
DOM STRUCTURE BASED WEB PATTERN MINING

A Paper
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Narcsh Pillarikuppam

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

April 2011

Fargo, North Dakota

North Dakota State University
Graduate School

Title

DOM STRUCTURE BASED

WEB PATTERN MINING

By

NARESH PILLARIKUPPAM

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University 's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the document, signatures have been
removed from the digital version of this document.

ABSTRACT

Pillarikuppam, Naresh, M.S. in Software Engineering, Department of Computer Science,
College of Science and Mathematics, North Dakota State University, April 2011. DOM
Structure Based Web Pattern Mining. Major Professor: Dr. Jun Kong.

A rapid expansion in the Web has motivated several studies to understand and

recognize the implementation structure underlying the interface. Though the presentation

of the Web pages looks different, those Web pages may share the same semantic structure

to organize information. Those common semantic structures are referred to as Web

patterns. There are no strict rules for implementing the HTML structure of the web pages,

and the implementation of each web page might not be consistent across the entire website.

Also, the HTML implementation of one website varies from other websites. This makes it

difficult to recognize the Web patterns that have been used for implementing the websites.

In this paper, Document Object Model (called "DOM" hereafter) structure based web

pattern mining has been proposed, where the HTML structure and the common patterns are

represented in DOM structure format. As an approach for deriving the common web

pattern, the implemented patterns observed across different websites are analyzed and

summarized manually. Those Web patterns are represented by using the Pattern Structure

Definition (PSD) fonnat. which is derived based on the DTD model. Then, an efficient

algorithm has been proposed to recognize Web patterns that match with the definition and

comply with all the properties defined in the PSD. To recognize the pattern structure, a tool

was developed that can take the URL as an input and recognize summarized patterns. The

experiment results and evaluation of the tool show the high accuracy of the approach. The

implemented approach achieved 91.35% accuracy in finding the navigation pattern

structure in the on line shopping websites.

Ill

ACKNOWLEDGMENTS

I would like to express my sincere thanks to my adviser, Dr. Jun Kong, for

providing this research topic. His advice, guidance and support greatly helped in making

this work possible. I would like to thank Dr. Kendall Nygard, Dr. Changhui Yan and Dr.

Chao You for their valuable time as my committee members.

Special thanks to my friend, Krishna Chaithanya Chinthakayala, for giving a lot of

support and encouragement during the project. I would like to express my special thanks to

my parents, Chinnabba Reddy Pillarikuppam and Kumari Pillarikuppam, for encouraging

and supporting me as I pursued my graduate degree. Finally, I would like to thank my

family and friends for their support, without whom it would have been impossible for me to

pursue my graduate degree.

IV

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGMENTS .. iv

LIST OF TABI.ES .. viii

LIST OF FIGURES .. ix

I. INTRODUCTION .. 1

2. RELATED WORK ... 5

3. WEB PATTERNS ANALYSIS ... 11

3.1 Navigation Patterns ... 11

3.2 Patterns Observed ... 13

3.2.1 TARGET .. 14

3.2.2 TOYSRUS ... 14

3.2.3 BIZRA TE ... 15

3.2.4 CIRCUIT CITY ... 16

3.2.5 BUY ... 16

3.2.6 AMAZON .. 17

3.2.7 OVERSTOCK ... 18

3.2.8 SMART BARGAINS .. 18

3.2.9 THE NATURE STORE ... 19

3.2.10 NEW EGG ... 20

3.J Common Patterns Derived .. 20

3.3. l List Structure .. 21

3.3.2 Tabular Structure ... 22

3 .3 .3 Expected Websites for Patterns ... 24

V

TABLE OF CONTENTS (Continued)

4. DESIGN ... 25

4.1 Existing Techniques and Limitations .. 25

4.1 .1 OTO Implementation ... 25

4.1.2 XML Schema ... 27

4.2 Proposed Solution ... 30

4.2.1 Pattern Structure Definition (PSD) Syntax .. 31

4.2.2 Rules Considered ... 33

4.2.3 Assu1nptions ... 33

4.2.4 Pattern Match Finder Tool Design ... 34

4.2.5 Tool Features ... 36

4.3 Co1nmon Patterns .. 38

4.3.1 List Structure .. 38

4.3.2 Tabular Structure ... 39

5. IMPLEMENTATION AND TOOL VISUALIZATION ... 40

5.1 Technologies Considered .. 40

5. 1 .1 JAVA ... 40

5.1.2 ECLIPSE .. 40

5. 1 .3 HTML Graph ... 41

5.1.4 Cobra: Java HTML Parser ... 41

5.2 Pattern Match Finder Tool .. 41

5.2.1 Input Parse Tree ... 43

5.2.2 Common Pattern Files ... 43

5.2.3 Tree Comparison .. 45

5.2.4 Display Matched Paths .. 47

VI

TABLE OF CONTENTS (Continued)

6. EVALUATION .. 48

6.1 Precision and Recall .. 49

6.2 Evaluation Using Additional Websites ... 51

6.3 Evaluation Results ... 53

7. CONCLUSION AND FUTURE WORK ... 55

REFERENCES .. 57

VII

LIST OF TABLES

1. Expected Websites for Each Pattern .. 24

2. Attributes Used for Node Property .. 32

3. List of Websites and Patterns Matched .. 48

4. Precision and Recall Calculations for Websites Listed ... 49

5. Additional Websites Used for Evaluating the Tool ... 51

VIII

LIST OF FIGURES

1. Navigation Pattern ... 12

2. Target Navigation Pattern .. 14

3. ToysRUs Navigation Pattern ... 15

4. Bizrate Navigation Pattern ... 15

5. CircuitCity Navigation Pattern .. 16

6. Buy.com Navigation Pattern .. 17

7. Amazon Navigation Pattern ... 17

8. Overstock Navigation Pattern .. 18

9. SmartBargains Navigation Pattern ... I 9

10. TheNatureStore Navigation Pattern ... 19

11. New Egg Navigation Pattern .. 20

12. List Structure Pattern ... 21

13. Sample Screenshot of Amazon [17] Website that Follows List Structure 22

14. Tabular Structure Pattern ... 23

15. Sample Screenshot ofNewEgg [161 Website that Follows Tabular Structure 24

16. OTO Format of Amazon Navigation Pattern ... 26

17. Syntax of DTD Declaration in XML ... 2 7

18. XML Schema Fonnat of Amazon Navigation Pattern .. 29

19. Syntax of Schema Declaration in XML ... 30

20. Sample PSD of Navigation Pattern .. 32

21. Design of Pattern Discovery Architecture ... 35

IX

LIST OF FIGURES (Continued)

22. List Structure .. 38

23. Tabular Structure ... 39

24. Output of HTML Graph Tool .. 42

25. HTML Pattern Match Finder ... 43

26. Tree Structure Representation of Pattern ... 44

2 7. List of Patterns Matched and Expanded Matched Patterns ... 4 7

28. Average Precision and Recall .. 53

29. Sample Code for Invalid Exception ... 56

X

1. INTRODUCTION

A rapid expansion m the Web has motivated several studies to understand and

recognize the implementation structure underlying the interface. Websites belonging to the

same category contain information that is generated using a common layout [1]. There are

no strict rules for implementing the HTML structure of the web pages and the

implementation of each web page might not be consistent across the entire website. And

also, the HTML implementation of one website varies from other websites. This makes it

difficult to recognize the Web patterns that have been used for implementing the websites.

By analyzing different websites that show similar structure, the common layout structure

that has been shared among the websites can be derived. Zhen Zhang, Bin He, and Kevin

Chen-Chuan Chang [2] made a considerable study, where the patterns of web query

interfaces and the hidden syntax behind them are analyzed and the common patterns across

different websites are observed. This study [2] also proposed pattern specification, which

represents the grammar rules of pattern and pattern recognition that used a parser to

recognize the pattern. This study also motivated the current work made in this paper, where

the current work emphasizes recognizing and extracting the common pattern from the

HTML implementation structure instead.

In this paper, a list of popular websites under the on line shopping category has been

considered for analysis. Though the visual appearance of these websites differs with each

other, the document structure (HTML structure implementation) underlying the interface

can be the same for similar scenarios. For instance, the implementation in amazon.com and

buy.com for displaying a product, shares a similar structure by showing the product image,

followed by product title and price details. Observing these kinds of structures which occur

repeatedly can help to recognize the pattern occurrence among different websites.

The primary objective of this paper is to discover the common web patterns that are

being implemented in the online shopping websites. The Web pattern referred to in this

paper can be defined as '·repeated common semantic structures implemented in a website.''

The common web patterns are determined by discovering the common HTML semantic

structure used across different websites. ln the implementation perspective, the goal of this

paper is to introduce a new algorithm for identifying the type of web patterns implemented

in the given website.

Identifying and extracting all the occurrences of a pattern in a huge sized data tree

is a major concern in most of the pattern based recognition studies [5]. F.Mandreoli and

P.Zczula [5] have done a considerable study in searching for all occurrences of a small

query tree in the data trees. Mohammed J. Zaki [3] proposed a tree miner, an algorithm that

mines frequent sub trees in a database, which is useful in the fields of web mining and

bioinformatics. There is not much contribution made to recognize and extract the pattern

occurrence of a I ITML structure underlying the web interface, which is represented in

JTrce fonnat. This paper emphasizes discovering the pattern matched based on .ITree

structure. The goal of the paper is achieved by comparing the pattern structure and input

tree (HTML implementation), where both the pattern structure and the input are

represented in the .ITree format.

The key contribution of this paper is implementing a tool which recognizes and

extracts the pattern structure of the input by comparing it against a list of common patterns.

And the other contributions include:

2

• The pattern structure that specifies the syntax of pattern, called Pattern

Structure Definition, which is extended from Document Type Definition

(DTD) has been proposed.

• The pattern recognition algorithm which compares the input and common

pattern that arc in .JTree format has been proposed. This algorithm

recognizes and extracts the pattern structure in the input.

Unlike the traditional parsing mechanisms, the pattern recognition parsers do not

enforce the grammar rules and will not reject any input [2]. So, the pattern recognition

parser in this paper also recognizes and extracts partial matches along with the full

matches. A heuristic rule has been considered while finding the pattern match. The rule that

is considered is, the proposed algorithm finds a pattern match only if the node with "+"

attribute has been appeared at least five times under its parent node. As long as the web

page is rendered correctly, the common pattern match can be recognized efficiently.

Recognizing the pattern can be useful, as the pattern can be inherited while

implementing new websites or new web pages in the same website. Also, there is a lack of

standards that need to be followed by the online websites and a lack of ways to find out the

patterns that have been implemented. This model can be useful if the websites need to be

imposed with any standards and to verify or observe, whether the desired patterns are

implemented in the websites.

The rest of the paper is organized as follows. Chapter 2 discusses some of the

closely related works. Manual summarization of the web patterns across different websites

arc provided in Chapter 3. The design of the proposed tool and syntax are discussed in

Chapter 4. Along with the design, Chapter 4 describes existing techniques and their

3

limitations. Chapter 5 presents the implementation and tool visualization of the proposed

idea. Evaluation of the tool is done in Chapter 6. The conclusion and future work are

described in Chapter 7.

4

2. RELATED WORK

Recognition and extraction of the web pattern from a website is an interesting

application, especially with the growth of a number of on line websites and with the growth

of the number of people using them. But there is limited work related to this field of study

that has been contributed. The work in this paper is related to other works based on the

following aspects.

• Observing common patterns across multiple websites

• Pattern specification and recognition

• Finding patterns based on tree structure

Firstly, observing the common pattern of the web query forms was studied by Zhen

Zhang, Bin He, and Kevin Chen-Chuan Chang [2] which is the motivation for the current

work. That study [2] found the common patterns for web query fonns which repeated more

than once and discussed that, even though each query form is different, they share common

patterns. In a similar way, this paper also summarizes the patterns of each website, by

evaluating multiple websites and deriving common web patterns that are shared by them.

While the study [2] deals with observing the common patterns of web query fonns, this

paper focus on common patterns of HTML implementation structure behind web interface.

A. Arasu and H. Garcia-Molina [1] studied deriving the common layout from a

large set of web pages. While the common layout mentioned in the study l 1] is based on

structured data behind the web interface, the common pattern defined in this paper is not

based on actual data. Their study also presents an algorithm that takes web pages as input,

traces the template or layout used and extracts the values encoded in the pages. The

algorithm in this paper also takes web pages as input and finds the pattern used in the web

5

that has maximum repeated expressions in the set. The user can select and save the desired

pattern to be extracted from the web page.

D. C. Reis, P. B. Golgher, A. S. Silva and A. F. Laender [26] presented a study

regarding Automatic Web News Extraction Using Tree Edit Distance. In the study [26], a

new approach to extract the data (news) from the websites based on the data matching and

extraction has been proposed. The first step in the algorithm proposed in the study [261 is

page clustering. To derive the clustering of pages, the training set of pages is given as input

and the clustering of pages is generated based on the common formatting or layout

features. Each cluster is generalized into a node extraction pattern, simply ne-pattern. The

ne-pattern defined in the study [26] is used as a common pattern for recognizing the pattern

occurrences in the web page.

J. Y. Hsu and W.-T. Yih [15] proposed template-based mmmg from HTML

documents. In the study l} 5], the concept of document templates is introduced. Each

template specifies the structural components of a class of documents to be captured. These

document templates are used as common patterns for the information extraction. The study

[15] defines the document template as a logical structure that has been extracted from a

collection of similar websites. This paper also uses a similar idea to derive the common

patterns by analyzing a set of online shopping websites.

Second, Zhen Zhang, Bin He, Kevin Chen-Chuan Chang [2] proposed the pattern

specification and pattern recognition. In the study [2], 2P Grammar which encodes the

patterns and their precedence for web query forms is proposed where as in this paper, the

Pattern Structure Definition for representing the HTML structure pattern is proposed. For

the pattern recognition, both the study [2] and this paper use an algorithm, which uses the

7

pattern specification as input. However, the pattern recognition m the study [2] is

completely different to the one in this paper. The work [2] is closer to the current paper

because both deal with observing and recognizing the common patterns across multiple

websites.

In the study presented by M. Cosulschi, A. Giurca, B. Udrescu, N. Constantinescu,

and M. Gabroveanu [30), proposed a pattern extraction process. The structure similarities

are computed using tree edit distance between the trees. The extraction process in the study

[30] focused on grouping the web pages into clusters and generating the extraction pattern

for each cluster. The extraction pattern proposed contains labels and special clements

called wild cards. These wild cards must be a leaf in the tree. Four types of wild cards arc

defined - single(.), plus(+), option(?) and kleene (*). ln this paper also, the properties of

the nodes in the pattern tree are defined in the same way as that of the study [30). But the

difference is nodes of the pattern tree in this paper need not to be a leaf node.

The pattern extraction has been proposed in the IEPAD system presented by C.-H.

Chang, C.-N. Hsu, and S.-C. Lui [29]. The extraction of the pattern matching records is

achieved through a standard pattern matching algorithm called Boyer-Moore's algorithm.

The major difference between the study [29) and this paper is the input patterns in the study

[29] are defined as a subset of HTML tags where in this paper they are defined as nodes.

The result of the extraction in [29] gives a matrix that contains information slots, whereas

the extracted result of this paper gives the set of matched patterns in a tree structure. Partial

pattern matches are not achieved by the study [29] where as this paper provides the partial

matches also.

8

In the study [26] presented by D. C. Reis, P. B. Golgher, A. S. Silva, and A. F.

Laender, the data matching approach has been proposed to find an appropriate ne-pattern

from the set of HTML pages. The ne-pattern is defined as a rooted tree that contains

sibling of sub-trees as child trees. And the trees contain special vertices called wildcards.

Similar to the study [30], each wildcard can be one of the following types - Single(.), Plus

(+), Option (?), and Kleene (*). This paper also defines similar structure for the derived

common pattern. But the difference is the wild card in the study [26] must be a leaf node

where as the node of the pattern defined in this paper can appear at any point of the tree.

For the pattern recognition, the study [26] has used the RTDM (Restricted Top-Down

Mapping) algorithm. Once the mapping between the ne-pattern and HTML Page is found,

the matched trees are extracted. The algorithm used for pattern recognition in the study

[26] did not address the partial pattern matches where the proposed algorithm in this paper

provides the partial matches also.

An Information Extraction Algorithm has been proposed by J. Y. Hsu and W.-T.

Yih [15]. The algorithm in the study [15] accepts an electronic document, a collection of

document templates and a set of extraction targets. In return, the algorithm identifies the

best matched template for the document and extracts the matched information in the

document. This paper uses the algorithm which has some similarities to that of the

algorithm defined in the study [15]. But the algorithm proposed in this paper is based on

the comparison of tree structures and extracting the information based on the tree

comparison. The similarities between the study [15] and this paper is both papers propose

an infonnation extraction in the given document based on template/common pattern

structure.

9

Third, F.Mandreoll and P.Zezula contributed studies that have been made on tree

pattern matching [5] to find the occurrences of a twig pattern in a tree-structured document,

where twig pattern is a query represented in tree and tree structured document is a data tree.

The current paper also emphasizes tree pattern matching, but the tree in this paper

represents the HTML structure instead of data. And the pattern matching is not matching

the data; it is recognizing and extracting the HTML structure of a website.

In the study presented by M. Cosulschi, A. Giurca, B. Udrcscu, N. Constantinescu

and M. Gabroveanu 130], an algorithm for the pattern matching process has been proposed.

The algorithm accepts the pattern tree input and data tree input which are in XHTML

format. The algorithm proposed in the current paper also accepts the tree structures as

inputs. But the procedure in the study [30] accepts list of nodes every time whereas the

algorithm in this paper accepts only the current node but not the list.

10

3. WEB PATTERNS ANALYSIS

A pattern can be defined as a sequence of events that can appear a repeated number

of times [4]. By analyzing the set of patterns, the behavior of the program can be mined [4].

To analyze the pattern structures across different websites for a particular category, online

shopping has been chosen in this paper. The reason behind selecting the online shopping

category in this paper is due to a drastic increase in the online shopping websites and their

purposes. A number of organizations that are using the web for marketing, promoting, and

transacting products and services with consumers are increasing [6]. A study reported that

about 40% of participants indicated shopping as a primary use of the web [6]. This

increases the need for study of online shopping websites and to understand the design of

the websites. This motivated us to consider the online shopping category for the analysis in

this paper. For implementing online shopping websites, one of the important factors to be

considered is Navigation [7]. For any website to be constructive and efficient, a good

navigation always plays an important role. Especially, users of online shopping websites

look for pathways to navigate through the site. By considering navigation analysis for this

paper, an important factor of the website has been analyzed.

3.1 Navigation Patterns

The navigation of an on line shopping website is related to the user interface of an

online store [7]. Navigation patterns can be determined based on the layout that the online

shopping website has used.

The navigation pattern represents a set of navigation links, which are of type

hyperlink. The links can be organized in a hierarchical structure, and the second level is

indented. Each link directs the user to the corresponding page. The grouping can be done

11

by representing the hyperlinks either in a list or in a tabular format. The following Figure I

is an example of the navigation pattern format which has a Department Name and each

department can have multiple Branch Names. Each branch can have multiple category

names.

Department Name

Branch Name

Category Name

Category Name

Category Name

Figure I. Navigation Pattern

For analyzing the behavior of a program, it is not sufficient by considering few

scenarios. To retrieve the correctness of the pattern recurrence and the pattern structure of

multiple systems, a set of websites needs to be analyzed. Ten different popular online

shopping websites are chosen for the analysis. The list of the chosen websites is shown

below:

• Target.com

• ToysRUs.com

• Bizrate.com

• CircuitCity.com

• Buy.corn

• Amazon.corn

• Overstock.com

12

1
l

• SmartBargains.com

• ThenatureStore.com

• NewEgg.com

The websites in the above list are selected as they are the most popular among the

onlinc shopping category. The Target and Amazon companies arc listed among the Top

100 companies of the F ortunc 500 l 31 J. And also the other websites considered here cover

diverse sources of online shopping. For example, ThenaturcStore does not belong to

regular onlinc shopping, but it provides products belonging to nature-related education.

Similarly ToysRUs which is in the list provides specific products dedicated to kids toys.

This company was ranked 189th in Fortune 500 l31 J. The websites such as CircuitCity and

New Egg are meant for selling electronic products only. The other websites are listed as top

online shopping websites when searched in web search engines (cg., google.com). By

considering these websites for the analysis, the proposed solution in this paper can achieve

a good coverage in the online shopping category.

For each website listed above, the navigation implementation has been studied.

Each website shows its own way of representing the pattern for the Navigation. But most of

the websites showed some similar structure fr)r the navigation pattern. The similar

structures that are observed can be grouped together to make a common pattern.

3.2 Patterns Observed

The pattern in each website listed above 1s studied individually to find the

similarities and differences between them.

13

3.2.1 TARGET

The pattern that has been observed in the Target [20) website contains multiple DIV

tags appearing more than once under the BODY tag. And also under the UL tag, the LI tag

has appeared more than one time. When the observed pattern is converted to the DOM

structure format, it looks as shown in Figure 2.

Figure 2. Target Navigation Pattern

3.2.2 TOYSRUS

The navigation pattern observed in the TOYSRUS [25] website has a similar

structure as that found in the TARGET website. The major difference is that the DIV tag

under the BODY tag does not appear more than one time in this pattern. And also the

SPAN tag does not appear after the A tag. But the A tag appears more than one time which

does not in the TARGET pattern. The navigation pattern found in the TOYSRUS website

contains more than one LI tag under UL tag. The following Figure 3 shows the DOM

structure format of the TOYSRUS website.

14

1
C'
!

Figure 3. ToysRUs Navigation Pattern

3.2.3 BJZRATE

The navigation pattern observed in the BIZRA TE l23] website has a similar

structure as that found in the TOYSRUS website. The navigation pattern found in the

BIZRA TE website contains more than one LI tag under the UL tag. The following Figure

4 shows the DOM structure fonnat of the BIZRATE website.

Figure 4. Bizrate Navigation Pattern

15

3.2.4 CIRCUIT CITY

The navigation pattern observed in the CIRCUIT CITY [24] website has a similar

structure as that found in the TOYSRlJS website. The navigation pattern found in the

CIRCUIT CITY website contains more than one LI tag under the UL tag. The structure of

the CIRCUIT CfTY website in the DOM structure format looks as shown below in the

Figure 5.

b({·Y

Figure 5. CircuitCity Navigation Pattern

3.2.5 BUY

The navigation pattern observed in the BUY .com [18] website has a similar

structure as that found in the TOYSRUS website. The navigation pattern found in the

BUY.com website contains more than one LI tag under the UL tag. The structure of the

BUY .com website in the DOM structure format looks as shown below in Figure 6.

16

~...:· ... * ·" 4 .. a &-·~:~.,~

Figure 6. Buy.com Navigation Pattern

3.2.6 AMAZON

The navigation pattern observed in the AMAZON [17] website has a similar

structure as that found in the TOYSRUS website. The navigation pattern found in the

AMAZON website contains more than one LI tag under the UL tag. The structure of the

AMAZON website in the DOM structure format looks as shown below in Figure 7.

Figure 7. Amazon Navigation Pattern

17

3.2. 7 OVERSTOCK

The navigation pattern observed in the OVERSTOCK [19] website has a similar

structure as that found in the TOYSRUS website. The navigation pattern found in the

OVERSTOCK websites contains more than one L1 tag under the UL tag. The structure of

the OVERSTOCK website in the DOM structure format looks as shown in Figure 8 below.

Figure 8. Overstock Navigation Pattern

3.2.8 SMART BARGAINS

The implementation of the Navigation pattern for the smart bargains [21] website

contains a table structure under the BODY tag. The pattern structure contains an

implementation of Table where each column of each row has a UL tag defined with

multiple LT tags. Figure 9 below represents the DOM structure format of the observed

pattern structure.

18

:·;t(

;~1t:i~;~14~s~:
Figure 9. SmartBargains Navigation Pattern

3.2.9 THE NATURE STORE

The navigation pattern observed in the NATURE STORE (22] website has a similar

structure that has been observed in the SMART BARGAINS website. The major difference

observed in this pattern from the SMART BARGAINS pattern is, the DIV tag has been

implemented after TD tag. And also the A tag does not contain any IMG tags as child

elements. The DOM structure representation of NATURE STORE navigation pattern is

shown below in Figure I 0.

- _ _.,

.-'..:~.~-:-.,., .. ,-'i.<:·:~...:~t\'r-:· -:.~,- ·('·, ~·

': ·" ·~.. , ':. ,,, ~
.• • •I"

Figure I 0. TheNatureStore Navigation Pattern

19

3.2.10 NEW EGG

The navigation pattern observed in the NEWEGG [16] website has a similar

structure that has been observed in the SMART BARGAINS website. The major difference

observed in this pattern from the SMART BARGAINS pattern is the DIV tag appeared

after the BODY tag where as there is no DIV tag in the SMARTBARGAINS pattern. The

IMG tag does not appear as a child for the A tag. The tree structure representation of the

NEWEGG navigation pattern is shown below in Figure 11.

(>/' ·r,,
.. ;,' :--·-····~·-

-... ,_-. -- -'-:...:.:.c.==.·-=-=-2.---~·;... ____ :.:.~··.

·r,., - --- -

li~0,;~~t1~,~~~~:1~?:1~1i =~~\~"l
[,) :,! [,,/ .Al ,,J >J /,) f•] l•) l< L:_)

"?::Jt,:1~~Jt=,1~1:~~~;~,~}
Figure 1 i. Newfgg Navigation Pattern

3.3 Common Patterns Derived

Based on the analysis made manually in the previous section and by summarizing

the similarities and differences between each pattern, the following two common patterns

have been derived.

20

• List Structure

• Tabular Structure

To obtain the common patterns, some of the nodes are made optional and some of them are

made to appear more than one time.

3.3.1 List Structure

This kind of pattern is named as List Structure because the pattern structure

contains multiple lists of hyperlinks for the navigation of the website. Figure 12 below

shows the list structure of the pattern. It has been observed that the LI node appeared

multiple times under the UL node. And also some websites have STRONG has child node

and some have SPAN as child node for the A node and most of them do not have either. So

both STRONG and SPAN can be considered optional nodes. Figure 13 is the screenshot of

the AMAZON.com website that shows the list structure for navigation implementation.

llc:\ r '

!
, 11,~ly 1
L-.,..___..,_J

I ,1.xr

Figure 12. List Structure Pattern

21

Tl,.\:'/

Unlimited Instant Videos > ~ .; r-'· '!;: ,...,- '= ~,- t ':::~!- :: ""'l

BooKs >

Movies, Music & Games

Digital Downloads

Kindle

Computers & Office

Electronics

Home, Garden & Pets

Grocery, Health & Beauty

Toys, Kids & Baby

Clothing, Shoes & Jewelry >
Sports & Outdoors >

Tools & Home Improvement:,

Automotive & Industrial >

All Departmen

), h1ovies & T\:

> Blu-ral

) MUSIC

> MP3 Downlo:.c!s

> ri1usical lnstru'•1e11ts

Figure 13. Sample Screenshot of Amazon [17] Website that Follows List Structure

3.3.2 Tabular Structure

This kind of pattern is named Tabular Structure because the pattern structure is

implemented using Table tags. Figure 14 below shows the tabular structure of the pattern.

A list of navigation hyperlinks are implemented in the table. Some websites have the DIV

or CENTER nodes after BODY followed by the <TABLE> node. So these can be

considered as optional nodes. The TABLE node shall have TR followed by TD. The TD

node shall have the navigation hyperlinks implemented as a UL tag. Figure 15 is the

screenshot of the NEWEGG website that shows the tabular structure.

22

i
C.:ntcr cEJ

I

Ll Ll

L . ..,,.'--
TEXT TEXT TEXT

Figure 14. Tabular Structure Pattern

23

Backup Devices &
Media

Barebone .i Mini
Computers

Cables

CD/ DVD Burners &
Med,a

Computer Accessories

Computer Cases

CPUs/ Processors

DIY PC Combos

External Enclosures

Fans & Heatsinks

Flash Memorv &
Readers ·

Hard Dnves

Input Devices

Keyboards & Mice

Memory

Monrt:ors

Motherboards

Networking

Power Protection

Power Supplies

Printers & Scanners

ProJectors

Servers

Speakers & Headsets

SSD

Video Cards & Video
De·,ices

Web Cams

lexible Payment Optio

) jetBook mini Anthraci

Figure 15. Sample Screen shot of New Egg [16) Website that Follows Tabular Structure

3.3.3 Expected Websites/or Patterns

For the websites chosen for analysis, this section discusses to which of the common

patterns the websites belong to. The following Table I shows the pattern name and the

websites that has the corresponding pattern structure.

Ta hie 1 . Ex pcctcd Websites f(..)f Each Pattern

Pattern Name Websites

--· List Structure BUY, NEWEGG, BIZRATE, TARGET,

SMARTBARGATNS, AMAZON,

TOYSRUS, CIRCUITCITY,

OVERSTOCK.

Tabular Structure NEWEGG, SMARTBARGAINS,

THENATURESTORE, TOYSRUS

24

4. DESIGN

This chapter explains the existing techniques and their limitations and the proposal

of a new solution for finding the matched patterns. The main idea behind the

implementation of the existing techniques like DTD and XML Schema is to convert the

parse tree generated from the HTML Graph to XML. And the output XML from this

conversion can be used for the validation. If the XML is validated without any errors, then

the XML is considered to have pattern matches. The idea to convert parse tree to XML is

considered because the parse tree is represented with nodes containing parent, children and

sibling nature. This kind of structure can be represented by XML in a standard way.

4.1 Existing Techniques and Limitations

4./.l DTD Implementation

The idea behind this implementation was to convert parse tree which is output of

HTML Graph tool to XML and use the standard XML validation through DTD. The reason

for considering the DTD approach is the navigation pattern can be represented as DTD and

this pattern can be used for the validation of the input HTML source. which in tum

validates the pattern structure of the given website. If the validation fails then it means the

structure is not being followed which implies the pattern is not observed.

De.fin it ion:

Document Type Definition (OTO) 1s a set of markup declarations that define

a document type for SGML-family markup languages (SGML XML, and HTML) (11].

DTD is used to declare the clements and their attributes that may appear in the document

(11]. This way. with a DTD, the format of XML can be described and the elements in the

25

XML can be verified f 12]. Since the elements described in the DTD format is a standard

approach, this can be used in all of the applications to verify the data is valid [12].

Implementation:

In order to implement the DTD approach for the pattern matching in the input

website, the following steps need to be considered.

• The parse tree generated by the HTML Graph is converted to XML.

• A DTD is created manually based on the defined pattern.

• The OTO developed is used for validating the XML generated by the tool by adding

the OTO in the XML file.

Figure 16 shows the DTD representation of the Navigation Pattern derived for the

Amazon website. Assume that this file is named as navigationpattern.dtd:

<?xml version="l .O" encoding="UTF-8"?>

<!ELEMENT Tree (BODY)>

<!ELEMENT BODY (OlV)>

<!ELEMENT DIV (UL*)>

<!ELEMENT UL (LI+)>

<!ELEMENT LI (A)>

<!ELEMENT A (TEXT)>

<!ELEMENT TEXT (#PCOATA)>

Figure 16. OTO Format of Amazon Navigation Pattern

The XML generated from the parse tree of the HTML Graph is validated using the

DTD prepared, by adding the following tag in the XML. As the OTO is being declared

26

inside the XML file, it must be enclosed with OOCTYPE definition and the syntax looks as

in Figure 17 [12). Since the OTO file has been declared in a separate file, the filename

must be specified as shown in Figure 17 [12].

<!DOCTYPE Tree SYSTEM ·'navigationpattern.dtd''>

Figure 17. Syntax of DTD Declaration in XML

Limitations:

• All the elements in the OTO need to be defined prior to the validation of the XML.

• Order of the child elements is one of the constraints to be considered. Validation

fails if the order is incorrect. The order of the input XML cannot be predicted.

• It is difficult to decide and include all the elements of the XML, because each

website has its own elements defined. The structure of the pattern may be similar in

multiple websites, but the way of implementation docs not need to be the same.

The above limitations make the OTO approach not suitable for the pattern match

recognition.

4.1.2 XML Schema

The limitations discussed in OTO can be addressed by replacing DTD with XML

Schema for defining the common pattern. The XML Schema approach is considered

because all clements need not to be known while writing the Schema. These can be

suppressed by using the attribute "XSO: ANY" in the XML schema. The <any> element

enables the program to extend the XML document with elements not specified by the

schema.

27

Definition:

An XML schema is a description of a type of XML document, typically expressed

in terms of constraints on the structure and content of documents of that type, above and

beyond the basic syntactical constraints imposed by XML itself [13).

This approach is similar to that of the OTO approach in which the common pattern

can be represented as XML Schema. This can be used for the validation of the XML, which

in tum validates the input HTML source, thereby validating the pattern structure of the

given website. If the validation fails, then it means the structure is not being followed

which implies the pattern is not observed.

Implementation:

The following steps are to be considered for the implementation.

• The parse tree generated by the HTML Graph is converted to XML.

• An XML Schema is created manually based on the defined pattern.

• And the XML Schema is used for validating the XML generated by the tool.

• A Java class is written for validating the xml based on the schema.

Figure 18 shows the XML Schema representation of the Navigation Pattern derived for

Amazon website.

28

<?xml version=" 1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/200l/XMLSchema"

xmlns:html="http://www.w3.org/l 999/xhtml">

<xsd:element name="Tree"/>

<xsd:element name="DIV">

<xsd:complexType>

<xsd:choice minOccurs=" I">

<xsd:sequence>

<xsd:elcment name::c"lJL" maxOccurs="unbounded">

<xsd:complexTypc>

<xsd:scquence>

<xsd:element name="LI" maxOccurs="unbounded">

<xsd:complexType>

<xsd :sequence>

<xsd:choice minOccurs=" l ">

<xsd:elernent name="A">

<xsd:complexType>

<xsd:scquence>

<xsd:clement name="TEXT"/>

</xsd:sequence>

</xsd :complexType>

</xsd:clement>

</xsd:schema>

Figure 18. XML Schema Format of Amazon Navigation Pattern

29

The XML generated from the parse tree of the HTML Graph is validated using the

XML Schema prepared, by adding the following tag in the XML. The XML Schema

Location can be specified by using the xsi :schemaLocation attribute [14]. The schema

attribute has two values, the first value is used for namespace and the second is used for

declaring the location of the XML Schema [14]. The declaration of XML Schema inside

the XML file is as shown in Figure 19.

<note xmlns=''http://www.w3schools.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation::c"ht tp: / /www. w3schools. com navigation.xsd">

Figure 19. Syntax of Schema Declaration in XML

Limitations:

• It is hard to define attributes that describe other than the mandatory elements can

also be allowed to the element. The input XML of the parsed input source might

have an element other than the specified attribute for a particular element. This

makes XML Schema a not good technique for the pattern recognition.

Ag: As per the pa/tern, DIV must be followed by an UL tag. The HTML Structure

could have additional elements along with the UL. either before or afier. These

additional elements cannot be defined while writing the schema.

4.2 Proposed Solution

The limitations of using DTD and XML Schema for pattern recognition are

addressed by proposing a new solution in this paper. A new type of structure recognition

has been proposed to find the pattern structure in the given input. The syntax of the

30

proposed pattern extends from OTD. For recognizing the desired pattern structure, an

algorithm that uses the pattern file to find the match in the input file has been implemented.

Implementation:

The following steps are to be considered for the implementation.

• The parse tree generated by the HTML Graph is given as input to the tool.

• The common patterns are derived and defined in the proposed format.

• Based on the common patterns, the program finds the matched patterns in the parse

tree.

4.2.J Pattern Structure Definition (PSD) Syntax

Since the implementation does not use any existing techniques for the proposed

solution, to represent the common patterns a new syntax has been defined. The pattern can

be converted into this syntax format and can be saved as text (.txt) file. Since the new

format proposed extends from OTO, and this is being used for recognizing the pattern

structure, this can be called as PATTERN STRUCTURE DEFINTION (PSD). The syntax

of the PSD for the navigation pattern looks like as shown in Figure 20. For the declaration

of the pattern the following rules must be followed:

• Each Node must have a declaration that starts with the word ·'ELEMENT''.

• The child nodes for a node must be embedded within parentheses - ·'()".

• Two or more child nodes can be declared separated by a comma.

• A comment can be added by starting the line with"#'' sign.

31

#Navigation Pattern

ELEMENT Tree (BODY)

ELEMENT BODY (DIV)

ELEMENT DIV (UL)

ELEMENT UL (LI+)

ELEMENT LI (A?)

ELEMENT A (TEXT)

Figure 20. Sample PSD of Navigation Pattern

The following Table 2 shows the type of attributes that can be used m the

declaration of the node for setting the property of the node.

Table 2. Attributes Used for Node Property

-- --~---- --
Attribute Description

Used for adding comments to the PSD.

+ An element ending with'+' must appear at least 5 times.

? An element ending with ·r is considered as optional, can

appear O or I time.

An clement without any ending character is considered as

mandatory element which means it must exist.

If the line in the PSD file is added with'#' character at the start of the line. then it is treated

as comment and the line is ignored for the implementation.

32

4.2.2 Rules Considered

An element defined with '+' property sign must appear at least five times to become

a matching pattern. This rule is considered in order to avoid tree structure matches that do

not actually belong to the pattern. By adding this rule to the algorithm, unnecessary pattern

matches were avoided. But it does have a disadvantage, where some of the actual patterns

that are defined with less than five occurrences are not considered as pattern matches. The

minimum number of occurrences for the node with '+' is considered as FIVE because

during the analysis of the websites, it has been observed that all the websites have at least

five links provided for the navigation. But there are some exceptional cases in some

websites where the occurrences of the links are less than FIVE. By considering FIVE as a

threshold value, the pattern discovery can be achieved efficiently.

For example, consider a node LI defined with ··+" attribute a pattern match is found

if the LI node appears five times or more. If the actual pattern has only four occurrences of

the LI node, then it will be ignored.

4.2.3 Assumptions

For the implementation of the proposed solution, the following assumptions arc

taken into consideration:

• An optional node must have only one child

o For cg., ELEMENT A (STRONG?)

ELEMENT STRONG (TEXT)

Herc the assumption is STRONG must have only one child for it.

• The child node of the Optional Node must not be an Optional.

33

4.2.4 Pattern Match Finder Tool Design

This section explains the design of the pattern match finder tool for the proposed

solution. The design of the tool starts with gathering the requirements that are needed for

the development of the tool. The following are the requirements that the tool must meet.

• The purpose of the tool is to find the matched pattern structures in the given input

HTML file.

• The tool must be able to accept the parse tree structure which acts as input.

• The tool shall go to. the location of the common pattern files that are derived

manually and must be able to read the files.

• From the list of common pattern files from the provided location, the tool must be

able to find a match in the input file provided.

• The tool must list all the matched patterns from the common patterns derived.

• The tool shall display the patterns matched for the corresponding pattern.

A tool has been designed which uses the algorithm that compares the desired

pattern structure and provided input file. The architecture of the Parse Tree Comparison

approach is as shown in the Figure 21 below.

34

Input

File

location

or URL

I ----------- ------ -1
I

HTML Graph :

Cobra Renderer

and Parser

--------------r-------------

Parsed output in

DOM Structure

I

r------------------------------------ ------------,
I I
1 List I

I - ' I
: Structure Convert PSD Comparison of the two :

: !---ti> to DOM ~ inputs given in DOM :

: Tabular Structure Structure format :

I - l :1:1

Structure

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

List of Discovered

paths are displayed as List of Tree Paths of the
~

output discovered pattern

I Path 1 I

I Path 2 I

I Path 3 I
L---1

Figure 21. Design of Pattern Discovery Architecture

The parse tree output generated by the HTML Graph tool ts used for the

comparison to find the desired pattern structure. For the proposed Pattern Match Finder

tooL the following are provided as input:

• The Parse Tree output from the HTML Graph tool in DOM structure fonnat.

• Location of the common patterns analyzed based on the manual summarization.

35

The program implementation looks for each of the PSD files in the common

patterns located in the location provided. The program fetches the PSD file of List and

Table structure and converts them into DOM Structure format. This is given as input for

traversing through the input parse tree generated by the HTML Graph. Once the pattern

match is found. then the system gets the path of the tree from root node to leaf. This

process repeats till the end of the parse tree. Once all the files are processed, then the list of

matched PSD files is noted.

4.2.5 Tool Features

The algorithm proposed and the tool implemented can be used for different

websites belonging to the online shopping category. The tool looks for the common pattern

matches, and if there is a match then the tool extracts the matched patterns. Along with the

pattern match technique, the proposed algorithm has the following additional features:

• The algorithm accepts the common patterns in PSD structure fonnat. As PSD

supports the optional nodes, the websites that share similar structure can be

represented using optional ("'?") property. This makes the tool more generic for

different websites that have similar semantic structure implementation.

txample: Consider the following sample structure:

Website-A: [Tree, BODY, CENTER, DIV, UL, LI, A, TEXT] and

Website-B: [Tree, BODY, DIV, UL, LI, A, TEXT].

By making the CENTER node optional in the PSD, the pattern match can be found

in both the websites. The sample PSD looks as below.

Sample PSD: fTree, BODY, CENTER?, DIV, UL, LI, A, TEXT]

36

• The proposed algorithm supports the partial matches, where the tool finds the

pattern match if the structure matches till the parent node of the node that has "+"

attribute. This makes the tool efficient in matching the partial matches.

Example: Consider the following sample structure:

Website-A: [Tree, BODY, CENTER, DIV, UL, LI, A, IMG] and

Sample PSD: [Tree, BODY, DIV, UL, LI+, A, TEXT).

The algorithm finds the match till the path reached UL node and returns the path as

a match. Ry this the partial matches can be achieved.

• The proposed algorithm is flexible to find the child node match of a parent node,

even though the child node is not an immediate child.

Erample: Consider the following sample structure:

Website-A: [Tree, l30DY, DIV, DIV, CENTER, B, UL, LI, A, TEXT] and

Sample PSD: [Tree. BODY, DIV. UL, U+. A. TEXT].

The algorithm finds the match by ignoring the nodes between DIV and UL. This

helps the algorithm to find a pattern match for different websites that have a similar

semantic structure behind the navigation pattern.

• As long as the order of the nodes in the given PSD is matched with the extracted

path from the input, the tool finds the match even though there are additional nodes

in the input that are not declared in the PSD.

Example: Consider the following sample structure:

Website-A: lTree, BODY, DIV, [UL, !MG], LI. A, IMG] and

Sample PSD: [Tree, BODY, DlV, UL, Ll+. A, TEXT].

37

In this the DIV node has more than one child - UL and IMG. The algorithm finds

the match by considering only the path through UL node for the pattern match. The

additional nodes along with the matched nodes are ignored.

4.3 Common Patterns

For the implementation of the proposed solution, the common patterns derived in

the Section 3.3 must to be converted to the syntax format described in the above section

(4.2.1). The defined patterns are stored in a location and the location is provided for the

program to fetch the files.

4.3. l Li.~t Structure

The similarities in the patterns observed in websites like, TOYSRUS, Target, Buy,

Bizrate, Amazon, Circuit City and Overstock are summarized. By adding the properties to

few nodes, the common pattern that can be used to find the pattern structure among these

websites has been derived.

Since the LI node must appear more than one time, ''+'' attribute is added to the

node. And since the SPAN and STRONG nodes are optional nodes, they are followed with

'·?" attribute. Figure 22 below shows the syntax representation of the list structure.

ELEMENT Tree (BODY)

ELEMENT BODY (DIV)

ELEMENT DIV (UL)

ELEMENT UL (LI+)

ELEMENT LI (A)

ELEMENT A (SPAN?,STRONG?)

ELEMENT SP AN (TEXT)

ELEMENT STRONG (TEXT)

Figure 22. List Structure

38

4.3.2 Tabular Structure

The similarities in the patterns observed in websites like NewEgg, Smart Bargains,

Thenaturestore and JCPenny are summarized. By adding the properties to few nodes, the

common pattern that can be used to find the pattern structure among these websites has

been derived.

The DIV, CENTER, and TBODY nodes are treated as optional and hence they are

followed with ··?" attribute. Figure 23 below shows the tabular structure pattern in the

syntax format.

ELEMENT Tree (BODY)

ELEMENT BODY (DIV?,CENTER?)

ELEMENT DIV (TABLE)

ELEMENT CENTER (TABLE)

ELEMENT TABLE (TBODY?)

ELEMENT TBODY (TR)

ELEMENT TR (TD)

ELEMENT TD (DIV?)

ELEMENT DIV (UL)

ELEMENT UL (LI+)

ELEMENT U (A)

ELEMENT A (TEXT)

Figure 23. Tabular Structure

39

5. IMPLEMENTATION AND TOOL VISUALIZATION

This chapter explains the implementation and the visualization of the pattern match

finder developed to recognize the pattern structure in the input HTML file. This chapter

gives a detailed description of various steps that are involved in the development of the

pattern match finder and also some additional steps that include embedding the pattern

match finder with the HTML Graph tool.

5.1 Technologies Considered

The following technologies are used for the implementation of the pattern match

finder tool. The tool has been implemented using JAVA and Eclipse !DE.

5.1.I JAVA

JAVA is popularly known object-oriented programming language. JAVA is the

most chosen programming language by the software developers because of its versatility,

efficiency and portability [9]. Swing, an API provided in JJ\ VA for developing the

Graphical User Interface components . .TA VA has been used as a core developing language

in this paper because the application which is used for developing Cobra HTML Renderer

is fully implemented in JAVA. For the GUl Development of the application, Swing AP!

implementation has been used.

5. 1.2 ECLIPSE

Eclipse is an open source integrated development environment used for developing

software applications. Eclipse is written mostly in JAVA and can be used as IDE for

developing .IA VA as well as other language by installing corresponding plug-ins (1 O].

Eclipse is released under the ten11S of the Eclipse Public License [l 01. For this paper,

Eclipse is chosen as IDE for the application development.

40

5.1.3 HTML Graph

HTML Graph is a JAVA based application which converts HTML to DOM

Structure. I ITML Graph uses the Cobra HTML Renderer and Parser from the Lobo Project

for parsing the input HTML file. HTML Input can be provided in two ways:

• By loading the HTML file which is located in the local disk of the system. Once the

file is loaded. it is automatically converted and saved as 'file_ name.graph. "

• The input can also be provided by entering a URL. The URL is loaded, converted,

and saved as "parsed_ URL_ name _microsec.graph. "

5.1.4 Cobra: Java HTML Par.<,er

Cobra is a pure Java HTML renderer and DOM parser. Cobra is developed in order

to support HTML 4, Javascript and CSS 2 technologies [81. The Cobra can be downloaded

from Source Forge [8]. Cobra is an open source project and is available free of cost. The

source code of Cobra is released under the LGPL license [8]. Cobra does not support

browser functionalities such as navigation, cookies, I lTTP Authentication and so on [8].

The input HTML is processed by Cobra which parses and renders the HTML into

DOM structure format. The output DOM structure of the given HTML from Cobra is used

as one of the inputs for the Pattern Match Finder tool.

5.2 Pattern Match Finder Tool

for the implementation of the tool, the JAVA Swing API has been used for the GUI

development. The HTML Graph tool accepts input file either by providing the absolute

path of the HTML file or by providing the URL of the desired website. The output of the

HTML Graph tool is a Frame that contains the graph notation of the input file in the left

41

panel and the browser that navigates the given input on the right panel. Figure 24 below

shows the output of HTML Graph Tool.

~--~!::~ 1'·-~_Flh_.~ ... e·"""' ~.1-0J ____ :::;;;J~;;;:z· ··;0··7·•'fllag;~:;pt7:e;'."7 .. : 'TT]'.:'.1~~~1£71:
f.,1., __ ,-ielp -.---~-----·-·-'"·-·- ···-·---····~~-.---·---~---·-····----.. -- '""~·-···---=······--.. ·-···-··-- ••'-'

_r:

r·H()["l~ ~ -~ -~-~
T -~·--,

""I
: j '

~ . File View

f ···

t yvat~art H· \-;;,i1.1e of rh~ Div Loc:;1;! :...d StNe F"inder Reg' •friMl·ifaw• ·i-0,--.... -.--·----Aa-. ,,-,c>-cc-ccc-,c
l l \:lt·'::'!H,f·;,:-,;&()tfkt"

l' Mf,.,.,;f",. Hi•'.i,· !It f\1i~,,s:,, I H>n" r,,,,i;un· • (,u,dco,

• tq;1,,)r,' .. ':>lk"::<- t.. ;~-wdrv

: lt,,!,·, & Ki,):,

{ ·, CY-~ I;. Vd~-~, G,,,i,~:,
! i S-!H•rt•; !!. fi•Ht"I,',

! t\utv S. Hi,n,,;, 1rncn,v!a'1Hl:':lt.

i ! rh,-:-t{,

! ;,:,-:::.: :.·:.~,:::":'~;"""''
! (,'f:IS'"l"'l- & !'Ph

i I S..,ve Big Now

1 · ' '

Figure 24. Output of HTML Graph Tool

Free Shipping with slu ·

'"'"' •119

The pattern match finder is implemented and embedded with the HTML Graph

tool. The pattern match finder is initiated when the user clicks on the ''Pattern Match

Finder" button located at the bottom center of the right panel. which is under the browser

panel of the HTML Graph output. On clicking the button, a new Frame is opened that

contains parse tree of the HTML file on the left panel and the right panel contains a button

'·Find Pattern." When the ··Find Pattern" button is clicked, the dropdown box is populated

with a list of patterns. When the user selects a desired pattern from the list the pane in the

right panel shows the corresponding pattern. Figure 25 below shows the frame of the

Pattern Match Finder.

42

c:il HTML Graph - Pattern Match Finder

Tree

BODY

Figure 25. HTML Pattern Match Finder

Once the user clicks on the ''Find Pattern'' button in the right panel, the following steps are

invoked.

5.2.1 Input Parse Tree

The output parse tree of the HTML Graph tool is treated as input for the pattern

match finder tool. Hence the parse tree generated by the HTML Graph tool is displayed in

the left panel of the Pattern Match Finder Tool. And the matches that are discovered in the

parse tree will be displayed in an expanded format.

5.2.2 Common Pattern Files

This step of the tool fetches the list of common pattern files from the location

specified. For each file in the list, the program reads the pattern file contents. For each

43

element specified in the input file, the program creates a corresponding node. The program

removes the attribute that is added as a property and returns the name of the node. The

program returns a JTree object from the pattern file which is Tree Structure representation

of the pattern file as shown in the Figure 26 below.

EI.EHENT T::ee (30DY)

ELEMENT 30DY (DIV)

E::.EHENT DIV (DI.)

ELEMENT UL (I.I-'-j

EI.EHENT :C.I (A)

ELEH£NT A (SPA.'l?,STRCNG?)

ELE11ENT SPAN (TEXT}

ELE11ENT STRONG (TEXT)

K,..., ,.------.;

Tree

BODY

DIV

UL

LI

Figure 26. Tree Structure Representation of Pattern

A

. SPAN

• TE(f

STRONG

• TEXT

All the node properties that are observed while reading the pattern file are

maintained separately for the corresponding nodes. By doing this. the tool can find whether

the node is an optional, multiple or mandatory node.

• For each file in the location specified, the tool reads the contents of the tile.

• If the line starts with'#' character, then the line is assumed as comment and the

line is ignored.

• If the line starts with "ELEMENT" keyword, then the tool reads the parent and

child elements by splitting the line.

• For each parent clement. the list of child elements that are within the

parentheses and separated by commas(".") is fetched.

• The above steps arc repeated till all the lines in the file are read.

• For each parent element read from the file. a tree node is created. and the list of

the child clements for the parent node is fetched.

44

o For each child element.

• Checks if any property has been set, if so, then the tool adds the

node to the list of optional nodes or multiple nodes depending

on the property.

• A child node is created by removing the property attribute and

adding it to the parent node.

5.2.3 Tree Compari.wm

This is the crucial step which compares the Input Parse Tree with the JTree

generated from Pattern File. The step deals with traversing the Pattern Tree generated from

the Pattern File. Based on the nodes found in the pattern tree, the Jnput Parse Tree is

traversed for the comparison.

5.2.3.J Traverse Pattern Tree

In this step of the program the tool gets the parent-child combination of the Pattern

Tree. The flow starts by executing the following steps:

• The root node of the Pattern Tree is passed for the traversing method.

• The child count of the node (initially root node) is fetched.

• For each child node of the node (parent node)

o Check whether the child node is optional. If optional, then child node of

the optional is retrieved as sub-child node

• Once the parent-child combination is obtained, then Traverse Input Parse Tree

will be invoked.

• If more than one child exists for a node. then the above steps arc repeated for

each child node.

45

• The above steps are repeated unti I all the nodes of the pattern tree are traversed.

5.2.3.2 Traverse Input Parse Tree

By the time this step gets initiated it is assumed that a parent-child combination of

the Pattern Tree has been obtained. The flow starts by executing the following steps:

• The root node of the Input Parse Tree is passed for the traversing method.

• The child count of the node (initially root node) is fetched.

• The program checks whether the current node match with the parent node of

the Pattern tree.

• For each child node of the node (parent node)

o If parent match is found, then:

• The program checks if the current child node is multi node (with

"+" property)

• If above is true and the child node appears more than or

equal to five then, number of pattern matches found is

increased by one.

• The program checks if the current child node matches with the

child node of the Pattern Tree.

• If above is true and if the current child node is the leaf

node, then path from root to current node is captured.

• Repeat from step 1 by passing the child node as current node.

• The above steps are repeated until all the nodes of the input parse tree are

traversed.

46

This step of the program gives the path of the matched pattern (from root to leaf)

and number of times each node has appeared in the input parse tree.

5.2.4 Di.\play Matched Paths

After executing the Tree Comparison step of the program, the list of pattern files

that has the matched combinations in the input parse tree are obtained. The dropdown box

on the right panel is populated with the pattern files that have a match (see Figure 26). The

user can select the desired pattern to sec the pattern structure as well as the matches in the

input parse tree.

A program that deals with the presentation of the matched patterns of the input tree

has been implemented. In order to provide the user with the matched patterns in the input

parse tree, the matched paths are displayed by expanding the path from the root. The

number of matches found in the input parse tree is also displayed on the right panel below

the drop down. Figure 27 shows the output that is displayed with the matched patterns.

-----~~-

·-~----·-···-·-·-····-­.· ----·-- ·-·

Figure 27. List of Patterns Matched and Expanded Matched Patterns

47

6. EVALUATION

This chapter explains how the proposed idea implementation is evaluated. To

evaluate the Pattern Match finder tool. all the websites that are considered for manual

analysis are considered here. For testing the websites. either the URL of the website or

static HTML page can be given as input. And the list of common patterns is also provided

as input. The following Table 3 shows the list of websites under the Website Name column

and the pattern structure found for the corresponding website has been marked.

Table 3. List of Websites and Patterns Matched

S. No Website Name List Structure Tabular Structure

1 Buy X

'") NewEgg X X ...

3 Bizrate X

4 ThenatureStore X

5 Target X

6 SmartBargains X X

7 Amazon X

8 ToysRlJs X X

9 CircuitCity X

--- -- --
10 Overstock X

To test the correctness of the implemented I'alfern Maleh Finder tool. the results

are compared with the expected results. derived in section 3.3.4. The results matched with

the expected results and the tool has met the requirements.

48

6.1 Precision and Recall

For evaluating the performance of the proposed algorithm and the implemented

tool. the Precision and Recall values are calculated. The Precision and Recall are defined

for this paper based on the evaluation made by T. Hassan [27].

Precision

Recall

Number of correctly retrieved pattern matches
Total number of retrieved pattern matches

Number of correctly retrieved pattern matches
Total number of actual matches

··Number of correctly retrieved pattern matches" are the pattern matches that are

retrieved by the pattern match tool. "Total number of actual matches'' are actual pattern

matches that are present in the input which are found manually. "Total number of retrieved

pattern matches" arc the total pattern matches that arc found by tool.

To evaluate the precision and recall, the Home page of the website is derived and

given as static HTML input to the tool. All the websites chosen for manual summarization

(Section 3) arc considered here to measure the precision and recall, the following Table 4

summarizes the results.

Table 4. Precision and Recall Calculations for Websites Listed

-· -
S.No Website Name Calculations List Tabular

Structure Structure

1 Buy.com Rcorrect 31

Atotal 33
--

Rtotal 36

Recall 0.939393939

Precision 0.861111111

2 New Egg.com Rcorrect 25 25

A total 27 27

Rtotal 25 25

Recall 0.925925926 0.925925926 ..___.. ____ , -· -----~
Precision 1 I

49

Table 4 (Continued)

3 Bizrate.com Rcorrect 16

Atotal 20

Rtotal 22

Recall 0.8

Precision 0. 727272727

4 ThenatureStore.com Rcorrect 16

A total 24

Rtotal 16

Recall 0.666666667

Precision 1

5 Target.com Rcorrect 28

Atotal 38

Rtotal 31

Recall 0. 736842105

Precision 0.903225806

6 SmartBargains.com Rcorrect 9 9

Atotal 12 12

Rtotal 9 9

Recall 0.75 0.75

Precision 1 1

7 Amazon.corn Rcorrect 12

Atotal 19

Rtotal 12

Recall 0.631578947

Precision 1

8 ToysRlJs.corn Rcorrect 18 8

Atotal 25 8

Rtotal 19 8

Recall 0.72 1

Precision 0.947368421 1
-

9 CircuitCity.com Rcorrect 12

Atotal 16

Rtotal 12

Recall 0.75

Precision 1

50

Table 4 (Continued)

10 Overstock.corn Rcorrect 14

A total 15

Rtotal 14

Recall 0.933333333

Precision 1

(where Rcorrect is the number of correctly retrieved patterns; Rtota! is the total number of

retrieved pattern matches; A total is the total number of actual matches)

6.2 Evaluation Using Additional Websites

Along with the websites considered above, the tool has been tested by providing ten

additional different websites belonging to the online shopping category. For all the

websites chosen, the tool was able to find a pattern match from the two derived patterns.

The following Table 5 shows the list of additional websites used for evaluating the tool.

Table 5. Additional Websites Used for Evaluating the Tool

S. No Website Name Calculations List Tabular
Structure Structure

1 BcstBuy Rcorrcct 24

A total 34

Rtotal 28

Recall 0.705882353

Precision 0.857142857

2 Lowes Rcon·ect 11

A total 11

Rtotal 12

Recall l

Precision 0.916666667

3 American Eagle Rcorrect 15

Atotal 28

Rtotal 16

Recall 0.535714286

Precision 0.9375
~·

51

Table 5 (Continued)

-
4 Meritline Rcorrect 6 6

Atotal 6 6

Rtotal 6 6

Recall 1 1

Precision I 1

5 Quill Rcorrcct 33

Atotal 45

Rtotal 33

Recall 0.733333333

Precision I

6 Kohls Rcorrect 2

Atotal 2

Rtotal 3

Recall I

Precision 0.666666667

7 Ebay Rcorrect 10

A total 15

Rtotal I I

Recall 0.666666667

Precision 0.909090909
f--·--"-·-f--

8 Walgreens Rcorrect 15 6

Atotal 16 6

Rtotal 15 6

Recall 0.9375 I
Precision I I

9 Sunglass! lut Rcorrect 10

A total l 1

Rtotal 12

Recall 0. 909090909

Precision 0.833333333
------f---------

10 BarncsAndNohlc Rcorrect 50

A total 53
Rtotal 50

Recall 0.943396226

Precision I
(where Rcorrect is the number of correctly retrieved patterns; Rtotal is the total number of

retrieved pattern matches; Atotal is the total number of actual matches)

52

6.3 Evaluation Results

The following Figure 28 shows the Average Precision and Recall and Standard

Deviation of the two common patterns for twenty websites chosen for the evaluation.

From the Figure 28, it can be observed that the Average Precision for List structure

is 0.925 approximately and the Average Recall for List structure is 0.8209. The Average

Precision for Tabular structure is I and the Average Recall for Tabular structure is 0.918

approximately. For the observed Precision and Recall of the List and Tabular Structure

patterns, the Standard Deviation has been calculated and is shown in Figure 28 below.

1.2

1

0.8

0.6

04

0.2

0

I

list Structure

I

Tabular Structure

I& Overall Preci,ion Avg

Overall Recall Avg

Figure 28. Average Precision and Recall

For measuring the accuracy, F-1 score has been calculated by using the hannonic

mean of precision and recall f281.

Accuracy = 2 x precision x recall
precision + recall

By using the above formula. the Accuracy of the implemented tool is 0.9 I 35. Thus,

it 1s found that pattern match tool achieves about 91.35% accuracy for extracting the

patterns across multiple web pages under the online shopping category. The performance

53

of the pattern match tool can be further evaluated to test the pattern structures of more web

pages under different domains of the websites.

54

7. CONCLUSION AND FUTURE WORK

The main objective of this paper is to summarize the web patterns manually and

derive the common patterns. Also one of the goals of the paper is to design and develop a

tool which can be used to find the pattern matches in the parser tree based on the common

patterns derived. The work in this paper has clearly met the intended objectives of this

paper. The paper has presented a new structure called Pattern Structure Definition (PSO)

which has been extended from OTO for representing the common pattern structure. Tree

comparison approach has been presented to discover the pattern matches in the parse tree

based on the list of common patterns summarized manually.

The evaluation and experiment results indicate that the Paflern Match Finder tool

finds the pattern matches for navigation in the online shopping websites. The tool has not

only been tested for the list of websites chosen for analysis but also tested on additional

websites belonging to the online shopping category. The tool was able to find a pattern

match from the common patterns derived. The precision, recall and accuracy calculations

show the effectiveness of the tool. Results show that an accuracy of 91.35 % has been

achieved by the tool.

The pattern match discovery approach discussed in this paper, however, still have

some limitations. First, this approach cannot discover the pattern match if the number of

items in the list is less than five. To consider a pattern as a matched pattern, the number of

occurrences of the node with ·+' attribute must be at least five or more. If a true pattern

which is supposed to be a pattern match has only four or !cs~ occurrences, then it will not

be discovered as a pattern match. Second, the pattern discovery is mainly performed on the

output generated by the Cobra Renderer and Parser tool. There arc some web pages where

55

the Cobra tool cannot recognize the source code. In such cases, the implemented tool

throws exception and the entire process 1s terminated. For example, for the website

staples.com, a DOM Exception IS thrown with the message

"JNVA !JD_ CHARACTER_ ERR: An invalid or illegal XML character is speqfied." The

reason behind the exception is due to the source code of the web page containing a

mctadata defined with characters that cannot be processed by the Cobra. In this example,

the invalid code that caused the error is as shown in Figure 29 below.

<meta http-equiv="Pics-Label" content="(pics-1.1

"http://www.icra.org/ratingsv02.html" comment "lCRAonline EN v2.0" I gen true for

"http://staples.com" r (nz 1 vz I lz I oz 1 cb 1) "http://www.rsac.org/ratingsvOl .html" 1

gen true for "http://staples.com" r (n Os O v O IO))"/>

Figure 29. Sample Code for Invalid Exception

The cause for the exception could be any invalid code. The Cobra cannot recognize

such type of code. Hence, this is considered as one of the limitations for the work done in

this paper since the output of the Cobra tool is accepted as one of the inputs for the pattern

discovery.

This work can be extended to other patterns like product results patterns that occur

in the online shopping category, as well as to other domains like online cars searches and

online travel reservations.

56

REFERENCES

[I] A. Arasu and H. Garcia-Molina, "Extracting structured data from web pages",

Proceedings of the 2003 ACM SJGMOD International Conference on Management

Of Data, pp: 337-348.

12] Z. Zhang, B. He, K. Chen-Chuan Chang, "Understanding Web query interfaces:

best-effort parsing with hidden syntax", Proceedings of the 2004 ACM SIGMOD

International Conference on Management Of Data, June 13-18, 2004, Paris, France.

[3] Mohammed .J. Zaki, ''Efficiently mining.frequent trees in a.forest'', Proceedings of

the eighth ACM SIGKDD International Conference on Knowledge Discovery and

Datamining, 2002.

[4 J David Lo, Siau-Cheng Khoo, ''Mining Patterns and Rules for Software

S'J)(!cffication Discove,y ", Proceedings of the VLDB Endowment, Vol I, No. 2, Aug

2008.

f 5] F. Mandreoli, R. Martoglia, P. Zezula, "Principles (?{ Ho/ism .fc>r sequential twig

pattern matching." The VLDI3 Journal - The International Journal on Very Large

Data Bases, Vol 18, No. 6, Dec 2009, pp: 1369-1392.

[6] C Ranganathan. S.Ganapathy, ··Key dimensfrms c?f business-to-consumer web

sites", Information and Management, Vol 39, Issue 6, May 2002.

171 C. Park, Young-Gui Kim, "lndent(fj:ing Key Factors affecting consumer purchase

behavior in an online shopping context", International Journal of Retail &

Distribution Management, Vol 3 L No. I, 2003, pp: 16-29.

[8] Cobra HTML Renderer and Parser, http://lobobrowscr.org/cobra.jsp, Date Visited:

03/01/2011.

57

[9] Learn about Java Technology, http://www.java.com/en/about/ Date Visited:

03/01/2011.

f I 0) Eclipse IDE, http://en.wikipedia.org/wiki/Eclipse _(software) Date Visited:

03/01/2011.

[11] DTD, http://en.wikipedia.org/wiki/Document_ Type_ Definition Date Visited:

03/05/201 I .

[12] DTD, http://www.w3schools.com/dtd/dtd_intro.asp Date Visited: 03/05/2011.

[13] XML Schema, http://en.wikipedia.org/wiki/XML_schema Date Visited:

03/05/20 I I.

[14] XML Schema, http://www.w3schools.com/schema/schema_schema.asp Date

Visited: 03/05/2011.

l I 5] J. Y. Hsu and W .-T. Yi. "Template-based information mining fi·om html

documents''. In Proceedings of AAAI-97, July 1997, pp: 256--262

[16] http://www.newegg.com, Date Visited: 03/30/2011

[17] http://www.amazon.com, Date Visited: 03/30/2011

[18] http://www.buy.com, Date Visited: 03/30/2011.

[19] http://www.overstock.com, Date Visited: 03/30/2011

[20] http://www.target.com, Date Visited: 03/30/2011

121] http://www.smartbargains.com, Date Visited: 03/30/201 I

[22] http://thenaturcstore.com, Date Visited: 03/30/2011

[23] http://www.bizrate.com, Date Visited: 03/30/2011

[24] http://www.circuitcity.com, Date Visited: 03/30/2011

[25] http://www.toysrus.com, Date Visited: 03/30/2011

58

[26] D. C. Reis, P. B. Golgher, A. S. Silva and A. f. Laender, "Automatic 1,veb news

extraction using tree edit distance"', In Proceedings of 13th International Conference

on World Wide Web, May 17-20, 2004, New York, NY, USA, pp:502-511

[27] T. Hassan, "Toward~ a common evaluation strategy.for table structure recognition

algorithms", In Proceedings of the 101h ACM symposium on Document

Engineering 2010.

l28) Chen, .I. and Xiao, K. "Perception-oriented online news extraction", ln

Proceedings of the 81h ACM/IEEE-CS Joint Conference on Digital Libraries . .lune

16 - 20, ACM, New York, NY, 2008, pp: 363-366.

[29] C.-H. Chang, C.-N. Hsu, S.-C. Lui, "Automatic information extraction.from semi­

structured Weh pages by pattern discovery", Decision Support Systems - Web

retrieval and mining, Vol 35, Issue I, April 2003. pp: 129-14 7

!30] M. Cosulschi, A. Giurca, B. Udrescu, N. Constantincscu and M. Gabroveanu,

"HTML Pattern Genera/or - Automatic Data Extraction _fom Web Pages",

SYNASC 2006, In Proceedings of the 81h International Symposium on Symbolic

and Numeric Algorithms for Scientific Computing, pp:75-78.

f J 11 http://money.cnn.com/rnagazines/fortune/fortune500/2011 /full_list/, Date Visited:

06/12/2011.

59

	BCS2_1380
	BCS2_1381
	BCS2_1382
	BCS2_1383
	BCS2_1384
	BCS2_1385
	BCS2_1386
	BCS2_1387
	BCS2_1388
	BCS2_1389
	BCS2_1390
	BCS2_1391
	BCS2_1392
	BCS2_1393
	BCS2_1394
	BCS2_1395
	BCS2_1396
	BCS2_1397
	BCS2_1398
	BCS2_1399
	BCS2_1400
	BCS2_1401
	BCS2_1402
	BCS2_1403
	BCS2_1404
	BCS2_1405
	BCS2_1406
	BCS2_1407
	BCS2_1408
	BCS2_1409
	BCS2_1410
	BCS2_1411
	BCS2_1412
	BCS2_1413
	BCS2_1414
	BCS2_1415
	BCS2_1416
	BCS2_1417
	BCS2_1418
	BCS2_1419
	BCS2_1420
	BCS2_1421
	BCS2_1422
	BCS2_1423
	BCS2_1424
	BCS2_1425
	BCS2_1426
	BCS2_1427
	BCS2_1428
	BCS2_1429
	BCS2_1430
	BCS2_1431
	BCS2_1432
	BCS2_1433
	BCS2_1434
	BCS2_1435
	BCS2_1436
	BCS2_1437
	BCS2_1438
	BCS2_1439
	BCS2_1440
	BCS2_1441
	BCS2_1442
	BCS2_1443
	BCS2_1444
	BCS2_1445
	BCS2_1446
	BCS2_1447

