reprinted from Peters et al. (2018) licensed under a CC-BY-NC-ND 4.0 International license 
and available at https://www.biorxiv.org/content/10.1101/105239v1. 
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external space. In this scenario, fluctuations in RTs would not necessarily be driven by rhythmic 

changes in access to the WM representations themselves.  

According to prior evidence, allocation of attention during maintenance should affect 

how well the information is remembered and recalled (e.g., van Moorselaar, Gunseli, Theeuwes, 

& Olivers, 2015). Indeed, Peters et al. (2018) found a static effect of attention on accuracy, 

suggesting that participants’ memory was, in general, more accurate for the cued versus uncued 

object. However, WM accuracy was only measured using a standard change detection WM task 

in which participants were asked to report whether the probe presented at test is the same as or 

different from the original sample. Because this approach does not provide any information 

about the quality of the actual memory representation, it remains unclear whether recall precision 

fluctuates as a result of the rhythmic allocation of attention to the remembered objects. I 

hypothesized that such periodicity should be reflected in rhythmic changes in the availability of 

WM representations, which should in turn be reflected in the precision of mnemonic recall. To 

test this hypothesis, I adopted procedures and analyses that have been used to examine periodic 

properties of external attention (e.g., Dugué et al., 2016, 2017; Landau & Fries, 2012; Song et 

al., 2014). After encoding, a task-irrelevant flash was used to reset the sampling of internal 

attention in a way similar to using spatial retro-cues to bring specific WM representations within 

the focus of internal attention. I predicted that the accuracy with which information would be 

recalled would vary rhythmically with respect to the location of the resetting stimulus (flash-

congruent and flash-incongruent) and the time elapsed between the reset and the recall of the 

information (flash-to-test SOA). 
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Methods and Materials 

Participants. Twenty-two undergraduate and graduate students	(6 male, age: M = 18.76, 

SD = 0.77) were recruited from North Dakota State University to participate in this study for 

course credit or monetary compensation ($10/hr). One participant was excluded from further 

analysis due to poor behavioral performance (angular error > 3 SD from mean performance). 

Participant selection criteria and recruitment procedures were the same as described in 

Experiment 1. 

Materials and procedure. Stimulus presentation and response recording were controlled 

by a PC running Matlab (Mathworks, Inc.) with Psychophysics Toolbox extensions (Brainard, 

1997; D.G. Pelli, 1997). Stimuli were presented on the surface of a 24” of a LCD monitor with a 

refresh rate of 144 Hz, at a viewing distance of 57 cm.  

The behavioral task consisted of a short-term memory recall task. The experimental 

stimuli consisted of two circular gray placeholders (R=140, G=140, B=140) subtending 4° of 

visual angle in diameter presented 5° eccentrically to the left or right of central fixation against 

medium gray background (R=128, G=128, B=128) filled with black and white noise patches 

(black R=0, G=0, B=0; white R=255, G=255, B=255). The sample stimulus consisted of two 

oriented gratings (black R=0, G=0, B=0; white R=255, G=255, B=255) each subtending 3.8° of 

visual angle in diameter presented inside the two placeholders. The orientation of each grating 

was randomly drawn from 180° orientation space. The sample stimuli were overlaid with a semi-

transparent Gaussian mask (R=128, G=128, B=128; alpha = 220) to reduce afterimages. A 

contrasting task-irrelevant flash (R=180, G=180, B=180) was used to reset attentional sampling 

after the presentation of the sample display. The flash was randomly and equally likely presented 

over one of the placeholders producing flash-congruent and flash-incongruent trials. At test, 
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participants were asked to recall the orientation of one of the sample gratings by moving a 

crosshair around the outline of the placeholder to adjust the orientation of the grating to match 

the orientation of the sample grating presented at that location. The orientation of the grating was 

updated as the participant moves the crosshair.  

Experimental procedure. The sequence of trial events can be seen in Figure 18. Prior to 

the beginning of each block, participants were asked to place their chin in a chin rest and were 

instructed to maintain fixation on a fixation cross positioned at the center of the screen. Each 

block started with the appearance of a fixation cross in the middle of the screen and two unfilled 

circles to the left and right of the fixation cross. At the beginning of each trial, the two circles 

were filled with random noise. Following a 500 ms pre-stimulus interval, a sample display 

containing two gratings appeared for 500 ms, temporarily replacing the two noise patches. At a 

variable time after the sample display disappeared  (500 - 1000 ms), one of the two circles 

flashed briefly (33 ms) generating a task-irrelevant resetting event. Following a variable SOA 

(200-700 ms, 10 different time bins: 200 ms, 256 ms, 311 ms, 367 ms, 422 ms, 478 ms, 533 ms, 

589 ms, 644 ms, 700 ms), a test grating was displayed at one of the two locations and 

participants were asked to recall the orientation of the sample grating presented at this location. 

After providing their answer by clicking the mouse, participants received feedback in the form of 

a red bar marking the orientation of the sample grating. The experiment consisted of 1200 total 

trials separated into 40 blocks and split into two experimental sessions that performed on 

separate days. Participants completed 30 practice trials prior to the experiment. The full 

experiment took ~3 h to complete. 
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Figure 18.  Behavioral task trial sequence for flash-congruent (top) and flash-incongruent 
(bottom) conditions for Experiment 4. Following a variable pre-stimulus interval, two orientation 
gratings appeared within two circular noise patches, one to the left and one to the right of the 
fixations. After a variable inter-stimulus-interval, a flash was used to reset attention to one of the 
two locations. After a variable SOA, the participants were asked to recall the orientation of one 
of the gratings. 

Data analysis. Amplitude and phase analysis of angular error were performed in the 

same way as described in Experiment 3.  

Results 

Average angular error. On average, the angular difference between the sample and 

reported orientation across all SOAs and across flash-congruent and flash-incongruent conditions 

was 14.5 ± 3.59 degrees. The resetting flash resulted in a significantly lower mean average 

angular error, t(20) = -5.481, p < .001, d = 0.699, CI [-2.361, -1.059], for the flash-congruent 

orientations (M = 13.19, SD = 3.39) compared to flash-incongruent orientations (M = 14.90, SD 

= 3.91; Figure 19A). This means that the tested orientations appearing in the same location as the 

flash were recalled more precisely compared to the orientations appearing in the location 

opposite to the resetting flash. Unlike in Experiment 3, the cueing benefit was more long-lived 

and was present at both longer and shorter SOAs [640 ms: p < .001, 590 ms: p < .001, 480 ms: p 

= .02, 370 ms: p = .02; Benjamini-Hochberg corrected for multiple comparisons; Figure 19B]. 
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This suggests that the flash produced a more prolonged advantage for the flash-congruent 

condition similar to an effect expected to be produced by an informative cue.  

 

Figure 19.  Behavioral performance for flash-congruent and flash incongruent conditions. (A) 
Mean average angular error for flash-congruent and flash-incongruent conditions averaged 
across LVF and RVF. Error bars correspond to 95% CI. (B) Average angular error for different 
flash-to-test SOAs for flash-congruent and flash-incongruent conditions (averaged across LVF 
and RVF). Flash-to-test SOAs that were significantly different are marked with ‘*’ (Benjamini-
Hochberg corrected for multiple comparisons). Error bars correspond to ±1 SEM. 

Spectral analysis of angular error.  If attention directed to internal representations 

fluctuates rhythmically, as is the case in externally directed attention, WM recall accuracy should 

vary rhythmically in theta frequency (4-8 Hz). The results of the spectral analysis of the 

difference score (congruent-incongruent) time series yielded a peak in the theta band range (5.2 

Hz); however, this peak was not significant (z-score = 1.36, p = .09 against null-distribution 

generated using permutation testing; Figure 20A).  

Phase-lag analysis. If attention continues to sample representations stored in WM in a 

serial manner, sampling of each representation is expected to happen at opposite phases (180°) of 

the attentional cycle, resulting in an anti-phase relationship in WM recall accuracy between the 

flash-congruent and flash-incongruent fluctuations. For the purpose of completing all planned 
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analyses, the phase angle values were extracted for the (non-significant) peak frequency (5.2 Hz) 

for the flash-congruent and flash-incongruent conditions. There was a significant phase 

difference between the flash-congruent and flash-incongruent-conditions (parametric Watson-

Williams test: F = 17.12, p < 0.001) indicating the presence of a phase lag. To further evaluate 

the phase shift, the calculated angle difference was projected onto a unit circle separately for 

each individual participant. In line with the prediction, the resulting mean vector direction 

suggested a phase lag of 194.88° between the flash-congruent and flash-incongruent conditions 

pointing towards an anti-phase relationship. Rayleigh’s test for nonuniformity of circular data 

showed that the phase angle differences were not distributed uniformly around the circle (p = 

.24) suggesting the presence of phase clustering. However, a more rigorous test using 

permutation showed that this phase lag was not significant (phase-locking value = 0.26, null 

distribution phase-locking value = 0.37, p > .05; Figure 20B). 
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Figure 20.  Spectral analysis of the difference in angular error between flash-congruent and flash-
incongruent conditions (averaged across LVF and RVF). (A) Angular error difference time series 
calculated as a difference between the flash-congruent and flash-incongruent angular error 
plotted for the different flash-to-test SOAs. Results of the spectral analysis of the difference 
angular error time series showed a peak in theta range (5.2 Hz). The amplitude of this peak was 
not significantly higher than the amplitude of the null-distribution. Shaded areas correspond to 
±1 SEM. (B) Phase-lag analysis of the phase relationship between the flash-congruent and flash-
incongruent conditions. The lag in phase between the flash-congruent and flash-incongruent 
conditions was 194.88° suggesting a shift in the phase of the rhythms generated by the flash 
presented at the congruent and incongruent location.  This shift was, however, not significant 
(phase-locking value equal to p = .05 shown in purple, actual phase-locking value shown in 
green). 

Discussion 

 The goal of Experiment 4 was to test for the presence of attentional sampling over 

representations maintained in WM. Specifically, I examined whether attention is deployed to 

internal WM representations in a manner similar to rhythmic fluctuations observed in attention 

directed to visual stimuli currently present in the environment. Similar to Experiment 3 and 

previous studies, I used a task-irrelevant, non-predictive spatial cue to phase-align the 

hypothesized rhythmic sampling of WM representations and tested WM recall performance at 

different phases of the sampling rhythm. If attention samples internal WM representations 

rhythmically, rhythmic changes in attentional allocation within the internal WM representation 

space should produce fluctuations in WM performance. 
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 The initial examination of the power spectrum of recall performance for Experiment 4 

revealed a spectral peak in the theta frequency band (5.2 Hz); however, this peak was not 

significant. The results of Experiment 4 therefore failed to provide evidence for the presence of 

rhythmic sampling over internal WM representations. The lack of a significant peak could 

suggest that attentional deployment to external representations relies on a different mechanism 

than attention directed to internal representations. The null result should, however, be taken into 

consideration with respect to the large body of evidence suggesting similar mechanisms between 

internal and external attention (Awh & Jonides, 1998, 2001; Dijk et al., 2010; Medendorp et al., 

2007). Moreover, a recent study (Balestrieri, Ronconi, & Melcher, 2019, preprint) has shown 

that when attention was split between monitoring the external flow of information and 

maintaining information internally, the attentional rhythm was split in a way similar to when two 

streams of external information have to be monitored. This provides yet another piece of 

evidence pointing towards a shared resource between external and internal visual attention and 

the rhythmic allocation of this resource. Additionally, the lack of a significant peak could be due 

to high between-subject variability in peak sampling frequency, which could have resulted in 

reduced amplitude of the averaged spectrum. This possibility will have to be tested in an 

experimental design that allows for individually derived peak frequency (similarly to Experiment 

1 and 2).  

Interestingly, the task-irrelevant spatial cue generated a prolonged advantage for the 

orientations presented at the same spatial location as the task-irrelevant flash. Similarly, Peters 

and colleagues (2018) also observed a static effect of attention on accuracy showing that 

participants were more accurate in reporting the location of the cued versus uncued object. This 

potentially suggests that once attention is allocated to a specific WM representation, this 
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representation remains in the focus of attention until attention is switched to another 

representation as a result of another cue. In line with this possibility, Wang et al. (2017) showed 

that a non-predictive retro-cue produced a prolonged advantage in performance for a cued item 

unless attention was cued away from this item using a central cue. This finding could be taken as 

an argument against the possibility that attention continues to sample internal representations 

rhythmically; however, recent studies have raised questions about the role of attention in WM 

cue-related benefits (Myers, Stokes, & Nobre, 2017). For example, a study by Myers and 

colleagues (2018) argued that prioritization of an item in WM performance can be achieved by 

generating a mapping between the representation and the response. According to this 

interpretation, cue-related improvements in WM performance are a result of the representation-

response mapping, rather than reflecting the allocation of attention to this item. This opens up the 

possibility that attentional sampling is present in WM in addition to the observed stable cue-

related benefits arising from response mapping.  

Another possible explanation for the lack of significant rhythmic fluctuations in recall 

performance could be that the time necessary to allocate attentional resources within WM is 

more time demanding. As a result, the 200-700 ms time window following the flash did not 

allow enough time for the rhythmic sampling to resume following the initial attentional shift. 

Support for this possibility is provided by a study by Moorselaar et al. (2015) that tested the role 

of attention in protection of WM representations against perceptual interference. According to 

this study, it takes approximately half a second following a cue for attention to be fully deployed 

towards a WM representation and for the representation to become resistant to interference. This 

suggests that allocation of attention to internal representations may take longer and as a result, 
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internal rhythmic sampling may need more time to resume following its reset or may operate at a 

lower frequency compared to external attention. 

Finally, it could be argued that the external cue used to phase-align the attentional rhythm 

may not be an effective way to reset attentional sampling of internal WM representations. I 

decided to use an external spatial cue because previous evidence suggests that attention 

continues to be deployed to locations where remembered items were initially presented (Awh & 

Jonides, 1998, 2001; Dijk et al., 2010; Medendorp et al., 2007). Additionally, it was recently 

shown that moving an item stored in WM into the focus of attention involves a gaze bias in the 

direction of the item’s original location and this was the case even when the location was not 

necessary for recall (Ede, Chekroud, & Nobre, 2019). This study, like many others, provides 

further evidence for the existence of similarities in the mechanism of attentional selection in 

external and internal space. Additionally, the fact that the cue produced a behavioral advantage 

in the flash-congruent condition disputes the possibility that the cue was not effective in 

capturing and directing attention towards the representation associated with that particular 

location.  

In summary, Experiment 4 provided limited support for the existence of rhythmic 

sampling in WM. This finding is at odds with the result of Peters et al. (2018), who argue for the 

existence of rhythmic sampling between objects maintained in WM. As I described in more 

detail above, I believe that this effect could be driven by rhythmic sampling of external attention 

deployed to the expected probe locations rather than within WM, as their effect was limited to 

RT and not recall performance. Future studies will be necessary to further test for the possibility 

of rhythmic sampling within WM.  
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GENERAL DISCUSSION  

Attention, or the ability to selectively attend to and facilitate the processing of relevant 

information, is crucial for survival. Numerous studies have been dedicated to studying the effects 

of attention on behavior and neural processing, and to uncovering the neural substrates 

supporting this function. It is well established that attention is flexible in its capability to 

adaptably switch between its targets depending on the current goals (Bosman et al., 2012; Busse, 

Katzner, & Treue, 2008). However, it was only recently revealed that even when attention is 

directed to a particular target, it does not remain static but rather its effects fluctuate rhythmically 

over time (e.g., Landau & Fries, 2012). The work included in this dissertation makes an 

important contribution to this endeavor by examining the relationship between the observed 

rhythm and oscillatory signatures of attention, by probing the causal influence of an important 

attentional hub in the generation of the attentional rhythm and, lastly, by evaluating the 

consequences of the attentional rhythm on WM.  

According to existing evidence, rhythmic fluctuations in the effects of attention reflect 

rhythmic patterns of neural activity, i.e., neural oscillations. Prior findings suggest that, among 

these rhythmic patterns, the phase of an ongoing theta-band oscillation influences the extent to 

which the effects of attention are manifested in behavior and neural activity. For example, it has 

been shown that theta phase influences participant’s ability to perceive hard-to-see targets as 

well as the power of gamma activity (>30 Hz) related to target processing (Landau et al., 2015). 

However, the role of suppression supported by alpha band activity, which has been shown to be 

closely related to attention (e.g., Rihs et al., 2007), in the rhythmic sampling of attention has not 

been well established. The results of Experiment 1 take a first step in this direction by examining 

whether rhythmic shifts of attention between two attended locations are reflected in the 
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topography of alpha-band power changes over time. The results of this study support a role for 

neural oscillations in the alpha frequency band in the process of attentional sampling of space; in 

particular, the analysis of behavioral performance and the spatial selectivity of the focus of 

attention reconstructed from ABOP revealed the presence of rhythmic fluctuations in the theta 

band (4-8 Hz) over time. This experiment is among the first to demonstrate a relationship 

between a well-established oscillatory correlate of attention and the attentional rhythms observed 

in behavior. Continued research related to this topic can help elucidate how neural dynamics give 

rise to our ability to rhythmically switch our focus of attention to effectively sample task-relevant 

information in our environment.  

Aside from elucidating the role of neural oscillations in the attentional rhythm, this 

dissertation also took steps towards identifying the neural sources driving the rhythmic sampling 

of attention. It has been proposed that the attentional rhythm is a reflection of the architecture of 

the network that supports attention (Helfrich, Breska, & Knight, 2019), and so disruption of one 

of the network nodes would be expected to affect the ongoing rhythm. Experiment 2 showed that 

TMS-induced disruptions of the function of the FEF, an important network node involved in 

attention, leads to a degradation of the attentional rhythm. In particular, the amplitude of the 

attentional rhythm was greatly attenuated by FEF disruption, supporting a role for this brain area 

in implementing the attentional rhythm evident in behavior. Future research should replicate this 

finding and also focus on other specific structures (e.g., the lateral intraparietal cortex; LIP and 

the thalamus) and their interactions in the control of the attentional rhythm. 

 Finally, this dissertation also revealed that the effects of attentional rhythms aren’t 

limited to perceptual-level phenomena, such as stimulus detection, but likely also influence the 

encoding and storage of information in working memory. In particular, Experiment 3 showed 
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that rhythmic attentional sampling of space affects the precision with which information is 

encoded into WM. This finding extends prior research of the attentional rhythm into WM and 

provides further evidence for the close relationship between attention and WM. Experiment 4 

then focused on examining whether attention directed to internal representations involves a 

similar, rhythmic signature. The results replicated previous findings showing prolonged cue-

related benefits for attended versus unattended WM representations, but did not provide strong 

evidence for the existence of rhythmic attentional sampling of representations maintained in 

WM. Future studies will be needed to elucidate whether the lack of a rhythmic signature is 

reflective of the nature of attention directed to WM representations, or whether internal attention 

is rhythmic but elusive using the current paradigm. 

Aside from the future directions specific to the individual experiments, this dissertation 

also highlights the need to critically examine other aspects of the attentional rhythm. First of all, 

it has been proposed that attention samples spatial locations in a serial manner, which is reflected 

in an anti-phase relationship (or 180° phase lag) between the rhythms associated with two 

sampled locations. Here, phase relationships between the flash-congruent and flash-incongruent 

rhythms were examined for significant peak frequencies in Experiments 1 and 3. In both cases, 

previously adopted tests of phase relationships (e.g., Dugué et al., 2016, 2017) pointed towards 

the existence of a significant phase shift between the conditions; however, in the present study, 

permutation-based tests did not provide support for a significant phase shift. Additionally, the 

revealed phase lag values were not always consistent with the idea of serial sampling. Given this, 

it will be important to further examine why this may be the case and to replicate prior findings 

using permutation-based tests. 
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Secondly, the results of the studies included in this dissertation revealed considerable 

variability in the peak frequency of individual participant’s attentional rhythm. It has been 

proposed that the natural attentional ‘clock’ oscillates at 8 Hz (i.e., every ~125 ms, e.g., Busch & 

VanRullen, 2010; VanRullen et al., 2007), and that splitting attention between two locations 

reduces this rhythm to ~4 Hz (for this argument see e.g., VanRullen, 2016). Considering this 

interpretation, relative differences in the sampling rates of participants could be a result of some 

participants strategically adopting the approach to only sample from one location rather than 

divide their attention between the two locations. It is also possible that observed differences in 

sampling frequency between conditions could have resulted from an unequal distribution of 

attention. In keeping with this possibility, one previous study has reported that the influence of 

theta phase on performance is stronger for unattended versus attended locations (Harris, Dux, & 

Mattingley, 2018). Given that perception naturally varies as a result of fluctuations in cortical 

excitability, reflected in the phase of alpha oscillations (8-14 hz; Dugué et al., 2011; Harris et al., 

2018; Mathewson et al., 2009; Senoussi, Moreland, Busch, & Dugue, 2018-preprint; Sherman, 

Kanai, Seth, & VanRullen, 2016), this perceptual alpha rhythm may be more strongly 

represented in the sampling frequency of the currently attended location. This, in turn, may lead 

to an overall higher frequency peak for the currently attended location. In order to address this 

possibility, the interaction between the perceptual and attentional rhythms will need to be 

explored in a more strategic manner in the future.  

In summary, this dissertation makes an important contribution to extending our 

understating of the attentional rhythm. Specifically, it considers the importance of sensory 

suppression supported by alpha band power in rhythmic shifts of attention, it probes the causal 

influence of the FEF in the generation of the attentional rhythm, and, finally, it characterizes the 
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consequences of the attentional rhythm on WM. Overall, the work included in this dissertation 

makes a valuable contribution to research aimed at testing a very interesting perspective, that 

cognition in general, and attention in particular, is rhythmic in nature, and this rhythmicity is a 

reflection of the nature of the neural activity supporting it. 
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APPENDIX. SUPPLEMENTAL FIGURES 

Figure A1. Peak aligned power spectral density for flash-congruent (blue) and flash-incongruent 
(red) detection accuracy (A) and CTF selectivity (B) estimated using IRASA procedure. 
Similarly to the permutation-based estimated peaks, IRASA-based peaks in theta range (4-8Hz) 
provide evidence for the presence of rhythmic fluctuations in detection accuracy and CTF 
selectivity. 
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Figure A2. Individual participant peak frequencies for flash-congruent and flash-incongruent 
detection accuracy for LVF (left) and RVF (right). 

Figure A3.  Peak aligned power spectral density for baseline, FEF and vertex conditions 
estimated using the IRASA procedure. Similarly to the permutation-based analysis, there were 
no significant differences in peak frequency between the different conditions and no significant 
differences in the peak power. It is important to note, however, that normalized power for the 
FEF peak (M = .05, SD = .20) was not significantly different from zero [one-tailed one-sample t-
test, t(11)= 0.82, p = .21], whereas both baseline [M = .14, SD = .17; t(11)= 2.84, p = .008] and 
vertex [M = .24, SD = .20; t(11)= 4.16, p < .001] peaks were significantly larger than zero.  
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Figure A4.  Individual participant data and the results of the spectral analysis for the baseline 
(gray), FEF (purple) and vertex (orange) conditions. (A) Time-series of z-scored RTs for the 
three experimental conditions. (B) PSD for the three experimental conditions. Dashed lines 
represent mean PSD for the null-distribution. Shaded areas correspond to 95% CI. 
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Figure A4.  Individual participant data and the results of the spectral analysis for the baseline 
(gray), FEF (purple) and vertex (orange) conditions (continued). (A) Time-series of z-scored RTs 
for the three experimental conditions. (B) PSD for the three experimental conditions. Dashed 
lines represent mean PSD for the null-distribution. Shaded areas correspond to 95% CI. 

 


