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ABSTRACT 

Pillarikuppam, Naresh, M.S. in Software Engineering, Department of Computer Science, 
College of Science and Mathematics, North Dakota State University, April 2011. DOM 
Structure Based Web Pattern Mining. Major Professor: Dr. Jun Kong. 

A rapid expansion in the Web has motivated several studies to understand and 

recognize the implementation structure underlying the interface. Though the presentation 

of the Web pages looks different, those Web pages may share the same semantic structure 

to organize information. Those common semantic structures are referred to as Web 

patterns. There are no strict rules for implementing the HTML structure of the web pages, 

and the implementation of each web page might not be consistent across the entire website. 

Also, the HTML implementation of one website varies from other websites. This makes it 

difficult to recognize the Web patterns that have been used for implementing the websites. 

In this paper, Document Object Model (called "DOM" hereafter) structure based web 

pattern mining has been proposed, where the HTML structure and the common patterns are 

represented in DOM structure format. As an approach for deriving the common web 

pattern, the implemented patterns observed across different websites are analyzed and 

summarized manually. Those Web patterns are represented by using the Pattern Structure 

Definition (PSD) fonnat. which is derived based on the DTD model. Then, an efficient 

algorithm has been proposed to recognize Web patterns that match with the definition and 

comply with all the properties defined in the PSD. To recognize the pattern structure, a tool 

was developed that can take the URL as an input and recognize summarized patterns. The 

experiment results and evaluation of the tool show the high accuracy of the approach. The 

implemented approach achieved 91.35% accuracy in finding the navigation pattern 

structure in the on line shopping websites. 
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1. INTRODUCTION 

A rapid expansion m the Web has motivated several studies to understand and 

recognize the implementation structure underlying the interface. Websites belonging to the 

same category contain information that is generated using a common layout [ 1]. There are 

no strict rules for implementing the HTML structure of the web pages and the 

implementation of each web page might not be consistent across the entire website. And 

also, the HTML implementation of one website varies from other websites. This makes it 

difficult to recognize the Web patterns that have been used for implementing the websites. 

By analyzing different websites that show similar structure, the common layout structure 

that has been shared among the websites can be derived. Zhen Zhang, Bin He, and Kevin 

Chen-Chuan Chang [2] made a considerable study, where the patterns of web query 

interfaces and the hidden syntax behind them are analyzed and the common patterns across 

different websites are observed. This study [2] also proposed pattern specification, which 

represents the grammar rules of pattern and pattern recognition that used a parser to 

recognize the pattern. This study also motivated the current work made in this paper, where 

the current work emphasizes recognizing and extracting the common pattern from the 

HTML implementation structure instead. 

In this paper, a list of popular websites under the on line shopping category has been 

considered for analysis. Though the visual appearance of these websites differs with each 

other, the document structure (HTML structure implementation) underlying the interface 

can be the same for similar scenarios. For instance, the implementation in amazon.com and 

buy.com for displaying a product, shares a similar structure by showing the product image, 



followed by product title and price details. Observing these kinds of structures which occur 

repeatedly can help to recognize the pattern occurrence among different websites. 

The primary objective of this paper is to discover the common web patterns that are 

being implemented in the online shopping websites. The Web pattern referred to in this 

paper can be defined as '·repeated common semantic structures implemented in a website.'' 

The common web patterns are determined by discovering the common HTML semantic 

structure used across different websites. ln the implementation perspective, the goal of this 

paper is to introduce a new algorithm for identifying the type of web patterns implemented 

in the given website. 

Identifying and extracting all the occurrences of a pattern in a huge sized data tree 

is a major concern in most of the pattern based recognition studies [5]. F.Mandreoli and 

P.Zczula [5] have done a considerable study in searching for all occurrences of a small 

query tree in the data trees. Mohammed J. Zaki [3] proposed a tree miner, an algorithm that 

mines frequent sub trees in a database, which is useful in the fields of web mining and 

bioinformatics. There is not much contribution made to recognize and extract the pattern 

occurrence of a I ITML structure underlying the web interface, which is represented in 

JTrce fonnat. This paper emphasizes discovering the pattern matched based on .ITree 

structure. The goal of the paper is achieved by comparing the pattern structure and input 

tree (HTML implementation), where both the pattern structure and the input are 

represented in the .ITree format. 

The key contribution of this paper is implementing a tool which recognizes and 

extracts the pattern structure of the input by comparing it against a list of common patterns. 

And the other contributions include: 
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• The pattern structure that specifies the syntax of pattern, called Pattern 

Structure Definition, which is extended from Document Type Definition 

(DTD) has been proposed. 

• The pattern recognition algorithm which compares the input and common 

pattern that arc in .JTree format has been proposed. This algorithm 

recognizes and extracts the pattern structure in the input. 

Unlike the traditional parsing mechanisms, the pattern recognition parsers do not 

enforce the grammar rules and will not reject any input [2]. So, the pattern recognition 

parser in this paper also recognizes and extracts partial matches along with the full 

matches. A heuristic rule has been considered while finding the pattern match. The rule that 

is considered is, the proposed algorithm finds a pattern match only if the node with "+" 

attribute has been appeared at least five times under its parent node. As long as the web 

page is rendered correctly, the common pattern match can be recognized efficiently. 

Recognizing the pattern can be useful, as the pattern can be inherited while 

implementing new websites or new web pages in the same website. Also, there is a lack of 

standards that need to be followed by the online websites and a lack of ways to find out the 

patterns that have been implemented. This model can be useful if the websites need to be 

imposed with any standards and to verify or observe, whether the desired patterns are 

implemented in the websites. 

The rest of the paper is organized as follows. Chapter 2 discusses some of the 

closely related works. Manual summarization of the web patterns across different websites 

arc provided in Chapter 3. The design of the proposed tool and syntax are discussed in 

Chapter 4. Along with the design, Chapter 4 describes existing techniques and their 
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limitations. Chapter 5 presents the implementation and tool visualization of the proposed 

idea. Evaluation of the tool is done in Chapter 6. The conclusion and future work are 

described in Chapter 7. 
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2. RELATED WORK 

Recognition and extraction of the web pattern from a website is an interesting 

application, especially with the growth of a number of on line websites and with the growth 

of the number of people using them. But there is limited work related to this field of study 

that has been contributed. The work in this paper is related to other works based on the 

following aspects. 

• Observing common patterns across multiple websites 

• Pattern specification and recognition 

• Finding patterns based on tree structure 

Firstly, observing the common pattern of the web query forms was studied by Zhen 

Zhang, Bin He, and Kevin Chen-Chuan Chang [2] which is the motivation for the current 

work. That study [2] found the common patterns for web query fonns which repeated more 

than once and discussed that, even though each query form is different, they share common 

patterns. In a similar way, this paper also summarizes the patterns of each website, by 

evaluating multiple websites and deriving common web patterns that are shared by them. 

While the study [2] deals with observing the common patterns of web query fonns, this 

paper focus on common patterns of HTML implementation structure behind web interface. 

A. Arasu and H. Garcia-Molina [1] studied deriving the common layout from a 

large set of web pages. While the common layout mentioned in the study l 1] is based on 

structured data behind the web interface, the common pattern defined in this paper is not 

based on actual data. Their study also presents an algorithm that takes web pages as input, 

traces the template or layout used and extracts the values encoded in the pages. The 

algorithm in this paper also takes web pages as input and finds the pattern used in the web 
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that has maximum repeated expressions in the set. The user can select and save the desired 

pattern to be extracted from the web page. 

D. C. Reis, P. B. Golgher, A. S. Silva and A. F. Laender [26] presented a study 

regarding Automatic Web News Extraction Using Tree Edit Distance. In the study [26], a 

new approach to extract the data (news) from the websites based on the data matching and 

extraction has been proposed. The first step in the algorithm proposed in the study [261 is 

page clustering. To derive the clustering of pages, the training set of pages is given as input 

and the clustering of pages is generated based on the common formatting or layout 

features. Each cluster is generalized into a node extraction pattern, simply ne-pattern. The 

ne-pattern defined in the study [26] is used as a common pattern for recognizing the pattern 

occurrences in the web page. 

J. Y. Hsu and W.-T. Yih [ 15] proposed template-based mmmg from HTML 

documents. In the study l} 5], the concept of document templates is introduced. Each 

template specifies the structural components of a class of documents to be captured. These 

document templates are used as common patterns for the information extraction. The study 

[ 15] defines the document template as a logical structure that has been extracted from a 

collection of similar websites. This paper also uses a similar idea to derive the common 

patterns by analyzing a set of online shopping websites. 

Second, Zhen Zhang, Bin He, Kevin Chen-Chuan Chang [2] proposed the pattern 

specification and pattern recognition. In the study [2], 2P Grammar which encodes the 

patterns and their precedence for web query forms is proposed where as in this paper, the 

Pattern Structure Definition for representing the HTML structure pattern is proposed. For 

the pattern recognition, both the study [2] and this paper use an algorithm, which uses the 
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pattern specification as input. However, the pattern recognition m the study [2] is 

completely different to the one in this paper. The work [2] is closer to the current paper 

because both deal with observing and recognizing the common patterns across multiple 

websites. 

In the study presented by M. Cosulschi, A. Giurca, B. Udrescu, N. Constantinescu, 

and M. Gabroveanu [30), proposed a pattern extraction process. The structure similarities 

are computed using tree edit distance between the trees. The extraction process in the study 

[30] focused on grouping the web pages into clusters and generating the extraction pattern 

for each cluster. The extraction pattern proposed contains labels and special clements 

called wild cards. These wild cards must be a leaf in the tree. Four types of wild cards arc 

defined - single(.), plus(+), option(?) and kleene (*). ln this paper also, the properties of 

the nodes in the pattern tree are defined in the same way as that of the study [30). But the 

difference is nodes of the pattern tree in this paper need not to be a leaf node. 

The pattern extraction has been proposed in the IEPAD system presented by C.-H. 

Chang, C.-N. Hsu, and S.-C. Lui [29]. The extraction of the pattern matching records is 

achieved through a standard pattern matching algorithm called Boyer-Moore's algorithm. 

The major difference between the study [29) and this paper is the input patterns in the study 

[29] are defined as a subset of HTML tags where in this paper they are defined as nodes. 

The result of the extraction in [29] gives a matrix that contains information slots, whereas 

the extracted result of this paper gives the set of matched patterns in a tree structure. Partial 

pattern matches are not achieved by the study [29] where as this paper provides the partial 

matches also. 
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In the study [26] presented by D. C. Reis, P. B. Golgher, A. S. Silva, and A. F. 

Laender, the data matching approach has been proposed to find an appropriate ne-pattern 

from the set of HTML pages. The ne-pattern is defined as a rooted tree that contains 

sibling of sub-trees as child trees. And the trees contain special vertices called wildcards. 

Similar to the study [30], each wildcard can be one of the following types - Single(.), Plus 

(+), Option (?), and Kleene (*). This paper also defines similar structure for the derived 

common pattern. But the difference is the wild card in the study [26] must be a leaf node 

where as the node of the pattern defined in this paper can appear at any point of the tree. 

For the pattern recognition, the study [26] has used the RTDM (Restricted Top-Down 

Mapping) algorithm. Once the mapping between the ne-pattern and HTML Page is found, 

the matched trees are extracted. The algorithm used for pattern recognition in the study 

[26] did not address the partial pattern matches where the proposed algorithm in this paper 

provides the partial matches also. 

An Information Extraction Algorithm has been proposed by J. Y. Hsu and W.-T. 

Yih [ 15]. The algorithm in the study [ 15] accepts an electronic document, a collection of 

document templates and a set of extraction targets. In return, the algorithm identifies the 

best matched template for the document and extracts the matched information in the 

document. This paper uses the algorithm which has some similarities to that of the 

algorithm defined in the study [ 15]. But the algorithm proposed in this paper is based on 

the comparison of tree structures and extracting the information based on the tree 

comparison. The similarities between the study [ 15] and this paper is both papers propose 

an infonnation extraction in the given document based on template/common pattern 

structure. 
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Third, F.Mandreoll and P.Zezula contributed studies that have been made on tree 

pattern matching [5] to find the occurrences of a twig pattern in a tree-structured document, 

where twig pattern is a query represented in tree and tree structured document is a data tree. 

The current paper also emphasizes tree pattern matching, but the tree in this paper 

represents the HTML structure instead of data. And the pattern matching is not matching 

the data; it is recognizing and extracting the HTML structure of a website. 

In the study presented by M. Cosulschi, A. Giurca, B. Udrcscu, N. Constantinescu 

and M. Gabroveanu 130], an algorithm for the pattern matching process has been proposed. 

The algorithm accepts the pattern tree input and data tree input which are in XHTML 

format. The algorithm proposed in the current paper also accepts the tree structures as 

inputs. But the procedure in the study [30] accepts list of nodes every time whereas the 

algorithm in this paper accepts only the current node but not the list. 
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3. WEB PATTERNS ANALYSIS 

A pattern can be defined as a sequence of events that can appear a repeated number 

of times [4]. By analyzing the set of patterns, the behavior of the program can be mined [4]. 

To analyze the pattern structures across different websites for a particular category, online 

shopping has been chosen in this paper. The reason behind selecting the online shopping 

category in this paper is due to a drastic increase in the online shopping websites and their 

purposes. A number of organizations that are using the web for marketing, promoting, and 

transacting products and services with consumers are increasing [ 6]. A study reported that 

about 40% of participants indicated shopping as a primary use of the web [6]. This 

increases the need for study of online shopping websites and to understand the design of 

the websites. This motivated us to consider the online shopping category for the analysis in 

this paper. For implementing online shopping websites, one of the important factors to be 

considered is Navigation [ 7]. For any website to be constructive and efficient, a good 

navigation always plays an important role. Especially, users of online shopping websites 

look for pathways to navigate through the site. By considering navigation analysis for this 

paper, an important factor of the website has been analyzed. 

3.1 Navigation Patterns 

The navigation of an on line shopping website is related to the user interface of an 

online store [7]. Navigation patterns can be determined based on the layout that the online 

shopping website has used. 

The navigation pattern represents a set of navigation links, which are of type 

hyperlink. The links can be organized in a hierarchical structure, and the second level is 

indented. Each link directs the user to the corresponding page. The grouping can be done 

11 



by representing the hyperlinks either in a list or in a tabular format. The following Figure I 

is an example of the navigation pattern format which has a Department Name and each 

department can have multiple Branch Names. Each branch can have multiple category 

names. 

Department Name 

Branch Name 

Category Name 

Category Name 

Category Name 

Figure I. Navigation Pattern 

For analyzing the behavior of a program, it is not sufficient by considering few 

scenarios. To retrieve the correctness of the pattern recurrence and the pattern structure of 

multiple systems, a set of websites needs to be analyzed. Ten different popular online 

shopping websites are chosen for the analysis. The list of the chosen websites is shown 

below: 

• Target.com 

• ToysRUs.com 

• Bizrate.com 

• CircuitCity.com 

• Buy.corn 

• Amazon.corn 

• Overstock.com 

12 
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• SmartBargains.com 

• ThenatureStore.com 

• NewEgg.com 

The websites in the above list are selected as they are the most popular among the 

onlinc shopping category. The Target and Amazon companies arc listed among the Top 

100 companies of the F ortunc 500 l 31 J. And also the other websites considered here cover 

diverse sources of online shopping. For example, ThenaturcStore does not belong to 

regular onlinc shopping, but it provides products belonging to nature-related education. 

Similarly ToysRUs which is in the list provides specific products dedicated to kids toys. 

This company was ranked 189th in Fortune 500 l31 J. The websites such as CircuitCity and 

New Egg are meant for selling electronic products only. The other websites are listed as top 

online shopping websites when searched in web search engines (cg., google.com). By 

considering these websites for the analysis, the proposed solution in this paper can achieve 

a good coverage in the online shopping category. 

For each website listed above, the navigation implementation has been studied. 

Each website shows its own way of representing the pattern for the Navigation. But most of 

the websites showed some similar structure fr)r the navigation pattern. The similar 

structures that are observed can be grouped together to make a common pattern. 

3.2 Patterns Observed 

The pattern in each website listed above 1s studied individually to find the 

similarities and differences between them. 
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3.2.1 TARGET 

The pattern that has been observed in the Target [20) website contains multiple DIV 

tags appearing more than once under the BODY tag. And also under the UL tag, the LI tag 

has appeared more than one time. When the observed pattern is converted to the DOM 

structure format, it looks as shown in Figure 2. 

Figure 2. Target Navigation Pattern 

3.2.2 TOYSRUS 

The navigation pattern observed in the TOYSRUS [25] website has a similar 

structure as that found in the TARGET website. The major difference is that the DIV tag 

under the BODY tag does not appear more than one time in this pattern. And also the 

SPAN tag does not appear after the A tag. But the A tag appears more than one time which 

does not in the TARGET pattern. The navigation pattern found in the TOYSRUS website 

contains more than one LI tag under UL tag. The following Figure 3 shows the DOM 

structure format of the TOYSRUS website. 
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Figure 3. ToysRUs Navigation Pattern 

3.2.3 BJZRATE 

The navigation pattern observed in the BIZRA TE l23] website has a similar 

structure as that found in the TOYSRUS website. The navigation pattern found in the 

BIZRA TE website contains more than one LI tag under the UL tag. The following Figure 

4 shows the DOM structure fonnat of the BIZRATE website. 

Figure 4. Bizrate Navigation Pattern 
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3.2.4 CIRCUIT CITY 

The navigation pattern observed in the CIRCUIT CITY [24] website has a similar 

structure as that found in the TOYSRlJS website. The navigation pattern found in the 

CIRCUIT CITY website contains more than one LI tag under the UL tag. The structure of 

the CIRCUIT CfTY website in the DOM structure format looks as shown below in the 

Figure 5. 

b({·Y 

Figure 5. CircuitCity Navigation Pattern 

3.2.5 BUY 

The navigation pattern observed in the BUY .com [ 18] website has a similar 

structure as that found in the TOYSRUS website. The navigation pattern found in the 

BUY.com website contains more than one LI tag under the UL tag. The structure of the 

BUY .com website in the DOM structure format looks as shown below in Figure 6. 
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Figure 6. Buy.com Navigation Pattern 

3.2.6 AMAZON 

The navigation pattern observed in the AMAZON [ 17] website has a similar 

structure as that found in the TOYSRUS website. The navigation pattern found in the 

AMAZON website contains more than one LI tag under the UL tag. The structure of the 

AMAZON website in the DOM structure format looks as shown below in Figure 7. 

Figure 7. Amazon Navigation Pattern 
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3.2. 7 OVERSTOCK 

The navigation pattern observed in the OVERSTOCK [ 19] website has a similar 

structure as that found in the TOYSRUS website. The navigation pattern found in the 

OVERSTOCK websites contains more than one L1 tag under the UL tag. The structure of 

the OVERSTOCK website in the DOM structure format looks as shown in Figure 8 below. 

Figure 8. Overstock Navigation Pattern 

3.2.8 SMART BARGAINS 

The implementation of the Navigation pattern for the smart bargains [21] website 

contains a table structure under the BODY tag. The pattern structure contains an 

implementation of Table where each column of each row has a UL tag defined with 

multiple LT tags. Figure 9 below represents the DOM structure format of the observed 

pattern structure. 
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;~1t:i~;~14~s~: 
Figure 9. SmartBargains Navigation Pattern 

3.2.9 THE NATURE STORE 

The navigation pattern observed in the NATURE STORE (22] website has a similar 

structure that has been observed in the SMART BARGAINS website. The major difference 

observed in this pattern from the SMART BARGAINS pattern is, the DIV tag has been 

implemented after TD tag. And also the A tag does not contain any IMG tags as child 

elements. The DOM structure representation of NATURE STORE navigation pattern is 

shown below in Figure I 0. 

- _ _., 

.-'..:~.~-:-.,., .. ,-'i.<:·:~...:~t\'r-:· .... -:.~,- ·('·, ~· 

': ·" ·~.. , ':. ,,, ~ 
.• • •I" 

Figure I 0. TheNatureStore Navigation Pattern 
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3.2.10 NEW EGG 

The navigation pattern observed in the NEWEGG [ 16] website has a similar 

structure that has been observed in the SMART BARGAINS website. The major difference 

observed in this pattern from the SMART BARGAINS pattern is the DIV tag appeared 

after the BODY tag where as there is no DIV tag in the SMARTBARGAINS pattern. The 

IMG tag does not appear as a child for the A tag. The tree structure representation of the 

NEWEGG navigation pattern is shown below in Figure 11. 

(>/' ·r,, 
.. ;,' :--·-····~·-

-... ,_-. -- -'- ... .:...:.:.c.==.·-=-=-2.---~·;... ____ :.:.~··. 

·r,., - --- -

li~0,;~~t1~,~~~~:1~?:1~1i =~~\~"l 
[,) :,! [,,/ .Al ,,J >J /,) f•] l•) l< L:_) 

"?::Jt,:1~~Jt=,1~1:~~~;~,~} 
Figure 1 i. Newfgg Navigation Pattern 

3.3 Common Patterns Derived 

Based on the analysis made manually in the previous section and by summarizing 

the similarities and differences between each pattern, the following two common patterns 

have been derived. 
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• List Structure 

• Tabular Structure 

To obtain the common patterns, some of the nodes are made optional and some of them are 

made to appear more than one time. 

3.3.1 List Structure 

This kind of pattern is named as List Structure because the pattern structure 

contains multiple lists of hyperlinks for the navigation of the website. Figure 12 below 

shows the list structure of the pattern. It has been observed that the LI node appeared 

multiple times under the UL node. And also some websites have STRONG has child node 

and some have SPAN as child node for the A node and most of them do not have either. So 

both STRONG and SPAN can be considered optional nodes. Figure 13 is the screenshot of 

the AMAZON.com website that shows the list structure for navigation implementation. 

llc:\ r ' 

! 
, 11,~ly 1 
L-.,..___..,_J 

I ,1.xr 

Figure 12. List Structure Pattern 
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Automotive & Industrial > 

All Departmen 

), h1ovies & T\: 

> Blu-ral 

) MUSIC 

> MP3 Downlo:.c!s 

> ri1usical lnstru'•1e11ts 

Figure 13. Sample Screenshot of Amazon [ 17] Website that Follows List Structure 

3.3.2 Tabular Structure 

This kind of pattern is named Tabular Structure because the pattern structure is 

implemented using Table tags. Figure 14 below shows the tabular structure of the pattern. 

A list of navigation hyperlinks are implemented in the table. Some websites have the DIV 

or CENTER nodes after BODY followed by the <TABLE> node. So these can be 

considered as optional nodes. The TABLE node shall have TR followed by TD. The TD 

node shall have the navigation hyperlinks implemented as a UL tag. Figure 15 is the 

screenshot of the NEWEGG website that shows the tabular structure. 
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Figure 14. Tabular Structure Pattern 
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Figure 15. Sample Screen shot of New Egg [ 16) Website that Follows Tabular Structure 

3.3.3 Expected Websites/or Patterns 

For the websites chosen for analysis, this section discusses to which of the common 

patterns the websites belong to. The following Table I shows the pattern name and the 

websites that has the corresponding pattern structure. 

Ta hie 1 . Ex pcctcd Websites f(..)f Each Pattern 

Pattern Name Websites 

--· List Structure BUY, NEWEGG, BIZRATE, TARGET, 

SMARTBARGATNS, AMAZON, 

TOYSRUS, CIRCUITCITY, 

OVERSTOCK. 

Tabular Structure NEWEGG, SMARTBARGAINS, 

THENATURESTORE, TOYSRUS 
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4. DESIGN 

This chapter explains the existing techniques and their limitations and the proposal 

of a new solution for finding the matched patterns. The main idea behind the 

implementation of the existing techniques like DTD and XML Schema is to convert the 

parse tree generated from the HTML Graph to XML. And the output XML from this 

conversion can be used for the validation. If the XML is validated without any errors, then 

the XML is considered to have pattern matches. The idea to convert parse tree to XML is 

considered because the parse tree is represented with nodes containing parent, children and 

sibling nature. This kind of structure can be represented by XML in a standard way. 

4.1 Existing Techniques and Limitations 

4./.l DTD Implementation 

The idea behind this implementation was to convert parse tree which is output of 

HTML Graph tool to XML and use the standard XML validation through DTD. The reason 

for considering the DTD approach is the navigation pattern can be represented as DTD and 

this pattern can be used for the validation of the input HTML source. which in tum 

validates the pattern structure of the given website. If the validation fails then it means the 

structure is not being followed which implies the pattern is not observed. 

De.fin it ion: 

Document Type Definition (OTO) 1s a set of markup declarations that define 

a document type for SGML-family markup languages (SGML XML, and HTML) (11]. 

DTD is used to declare the clements and their attributes that may appear in the document 

(11 ]. This way. with a DTD, the format of XML can be described and the elements in the 
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XML can be verified f 12]. Since the elements described in the DTD format is a standard 

approach, this can be used in all of the applications to verify the data is valid [12]. 

Implementation: 

In order to implement the DTD approach for the pattern matching in the input 

website, the following steps need to be considered. 

• The parse tree generated by the HTML Graph is converted to XML. 

• A DTD is created manually based on the defined pattern. 

• The OTO developed is used for validating the XML generated by the tool by adding 

the OTO in the XML file. 

Figure 16 shows the DTD representation of the Navigation Pattern derived for the 

Amazon website. Assume that this file is named as navigationpattern.dtd: 

<?xml version="l .O" encoding="UTF-8"?> 

<!ELEMENT Tree (BODY)> 

<!ELEMENT BODY (OlV)> 

<!ELEMENT DIV (UL*)> 

<!ELEMENT UL (LI+)> 

<!ELEMENT LI (A)> 

<!ELEMENT A (TEXT)> 

<!ELEMENT TEXT (#PCOATA)> 

Figure 16. OTO Format of Amazon Navigation Pattern 

The XML generated from the parse tree of the HTML Graph is validated using the 

DTD prepared, by adding the following tag in the XML. As the OTO is being declared 
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inside the XML file, it must be enclosed with OOCTYPE definition and the syntax looks as 

in Figure 17 [12). Since the OTO file has been declared in a separate file, the filename 

must be specified as shown in Figure 17 [ 12]. 

<!DOCTYPE Tree SYSTEM ·'navigationpattern.dtd''> 

Figure 17. Syntax of DTD Declaration in XML 

Limitations: 

• All the elements in the OTO need to be defined prior to the validation of the XML. 

• Order of the child elements is one of the constraints to be considered. Validation 

fails if the order is incorrect. The order of the input XML cannot be predicted. 

• It is difficult to decide and include all the elements of the XML, because each 

website has its own elements defined. The structure of the pattern may be similar in 

multiple websites, but the way of implementation docs not need to be the same. 

The above limitations make the OTO approach not suitable for the pattern match 

recognition. 

4.1.2 XML Schema 

The limitations discussed in OTO can be addressed by replacing DTD with XML 

Schema for defining the common pattern. The XML Schema approach is considered 

because all clements need not to be known while writing the Schema. These can be 

suppressed by using the attribute "XSO: ANY" in the XML schema. The <any> element 

enables the program to extend the XML document with elements not specified by the 

schema. 
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Definition: 

An XML schema is a description of a type of XML document, typically expressed 

in terms of constraints on the structure and content of documents of that type, above and 

beyond the basic syntactical constraints imposed by XML itself [13). 

This approach is similar to that of the OTO approach in which the common pattern 

can be represented as XML Schema. This can be used for the validation of the XML, which 

in tum validates the input HTML source, thereby validating the pattern structure of the 

given website. If the validation fails, then it means the structure is not being followed 

which implies the pattern is not observed. 

Implementation: 

The following steps are to be considered for the implementation. 

• The parse tree generated by the HTML Graph is converted to XML. 

• An XML Schema is created manually based on the defined pattern. 

• And the XML Schema is used for validating the XML generated by the tool. 

• A Java class is written for validating the xml based on the schema. 

Figure 18 shows the XML Schema representation of the Navigation Pattern derived for 

Amazon website. 
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<?xml version=" 1.0"?> 

<xsd:schema xmlns:xsd="http://www.w3.org/200l/XMLSchema" 

xmlns:html="http://www.w3.org/l 999/xhtml"> 

<xsd:element name="Tree"/> 

<xsd:element name="DIV"> 

<xsd:complexType> 

<xsd:choice minOccurs=" I"> 

<xsd:sequence> 

<xsd:elcment name::c"lJL" maxOccurs="unbounded"> 

<xsd:complexTypc> 

<xsd:scquence> 

<xsd:element name="LI" maxOccurs="unbounded"> 

<xsd:complexType> 

<xsd :sequence> 

<xsd:choice minOccurs=" l "> 

<xsd:elernent name="A"> 

<xsd:complexType> 

<xsd:scquence> 

<xsd:clement name="TEXT"/> 

</xsd:sequence> 

</xsd :complexType> 

</xsd:clement> 

</xsd:schema> 

Figure 18. XML Schema Format of Amazon Navigation Pattern 
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The XML generated from the parse tree of the HTML Graph is validated using the 

XML Schema prepared, by adding the following tag in the XML. The XML Schema 

Location can be specified by using the xsi :schemaLocation attribute [ 14]. The schema 

attribute has two values, the first value is used for namespace and the second is used for 

declaring the location of the XML Schema [14]. The declaration of XML Schema inside 

the XML file is as shown in Figure 19. 

<note xmlns=''http://www.w3schools.com" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation::c"ht tp: / /www. w3schools. com navigation.xsd"> 

Figure 19. Syntax of Schema Declaration in XML 

Limitations: 

• It is hard to define attributes that describe other than the mandatory elements can 

also be allowed to the element. The input XML of the parsed input source might 

have an element other than the specified attribute for a particular element. This 

makes XML Schema a not good technique for the pattern recognition. 

Ag: As per the pa/tern, DIV must be followed by an UL tag. The HTML Structure 

could have additional elements along with the UL. either before or afier. These 

additional elements cannot be defined while writing the schema. 

4.2 Proposed Solution 

The limitations of using DTD and XML Schema for pattern recognition are 

addressed by proposing a new solution in this paper. A new type of structure recognition 

has been proposed to find the pattern structure in the given input. The syntax of the 
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proposed pattern extends from OTD. For recognizing the desired pattern structure, an 

algorithm that uses the pattern file to find the match in the input file has been implemented. 

Implementation: 

The following steps are to be considered for the implementation. 

• The parse tree generated by the HTML Graph is given as input to the tool. 

• The common patterns are derived and defined in the proposed format. 

• Based on the common patterns, the program finds the matched patterns in the parse 

tree. 

4.2.J Pattern Structure Definition (PSD) Syntax 

Since the implementation does not use any existing techniques for the proposed 

solution, to represent the common patterns a new syntax has been defined. The pattern can 

be converted into this syntax format and can be saved as text (.txt) file. Since the new 

format proposed extends from OTO, and this is being used for recognizing the pattern 

structure, this can be called as PATTERN STRUCTURE DEFINTION (PSD). The syntax 

of the PSD for the navigation pattern looks like as shown in Figure 20. For the declaration 

of the pattern the following rules must be followed: 

• Each Node must have a declaration that starts with the word ·'ELEMENT''. 

• The child nodes for a node must be embedded within parentheses - ·'( )". 

• Two or more child nodes can be declared separated by a comma. 

• A comment can be added by starting the line with"#'' sign. 
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#Navigation Pattern 

ELEMENT Tree (BODY) 

ELEMENT BODY (DIV) 

ELEMENT DIV (UL) 

ELEMENT UL (LI+) 

ELEMENT LI (A?) 

ELEMENT A (TEXT) 

Figure 20. Sample PSD of Navigation Pattern 

The following Table 2 shows the type of attributes that can be used m the 

declaration of the node for setting the property of the node. 

Table 2. Attributes Used for Node Property 

-- --~---- --
Attribute Description 

# Used for adding comments to the PSD. 

+ An element ending with'+' must appear at least 5 times. 

? An element ending with ·r is considered as optional, can 

appear O or I time. 

An clement without any ending character is considered as 

mandatory element which means it must exist. 

If the line in the PSD file is added with'#' character at the start of the line. then it is treated 

as comment and the line is ignored for the implementation. 
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4.2.2 Rules Considered 

An element defined with '+' property sign must appear at least five times to become 

a matching pattern. This rule is considered in order to avoid tree structure matches that do 

not actually belong to the pattern. By adding this rule to the algorithm, unnecessary pattern 

matches were avoided. But it does have a disadvantage, where some of the actual patterns 

that are defined with less than five occurrences are not considered as pattern matches. The 

minimum number of occurrences for the node with '+' is considered as FIVE because 

during the analysis of the websites, it has been observed that all the websites have at least 

five links provided for the navigation. But there are some exceptional cases in some 

websites where the occurrences of the links are less than FIVE. By considering FIVE as a 

threshold value, the pattern discovery can be achieved efficiently. 

For example, consider a node LI defined with ··+" attribute a pattern match is found 

if the LI node appears five times or more. If the actual pattern has only four occurrences of 

the LI node, then it will be ignored. 

4.2.3 Assumptions 

For the implementation of the proposed solution, the following assumptions arc 

taken into consideration: 

• An optional node must have only one child 

o For cg., ELEMENT A (STRONG?) 

ELEMENT STRONG (TEXT) 

Herc the assumption is STRONG must have only one child for it. 

• The child node of the Optional Node must not be an Optional. 
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4.2.4 Pattern Match Finder Tool Design 

This section explains the design of the pattern match finder tool for the proposed 

solution. The design of the tool starts with gathering the requirements that are needed for 

the development of the tool. The following are the requirements that the tool must meet. 

• The purpose of the tool is to find the matched pattern structures in the given input 

HTML file. 

• The tool must be able to accept the parse tree structure which acts as input. 

• The tool shall go to. the location of the common pattern files that are derived 

manually and must be able to read the files. 

• From the list of common pattern files from the provided location, the tool must be 

able to find a match in the input file provided. 

• The tool must list all the matched patterns from the common patterns derived. 

• The tool shall display the patterns matched for the corresponding pattern. 

A tool has been designed which uses the algorithm that compares the desired 

pattern structure and provided input file. The architecture of the Parse Tree Comparison 

approach is as shown in the Figure 21 below. 
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Figure 21. Design of Pattern Discovery Architecture 

The parse tree output generated by the HTML Graph tool ts used for the 

comparison to find the desired pattern structure. For the proposed Pattern Match Finder 

tooL the following are provided as input: 

• The Parse Tree output from the HTML Graph tool in DOM structure fonnat. 

• Location of the common patterns analyzed based on the manual summarization. 
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The program implementation looks for each of the PSD files in the common 

patterns located in the location provided. The program fetches the PSD file of List and 

Table structure and converts them into DOM Structure format. This is given as input for 

traversing through the input parse tree generated by the HTML Graph. Once the pattern 

match is found. then the system gets the path of the tree from root node to leaf. This 

process repeats till the end of the parse tree. Once all the files are processed, then the list of 

matched PSD files is noted. 

4.2.5 Tool Features 

The algorithm proposed and the tool implemented can be used for different 

websites belonging to the online shopping category. The tool looks for the common pattern 

matches, and if there is a match then the tool extracts the matched patterns. Along with the 

pattern match technique, the proposed algorithm has the following additional features: 

• The algorithm accepts the common patterns in PSD structure fonnat. As PSD 

supports the optional nodes, the websites that share similar structure can be 

represented using optional ("'?") property. This makes the tool more generic for 

different websites that have similar semantic structure implementation. 

txample: Consider the following sample structure: 

Website-A: [Tree, BODY, CENTER, DIV, UL, LI, A, TEXT] and 

Website-B: [Tree, BODY, DIV, UL, LI, A, TEXT]. 

By making the CENTER node optional in the PSD, the pattern match can be found 

in both the websites. The sample PSD looks as below. 

Sample PSD: fTree, BODY, CENTER?, DIV, UL, LI, A, TEXT] 
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• The proposed algorithm supports the partial matches, where the tool finds the 

pattern match if the structure matches till the parent node of the node that has "+" 

attribute. This makes the tool efficient in matching the partial matches. 

Example: Consider the following sample structure: 

Website-A: [Tree, BODY, CENTER, DIV, UL, LI, A, IMG] and 

Sample PSD: [Tree, BODY, DIV, UL, LI+, A, TEXT). 

The algorithm finds the match till the path reached UL node and returns the path as 

a match. Ry this the partial matches can be achieved. 

• The proposed algorithm is flexible to find the child node match of a parent node, 

even though the child node is not an immediate child. 

Erample: Consider the following sample structure: 

Website-A: [Tree, l30DY, DIV, DIV, CENTER, B, UL, LI, A, TEXT] and 

Sample PSD: [Tree. BODY, DIV. UL, U+. A. TEXT]. 

The algorithm finds the match by ignoring the nodes between DIV and UL. This 

helps the algorithm to find a pattern match for different websites that have a similar 

semantic structure behind the navigation pattern. 

• As long as the order of the nodes in the given PSD is matched with the extracted 

path from the input, the tool finds the match even though there are additional nodes 

in the input that are not declared in the PSD. 

Example: Consider the following sample structure: 

Website-A: lTree, BODY, DIV, [UL, !MG], LI. A, IMG] and 

Sample PSD: [Tree, BODY, DlV, UL, Ll+. A, TEXT]. 
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In this the DIV node has more than one child - UL and IMG. The algorithm finds 

the match by considering only the path through UL node for the pattern match. The 

additional nodes along with the matched nodes are ignored. 

4.3 Common Patterns 

For the implementation of the proposed solution, the common patterns derived in 

the Section 3.3 must to be converted to the syntax format described in the above section 

(4.2.1 ). The defined patterns are stored in a location and the location is provided for the 

program to fetch the files. 

4.3. l Li.~t Structure 

The similarities in the patterns observed in websites like, TOYSRUS, Target, Buy, 

Bizrate, Amazon, Circuit City and Overstock are summarized. By adding the properties to 

few nodes, the common pattern that can be used to find the pattern structure among these 

websites has been derived. 

Since the LI node must appear more than one time, ''+'' attribute is added to the 

node. And since the SPAN and STRONG nodes are optional nodes, they are followed with 

'·?" attribute. Figure 22 below shows the syntax representation of the list structure. 

ELEMENT Tree (BODY) 

ELEMENT BODY (DIV) 

ELEMENT DIV (UL) 

ELEMENT UL (LI+) 

ELEMENT LI (A) 

ELEMENT A (SPAN?,STRONG?) 

ELEMENT SP AN (TEXT) 

ELEMENT STRONG (TEXT) 

Figure 22. List Structure 
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4.3.2 Tabular Structure 

The similarities in the patterns observed in websites like NewEgg, Smart Bargains, 

Thenaturestore and JCPenny are summarized. By adding the properties to few nodes, the 

common pattern that can be used to find the pattern structure among these websites has 

been derived. 

The DIV, CENTER, and TBODY nodes are treated as optional and hence they are 

followed with ··?" attribute. Figure 23 below shows the tabular structure pattern in the 

syntax format. 

ELEMENT Tree (BODY) 

ELEMENT BODY (DIV?,CENTER?) 

ELEMENT DIV (TABLE) 

ELEMENT CENTER (TABLE) 

ELEMENT TABLE (TBODY?) 

ELEMENT TBODY (TR) 

ELEMENT TR (TD) 

ELEMENT TD (DIV?) 

ELEMENT DIV (UL) 

ELEMENT UL (LI+) 

ELEMENT U (A) 

ELEMENT A (TEXT) 

Figure 23. Tabular Structure 
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5. IMPLEMENTATION AND TOOL VISUALIZATION 

This chapter explains the implementation and the visualization of the pattern match 

finder developed to recognize the pattern structure in the input HTML file. This chapter 

gives a detailed description of various steps that are involved in the development of the 

pattern match finder and also some additional steps that include embedding the pattern 

match finder with the HTML Graph tool. 

5.1 Technologies Considered 

The following technologies are used for the implementation of the pattern match 

finder tool. The tool has been implemented using JAVA and Eclipse !DE. 

5.1.I JAVA 

JAVA is popularly known object-oriented programming language. JAVA is the 

most chosen programming language by the software developers because of its versatility, 

efficiency and portability [9]. Swing, an API provided in JJ\ VA for developing the 

Graphical User Interface components . .TA VA has been used as a core developing language 

in this paper because the application which is used for developing Cobra HTML Renderer 

is fully implemented in JAVA. For the GUl Development of the application, Swing AP! 

implementation has been used. 

5. 1.2 ECLIPSE 

Eclipse is an open source integrated development environment used for developing 

software applications. Eclipse is written mostly in JAVA and can be used as IDE for 

developing .IA VA as well as other language by installing corresponding plug-ins (1 O]. 

Eclipse is released under the ten11S of the Eclipse Public License [l 01. For this paper, 

Eclipse is chosen as IDE for the application development. 
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5.1.3 HTML Graph 

HTML Graph is a JAVA based application which converts HTML to DOM 

Structure. I ITML Graph uses the Cobra HTML Renderer and Parser from the Lobo Project 

for parsing the input HTML file. HTML Input can be provided in two ways: 

• By loading the HTML file which is located in the local disk of the system. Once the 

file is loaded. it is automatically converted and saved as 'file_ name.graph. " 

• The input can also be provided by entering a URL. The URL is loaded, converted, 

and saved as "parsed_ URL_ name _microsec.graph. " 

5.1.4 Cobra: Java HTML Par.<,er 

Cobra is a pure Java HTML renderer and DOM parser. Cobra is developed in order 

to support HTML 4, Javascript and CSS 2 technologies [81. The Cobra can be downloaded 

from Source Forge [8]. Cobra is an open source project and is available free of cost. The 

source code of Cobra is released under the LGPL license [8]. Cobra does not support 

browser functionalities such as navigation, cookies, I lTTP Authentication and so on [8]. 

The input HTML is processed by Cobra which parses and renders the HTML into 

DOM structure format. The output DOM structure of the given HTML from Cobra is used 

as one of the inputs for the Pattern Match Finder tool. 

5.2 Pattern Match Finder Tool 

for the implementation of the tool, the JAVA Swing API has been used for the GUI 

development. The HTML Graph tool accepts input file either by providing the absolute 

path of the HTML file or by providing the URL of the desired website. The output of the 

HTML Graph tool is a Frame that contains the graph notation of the input file in the left 

41 



panel and the browser that navigates the given input on the right panel. Figure 24 below 

shows the output of HTML Graph Tool. 
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Figure 24. Output of HTML Graph Tool 
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The pattern match finder is implemented and embedded with the HTML Graph 

tool. The pattern match finder is initiated when the user clicks on the ''Pattern Match 

Finder" button located at the bottom center of the right panel. which is under the browser 

panel of the HTML Graph output. On clicking the button, a new Frame is opened that 

contains parse tree of the HTML file on the left panel and the right panel contains a button 

'·Find Pattern." When the ··Find Pattern" button is clicked, the dropdown box is populated 

with a list of patterns. When the user selects a desired pattern from the list the pane in the 

right panel shows the corresponding pattern. Figure 25 below shows the frame of the 

Pattern Match Finder. 
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BODY 

Figure 25. HTML Pattern Match Finder 

Once the user clicks on the ''Find Pattern'' button in the right panel, the following steps are 

invoked. 

5.2.1 Input Parse Tree 

The output parse tree of the HTML Graph tool is treated as input for the pattern 

match finder tool. Hence the parse tree generated by the HTML Graph tool is displayed in 

the left panel of the Pattern Match Finder Tool. And the matches that are discovered in the 

parse tree will be displayed in an expanded format. 

5.2.2 Common Pattern Files 

This step of the tool fetches the list of common pattern files from the location 

specified. For each file in the list, the program reads the pattern file contents. For each 
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element specified in the input file, the program creates a corresponding node. The program 

removes the attribute that is added as a property and returns the name of the node. The 

program returns a JTree object from the pattern file which is Tree Structure representation 

of the pattern file as shown in the Figure 26 below. 

EI.EHENT T::ee (30DY) 

ELEMENT 30DY ( DIV) 

E::.EHENT DIV (DI.) 

ELEMENT UL (I.I-'-j 

EI.EHENT :C.I (A) 

ELEH£NT A (SPA.'l?,STRCNG?) 

ELE11ENT SPAN (TEXT} 

ELE11ENT STRONG (TEXT) 

K,..., ,.------.; 

Tree 

BODY 

DIV 

UL 

LI 

Figure 26. Tree Structure Representation of Pattern 

A 

. SPAN 

• TE(f 

STRONG 

• TEXT 

All the node properties that are observed while reading the pattern file are 

maintained separately for the corresponding nodes. By doing this. the tool can find whether 

the node is an optional, multiple or mandatory node. 

• For each file in the location specified, the tool reads the contents of the tile. 

• If the line starts with'#' character, then the line is assumed as comment and the 

line is ignored. 

• If the line starts with "ELEMENT" keyword, then the tool reads the parent and 

child elements by splitting the line. 

• For each parent clement. the list of child elements that are within the 

parentheses and separated by commas(".") is fetched. 

• The above steps arc repeated till all the lines in the file are read. 

• For each parent element read from the file. a tree node is created. and the list of 

the child clements for the parent node is fetched. 
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o For each child element. 

• Checks if any property has been set, if so, then the tool adds the 

node to the list of optional nodes or multiple nodes depending 

on the property. 

• A child node is created by removing the property attribute and 

adding it to the parent node. 

5.2.3 Tree Compari.wm 

This is the crucial step which compares the Input Parse Tree with the JTree 

generated from Pattern File. The step deals with traversing the Pattern Tree generated from 

the Pattern File. Based on the nodes found in the pattern tree, the Jnput Parse Tree is 

traversed for the comparison. 

5.2.3.J Traverse Pattern Tree 

In this step of the program the tool gets the parent-child combination of the Pattern 

Tree. The flow starts by executing the following steps: 

• The root node of the Pattern Tree is passed for the traversing method. 

• The child count of the node (initially root node) is fetched. 

• For each child node of the node (parent node) 

o Check whether the child node is optional. If optional, then child node of 

the optional is retrieved as sub-child node 

• Once the parent-child combination is obtained, then Traverse Input Parse Tree 

will be invoked. 

• If more than one child exists for a node. then the above steps arc repeated for 

each child node. 
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• The above steps are repeated unti I all the nodes of the pattern tree are traversed. 

5.2.3.2 Traverse Input Parse Tree 

By the time this step gets initiated it is assumed that a parent-child combination of 

the Pattern Tree has been obtained. The flow starts by executing the following steps: 

• The root node of the Input Parse Tree is passed for the traversing method. 

• The child count of the node (initially root node) is fetched. 

• The program checks whether the current node match with the parent node of 

the Pattern tree. 

• For each child node of the node (parent node) 

o If parent match is found, then: 

• The program checks if the current child node is multi node (with 

"+" property) 

• If above is true and the child node appears more than or 

equal to five then, number of pattern matches found is 

increased by one. 

• The program checks if the current child node matches with the 

child node of the Pattern Tree. 

• If above is true and if the current child node is the leaf 

node, then path from root to current node is captured. 

• Repeat from step 1 by passing the child node as current node. 

• The above steps are repeated until all the nodes of the input parse tree are 

traversed. 
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This step of the program gives the path of the matched pattern (from root to leaf) 

and number of times each node has appeared in the input parse tree. 

5.2.4 Di.\play Matched Paths 

After executing the Tree Comparison step of the program, the list of pattern files 

that has the matched combinations in the input parse tree are obtained. The dropdown box 

on the right panel is populated with the pattern files that have a match (see Figure 26). The 

user can select the desired pattern to sec the pattern structure as well as the matches in the 

input parse tree. 

A program that deals with the presentation of the matched patterns of the input tree 

has been implemented. In order to provide the user with the matched patterns in the input 

parse tree, the matched paths are displayed by expanding the path from the root. The 

number of matches found in the input parse tree is also displayed on the right panel below 

the drop down. Figure 27 shows the output that is displayed with the matched patterns. 

-----~~-

·-~----·-···-·-·-····-­.· ----·-- ·-· 

Figure 27. List of Patterns Matched and Expanded Matched Patterns 
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6. EVALUATION 

This chapter explains how the proposed idea implementation is evaluated. To 

evaluate the Pattern Match finder tool. all the websites that are considered for manual 

analysis are considered here. For testing the websites. either the URL of the website or 

static HTML page can be given as input. And the list of common patterns is also provided 

as input. The following Table 3 shows the list of websites under the Website Name column 

and the pattern structure found for the corresponding website has been marked. 

Table 3. List of Websites and Patterns Matched 

S. No Website Name List Structure Tabular Structure 

1 Buy X 

'") NewEgg X X ... 

3 Bizrate X 

4 ThenatureStore X 

5 Target X 

6 SmartBargains X X 

7 Amazon X 

8 ToysRlJs X X 

9 CircuitCity X 

--- -- --
10 Overstock X 

---

To test the correctness of the implemented I'alfern Maleh Finder tool. the results 

are compared with the expected results. derived in section 3.3.4. The results matched with 

the expected results and the tool has met the requirements. 
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6.1 Precision and Recall 

For evaluating the performance of the proposed algorithm and the implemented 

tool. the Precision and Recall values are calculated. The Precision and Recall are defined 

for this paper based on the evaluation made by T. Hassan [27]. 

Precision 

Recall 

Number of correctly retrieved pattern matches 
Total number of retrieved pattern matches 

Number of correctly retrieved pattern matches 
Total number of actual matches 

··Number of correctly retrieved pattern matches" are the pattern matches that are 

retrieved by the pattern match tool. "Total number of actual matches'' are actual pattern 

matches that are present in the input which are found manually. "Total number of retrieved 

pattern matches" arc the total pattern matches that arc found by tool. 

To evaluate the precision and recall, the Home page of the website is derived and 

given as static HTML input to the tool. All the websites chosen for manual summarization 

(Section 3) arc considered here to measure the precision and recall, the following Table 4 

summarizes the results. 

Table 4. Precision and Recall Calculations for Websites Listed 

-· -
S.No Website Name Calculations List Tabular 

Structure Structure 

1 Buy.com Rcorrect 31 

Atotal 33 
--

Rtotal 36 

Recall 0.939393939 

Precision 0.861111111 

2 New Egg.com Rcorrect 25 25 

A total 27 27 

Rtotal 25 25 

Recall 0.925925926 0.925925926 ..___.. ____ , -· -----~ 
Precision 1 I 

49 



Table 4 (Continued) 

3 Bizrate.com Rcorrect 16 

Atotal 20 

Rtotal 22 

Recall 0.8 

Precision 0. 727272727 

4 ThenatureStore.com Rcorrect 16 

A total 24 

Rtotal 16 

Recall 0.666666667 

Precision 1 

5 Target.com Rcorrect 28 

Atotal 38 

Rtotal 31 

Recall 0. 736842105 

Precision 0.903225806 

6 SmartBargains.com Rcorrect 9 9 

Atotal 12 12 

Rtotal 9 9 

Recall 0.75 0.75 

Precision 1 1 

7 Amazon.corn Rcorrect 12 

Atotal 19 

Rtotal 12 

Recall 0.631578947 

Precision 1 

8 ToysRlJs.corn Rcorrect 18 8 

Atotal 25 8 

Rtotal 19 8 

Recall 0.72 1 

Precision 0.947368421 1 
-

9 CircuitCity.com Rcorrect 12 

Atotal 16 

Rtotal 12 

Recall 0.75 

Precision 1 
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Table 4 (Continued) 

10 Overstock.corn Rcorrect 14 

A total 15 

Rtotal 14 

Recall 0.933333333 

Precision 1 

(where Rcorrect is the number of correctly retrieved patterns; Rtota! is the total number of 

retrieved pattern matches; A total is the total number of actual matches) 

6.2 Evaluation Using Additional Websites 

Along with the websites considered above, the tool has been tested by providing ten 

additional different websites belonging to the online shopping category. For all the 

websites chosen, the tool was able to find a pattern match from the two derived patterns. 

The following Table 5 shows the list of additional websites used for evaluating the tool. 

Table 5. Additional Websites Used for Evaluating the Tool 

S. No Website Name Calculations List Tabular 
Structure Structure 

1 BcstBuy Rcorrcct 24 

A total 34 

Rtotal 28 

Recall 0.705882353 

Precision 0.857142857 

2 Lowes Rcon·ect 11 

A total 11 

Rtotal 12 

Recall l 

Precision 0.916666667 

3 American Eagle Rcorrect 15 

Atotal 28 

Rtotal 16 

Recall 0.535714286 

Precision 0.9375 
~· 
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Table 5 (Continued) 

-
4 Meritline Rcorrect 6 6 

Atotal 6 6 

Rtotal 6 6 

Recall 1 1 

Precision I 1 

5 Quill Rcorrcct 33 

Atotal 45 

Rtotal 33 

Recall 0.733333333 

Precision I 

6 Kohls Rcorrect 2 

Atotal 2 

Rtotal 3 

Recall I 

Precision 0.666666667 

7 Ebay Rcorrect 10 

A total 15 

Rtotal I I 

Recall 0.666666667 

Precision 0.909090909 
f--·--"-·-f--

8 Walgreens Rcorrect 15 6 

Atotal 16 6 

Rtotal 15 6 

Recall 0.9375 I 
Precision I I 

9 Sunglass! lut Rcorrect 10 

A total l 1 

Rtotal 12 

Recall 0. 909090909 

Precision 0.833333333 
------f---------

10 BarncsAndNohlc Rcorrect 50 

A total 53 
Rtotal 50 

Recall 0.943396226 
----

Precision I 
(where Rcorrect is the number of correctly retrieved patterns; Rtotal is the total number of 

retrieved pattern matches; Atotal is the total number of actual matches) 
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6.3 Evaluation Results 

The following Figure 28 shows the Average Precision and Recall and Standard 

Deviation of the two common patterns for twenty websites chosen for the evaluation. 

From the Figure 28, it can be observed that the Average Precision for List structure 

is 0.925 approximately and the Average Recall for List structure is 0.8209. The Average 

Precision for Tabular structure is I and the Average Recall for Tabular structure is 0.918 

approximately. For the observed Precision and Recall of the List and Tabular Structure 

patterns, the Standard Deviation has been calculated and is shown in Figure 28 below. 

1.2 

1 

0.8 

0.6 

04 

0.2 

0 

I 

list Structure 

I 

Tabular Structure 

I& Overall Preci,ion Avg 

Overall Recall Avg 

Figure 28. Average Precision and Recall 

For measuring the accuracy, F-1 score has been calculated by using the hannonic 

mean of precision and recall f281. 

Accuracy = 2 x precision x recall 
precision + recall 

By using the above formula. the Accuracy of the implemented tool is 0.9 I 35. Thus, 

it 1s found that pattern match tool achieves about 91.35% accuracy for extracting the 

patterns across multiple web pages under the online shopping category. The performance 
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of the pattern match tool can be further evaluated to test the pattern structures of more web 

pages under different domains of the websites. 
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7. CONCLUSION AND FUTURE WORK 

The main objective of this paper is to summarize the web patterns manually and 

derive the common patterns. Also one of the goals of the paper is to design and develop a 

tool which can be used to find the pattern matches in the parser tree based on the common 

patterns derived. The work in this paper has clearly met the intended objectives of this 

paper. The paper has presented a new structure called Pattern Structure Definition (PSO) 

which has been extended from OTO for representing the common pattern structure. Tree 

comparison approach has been presented to discover the pattern matches in the parse tree 

based on the list of common patterns summarized manually. 

The evaluation and experiment results indicate that the Paflern Match Finder tool 

finds the pattern matches for navigation in the online shopping websites. The tool has not 

only been tested for the list of websites chosen for analysis but also tested on additional 

websites belonging to the online shopping category. The tool was able to find a pattern 

match from the common patterns derived. The precision, recall and accuracy calculations 

show the effectiveness of the tool. Results show that an accuracy of 91.35 % has been 

achieved by the tool. 

The pattern match discovery approach discussed in this paper, however, still have 

some limitations. First, this approach cannot discover the pattern match if the number of 

items in the list is less than five. To consider a pattern as a matched pattern, the number of 

occurrences of the node with ·+' attribute must be at least five or more. If a true pattern 

which is supposed to be a pattern match has only four or !cs~ occurrences, then it will not 

be discovered as a pattern match. Second, the pattern discovery is mainly performed on the 

output generated by the Cobra Renderer and Parser tool. There arc some web pages where 
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the Cobra tool cannot recognize the source code. In such cases, the implemented tool 

throws exception and the entire process 1s terminated. For example, for the website 

staples.com, a DOM Exception IS thrown with the message 

"JNVA !JD_ CHARACTER_ ERR: An invalid or illegal XML character is speqfied." The 

reason behind the exception is due to the source code of the web page containing a 

mctadata defined with characters that cannot be processed by the Cobra. In this example, 

the invalid code that caused the error is as shown in Figure 29 below. 

<meta http-equiv="Pics-Label" content="(pics-1.1 

"http://www.icra.org/ratingsv02.html" comment "lCRAonline EN v2.0" I gen true for 

"http://staples.com" r (nz 1 vz I lz I oz 1 cb 1) "http://www.rsac.org/ratingsvOl .html" 1 

gen true for "http://staples.com" r (n Os O v O IO))"/> 

Figure 29. Sample Code for Invalid Exception 

The cause for the exception could be any invalid code. The Cobra cannot recognize 

such type of code. Hence, this is considered as one of the limitations for the work done in 

this paper since the output of the Cobra tool is accepted as one of the inputs for the pattern 

discovery. 

This work can be extended to other patterns like product results patterns that occur 

in the online shopping category, as well as to other domains like online cars searches and 

online travel reservations. 
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