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ABSTRACT 

Blue-green algae are a major environmental concern in freshwater produce toxins and 

cause a wide range of problems including oxygen depletion, fish kills, harm or death to other 

aquatic organisms, and subsequent habitat loss. Cyanobacteria are a type of blue-green algae that 

form harmful algal blooms (HABs) in water ecosystems. In this study, artificial intelligence 

techniques, in particular artificial neural networks, were developed to estimate blue-green algae 

fluorescence for the year-round data collected in 2016-17 from western Lake Erie, USA. Based on 

the lake’s environmental conditions and available data, eight input parameters including 

phosphorous, nitrogen, chlorophyll-a, air temperature, water temperature, turbidity, wind speed, 

and pH were used to run the model. Five different learning algorithms were TESTED, and the 

Levenberg-Marquardt algorithm resulted in the highest R2 values of 0.98 and 0.72 for eight, and 

three (phosphorous, nitrogen, and chlorophyll-a) input parameters, respectively. Eight input 

parameters produced the best estimation approach. 
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1. INTRODUCTION 

  Excess nutrients in freshwater environments stimulate blue-green algae, which rapidly 

increase and accumulate in lakes and rivers when the optimum environmental conditions are met. 

Cyanobacteria are a type of prokaryotic blue-green algae that can form harmful algal blooms 

(HABs) in water ecosystems and sometimes called CyanoHABs (O’Neil et al., 2012; Paerl et al., 

2015). Some cyanobacteria genera, including Microcystis spp., Planktothrix spp, Anabeana spp., 

Cylindrospermopsis spp., Aphanizomenon spp., and Oscillatoria spp., in freshwater, are able to 

produce cyanobacterial metabolites and toxins (cyanotoxins). The cyanotoxins have been found to 

be causes of animal and human poisonings and may have lethal effects on aquatic organisms 

(Ferreira et al., 2001; Anderson et al, 2002; Mohamed and Shehri, 2010; O’Neil et al. 2012, Li et 

al., 2016). 

The occurrence of HABs in freshwater increases the risk to human and animal health, 

reduces water transparency, creates oxygen-deprived aquatic zones, can cause taste and odor 

problems in drinking water, leads to death of plants and fishes, effects biodiversity, and decreases 

the recreational use of water (Carpenter et al., 1998; Smith, 1998; Hudnell et al., 2010). HABs are 

especially dangerous in a water body if the water is used as a municipal drinking water reservoir 

where possible cyanotoxins are piped into people’s home and used for drinking, cooking, bathing, 

and other household chores.  

Nitrogen (N) and phosphorus (P) are macro-nutrients required for growth by the 

photosynthetic cyanobacteria that make up HABs in freshwater ecosystem. Nutrient over-

enrichment originated by human activity increases the HAB occurrence and can lead to 

eutrophication which has long been cited as a major cause of HABs. This abundance of nutrients 

has been linked to human activities, including agricultural and residential uses of fertilizer, 
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application of manure, discharge of municipal wastewaters, and inputs from industries (Anderson, 

2009). Although P is a required macro nutrient in photosynthetic organisms' growth, it exists in 

small amounts in most freshwaters (Anderson et al., 2002). Some species of cyanobacteria are 

capable of providing their own N via N2 fixation; therefore, P is the more limiting nutrient for 

controlling HABs. Besides nutrients, climatic factors also contribute to HABs. HAB proliferation 

was observed in regions where the temperature exceeds the optimal growth temperature, which is 

25 °C (Paerl et al., 2011). 

Intensification of HAB in freshwaters is not a simple process caused by a single event but 

rather multiple factors occurring simultaneously (Heisler et al., 2008). Innovative approaches are 

needed to prevent HAB occurrence, accumulation, and transport in freshwaters. The characteristics 

of freshwaters (lakes, rivers, streams, and reservoirs) are varied based on their hydrologic, 

geographic, climatic, morphologic, physical, chemical, geochemical, and biological features. 

Therefore, HAB control methods will be different in each water environment. For instance, 

controlling HABs in large water bodies are difficult, whereas control of HABs may be more 

manageable in small water environments such a waste ponds. External nutrient loading is usually 

the first target to control and prevent HABs in freshwaters even though limiting the nutrients might 

not be a solution in the near future (Hudnell et al., 2010). 

Development of a HAB early-warning system is highly dependent on reliable modeling 

methods that predict the HAB occurrence with high accuracy using current water and climate 

conditions and forecasts. Early warning systems provide practical guidance for water treatment 

plants about future lake contamination by cyanobacteria. In addition, early-warning systems 

provide critical knowledge for agencies, water utility managers and other stakeholders to prevent 

future hazards caused by algal toxin. In order to minimize the impact of HABs in aquatic systems, 
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the past and current situations and upcoming forecast should be evaluated using an appropriate 

model. Consideration of available data and sampling or scientific efforts are necessary for selecting 

the type of model to estimate HABs (in terms of blue-green algal fluorescence) in freshwater. The 

most common parameters used for modeling in rivers and streams are nutrient loading, water 

temperature, volumetric flow rate, water current and turbulence, water residence times, sunlight 

exposure, time, and intensity, quiescent or stagnant water, and depth of the water (deep or shallow).  

Artificial intelligence techniques, in particular artificial neural network (ANN) techniques, 

have been extensively used in a variety of complex scientific and engineering problems to predict 

and classify environmental systems including system modeling, forecasting, hydrology, pattern 

recognition, sediment transport and accumulation, evaporation, evapotranspiration, rainfall, 

surface runoff, and watershed runoff (Holmberg et al., 2006; Paliwal and Kumar, 2009; Cobaner, 

2011; Amiryousefi et al., 2011; Simsek et al., 2015). However, the application of these techniques 

to HAB estimation is very limited in the literature. Therefore, the objective of this study is to apply 

the ANN techniques, in particular multilayer perceptron (MLP) models to estimate blue-green 

algae in western Lake Erie, USA. MLP is a form of ANN modeling that consists of single-layer 

perceptron. External data in an MLP model is collected by the input layer which is known as the 

first layer. All existing datasets are randomly divided into a training (sample) and a testing (non-

sampling) dataset. Back-propagation (BP) is accepted as a prevalent learning technique for MLP 

when obtained a training data set.  
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2. MATERIAL AND METHODS 

2.1. Preliminary Study and Data Collection Strategy 

A combination of eight input parameters, including phosphorus (μg/L), nitrogen (mg/L), 

chlorophyll-a (RFU), air temperature (℃), water temperature (℃), turbidity (NTU), wind speed 

(m/s), and pH were used in this study to estimate blue-green algae fluorescence in relative 

fluorescence units (RFU) in western Lake Erie, USA (Table 1). Blue-green algae fluorescence (a 

proxy for the occurrence of HABs and indicated by the HAB acronym in model output) may be 

used as a proxy for measure the cyanobacterial abundance of HAB that may turn toxic and is 

determined with a phycocyanin probe in the water or through satellite data. Optical phycocyanin 

sensors have provided early warnings of increased cyanobacteria abundance or elevated toxin 

concentrations (Brient et al., 2008; Marion et al., 2012; McQuaid et al., 2011) and have been used 

successfully in Lake Erie (Francy et al., 2016). Phycocyanin data from satellites are increasingly 

more accurate than chlorophyll-a data in the prediction of HABs (Yan et al., 2018). 

All the input parameters were determined based on the lake’s environmental conditions 

and the data availability. The data were collected real-time in the period of from June 30 to October 

5 in 2016 and from May 1 to October 26 in 2017, by the National Oceanic and Atmospheric 

Administration (NOAA) Great Lakes Environmental Research Laboratory (GLERL) (NOAA-

GLERL, 2018). The GLERL website runs a collaborative program, which uses data sharing to 

understand the environmental factors of HABs. To understand the long and short-term periodic 

changes in HAB occurrence, the data was collected using satellite images, remote sensing 

techniques, buoys, and an exhaustive observation and sample collection program in Lake Erie 

during the algal bloom season. The data was saved using the PostgreSQL database management 

system, which is a powerful, open source object-relational database system. To develop an MLP 
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model in this study, a large number of input data sets, which were about 13,300 data points from 

each parameter were processed to run the MLP model and the statistical analyses are presented as 

a supplementary document at Table S1. This table presents the distribution of the values of eight 

input parameters for training-only, testing-only and for all the data. 

2.2. Model Development 

The ANN model uses computer-based algorithms that can be trained to identify and 

classify complex patterns (Khan et al., 2001). The models have an input layer, hidden layer(s) and 

an output layer. All the computations are made in the hidden layers. Training, testing, and 

validation processes (machine learning systems) are used to confirm the models’ performance 

(Takagi and Sugeno, 1985; Simsek, 2016). ANNs are classified according to the number of layers, 

nodes in each layer, and the way these nodes are connected to each other (Zhang et al., 1999). The 

network forms the model formula in the output layer, which is the last layer. Hidden layers are 

crucial for ANNs to define the complicated model data between the input and output layers. All 

the nodes in these layers are connected to each other from the lowest layer upwards (Zhang et al., 

1999).  

Completely connected, feed-forward BP neural network models were used in the ANN 

network with five different learning algorithms including Levenberg-Marquard (LM), Bayesian 

regularization (BR), conjugate gradient function (CGF), resilient back-propagation (RBP), and 

scaled conjugate gradient (SCG). A BP algorithm is a graphical approach that is used in ANNs to 

calculate a gradient of the error functions. A BP algorithm is commonly used to optimize the feed 

forward neural networks. A typical architecture of MLP structure is presented in Fig. 1. 
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Figure 1. A schematic diagram of multilayer perceptron (MLP) structure with inputs, hidden 
layers and an output layer.  

The BP network has a simple structure with a strong simulation capability and consists of 

two phases, which are a feed forward and backward phases. The feed forward phase sends external 

input information forward to the output node, and the second phase arranges to the connection 

strengths according to the discrepancy between the calculated and viewed information at the output 

unit (Cigizoglu and Alp, 2006; Goh, 1995). In BP neural networks, the mathematical relationships 

between the variables are not specified. Instead, they learn from the examples fed to them. Since 

there is no mathematical connection between the variables, BP neural networks learn from cases 

that they obtained.  

The LM algorithm is a variation of Newton’s method and derives from the error BP 

algorithm (Lourakis, 2005; Suratgar et al., 2007). The LM algorithm identifies the minimum 

function denoted as the sum of the squares of non-linear functions (Lourakis, 2005). Several 

approaches could be used in the LM method to accelerate the error BP algorithm, but most of these 

methods achieved minimally acceptable results in the literature. Even though LM has a high-speed 
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algorithm, it is not capable of minimizing error oscillation. Nevertheless, only the LM algorithm 

provides a fair exchange between the speed of the Newton algorithm and the determination of the 

steepest descent method (Suratgar et al., 2007). 

Gradient-based learning methods are used as error reducing techniques to train BP nets 

(Bayati et al., 2009). BR is a mathematical technique that is improved to transform non-linear 

systems into ‘‘well posed’’ problems to minimize the potential for overfitting which causes a 

deficiency of generalization of the network (Saini, 2008).  

RBP is a learning technique, which makes a direct adjustment of the weight step based on 

local gradient information. In RBP, it’s adaptation is not blurred by gradient behavior and it is 

almost 100 times faster than the simple BP technique because it depends on the sign of the 

derivative instead of the value of the derivative (Naoum et al., 2013; Saini, 2008). CGF, which 

uses orthogonal and linearly independent non-zero vectors, can be used as a method to reduce the 

network output error in conjugate directions (Man-Chung et al., 2000). SCG belongs to the class 

of conjugate gradient methods. SCG is faster than second order algorithms since it uses a step size 

scaling mechanism, which runs quickly for line-search per learning iteration (Orozco and García, 

2003). 

In order to explain the performance of training, testing and validation processes, some 

statistical calculations are necessary such as root mean square error (RMSE), mean absolute error 

(MAE), mean bias error (MBE), and coefficient of determination (R2). The RMSE describes a 

short-term performance of a model by ensuring each unit compares to the real difference between 

the estimated value and the obtained value (Sanusi et al., 2013). The MBE describes the long-term 

behavior of a model, and at positive value indicates the average overestimate of the predicted 

value, whereas a negative value indicates the average underestimate of the predicted value 
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(Jacovides and Kontoyiannis, 1995; Sanusi et al., 2013). The RMSE value is expected to be as 

small as possible for a better result, similar to an MBE value (Sanusi et al., 2013). MBE, RMSE 

and MAE can be calculated using Eqs. 1, 2 and 3, respectively.  

 MBE = 
∑ ( )

 (1) 

 
RMSE = 

( )
 

(2) 

 MAE = 
∑ | |

 (3) 

   

Where, i is an index; pi is the predicted value for ith datum; ri is the real value for ith datum; 

and n is the observation number or sample size (Sanusi et al., 2013). The definition of the data set 

consists of a sequence of operations; the transmission functions are first assigned to a network 

layer to identify the input signals, and then the appropriate weight is calculated for the output 

signal. Logsig, tansig and purelin are the linear transfer functions that are used commonly in 

Matlab software. According to the ranges of these transfer functions, input and output data are 

normalized (Mohamed Ismail et al., 2012). The formula used for these three functions are 

presented in Eqs. 4, 5, and 6.  

 
Logsig(n) =  

1

1 + e
 

(4) 

 
Tansig(n) =  

2

(1 + e( )) − 1
 (5) 

 Purelin(n) = n (6) 

Five different MLP models were designed to estimate blue-green algae accumulation based 

on fluorescence values (Table 1). The first four models contained air temperature and water 
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temperature data since these two parameters are important factors in the lake environment that 

promote algal growth (Fu et al., 2012; Wei et al., 2001). 

Table 1. MLP models for estimation of blue-green algae fluorescence, a proxy for a harmful 
algal bloom (HAB). 

Model 
İnput Output 

1 2 3 4 5 6 7 8  

MLP1 
air 
temperature 

water 
temperature 

wind 
speed 

pH turbidity chl-a phosphorus nitrogen HAB 

MLP2 
air 
temperature 

water 
temperature 

wind 
speed 

pH turbidity    
HAB 

MLP3 
air 
temperature 

water 
temperature 

wind 
speed 

pH     
HAB 

MLP4 
air 
temperature 

water 
temperature 

wind 
speed 

     
HAB 

MLP5 phosphorus Nitrogen chl-a      HAB 

Note: The units are: phosphorus, micrograms per liter (μg/L), nitrogen milligrams per liter (mg/L), chl-a (chlorophyll-
a, relative fluorescence units, RFU), air temperature (℃), water temperature (℃), turbidity nephelometric turbidity 
units (NTU), wind speed (m/s), and HAB stands for blue-green algae fluorescence (RFU). MLP: Multilayer 
perceptron. 

Table 2. The network structure used in MLP models for both training and testing data sets. 

Model Network structure 

MLP1 8-10-1 8-12-1 8-15-1 8-10-15-1 

MLP2 5-7-1 5-9-1 5-7-9-1 - 

MLP3 4-5-1 4-7-1 4-5-7-1 - 

MLP4 3-5-1 3-7-1 3-5-7-1 - 

MLP5 3-5-1 3-7-1 3-5-7-1 - 

Note: MLP represents the number of input parameters and the last number, which is 1, represents the output parameter. 
The other one or sometimes two numbers between first and second numbers: Multilayer perceptron. The table explains 
five different MLP models with their network structures. First number are the hidden layer structures.  

All five MPL models were divided into their network structure as presented in Table 2. 

There were only 8, 5, 4, and 3 different inputs applied in this study. Some of the network structures 
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had one hidden layer, whereas others had more. Commonly, MLP models contain several layers 

of neurons in their network structure and each neuron receives input data. The input layer does not 

have any mission about calculation or computation in the neural structure, its role is transferring 

the input vector to the network vector. The input and output vectors in the system represent the 

inputs and the output of the MLP models and they can be represented as single vectors (Gardner 

and Dorling, 1998).  
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3. RESULT AND DISCUSSION 

Blue-green algae fluorescence was estimated using five different MLP models (Table 1) 

with various network structures (Table 2) in each model and only the best estimation models were 

presented in this study. The lake parameters for the MLP models were selected based on the lake’s 

environmental, ecological, and climatic conditions. Among all the MLP models, the highest R2 

values (≤0.98) for both training and testing data sets were obtained by MLP1 model, which used 

eight input parameters to stimulate HAB occurrence in Lake Erie as shown in the Fig. 2a and b 

and in Table 3. The best learning algorithm was LM and the best network structure was 8-10-15-

1 for the eight input parameters. The best ANN transfer functions of tansig-tansig-purelin for both 

training and testing data sets were also observed in 8-10-15-1 network structures. The detail 

training and testing results for eight input parameters for MLP1 models are presented at Table S2 

and S3. In general, good performance was achieved as indicated by small values of RMSE, MBE, 

and MAE as well as large values of R2 (Jacovides and Kontoyiannis, 1995). These results showed 

that we were able to forecast blue-green algae fluorescence with MLP models, which could lead 

to early mitigation and thus reduce human health risks and ecological effects of toxic algae. 

Among all the MLP models, the highest coefficient of determination values (≤0.98) for 

both training and testing data sets were obtained at MLP1 model, which used eight input 

parameters to stimulate HAB occurrence in Lake Erie as shown in the Figure 2a and b and in the  

Table 3. The best learning algorithm was LM and the best network structure was 8-10-15-1 for the 

eight input parameters. The best ANN transfer functions of tansig-tansig-purelin for both training 

and testing data sets were also observed in 8-10-15-1 network structures. The detailed of training 

and testing results for eight input parameters for MLP1 models are presented at Table S2 and S3. 

In general, good performance was achieved as indicated by small values of RMSE, MBE, and 
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MAE as well as large values of R2 (Jacovides and Kontoyiannis, 1995). These results showed that 

we were able to forecast blue-green algae fluorescence with MLP models, which could lead to 

early mitigation and thus reduce human health risks and ecological effects of toxic algae. 

 

Figure 2. MLP1 model for measured and estimated blue-green algae fluorescence, as a surrogate 
for harmful algal blooms (HAB) (a) training and (b) testing data sets (MLP: Multilayer 
perceptron, LM: Levenberg-Marquardt). 
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Table 3. The summary of MLP1, MLP2 and MLP3 model statistics for training and testing data 
set.  

` 

Network 
structure 

Activation 
Learning 
algorithm 

Training Testing 

MBE MAE RMSE R2 MBE MAE RMSE R2 

8-10-15-1 
Tansig-

tansing-purelin 
LM 0 0.02 0.03 0.98 0 0.04 0.05 0.98   

8-10-15-1 
Tansig-

logsig-purelin 
BR 0 0.02 0.03 0.98 0 0.04 0.05 0.98 

8/15/2001 
Tansig-

purelin 
CGF 0 0.05 0.07 0.91 -0.01 0.08 0.11 0.91 

8/12/2001 
Logsig-

purelin 
RP 0 0.06 0.07 0.91 -0.01 0.08 0.11 0.9 

8/15/2001 
Logsig-

purelin 
SCG 0 0.05 0.07 0.92 -0.01 0.07 0.1 0.91 

  

MLP2 

Network 
structure 

Activation 
Learning 
algorithm 

Training Testing 

MBE MAE RMSE R2 MBE MAE RMSE R2 

5-7-9-1 
Logsig-

tansig-purelin 
LM -0.01 0.06 0.09 0.88 0.01 0.08 0.12 0.89 

5-7-9-1 
Tansig-

logsig-purelin 
BR 0 0.06 0.08 0.88 0.01 0.08 0.12 0.89 

5/9/2001 
Logsig-

purelin 
CGF -0.02 0.09 0.14 0.71 0.05 0.13 0.18 0.81 

5-7-9-1 
Logsig-

tansig-purelin 
RP -0.02 0.08 0.12 0.79 0.05 0.13 0.19 0.77 

5/7/2001 
Tansig-

purelin 
SCG -0.02 0.09 0.13 0.74 0.04 0.13 0.19 0.79 

  

MLP3 

Network 
structure 

Activation 
Learning 
algorithm 

Training Testing 

MBE MAE RMSE R2 MBE MAE RMSE R2 

4-5-7-1 
Logsig-

tansig-purelin 
LM -0.01 0.09 0.12 0.76 0.02 0.1 0.15 0.82 

4-5-7-1 
Logsig-

tansig-purelin 
BR -0.01 0.09 0.12 0.75 0.03 0.12 0.17 0.78 

4-5-7-1 
Logsig-

tansig-purelin 
CGF -0.02 0.11 0.16 0.61 0.04 0.15 0.21 0.68 

4-5-7-1 
Tansig-

tansing-purelin 
RP -0.01 0.1 0.15 0.62 0.03 0.14 0.2 0.72 

4-5-7-1 
Logsig-

tansig-purelin 
SCG -0.01 0.11 0.15 0.65 0.03 0.14 0.2 0.72 

Note: [LM, Levenberg-Marquard; BR, Bayesian regularization; CGF conjugate gradient function; RP, resilient 
backpropogation; SCG, scaled conjugate gradient; MBE, mean bias error; MAE, mean absolute error; RMSE, root 
mean square error; R2, coefficient of determination]. MLP: Multilayer perceptron. Bold numbers were selected as the 
best results and their figures were presented in this study. Bold numbers were selected as the best results and their 
figures were presented in this study. 
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Even though eight input structures showed the best estimation of blue-green algae 

fluorescence, this model might not be feasible in real-world applications since it will be time 

consuming and costly to obtain all eight parameters. Hence, three, four, and five input parameters 

were tested as well in this study.  

Table 3 shows the best estimation of MLP modeling results for five and four input 

parameters (MLP2 and MLP3) using five different transfer functions. Five different learning 

algorithms were applied, and the best estimations of blue-green algae fluorescence were obtained 

at LM and BR algorithm with 0.89 R2 values in both algorithms. Only the selected algorithms were 

presented in Table 3 and Figure 3 for both training and testing data sets. LM algorithm was one of 

the fastest medium-sized feedforward algorithms with a set of simple interconnected units 

(neurons or nodes) (Karul et al., 2000). Five input parameters produced little better estimation with 

R2 values of 0.88 for training data sets compared to four input parameters which produced 0.76 R2 

values for training data sets.  
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Figure 3. MLP2 model (a) training and (b) testing data sets; MLP3 model (c) training and (d) 
testing data sets (MLP: Multilayer perceptron, LM: Levenberg-Marquardt). 

Two sets of three input parameters were designed (MLP4 and MLP5) to determine the best 

blue-green algae fluorescence estimation although the network structures and transfer algorithms 

used are the same (Table 4). In MLP4, the input factors are air temperature, water temperature and 

wind speed while in MLP5, the input factors are phosphorus, nitrogen and chl-a. In both models, 

the training and testing modeling results for the LM and BR learning algorithms are similar and 

only the LM algorithm was presented in Fig. 4 for both MLP4 and MLP5 models. However, the 

input parameters for MLP5 (nutrients and chlorophyll concentrations) are vital since nitrogen and 
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phosphorous are essential nutrient sources for HAB formation and they are essential to the 

productivity of HABs in aquatic ecosystem. Optimal amounts of nutrients are important to support 

aquatic life; however, in high concentrations they can be detrimental. This is supported in the 

research where natural and/or anthropogenic nutrient over enrichment of a water body increased 

algal abundance (Paerl and Huisman, 2009). Abundance of cyanobacteria, chlorophytes, and 

cryptophytes increased after nutrient addition to (Lake Taihu, China); whereas diatoms showed a 

slower abundance response than the other algal groups (Paerl et al., 2015).  

Optimal amounts of nutrients are important to support aquatic life; however, in high 

concentrations they can be detrimental. This is supported in the research where natural and/or 

anthropogenic nutrient over enrichment of water body promotes proliferation of HABs (Paerl and 

Huisman, 2009); different type of HABs including cyanobacteria, chlorophytes, and cryptophytes 

grew well under nutrient addition to a lake (Lake Taihu, China); whereas diatoms were moderately 

stimulated by the nutrient loading (Paerl et al., 2015).  
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Table 4. The summary of MLP4 and MLP5 model statistics for training and testing data set. 

MLP4 
 

Network 
structure 

Activation 
Learning 
algorithm 

Training Testing 
MBE MAE RMSE R2 MBE MAE RMSE R2 

3-5-7-1 Tansig-logsig-purelin LM 0.01 0.09 0.13 0.7 -0.02 0.12 0.16 0.81 
3-5-7-1 Tansig-logsig-purelin BR 0.01 0.09 0.13 0.71 -0.01 0.12 0.16 0.81 
3-7-1 Tansig-purelin CGF -0.02 0.13 0.18 0.73 -0.02 0.13 0.18 0.73 
3-5-1 Tansig-purelin RP -0.02 0.14 0.19 0.73 -0.02 0.14 0.19 0.73 
3-5-1 Tansig- purelin SCG -0.02 0.13 0.17 0.76 -0.02 0.13 0.17 0.76 
 

MLP5 

Network 
structure 

Activation 
Learning 
algorithm 

Training Testing 

MBE MAE RMSE R2 MBE MAE RMSE R2 
3-5-7-1 Tansig-tansing-purelin LM -0.01 0.13 0.18 0.46 0.03 0.12 0.19 0.72 
3-5-7-1 Tansig-logsig-purelin BR -0.01 0.13 0.18 0.45 0.03 0.12 0.19 0.72 
3-5-7-1 Tansig-tansing-purelin CGF -0.02 0.15 0.21 0.29 0.04 0.17 0.24 0.57 
3-7-1 Logsig-purelin RP -0.02 0.14 0.2 0.37 0.04 0.14 0.21 0.67 
3-5-7-1 Tansig-tansing-purelin SCG -0.02 0.15 0.21 0.31 0.04 0.17 0.24 0.6 
Note: [LM, Levenberg-Marquard; BR, Bayesian regularization; CGF conjugate gradient function; RP, resilient 
backpropogation; SCG, scaled conjugate gradient; MBE, mean bias error; MAE, mean absolute error; RMSE, root 
mean square error; R2, coefficient of determination]. MLP: Multilayer perceptron. Bold numbers were selected as the 
best results and their figures were presented in this study.  

The coefficient of determination (R2) values of the MLP5 model (nutrient and chlorophyll 

inputs) were low (0.46 and 0.72) in training and testing data sets, respectively. Overall, the amount 

of phosphorous in the lake was low, in microgram per liter level. Out of 13,300 data points for 

phosphorous (concentrations), the values of about 900 data points were less than 1.0 μg/L, (Fig. 

S1). About 7,100 phosphorous data points were under 10.0 μg/L and there were only 450 data 

points in between 100 and 146 μg/L. Similarly, nitrogen values were also low in the lake, however 

at least they were at the mg/L level. The distribution of nitrogen data was as follows; the nitrogen 

concentration of about 4,880 data points were under 0.5 mg/L, about 2120 data points were in 

between 0.5 and 1.0 mg/L, and about 6,300 data points were in between 1.0 and 4.8 mg/L. Since 

blue-green fluorescence and nutrient concentration in the lake has a negative relationship, it would 

be expected to measure low phosphorous and nitrogen concentrations in the lake when blue-green 

algae fluorescence is high. When the data were analyzed based on the summer season, the 
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concentrations of phosphorous and nitrogen parameters decreased through the end of the summer 

(September and October) in both years (2016 and 2017) even though the concentrations of these 

two nutrients fluctuate during the beginning and middle of the summer. A better understanding of 

lake-wide nutrient input and its utilization by HABs or other organisms could be determined to 

create more accurate prediction results.   

 

Figure 4. MLP4 model (a) training and (b) testing; MLP5 model (c) training and (d) testing data 
sets estimating of blue-green algae fluorescence as a surrogate for harmful algal blooms (HAB) 
(MLP: Multilayer perceptron, LM: Levenberg-Marquardt).  
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4. CONCLUSIONS 

In this study, five different Multilayer perceptron (MLP) models with five different 

activation functions including LM, BR, CGF, RP, and SCG were developed to estimate blue-green 

algae fluorescence as a surrogate for the occurrence of HABs in western Lake Erie. The best 

estimation of blue-green algae fluorescence was achieved using eight different input parameters, 

which were phosphorus, nitrogen, chlorophyll-a, air temperature, water temperature, turbidity, 

wind speed, and pH (MLP1 model). Two of the models, MLP3 and MLP4 proved that the blue-

green algae occurrence in the lake could be predicted quickly and cost effectively with simple field 

measurements of air and water temperature, wind speed and pH (MLP4 only). Therefore, using 

only these two models could help to create an early warning system to indicate the likelihood of a 

HAB more efficiently and cost effectively than MLP1.  

Phosphorus, chlorophyll-a, and nitrogen input parameters provided weak correlation 

(MLP5) even though, nutrients and algal proliferation tend to correlate in many systems (Carpenter 

et al., 1998). However, having more than 2 years’ data might give better estimation using nutrient 

parameters. Overall, the ANN modeling approach described here proved that, developing and 

implementing MLP models to provide accurate forecasting of blue-green algae fluorescence 

depends on appropriate and representative data measurements in the lake environment. 

Determining physical, ecological, biological and chemical parameters of the lake would improve 

the forecast capability of the model. Harmful algal blooms are a growing concern for lake 

management and estimating blue-green algae fluorescence as a surrogate for the occurrence of 

HABs can be a key planning element for lake environment and hydrological studies; use of neuro 

computing techniques offer new opportunities for rapid estimation of HABs in freshwaters. 
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