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ABSTRACT

Digital image processing is one of the potential technologies used in precision

agriculture to gather information, such as seed emergence, plant health, and phenology

from the digital images. Despite its potential, the rate of adoption is slow due to limited

accessibility, unsuitability to specific issues, unaffordability, and high technical knowledge

requirement from the clientele. Therefore, the development of open source image

processing applications that are task-specific, easy-to-use, requiring fewer inputs, and rich

with features will be beneficial to the users/farmers for adoption. The Fiji software, an

open source free image processing ImageJ platform, was used in this application

development study. A collection of four different agricultural field applications were

selected to address the existing issues and develop image processing tools by applying

novel approaches and simple mathematical principles.

First, an automated application, using a digital image and “pixel-march” method,

performed multiple radial measurements of sunflower floral components. At least

32 measurements for ray florets and eight for the disc were required statistically for

accurate dimensions. Second, the color calibration of digital images addressed the light

intensity variations of images using standard calibration chart and derived color calibration

matrix from selected color patches. Calibration using just three color patches: red, green,

and blue was sufficient to obtain images of uniform intensity. Third, plant stand count and

their spatial distribution from UAS images were determined with an accuracy of ≈96 %,

through pixel-profile identification method and plant cluster segmentation. Fourth, the
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soybean phenological stages from the PhenoCam time-lapse imagery were analyzed and

they matched with the manual visual observation. The green leaf index produced the

minimum variations from its smoothed curve. The time of image capture and PhenoCam

distances had significant effects on the vegetation indices analyzed. A simplified approach

using kymograph was developed, which was quick and efficient for phenological

observations. Based on the study, these tools can be equally applied to other scenarios, or

new user-coded, user-friendly, image processing tools can be developed to address specific

requirements. In conclusion, these successful results demonstrated the suitability and

possibility of task-specific, open source, digital image processing tools development for

agricultural field applications.
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1. GENERAL INTRODUCTION

This chapter provides the need for sensors in agriculture, advantages of imaging

technology, the current status of imaging technology in agriculture, common image

processing platforms with an emphasis on the need for open source platforms, and orients

to the problem statement and objectives. Also, the dissertation organization is provided at

the end to have an idea of the arrangement of chapters that deal with the formulated

objectives.

1.1. Need for Sensors in Agriculture

Increasing population, decreasing arable area, escalating costs of inputs, and limited

availability of resources have led to a movement of efficient agricultural practices.

Of several possible approaches to improving the efficiency of agricultural systems, precision

agriculture is one of the modern methods. Precision agriculture is a farm management

practice aimed to maximize agricultural productivity and minimize farm inputs (e.g., seed,

fertilizer, herbicide, irrigation) by applying the right amount of inputs at the right place at

the right time (Mulla, 2013). More than 40 % farmers in the US have already adopted

precision agriculture and this trend is expected to rise in the future (Schimmelpfennig,

2016). In precision agriculture, the fields are delineated into zones based on spatial

variability in soil properties, field landscape, or plant growth for efficient management.

The variability is captured using a variety of sensors that record a suite of measurements

right from soil nutrients to crop yield. These timely measurements help farmers to make

site-specific management decisions (Scharf et al., 2011).

1



At present, several sensors are being used to measure the in-field variability and

they are classified based on the type of measurements as contact and non-contact.

The former type is when a sensor is capable of recording measurements only when in

contact with the object and they are sometimes destructive. Measurement of soil properties

such as soil compaction and moisture, and leaf properties such as stomatal conductance

and chlorophyll content are some of the examples.

The latter type is when a sensor is capable of recording measurements without

being in contact with the object. This type of measurement is called “remotely sensed.”

It basically uses the amount of electromagnetic energy reflected, rather than absorbed or

transmitted, from an object that indicates the object surface and other useful properties

that can be measured. Such a near and far non-contact remote sensing method is drawing

a great deal of research attention because of a wider range of scale and application.

Any remote sensing data can be categorized into several ways; and the most

common classification is based on the region of the electromagnetic spectrum, such as

visible, infrared, and microwave. Among the variety of sensors used in contactless remote

sensing, a hand-held color digital camera is a commonplace and most simple optical sensor,

which works in the visible range, and is extensively used because of its low cost, high

resolution, and better efficiency when compared to other sensors (Bechar & Vigneault,

2016). Digital cameras readily produce the image of the objects of interest, which is

considered as input data, and analyzed through “image processing” operations to derive

meaningful results based on the application. Even though the input data (images) are

obtained easily, the image processing stage is highly technical and challenging in producing
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the deliverables (outputs). However, the image processing methodology can able to

provide a variety of solutions and can be tailor-made to a specific application.

1.2. Advantages of Imaging Technology

At present, several of the agricultural management decisions are taken based on the

manual field scouting through the visual appearance of the plant, as they directly indicate

the plant growth and health conditions. Most of the plant conditions, such as foliage

wilting, pest infestation, nutrient deficiency, and plant disease provide visible clues

(A. Camargo & Smith, 2009). Those variations must be identified early to take necessary

precautionary or management actions for efficient crop production. These clues are

observed and quantified through visual inspection during field scouting by trained

professionals (e.g, experienced farmers, agronomists, pathologists, crop inspectors)

following a standard protocol. However, inspecting the entire field and recording the

observations manually is a subjective, tedious, and time-consuming task. Also, direct

inspection causes visual fatigue and measurements become more prone to error.

Even though the visual inspection is the basic and natural method, as well as serves

as ground truth, the method has several limitations: (i) minor changes in leaf color, shape,

and texture cannot be discriminated (Tillett, 1991); (ii) similar symptoms will be produced

by different stresses (Barbedo, 2013); (iii) some stresses (e.g., foliage disease, nutrient

deficiency) might need laboratory analysis (destructive) to confirm; (iv) some stresses

require an actual severity estimates (e.g., pest count, area infested) to make decisions

(Bock, Poole, Parker, & Gottwald, 2010); (v) changes in morphological traits such as canopy

area, and plant volume cannot be measured visually (Golbach, Kootstra, Damjanovic,

Otten, & van de Zedde, 2016); (vi) the human eye can only distinguish between 2.3 and
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7.5 million colors depending on the individual’s potential, while computers distinguishing

up to 16.7 million (256× 256× 256) colors (Pointer & Attridge, 1998); and

(vii) distinguishing among various shades of same color is highly challenging for humans.

To address these issues, modern agriculture moves towards an objective approach to

overcome the aforementioned drawbacks (McCarthy, Hancock, & Raine, 2010).

Advancements in digital imaging technology and the processing power of computers have

led to the use of digital images for detecting the variations rapidly through image

processing methods (Y. Zhao, Gong, Huang, & Liu, 2016). Therefore, the image processing

methods can play a significant role as the approach is objective, quick, reproducible, easy to

apply, enable real-time in-field measurements, support arriving management decisions, and

allow for archiving results.

1.3. Current Status of Imaging Technology in Agriculture

In a study conducted among agricultural producers of Nebraska, Castle (2016)

found that the technology adoption rate of imagery ranked 8 out of 10 technologies used in

precision agriculture (fig. 1.1). However, there is a steady increase, but the adoption is at a

slower pace because most of the farmers are not able to process the images on their own,

which demands high technical knowledge.

Already, many image processing methods were developed and used in several

agricultural activities. Out of many image processing methods developed, the following

two significant agriculture field operations were successfully deployed. First, the automatic

guidance systems in tractors, which were operated based on global positioning systems

(GPS), and were now operated based on image processing algorithms as they are efficient,

inexpensive, and accurate (Garcìa-Santillán, Montalvo, Guerrero, & Pajares, 2017).
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Figure 1.1. Adoption percentage of various technologies by agricultural producers in
Nebraska between 1995 and 2014 (Castle, 2016).

Second, the fruit harvesting operation, which is seasonal, labor-intensive, and expensive,

and is now replaced with automatic harvesters that perform operations, such as branch

shaking, fruit harvesting, leaf pruning, and fruit sorting based on image processing

(Amatya, Karkee, Zhang, & Whiting, 2017). Apart from these developments, there are

several applications of image processing in agriculture that are being developed and

validated under various test conditions.

A digital image used for image processing should possess good clarity, resolution,

and focus. Acquiring images under a laboratory condition (more controlled environment)

is favorable for processing, as necessary arrangements for acquiring well-focused images at

high resolution can be employed in the laboratory setting. But, working with images

acquired in field conditions is challenging due to the variations in lighting, improper focus,

and the presence of artifacts (Barbedo, 2016). Therefore, processing such images require
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a reliable image processing methodology that is flexible to work in a range of imaging

conditions. For the past 25 years, the proportion of peer-reviewed journal publications on

image processing applications under laboratory conditions was more than the field

condition (fig. 1.2). On average, the contribution to field applications of image processing

was <35 % of total publications in each year. This shows the potential research gap for

developing flexible image processing methodologies for agricultural applications applied to

field conditions.
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Figure 1.2. Number of peer-reviewed journal articles in past 25 years on image
processing applications in agriculture performed in laboratory and field conditions.
Data retrieved from Web of Science Core Collection through advanced search with
following keywords: “TS = (Agri* NEAR/3 lab*) AND TS = (Image* OR Vision*)” for
laboratory condition; and “TS = (Agri* NEAR/3 field*) AND TS = (Image* OR
Vision*)” for field condition.

1.4. Image Processing Software — Commercial and Open Source Platforms

To process the images, a software capable of reading the images, extracting the

digital information, and manipulating it mathematically is necessary. There were
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≈75 image processing software packages available today (Wikipedia, 2018), out of which,

most of them were commercial software, and were operated manually only by

‘click-and-run’ feature. This might be favorable for processing a few images with only

limited operations, but to process a batch of images and perform customized operations in

a sequence, a software with programming module will be necessary. Any image processing

software with a programming module enables us to customize and automate the image

processing operations, with the features inspired by the human interaction and simulating

manual measurements, and program it to deliver meaningful outputs. For example,

an image processing method developed using MATLAB (MathWorks®, 2017) counted

aphids on soybean (Glycine Max L.) leaf and displayed whether the aphids population was

below/above the economic threshold (Sunoj et al., 2017), which can be used for pesticide

application decisions by the producers.

Commercial software such as MATLAB with specialized image processing tool-packs

offers several user-friendly features for program development. This commercial software

and specialized programs and were generally used in academic institutions and specialized

industries and were generally out of the reach of the common user because of the high cost

and license charges. However, an open source and no-cost image processing software

system with programming capabilities will be highly demanding technically. Working with

open source platform requires a deeper understanding of the operations and good

programming skills to develop customized programs (plugins/tools) for specific

user-defined applications (Landset, Khoshgoftaar, Richter, & Hasanin, 2015).

An internet search on “open source image processing software” would return several

software systems; however, “ImageJ” and “OpenCV” would form the top hits. These image
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processing systems with advanced capabilities match or surpass the available commercial

software and are being used by many researchers worldwide. Between these two, OpenCV

is an image processing library, where it has to be executed with an external integrated

development environment (IDE) and does not support menu-driven manual operations.

While ImageJ has an integral IDE, Java-based, public domain, platform-independent

software, which has various image processing operations that can be accessed manually

from toolbar and menu options and provides automatic running capabilities through macro

and plugin coding (Rasband, 2018). The scripting languages are ImageJ Macro (IJM)

language for macro development (Mutterer & Rasband, 2015), and Java language for

plugin development (Bailer, 2006; Burger & Burge, 2016b). ImageJ also supports

Javascript language for macro and plugin development.

ImageJ plugins are developed for exclusive applications and have been explored

extensively in processing medical images (Y. Chen, Yu, & Xu, 2017; Khan, Nag,

Igathinathane, Osuagwu, & Rubini, 2015), but only a few literature on its application in

agriculture were available. Some of the earlier macros/plugins developed in agricultural

applications include biomass particle size distribution determination (Igathinathane,

Pordesimo, Columbus, Batchelor, & Sokhansanj, 2009c), biomass node and internode

identification (Pothula, Igathinathane, & Kronberg, 2015), cashew whole and split

classification (Sunoj, Igathinathane, & Jenicka, 2018a), rapid chickpea phenotyping

(Sankaran, Wang, & Vandemark, 2016), biomass yield estimation (Ali, Streibig,

Christensen, & Andreasen, 2011), and root dimensions measurement (Borianne, Subsol,

Fallavier, Dardou, & Audebert, 2018). It was considered that the use of open source

software packages is the future of agriculture because it brings innovation by collaborating
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across multidisciplinary communities (computer science, mechatronics) to work together

and contribute towards addressing the issues of the growing population (Ault, Krogmeier,

& Buckmaster, 2018). With such open source software in combination with the

user-developed plugins, the farmer can use their data, without the data/software privacy

issues, analyze them, and make informed farm management decisions.

1.5. Problem Statement

This study focused on developing individual image processing tools (plugins)

suitable for the above-mentioned applications in agriculture to replace the current manual,

destructive, laborious, and subjective methods. The plugins will be developed using Fiji

software (Rasband, 2018), an open source image processing software package. Fiji is a

distribution of ImageJ that has core ImageJ plugins and extends additional functionality for

creating and modifying the plugins (Schindelin et al., 2012). The plugins were developed

in Java language utilizing appropriate APIs. The developed plugins in this study were

tested on selected specific field crops; however, the underlying algorithms can be applied to

any crop. Therefore, the developed plugins can be easily extended to other crops with

minor modifications in the program.

Considering the advantages of image processing methods over manual methods,

several areas in agriculture can be addressed efficiently through the application of image

processing. Based on the field requirements for modern applications and problems already

existing in current methodologies, a few specific issues (presented subsequently) were

chosen and proposed to be solved in this research.

First, the sunflower floral components dimension has a direct influence on

pollinators’ visitation rate and this has been reported in many studies (Mallinger &
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Prasifka, 2017a, 2017b; Portlas, Tetlie, Prischmann-Voldseth, Hulke, & Prasifka, 2018). In

these studies, the dimensions were measured manually using a thread and ruler. This

method is subjective, inefficient, and cannot measure geometrical parameters

(morphology). Therefore, there exists a need for an objective method that can accurately

measure the dimensions along with other geometrical parameters. This method will be

useful for entomologists to study useful relationships between floral morphology and

pollinator visitation rates. Results will also enable the farmers to predict the yield based on

accurate head dimensions using the yield prediction equations (Kandel, 2018).

Second, the changes in ambient lighting, time, and camera directly influence the

image color intensity and using such images directly to perform the phenological

comparison and infer plant health will be misleading (Andresen, Tweedie, & Lougheed,

2018; Crimmins & Crimmins, 2008). Those images need to be calibrated before being used

for phenological comparisons; however, there are no studies that scientifically reported an

efficient calibration methodology. Therefore, an efficient calibration methodology to

minimize the color intensity variations from the images obtained at varied lighting

conditions that occur in the field is desirable. This method will help farmers/users to

produce calibrated images that can be used for further interpretation and analysis.

Third, the plant stand count and spatial distribution are important to estimate the

plant population and evaluate planter’s performance on seed placement and spacing (Bruin

& Pedersen, 2004; Lauer & Rankin, 2004). Nowadays, these two measures are being

evaluated from UAS images employing commercial software (Lamb, 2016). The available

software imposes several requirements and they are expected to work accurately only in

the “best case” scenario with rows properly aligned and without overlapping plants (plants
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cluster). But, it is practically challenging to manage field practices so that the stringent

restrictions of the software can be fulfilled on the field. Therefore, a simple yet novel

methodology using basic geometrical principles to perform stand count and spatial

distribution analysis were developed and such application was expected to be user-friendly

and helpful to the users/farmers.

Fourth, the timing of phenological stages of a plant is one of the essential

information for making farm management decisions. A digital camera network called

“PhenoCam” that produces time-lapse images at every 30 min is used to continuously track

the phenological changes based on the variations in color vegetation indices (CVIs)

(T. B. Brown et al., 2016; Hufkens et al., 2012). But, not many studies have attempted to

use PhenoCam images for agricultural applications and the information on the effects time

of image capture and camera distance on phenological trend is lacking. Therefore, a study

on determining a set of the best CVIs that represented the natural smooth phenological

trend and evaluating the effects of time of image capture and PhenoCam distance in CVIs

would lead to consistent and efficient use of PhenoCam images for agricultural applications.

The hypotheses of this study are the developed image processing methodology and

the associated specific user-defined plugins using open source ImageJ platform for

agricultural field applications can (1) measure the sunflower floral dimensions simulating

manual measurements, (2) calibrate the digital color images to minimize image color

intensity variations and determine the least number of color patches required for

calibration, (3) estimate the plant stand count accurately to match with visual count and

evaluate the spatial distribution from the stand count data, and (4) determine the
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phenological stages of soybean through PhenoCam images and estimate the effect of time

of image capture and camera distance on phenological trend.

1.6. Statement of Objectives

The specific objectives of this study were to:

1. Develop an efficient method to measure the dimensions of the field sunflower

floral components and derive models to obtain accurate dimensions simulating

the manual measurements.

2. Develop a color calibration plugin to standardize the image intensity variations

and test its performance with images obtained from different sources at varied

lighting conditions in laboratory and field conditions.

3. Develop a simple and automated plant stand count and spatial distribution

plugin that works in plant rows at any orientation and resolves plants cluster.

4. Derive various color vegetation indices using PhenoCam images, select the best

indices that represent the phenological stages of soybean, compare with manual

observations, and evaluate their effect on the time of image capture and the

camera distance.

1.7. Dissertation Organization

The dissertation is generally organized into chapters that consist of (i) general

introduction, (ii) review of literature, (iii) the individual objectives presented in the form of

peer-reviewed journal articles as four research papers, (iv) general conclusions,

(v) combined references, and (vi) appendices. The general introduction (this chapter)

provides an orientation on the need for imaging technology, the importance of open source

platforms for image processing, problem statement with hypotheses, and specific
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objectives. The review of literature provides detailed background information on image

processing, imaging platforms used, various applications of image processing in agriculture

developed so far, details about importance of floral dimensions, issues in image intensity

inconsistencies and available color calibration methodologies, manual plant stand counting

and available commercial software and their limitations, and vegetation indices used in

agriculture for monitoring plant growth. Each research paper presented here has its

introduction with supporting literature review, materials and methods, results and

discussion, and conclusions.

Among the individual studies presented, Paper 1 entitled: “Sunflower floral

dimensions measurement using digital image processing” determined the efficient number

of measurements required to best represent the floral dimensions (Objective 1); Paper 2

entitled: “Color calibration of digital images for agriculture and other applications”

developed and tested a plugin to minimize the image intensity variations from the image

acquired at varied lighting conditions in laboratory and field (Objective 2); Paper 3 entitled:

“Profile-based plant stand count, plant vigor, and spatial distribution from UAS images”

developed a plugin that used pixel profile and geometrical principles for row identification

and plant cluster segmentation to count plants, assess growth, and determine spatial

distribution from UAS images (Objective 3); and Paper 4 entitled: “PhenoCam application

in agricultural cropping environment: Time and distance effect on color vegetation indices

of soybean phenology” derived CVIs (existing and new) to study the phenology of soybean

field crop, selected the best set of CVIs, compared with ground truth measurements, and

evaluated the effect of time and distance on phenological trend (Objective 4).
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A general conclusion summarizing the results derived from the chapters is then

presented and is followed by suggestions for future work. The reference listing of all the

citations in the chapters (including the papers) was presented as a combined unnumbered

reference chapter. Appendices (A–D) present some of the data, pseudocode of the plugins

developed, applications of PhenoCam, and PhenoCam images downloading procedure.
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2. REVIEW OF LITERATURE

This chapter provides an overview of image processing applications in agriculture

using various imaging devices and practical problems associated with the agricultural field

applications. Research gap and importance of specific agricultural field applications such as

sunflower floral dimensions measurement, image color calibration, plant stand count and

spatial distribution analysis from UAS images, and application of PhenoCam in agricultural

environment for soybean growth monitoring and analysis are explained in respective

sections.

2.1. An Overview of Image Processing and its Applications in Agriculture

The concept of image processing originated to address the following two

applications: (1) to enhance the quality of the image (e.g., image editing, computer

graphics), and (2) to extract useful information from images and transmit data for

automatic machine operations (e.g., machine vision, computer vision). The latter

application falls in the branch of science where user-coded algorithms are developed to

perform sequence of image processing operations and produce useful outputs (Gonzalez &

Woods, 2018). The former application falls in the branch of arts to improve the aesthetics

of an image. The science application of image processing begun in 1960s to process an

image of moon’s surface transmitted from Ranger-7 satellite to study the dimensions and

morphology of craters. Most of the developments in image processing algorithms evolved

from space research using remotely sensed satellite images and its applications infiltrated

into many fields of science and agriculture is one among them. Till date, optical remote
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sensing (using imagery) is the most used technology in agriculture sector (Khanal, Fulton,

& Shearer, 2017).

The remote sensing sensors used in agriculture can be identified based on the

combination of four categories (fig. 2.1): (1) platforms, (2) energy source, (3) number of

spectral bands, and (4) region of electromagnetic spectrum. The output from any of these

sensor combinations is an image, which is composed of pixel elements (pixels) with digital

numbers (e.g., reflectance, emissivity, back scatter value) that can be manipulated to

extract useful information from an image. The choice of sensors combination are affected

by factors such as spatial resolution (e.g, leaf- or canopy-scale), temporal resolution

(e.g., hourly, daily, weekly), and spectral resolution (e.g., monochromatic, trichromatic,

multispectral, hyperspectral). There is always a trade-off among these factors and the

selection of sensors combination solely depends on the application. For example, for

identifying pests on a plant leaf, image with high spatial resolution (leaf-scale) is suitable

(<5 mm/pixel resolution); for detecting nutrient deficiency, image with medium spatial

resolution (canopy-scale) is suitable (<0.10 m/pixel resolution); and for classifying crop

diversity for a county, state, or a country, image with coarse spatial resolution is suitable

(e.g., MODIS imagery: 250–1000 m).

Number of spectral 

bands

Number of spectral 

bands

▪ Monochromatic

▪ Trichromatic

▪ Multispectral

▪ Hyperspectral

Remote sensingRemote sensing

PlatformsPlatforms Energy sourceEnergy source
Region of electromagnetic 

spectrum

Region of electromagnetic 

spectrum

▪ Satellite

▪ Aerial

▪ Ground

▪ Active

▪ Passive

▪ Visible

▪ Infrared

▪ Microwave

Figure 2.1. General classification of sensors used in the remote sensing area. Red
dash arrows indicate the combination of categories used in this study.
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Since the early 1970s, satellite images have been widely used in monitoring

agricultural vegetation as satellites were equipped with wide range of spectroradiometers

providing good spectral resolution. However, temporal and spatial resolutions were not

suitable for agricultural applications because the temporal resolution for different satellites

ranged from 1 d to 18 d, and spatial resolution ranged from 0.5 to 1000 m/pixel (Mulla,

2013). On the other hand, the satellite images are the only way to monitor and classify the

land cover changes for a district, county, or a state that are being studied even now

(Jenicka & Suruliandi, 2014, 2016). A review by Xie, Sha, and Yu (2008) provides a list of

satellites launched for earth exploration, their spatial and temporal resolution, and the

application of those images in various research fields.

Aerial imagery, obtained through unmanned and manned aerial vehicles, is used for

field inspection of large fields with spatial resolution better than the satellite images. They

are more suitable for canopy-scale decisions such as monitoring nutrient deficiencies (de

Castro et al., 2018; Vega, Ramírez, Saiz, & Rosúa, 2015) and estimating plant stand count

and plant density (Jin, Liu, Baret, Hemerlé, & Comar, 2017; Sankaran, Quirós, Knowles, &

Knowles, 2017). Shi et al. (2016) reviewed the merits and demerits of different aerial

systems, their operations, and various applications in the agronomic research. The images

from ‘passive’ energy source were sufficient for many of these applications. Besides these,

agricultural applications using ‘active’ energy source were also well explored using “light

detection and ranging” (LiDAR) (Simard, Pinto, Fisher, & Baccini, 2011), and “radio

detection and ranging” (RADAR) (Hirt, Filmer, & Featherstone, 2010) by producing digital

elevation models and digital terrain models. The low-altitude aerial imagery is useful in

obtaining the bird’s eye view of the entire field and can be used for spatial mapping.
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Similarly, the ground platforms (near-surface remote sensing) produce high

resolution images that are suitable for making decisions on leaf-scale resolution (e.g., pest

counting). The higher resolution images are obtained using cameras held near the plant

canopy, by which every fine details can be captured. The images are captured manually

during field scouting or mounted on front- or back-side of a tractor and the plants are

monitored on-the-go (Deery, Jimenez-Berni, Jones, Sirault, & Furbank, 2014; Y. Jiang et al.,

2018). The integration of computer vision and robotics enable real-time detection (by

computer vision) and application (by robotics) for a subjective, quick, and efficient field

management decisions. For such applications, ground platforms are being used by various

agricultural technology industries (e.g., Climate FieldView, Blue River Technology) for

plant specific managements. In particular, the ‘See & Spray’ technology developed by Blue

River Technology (2018) uses computer vision and machine learning algorithms to identify

weeds and they are immediately sprayed with herbicide on-the-go.

Therefore, working with aerial and ground platforms is highly demanding and has

possibility for spatial mapping and real-time implementation. In this study few applications

in agriculture, which are now performed manually and using commercial software, were

identified from the reported literature and user-coded computer algorithms for performing

specific applications were developed from scratch using an open source image processing

software, ImageJ. The images used in this study are high resolution images acquired using

a color digital camera, UAS, and PhenoCam in open field condition; hence, the sensor

combination used in this study can be identified as ‘aerial’ and ‘ground’ platforms that uses

‘passive’ energy source with ‘trichromatic’ spectral bands that are sensitive to ‘visible’ region

18



of electromagnetic spectrum (red dash arrow; fig. 2.1). The details of the specific

applications and their importance are discussed subsequently.

2.2. Sunflower Floral Dimensions Measurement

Sunflower (Helianthus annuus L.) is one of the major oilseed crops in the world that

is a native of North America. The oil from sunflower seed is being used for different

purposes such as food preparations due to the high amounts of unsaturated fatty acids

(Elghandour et al., 2017), cosmetics as a base oil that prevents hair loss (Rele & Mohile,

2003), and biodiesel as due to high oil production (Demirbas, 2007). The seed production

in sunflower is mainly by the process of pollination, by which pollens produced in stamen

(male part) are transferred to pistil (female part) through pollinators (e.g., bees,

butterflies) that visit flowers to consume nectar. Parker (1981) studied the effect of two

kind of bee such as oligolectes (bees that visit specialized flowers) and polyleges (bees that

visit diversified flowers) in pollination of sunflowers and found the oligolecets carried more

pollen on their body hair and resulted in more seed production.

Some of the major reasons for pollinator attraction are based on flower size, shape,

and floral display. A common tendency exists on pollinators to get attracted for large

flowers than small flowers, unless small flowers are present as a bunch (Dafni & Kevan,

1997). A reasonable amount of literature are available on the effect of flower size on

pollinator attraction on different species. Conner and Rush (1996) found a positive

correlation between flower size and syrphid flies (pollinator) visitation rate in wild radish

(Raphanus raphanistrum) species. Schmid-Hempel and Speiser (1988) classified the

inflorescence size of Epilobium angustifolium species into large (4.3± 0.2mm) and small

(3.2± 0.1mm) and their effect on pollinator visitation rate was studied. The results
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showed, there was no significant difference on pollen export and pollen deposition

between the inflorescence size categories; however, the large flower category attracted

diverse pollinators. The size of the floral display has been shown to be important in

attracting pollinators in other plants (Mitchell, Karron, Holmquist, & Bell, 2004) and is,

therefore, likely a key variable for sunflowers as well.

To improve sunflowers as an agricultural crop and for other uses, researchers have

tried to understand the attraction of pollinators. Greenleaf and Kremen (2006) compared

the effect of wild bees and honey bees in pollination to produce hybrid sunflowers. The

results showed that there was a 5-fold increase in the pollination efficiency with wild bees

than honey bees. The bee visitation rates are also influenced by the time of the day. In a

study conducted in the sunflower fields in University of Arkansas by Posey, Katayama, and

Burleigh (1986), found that peak visitation rate was observed between 0800 and 0900 h

with ≈58 bees per head per h. Therefore, farm management practices such as insecticide

and herbicide applications during this time of the day should be avoided and can be

applied between 1800 h and dark during which the pollinator visitation was almost zero.

Various studies have suggested plant traits that are associated with pollinator visits to

sunflower include pollen, floral coloration, floral odor, nectar rewards and size of the disk

florets (Atlagić, Joksimović, Sakač, Miklič, & Dušanić, 2003; Mallinger & Prasifka, 2017b;

Moyers, Owens, Baute, & Rieseberg, 2017).

Currently, the dimensions of the floral components are measured by manual

methods, which are subjective, time-consuming, and inaccurate. For example, P. Li, Luo,

Bernhardt, Kou, and Perner (2008) used digital vernier caliper to measure the dimensions

of dorsal sepal, lateral sepal, and labellum on Cypripedium plectrochilum species, and
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Kulbaba and Worley (2012) measured the floral dimensions on Polemonium brandegeei

species. A mixture of in-field measurements and images of plant parts were performed

using a ruler or micrometer (Mallinger & Prasifka, 2017a). The sizes of the sunflower disc,

ray florets, and ultraviolet (UV) pigmentation regions were also manually measured from

images using the ‘line tool’ of ImageJ (Moyers et al., 2017). These types of measurements

are necessary for linking pollinator visitation rates to the floral traits that attract them, but

manual field methods are time-consuming and often result in limited replication.

Apart from these applications, sunflower dimensions are measured in gardening

contests (Giant Gardening, 2018). The measurements followed in the contest include head

diameter, disc diameter, and disc perimeter as shown in fig. 2.2 using measuring tape,

which is highly subjective. Predicting the sunflower yield through the equation developed

by Kandel (2018) require precise head diameter as one of the factors along with plant

population and seed size.

Disc diameter Disc perimeterHead diameter

Figure 2.2. Sunflower dimensions measurement strategy in the giant gardening
contests (Giant Gardening, 2018).

Mirzabe, Chegini, and Khazaei (2018) measured length, width and area of the

sunflower petals using an image processing technique in MATLAB; however, they used

harvested sunflowers that made the measurements destructive. The studies discussed so far
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did not consider the geometry of the flower on pollinator visitation rate as they are not

possible with manual measurement methods. Also, limited measurements (two orthogonal

measurements) were taken in all these studies that may not statistically represent the

dimensions of the sunflower floral components. Therefore, a nondestructive, quick,

objective, and accurate dimensions measurement method with the potential of measuring

the geometry of the flower is highly desirable to correlate with pollinator visitation rate and

estimate sunflower seed yield.

2.3. Color Calibration of Digital Images

The digital images obtained from the camera uses a camera sensor that consists of a

grid of pixels with each pixel being sensitive to specific visible wavelengths (Bayer filter,

fig. 2.3a). The sensitivity of the sensor was developed by mimicking human vision system,

which is more sensitive to green. Therefore, half of the pixels are allotted with green (G)

sensitivity and another half is shared among red (R) and blue (B) equally (Lee & Ortega,

2001). The number of grids in Bayer filter decides the image resolution. For example, the

filter shown in fig. 2.3a produces an image of 64 pixels resolution (8× 8 pixels). The color

filter layer selectively allows the specific visible wavelength and the amount of photons

hitting each pixel forms the intensity. As seen in the fig. 2.3a, each pixel contains single

intensity value (R, G, or B), but the image we obtain contains three intensity values for

each pixel (R, G, and B). The missing intensity values at each pixel location are interpolated

by a process called demosaicking (Gunturk, Glotzbach, Altunbasak, Schafer, & Mersereau,

2005) that is performed in the ‘Image processor’ (fig. 2.3b). Therefore, a digital color

image is represented in RGB form with three components per pixel in the range of 0 to 255.
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Image source: https://www.androidauthority.com/isocell-how-it-works-344628/

Image source: https://en.wikipedia.org/wiki/Bayer_filter

Bayer filter
a

b

Figure 2.3. Working principle of a digital camera: (a) Bayer filter pattern of pixels
arrangements showing selective visible band sensitivities, and (b) the image
acquisition pipeline in a digital camera.

From fig. 2.3, it is obvious that the color presented in an image is directly generated

by the camera sensor. Therefore, the image color is device-dependent, i.e., a scene captured

using different cameras at the same time produce color variations due to the different

camera sensors. Furthermore, the images captured on same day at different times, or same

time on different days also produces color variations, despite no change in the object

properties fig. 2.4. These variations are due to either ambient temperature, light irradiance,

or cloud cover at that time. Obtaining image inferences directly from such images are
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June 22, 2016, 11:00 June 22 2016, 12:00June 22, 2016, 11:30 June 22, 2016, 12:30 June 22, 2016, 13:00

June 18, 2016, 12:00 June 20, 2016, 12:00June 19, 2016, 12:00 June 21, 2016, 12:00 June 22, 2016, 12:00

Images captured on same day at different times

Images captured at same time on different days

Figure 2.4. Comparison of color variations from the images captured using single
camera on same day at different times and same time on different days.

misleading. However, in image processing applications, the color response from the input

image has to be corrected to obtain color values through a process called color calibration.

A common way of obtaining the true color practiced in professional photography is

by using ‘white balance’ and ‘gray balance’ techniques, and they are followed in agriculture

as well. White balance technique was used to consistently maintain image color for

discriminating between plant and soil through different color channels (Philipp & Rath,

2002), estimating nitrogen status from digital images Y. Li, Chen, Walker, and Angus

(2010), and guiding the automated rice planter (B. Chen, Tojo, & Watanabe, 2003). Grey

balance technique was used in machine vision system to classify potatoes and sugar beet

(Nieuwenhuizen, Tang, Hofstee, Müller, & Van Henten, 2007), in monitoring the changes in

canopy phenology spatially and temporally (Richardson, Braswell, Hollinger, Jenkins, &

Ollinger, 2009), and in unmanned aerial system to estimate green area index for wheat

and rapeseed crops (Verger et al., 2014).

Using only two colors (white and gray) will only alter the brightness of the image

and will not render true color of the scene; however, these techniques are followed as a
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simple approach and cannot be claimed as actual color calibration. The actual color

calibration can be broadly classified into two categories: (i) device-based, and

(ii) image-based calibration. Many researchers have explored device-based color calibration

in which camera sensors are developed to automatically adjust to the color values based on

the scene lighting (M. Brown, Majumder, & Yang, 2005; Porikli, 2003). Image-based color

calibration is used to compensate for changes in the image due to illumination conditions.

This is the most common method followed in professional photography to maintain the

same color tone in all the scenes. It uses a standard color calibration chart to linearly map

the pixel values obtained in the image to the standard color values of the calibration chart

(Kagarlitsky, Moses, & Hel-Or, 2009). A relationship is developed between the color values

obtained in the image to the standard color values, which can then be applied to image

pixels (calibration). Commercially, there are several calibration charts available (ranging

from 6 to 100 s of color patches); however, the 24 color patch calibration chart is widely

used in many applications (McCamy, Marcus, & Davidson, 1976).

Many fields of study i.e., space research (Levin & Levin, 2004), medical research

(Haeghen, Naeyaert, Lemahieu, & Philips, 2000), underwater biology (Akkaynak, Chan,

Allen, & Hanlon, 2011), and agricultural research (Scharf & Lory, 2002) have had to solve

color variation issues. However, comprehensive information on color calibration of images

related to agricultural applications is limited. L. Brown, Datta, and Pankanti (2012) used

hue, saturation, and intensity (HSI) color space and derived a parameter called color

strength, which can be used to improve color correction. Akkaynak et al. (2014) developed

a color calibration using XYZ color space and all 24 color patches in the calibration chart

and converting it to XYZ color space, and later back-transforming to RGB color space.
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Over the last decade, application of digital image processing in agriculture has been

well researched. The major application in the agricultural research is mainly focused on

color based identification/classification. The usage of unmanned aerial system, and

PhenoCam systems in agriculture has taken a giant leap into the usage of digital color

images to assess plant phenology and health. Since the images are taken in open

atmospheric conditions, the brightness and darkness caused by the clouds and the time of

the day result in wide color variations. Barbedo (2016) reported lighting variations during

image acquisition in agricultural fields is the most common issue and it is inevitable. Thus,

the color-based characteristics gathered from such digital images that are used for crop

stress, nutrient deficiency, and crop productivity would lead to inaccuracies.

Researchers generally use various calibration boards with color patches of known

color value in the agricultural field. A few studies on calibration boards used in agricultural

applications include whiteboard in the test sites of Lageren Mountains in Zurich,

Switzerland (Ahrends et al., 2008), gray painted board in the Bartlett test site (Richardson

et al., 2009), five color boards, such as red, green, black, gray, and beige used for

estimation of biomass and nitrogen levels in a corn field (Hunt, Cavigelli, Daughtry,

Mcmurtrey, & Walthall, 2005). However, the color rendering efficiency of these color

patches was not investigated, and the calibration accuracy and the methodology followed

in those studies remain unknown.

2.4. Plant Stand Count and Spatial Distribution using UAS Images

Plant stand count is an important piece of information for farmers early in the

growing season, since that can be an important factor when making crop management

decisions (Bruin & Pedersen, 2004). When using unmanned aerial system (UAS) to assess
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plant stand information, farmers have the option of using one of many cloud-based services

that offer algorithms to perform stand counts on UAS imagery. Although that can be an

easy route to go, such services can be expensive and might have some requirements to

work properly, such as: (i) uniform plant-to-plant spacing, (ii) image resolution of or lower

than 25 mm/pixel, (iii) consistent row spacing with parallel rows, (iv) uniform plant

growth stages, and (v) no overlap between individual plants.

The stand count measure is important and is used to (i) estimate whether target

plant population can be achieved, (ii) evaluate the planter performance on seed placement

and spacing, (iii) derive insights on the emergence characteristics of the planted seeds, and

(iv) assess damage due to frost and hail storms. Plant stand assessment is manually

performed by scouting the fields during which either the row length (fig. 2.5a) or hula

hoop method (fig. 2.5b) are employed (Stowe, 2018). In the row length method,

a measuring tape of known length is placed in the row direction and the plant stand within

the length is counted manually. The stand count is then scaled up using crop-specific

constants (D. Berglund, 2007; DuPont, 2015; Kandel, 2010). While the hula hoop method

is straightforward, by which the number of plants inside the hula hoop is manually counted

and a rough estimate of plants per area is calculated. Then it is scaled up to the entire field

area to estimate the approximate plant stand count.

Plant spatial variability in the field is also an important measure and reported to

have a significant effect in the final crop yield (Lauer & Rankin, 2004; Nielsen, 2004).

Spatial distribution is important for the effective utilization of resources, such as nutrients

and sunlight. It was reported that the plants next to the skip yielded more than control,

while the plants next to a double yielded less than control (Nafziger, 1996).
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Figure 2.5. Plant stand count and plant spacing measurement in the field: (a) row
length method for stand count (DuPont, 2015), (b) hula hoop method for counting
plant stands (CanolaWatch, 2012), (c) possible plant spacing conditions in field with
“ideal”, “multiple”, and “skip” (Väderstad, 2019), and (d) plant spacing uniformity
measurement using ruler (Spelhaug, 2018).

Possible reasons for spacing variability (fig. 2.5c) between plants in a row, planter

mechanism type and its efficiency, planting speed, soil moisture and temperature

variability, and crop residue distribution (DuPont, 2015; Liu, Tollenaar, Stewart, & Deen,

2004). Generally, farmers scout through the field with a spacing ruler (fig. 2.5d) and check

the uniformity in spacing at random locations. To achieve an effective plant population at

uniform spacing, a farmer should have knowledge about his/her field history on stand

count and spacing distribution.
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It is obvious that counting the stands and measuring inter-plant distances manually

through field scouting method is time-consuming, painstaking, and covers only a small

portion of the field. Efforts were taken to develop automated plant stand counting using

image processing through ground level imaging systems (D. S. Shrestha & Steward, 2003,

2005; Tang & Tian, 2008). However, these studies focused on counting only on a single

crop row. Nowadays, field scouting method and ground level imaging method is being

replaced by the use of UAS images as they are quick, easy, and covers the entire field.

Even though it is possible to manually count the plants from UAS images, which is

prone to human error, automatic plant stand counting algorithms are developed through

image processing. A support vector machine model was trained in MATLAB with 13 shape

features to estimate the wheat crop emergence (Jin et al., 2017). Rapeseed stand count

was estimated by simple correlation using 15 shape features of the plants in Trimble’s

eCognition developer software and achieved an R2 of 0.84 (B. Zhao et al., 2018).

A computer workflow in ArcGIS software to evaluate the sunflower stand count from UAS

imagery attained R2 ranging between 0.52 and 0.96 (Flores, Schatz, & Aberle, 2017).

Stand count was performed in potato trials using ArcGIS from multispectral imagery and

achieved a r of 0.83 between manual stand count and image-based plant count (Sankaran

et al., 2017).

All these studies used a proprietary software, which are expensive, available only

through educational institutions/agricultural consultants, needs high technical knowledge,

and require license renewals, etc. Some of the software are cloud-based platforms, by

which the user have to upload the image data to a server and the processing happens in the

cloud. Such application is not encouraged by farmers, as they are concerned about data
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security. In such case, an in-house and stand-alone application is expected to resolve these

concerns as the data and the application can reside in the users’ computer.

Until now, there is no software available that is easy to use, free of charge, and open

source plant stand count solution that works across computer platforms, with few user

inputs. Therefore, an algorithm using an open-source, free image processing software to

produce a suite of results related to plant stand count and plants spatial distribution will be

highly useful to users and farmers.

2.5. Monitoring Soybean Growth Stages using Remote Sensing Platforms

The launch of satellites to earth’s orbit, since 1957, has initiated interest among

researchers to launch satellites for better weather forecasting. During 1960s, a series of

satellites were launched with advanced television cameras and radiometers on board.

By then, a simple ratio of red and infrared bands was used for monitoring vegetation and

termed as “vegetation index”. Later, Kriegler, Malila, Nalepka, and Richardson (1969)

developed a ratio between differences of red and infrared bands and sum of red and

infrared bands that had shown good correlation to vegetation and termed as “normalized

difference vegetation index” (NDVI). Soon after the launch of first earth resource satellite

in 1972 (Landsat 1), several applications of NDVI are reported until now. Currently, there

are around 1100 satellites revolving around Earth’s orbit that still fascinates researchers to

explore and develop new measures to monitor vegetation in a accurate way.

Typically, the vegetation indices (VI) are derived from the satellite spectral signals

for environmental monitoring, forestry, agriculture, land use changes, and other related

fields. In agriculture, these VI are used to measure and compare plant vigor, vegetation

cover, growth dynamics, canopy structure, and photosynthetic activity on a spatial and
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temporal scale (Mulla, 2013). Research have shown that 90 % of the vegetation

information are obtained from red and near infrared bands of electromagnetic spectrum

(Baret & Guyot, 1991). Hence, most of the VI developed to monitor vegetation uses

a combination of red and near infrared bands. Some common examples are ratio

vegetation index (Jordan, 1969), difference vegetation index (Richardson(AJ) & Wiegand,

1977), atmospherically resistant vegetation index (Kaufman & Tanre, 1992), and soil

adjusted vegetation index (Huete, 1988). Xue and Su (2017) reviewed some of the

significant VI used in agriculture. Currently, there are 519 VI available and a complete list

can be accessed from https://www.indexdatabase.de/.

Remote sensing through satellite imagery was the major breakthrough for studying

crop phenology. However, due to low image resolution, low temporal resolution, and

obstructions caused by clouds, have led to the idea of developing near-surface remote

sensing platforms. In 2007, a near-surface remote sensing network called “PhenoCam

Network” was initiated by Richardson et al. (2007) through which several networked

digital cameras (webcams) were installed across the United States to continuously track the

vegetation changes at high temporal resolution. Currently, there are ≈ 526 cameras

installed as of May 2018 that provides high resolution images at temporal resolution

ranging between 30 min and 3 days (time-lapse images). All the installed digital cameras

have panchromatic bands that produces digital color images with red (R), green (G), and

blue (B) intensity values, and some cameras have infrared band.

The time-lapse images from PhenoCam network have been used to measure

changes in landscapes (T. B. Brown et al., 2016), vegetation phenology (Hufkens et al.,

2012; Richardson et al., 2018b), nutrient stress (Andresen et al., 2018), biomass content
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and floral bloom (Crimmins & Crimmins, 2008), and patterns in plant leafing (Richardson

et al., 2009). Until now, only four VI — green chromatic coordinates (GCC), red chromatic

coordinates (RCC), blue chromatic coordinates (BCC), and excess green (ExG) are being

used in the captured images from PhenoCam Network. These studies aimed in developing

relationships between the above mentioned VIs and the satellite data, or manual

observations of different phenophases (e.g., leaf unfolding, first flowering, full blooming,

leaf falling).

However, other visible vegetation indices presented in table 2.1 were not used in

any phenological studies from PhenoCam images. Also, all these studies were conducted

on forest or grassland ecosystems, and did not explore much in agricultural crops.

Therefore, this study aims to explore these VIs and develop a relationship between VIs and

manual observations of vegetation growth stages.
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Table 2.1. Vegetation indices using visible bands of electromagnetic spectrum developed and used in various studies.

Vegetation index Mathematical expression Reference

Green chromatic coordinates (GCC) GCC= G/(R + G + B) Richardson et al. (2007)
Red chromatic coordinates (RCC) RCC= R/(R + G + B) Richardson et al. (2007)
Blue chromatic coordinates (BCC) BCC= B/(R + G + B) Richardson et al. (2007)
Excess green (EXG) ExG= 2gc − rc − bc Woebbecke, Meyer, Von Bargen, and Mortensen (1995)
Excess red (EXR) EXR= 1.4rc − gc G. E. Meyer (2011)
Excess green minus excess red (EXGR) EXGR= EXG− 1.4rc + gc N. J. Camargo (2003)
Normalized difference index (NDI) NDI= 128× ((G−R)/(G+R)) + 1 Woebbecke, Meyer, Von Bargen, and Mortensen (1993)
Color index for vegetation (CIVE) CIVE= 0.441rc − 0.881gc + 0.385bc + 18.78745 Kataoka, Kaneko, Okamoto, and Hata (2003)
Vegitativen (VEG) VEG= gc/r c

0.667 bc
0.333 Hague, Tillett, and Wheeler (2006)

Normalized green red difference index (NGRDI) NGRDI= (G−R)/(G + R) Tucker (1979)
Normalized green blue difference index (NGBDI) NGBDI= (G−R)/(G + B) Verrelst, Schaepman, Koetz, and Kneubühler (2008)
Modified green red vegetation index (MGRVI) MGRVI= (G2 −R2)/(G2 +R2) Bendig et al. (2015)
Red green blue vegetation index (RGBVI) RGBVI= (G2 − BR)/(G2 + BR) Bendig et al. (2015)
Visible atmospherically resistant index (VARI) VARI= (G−R)/(G+R− B) Gitelson, Kaufman, Stark, and Rundquist (2002)
Dark green color index (DGCI) DGCI= [((H− 60)/60) + (1− S) + (1− B′)]/3 Karcher and Richardson (2003)
Green leaf index (GLI) GLI= (2G−R− B)/(2G + R +B) Mounir, Michael, and Douglas (2001)
Red green ratio index (RGRI) RGRI= R/G Gamon and Surfus (1999)
Triangular greenness index (TGI) TGI= G− 0.39R− 0.61B Hunt, Daughtry, Eitel, and Long (2011)

Note: R, G, and B are red, green, and blue pixel values from RGB image; rc , gc , and bc are the chromatic coordinates of RGB and is
same as RCC, GCC, and BCC; H, S, and B′ are hue, saturation, and brightness values from HSB image.
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The PhenoCams were installed in 2015 on experimental plots of Northern Great

Plains Research Laboratory (NGPRL), United States Department of Agriculture, Agricultural

Research Service, Mandan, ND. Out of 576 PhenoCam sites, 63 sites are currently active

and categorized into “Agriculture” as the primary vegetation type. Except Okalebo et al.

(2017), no other work has been reported from these sites. In that study, a computer

application was developed to detect two growth stages in corn such as green-up and

tasseling in corn. Similar computer algorithms can be developed specific to the crop

through the images from PhenoCam sites dedicated to agriculture vegetation. Such

applications will develop interest among farmers to use PhenoCams as a tool to monitor

vegetation continuously and take farm management decisions. The PhenoCam sites in

NGPRL were sown with soybean (Glycine max L.) in the growing season of 2018, which was

used to develop vegetation indices that indicate different growth stages as shown in fig. 2.6.

Soybeans are the main source of vegetable oil in the United States and largest

source of proteins in animal feed. It is one of the important rotational crops as it improves

the soil fertility. The productivity of soybean is affected by various abiotic factors (e.g.,

temperature, rainfall) and biotic factors (e.g., weeds, insects). Insect damage on soybean

leaves impose stress to the plant, ultimately declines productivity. Defoliation is the major

visible effect due to insect damage. Liang, Kirk, and Greene (2018) developed a computer

algorithm to detect the amount of defoliation, and leaf area using digital color images

obtained in field. They used leaf area and edge pixels to estimate the amount of defoliation

and acheived an accuracy of up to R2 of 0.96. An approach that can eradicate defoliation is

to detect the insects on soybean leaves at earlier stage so that management decisions can

be taken. Barbedo (2014) used image processing to identify white flies on soybean leaves.
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Figure 2.6. Growth stages of soybean (CropNutrition, 2018) and a typical green
chromatic coordinate (GCC) curve at different days after planting of a crop in general.

Algorithms to identify and count aphids (Aphis glycines) on soybean leaves were developed

using advanced shape analysis (Sunoj et al., 2017), and simple area comparison

(Maharlooei, Sivarajan, Bajwa, Harmon, & Nowatzki, 2017).

The chlorophyll content of the soybean leaves are one of the indicators for root

nodulation and nitrogen fixation status of the crop. An image processing algorithm was

developed by Vollmann, Walter, Sato, and Schweiger (2011) to measure chlorophyll

content of the leaves through digital images. The green channel and chlorophyll content

from SPAD meter showed a strong negative correlation (r = −0.94). The relationship

between chlorophyll content on nodulating and non-nodulating roots were also

established. Root nodulation increased the chlorophyll content and non-nodulation

decreased the chlorophyll content.
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Concerted efforts have been taken to monitor soybean field through satellite

platforms. Moderate-resolution Imaging Spectroradiometer (MODIS) satellite provides

data at a spatial resolution of 250 m and temporal resolution of 1–2 d and this has been

constantly used in remote sensing in agriculture (Mulla, 2013). Critical vegetative and

reproductive stages of soybean were identified by Sakamoto et al. (2010) using a two-step

filtering approach from the time-series MODIS data between 2003 and 2008 in three study

sites of eastern Nebraska. A shape-model with Wide Dynamic Range Vegetation Index

(WDRVI) data derived from MODIS was developed and validated with ground

observations. The model estimated four key phenological stages of soybean (V1, R5, R6,

and R7) with an error <7 d. The shape-model was improved in the saa me study sites by

incorporating WDRVI with temperature and photoperiod data by Zeng et al. (2016) and

reduced the error to <4 d. Zhong, Hu, Yu, Gong, and Biging (2016) used MODIS data to

map soybean fields in Paraná state of Brazil by training a decision tree classifier and

achieved an accuracy of 87.2 %.

Application of RapidEye satellite imagery was also explored by many researchers

globally and it provides better spatial resolution (≈5 m), temporal resolution (≈daily), and

enhanced spectral information due to the presence of red-edge band when compared to

MODIS. Shang et al. (2014) used RapidEye images on corn, wheat, and soybean fields in

southern Ontario, Canada to estimate plant area index (PAI) through NDVI and two-band

enhanced vegetation index (EVI2). The PAI was most efficiently estimated from EVI2 with

a high accuracy (R2 = 0.85). RapidEye imagery was used to estimate leaf area index and

biomass content in corn and soybean fields in Ontario, Canada between 2011 and 2013

(Kross, McNairn, Lapen, Sunohara, & Champagne, 2015). The vegetation indices such as
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NDVI, red-edge NDVI, and green NDVI were tested and found that among other indices

considered, NDVI performed well (R2 = 0.90). Crnojević, Lugonja, Brkljač, and Brunet

(2014) classified agricultural fields in a study area in northern Serbia into five vegetation

categories (corn, wheat, soybean, sugar beet, and sunflower) using random forest classifier

with an R2 of 0.76.
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3. SUNFLOWER FLORAL DIMENSION MEASUREMENTS

USING DIGITAL IMAGE PROCESSING *

3.1. Abstract

Sunflower floral dimensions are essential for assessing pollinators attraction and

estimating seed yields. Dimensions measured manually at present are subjective and

time-intensive, therefore, an image processing method was developed as an alternative,

which was objective, non-destructive, produces various outputs, and rapid. An ImageJ

user-coded plugin with a field image acquisition method was developed to measure the

dimensions of individual sunflower components, such as head, disc, and ray florets.

Two measurement methods, direct (using the thresholded binary image) and

wrapping-polygon (using a polygonal enclosure) were tested. The “pixel-march” method

made multiple radial dimension measurements (diameter) on the ray florets binary image

in a single computation. The effect of multiple measurements (2, 4, 8, 16, 32, 64, 128, and

180 along 0°–180° angles) was studied to determine an effective number of measurements,

and user-friendly sunflower dimension prediction models from ImageJ’s standard output

parameters were developed. Results indicated that (i) a minimum of 32 measurements for

the sunflower head and ray florets dimensions, but only eight measurements for the

* This paper is published in the journal of Computers and Electronics in Agriculture. Authors: Sunoj, S.,
Subhashree, S.N., Dharani, S., Igathinathane, C., Franco, J,G., Mallinger, R.E., Prasifka, J.R., and Archer, D.
Title: Sunflower floral dimension measurements using digital image processing. Volume: 151. Page numbers:
403–415. DOI: https://doi.org/10.1016/j.compag.2018.06.026. Sunoj has developed the plugin,
analyzed and visualized data, and wrote the manuscript. The major advisor Dr. Cannayen played a pivotal
role in research outline, technical discussions, analyses, and manuscript review and other collaborators have
assisted in all aspects of the paper.
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sunflower disc, were necessary; (ii) wrapping-polygon method was efficient compared to

direct; (iii) equivalent diameter (ED) and fitted ellipse minor axis (MinA) were well

correlated (r ≥ 0.88) to the accurate mean 180 measurements (D180) for all sunflower

components; (iv) linear models for predicting D180 using ED and MinA performed better

(R2 > 0.99) for head and disc than for ray florets (R2 > 0.76); (v) user-friendly linear

models using the mean of two manual measurements of the head (D2h) for predicting D180

and area were good only for the head (R2 > 0.92), and not suitable for disc (R2 ≤ 0.62)

and ray florets (R2 ≤ 0.43); and (vi) the developed image processing method results were

accurate, quick (≈11 s in Windows 10, Intel Core i5, and 8 GB RAM laptop), and have the

potential to be adapted to other species.

3.2. Introduction

Cultivated sunflower (Helianthus annuus L.) is the world’s fourth-ranked oilseed

crop of economic importance (FAO, 2017). Sunflower yields are critically dependent on

aspects of the sunflower head in at least two ways. First, head size as a component of yield

is important as medium-sized sunflower heads are considered best for attaining a high

yield (Škorić, 1992). Second, sunflowers depend on pollination by bees, which move

pollen between male and female plants to produce hybrid seed, but bee visitation also

increases yields of commercial hybrids that have moderate-to-high ability to self-pollinate

(Mallinger & Prasifka, 2017b). Bees are attracted to sunflower heads by groupings of small

central disk florets and larger outer ray florets (petals). The size of the floral display has

been shown to be important in attracting pollinators to other plants (Mitchell et al., 2004)

and is, therefore, likely a key variable for sunflowers.

39



Sunflowers are a component of the natural landscape in North America and are

included in mixtures of seed for cover crops or plantings specifically to support pollinating

insects. To improve sunflowers as an agricultural crop and for other uses, researchers have

tried to understand the attraction of pollinators. Various studies have suggested plant traits

that are associated with pollinator visits to sunflower include pollen, floral coloration, floral

odor, nectar rewards and size of the disk florets (Atlagić et al., 2003; Mallinger & Prasifka,

2017a; Moyers et al., 2017; Pham-Delegue et al., 1990). Sunflower physical measurements

usually rely on manual methods. A mixture of in-field measurements and images of plant

parts were performed using a ruler or micrometer (Mallinger & Prasifka, 2017a). The sizes

of the sunflower disc, ray florets, and UV pigmentation regions were also manually

measured from images using the “line tool” of ImageJ (Moyers et al., 2017). These types of

measurements are necessary for linking pollinator visitation rates to the floral traits that

attract them, but manual field methods are time-consuming and often result in limited

replication.

Researchers are now exploring more objective methods, such as image analysis, to

replace the subjective and laborious manual methods in agricultural applications.

Classifying plants based on their visual dissimilarities (Grinblat, Uzal, Larese, & Granitto,

2016; Hall, Dayoub, Perez, & McCool, 2018), inspecting and grading of fruits and

vegetables (Pereira, Barbon, Valous, & Barbin, 2018; Subhashree, Sunoj, Xue, & Bora,

2017; Wan, Toudeshki, Tan, & Ehsani, 2018), classifying medicinal plant leaves (Prasad &

Singh, 2017), estimating and classifying biomass (Pothula, Igathinathane, Kronberg, &

Hendrickson, 2014; Schirrmann, Hamdorf, Garz, Ustyuzhanin, & Dammer, 2016) are some

example applications for objective methods. Image processing methods can be applied to
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field-scale applications that include detecting plant row count (de Souza, Lamparelli,

Rocha, & Magalhães, 2017; Guerrero, Ruz, & Pajares, 2017), plant leaf disease (Prasad,

Peddoju, & Ghosh, 2016; Singh & Misra, 2017; S. Zhang, Wu, You, & Zhang, 2017) pests

(Barbedo, 2014; Maharlooei et al., 2017; Sunoj et al., 2017), and weeds (Bakhshipour &

Jafari, 2018; dos Santos Ferreira, Freitas, da Silva, Pistori, & Folhes, 2017).

Given the expanse of image processing potential in agriculture, it can be extended

to pollination research as literature in this field is lacking. As sunflower component

dimensions can be correlated to pollinators attraction and seed yields estimations, as well

as the current practice of manual measurements, is subjective, tedious, and limited to a few

measurements, an alternative automatic dimensions measurement procedure for

sunflowers through user-coded image processing tool was proposed and developed in this

research. The proposed image processing approach will be objective, rapid, allow for

multiple radial measurements that can be subjected to statistical analysis, and the results

along with the images can be archived for later use. Other geometrical parameters, namely

the area, perimeter, and shape of the sunflower components can also be readily

determined. Furthermore, the proposed image processing approach will serve as a tool and

the research will be beneficial to the sunflower breeders.

Therefore, the overall goal of this paper is to develop an image processing method

to evaluate the floral dimensions of the sunflower head, disc, and ray florets. The specific

objectives include (i) developing an image processing plugin (program) in ImageJ,

(ii) determining the effective number of radial measurements that statistically best

represents the mean dimension of individual components, and (iii) developing correlations

41



among various measured dimensions, determine their interrelationships, and produce

prediction models.

3.3. Materials and Methods

Description of various aspects in this study that includes test material, image

acquisition, preprocessing, image processing, dimensions and other geometrical

measurements, image processing tool development procedure, statistical analysis of

measurements, and friendly sunflower dimensions prediction model development are

presented subsequently in appropriate sections.

3.3.1. Test Material — Sunflowers

Sunflowers (var. Peredovik) used in this study were from experimental plots of a

cover crop-bee pollinator study conducted between June and August 2017, located 1 km

southwest of Mandan, ND, USA (46.77° N, 100.90° W). Sunflowers of different sizes were

randomly selected within the experimental area. The diameter of the whole sunflower

(average of length and width — along two perpendicular dimensions) ranged from 90 mm

to 221 mm.

3.3.2. Developed Background Board for Image Acquisition

Acquiring digital images in agricultural fields is challenging because images

produced are prone to issues, such as image distortion, the presence of shadow, improper

background, lack of contrast, and absence of reference scale for dimensional calibration.

These issues can lead to difficulties in developing an image processing algorithm that can

be generalized to all situations and images. Based on the preliminary observations, a

sunflower image acquisition methodology to address these issues was developed (fig. 3.1).
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Figure 3.1. Image acquisition procedure followed for sunflower dimension
measurement (a) custom-designed background board with slit closure sheet; and
(b) capturing sunflower image in the field using the custom-designed background
board and DSLR camera.

To provide a contrasting background and facilitate easy handling of sunflowers for

image acquisition, a “custom-designed background board” (500 mm × 500 mm) was made

using a white foam board (5 mm thick). A “keyhole” like slit (220 mm × 25 mm) was cut in

the board, from the center to one edge with a circular hole (35 mm ∅) at the center

(fig. 3.1a). The slit helps to slide the flower pedicel down, and the hole holds the pedicel

and positions the flower at the center of the board. After positioning the flower, the slit will

be visible and become an artifact of the captured image. To avoid this, a detachable “slit

closure sheet” made using a white poster sheet (220 mm × 130 mm) with adhesive strips

(using “Post-it” sticky notes) were attached in a way that the sticky surfaces were exposed,

along the edges of the length to cover the slit (fig. 3.1a).

This arrangement ensured that only the sunflower head, eliminating stem and

leaves, was presented with a clear white background for the image capture. Four

dimensional markers (filled black circles of 13 mm ∅) were fixed at the corners of the

board, to represent a square of side 400 mm. These markers serve as a reference scale for
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dimension measurement calibration, and to rectify the image distortions using projective

transformation (discussed in section 3.3.6). The developed imaging methodology was

nondestructive and the sunflowers need not be clipped from the plant. The overall time

required to capture images using the developed image acquisition setup was ≈30 s (≈20 s

to insert the board in sunflower pedicel, ≈5 s to fix the slit closure sheet, and ≈5 s to

capture the images).

3.3.3. Digital Image Acquisition

A digital single-lens reflex (DSLR) camera (Model: Nikon D5100, Nikon Corp.,

Japan) was used to capture RGB images of sunflower in the field with following manual

camera settings: lens = 18–55 mm, shutter speed = 1/300 s, aperture = f/4, and

ISO = 100. The camera was held perpendicular to the board at a distance of 1–2 m and

three images (replications) were captured for each flower (fig. 3.1b). Sharp, well-focused

images, without any camera shake, were captured. Commercial cameras, and smartphones

available in the market are equipped with image stabilization technology that produces

sharp images.

From preliminary observations, the images captured of sunflowers facing the sun

(east) produced shadows and caused difficulties during image segmentation. Therefore,

sunflower heads were slightly twisted so that they faced north during image capture.

The background board was firm enough and could gently twist the sunflowers without

causing damage either to the plants or the board. Images were captured in RGB color mode

at the camera maximum resolution (4928× 3264 pixels). The file sizes of the images were

between 3 and 5 MB. A total of 126 images from 42 different sunflowers were obtained.
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The captured RGB color images were directly used as inputs to the developed plugin

without any intermediate operations such as cropping or zooming.

3.3.4. Overall Algorithm of the Plugin

All image processing operations were performed using Fiji (Ver. ImageJ 1.49v, Java

1.8), an open source software. Fiji is a distribution of ImageJ (Rasband, 2018; Schindelin

et al., 2012) that provides a user-friendly environment for plugin development by coding in

Java. A pseudocode of the developed plugin is presented in Appendix A. The acquired

image was subjected to a sequence of image pre- and post-processing operations for

measuring sunflower floral component dimensions (fig. 3.2).

3.3.5. Image Preprocessing

The input color image was first converted to an 8-bit grayscale image. A median

filter of 9-pixel radius was then applied to smooth the grayscale variations before

thresholding. The filtered image was thresholded using the standard “Minimum”

thresholding method. The “Fill Holes” option was also applied to cover any holes that

might have been generated during thresholding. These preprocessing operations were

performed automatically through the plugin codes by calling the menu options “8-bit,”

“Median...,” “Threshold...,” and “Fill Holes” using IJ.run() command directly.

3.3.6. Image Projective Transformation

Image distortion (e.g., perspective, skew distortion) is inevitable while capturing

images manually in a field setting, hence dimensions measured from such distorted image

will be prone to errors. In this study, a projective transformation (fig. 3.3A) was performed

to rectify the possible perspective distortion of the input image (Burger & Burge, 2016b).

In fig. 3.3A, I represents the distorted field-captured input image and I′ the rectified
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Figure 3.2. ImageJ plugin development flowchart showing details of developed
algorithm for sunflower floral components dimension measurement.

transformed image suitable for the measurements. The dimensional markers served as the

reference points for rectifying the planar distortion of the image, and the spacing between

them served as the reference scale for measurement calibration. In the plugin, the

dimensional markers were automatically identified, based on their unique shape

(circularity) from the input image, without user intervention.
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Figure 3.3. Demonstration of projective transformation for rectifying geometrical distortions: (A) Schematic
representation of projective transformation of the distorted input image (I) to the rectified transformed image (I′) that
was used for dimension measurements. (B) Illustration of projective transformation process: (a) distorted input RGB
image, (b) grayscale image, (c) binary image, (d) identified dimensional markers, (e) projective transformed, clipped,
and rectified grayscale image with padding used for further processing and measurement, and (f) illustration of RGB
version of the transformed rectified image.
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3.3.6.1. Identification of dimensional markers

The ProjectiveMapping() class, which does the projective transformation, requires

the coordinates of the distorted image marker points (A, B, C, D) and the target points

(A′, B′, C′, D′) as input (fig. 3.3A). The target points represent the user-defined desired

dimension of the transformed image for further measurements, and a square of 3000 pixels

size, suitable for the range of sunflower sizes considered, was fixed in this study. For this,

the centroids of identified dimensional markers and the target points were used in the

transformation mapping.

From the binary image, the dimensional markers were identified using area and

circularity values from the ParticleAnalyzer() class outputs. Based on the preliminary

observations on all captured images, an area >2000 pixels and circularity >0.85 was found

suitable for identifying the circular dimensional markers. Positions of these identified

markers were extracted from the standard outputs of centroid coordinates.

3.3.6.2. Image transformation and processing stages

The horizontal and vertical distances between the target points (A′B′ = B′C′ =

C′D′ = D′A′) were the set 3000 pixels (fig. 3.3A). The target points were further given a

padding of 100 pixels on all sides to observe them as complete circles with an additional

white margin for a better visualization of the image. Without providing margins, the target

point centers would become the corners of the transformed image and the target points

would only be seen as quarter circles; however, this padding did not affect the

measurements. Therefore, the width and height of final projective transformed images

were 3200× 3200 pixels. As transformation creates new areas, bicubic interpolation was

used to fill these areas with relevant image pixel values.
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An actual illustration of the various stages of image processing is presented in

fig. 3.3B. The raw input RGB image (fig. 3.3a) obtained from field was first converted into

an 8-bit grayscale image (fig. 3.3b). The median filter (9-pixel radius) grayscale image was

thresholded (“Minimum” method) with holes covered (“Fill Holes” option) to produce the

binary image (fig. 3.3c). The AnalyzeParticles() with filters of area >2000 pixels and

circularity >0.85 identified well only the dimensional markers (fig. 3.3d), as the circularity

of the whole sunflowers were <0.2. Positions of the identified dimensional markers, which

are equidistant originally at 400 mm square, appear to be distorted (unequal spacing

among them). The projective transform rectified these distortions by mapping the

identified dimensional markers to the target coordinates using the centroids, and this

mapping also rectifies the whole image in the process. The transformed image was clipped

at 3200×3200pixels and was used for further image processing (fig. 3.3e). For illustration,

the transforming and clipping of the color image (without thresholding) to the final image

(fig. 3.3f) is also shown to visualize the process as if the image were taken without any

perspective distortion. As seen in the process, the projective transformation only performed

geometrical corrections and did not negatively affect the shape of the sunflower.

3.3.7. Sunflower Head, Disc, and Ray Florets Segmentation

From the projective transformed grayscale image (fig. 3.3e), the sunflower head

(whole flower), disc, and ray florets (petals) portions were segmented using ImageJ’s

inbuilt thresholding methods (fig. 3.4). Sunflower head (fig. 3.4a) was segmented by

“Default” method and disc (fig. 3.4b) by “Shanbhag” method – ImageJ’s inbuilt methods.

These thresholding methods are dynamic that works solely based on the histogram pattern,

and does not have a fixed threshold value. The ray florets were obtained by subtracting the
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disc from the sunflower head segmented images using the ImageCalculator() class

(fig. 3.4c).

a b c

d e f

Figure 3.4. Segmented binary images of sunflower floral components (a) sunflower
head “Default” thresholding method, (b) disc using “Shanbhag” thresholding method,
(c) ray florets using image difference by subtracting disc from head,
(d) wrapping-polygon of head, (e) wrapping-polygon of disc, and
(f) wrapping-polygon of ray florets using image difference.

The binary images of sunflower head and disc were used to construct a

wrapping-polygon (discussed subsequently) of the head (fig. 3.4d) and disc (fig. 3.4e).

These two images served as inputs for creating the difference image of ray florets

(fig. 3.4f). The ray florets represent a composite binary image where the disc is black and

ray florets in white. Such composite images (fig. 3.4c & f) were used to measure the

dimensions of the sunflower head, disc, and ray florets in a single operation of

measurement that goes through different floral components from the centroid.
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3.3.8. Direct and Wrapping-polygon Methods for Measurement

Based on the ray florets arrangement, the line of dimension measurements might

fall on the sides or valleys of the ray florets (fig. 3.5), where the general expectation for

measurement is “tip-to-tip.” The multiple radial measurements will, however, minimize the

discrepancy. To effectively address this, a new concept of “wrapping-polygon,” which was

different from the standard convex-hull was developed.
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Figure 3.5. Development of wrapping-polygon from binary sunflower image
(a) illustration of convex-hull polygon with missing ray florets tips (shown in red
circles), (b) segmented sunflower head (shown in golden yellow) with connecting
lines between the centroid and peripheral points, (c) plot between peripheral points
and distance from centroid for identifying ray floret tips, and (d) wrapping-polygon
(black solid line) enclosing the segmented head based on the identified tips.
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The wrapping-polygon can be thought of as a “shrink-wrap” type of geometric

enclosure that includes all ray floret tips developed to resemble the natural dimension

measurement of sunflower floral components. A standard convex-hull polygon would have

fewer vertices and would miss several ray floret tips (convex-hull polygon; fig. 3.5a), and

measuring the dimensions along multiple angles would result in overestimation. The

wrapping-polygon, however, provided the accurate tip-to-tip profile-based distance at any

measurement angle.

The ray floret tips for the wrapping-polygon were determined by finding the tips

from the ray florets edge profile (fig. 3.5b). An example of this process with 50 edge pixels

is shown in fig. 3.5c. The autoOutline() method of Wand() class produced the coordinates

of edge pixels. For each edge pixel, the distance (edge to centroid) was compared with the

distances of adjacent pixels (one before and one after) and the tip was determined.

To qualify as a peak, the ith pixel distance should be greater than that of i − 1 and i + 1

pixels. It was found that this simple method was good enough to identify all tips of the

flower. These ray floret tips formed the vertices of the wrapping-polygon and the flood-fill

option completed the object for further processing (fig. 3.5d) and dimension measurements

(fig. 3.4d–f) .

3.3.9. Dimension Measurement — Standard and Pixel-march Methods

ImageJ offers standard dimension measurements that include bounding box width

and height, Feret diameter, and major and minor axis length; along with other standard

object properties that include area, perimeter, and centroid coordinates. Other derived

properties such as equivalent diameter can be obtained from the object area through user

codes. Of these standard measurements, the fitted ellipse major (IJ) and minor (KL) axes
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(fig. 3.6a) best represent the length and width of an object. However, the major and minor

axes are aligned randomly based on the object shape. Furthermore, in manual

measurements, the length and width of the floral components are measured along the

horizontal (east to west, EW) and vertical (north to south, NS) directions. Therefore, the

standard major and minor axes based measurements, despite useful, may not always

represent the generally expected manual measurements.

A “pixel-march” method developed by Igathinathane, Pordesimo, and Batchelor

(2009b), which typically addressed the inability of standard measurement scenarios and

worked irrespective of object orientation, was employed in this study for dimension

measurements. The pixel- march operated on finding the boundary pixel whose color was

different from that of the previous pixel while marching from a specified starting point

(centroid). The two common physical dimensions along horizontal (length) and vertical

(width) directions can be obtained using pixel-march by starting from the centroid and

marching outwards at 0° (EW) and 90° (NS) in both directions, respectively (fig. 3.6a).

It can be observed from fig. 3.6b that using a single operation of pixel-march the

sunflower disc and head dimensions were measured starting from the centroid and

reaching the first boundary (e.g., D1D′1) representing the disc, then reaching the second

boundary (e.g., H1H′1) representing the head along the same direction, and the difference

(e.g., H1H′1 −D1D′1) representing the ray florets dimensions. This pixel-march method of

measurement has the potential of obtaining multiple dimensions along radial directions

(fig. 3.6a), and such measurements better represent the mean dimension of the sunflower.

The number of measurements (n) required was taken as input and the pixel-march

measurements proceeded along every angle interval (θ = 180°/n). In this study, the
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Figure 3.6. Dimension measurement methods for sunflower components
(a) illustration of fitted ellipse method available in ImageJ in sunflower head and
disc, (b) multiple radial dimensions measurement by using “pixel-march” method
with direct measurement method (fig. 3.4c) and wrapping polygon method (fig. 3.4f)
difference images.
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number of measurements considered for testing were 2, 4, 8, 16, 32, 64, 128, and 180.

The two manual orthogonal measurements of the head, EW and NS can be simulated by

selecting n= 2, which makes θ = 90° for pixel-march, and its mean was represented as

D2h = (EW+NS)/2. This D2h represents the manual measurement in the field. Similarly, the

most elaborate dimension uses 180 measurements (n= 180; θ = 1°) and its mean was

represented as D180 =
∑180

i=1 Di/180.

3.3.10. Other Geometrical Parameters

Area, perimeter, solidity, and circularity were the other geometrical parameters of

the sunflower floral components obtained from the standard outputs of ImageJ analysis.

Equivalent diameter (ED) is a user-coded parameter derived from the object area

(ED=
p

(4/π)×Area) and it represents the diameter of a circle having the same area of

the object. These parameters were evaluated through both direct and wrapping-polygon

methods. These parameters were obtained by directly passing the segmented binary

images of individual sunflower components (fig. 3.4a-f) through ImageJ’s

AnalyzeParticles() class.

3.3.11. Developed Image Processing Plugin

The front panel of the developed ImageJ plugin had two inputs and several output

options (fig. 3.7). The developed plugin reads an input RGB image (e.g., fig. 3.1, field

captured image), performs all the operations (sections 3.3.4 –3.3.10) in the background,

and produces the outputs. The minimal inputs necessary to run the plugin are (i) the

known spacing of the dimensional markers the user employs, and (ii) the number of

measurements desired. The output options generate additional images for inspection and

archival purposes. When the plugin was run, after loading the color (RGB) field image, by
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clicking the “OK” button, the measurement results were displayed as a pop-up window

message. There is also an option to save the results for further statistical analysis, as a

consolidated file that can be opened using a spreadsheet program.

Figure 3.7. Front panel of the developed ImageJ plugin for sunflower floral dimension
measurements.

All the calculations inside the plugin are performed in the basic pixel units, and it is

necessary to convert them into physical units (e.g., mm) for dimensions interpretation.

In this study, the markers spacing of 400 mm served as the reference measurement for units

conversion. As the markers of the transformed image were set at 3000 pixel spacing, the

image had a resolution ≈185 DPI, which was equivalent to a measurement accuracy of

0.133 mm/pixel. This transformation eliminates the inconsistencies in the image resolution

caused due to variations in object-to-camera distance. The plugin took a CPU time of ≈11 s

to perform the analysis in a Windows laptop (Windows 10, 2.20 GHz Intel Core i5-5200U

processor, and 8 GB RAM).
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3.3.12. Prediction Model Development

It will be desirable to develop user-friendly prediction models for sunflower

components that use ImageJ standard outputs and simple measurements as inputs to

obtain accurate dimension (through the developed image processing) and area

measurements were developed. Correlation analysis determined the selection of

independent variables for the models. The most accurate multiple dimension, D180, was

considered as the reference (control) and other measurement methods were compared;

the least number of multiple dimension, D2h, represents common manual measurement

and serves as an independent variable to obtain the D2h.

The independent variables that were correlated to D180 can be divided into three

groups, namely linear dimensions (e.g., equivalent diameter, minor axis), geometrical

parameters (e.g., area, perimeter), and D2h. Here, the linear dimensions and geometrical

parameters of head, disc, and ray florets only from direct method was considered as it was

easily obtainable by the user after segmentation directly from ImageJ standard outputs

(fig. 3.4a–f). The D2h, in this study, was calculated using the two measurements from the

wrapping-polygon method as it represented the tip-to-tip and simulated the field manual

measurements. The linear regression model coefficients of determination (R2) for D180

using these independent variables were also studied to observe the trend. It is also

desirable to study how the area of the floral components was related to D2h.

R program cor() function was used to determine the Pearson’s correlation

coefficient (R Core Team, 2018). Among the inputs, the most influential variables were

determined based on the highest correlation coefficient, and were employed to develop

linear regression models using lm() function.
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3.3.13. Statistical Analysis

Analysis of variance was conducted to evaluate the effect of two measurement

methods (direct and wrapping-polygon), and the number of measurements on dimensions.

The deviation (%) in the measured dimension with respect to the control (D180) was

calculated as absolute deviation using equation 3.1.

Absolute deviation (%)=
|Di − D180|

D180
× 100 (3.1)

where, Di is the mean dimension of i measurements (i = 2, 4, 8, 16, 32, 64, 128, and 180),

and D180 is the mean dimension of 180 measurements.

Statistical comparison between methods will determine the most efficient

measurement method, and the measurement comparisons will provide a minimum

(efficient) number of measurements beyond which there is no need to consider based on

statistical significance with the control. The R packages, such as agricolae (de Mendiburu,

2019) for Duncan’s new multiple range test, and ggplot2 (Wickham, 2016) for graphical

visualization of the results were used in the analyses.

3.4. Results and Discussion

3.4.1. Effect of Number of Measurements on Mean Dimension

The developed image processing plugin allowed us to select different numbers of

measurements and observe the effects on the mean dimension (fig. 3.8). A plot of mean

dimension variations of 10 sunflower heads, selected as an example, and obtained through

direct and wrapping polygon shows the existing variation among the number of dimensions

(fig. 3.8a). Irrespective of the head size, variations were present in all sunflowers.
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Figure 3.8. Effect of number of measurements on (a) mean dimensions of 10 sunflower heads, (b) absolute deviation
for sunflower head, disc, and ray florets in direct and wrapping-polygon methods. (Note: Dissimilar letter groups
(a–e) indicate statistically significant difference).
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The means dimensions of the wrapping-polygon method were greater than direct

method, but among-measurements variation of the wrapping-polygon were relatively less

those of the direct method. Among individual flowers, the variations trend was random

especially when the number of measurements was smaller (<32; fig. 3.8a). This random

variation was caused by the ray florets arrangement, as the pixel-march based on the angle

will be anywhere between tip-to-tip and valley-to-valley in the direct method (fig. 3.5).

In case of the wrapping-polygon method, the valleys were filled, allowing only for joined

tip-to-tip measurement and resulted in lesser variation. It is quite natural for the variations

to flatten out with an increased number of measurements. The lower limits from which the

variations were minimal were found to be 16 and 32 for the wrapping-polygon and direct

methods, respectively, representing the efficient number of measurements (fig. 3.8a).

The absolute deviation (eq. 3.1) provides a clear visualization of the variations

produced by the number of measurements, using the whole data, compared with the

respective controls (D180; fig. 3.8b). Although the nature of absolute deviation was

different among sunflower components, it was evident that increasing the number of

measurements decreased the absolute deviation values and gradually converged to 0 %.

The absolute deviations for the wrapping-polygon method were comparatively lower than

the direct method (fig. 3.8b).

Compared to the most accurate dimension (D180), it was found that the two

dimensions measured manually (D2h) produced >3.5 % deviation in head, and >1.1 % in

disc, and >6.9 % in ray florets, and these were significantly different. It can be observed

that the more irregular the outer profile of head and ray florets produced the more

deviation than the disc, which approaches a geometrical circle. Between head and ray
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florets, the deviations of ray florets were higher because the dimensions of the head were

significantly higher than that of the ray florets, despite both having the exact same irregular

outer profile. Statistical mean comparison analysis revealed that a minimum of

32 measurements was required to best represent the head and ray florets dimensions, and

eight measurements were enough for disc dimensions.

3.4.2. Effect of Methods on Mean Dimensions of Sunflower Components

The wrapping-polygon method resulted in higher mean dimensions compared to the

direct method for the heads and ray florets, while both methods produced almost equal

dimensions for the discs among the number of measurements (fig. 3.9). The mean

dimensions of direct and wrapping-polygon method differed significantly for head

(0.004< p < 0.01), and ray florets (3.3× 10−9 < p < 5.7× 10−5), but not with the disc.

On average, the mean dimensions of wrapping polygon exceeded the direct method by

7.14 % for the head, 1.70 % for the disc, and 16.55 % for ray florets.

The mean dimensions of the head were normally distributed with uniform

inter-quartile range (IQR) covering 128–180 mm in the direct method, and 130–192 mm in

wrapping-polygon method. The mean dimensions of disc were right skewed with uniform

IQR covering 76–128 mm in both methods. The mean dimensions of ray florets were

normally distributed up to eight measurements, beyond which the data were slightly left

skewed with the presence of few outliers. The IQR in the direct method was 36–68 mm for

two measurements, and gradually narrowed to 46–60 mm for 180 measurements.

Similarly, the IQR in wrapping-polygon method was 48–76 mm for two measurements and

narrowed to 60–72 mm for 180 measurements.
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Wrapping-polygon methodDirect method

Figure 3.9. Comparison between direct and wrapping-polygon methods showing the
effect of number of measurements on mean dimensions of sunflower components.
(Note: Codes of statistical significance: * denotes α = 0.5, ** denotes α = 0.01,
*** denotes α = 0.001, and “NS.” denotes not significant).
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On closer observation, the overall range of mean dimension slightly narrowed as the

number of measurements increased for both methods. For example, comparing the D180 to

D2 for direct method, the reductions in the range of values were 5.8 %, 3.1 %, and 17.5 %

for the head, disc, and ray florets, respectively. This indicates that increasing the number of

measurements produced more precise measurements.

3.4.3. Dimensions Comparison — Pixel-march vs ImageJ’s Standard Outputs

To understand how the image-processing based sunflower components dimension

measurements developed in this research matches with available measurements through

standard outputs from ImageJ, a comparison was performed (fig. 3.10). The developed

approach uses the pixel-march and measures dimensions through the two methods (direct

and wrapping-polygon) operating on the binary images, while the ImageJ option also

works on the preprocessed binary image and produces the standard outputs. The standard

outputs were grouped as the enclosure-based (bounding box width, height, and Feret

diameter) and area-based (major, minor axes, and equivalent diameter) methods.

Overall, comparing direct and wrapping-polygon methods, the mean dimensions

from different measurement methods followed the same pattern among sunflower

components, but significant differences (p < 0.028) were observed among the methods

(5 significantly different groups). For head and disc, it is interesting to note that the

accurate pixel-march method was statistically similar to area-based minor axis and

equivalent diameter methods (fig. 3.10). Also, the mean dimensions from pixel-march

method and area-based methods of wrapping-polygon, while only slightly higher, differed

significantly (2.5× 10−16 < p < 1.1× 10−12) from the direct method. The enclosure-based
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methods were not different between direct and wrapping polygon methods because the

enclosure (box, and circle) dimension remains the same for both methods.

Specifically, for sunflower head measurement (green bars; fig. 3.10), the

pixel-march method significantly differed (p < 2.0× 10−16) from all enclosure-based

methods and major axis length (p < 0.0002), but not with minor axis length and
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equivalent diameter. The mean dimensions of enclosure-based methods were higher than

all the other methods because the object’s enclosure box and circle are only based on the

objects’ extreme (horizontal and vertical) boundary points. As a result, the enclosure-based

methods did not differ significantly between direct and wrapping-polygon methods.

For disc measurement (gray bars; fig. 3.10), although the differences in mean

dimensions were small, the pixel-march method differed significantly with enclosure-based

methods (0.0013< p < 0.0071), but were on par with area-based methods. However, in

the case of wrapping-polygon method, mean dimensions did not differ significantly among

the measurement methods, while direct method produced two significantly different

groups. This is because the wrapping-polygon around the disc reduced the boundary

roughness and looked similar to a perfect circle.

For ray florets measurement (orange bars; fig. 3.10), only the pixel-march method

was the most relevant and accurate because it starts from discs’ boundary and radially

marches outward till the ray florets boundary (fig. 3.6a). All the other measurement

methods resulted in an over-estimated dimension and were significantly different

(p < 2.0× 10−16) from pixel-march dimension. This is because the measurement of ray

florets length cannot be readily obtained from a segmented image using any of the ImageJ’s

standard methods; but as a simple approach, the difference between minor axis length or

equivalent diameter of the head and the disc can be considered. The pixel-march method,

on the other hand, offers profile data for studying the dimension variations at any chosen

angular interval (profile plot), which provides information about floral bloom and ray

florets arrangement.
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3.4.4. Geometrical Parameters of Sunflower Components

Results of geometrical parameters of sunflower components obtained through direct

and wrapping-polygon methods are presented and statistically compared (fig. 3.11). The

area of sunflower head, and ray florets differed significantly (2.0× 10−16 < p < 6.4× 10−14)

between direct and wrapping-polygon methods, but not the disc. The wrapping-polygon

method increased the area around the sunflower components as expected. On average, the

increase in area was 14.1 % for head, 3.3 % for disc, and 23.5 % for ray florets.

Sunflower components
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Figure 3.11. Other geometrical parameters of sunflower head, disc, and ray florets
from direct and wrapping-polygon methods. (Note: Bar heights and error bars
indicate mean and standard deviation values, respectively, based on 42 samples and
three replications. Dissimilar letter groups (a–b) denote significant differences
between direct and wrapping-polygon methods).
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Perimeters of all the components differed significantly (p < 2.0× 10−16) between

the methods. The perimeter of ray florets includes the perimeters of head and disc, which

was calculated as the sum of perimeters of head and disc. The wrapping-polygon around

the sunflower components reduced the boundary roughness; hence its perimeter was

significantly less than the direct method. The average decrease in perimeter due to

wrapping-polygon method was 40.4 % for head, 11.1 % for disc, and 33.5 % for ray florets.

The solidity of sunflower components in direct method was significantly lower

(p < 2.0× 10−16) compared to the wrapping-polygon method because wrapping-polygon

fills the space between ray florets thereby making them “more solid” and increasing the

solidity values. Since the disc portion was removed in the composite images of ray florets

(fig. 3.4c & f), the solidity of ray florets was the lowest compared to head, and disc.

The average increase in solidity between direct and wrapping polygon methods was 14.3 %

for head, 3.1 % for disc, and 38.9 % for ray florets.

Circularity, similar to area and solidity, was significantly higher (p < 2.0× 10−16) for

the wrapping-polygon method than the direct method. The average increase in circularity

between direct and wrapping-polygon method was 269.8 % for head, 20.5 % for disc, and

442.1 % in ray florets.

3.4.5. Correlation and Regression Coefficients of D180 with Input Parameters

The Pearson correlation coefficient (r) and the coefficient of determination (R2),

indicating the performance of the linear regression models developed, using the respective

input variables with the D180 measurement for the direct and wrapping-polygon methods

are presented in table 3.1.
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Table 3.1. Developed measurement method (D180) correlation and linear model performance for sunflower
components with other standard measurement methods and simulated manual measurements (D2h).

Measurement method* Pearson correlation coefficient (r) Linear regression model coefficient of determination (R2)

Direct method Wrapping-polygon method Direct method Wrapping-polygon method

Head Disc Ray florets Head Disc Ray florets Head Disc Ray florets Head Disc Ray florets

Equivalent diameter 1.00 1.00 0.88 1.00 1.00 0.89 1.00 1.00 0.78 0.99 1.00 0.79
Minor axis length 1.00 1.00 0.88 1.00 1.00 0.88 0.99 1.00 0.77 0.99 1.00 0.79
Major axis length 1.00 1.00 0.88 0.99 1.00 0.88 0.99 1.00 0.78 0.98 1.00 0.78
Bounding rectangle width 0.98 0.99 0.20 0.99 1.00 0.25 0.97 0.99 0.04 0.97 0.99 0.06
Feret diameter 0.98 0.99 0.18 0.99 0.99 0.23 0.96 0.98 0.03 0.97 0.98 0.05
Bounding rectangle height 0.97 0.99 0.20 0.98 1.00 0.25 0.95 0.99 0.04 0.96 0.99 0.06

Area 0.99 0.98 0.85 0.99 0.98 0.86 0.99 0.97 0.72 0.98 0.97 0.75
Perimeter 0.86 0.93 0.17 0.89 0.94 0.25 0.75 0.87 0.03 0.80 0.89 0.06
Solidity 0.23 −0.41 0.89 0.17 −0.44 0.85 0.05 0.17 0.79 0.03 0.19 0.72
Circularity −0.44 −0.56 0.55 −0.49 −0.59 0.47 0.19 0.32 0.30 0.24 0.34 0.22

D2h 0.96 0.79 0.21 0.97 0.78 0.25 0.93 0.62 0.05 0.94 0.60 0.07
Area and D2h 0.96 0.75 0.62 0.96 0.74 0.65 0.92 0.56 0.39 0.93 0.55 0.43

Note: * All these ImageJ standard methods were based on the individual components’ measurements from direct method and used as
independent variables, D180 = mean diameter of 180 measurements (mm), and D2h = mean of two orthogonal measurements from
wrapping-polygon method of the sunflower head ([EW+NS]/2; fig. 3.6a) simulating the manual measurements (mm).
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While studying the correlation strength between the variables, the R2 of the linear

model (selected based on preliminary analysis) directly provides a glimpse of the

performance leading to a better selection of the prediction models. For sunflower head and

disc, the dimension measurement methods showed a high correlation (0.97≤ r ≤ 1.00)

with direct and wrapping-polygon methods. While for ray florets, area-based methods were

highly correlated (0.88≤ r ≤ 0.89), but enclosure-based methods were not

(0.18≤ r ≤ 0.25). These r values are indicative of the R2 values of the linear regression

models developed using the respective input variables. The prediction models for head and

disc dimensions were excellent (0.95≤ R2 ≤ 1.00), while for ray florets dimensions,

area-based methods were fairly acceptable (0.77≤ R2 ≤ 0.79); however, enclosure-based

methods were unacceptable (0.03≤ R2 ≤ 0.06).

Among the geometrical parameters, area and perimeter showed a high correlation

for head and disc (0.86≤ r ≤ 0.99); while for ray florets, area and solidity showed a high

correlation (0.85≤ r ≤ 0.89). The R2 of regression models were excellent with area of

head and disc (0.97≤ R2 ≤ 0.99), and perimeter of disc (0.87≤ R2 ≤ 0.89); however,

R2 values were not as good for the rest of the geometrical parameters.

In the spirit of predicting the mean dimensions (D180) and area from two manual

head measurements (D2h), correlation and linear model R2 were evaluated (table 3.1).

The D2h measurement was highly correlated (0.96≤ r ≤ 0.97) for the head, fairly

(0.74≤ r ≤ 0.79) for the disc, and poorly (0.21≤ r ≤ 0.65) for the ray florets, and the

corresponding regression models performed well only for head (0.92≤ R2 ≤ 0.94) but not

for disc and ray florets (0.05≤ R2 ≤ 0.62). This shows that only head dimensions (D180)
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and area (R2 ≥ 0.92), not others (R2 ≤ 0.62), can be accurately predicted from the manual

measurements.

3.4.6. Dimension and Area Prediction Models from Selected Input Variables

Linear regression models (y = a+ bx) developed from the highly influential

variables (table 3.1) along with their evaluated performance parameters (R2) are presented

in table 3.2. The developed linear models for D180 with equivalent diameter (ED) as the

input variable showed the highest R2 values (R2 ≥ 0.99) for head and disc using direct and

wrapping-polygon methods. Since the R2 values for predicting ray florets dimensions were

lower (R2 ≤ 0.77), these models may not provide accurate predictions.

Among the dimension measurement methods considered in this study, ED was not a

standard output from ImageJ, but was available in image processing platforms as MATLAB

and OpenCV. However, it can be easily derived from the object area as indicated earlier

(section 3.3.10). Even so, a model directly developed from the ImageJ’s standard output is

useful and user-friendly. Therefore, the next influential input variable was minor axis

length (MinA; table 3.1). The model developed for D2h using MinA as the input and the

prediction models R2 values are not significantly different from ED’s (table 3.2).

This indicates that either of the models (ED or MinA) can be used interchangeably.

As observed before, the models can predict only the head dimensions and area

accurately with the manual measurements as inputs. Therefore, these models can be used

in a practical sense for predicting head dimensions and area (table 3.2).
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Table 3.2. Selected sunflower components user-friendly prediction models for dimension and area with direct and
wrapping polygon methods and their performance.

Component and method D180 = a+ b× ED; (R2) D180 = a+ b×MinA; (R2) D180 = a+ b× D2h; (R2) Area = a+ b× D2h; (R2)

Head - direct −1.218+ 0.991 EDh,D; (0.997) 2.139+ 0.999MinAh,D; (0.993) 6.155+ 0.881 D2h; (0.934) −16614.118+ 219.082 D2h; (0.923)
Disc - direct −0.126+ 0.996 EDd,D; (1.0) 0.767+ 1.011MinAd,D; (0.998) −24.002+ 0.761 D2h; (0.621) −13437.793+ 137.102 D2h; (0.568)
Ray florets - direct −18.868+ 0.614EDr,D; (0.778) −17.489+ 0.623MinAr,D; (0.768) 30.163+ 0.122 D2h; (0.046) −3176.291+ 82.646 D2h; (0.389)

Head - wrapping polygon 2.811+ 1.043EDh,D; (0.990) 6.802+ 1.046 MinAh,D; (0.991) 9.391+ 0.942 D2h; (0.942) −18340.674+ 246.924 D2h; (0.931)
Disc - wrapping polygon −0.988+ 1.022 EDd,D; (0.999) −0.008+ 1.036MinAd,D; (0.996) −23.672+ 0.774 D2h; (0.604) −13856.601+ 141.523 D2h; (0.554)
Ray florets - wrapping polygon −18.46+ 0.700 EDr,D; (0.794) −16.651+ 0.708MinAr,D; (0.788) 33.062+ 0.159 D2h; (0.067) −4484.072+ 105.484 D2h; (0.427)

Note: D180 = mean diameter of 180 measurements (mm), ED = equivalent diameter (mm); MinA = minor axis dimension of the fitted ellipse (mm); D2h = mean of two orthogonal
measurements from wrapping-polygon ([EW+NS]/2; fig. 3.6a) simulating the manual measurements (mm); Area = area derived from image processing standard output (mm2); and
EDh,D, EDd,D, EDr,D, MinAh,D,MinAd,D, and MinAr,D = equivalent diameter as well as minor axis specific to the head, disc, and ray florets from the direct method, respectively.
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However, the coefficients of the independent variable (D2h) from other models (disc

and ray florets) provides an indication of the relative proportion of disc and ray florets. The

disc dimension was ≈0.76 times the head, and ray florets was ≈0.12 times the head in

direct method. Similarly from the area models, considering the coefficient of head area

(219.08) to be 100 %, the indication of relative disc area was ≈62.6 % and ray florets was

≈37.7 %. Therefore, in order to get accurate dimensions, it is recommended to use

ImageJ’s equivalent diameter and minor axis length as the inputs in the derived models

(table 3.2), while the accurate area can come directly from the ImageJ standard outputs.

3.4.7. Advantages and Limitations

The image processing methodology in general and the developed plugin has the

following advantages: (1) Performs any number of radial measurements; (2) Provides

information about the boundary profile of head, disc, and ray florets from the diameter

variations at any selected fine intervals (radial profile; fig. 3.12a); (3) Images captured and

processed can be archived for later use; (4) Provides the projective transformed image as

one of its outputs, which can be used for further processing or analysis; (5) Objective

dimension measurement can be achieved; (6) Produces the mean dimensions of the head,

disc, and ray florets from direct and wrapping-polygon methods in single computation; and

(7) Provides several other geometrical parameters (area, perimeter, solidity, and

circularity), which helps in understanding the floral morphology.

Limitations of the proposed imaging approach and the developed plugin include:

(1) At least two people are required for image acquisition (fig. 3.1b) in the present

protocol; (2) Images captured with sunflower heads not perpendicular to the camera

resulted in poor segmentation, due to unfilled disc with the loss of clear disc border
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Figure 3.12. Advantage and limitation of the developed plugin (a) boundary profile
plot showing diameter variations at 1° angle intervals for sunflower head, disc, and
ray florets in direct (D) and wrapping-polygon (WP) methods that is advantageous to
visualize and study the entire profile; (b) distorted head shape and improperly
segmented binary image of disc due to excessive tilt of the sunflower. Green arrow
indicates closed disc boundary; red arrow indicates unfilled open boundary that leads
to incorrect disc filling.
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between disc and ray florets, and misrepresented head shape (fig. 3.12b); (3) Shadows

caused issues in sunflower head segmentation and result in overestimation; and

(4) The developed plugin could handle only one flower at a time.

3.4.8. Suggestions for Future Work

Utilizing the present research as a tool to measure sunflower dimensions and

studying the correlation between dimensions and pollinators’ visitation rates will generate

useful relationships that are worth investigating. For example, the relative effects of disc

area versus the area of ray florets (petals) on pollinator visitation rates have not been

investigated in cultivated sunflower and are not generally well understood in related

plants. Some additional features can be implemented in the plugin such as

counting/estimating the number of disc florets and ray florets as the number of these, in

addition to total area might have a potential impact on pollinators’ visitation rates. Because

floret-feeding causes premature senescence (and darkening) of disc florets, it is also

possible that image processing comparing colors could be used to rapidly score damage

from floret- and seed-feeding caterpillars, which varies significantly among sunflower

inbred lines (Prasifka & Hulke, 2016).

The proposed imaging protocol and the developed plugin can also be easily

extended to other flowers of the Asteraceae family by adjusting the segmentation method

and plugin inputs. From production agricultural point of view, the image processing

application has the potential for use in counting the number of seeds in the disc as the

count provides accurate seed yield estimates. The relationship between disc dimension and

oil yield can also be studied. Furthermore, with the advancements in processing power of
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recent smartphones, a mobile application, based on the scientific recommendation from the

plugin, will be a great tool as it provides instant outputs and can be readily used in the field.

3.5. Conclusions

This study developed and tested an image processing ImageJ plugin to accurately

measure sunflower components (head, disc, and ray florets) dimensions. A custom-

designed background board and slit-enclosure sheet facilitated capturing sunflower images

non-destructively at the field without clipping. The pixel-march method performed

multiple radial measurements as per the user’s input and produced the dimensions results.

Two measurement methods, direct and wrapping-polygon, were tested with the latter

considered efficient as it produced minimum absolute deviation and made the tip-to-tip

measurements possible. The recommended number of measurements that best represented

sunflower head and ray florets was 32, and for the disc was eight.

Dimensions of the sunflower head and disc obtained from pixel-march method were

statistically similar to equivalent diameter (ED) as well as minor axis (MinA) methods of

ImageJ. However, accurate dimensions of ray florets can be obtained only through this

developed method as there were no standard methods available in ImageJ or in any other

image processing software. The plugin took ≈11 s (Windows 10, Intel Core i5, and 8 GB

RAM) to perform 180 measurements on all sunflower components for both methods.

Linear prediction models developed for dimensions of sunflower components based

on the 180 measurements using ED and MinA produced the best performance for head and

disc (R2 > 0.99) than for ray florets (R2 > 0.76). Linear prediction models for 180

measurement dimension and area using two orthogonal manual measurements performed

better only for sunflower head (R2 > 0.92) and are not suitable for disc and ray florets. The
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developed plugin can be readily utilized as a tool for entomologists as useful relationships

between floral morphology and insect behavior, including pollinator visitation rates are

well established.
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4. COLOR CALIBRATION OF DIGITAL IMAGES FOR

AGRICULTURE AND OTHER APPLICATIONS *

4.1. Abstract

Image processing in agriculture relies primarily on correlating color changes within

images’ region of interest to specific quality attributes (e.g., plant phenology, plant health,

crop stress, maturity). Changes in lighting conditions during image acquisition affect image

color, even though there is no change in quality, and produces misleading inference when

used without calibration. The focus of this study was to develop a method for calibrating

images to make them homogeneous to improve phenological comparisons. The method

was developed with synthetic images and validated with actual plant images in laboratory

and field conditions using a standard ColorChecker (X-Rite) chart. Six different color

schemes were tested to determine the effect of patch order, and minimum number of

patches required for efficient calibration. A user-coded ImageJ plugin named “ColorCal”

was developed in Fiji software for color calibration that derived and applied a [3× 3] color

calibration matrix, based on selected color patches and standard values. Modified total

error and calibration performance index (CPI) were developed to evaluate calibration

performance. Calibration using any 12 color patches taken in any order gave equal

* This paper is published in the journal of ISPRS Journal of Photogrammetry and Remote Sensing. Authors:
Sunoj, S., Igathinathane, C., Saliendra, N., Hendrickson, J., and Archer, D. Title: Color calibration of digital
images for agriculture and other applications. Volume: 146. Page numbers: 221–234. DOI:
https://doi.org/10.1016/j.isprsjprs.2018.09.015. Sunoj has developed the plugin, analyzed and
visualized data, and wrote the manuscript. The major advisor Dr. Cannayen played a pivotal role in research
outline, technical discussions, analyses, and manuscript review and other collaborators have assisted in all
aspects of the paper.
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performance (0.14≤ CPI≤ 0.26). Calibration performance using only commonly followed

neutral color patches (e.g., white, gray) was poor (0.26≤ CPI≤ 1.0). Using red (R), green

(G), and blue (B) color patches was recommended as it produced visually similar images,

the performance was comparable with 24 color patches (0.21≤ CPI≤ 0.24) and was

simple and practical. The developed plugin took ≈7 s for calibration (Windows laptop,

Intel Core i5, and 8 GB RAM). Determining phenological and other applications using the

plugin was more reliable than using the raw images.

4.2. Introduction

Color of the digital image is an important feature in many image analysis

applications; however, the calibration of images by users is still a great challenge.

An image’s true color is vital in obtaining the physical, chemical, and surface characteristics

of the object from the image. Images captured using different cameras at the same time

produce color variations due to the different spectral responses of the camera sensor, or

due to the different digitizers of the cameras. Furthermore, images obtained using the

same camera at different times of the day produce color variations, due to either the

ambient temperature or the light irradiance at that time, despite no change in the object

characteristics (Andresen et al., 2018). Such variations in color tend to critically impact the

object’s characteristics evaluation when color is considered as the major criterion in the

image analysis. The only way to overcome this issue of color variations is to calibrate the

pixels color values in the captured image.

Color calibration is broadly classified into two categories: (i) device-based, and

(ii) image-based. Many researchers have explored device-based color calibration in which

camera sensors were developed to automatically adjust to the color values based on the
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scene lighting (M. Brown et al., 2005; Porikli, 2003). Image-based color calibration is used

to compensate for changes in the image due to illumination conditions. This is the most

common method in professional photography to maintain the same color tone in all scenes.

It used a standard color calibration chart to linearly map the pixel values obtained in the

image to the standard color values of the calibration chart (Kagarlitsky et al., 2009).

A relationship was developed between the color values obtained in the image to the

standard color values, which can then be applied to image pixels for standardization

(calibration). Commercially, there were several calibration charts available (ranging from

6 to 100s of color patches); however, the 24 color patch calibration chart was widely used

in many applications (McCamy et al., 1976).

Many fields of study, such as space (Levin & Levin, 2004), medical (Haeghen et al.,

2000), underwater biology (Akkaynak et al., 2011), and agriculture (Scharf & Lory, 2002)

have had to solve the color variation issues while processing images. In some studies using

satellite and aerial images, radiometric calibration was performed by linearly relating the

known reflectance of ground control points (e.g., road, concrete roof, ocean, sand) to the

reflectance of corresponding points in the image (Xu, Hou, & Tokola, 2012). This simplified

calibration was performed for individual channels (red, green, blue, and infrared) to obtain

the calibrated reflectance. However, comprehensive information on color calibration of

images related to agricultural applications is limited. L. Brown et al. (2012) used HSI color

space and derived a parameter called color strength, which was used to improve color

correction. Akkaynak et al. (2014) developed a color calibration using all 24 color patches

in the calibration chart by transforming to XYZ color space, and later back-transforming to

RGB (red, green, and blue) color space in underwater images.
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Over the last decade, application of digital image processing in agriculture has been

well researched. The major application in agricultural research was mainly focused on

color-based identification/classification (Beeri & Peled, 2009). The usage of unmanned

aerial vehicles and phenocam systems in agriculture has increased the use of digital color

images to assess plant phenology and health (O’Connell, Bradter, & Benton, 2015; van

Iersel, Straatsma, Addink, & Middelkoop, 2018). Because the images are taken in open

atmospheric conditions, the brightness and darkness caused by clouds and the time of the

day result in wide color variations. Barbedo (2016) reported lighting variation during

image acquisition in agricultural fields is the most common issue in image segmentation

and feature extraction and it is inevitable. Thus, color-based characteristics gathered from

such digital images to assess crop stress, nutrient deficiency, and crop productivity would

lead to inaccuracies due to inconsistent lighting conditions.

Researchers generally use various calibration boards with color patches of known

color value in agricultural fields. A few studies on calibration boards used in phenological

comparisons include white, gray, and black patches in estimating the leaf emergence in a

beech forest ecosystem (Ahrends et al., 2008); gray painted board in estimating spring

green-up and autumn senescence in a deciduous forest ecosystem (Richardson et al.,

2009); and five color boards, such as red, green, black, gray, and beige in estimating

biomass and nitrogen levels in a cornfield (Hunt et al., 2005). However, the color

rendering efficiency of these color patches was not investigated, and the calibration

accuracy and the methodology followed in those studies remain unknown.

The overall research goal of this study was to produce calibrated images from the

images acquired under varying lighting conditions. Such calibrated images will serve as
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better input images for further analysis and interpretation of various plant characteristics

(e.g., plant health, phenology). However, there is no standardized method for image-based

color calibration. Therefore, this research was undertaken with the following objectives:

(i) develop an open source user-coded ImageJ plugin for color calibration of digital images;

(ii) develop calibration performance measures to evaluate the calibrated images; and

(iii) determine and recommend a minimum number of color patches for efficient color

calibration.

4.3. Materials and Methods

Several processing stages to obtain the calibrated image suitable for further analysis

are summarized in figure 4.1. In the development process, a synthetic image (two leaves)

printed from FreePNGimg (2018) were used to evaluate the effect of color patch order and

to determine the minimum number of color patches for calibration. Reproducibility and

simplicity were the reasons for using the synthetic image in the method development

process. Actual plant images acquired in a laboratory environment (cut cilantro under

controlled lighting), and in field conditions (actual plants in the field under natural

lighting) were used to validate the method developed.

Images were taken with a DSLR camera (Model: Nikon D5100, Nikon Corp., Japan)

with the following camera settings: exposure mode = manual, shutter speed = 1/250 s,

aperture = f/7.1, ISO = 250, focal length = 18 mm along with a wireless shutter release

remote for hands-free imaging and avoiding camera shake. To calibrate, it is important to

include a standard color calibration chart of known color values in the image. We used the

standard 24-patch ColorChecker classic target (X-Rite Inc., Grand Rapids, MI, USA) in this

study.
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StartStart

Load input image with calibration chart.Load input image with calibration chart.

Mark corners of calibration chart using polygonal selection tool.Mark corners of calibration chart using polygonal selection tool.

Choose color schemes/color patch number for calibration.Choose color schemes/color patch number for calibration.

Derive color calibration matrix (CCM) based on chosen color patches 

and their respective standard values. 

Derive color calibration matrix (CCM) based on chosen color patches 

and their respective standard values. 

Apply CCM to individual pixel in input image to 

produce a calibrated image.

Apply CCM to individual pixel in input image to 

produce a calibrated image.

Evaluate performance measures such as total error (em), difference 

image index (DII), and calibration performance index (CPI). 

Evaluate performance measures such as total error (em), difference 

image index (DII), and calibration performance index (CPI). 

EndEnd

Figure 4.1. Overall process flowchart of digital image color calibration.

4.3.1. Image Acquisition

4.3.1.1. Synthetic image from internet

An image of the front and back side of two different leaves was selected from the

FreePNGimg (2018) stock pictures. A color printout of the leaves image along with the

original ColorChecker classic target beside was arranged on a white poster sheet for

imaging under different lighting conditions, and these served as the synthetic image.

Two benchtop fluorescent lights (65 W, 4300 lm, Model: Designers Edge L-2006, Coleman

Cable Inc., Waukegan, IL, USA) were used for lighting, and the lighting conditions were

varied by choosing one or two lights at a time, as well as by arbitrarily altering the distance

between the object and the lights. The combinations of the number and distance of lights
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used produced the necessary lighting levels ranging from dark (dim) to bright (well-lit)

conditions for image capture.

The camera was placed on a tripod at a height of 900 mm facing down, and three

images (replication) were captured at each lighting condition. This arrangement ensured

crisp images without disturbing the object position for each image while varying only the

lighting condition.

4.3.1.2. Actual plant images from laboratory

Laboratory images of the actual plants were acquired using bunches of cut cilantro

(Coriandrum sativum L.). The sample was purchased fresh locally and stored in the

refrigerator until used for imaging. Before image acquisition, the cilantro bunches were

rolled on a paper towel to remove moisture. Bunches were then arranged in a recyclable

paper cup so that the top portion of the bunch represented the canopy of the standing plant

viewed from the top. The color calibration chart was placed alongside and the images were

captured. The camera settings and lighting conditions were maintained the same as in

synthetic image acquisition.

4.3.1.3. Actual plant images from field

Field images were acquired using experimental plots at the Northern Great Plains

Research Laboratory, Mandan, ND (46.81° N, 100.92° W). The camera was fitted on a

tripod facing north at a distance of ≈2.7 m (≈9 ft) from the field plot boundary. The color

calibration chart was placed near the plot edge and the images were captured.

In general, the lighting variations in the image are due to the intensity of ambient

lighting that hits the camera sensor. The lighting conditions were simulated by adjusting

camera aperture setting (f -stop). Typically in a professional DSLR (digital single lens
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reflex) camera, the aperture setting varies from f/3.5 to f/22. This range indicates the size

of aperture opening, with f/3.5 represents wide opening (more light to sensor — lighter

image), and f/22 represents narrow opening (less light to sensor — darker image).

However, the two extreme ranges were not necessary for our application as it

produced an overexposed image at f/3.5, and an underexposed image at f/22. Hence, the

aperture range between f/6.3 and f/16 were used, and kept the rest of the camera settings

constant (shutter speed = 1/250 s, ISO = 250, and focal length = 18 mm).

4.3.2. Color Calibration Process

Images obtained at varying lighting conditions produced variations in the pixel

color intensities and resulted in color casts (unwanted tint on the whole or part of the

image). The color calibration eliminated such color casts and reduced the variability

among the calibrated images. The calibrated images represented images acquired at a

uniform lighting condition, which are suitable for further color-based analysis.

The color calibration chart included in each input image was used to map the

average RGB values of each color patch (of the color chart in the image) to the standard

RGB values of the corresponding color patch as supplied by X-Rite (X-Rite, 2018).

The calibration essentially means to bring the RGB values of color patches in the input

image to the standard RGB values. A color calibration matrix (CCM) was derived based on

this mapping and when applied to the entire image produced the calibrated image.

In matrix notation, the process of image color calibration is expressed as:

SRGB =MCC × IRGB (4.1)
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where SRGB is a 3× N matrix of standard RGB values from N color patches obtained from

X-Rite, MCC is the 3× 3 CCM to be derived, and IRGB is a 3× N matrix of average RGB

values from the corresponding N color patches in the input image.

Rearranging eq. 4.1 by multiplying the transpose of IRGB on both sides, and taking

inverse determined MCC as follows:

[SRGB × IT
RGB] =MCC × [IRGB × IT

RGB]

MCC = [SRGB × IT
RGB]× [IRGB × IT

RGB]
−1 (4.2)

where IT
RGB is the transpose of IRGB. The above equations (eqs. 4.1 and 4.2) work for any

number of color patches (1, 2, 3, ... N) and the resulting MCC is always a 3× 3 matrix.

Irrespective of the number of color patches considered, the MCC need to determine only

9 coefficients (3× 3). This leads to underdetermined (N < 3) and overdetermined (N > 3)

systems of equations equation 4.2 and for which the least squares approximation solution

approach was followed. Thus, the derived MCC when multiplied to the individual pixel

values (RGB) in the input image produced the calibrated image. Unlike the simplified

radiometric calibration with linear interpolation of individual channels (Xu et al., 2012),

this calibration procedure with 3× 3 CCM will have interaction among the RGB channels

starting from a single color patch.

4.3.3. Color Calibration Plugin (ColorCal) Development

A user-coded color calibration plugin named “ColorCal” was developed in Fiji (Ver.

ImageJ 1.52d, Java 1.6, lifeline version, Rasband (2018)), an open source image

processing software. Fiji is a distribution of ImageJ that has core ImageJ applications and
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extends additional functionality for plugin development (Schindelin et al., 2012).

The ColorCal plugin had 925 lines of Java codes was divided into two major sections:

(i) semi-automatic color patch selection from the color chart for average RGB values

extraction, and (ii) CCM derivation and image calibration.

4.3.3.1. Semi-automatic color patch selection

The primary step in a color calibration process extracts the average RGB values of

individual color patches of the calibration chart included in the input images. If the camera

and calibration chart are placed in a fixed position in a scene, the color values will be

extracted by either overlaying a region of interest (ROI) mask on the input image or

through the coordinates of ROI of each color patch, which is known and can be hard-coded

into the program. However, maintaining an accurate fixed location of calibration chart with

respect to the camera is not always feasible.

In our experiments, as the calibration chart was placed at different positions among

the images, a semi-automatic method was developed for color patches ROI extraction with

the least inputs from the users. Using this method, the user selects only the four overall

corner points of the calibration chart (A, B, C, D; fig. 4.2) in the input image using

ImageJ’s polygonal selections tool, and the ROI for each color patch with its average RGB

values (IRGB; eq. 4.2) were extracted for determining the MCC. The detailed derivation of

this developed method is discussed subsequently. It is also possible to automate the color

patch selection through feature descriptors (e.g., SURF, SIFT, FAST) and machine learning

algorithms; however, that requires additional software to implement the algorithm and will

be complicated to integrate in this ImageJ plugin development.
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After loading the acquired image into ImageJ, the user should select only the corner

four points (A, B, C, D; fig. 4.2) of the calibration chart using ImageJ’s polygonal

selections tool. These points do not always form the corners of a rectangle because of

perspective distortions (rectangle→ quadrilateral) during image acquisition; however, the

plugin handled this perspective distortion. Such distortions actually produce a

quadrilateral, instead of a rectangle, with unequal sides (AB 6= CD, and AD 6= BC).

Because of the unequal sides, the distances between intermediate points, representing the

color patches, on four sides were also not equal (e.g., AE 6= BE′), but were proportional to

their respective overall side lengths (AD and BC). These distortions, however, were

minimal as efforts were made to arrange the color chart perpendicular to the camera in the

image. Furthermore, the developed method handles the possible distortion by

appropriately identifying the starting corners of each color patch considering the

proportionate distortion of the overall dimensions of the chart in the image directly using

simple geometrical principles subsequently described. Using this methodology, the

locations of individual color patches were derived from the minimal inputs (A, B, C, D;

fig. 4.2) and the average color values were extracted for further analysis.

The ColorChecker classic calibration chart consisted of 24 color patches arranged in

a 4× 6 array with each 40 mm × 40 mm square (fig. 4.2). All these color patches were

separated by a uniform gap (black stripes). Based on proportionality, the ratio of gap and

patch size for the calibration chart image and actual were assumed to be equal because of

minimal distortion and this ratio was determined as:
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Figure 4.2. Illustration of the semi-automatic color patch selection from user input
polygon coordinates (A, B, C, D). The color patch (P, Q, R, S) is the final size of
the ROI applied to all patches that was used in color value extraction. Refer to the
section text for the definition of the symbols.

where gw,i and wcp,i are the widths of gap and patches in the ith row; gwa and wcpa are the

actual width of gap and patch; gh,L, hcp, L, gh,R, and hcp, R are the heights of gap and patch

on left and right side, respectively; gha, and hcpa are the respective actual height of the gap

and patches; and the ratio Rgw is a constant for the calibration chart.

Overall, the process of fixing the region of interest (ROI) for all the color patches in

the image (fig. 4.2) from the four user input coordinates (A, B, C, D) follows these steps:

(1) the top-left corners of color patches along the left side, along AD, were established,

(2) similarly the corners of the right side, along BC, were established, (3) connecting the

corresponding end corners of the established left and right edges the corners of patches
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along the horizontal directions (4 rows), all the corners of the patches were determined,

and (4) ROIs of reduced size were fixed based on the corner coordinates for each color

patch with necessary shift (fig. 4.2) to extract the color information. This procedure

addresses the issue of possible shape deviation of the color chart to a “quadrilateral” in the

image from the actual “rectangular” shape of the chart.

Based on the corner coordinates (A, B, C, D) of the color chart, the distances (hL,

and hR) and the slopes (mL and mR) of left and right sides were calculated using distance

and slope formula, respectively. Because of possible distortions, the hL 6= hR, and the

distances between intermediate points were also not equal (e.g., AE 6= BE′). However,

they will be proportional to their respective side lengths. The height of color patches on left

and right (hcp, L and hcp, R) were found by:

hcp, L =
hL

4+ 3Rgw
=

hL

4.375
(4.4)

hcp, R =
hR

4+ 3Rgw
=

hR

4.375
(4.5)

As seen in figure 4.2, the coordinate E is Vjump, L (eq. 4.6) distance from A.

Therefore, the factor Vjump, L (eq. 4.7) on left side was calculated using equation 4.4 and

simplifying for gh,L in equation 4.3, with similar approach along BC for Vjump, R, as:

Vjump, L = gh,L + hcp, L = 0.257× hcp, L (4.6)

Vjump, R = gh,R + hcp, R = 0.257× hcp, R (4.7)
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The line AD may deviate from the vertical and this interferes with the simple

positioning of the row starting coordinates (E, F, and G). Therefore, the inclination of the

line segment AD having the slope mL was used and the coordinates were determined

geometrically from the intersection of the line AD and a circle with center at A having the

radius of Vjump, L. By solving line and circle equations analytically, the coordinates of E

(Ex , Ey) were derived as:

Ex =
Vjump, L
Æ

1+m2
L

(4.8)

Ey = mL ×
Vjump, L
Æ

1+m2
L

(4.9)

Using equations 4.8 and 4.9, other points on AD (F and G) were obtained using

the Vjump, L from their previous points E and F, respectively, assuming Vjump, L is constant

along AD. Likewise, E′, F′, and G′ were obtained starting from B with the calculated hcp, R

(eq. 4.5), Vjump, R (eq. 4.7), and mR when substituted correspondingly in equations 4.8 and

4.9. These end points when connected by a line segment (e.g., EE′, FF′, and GG′), thus

established the rows of the calibration chart.

Moving through each row (i = 1 to 4), the top-left corners of individual color

patches (H, I, J, K, and L) were obtained after evaluating the corresponding color patch

widths and jumps. The width of each color patch at each row was calculated as:

wcp,i =
wi

6+ 5Rgw
(4.10)
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where wcp,i is width of the color patch at ith row (i = 1, 2,3, 4) of calibration chart; wi is

the width of ith row (AB, EE′, FF′, and GG′). Similar to Vjump, L, the top-left corner H is

Hjump, i distance from A. Therefore, the factor Hjump,i was calculated using equation 4.10

and simplifying for gw,i in equation 4.3 and we obtain:

Hjump,i = gw,i +wi = 0.170×wi (4.11)

The point H is Hjump,i distance from A, along the line segment AB with slope mi.

Therefore, similar to equations 4.8 and 4.9, the coordinates of H was determined as:

Hx =
Hjump, i
p

1+mi
2

(4.12)

Hy = mi ×
Hjump, i
p

1+mi
2

(4.13)

Similarly, marching through each row, the top-left corners were established from its

previous points (e.g., H, I, J, K), thus, establishing all the locations of color patches. It was

again assumed that for a given row (i) the Hjump, i as a constant.

An ROI (e.g., PQRS; fig. 4.2) was overlaid on each color patch for color values

extraction. The ROI was positioned on the center of the color patch based on the size of

each color patch, and the ROI size was fixed as 70 % of the color patch size (based on

preliminary observations to avoid the edges).

The algorithm started from the top-left color patch and advanced column-wise

through each row and extracted the average RGB values. These values were used in the

CCM derivation.
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4.3.3.2. Color calibration matrix derivation in plugin

Matrix manipulations such as transpose and matrix multiplication were available

through appropriate methods in the RealMatrix class from Apache Commons Mathematics

(Ver. 3.6) package (ASF, 2018). The matrix inverse was calculated using the singular value

decomposition method available in Java class SingularValueDecomposition and interface

DecompositionSolver. These methods from the Apache Commons Mathematics were

useful in performing the necessary matrix operations of equation 4.2.

The average RGB values of each extracted color patch (IRGB) and the standard RGB

values as supplied by the X-Rite (SRGB; X-Rite (2018)) were stored in respective RealMatrix

objects (eq. 4.1). These two matrices were solved to obtain the CCM (MCC) as shown in

equation 4.2. Each pixel RGB values [1× 3] of the input image when multiplied with the

derived CCM [3× 3] returned the calibrated RGB values [1× 3] of the corresponding pixel.

Sometimes, while multiplying CCM with each pixel values of the input image, the

resulting calibrated pixel value fell beyond the range of 0 to 255. Such pixel values

produced a false-colored image and were rectified. Reassigning such “out of the range”

values to the respective limiting pixel values as 0 and 255, with appropriate plugin code,

solved this issue.

4.3.4. Minimum Number of Color Patches for Calibration

Usage of all 24 color patches of the standard color chart for color calibration is

expected to produce good calibration. Even though the analysis CPU times were similar

(3.27±0.16 s for CCM; and 7.28±0.25 s for overall) among the number of patches (N = 1

to 24), in other practical applications (e.g., unmanned aerial vehicle images, online

color-based sorting system) usage of all 24 color patches for calibration becomes tedious.
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Figure 4.3. Order of color schemes used to determine the minimum number of color
patches required for efficient color calibration.

Therefore, in the present study, the minimum number of color patches required for

color calibration was determined. For this purpose, six different color schemes (“Set 1–6”;

fig. 4.3) were used with the numbers of color patches considered were progressively

increased one by one, and their calibration performances were calculated and compared.

Choosing a combination of color scheme and the number of color patches results in a

unique group of colors available for image calibration.

Out of six color schemes, two color schemes (“Set 1” and “Set 2”; fig. 4.3) suggested

by Akkaynak et al. (2014) were considered, and also four new color schemes (“Set 3–6”;

fig. 4.3) were developed. The color scheme Set 1 was the standard color scheme provided

by the X-Rite (X-Rite, 2018). The color scheme Set 2 started with the six neutral colors in

the 4th row of the calibration chart (fig. 4.2) followed by the other 18 color patches in the

regular order.

The basis for considering new color schemes was as follows: The color scheme

“Set 3” started with the additive colors (R, G, and B), followed by subtractive colors (cyan:

C, magenta: M, and yellow: Y), then followed by the regular color patch order. The

combination of different ratios of additive colors (R, G, and B) produced a wide color
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gamut and has been used in many image processing applications, camera sensors,

televisions, and monitors. Similarly, the use of subtractive colors (C, M, and Y) produced a

wide range of colors as used in commercial printers to produce the same color printed

output as seen in the display monitor. Hence, the first 6 colors of Set 3 and “Set 4” were

based on the combination of RGB, and CMY color patches, followed by the regular color

patch order of the chart.

The first two color patches of “Set 5” and “Set 6” were based on the previous studies

on phenocam network (Ahrends et al., 2008; Richardson et al., 2009), white and gray

patches were considered primarily, which was same as first two color patches in Set 2. The

effect of RGB and CMY color patches after white and gray color patch was observed in Set 5

and Set 6, respectively. The calibrated images produced by different color schemes were

evaluated by different developed performance measures to determine the suitable color

scheme and the minimum number of color patches required for efficient color calibration.

4.3.5. Calibration Performance Measurement

To evaluate the performance of the calibration process, the resulting calibrated

image quality had to be accessed based on the uniformity in color values among calibrated

images. Manual observation cannot discern the amount of color differences among the

calibrated images. Therefore, along with the available performance measure (total error;

Akkaynak et al. (2014)), a new measure named “calibration performance index” (CPI) was

developed, using a “difference image index” (DII) by comparing two images, for evaluating

the calibration performance.
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4.3.5.1. Modified total error

The calibration process alters the RGB values of color patch in the input image

(IRGB; eq. 4.1) closer to the standard RGB values (SRGB; eq. 4.1). The total error is a

measure of closeness that the calibrated image has attained with respect to the standard

reference RGB values of the chart. The modified expression of total error (Akkaynak et al.,

2014) after normalization is given as:

em =

∑N=24
i=1

p

(Rs −Ri)2 + (Gs −Gi)2 + (Bs − Bi)2

N × (MDR +MDG +MDB)
(4.14)

where em is the modified total error (range between 0.0 and 1.0); N is the number of color

patches in the ColorChecker and is fixed at 24; Rs, Gs, and Bs are the standard reference

values of the individual color patch in ColorChecker (supplied by X-Rite); Ri, Gi, and Bi are

the R, G, and B values of corresponding color patch in the calibrated image; and MDR

(255− 8= 247), MDG (255− 52= 203), and MDB (255− 31= 224) are the maximum

difference of ColorChecker standard reference values obtained from 255 and the minimum

value of the 24 patches, for R, G, and B, respectively.

A perfect calibration, where RGB values of all color patches in the calibrated image

exactly match the standard RGB values, produced em of 0.0, and obtaining em of 1.0 is

unlikely for actual images as the denominator of equation 4.14 is a constant and values

might not represent most natural images. Attaining em = 0.0 is practically impossible;

however, any lower value (close to 0.0) is desirable.
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4.3.5.2. Calibration performance index

The CPI is a developed measure of how well the two input images of varied lighting

conditions (dark, and light) are calibrated. The CPI was developed to test the calibration

performance of different color schemes and the number of color patches selected for

calibrating the input images. For this purpose, two synthetic images of extreme practical

lighting variation (dark and light) were used as the fixed input, as the results from these

included any other intermediate lighting variations.

As images have to be compared for CPI, a method of comparing two images and

expressing the difference numerically was developed using a DII. For comparing two

images, a “difference image” was first obtained using the ImageCalculator() class of

ImageJ, which was the “bound checked” RGB values (0 – 255) of pixelwise difference

between two images. From this difference image the DII was evaluated as:

DII=

∑W
i=0

∑H
j=0 (DIR,i, j +DIG,i, j +DIB,i, j)

W ×H × 3× 255
(4.15)

where DII, the difference image index, is a normalized value ranging between 0 and 1,

where 0 indicates no difference between the two images, and 1 indicates the images are

totally opposite; i and j are the pixel coordinates in an image; W and H are width and

height of the difference image; and DIR, DIG, and DIB are difference image’s R, G, and B

values of individual pixels.

For CPI measure, the plugin took 2 input images (dark and light), and generated

4 output images (2 calibrated images with N patches, and 2 reference calibrated images

with 24 patches) and evaluated DII between images. The reference calibrated images were
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obtained using the maximum number of patches (N = 24) from Set 1 as they were

reported to be the best (Ilie & Welch, 2005; Joshi, Wilburn, Vaish, Levoy, & Horowitz,

2005). The CPI was calculated as a summation of the DIIs obtained between images among

the calibrated images as:

CPI=W1 ·DIIA +W2 ·DIIB +W3 ·DIIC (4.16)

where W1, W2 and W3 of equation 4.16 are the respective weights attached to DII values of

DIIA (between calibrated dark and reference calibrated dark images), DIIB (between

calibrated light and reference calibrated light images), and DIIC (between calibrated dark

and light images), respectively.

From all the combinations of color patch order and number of patches, the

maximum value of CPI was evaluated. The maximum CPI value was used to normalize the

CPI values to have a range from 0.0 to 1.0. Thus, the best calibration method will have the

lowest CPI value and a poor calibration a value towards 1.0.

4.3.6. Features of the ColorCal Plugin

The flowchart of the ColorCal plugin capable of performing (i) calibration,

(ii) comparison, (iii) calibration and comparison, and (iv) comparison with reference,

based on user inputs through options, is illustrated in figure 4.4A. The plugin is operated

from the front panel by selecting the appropriate options (fig. 4.4B). The options allow the

users to select the type of analysis (“Calibration,” “Comparison,” “Calibration and

comparison,” and “Comparison with reference”), color schemes (Set1 – Set6 and

“User-defined”) through calibration options, and output options (“Display color calibration

matrix” and “Display calibrated image”). Along with the six pre-defined color schemes
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(fig. 4.3), the User-defined color scheme option allows the user to enter any number of

color patches in any order in the text box provided (using numbers 1 to 24 separated by

commas) for experimentation and testing. While the “Run” button executes the process

and produces the outputs, the “Help” button displays helpful information about the

running of the plugin. The pseudocode of the ColorCal plugin is provided in Appendix B.4.

As the plugin output, the user can have either the CCM or the calibrated image or

both as output by choosing appropriate output options. All the inputs choices will output

an appropriate calibration performance measure in the textual form.

If the user chooses the Calibration option, then the plugin takes one input image

and calibrates it with the color scheme and outputs em performance measure (eq. 4.14) and

displays the calibrated image if the output option was chosen. With “Comparison” option,

the plugin takes two input images, creates the difference image and outputs the DII

performance measure (eq. 4.15). The comparison can be performed with any two input

images, either with raw or calibrated. When both Calibration and Comparison options are

chosen, the plugin takes two input images, calibrates both images with the specified color

scheme, and produces the DII between the two calibrated images (fig. 4.4).

A smaller DII (darker difference image) indicates better calibration performance;

however, this will be misleading, especially when two poorly calibrated but similar images

will have the smallest DII. To address this issue, the “Comparison with reference” option

(fig. 4.4) was included in the plugin that took two input images, produced the calibrated

images with the specified color patches (N), also generated the reference calibrated images

(N = 24 color patches), compared between the calibrated and reference calibrated images,
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Figure 4.4. Features of the ColorCal plugin; (A) flowchart showing various operations
performed by the plugin with the given user inputs; and (B) front panel of the
developed plugin with user input and output options.
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and produced the CPI (eq. 4.16). Thus, CPI is an overall performance measure which does

not suffer the misleading comparison produced by DII.

4.3.7. Plugin Validation using Actual Plant Images

The ColorCal plugin was developed using the synthetic image and the calibration

process was evaluated to determine the best performing color scheme and the efficient

number of color patches. The best color scheme and the minimum color patches, selected

based on performance measures, were validated with the actual plant images from

laboratory and field conditions. The intensity variation among the calibrated images was

also studied to verify the image calibration process.

4.4. Results and Discussion

4.4.1. Plugin Outputs and Interpretations

The input synthetic images obtained from dark and light conditions, their

corresponding calibrated images from the developed plugin; and the difference image

between dark and light input images, and dark and light calibrated images are presented in

figure 4.5. The shown calibrated images were obtained by choosing Set 1 option from the

plugin front panel, which selected all 24 color patches for calibration (fig. 4.4B). Previous

studies (Ilie & Welch, 2005; Joshi et al., 2005) suggested that using 24 color patches in the

calibration chart results in the best calibrated image, and is followed in professional

photography as well. An example of CCMs derived from dark and light input images

(eq. 4.17), obtained through display CCM option in the front panel (fig. 4.4), shows the

dominance of the principal diagonal elements with the dark and light image CCMs:
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MCC_dark =















1.06 0.09 0.02

0.07 1.16 −0.09

0.09 0.08 1.02















; MCC_light =















0.87 −0.07 −0.23

−0.03 0.79 −0.14

−0.06 −0.13 0.83















(4.17)

As seen in figure 4.5, leaf color in the dark input image almost looked black due to

the dark lighting and caused em of 0.26; however, the calibration process brought the leaf

color to green and reduced the em to 0.06. Similarly, the em was reduced from 0.06 to 0.02

in the light condition. The difference images shown in the third column were obtained by

choosing the Comparison option after loading the two input images (dark and light), and

the two corresponding calibrated images, respectively.

The difference images served as an illustration of the intensity difference between

the images; however, the difference images worked only when both images were the same

with matching location, which was obtained without changing the camera position. It can

be seen that the darker the difference image, the greater was the similarity between input

images, and vice versa. The difference image between the two input images was bright

(DII = 0.38) because of a wide difference in input lighting conditions, but the difference

image between the two calibrated images was dark (DII = 0.13) because the difference

was less between the calibrated images. This demonstrates the process of calibration in

bringing the input images towards a common intensity.

The calibration process can be better visualized with the 3D scatter plot shown in

figure 4.6. Each red marker denotes the normalized RGB values of each color patch in the

calibration chart (standard values), and the blue marker denotes the normalized average
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Figure 4.5. Synthetic input images acquired in laboratory at dark and light
conditions, respective calibrated images (using “Set 1”), and the difference image
between two input images and two calibrated images.
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Figure 4.6. Scatter plot of normalized RGB values of 24 color patches in the image
before and after calibration in dark and light conditions.

RGB values of each color patch in the input image. Before calibration, the RGB values in

dark condition were closer to 0, while the RGB values of color patches in light condition

were well scattered similar to the standard RGB values. After calibration, the RGB values

of color patches in dark condition were closer to the standard values, and in light condition

already distributed input values got adjusted and most of the calibrated RGB values

overlapped with the standard values.
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4.4.2. Selection of the Minimum Number of Color Patches

The variations in em (eq. 4.14) for calibrated images obtained from dark and light

input images are shown in figure 4.7. There was no difference in em beyond 13 color

patches in the calibrated light image, while the calibrated dark image required >18 color

patches. This was also observed in the 3D scatter plot (fig. 4.6), where the light image had

well distributed normalized RGB values of each color patches before calibration and the em

(0.06) was less than dark image (0.26) as they were well separated before calibration.

Previous studies (Akkaynak et al., 2014; Alsam & Finlayson, 2008) also followed a similar

pattern for color schemes Set 1 and Set 2, where the magnitude of em was lesser in the light

calibrated image than the dark calibrated image.

The color scheme Set 2 required more color patches (>9 patches) for producing the

calibrated image with minimum error, because the first 6 colors (neutral shades) were

achromatic, and did not contribute efficiently to the color calibration (fig. 4.7). Other than

Set 2, all other color schemes (Set 1, 3-6) attained the minimum value after the first few

color patches (≤6). The color schemes Set 3 and Set 4 were evidently seen as efficient with

only 3 color patches producing the minimum error in both dark and light calibrated images

compared to other color schemes. In the dark calibrated image, Set 4 produced the

minimum error with 3 color patches, while in the light calibrated image Set 3 produced the

minimum error with 3 color patches. However, the calibrated image produced by Set 4

using the first 3 color patch produced a greenish color cast and was not suitable compared

to the calibrated image by Set 3. Therefore, color scheme Set 3 was found efficient in

rendering the colors of the image based on em.
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Figure 4.7. Variations in modified total error in calibrated images by different color
schemes in dark and light conditions (data in Appendix B.1).

4.4.2.1. Comparison of dark and light calibrated images

The CPI was also used in the selection of color scheme and number of patches to be

considered in calibration. We found that images calibrated using the color scheme Set 1

with all 24 color patches produced the minimum em (fig. 4.7) and considered as the

reference image for CPI calculation in both dark, and light conditions. Additionally, weight

factors as used in equation 4.16 is important in deciding the contribution of differences.

Even though the difference between the two calibrated images was kept to a minimum,
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the similarity between the calibrated image (with less number of color patches) and the

reference image (using all 24 color patches) needs to be considered. Therefore, more

weights were considered for W1 and W2, and slightly less weight for W3. The weights were

fixed, after preliminary trials, as 0.35 for each W1 and W2, and 0.30 for W1 in

equation 4.16 to evaluate CPI for each color patch.

The plot of CPI values and number of color patches of different color schemes is

shown in figure 4.8. The CPI showed a pattern similar to the em performance measure

(fig. 4.7). The CPI values from all color schemes converged and attained a low CPI when

half of the color patches (12) were used. Overall, below 9 color patches, all color schemes

showed distinct variations in the CPI values. It was interesting to note that the order of

color patches did not have any effect on calibration, i.e., using R, G, B or B, G, R produced

identical calibrated images.

The color schemes Set 1, Set 2, Set 5, and Set 6 showed lower CPI with a single

color patch, but the calibrated images had increased color cast (dark skin and white). This

was also observed when only 2 color patches were included for calibration. By including

the 3rd color patch, other than the schemes Set 3 and Set 4, the calibration with the rest of

the schemes resulted in a color cast that raised the CPI values (fig. 4.8). The grayish color

cast with color schemes Set 2, Set 5, and Set 6 was because of the achromatic color patches

(white and gray), and with color scheme Set 1 was because of skin tones in the starting

patches that were inefficient in overall image calibration.

The variations of CPI values for all color schemes with 3, 6, 12, and 24 color

patches, indicated in figure 4.8, are presented in table 4.1. In all image samples, the CPI

values from Set 3 and Set 4 with 3 color patches were the lowest (Set 3: 0.205–0.244;
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Set 4: 0.230–0.315) compared to other color schemes. The calibrated images produced

from Set 3 and Set 4 with 3 color patches were visually similar. The next lower CPI values

were obtained with 6 color patches in all color schemes except Set 2. Including additional

color patches further reduced the CPI values; however, considering practical applications

and simplicity reasons for using color patches in a field setting, using a minimum number

of color patches is desirable. Therefore, including 3 color patches — R, G, and B were

recommended for an efficient color calibration as it produced calibrated images that were

visually similar and had low CPI values.

Table 4.1. Calibration performance index variations for different color schemes with
selected number of color patches.

Image samples Color scheme∗ Number of color patches

3 6 12 24

Synthetic images Set 1 0.952 0.152 0.138 0.128
Set 2 0.560 0.685 0.162 0.128
Set 3† 0.205 0.208 0.156 0.128
Set 4‡ 0.254 0.208 0.156 0.128
Set 5 0.363 0.171 0.146 0.128
Set 6 0.390 0.175 0.146 0.128

Cilantro images Set 1 1.000 0.182 0.159 0.150
Set 2 0.695 0.552 0.172 0.150
Set 3† 0.244 0.211 0.161 0.150
Set 4‡ 0.230 0.211 0.161 0.150
Set 5 0.608 0.160 0.152 0.150
Set 6 0.617 0.167 0.152 0.150

Field images Set 1 0.913 0.237 0.251 0.260
Set 2 0.948 0.534 0.247 0.260
Set 3† 0.239 0.255 0.247 0.260
Set 4‡ 0.315 0.255 0.247 0.260
Set 5 0.492 0.295 0.263 0.260
Set 6 0.485 0.308 0.263 0.260

Note: These selected calibration performance index (CPI) vales were obtained from the data provided in Appendix B
and are also indicated in figure 4.8.
∗ Refer to figure 4.3 for details on the color schemes; however, the schemes with lowest CPI are reproduced for ready
reference.
† Set 3:
‡ Set 4:
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4.4.3. Color Calibration Plugin Validation

4.4.3.1. Laboratory conditions — Cilantro cut plant

The color calibration method with 3 color patches (RGB) was validated using cut

cilantro plant samples in the laboratory under varying lighting conditions (fig. 4.9).

It was observed that with actual samples having three-dimensional shapes, shadows

occurred in artificial or natural lighting. However, the shadows have not interfered in

extracting of an average color value from the region of interest (ROI) and in the process of

image calibration. The calibration performance of the cilantro images in dark and light

conditions had a low CPI value of 0.244 (table 4.1), which was good. The DII (eq. 4.15)

between dark calibrated image and its dark reference image was 0.12 (DIIdark), and the

difference index between light calibrated image, and its light reference image was 0.13

(DIIlight). However, the dark and light calibrated images produced slightly higher difference

index of 0.52 (DIIcalibrated). This is expected when two images obtained under widely

varying lighting conditions are calibrated and compared.

The calibration process raised the whole image intensity value from 92 to 129 in

dark condition (ROI intensity from 31 to 47) and lowered from 124 to 115 in light

condition (ROI intensity from 60 to 51). The intensity value of the whole dark calibrated

image was higher than light calibrated image because the white background used had

become saturated in the calibration process and increased the whole image intensity.

However, comparing the plant canopy and the selected ROI, the color looks more uniform

between the dark and light calibrated images than the input images. Therefore,

comparison and analysis using the calibrated images would be definitely better than using

the raw input images, which had a wider color difference.
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Figure 4.9. Cilantro cut plant images acquired in the laboratory at dark and light
conditions as inputs and their respective calibrated image obtained using only R, G,
and B color patches. The calibration performance index was 0.244.
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4.4.3.2. Field conditions — alfalfa and spring wheat

The acquired field images consisted of two crops: alfalfa (Medicago sativa L.) in the

late bud stage that looked green (left), and spring wheat (Triticum aestivum L.) in a mature

stage (right) that looked brown (fig. 4.10). These images represented a typical field

condition for studying the image calibration at two growth stages of field crops. Varying

lighting conditions were captured by adjusting the aperture setting from f/6.3 to f/16 that

showed a gradual darkening of the image indicated by decreasing image intensities

representing the typical lighting variations in field conditions.

In general, in color image processing, a simple “white balance” method is widely

followed (Lam, 2005; Richardson et al., 2009), which makes the image white regions look

white and correspondingly updating all image pixels. This method calculated a factor that

brings an object/section/color-patch of the image from discolored white to perfect white

(R = G = B = 255). The factor was uniformly applied to all image pixels to produce the

white balanced image. This process simply altered all the pixel values only based on white,

which is similar to the satellite and aerial images radiometric simplified calibration using

linear interpolation of known ground control points reflectance (Xu et al., 2012).

The processed images, however, still suffered similar intensity variations as the input

images (fig. 4.10 - White balance). Interesting to observe that the white patch (bottom-left

patch of the color chart) can be distinctly seen as perfect white in all white balanced

images.

The calibrated images using the developed plugin with R, G, and B color patches

showed an overall homogeneity across the images (3× 3 calibration; fig. 4.10), which

demonstrated the good calibration performance of the ColorCal plugin. The DII between
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Figure 4.10. Comparison of input, white balanced, and the calibrated images in the
field (alfalfa and spring wheat). The calibrated images were obtained using the three
R, G, and B color patches.
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the calibrated image and their respective reference image ranged between 0.053 (f/16)

and 0.280 (f/6.3), with an average of 0.154 and standard deviation of 0.073. The overall

CPI evaluated by assuming the image from f/6.3 as light, and f/16 as dark conditions was

0.239 (table 4.1). In the field, the CPI value for 3 color patches (0.239) was better than

24 color patches (0.260) indicating that for field images 3 color patches (RGB) were

sufficient. Further analyses with other input images may be required to establish this trend.

The plugin took ≈7 s (CPU time) per input image of resolution 0.68 mm/pixel to produce

the respective calibrated image in a laptop PC (Windows 10, 2.20 GHz Intel Core i5-5200U

processor, and 8 GB RAM).

All the calibrated images appear to fall toward the darker intensity, but this did not

impact the comparison and analysis of the images for any practical applications because

they tend to be relatively uniform independent of lighting conditions. However, the actual

variation in the crop phenology (growth stages) were actually captured by the raw images,

while the images calibrated with ColorCal plugin had eliminated the lighting variation and

standardized the visual tone or overall intensity.

The intensity variation plot among these images helped to visualize the effect of

white balance and calibration (3 color patches) on the input images from field conditions

(fig. 4.11) and allowed us to perform further analysis. The steeper negative slopes for the

input and white balance images indicated a decrease in intensity values from light to dark.

Ideally, the goal of the calibration process is to make the intensity variations flat

(zero slope), while maintaining a desirable intensity. A hypothetical flat line with a lower

intensity value (e.g., <30) indicates an underexposed image, and that with a higher

intensity value (e.g., >160) indicates an overexposed calibrated image, and these are not
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Figure 4.11. Intensity variation of input, white balanced, and the calibrated images in
field (alfalfa and spring wheat). The calibrated image was obtained using the three R,
G, and B color patches and the fitted linear models (data in Appendix B.3).
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desirable. The slopes of the fitted linear models for input and white balanced images were

−11.7 and −9.8, respectively. The slope for calibrated images was only −2.42, indicating

less variation in intensity among calibrated images.

When the left (alfalfa) and the right (spring wheat) image portions were considered

separately (Inset; fig. 4.11), similar variations in slopes of linear regressions were found

(Models; fig. 4.11). Slopes for alfalfa and spring wheat ranged between −11.96 and

−12.04 for input images, −9.88 and −10.14 for white balanced images, and −2.31 and

−2.69 for calibrated images. Although the calibrated images were slightly darker than

input and white balanced images, this indicated a more homogeneous “color feel”

(intensity). The brightness of calibrated images can be improved through further image

processing operations to increase the intensity uniformly, without changing the color value

(hue) of the pixels. This forms a potential aspect of future research.

4.4.4. Suggestions for Future Work

Future work will consider studying the calibration performances with higher order

CCM by including the square terms and interaction terms. Also, chromatic adaptation

techniques, such as white balance, gray balance, or RGB equalization before or after color

calibration to improve the brightness of the calibrated images, and comparing the results

using the developed performance measures should be considered. The color calibration

should be explored in other color spaces, such as L∗a∗b∗, HSI, and XYZ because these color

spaces cover a wide gamut of colors and might produce better results. The performance of

the developed method should be compared with the calibration methods offered by

commercial software (e.g., Adobe Lightroom, Aperture). Finally, the calibration
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performance should be tested in images with a wide range of natural illumination

variations (brightness and color) in the phenocam network systems.

4.5. Conclusions

The artificial lighting and camera aperture ( f -stop) settings produced a wide range

of lighting variation in the laboratory environment and field setting, respectively, suitable

for digital color image calibration study. The user-developed plugin performed well in all

conditions (laboratory and field conditions) and took ≈7 s/image to produce calibrated

images by deriving a color calibration matrix (CCM). The developed calibration

performance index (CPI) was useful in observing the effect of the number of color patches

and deciding the minimum number of color patches for efficient color calibration. The CPI

values converged when only 12 color patches (out of 24) were used. On selected color

schemes, 3 to 6 color patches gave a comparable performance to the 24 patches. We found

that the order of selected color patches in a color scheme did not affect the calibration

performance. The calibration using only the 3 patches namely red, green, and blue (R, G,

and B; [3× 3] CCM) produced visually homogenous intensity images with low CPI

(0.21–0.24), while the commonly followed neutral color white as well as gray patches

produced less performance with high CPI (0.26–1.0). Considering practical application and

simplicity, 3 color patches: R, G, and B are recommended for an efficient color image

calibration. Future work should consider calibrating using CCM derived from higher order

terms (square and interaction terms), and testing with real-time field images with natural

lighting variations.
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5. PROFILE-BASED PLANT STAND COUNT, PLANT VIGOR,

AND SPATIAL DISTRIBUTION FROM UAS IMAGES *

5.1. Abstract

Plant stand count is one of the important measures to determine the attainment of

the target plant population, obtain emergence characteristics of the seeds, and evaluate the

planter’s performance. Unfortunately, the available commercial software packages are

expensive and rigid, and the literature mostly followed the “black-box” approach.

Therefore, a user-coded ImageJ plugin from scratch, using simple geometrical principles,

that performs automatic row orientation, row identification, plant cluster segmentation,

and plant stand counting from UAS images was developed. A novel approach of using pixel

profile was developed to address the objectives. Identified plants’ clusters were segmented

by the combined approach of applying pixel profile, bounding box height, and the area in

series. Two set of sunflower field images (“Set I” and “Set II”) obtained from two locations

(Carrington and Prosper Counties, ND, USA), having different UAS flight altitudes (12.2 m

and 23 m), field areas (46 m2 and 24 m2), image resolutions (0.003 31 m/pixel and

0.00635 m/pixel), and growth stages (V2–V4 and V4–V6) were used for plugin validation.

The plugin was able to accurately identify rows up to 100 m and expected to work >100 m,

* This chapter will be submitted as two papers in the journal of Remote Sensing of Environment. Authors
involved in the two publications are from: Sunoj, S., Igathinathane, C., Flores, J. P., Sidhu, H., Monono, E.,
Wiesenborn, D., Schatz, B., Archer, D., Hendrickson, J., Halvorson, J. and Toledo, D. Title: Paper #1: Crop
rows identification and plant clusters segmentation for stand count from UAS images based on profile and
geometry. Paper #2: Plant vigor and spatial distribution analysis from UAS images. Sunoj has developed the
plugin, analyzed and visualized data, and wrote the manuscript. The major advisor Dr. Cannayen played a
pivotal role in research outline, technical discussions, analyses, and manuscript review and other
collaborators have assisted in all aspects of the paper.
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as long as the rows are straight. The plugin achieved a plant stand count accuracy of

95.9±2.5 % for Set I and 84.9±3.9 % for Set II images. For the spatial distribution analysis,

a new index termed ideal spacing uniformity index (ISUI) was found to be the best to

evaluate plant spatial distribution. The plant spacing distribution was compared with ideal

spacing and achieved an accuracy of >76.5 %. The CPU time for analysis were 31.7±1.2 s

and 4.2±0.6 s (Intel Core i5 processor, 8 GB RAM). Application of the free open source

ImageJ software and the user-coded plugin ensures “easy availability” and “data security,”

a major concern nowadays, as the software and plugin reside in the user’s system. As the

plugin was developed using a simple geometrical approach, with suitable modifications the

plugin can be potentially used for estimating plant stand count in other row crops (e.g.,

corn, soybean, cotton).

5.2. Introduction

Plant stand count is an important measure in the early growing season for making

better management decisions (Bruin & Pedersen, 2004). Nowadays, using unmanned aerial

system (UAS) images for assessing plant stand count is gaining traction and commercial

applications are available that offer cloud-based services to perform stand counting

through image analysis algorithms. Although that can be an easy route to take, such

services are expensive, crop-specific, and impose a set of restrictions and requirements.

Also, there is no simple, open source, free, and unified application that works on all

platforms (operating system) with minimum inputs and restrictions. Therefore, we propose

to develop a new algorithm based on simple profile and geometry principles using ImageJ

(Rasband, 2018), an open source, free, image processing software to produce a suite of

results related to plant stand count, spatial distribution, and vigor.
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In order to function properly, the existing commercial applications impose several

requirements including: (i) uniform plant-to-plant spacing, (ii) image resolution of

≤25 mm/pixel (iii) consistent row spacing with parallel rows, (iv) uniform plant growth

stages, and (v) no overlap between individual plants. Besides, they also involve

subscription charges (≈$99/month).

The plant stand count measure is used to (i) determine whether target plant

population is achieved as tested/verified based on seed emergence or seedling

establishment, (ii) evaluate planter performance on seed placement and spacing,

(iii) obtain insights on the emergence characteristics of the planted seeds, and (iv) assess

damage due to frost, wind, and hail storms. Similarly, plant spacing variability in the field

is also an important measure and reported to have a significant effect on the final crop yield

(Lauer & Rankin, 2004; Nielsen, 2004). Possible reasons for spacing variability between

plants in a row, planter mechanism type, and its efficiency, planting speed, soil moisture

and temperature variability, and crop residue distribution (DuPont, 2015; Liu et al., 2004).

To evaluate plant stand count and plant-to-plant spacing uniformity field scouting

was commonly performed. Two methods of assessing the stand count through field

scouting are the row-length method and the hula hoop method (Stowe, 2018). The latter

method is common for all crops, while the former method has minor variations in the

scale-up calculations based on crops (D. Berglund, 2007; DuPont, 2015; Kandel, 2010).

It is obvious that the field scouting method is time-consuming, painstaking, and covers only

a small portion of the field. Efforts were taken to develop automated plant stand counting

using image processing through ground level imaging systems (D. S. Shrestha & Steward,

2003, 2005; Tang & Tian, 2008). However, these studies focused on counting only on a
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single crop row. Nowadays, field scouting method and ground-level imaging method is

being replaced by the use of UAS images as they are quick, easy, and covers the entire field.

Even though it is possible to visually count plants from UAS images, which would be

a tedious task and prone to human error, automatic plant stand counting algorithms have

been developed through image analysis. Wheat (Triticum aestivum L.) stand count per unit

area (plant density) at the emergence stage was estimated with an error of ≈9 plants/m2

using a support vector machine model with 13 shape features in MATLAB (Jin et al., 2017).

Rapeseed (Brassica napus L.) stand count was estimated by simple correlation (r) using

15 shape features of the plants in Trimble’s eCognition developer software and achieved an

R2 of 0.85 from a model developed using only three shape features (B. Zhao et al., 2018).

A computer workflow in ArcGIS software to evaluate the sunflower (Helianthus annuus L.)

stand count from UAS imagery attained R2 ranging between 0.52 and 0.96 (Flores et al.,

2017). Potato (Solanum tuberosum L.) stand count was performed using ArcGIS from

multispectral imagery and achieved a r of 0.83 between manual stand count and

image-based stand count (Sankaran et al., 2017).

Most of the reported studies on plant stand count used proprietary software because

of their built-in image analysis tools and capabilities. This, of course, is an advantage,

however, it comes with a price and lack of flexibility. Developing such image processing

algorithms in an open source image processing platforms allow farmers to adopt the

technology, rather than purchasing commercially available software or expensive annual

subscriptions. ImageJ is an open source, free image processing system through which

user-coded plugins can be developed for any specific applications using Java programming

language (Burger & Burge, 2016a; Rasband, 2018). Several specific agricultural
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applications using such ImageJ plugins have been developed (Borianne et al., 2018;

Igathinathane et al., 2009a, 2009c; Pothula et al., 2015; Sunoj et al., 2018a; Sunoj,

Igathinathane, Saliendra, Hendrickson, & Archer, 2018b; Sunoj et al., 2018). The

development of such plugins helps protect “data security” as the analysis can be performed

by the users on their system, unlike commercial software where the users have to upload

their image to get the analysis results.

The present research aims to develop a plant stand counting algorithm from UAS

images through a user-developed ImageJ plugin rather than a black-box approach. Unlike

the reported research that used proprietary and often undisclosed methods of commercial

software, the present research proposed to develop simple geometrical approaches from

scratch to obtain necessary solutions.

The novel idea of the proposed method is to use the pixel profile (plot of the

number of pixels along vertical) of the image combined with geometrical features,

commonly available routine in any image processing systems, to identify the crop rows and

individual plants in a row irrespective of the field orientation in the image. Furthermore, it

is desirable to determine the planting direction automatically in a field image and plant

stand distribution. Therefore, the specific objectives of this research were to:

1. Determine the planting pattern in the field and crop row orientation for images of

rotated fields.

2. Identify crop rows based on pixel profile for user-defined zones in the field.

3. Estimate plant stand count along each row after resolving the plant clusters.

4. Evaluate plant vigor based on the plants’ projected areas.
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5. Determine plant spacing, map their spatial distribution to evaluate skips and doubles

and evaluate various distribution indices.

5.3. Materials and Methods

A user-coded plugin was developed that used the UAS’s stitched-image as the input

and performed analyses using a direct simplified geometrical approach. This direct

approach means working with image objects’ pixels through algorithm development for the

various intended analyses to address the objectives. It was assumed that the user has the

stitched UAS image from other sources and used as the input in the developed plugin. The

details of the plugin development and methodology developed in this study are discussed

subsequently. To our knowledge, such an application of open source user-coded plugin

development for the aforementioned objectives has not been reported in the literature.

5.3.1. Experimental Sites

Sunflower field research trials at the Carrington Research Extension Center (CREC),

Carrington, ND (47.52175° N, −99.114 88° W) and Prosper, ND, USA (46.966 67° N,

−97.066 67° W) were used in this study. In CREC, the trial was planted on June 1, 2018,

using a 7200 John Deere MaxEmerge 2 planter, with a row spacing of 0.76 m (30 in) and

plant spacing of 0.22 m (8.5 in). The overall dimensions of the field study were

48m× 24 m. The Prosper field trials used extra-large confectionary sunflower seeds and

the experimental plots were planted using an Almaco SeedPro precision planter (Almaco,

Ames, IA, USA) on June 1, 2017 (Sidhu, Wiesenborn, Johnson, Monono, & Eriksmoen,

2019). The individual plots were of 7.6m× 3.0 m size with a row spacing of 0.76 m (30 in)

and plant spacing of 0.27 m (10.6 in). The standard recommended agronomic practices

were followed based on the experimental trials in these sites.
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5.3.2. Image Acquisition – UAS Images

In this study, the images from CREC and Prosper were referred to as “Set I” and “Set

II” images, respectively. The Set I forms the major image input data (n= 25) in this study

and is predominantly used in the plugin development and validation. However, the Set II

forms only the minor image data (n= 5) and was used as an additional test case for the

developed plugin.

Aerial images were captured 15 days after planting (June 15, 2018) using a DJI

Phantom 4 Pro quadcopter (Shenzhen, Guangdong, China), equipped with a 20.1 MP color

digital camera, flown at 12.2 m (≈40 ft) above ground level with a front and side overlap of

80 % each. The camera model and imaging settings were: camera make and model = DJI

FC6310, F-stop = f /5.6, exposure time = 1/400 s, and focal length = 9 mm. The acquired

images were in JPEG (Joint Photographic Experts Group) format and stitched using

Pix4Dmapper Pro (Pix4D, Switzerland). The stitched image was exported in TIFF (tagged

image file format) and later converted to JPEG using ArcGIS (ESRI, Redlands, California)

for this study. The final image dimensions were 14685×7350 pixels representing a field

area of ≈1150 m2 and the file size was ≈270 MB. Representative image sections (n= 25)

of each ≈46 m2 (2940×1470 pixels) were cropped from the stitched image and used in the

plugin development. The image resolution was ≈3.31 mm/pixel.

The Prosper trials also used a similar DJI Phantom 4 quadcopter (Shenzhen,

Guangdong, China) and the images were captured on 21 days after planting (June 21,

2017). The flight altitude was maintained at 23 m (75 ft) above ground level. The plants

were between the V4 and V6 growth stages at the time of imaging. The Agisoft PhotoScan

software (Version 1.4.2., St. Petersburg, Russia) was used to stitch the images. The
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resulting image resolution was ≈6.35 mm/pixel. The images were converted to JPEG and a

few representative image sections (n= 5) of each ≈21 m2 (1350×450 pixels) were used for

testing the plugin.

5.3.3. Image Analysis Plugin Development

The user-coded plugin developed for the analysis utilized the open source free

image processing software Fiji (Ver. ImageJ 1.52n, Java 1.6.0_24 [64-bit], Rasband (2018);

Schindelin et al. (2012)). The plugin was coded in Java language and consisted of about

2230 lines and brief pseudocode is provided in Appendix C.2. for better understanding.

The plugin comprised of several Java methods (standard and developed) for performing

the outlined individual tasks based on the research objectives (fig. 5.1A).

The user first loads the image into ImageJ by “Drag and Drop” or by Open, and

selects the field boundary or any region of interest (ROI) using the “Polygonal selection”

tool from the ImageJ toolbar. Then the loaded plugin when compiled generates the front

panel (fig. 5.1B) with various input and output options. The input options were of general

nature and correspond to the row crop being analyzed. Users can select any or all from the

list of output options that generated different images of the analysis and run the plugin

using the Run button. In the background, the plugin performed various tasks in sequence

(fig. 5.1A) and produced the output images as chosen by the user. The details of the

individual operations are discussed subsequently.
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Figure 5.1. Process flow diagram and front panel of the developed plant stand count plugin with special emphasis on
plant cluster segmentation: (A) sequence of image preprocessing and processing operations performed, and (B) front
panel of the developed row identification and plant stand counting ImageJ plugin.
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5.3.4. Image Preprocessing

Conversion of a digital color image to binary by thresholding is the primary step in

several image processing analysis. For thresholding plants from a color UAS image

(fig. 5.2A), many thresholding methods were tested out of which excess green and

vegetativen were reported to be accurate (Torres-Sánchez, Peña, de Castro, &

López-Granados, 2014).

(A) (B) (C) (D)

0 255

0 255

0 255

Y channel

U channel

V channel

127

Figure 5.2. Plant thresholding and artifacts removal from UAS image: (A) a section of
color UAS imagery (12.2 m altitude); (B) histograms of individual channels of YUV
color space with selected threshold range only for U channel (0–127); (C) binary
image from selected threshold representing plants in white and soil in black; and (D)
artifacts removal and segmentation by applying series of ‘Fill Holes’, ‘Open’, and
‘Close’ operations along with an area filter of objects ≤10 % of average area.

Both these thresholding methods were based on RGB color space, which is sensitive

to illumination variations. To standardize such variations, color calibration is a vital

process (Sunoj et al., 2018b). However, it requires a standard color calibration chart

included in the image to perform the calibration. In such scenarios, working with the YUV

color space (Y is luminance channel, U and V are chrominance channels) is proven to be

reliable as it is insensitive to illumination variations (Yuntang, 2012).
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5.3.4.1. Color thresholding using YUV color space

Color thresholding is the digital extraction of the plants from the background by

fixing a threshold value for the individual color channel. The Color Threshold... menu

in ImageJ displays the histograms of the individual channel on different color spaces. Most

of the image analysis software provide YUV color space built into the system. Otherwise,

the following conversion formula (eqs. 5.1 and 5.3) can be used to transform the RGB color

space to YUV color space (Cheng, Jiang, Sun, & Wang, 2001; Ford & Roberts, 1998).

Y= 0.299R+ 0.587G+ 0.114 B (5.1)

U= − 0.147R− 0.289G+ 0.436 B (5.2)

V= 0.615R− 0.515G+ 0.100 B (5.3)

where Y is the luminance channel indicating brightness, U is the first chrominance channel

spanning between yellow and blue, V is the second chrominance channel spanning between

green and red (fig. 5.2B), R, G, and B are red, green, and blue intensity values, respectively.

The Color Threshold... menu in ImageJ displayed the histograms of individual

channels of the image based on several included color spaces. In this study, we found that

the plants from the UAS image can be thresholded by adjusting only the U channel (yellow

to blue) of the YUV color space. An optimum threshold U value ranged between 0 and 127

successfully selected the plants from the background (fig. 5.2B). The foot of the U channel

histogram peak indicated the yellow range limit. This range is expected to segment the

plants (yellowish-green) in all cases as it chooses all the yellowish chrominance range

(U channel) of the entire brightness range (Y channel).
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5.3.4.2. Image artifacts removal

The thresholding operation produced a binary image (fig. 5.2C) with plants

represented with a pixel value of 255 (white), while background soil with 0 (black). It can

be seen that the plant objects were porous (with holes) and morphological operations, such

as Fill Holes, Open, and Close were applied to the rectify the objects. Other noises and

small artifacts were removed by applying an area filter as a cutoff percentage of the average

area, which utilized the Analyze Particles... method. This area cutoff percentage value

was obtained as one of the user inputs (fig. 5.1B). In this study, we used a value of ≤10 %.

This binary preprocessed image served as the input to various image processing analyses.

5.3.5. Planting Pattern Determination

The commonly followed planting pattern is oriented along the longest dimension of

the field because the farm vehicles will have a minimum number of turns. However, in

some fields, the planting pattern is perpendicular to the field length because of the existing

alleyways or headlands (Poncet, Fulton, Port, McDonald, & Pate, 2016). Generally, the

decision about planting pattern is based on maximum field efficiency and machinery

operation convenience (Grisso, Jasa, & Rolofson, 2002; Grisso, Kocher, Adamchuk, Jasa, &

Schroeder, 2004). It was reported that the planting pattern has a significant impact on

weed control and yield potential of the crop (Borger, Hashem, & Pathan, 2010). Planting

perpendicular to the direction of sunlight, i.e., north to south planting suppressed the weed

growth by obstructing the light (A. Shrestha & Fidelibus, 2005). Considering these

scenarios, the planting pattern can be classified as “lengthwise” and “widthwise.” It will be

useful to detect the planting pattern automatically from the UAS images but has not been

128



reported so far. Also, a knowledge of the planting pattern will facilitate the crop row

identification (discussed subsequently).

5.3.5.1. Input image rotation and ROI extraction

A novel approach of planting pattern determination using a simple pixel profile

method, which is mapping the number of object pixels along a line of interest, from the

binary image was developed (fig. 5.3). From the user-defined ROI (ABCD; fig. 5.3A) after

loading the image, the field angle (θf) was determined by calling the Measure command

using IJ.run(). Using θf, the input image was rotated at an angle of θv = θf − 90° to make

the field ROI vertical to obtain profile (fig. 5.3B). If the θf is acute (I quadrant), then θv will

be negative, which indicates the counterclockwise (CCW) rotation, otherwise the clockwise

(CW).

5.3.5.2. Plants profile evaluation in ROI

The rotation operation modifies the dimensions of the rotated image by enlarging

the image canvas to accommodate the rotation. A profile ROI was overlaid at the center of

the rotated image. The width of profile ROI was defined as 10 % of the image canvas

width, and the height of profile ROI was the canvas height. Pixel profile (fig. 5.3C) was

obtained from the profile ROI using getProfile() method from the ProfilePlot() class

and analyzed to identify the planting pattern.

From the plot of the profile (fig. 5.3C), it was clear that the lengthwise planting

pattern formed distinct peaks in a cyclic pattern and the widthwise planting formed

multiple random peaks in an irregular pattern. If the profile ROI width was increased

beyond 10 %, the nature of the plots was expected to be similar. In this study, 10 % of

image width was selected for the planting pattern determination to minimize the
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Figure 5.3. Planting pattern determination approach by profile analysis: (A) binary
images of lengthwise and widthwise planting patterns, (B) binary images rotated at
an angle of θv = θf − 90◦ to make them vertical, and (C) profile plot obtained from the
selected ROI of the rotated images showing cyclic and random peaks.
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computation and was found sufficient. It becomes evident from this analysis that the

differences in profile patterns can be effectively utilized to determine the planting pattern.

5.3.5.3. Profile ratio cutoff for planting pattern

It was established that observing the cyclic peaks of a profile plot determines the

planting pattern (fig. 5.3). However, it is necessary to derive a numerical value that

automatically differentiates the two profile patterns. On the initial look, the lengthwise

planting pattern will have fewer profile data points above while the widthwise pattern will

have more data points above an arbitrarily chosen cutoff of 25 % (fig. 5.3C), selected to

eliminate the data points created by plants that were off-rows. However, considering only

the number of data points above the cutoff might be misleading because it is influenced by

the profile ROI width. Therefore, a non-misleading profile ratio (PR) was developed

(eq. 5.4) using the number of data above the profile cutoff (Nc) to the total number of data

in the profile (NT).

PR=
Nc

NT
=















Lengthwise planting, PR≤ PRcut

Widthwise planting, otherwise

(5.4)

Analyzing a range of PR values from the two planting patterns images at different θf

will determine the best PR cutoff (PRcut) value to identify the planting patterns. A low PR

value with respect to the PRcut will represent the lengthwise pattern compared to the

widthwise pattern.

5.3.6. Crop Row Orientation Estimation

Aligning the crop rows vertically, irrespective of the planting pattern, was essential

for identifying rows. It is not always possible to have vertical crop rows in the input UAS
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image. In such cases, either the user can preprocess the image manually to make the rows

vertical or automatically through image processing. Therefore, in this study, an automatic

method was developed to identify the crop row orientation (angle) using a novel

profile-based approach. The best vertical rows orientation by rotating the input image

ensures accurate and easier rows identification.

5.3.6.1. Determining the image initial direction of rotation

To have a computationally efficient method for aligning the rows vertically, it is first

necessary to determine the direction of rotation as clockwise (CW) or counter clockwise

(CCW). Obtaining the sense of rotation beforehand minimizes the number of rotation

iterations (discussed subsequently). The logic of determining the rotation direction was

based on two parameters: field angle (θf, measured from +ve x-axis (fig. 5.4A), and the

planting pattern (lengthwise or widthwise). Field angle was obtained based on the

“user-defined field ROI” delineated by the user (fig. 5.4A) and the planting pattern was

obtained based on the profile values (eq. 5.4). If the field ROI was not delineated by the

user, then the entire image will be considered as the ROI automatically. Using these two

parameters, the direction of rotation (CW or CCW) was found based on the following cases

(eq. 5.5):

Rotation direction=



















































CW, lengthwise & θf ≥ 90°(or)

widthwise & θf < 90°

CCW, lengthwise & θf ≤ 90°(or)

widthwise & θf > 90°

(5.5)
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5.3.6.2. Method of crop row orientation evaluation

For determining the row orientation, most of the studies reported so far adopted

Hough transform (Jin et al., 2017; Varela et al., 2018). Hough transform detects the

collinear points in an image and establishes a straight line joining the points (Hough,

1962). There are two major limitations in this procedure: (i) the search of the collinear

points is performed in parameter space, which is computationally intensive (Ji & Qi, 2011),

and (ii) there will be false collinear points, which may not represent a crop row (Tang &

Tian, 2008). Therefore, to overcome the aforementioned limitations a simple methodology

of determining the row orientation using plant profile is proposed. A demonstration of this

methodology with an example binary image of a field inclined at θf is presented in

figure 5.4.

A representative simple rectangular test ROI of size 50 % of image size was fixed at

the center and clipped off (fig. 5.4A). This test ROI image was subjected to rotations of 12

test angles at intervals of 10° (Iteration-I) in the range from θf − 10° to θf + 100° to

encompass the 90° sweep with two additional angles on both sides (fig. 5.4B). The test

rotation direction was decided based on the planting pattern and θf using the equation 5.5.

In the example (fig. 5.4), with θf = 132° given the lengthwise planting pattern and θf > 90°

the CW rotation was used with 12 test angles in the range of 142° down to 32°. After each

rotation, the profile was obtained for the rotated image using getProfile(), which was

analyzed for further fine rotation to obtain the best alignment of the rows.
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Figure 5.4. Optimum rotation angle determination strategy for making vertical crop rows in a field inclined at θf: (A)
a representative “Test ROI” (50 % of image size) positioned at the center of the binary image; and (B) series of CW
rotations performed on the test ROI from at 10◦ steps from θf − 10◦ to θf + 100◦ (Iteration-I) along with their
respective profile plots.
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The combination of rotation direction and 12 test angles captured all the possible

row orientation variations profiles. The pattern of the profile plots was unique for each

rotated image (fig. 5.4B). Following the earlier observed phenomenon (fig. 5.4B), distinct

peaks in the profile plot at θf + 40° indicated the possible vertical row orientation

(fig. 5.4B) after 40° CW rotation of the image. It can be seen that this rotation (40° CW) is

not the optimized result and further refinement only will produce the best angle, also an

automatic method to determine the optimized angle should be developed.

5.3.6.3. Optimized angle of image rotation for vertical rows

To automatically identify an optimum angle of rotation, a simple method from the

profile that is unique among the rotation angles will be necessary. For this purpose, six

descriptive statistics measures such as, mean, median, maximum value (Pmax), standard

deviation (σ), skewness, and kurtosis obtained from the profile values using

DescriptiveStatistics() class, and a new measure defined as σPmax was also derived to

test and determine the best indicator for optimum rotation angle.

With the optimum rotation angle from Iteration-I, a finer angle search with 1° step

for 20 times were performed between the one step before (θf+ 30°) and after (θf+ 50°) the

optimum (fig. 5.4B) in the Iteration-II. Similarly the Iteration-III was continued with

progressive refinement. At each iteration, the step angle was reduced by 1/10th of the

previous step angle. Each iteration will refine the result by fixing one additional decimal to

the previous result at stay in the “optimum zone” after the Iteration-I. This type of

searching was similar to the “decimal search technique” followed for determining the

optimum moisture diffusivity of grains in drying (Igathinathane, 1997). For the automatic

optimum search angle determination, the descriptive statistics measures were again
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calculated and used from the respective profile plots. Based on the number of iterations,

this method performed the search to the desired level of accuracy. However, in this study,

only three iterations were performed to obtain the fine search angle up to one decimal

degree accuracy (0.1°). Finally, the optimized accurate rotation angle determined was

applied to the image (fig. 5.5A) to produce vertical crop rows and used for row

identification and further analyses.

5.3.7. Crop Row Identification using Pixel Profile Plot

To evaluate the plant stand count along each row, it is imperative to identify the

individual crop row locations and perform counting within each row (Flores et al., 2017).

Reported studies on the crop row identification methods from an image can be broadly

grouped into the following five categories: least-square fitting method, Hough transform

method, vanishing point method, stereo-vision method, and a simplified profile-based

method (G. Jiang, Wang, & Liu, 2015). Out of the available methods, row identification

using vertical profile is common (Søgaard & Olsen, 2003). In the profile-based approach,

selecting a profile cutoff value is one of the critical problems. This cutoff value was often

hard-coded or assumed as an average value worked best only for the specific image and

other cutoff had to be selected for other images. Therefore, in the present study, we have

developed an automatic cutoff determination applied to the given image for the profile

method that identified crop rows from the UAS image (fig. 5.5).

5.3.7.1. Profile smoothing and their spacing

The obtained profile data plot had irregular edges that lead to unnecessary peaks in

the analysis. Therefore, the profile was smoothed using Apache Commons Math™

LoessInterpolator() class (Cleveland, 1979) with the following parameters:
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Figure 5.5. Crop rows identification from binary image by profile analysis:
(A) a section of a binary image with vertical rows and row edge lines derived based
on the identified profile peaks; and (B) row identification from the profile plot of the
binary image. P1, P2, . . . , P7 are the crop row peaks; d1-2, d2-3, d3-4, . . . , di-i+1 are the
distances between subsequent profile points of intersection with the cutoff line.
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bandwidth = 10, robustness iterations = 2, and accuracy = 1× 10−12. It was evident from

the smoothed profile plot (fig. 5.5B) that the crop rows can be clearly identified by the

major peaks and were also evenly-spaced. Therefore, it was hypothesized that the crop

rows can be identified from the reduced standard deviation of the distances between the

points of intersection of the left edge of the peaks and the profile cutoff line (d1-2, d2-3, d3-4,

. . . , di-i+1; fig. 5.5B), as uniformly spaced distances carry similar data thus have reduced

standard deviation.

5.3.7.2. Automatic profile cutoff for peak determination

The profile cutoff value influences the number of peaks above the level and their

distribution along image width, hence there exists an optimum value where the

distribution of the peaks is uniform. In the plugin, the optimum cutoff value was

automatically identified by incrementing the value from 0 to the global maximum peak

with unit increment.

At every increment, the “left edge” of the each row peak profile was obtained, and if

the profile data point P[i] satisfied the condition “P[i-1] < cutoff < P[i+1]”, based on the

adjacent points (fig. 5.5B). The number of times this condition was satisfied indicated the

number of crop rows (Nrows) included at that cutoff. For different cutoffs ranging from 0 to

maximum peak, the distances between the profile cut points (d1-2, d2-3, d3-4, . . . , di-i+1), the

mean (µd), and the standard deviation (σd) were calculated to identify the optimum

cutoff. The cutoff with minimum σd (when peaks are equally spaced) in combination with

low cutoff (where more crop rows included) was automatically determined as the optimum

cutoff value.
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It can be observed that evenly spaced rows of plants produced the corresponding

number of major peaks that are evenly spaced that in turn produced the minimum σd;

on the other hand, the random location of plants, lower cutoff values (0–10; fig. 5.5B),

or improper orientation of the field image with respect to the horizontal would produce an

excessive number of peaks along with increased σd . It was interesting to note that

incrementing the cutoff value beyond a certain limit reduced the number of profile cut

points but increased σd (cutoff > 90; fig. 5.5B). Similarly, at lower cutoff values (≤15),

the number of peaks were identified more but, this increased the σd (peaks identified =

10; fig. 5.5B).

5.3.7.3. Peaks identification and crop rows ROI layout

After selecting the optimum cutoff value, the peaks (P1, P2, . . . , P7) of each row

were determined as the maximum value between two consecutive profile data points of

intersection with the cutoff line (fig. 5.5B). It can also be visualized that a range of values

around the optimum cutoff line would have also produced the same set of peaks. Based on

the preliminary analysis, the width of crop row ROI was arbitrarily fixed at ±20 % of µd

(0.4µd) aligning the peak in the middle (fig. 5.5). The regions outside of these crop row

ROI were excluded from the analysis, and this method efficiently avoided any weeds or

other unintended plants that emerged between the rows.

5.3.8. Image Dimension Calibration

The dimension calibration procedure determines a scale factor based on the

reference object dimensions included in the image to derive the plant spacing and area in

physical units (e.g., m, m2). To have an accurate scale factor, it is desirable to have a large

reference dimension such as the whole study area as it could improve measurement
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accuracy and avoid image geometrical distortions (Igathinathane et al., 2009b; Sunoj et al.,

2018). In this study, as the vertical reference measurement varied among field images, the

maximum horizontal reference measurement (row spacing) was considered for the

calibration. This reference measurement was taken as the center-to-center distance (pixels)

between the first and last crop row. Knowing the actual row spacing the scale factor was

calculated as:

SF=
Srows(Nrows − 1)

d1−Nrows

(5.6)

where, SF is the scale factor (m/pixel), Srows is the row spacing an user-input (m; fig. 5.1B),

Nrows is the number of rows determined by the row identification algorithm, and d1−Nrows
is

the center-to-center between first and last row measured in the image (pixels).

The numerator in equation 5.6 is the maximum horizontal reference measurement

(m), while the denominator is the corresponding measurement (pixels) in the image. The

scale factor thus calculated for the UAS images used was ≈0.003 31 m/pixel. The scale

factor when multiplied with any measured distances in the image in pixels will be

converted into the physical unit (m).

5.3.9. Clusters Segmentation by Profile Analysis and Geometry

Plant stand count, once the plants are well separated (singulated) and the rows ROI

correctly identified, is a straightforward process. However, resolving the two or more

touching plants, termed “cluster,” is quite challenging. The occurrence of clusters will

become more likely as plants grow and adjacent plants’ leaves touch. Clusters, when not
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resolved, usually produce underestimated stand count, as a cluster will be identified and

counted as a single plant.

Most of the reported studies on stand count analysis did not deal with the cluster

segmentation as it would possibly increase the algorithm’s complexity or lack of readymade

tools. Although watershed segmentation, the most common method, is successful in

resolving overlapping objects in some studies (Igathinathane & Ulusoy, 2016; Sunoj et al.,

2017); however, it resulted in over-segmentation especially when the object has a complex

geometry as plants.

Therefore, a two-stage segmentation approach was developed and tested in this

study. The first stage was based on the sideways pixel profile shape of the clusters, derived

by rotating the identified cluster related ROI. The second stage was based on the cluster

standard geometry, such as bounding box height and area. This novel approach is expected

to resolve any cluster irrespective of its geometrical complexity. The details of the

developed segmentation approach are discussed subsequently.

5.3.9.1. Cluster identification and profile pattern analysis

To resolve the plant clusters, they have to be identified first. The bounding box

heights (BBH) of all the objects were first assessed using ImageJ’s ParticleAnalyzer()

and a cutoff value (BBHcut) of 87th percentile (fixed after preliminary analysis) of this data

was used to identify clusters. Only the qualified objects were identified as a cluster and

subjected to the first stage of segmentation. The identified clusters were cropped and

rotated 90° CCW to obtain their sideways profile (fig. 5.6). To avoid the profile roughness,

the raw profile was again smoothed using LoessInterpolator(). The identified cluster

can be categorized as a “double” or a “multiple” based on their characteristics.
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142



A double is a simple case and can be observed from the sideways profile pattern. A

double has a characteristic profile pattern with two major peaks and a valley enclosed

between the peaks (peak-valley-peak pattern) — characteristics of two plant projections

coming together. In the case of a multiple, the number of peaks and valleys in a profile will

be high, but the profile can be partitioned into individual blocks representing a double

having peak-valley-peak (e.g., Blocks 1–6; fig. 5.6). The peaks in the profile indicate

individual plant’s center (more pixels) and the valley indicates the overlapping portion

between plants (fewer pixels).

5.3.9.2. Plants cluster profile analysis

Using the smoothed plants cluster sideways profile, the profile start and end points

along with possible peaks and valleys of each profile were assessed by calculating slopes

(d y/d x) using the consecutive data points along the profile. Here, d y will be the varying

difference between the consecutive profile values, but the d x difference will always be one.

A profile start point was determined when the profile value changed from zero to a positive

value and an endpoint when the value changed from a positive value to zero. The peak and

valley points were identified when d y/d x changed from a positive to a negative slope and

a negative to a positive slope, respectively.

5.3.9.3. Profile and valley areas estimation

With the identified peaks and valleys of the plant cluster sideways profile,

a segmentation strategy was developed (fig. 5.6) that compared the valley area (AV) with

respect to the profile area (AP). To make computation efficient, for identifying a qualified

segmenting valley, it was sufficient to use an approximation for AP (method of trapezoid)

and AV (method of triangle, Heron’s formula) rather than the whole area formed by the
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curve. A double is the most simplified form or a multiple that can be divided and analyzed

into a series of doubles (fig. 5.6).

A peak-valley-peak pattern of a double was sectioned into two triangles at the ends

(AP1 and AP4) and two trapezoids at the mid-region (AP2 and AP3; fig. 5.6). The area of the

individual sections was calculated using the generalized trapezoid area:

APx =
1
2

w(h1 + h2) (5.7)

where APx is the area of one peak section (pixel2), w is the distance between the parallel

sides of the trapezoid (pixel), and h1 and h2 are the parallel sides length (pixel).

This generalized trapezoid formula (eq. 5.7) can be equally applicable to the

triangles (AP1 and AP4) by substituting either one of the side length h1 or h2 as 0. The total

profile area of the double was obtained by adding the four individual sections as

AP = AP1 + AP2 + AP3 + AP4. By appropriate single shifting of the four sections of the profile,

the multiple’s profile area (AP) can be obtained similar to the doubles.

The valley and two peak points on either sides, when connected, formed a triangle

(fig. 5.6), and its area was calculated using Heron’s formula:

Av =
Æ

s(s− a)(s− b)(s− c) (5.8)

where Av is the area of the valley (4 BCD, pixel2; fig. 5.6), s is the semi-perimeter

(a+ b+ c)/2, and a, b, and c are the sides length of 4 BCD, namely BC, CD, and BD

(pixel), respectively. The sides length were determined by distance formula

(d =
p

(x2 − x1)2 + (y2 − y1)2).
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5.3.9.4. Segmentation location selection based on area ratio

An area ratio (AR) was developed to identify the segmentation region of the cluster

based on AV and AP (eq. 5.9). The AR indicated whether the valley point is a potential

segmentation location by comparing it with a selected cutoff value (ARcut) or not. Smaller

AR values might denote the orientation effect of the same plant, and higher AR values

denote touching of two plants thus a qualified segmentation location. To obtain a range of

AR values for segmentation, representative plant clusters were obtained from the input

images and analyzed.

AR=
AV

AP
=















Segmentation, AR≥ ARcut

No segmentation, otherwise

(5.9)

At the qualified segmentation location, a one-pixel thick black vertical line was

drawn in the binary image to digitally segment the plants. The segmented cluster was

rotated 90° CW back and inserted into the binary image at the same location where it was

cropped, using the insert() method from the ImageProcessor class.

5.3.10. Segmentation based on Bounding Box Height and Area

It was not always expected to have clear peak-valley-peak patterns in the sideways

profile. Sometimes, when the overlap between the plants was high and the plants were

found side by side perpendicular to the row length, the sideways profile did not produce a

clear valley in the profile for segmentation. Therefore, the second level of segmentation

based on cluster standard geometry, such as BBH and area (A) was included in the

algorithm to resolve the unsegmented clusters.
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The image obtained after the profile-based segmentation was used for this process.

The clusters were again identified using the same cutoff value (87th percentile of BBH) as

the first stage of segmentation. It should be noted that some of the clusters that were

segmented by profile will not be identified, as it might have already undergone

segmentation. Along with BBHcut, area cutoff (Acut) as the 87th percentile of area data was

also used for cluster identification, as the area represented the cluster better.

At this segmentation stage, three scenarios occur in the identification and

segmentation of clusters (eq. 5.10). Possible number of plants (Nplants) in the qualified

clusters were calculated by dividing the object’s BBH or A by its respective cutoff value

(BBHcut or Acut), and Nplants was used to segment the qualified clusters.

Nplants =































A/Acut, (BBH> BBHcut) and (A> Acut)

BBH/BBHcut, (BBH> BBHcut) and (A< Acut)

A/Acut, (BBH< BBHcut) and (A> Acut)

(5.10)

The Nplants is often a fractional value, thus it was rounded to the next greatest

integer. After determining Nplants in each cluster, the cutting height (Hcut) was determined

by dividing BBH of the cluster by Nplants to obtain the Hcut, i.e., Hcut = BBH/Nplants, assuming

that the cluster contained Nplants of equal size. Since the motivation was to count the plants

in each row, this approach of chopping the clusters was valid; however, for deriving any

shape features, this approach may not be valid as it misrepresents the shape of individual

plants.
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With the Hcut value, the clusters were cut into individual plants of equal height by

drawing a black line of one-pixel thickness at each Hcut locations starting from top to

bottom of the bounding box. The clusters qualified in the first and second cases (eq. 5.10)

were cut horizontally, while the last that qualified based on the excess area was cut

vertically based on the Nplants.

5.3.11. Plant Vigor Determination and Mapping

Physiologically plants with good vigor produce more vegetation and healthy leaves

(foliage). Therefore, the total area of the foliage is an excellent indicator of the plant’s

vigor. In this image-based study, the projected area, which can be considered directly

proportional to the actual foliage area, was considered as an indicator of the plant vigor.

Also, a color-coded plant vigor map will be helpful as it provides an insight into the crop

growth and health. This information will be useful for making site-specific farm

management decisions.

5.3.11.1. Plant vigor determination

The area (eq. 5.6; mm2) and the location of individual plants (centroids) after

segmentation were assessed using ImageJ’s ParticleAnalyzer(). Plants vigor was

classified into three categories, namely, class I, class II, and class III, based on mean area

(µA) and standard deviation (σA) values:

Plant vigor=































Class I, A< µA−σA

Class II, µA−σA ≤ A≤ µA+σA

Class III, A> µA+σA

(5.11)
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The class I was considered under-performing plants, class II as optimum, and class

III represent over-performing plants. It is expected that with normal growth the plant area

data will have more plants in class II, followed by class III, and a limited portion in class I.

There is a possibility that the plants in class III might be produced due to some

unsegmented clusters as well.

5.3.11.2. Color-coded plant vigor map generation

To produce a color-coded vigor map, the plant area data were first normalized to

produce a smooth distribution of area values (gradient) as follows:

Anorm =
Ai − Amax

Amax − Amin
(5.12)

where Anorm is the normalized area with values between 0 and 1, Ai is the area of ith object,

Amax and Amin are the maximum and minimum areas (pixel2), respectively.

The binary image of the whole plot is then converted into a grayscale image based

on the area values and the color-coded map was created from the grayscale image using

ImageJ’s Lookup Tables (LUT). At each plant’s centroid, a Wand() was applied in the

binary image and a filling color was obtained by multiplying the Anorm with 255 to produce

a color between black (0) and white (255), which produced the grayscale image. A custom

color scheme was developed spanning from red, green, and yellow and loaded into

ImageJ’s LUT schemes database. The custom color scheme was applied to produce the

color-coded image, and an appropriate legend was also included representing the color

codes in physical units (mm2).
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5.3.12. Plant Stand Counting and Labeling

The total number of plants in the segmented binary image can be analyzed in a

single run of ParticleAnalyzer(). However, it is required to count the plants along the

rows so that the distances between subsequent plants can be calculated. Therefore, the row

ROI was overlaid on the segmented binary image and the number of plants in each row

was analyzed. The plants were counted from the top to bottom and were labeled.

The counted plants marked at the centroid (obtained from the Analyze

Particles... measurements) with a red circular marker. The markers in the labeled RGB

image were drawn using fillOval() method. The counter labels were generated using

TextRoi() class and placed alongside a x-shift from the centroid based on a percentage of

the image width. The labeled image was used for validating the plugin count with

reference to visual manual count evaluated row-wise and the total.

5.3.13. Spatial Distribution Analysis and Mapping

The centroids obtained from the plant stand counting were also useful for

calculating the inter-plant distances in each row. Using the distance formula, the distance

between the two centroid points was calculated in pixels, which was converted into

physical dimensions (m) using the scale factor (eq. 5.6), and used for plant spacing and

distribution analysis. This analysis also included the determination of several performance

indices, distribution uniformity, and plant stand spatial distribution mapping.

5.3.13.1. Existing planter performance indices

Following the existing method to evaluate planter performance (Kachman & Smith,

1995), the plant spacing data was categorized into five classes using the ideal plant spacing

(SI) obtained as an user-input (fig. 5.1B). The following five classes (I–V) are defined as:
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0–0.5SI (I), 0.5SI–1.5SI (II), 1.5SI–2.5SI (III), 2.5SI–3.5SI (IV), and >3.5SI (V). The SI

followed in this study was 0.22 m, that produced the classes range of 0–0.11 m,

0.11–0.33 m, 0.33–0.55 m, 0.55–0.77 m, and >0.77 m. These classes were named as

multiple, ideal, single skip, double skip, and triple skip, respectively.

Mapping the obtained spacings into each class, the following four performance

indices (Kachman & Smith, 1995) were calculated as:

Ideal index=
nII

N
(5.13)

Skip index=
nIII + nIV + nV

N
(5.14)

Multiple index=
nI

N
(5.15)

Precision=
σII

SI
(5.16)

where nI, nII, nIII, nIV, and nV are number of spacings in I, II, III, IV, and V classes; N is the

total number of spacings in the image; σII is the standard deviation of spacing (m) in class

II; and SI is the ideal plant spacing (0.22 m).

5.3.13.2. Existing distribution uniformity indices

As indices related to spatial distribution applicable to plant spacing were not

reported, similar measures from other fields of study were considered and new indices

were developed in this research. The distribution uniformity, a common measure in the

evaluation of a sprinkler irrigation system (volume of water collected at grid points), was

adapted to the plant stand spatial distribution. The two common irrigation-based

distribution uniformity measures modified using plant spacing data are (i) lower quartile
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distribution uniformity, and (ii) Christiansen’s uniformity coefficients are described

subsequently.

The lower quartile distribution uniformity (Dudek & Fernandez, 2015) is the most

simple and commonly used measure:

DU=
µLQ

µS
× 100 (5.17)

where DU is the lower quartile distribution uniformity (%), µLQ is the average value of

lowest 25 % spacing data(m), and µS is the overall average of all spacing data (m).

Irrigation industries have classified the DU into the following four categories: DU <77 % is

very poor, 77–83 % is poor, 83–90 % is good, and >90 % is excellent.

The Christiansen’s uniformity coefficient (Christiansen, 1942) considered the

absolute deviation of all the spacing data to the overall average spacing data, while the DU

considered only the average of lower quartile data (eq. 5.17). The Christiansen’s

uniformity coefficient was calculated as:

UC= 1−

∑N
i=1|di −µS|
µS

× 100 (5.18)

where UC is the Christiansen’s uniformity coefficient (%), N is the number of spacing data,

di is the ith spacing distance (m), and µS is the overall average of all spacing distances (m).

5.3.13.3. Developed ideal spacing uniformity index

The ranges of value from these spacing distributions (DU and UC) are not expected

to be in a similar range that applies to irrigation applications. These existing measures of

uniformity did not incorporate the ideal plant spacing to evaluate the performance of the
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planter. This is important as seeds spaced equidistant deviating from the ideal spacing will

be evaluated to be 100 % uniform (eqs. 5.17 and 5.18), but may not be the desirable

outcome from the planting equipment perspective. Therefore, we have developed a

uniformity index that takes into account of ideal spacing and spatial distribution for the

entire field and was calculated as:

ISUI=
1
NI
(NIS

2
I )

1
No

∑No

i=1 d2
o,i

× 100 (5.19)

where ISUI is the ideal spacing uniformity index (%); NI = NPR × Nrows, is the ideal number

of plants in the given area with the number of identified rows (Nrows); NPR = (Lrow/SI) + 1,

is the maximum possible number of ideally spaced plants in a row; Lrow is the length (m) of

the row based on field ROI (fig. 5.3A); SI is the ideal spacing (e.g., 0.22 m); No is the

observed plant count; and do,i is the observed plant spacing distance (m). In case of more

multiples, NO exceeds NI. In such cases, the NI in the numerator is replaced with NO.

An increased ISUI value indicates increased number of plants in the ideal spacing (more

uniform), and lower ISUI value indicates the increased deviation from the ideal spacing.

5.3.13.4. Plant stand spatial distribution mapping

A color-coded plant stand spatial distribution map based on the five identified

classes (5 colors) was also generated for better visualization of the entire field.

The distance between the plants was color-coded as rectangles for this visualization.

The fillRect() method was used to produce the colored rectangles of width same as row

ROI and height as the centroid-to-centroid distance between two plants. The different

filling color was automatically selected from the predefined colors indicating each class
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(blue: multiple, green: ideal, yellow: single skip, orange: double skip, and red: triple skip)

in the program. This plant spatial distribution map provides a good insight into the seeds’

emergence and planter’s performance.

5.3.14. Validation of the Plugin

The stitched UAS sunflower image (Set I), which was huge and cannot be suitable

for visual-manual counting, was partitioned into 25 equal sections and used for the

validation. A few sections were rotated manually to produce different field angles (θf) and

used as the input to test the plugin for optimum row orientation method. For validating the

stand count, the plants in the image sections were visually counted (Nvisual) after enlarging

the image and used as the reference to compare with the plugin count (Nplugin). With these

values, error and accuracy were calculated as:

Error (%) =
Nplugin − Nvisual

Nvisual
× 100 (5.20)

Accuracy (%) = 100− |Error| (5.21)

5.4. Results and Discussion

The stitched images (Set I and II) were used as the primary input, and the test

images (sub-images) generated after necessary sectioning and rotation were employed in

the testing and validation. The various results of row orientation, plant clusters

segmentation, and plant stand count in the form of determined constants and performance

evaluation, illustration images along with tabular and graphical outputs were presented

and discussed.
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5.4.1. Profile Ratio Results for Planting Pattern Determination

The profile ratio (PR) values tested with sample images (n= 5) of lengthwise and

widthwise planting pattern between 0° and 160° is presented (Appendix C.1). It was clear

that the lengthwise planting pattern produced lower profile ratio values compared to the

widthwise planting pattern. The PR values of lengthwise planting pattern ranged from

0.12–0.23, while the widthwise planting pattern ranged from 0.79–0.89, displaying a

narrow range of variation at different angles. The overall average and standard deviation

of PR value for lengthwise planting pattern were 0.17±0.03 and the widthwise planting

pattern was 0.84±0.02.

As the PR values had a clear separation in the range of values, a single cutoff value,

PRcut = 0.51 (rounded), which lies in the middle of two ranges were fixed for planting

pattern determination. Any other cutoff value between the two ranges would have worked,

but this PRcut value produced the maximum separation between two planting patterns.

A planting pattern with PR ≤ 0.51 was identified as lengthwise and otherwise as a

widthwise planting pattern. This PRcut value worked well for all images tested at different

θf and the individual section images that were used for plugin validation achieving 100 %

accuracy.

5.4.2. Optimum Angle Determination from Descriptive Statistics

The developed strategy to make the rows vertical from any given image used seven

simple descriptive statistics measures to determine the optimum angle of rotation. The

strategy was demonstration using an example image with θf = 113° (fig. 5.7). Among these

measures, σPmax was the best indicator as the these values only showed a prominent peak

to determine the optimum rotation angle.
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Figure 5.7. Variation in descriptive statistics measures for optimum angle of rotation
in an example field with θf = 113◦ (Figure inset) subjected to different rotation test
angles between θf − 10◦ and θf + 100◦ for optimum angle of rotation determination.
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The iterations were necessary to obtain a precise angle for rotation in an efficient

manner. The example field image had lengthwise planting pattern with θf = 113°

(θf > 90°); hence, the rotation direction was CW. For a CW rotation, the search started from

10° towards CCW (−ve direction) and subsequently rotating at CW direction

(+ve direction) with 10° steps. Thus, in the first iteration, a series of rotation operation

were performed between 123° down to 13°, rotating CW at 10° steps. The optimum

rotation angle was was observed to be 20° (i.e., θf + 20°) based on σPmax curve’s peak,

which gives an indication that the exact angle lies close to 20°.

Proceeding further, the second iteration within a reduced step angle of 1° (1/10th)

on limits from one before and one after the optimum rotation angle (10°–30°) revealed that

the next optimum angle lies around 23°. Similarly, the final angle search between 22° and

24° performed with a step angle of 0.1° the optimum angle was determined as 22.9°. It was

found not necessary to perform beyond three iterations as there was no visible change in

the orientation and will not affect the results of further analysis.

This method of iterations is efficient, as a direct search method with a fine step

angle of 0.1°, from −10° to 100°, would have performed 1100 rotations compared to the

54 rotations needed with the method of iterations. Therefore, the three-step iteration

procedure is ≈20 times faster and computationally efficient.

5.4.3. Row Identification Method Performance

Aligning the rows vertically facilitated in identifying rows by simple profile analysis.

The developed row identification method automatically determined the profile cutoff

value, based on the logic of minimizing the standard deviation among profile peaks
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distances (fig. 5.5B) and identified the rows accurately for all images (n= 25) validated.

This resulted in a row identification accuracy of 100 % for all the tested images.

The row length of these validation images was about 10 m, and to evaluate the

capability of the method for longer row lengths other whole stitched images were also

tested. With the UAS stitched image of the sunflower field of about 48 m and corn field

image of about 100 m row lengths, the method worked accurately in both the instances.

Even though the method was developed using one crop (sunflower), the method was

capable of accurately identifying the rows in other crops (e.g., corn) images as well. This

proves the applicability and flexibility of the developed method and confirms that as long as

the crop rows were straight the profile method will not have issues in the row identification.

Unlike other methods reported, the developed method has the advantage of automatically

identifying the profile cutoff value. However, the limitation of the method, such as

curvilinear rows (circular planting), irregular fields can be addressed in future research.

5.4.4. Cluster Segmentation Performance Evaluation

To demonstrate the segmentation process, a few extracted sample clusters and the

process of obtaining the segmented plants are illustrated in figure 5.8. A color montage

image (fig. 5.8A) used was a collection of singulated plants and clusters of varying shapes

extracted from different parts of the tested images. The first three plants shown are single

plants (fig. 5.8A), presented for demonstration, while the other plants get qualified as a

cluster based on BBHcut for profile-based segmentation.
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Raw profile

Smoothed profile

(A)

(D)

(B) i ii iii iv v vi vii

(F)

viii ix x

(C)

(E)

Figure 5.8. Demonstration of the developed profile- and geometry-based cluster segmentation procedure using a
montage image: (A) digital color image montage image of individual plants and clusters; (B) binary image obtained
after YUV thresholding and morphological operations; (C) raw and smoothed profile of the binary image;
(D) segmented image obtained based on the profile-based procedure; (E) segmented image after the geometry based
segmentation, which segmented the cluster vii by bounding box and area criteria; and (F) watershed segmented
image for comparison. Note: Yellow arrows indicate under-segmentation and red arrows indicate over-segmentation.
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The segmentation performance of most of the algorithms (Park, Huang, Ji, & Ding,

2013; Zafari, Eerola, Sampo, Kälviäinen, & Haario, 2015) depends on the shape of the

objects in the binary image; therefore, a good thresholding method that retains the object’s

shape is necessary. The binary image produced by YUV thresholding (fig. 5.8B) retained

the shape of each plant considerably, which was suitable for obtaining the sideways profile.

The raw profile produced more undulations (surface roughness), which was minimized by

smoothing operation (fig. 5.8C) making it appropriate for profile analysis. It is interesting

to note that the single plants (i, ii, and iii; fig. 5.8B), forms peaks and valleys in the raw

profile, but after smoothing, the peaks and valleys got suppressed. While the other clusters

form prominent valleys even after smoothing.

5.4.4.1. Area ratio cutoff value selection

Quantifying the valley area (AV; eq. 5.8) in the smoothed profile with respect to the

area under peaks profile (AP; eq. 5.7), the potential segmentation location was determined.

The AR values (eq. 5.9) were obtained from a few sample cluster images. To evaluate,

whether the AR values qualify for segmentation, the range of AR values produced from the

profile was visually examined with its respective cluster image to arrive at an ARcut value.

It was observed that the clusters with AR values >0.04 potentially qualified for

segmentation; hence, the ARcut was fixed as 0.04 in this study. It should be noted that the

ARcut value will be influenced by the smoothness of the profile. For a bandwidth value of

10 (smoothness interpolator parameter fixed in this study; section 5.3.9.1), the ARcut

worked well and it is expected to work with any other images with the same bandwidth

value. The segmented image was obtained by drawing a one-pixel thick black line at the

qualified valley locations on the plant clusters (fig. 5.8D).
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5.4.4.2. Profile-based and watershed segmentation comparison

As mentioned earlier, when the overlap between the plants was more, the sideways

profile may not always produce a clear valley for segmentation. This can be noted in the

cluster marked “vii,” where the central portion consisted of two plants that were very close

together (doubles) and resulted in under-segmentation, due to the lack of valley between

those two plants, based on the profile-based approach (yellow arrow; fig. 5.8D).

The second level of segmentation (geometry-based) tackled such scenarios and

segmented the clusters that did not have a clear profile (fig. 5.8E). This second level of

segmentation simply cuts the cluster based on BBH or A of the cluster (section 5.3.10), it is

beneficial in resolving the clusters unresolved by the profile-based approach. Even though

the simple geometry-based method (BBH and A) produces the results in stand count

applications the logic of segmentation will not be as rigorous as the profile-based approach

and may not be useful in any shape analysis applications as the segmented sections may

not belong to the same plant.

On basic comparison with watershed segmentation, it was found that it resulted in

over-segmentation on few clusters (red arrows; fig. 5.8F). In total, for the 22 identifiable

plants (fig. 5.8A), the watershed segmentation produced 25 segments that will be labeled

as plants in the analysis; however, the combined approach (fig. 5.8E) performed better and

identified 21 plants. This shows that simply applying watershed will produce

over-segmentation, and without other processing will not be helpful in plant stand count

applications.
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5.4.4.3. Geometry-based segmentation

The geometry-based segmentation of plant clusters that are not resolved by the

profile-based method is illustrated (fig. 5.9) to further demonstrate the different conditions

of segmentation involved (eq. 5.10). When a cluster was big (area) and long (BBH) it will

be qualified in the criteria of both and the cluster will be divided into Nplants number of

segments based on the area (fig. 5.9-top row). When the clusters were small and

elongated, representing late emergence, which will not be identified as a cluster based on

the area but will be on BBH and segmented into Nplants based on BBH (fig. 5.9-middle row).

Only bounding 

box

RGB cluster Binary image Segmented image Labeled image

Bounding box 

and area

Criteria

Only area

Figure 5.9. Detailed illustration of geometry-based segmentation for unsegmented
clusters from profile-based segmentation. Note: The row direction is from north to
south.

161



Sometimes, when two or more seeds were placed sideways perpendicular to the row

direction and the plants had normal growth, the plants based on the area will be identified

as a cluster but will not be based on BBH (fig. 5.9-bottom row). Such clusters were

segmented into Nplants based on the area but divided vertically, and this is unique to the

geometry-based segmentation.

Practically, the occurrence of clusters in a field directly evaluated, which were not

resolved by the profile-based method, by the first condition (BBH & A; eq. 5.10) will be

more followed by the third condition (only A) and the second (only BBH). The clusters

qualified based on the second condition (only BBH) were predominantly due to late

emerged plants that lost its boundary pixels during thresholding and morphological

operations.

The proportions of segmentation performed in this study based on the combined

profile and geometry were 52.1 % (1153 out of 2213) of the segmentation based on profile

and the remaining 47.9 % based on geometry (table 5.1). Among the three conditions in

geometry-based segmentation (eq. 5.10), 26.6 % was based on first condition (BBH and A),

6.6 % was based on second (only BBH) and 14.6 % was based on third condition (Only A).

However, with the “Set II” images, the plants were well grown and they produced clear

peak and valley in the sideways profile. Therefore, a majority of the segmentation was

based on the profile (70.8 %) and the remaining (29.2 %) were based on geometry.

5.4.5. Plant Vigor Classification Results

Based on the classes defined in eq. 5.11, the individual plants were classified into

the three classes (I, II, and III; table 5.2). As expected from the plant vigor data, in the Set I

image, the majority of the plants were in class II (69.29±2.44 %) and an almost equal
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Table 5.1. Number of identified clusters and plants after segmentation from each
segmentation criteria for different section images from “Set I” and “Set II” images.

Image ID Total Total Profile BBH and area Only BBH Only area

Ncls Nplt Ncls Nplt Ncls Nplt Ncls Nplt Ncls Nplt

Set I image (V2–V4)**
1 (0-0).jpg 48 93 28 53 12 24 2 4 6 12
2 (2937-0).jpg 45 88 29 55 8 17 0 0 8 16
3 (5874-0).jpg 40 77 26 47 8 18 0 0 6 12
4 (8811-0).jpg 45 85 27 49 10 20 3 6 5 10
5 (11748-0).jpg 45 95 30 65 5 10 0 0 10 20
6 (0-1470).jpg 48 81 23 28 18 39 4 8 3 6
7 (2937-1470).jpg 54 95 26 39 16 32 7 14 5 10
8 (5874-1470).jpg 45 88 28 54 6 12 3 6 8 16
9 (8811-1470).jpg 57 97 30 42 17 35 5 10 5 10
10 (11748-1470).jpg 49 88 27 44 8 16 7 14 7 14
11 (0-2940).jpg 46 85 24 40 12 25 3 6 7 14
12 (2937-2940).jpg 42 74 25 40 7 14 3 6 7 14
13 (5874-2940).jpg 45 79 24 37 9 18 6 12 6 12
14 (8811-2940).jpg 47 83 27 41 16 34 1 2 3 6
15 (11748-2940).jpg 43 74 26 40 10 20 2 4 5 10
16 (0-4410).jpg 51 97 29 53 12 24 1 2 9 18
17 (2937-4410).jpg 46 79 27 41 14 28 1 2 4 8
18 (5874-4410).jpg 47 88 27 45 13 29 2 4 5 10
19 (8811-4410).jpg 55 103 27 43 18 40 3 6 7 14
20 (11748-4410).jpg 50 89 24 34 13 29 6 12 7 14
21 (0-5880).jpg 44 88 27 54 6 12 2 4 9 18
22 (2937-5880).jpg 50 87 27 40 12 25 4 8 7 14
23 (5874-5880).jpg 47 90 29 54 7 14 2 4 9 18
24 (8811-5880).jpg 47 96 30 62 9 18 3 6 5 10
25 (11748-5880).jpg 64 114 34 53 18 37 3 6 9 18

Sum 1200 2213 681 1153 284 590 73 146 162 324
Average 48 88.5 27.2 46.1 11.4 23.6 2.9 5.8 6.5 12.9

Set II image (V4–V6)**
15.jpg 11 29 11 29 0 0 0 0 0 0
19.jpg 13 30 10 24 2 4 0 0 1 2
20.jpg 18 31 10 15 5 10 1 2 2 4
32.jpg 15 32 9 20 3 6 0 0 3 6
50.jpg 14 27 9 17 2 4 1 2 2 4

Sum 71 149 49 105 12 24 2 4 8 16
Average 14.2 29.8 9.8 21 2.4 4.8 0.4 0.8 1.6 3.2

Note: BBH - bounding box height, * Set I image represents sunflower at V2–V4 stage, UAS
altitude = 12.2 m (≈40 ft), SI = 0.22 m, ** Set II image represents sunflower at V4–V6 stage, UAS
altitude = 23 m (≈75 ft), SI = 0.27 m, Ncls - number of identified plant clusters, and Nplt - number
of plants identified in the clusters.
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percentage of plants were in class I (16.20±3.23 %) and class III (15.51±1.85 %). Similar

grouping into classes was observed in Set II images as well, with 64.25 %, 18.90 %, and

18.05 % in class II, I, and III, respectively. It is evident that the plant vigor data closely

followed the normal distribution with one interval of standard deviation (SD), as in a

perfect normal distribution where the percentage of values in class II will be 68.26 %, while

the other two classes will equally contain 15.87 % each.

The SD values of three vigor classes ranged between 1.85 and 3.23 % (table 5.2).

This small variation indicated that the plant vigor among the image sections considered for

validation was more or less uniform. The percentage of plants in class I represented

under-performing plants, which might be caused due to late emergence or the artifacts that

were produced during segmentation. Similarly, the plants in class III represented

over-performing plants that might be due to rapid foliage growth.

To have an overall representation of the plant vigor classes across the field, a

color-coded plant vigor map was produced as one of the graphical outputs from the plugin

(fig. 5.10). The spots on the map indicated in red denote under-performing plants (class I),

green denotes optimally grown plants (class II), and yellow denotes over-performing plants

(class III). In an ideal condition, it is expected to have more green and yellow portions in

the image, and less red portions.

Since we divided the plant vigor data based on µA and σA, the plugin always

provided three classes irrespective of the normal growth. The classification at any stage can

be correctly interpreted as under-, normal-, and over-performing plants. However, based

on field research if the normal performing plant area at different growth stages is made
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Table 5.2. Plant vigor results of individual image sections from “Set I” and “Set II”
images of sunflower fields.

Image ID Plant vigor class

Class I Class II Class III
(%) (%) (%)

Set I image (V2–V4)*
1 (0-0).jpg 18.41 66.43 17.33
2 (2937-0).jpg 17.60 70.79 15.36
3 (5874-0).jpg 16.80 69.92 15.23
4 (8811-0).jpg 18.93 68.31 15.64
5 (11748-0).jpg 19.48 71.91 15.73
6 (0-1470).jpg 14.68 71.43 16.27
7 (2937-1470).jpg 17.81 66.40 16.19
8 (5874-1470).jpg 15.04 69.17 16.54
9 (8811-1470).jpg 16.22 71.43 17.37
10 (11748-1470).jpg 16.87 70.68 16.87
11 (0-2940).jpg 17.67 75.35 13.02
12 (2937-2940).jpg 9.48 68.97 11.21
13 (5874-2940).jpg 17.33 67.56 16.44
14 (8811-2940).jpg 18.88 73.39 13.30
15 (11748-2940).jpg 9.17 68.12 12.66
16 (0-4410).jpg 16.54 68.38 16.54
17 (2937-4410).jpg 16.47 69.80 14.12
18 (5874-4410).jpg 15.47 70.19 15.09
19 (8811-4410).jpg 17.80 65.15 17.42
20 (11748-4410).jpg 16.79 68.70 16.79
21 (0-5880).jpg 16.85 70.04 14.61
22 (2937-5880).jpg 15.44 70.27 15.44
23 (5874-5880).jpg 21.13 64.15 18.11
24 (8811-5880).jpg 6.59 68.50 12.09
25 (11748-5880).jpg 17.43 67.11 18.42

Average 16.20 69.29 15.51
SD 3.23 2.44 1.85

Set II image (V4–V6)**
15.jpg 18.27 66.35 16.35
19.jpg 19.19 64.65 19.19
20.jpg 17.71 70.83 12.50
32.jpg 21.15 55.77 24.04
50.jpg 18.18 63.64 18.18

Average 18.90 64.25 18.05
SD 1.22 4.90 3.77

Note: The plant vigor classes are classified based on plants’ projected area using equation 5.11.
* Set I image represents sunflower at V2–V4 stage, UAS altitude = 12.2 m (≈40 ft), SI = 0.22 m,
** Set II image represents sunflower at V4–V6 stage, UAS altitude = 23 m (≈75 ft), SI = 0.27 m,
and SD is the standard deviation.
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Figure 5.10. Color-coded plant vigor map classified into three classes:
under-performing (red), optimally grown (green), and over-performing (yellow) in
UAS image.

available then it is possible to make reference-based classification by coding the algorithm

easily into this plugin.

5.4.6. Plant Stand Count Results — Row-wise and Overall

To assess the performance of the plugin, the plants were visually counted on the

image by zooming in, which served as a reference, and compared with the plugin count.

The plugin also had the potential of producing a row-wise stand count that was compared
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with a row-wise visual count. The plant stand count graphical output from the plugin

provides the labeled plants count numbered sequentially (top to bottom) in rows from left

to right. (fig. 5.11). Table 5.3 presents the row-wise and overall plant stand count results

from visual and plugin and the results indicated the promising performance of the plugin.

It can be observed that the average row-wise visual count (39.91±5.39) and

row-wise plugin count (40.22±4.04) were very close and comparable (table 5.3).

The theoretical population per row (NPR), calculated based on Lrow and SI (0.22 m) was

43.60±0.8 (data not shown) plants per row. The evaluated plugin and visual count

achieved ≥91.5 % of the NPR.

From the results of an overall plant stand count for each image, the number of plants

contained in each plot on an average was 254±25 by visual count and 256±19 by plugin

count. Using the NPR (43.60±0.8) and Nrows in each image, an ideal number of plants in the

given area (NI) was calculated as 279±23 plants. Comparing this with the plugin count,

the seed emergence percentage can be approximately calculated as ≥91.8 %. Even though

it is desirable to achieve the ideal population, it is practically impossible to obtain this as it

depends on various field related factors (e.g., soil health, weather, seed quality).

The plugin counts were either under- and over-estimated compared to the overall

visual count, which was evident from the error (%) observed (table 5.3). The average

absolute error was only 1.29±4.66 %. The accuracy calculated for individual images were

>91.19 % with an overall average accuracy of 95.85±2.48 % for Set I images. The low SD

value of 2.48 %, which was 2.59 % only of the average value, indicated a good and uniform

performance of plant stand count in all the section images.
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Figure 5.11. Plant stand count sequentially labeled along the rows in UAS image from
top to bottom and from left to right (Insets: zoomed portions to show the plants,
markers, and labels clearly).
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Table 5.3. Plant stand count results of individual image sections from “Set I” and
“Set II” images of sunflower fields.

Image ID Plant stand count (row-wise and overall average)

Visual count Plugin count Visual Plugin Errora Accuracya

mean ± SD mean±SD count count
(row-wise) (row-wise) (overall) (overall) (%) (%)

Set I image (V2–V4)*
1 (0-0).jpg 48.67±9.98 46.17±10.98 292 277 −5.14 94.86
2 (2937-0).jpg 46.00±9.64 44.50±10.13 276 267 −3.26 96.74
3 (5874-0).jpg 43.67±11.38 42.67±12.37 262 256 −2.29 97.71
4 (8811-0).jpg 41.17±9.94 40.50±11.38 247 243 −1.62 98.38
5 (11748-0).jpg 47.33±9.43 44.50±11.90 284 267 −5.99 94.01
6 (0-1470).jpg 34.00±2.73 36.00±3.61 238 252 5.88 94.12
7 (2937-1470).jpg 32.43±3.96 35.29±7.50 227 247 8.81 91.19
8 (5874-1470).jpg 36.71±3.33 38.00±3.74 257 266 3.50 96.50
9 (8811-1470).jpg 37.00±4.60 37.00±4.47 259 259 0.00 100.00
10 (11748-1470).jpg 32.71±3.88 35.57±6.27 229 249 8.73 91.27
11 (0-2940).jpg 34.67±4.50 35.83±7.14 208 215 3.37 96.63
12 (2937-2940).jpg 36.67±3.04 38.67±2.94 220 232 5.45 94.55
13 (5874-2940).jpg 35.83±4.6 37.50±5.82 215 225 4.65 95.35
14 (8811-2940).jpg 37.67±2.92 38.83±4.83 226 233 3.10 96.90
15 (11748-2940).jpg 38.00±4.2 38.17±4.88 228 229 0.44 99.56
16 (0-4410).jpg 39.00±3.66 38.86±4.95 273 272 −0.37 99.63
17 (2937-4410).jpg 35.43±4.56 36.43±5.32 248 255 2.82 97.18
18 (5874-4410).jpg 38.29±2.12 37.86±3.29 268 265 −1.12 98.88
19 (8811-4410).jpg 34.71±5.15 37.71±8.81 243 264 8.64 91.36
20 (11748-4410).jpg 35.29±4.71 37.43±8.20 247 262 6.07 93.93
21 (0-5880).jpg 47.33±10.98 44.50±11.04 284 267 −5.99 94.01
22 (2937-5880).jpg 42.00±8.98 43.17±10.98 252 259 2.78 97.22
23 (5874-5880).jpg 47.00±12.45 44.17±14.62 282 265 −6.03 93.97
24 (8811-5880).jpg 47.33±13.71 45.50±15.41 284 273 −3.87 96.13
25 (11748-5880).jpg 48.83±7.40 50.67±11.54 293 304 3.75 96.25

Average 39.91±5.39 40.22±4.04 253.68 256.12 1.29b 95.85
SD 6.47±3.44 8.08±3.64 25.07 18.79 2.48b 2.48

Set II image (V4–V6)**
15.jpg 25.50±3.35 26.00±5.48 119 104 −12.61 87.39
19.jpg 25.75±2.68 24.75±4.57 122 99 −18.85 81.15
20.jpg 24.50±2.69 24.00±2.45 105 96 −8.57 91.43
32.jpg 25.75±5.40 26.00±9.63 125 104 −16.80 83.20
50.jpg 26.75±0.83 22.00±2.00 108 88 −18.52 81.48

Average 24.79±2.03 23.58±2.55 115.80 98.20 15.07b 84.93
SD 3.47±1.71 5.07±2.36 7.88 5.95 3.94b 3.94

Note: * Set I image represents sunflower at V2–V4 stage, UAS altitude = 12.2 m (≈40 ft),
SI = 0.22m, ** Set II image represents sunflower at V4–V6 stage, UAS altitude = 23 m (≈75 ft),
SI = 0.27m, SD is the standard deviation, a Error and accuracy are calculated based on plugin and
visual count using equations 5.20 and 5.21, and b are the average and SD values based on
absolute error values.
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Unlike the Set I images, the accuracy of the plugin on Set II images was

84.93±3.94 %, which was less but comparable with the reported studies (Jin et al., 2017;

Sankaran et al., 2017). The possible reasons for lower accuracy than Set I images may be

due to (i) low resolution (≈0.006 35 m/pixel; almost twice of Set I), (ii) presence of more

clusters leading to inappropriate selection of BBHcut and Acut value, (iii) canopy closure due

to later growth stage (V4–V6), and (iv) inappropriate ARcut value for this set of images.

Slightly adjusting the above-mentioned factors will potentially improve the plugin accuracy

for Set II images as well. Also, it is expected that the plugin will perform well in a similar

way (Set I) even for different images with different crops, provided the factors are adjusted

appropriately.

These results showed the potential of the developed plugin in producing an accurate

plant stand count. The possible reason for such high accuracy was because of an efficient

segmentation approach, which probably reduced the over- and under-segmentation issues

(fig. 5.8E). It is interesting to point out that an open source user-coded ImageJ plugin

developed from scratch using a simplified geometrical approach can achieve an accuracy

≥95 % is encouraging. This proved the capability and flexibility of ImageJ (open source

platform) for developing image processing applications for precision agriculture.

5.4.7. Plant Spatial Distribution and Uniformity Results

The plugin produced a color-coded spatial distribution map (fig. 5.11) with the five

classes defined by Kachman and Smith (1995). This map provided a visual clue on the

planter’s performance on seed placement and spacing. It is commonly understood that the

multiples are solely due to issues in the planter’s metering mechanism as well as the size of

the seed that allowed more seeds to be packed in a single cell. However, the skips may be
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due to either planter issue of unfilled cells or the seeds’ viability. The map can also be used

to infer the possible blockage issues in any specific seed tube.

In general, any row with more number of green strips is considered good, while blue

and red are considered inefficient. For example, row 3 (fig. 5.12A) produced the maximum

ideal plants (32, other rows <30), row 2 produced more multiples (21, other rows <16),

and row 5 produced maximum skips (12, other rows <9). In this test image (fig. 5.12A),

the spatial distribution based on the numbers are: multiple 30.1 %, ideal 55.1 %, single

skip 10.7 %, double skip 2.6 %, and triple skip 1.5 %. Since producers are interested in

having the ideal number of seeds on the ground, the skips (single, double, and multiple)

are of an increased concern than the multiples. An overall reduction of the ideal spacings

in the field can be seen as an indicator to perform corrective measures such as checking the

seed tubes or the mechanism as well as in extreme cases recalibration of the planter.

The plugin also produced the plant spacing histogram as one of the graphical

outputs that indicated the number of plants in each spacing (fig. 5.12B). Ideally, it is

expected to have all the plants falling in the ideal spacing - SI; however, attaining that is

practically challenging. Both graphical outputs were straightforward and equally

informative, as the figure 5.12A indicated ‘where’ the spacing was defective and

figure 5.12B provided an indication of ‘which’ spacing needed adjustment. The spacing

histogram demonstrated that only around 10 plants were placed exactly at SI (0.22 m) and

more plants were placed at 0.12 m. With this insight, a farmer, if necessary, can calibrate

the planter to ensure proper spacing in the next planting. Also, the number of multiples (I)

were high, which has to be reduced, while number of skips (III, IV, and V) were less and

quite acceptable (fig. 5.12B).
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Figure 5.12. Plant spatial distribution analysis plugin outputs in UAS image: (A)
Color-coded plant spatial distribution map, (B) Plant spacing distribution histogram.
SI is the ideal spacing.
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The results of various spatial distribution uniformity indices (existing and

developed) are presented in table 5.4. The overall ideal index values for the Set I image

ranged between 0.43 and 0.63 with an average and SD of 0.52 and 0.05, respectively.

Low SD value (9.6 % of the average) of the ideal index indicated that for any section of the

field, the planter maintained uniform spacing. However, the skip index (0.22±0.05) and

multiple index (0.26±0.06) had high variation among the sections (≥23.1 % of average)

and this is logical given the reduced values of these averages. The observed precision value

was 0.27±0.02, which confirms to the reported practical precision value of 0.29 (Kachman

& Smith, 1995). A plot of precision × 100 (to depict the variation) has shown only a little

variation (fig. 5.13). This indicates that the performance of the planter used in this study

was comparable with the other planters.
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Figure 5.13. Plant spatial distribution parameters variation among sample images
from Set I and Set II images of sunflower fields.
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Table 5.4. Plant spatial distribution analysis results of individual image sections from
“Set I” and “Set II” images.

Image ID Ideal Skip Multiple Precision Lower quartile Christiansen’s Ideal spacing Row-wise Errora Accuracya

index index index Precision DU UC UI plant spacing (%) (%)
mean±SD (m)

Set I image (V2–V4)*
1 (0-0).jpg 0.54 0.15 0.31 0.28 36.16 43.98 67.37 0.216±0.054 −1.69 98.31
2 (2937-0).jpg 0.60 0.18 0.21 0.27 38.76 48.04 68.52 0.228±0.049 3.83 96.17
3 (5874-0).jpg 0.63 0.16 0.21 0.23 38.16 43.26 55.56 0.236±0.057 7.35 92.65
4 (8811-0).jpg 0.50 0.23 0.27 0.26 32.63 40.74 46.97 0.260±0.085 18.22 81.78
5 (11748-0).jpg 0.56 0.15 0.29 0.27 40.29 44.44 71.58 0.219±0.067 −0.57 99.43
6 (0-1470).jpg 0.49 0.24 0.27 0.27 26.33 39.19 43.63 0.249±0.016 13.48 86.52
7 (2937-1470).jpg 0.47 0.30 0.24 0.29 23.96 35.03 33.61 0.291±0.063 31.93 68.07
8 (5874-1470).jpg 0.50 0.27 0.22 0.29 30.07 44.64 47.46 0.261±0.031 18.81 81.19
9 (8811-1470).jpg 0.48 0.27 0.25 0.25 28.24 37.31 36.79 0.265±0.043 20.35 79.65
10 (11748-1470).jpg 0.48 0.25 0.27 0.30 25.41 40.59 40.37 0.266±0.060 20.97 79.03
11 (0-2940).jpg 0.46 0.26 0.27 0.29 24.91 37.97 42.86 0.267±0.049 21.20 78.80
12 (2937-2940).jpg 0.54 0.25 0.21 0.29 31.04 45.58 51.52 0.248±0.015 12.55 87.45
13 (5874-2940).jpg 0.47 0.28 0.24 0.26 28.69 39.42 41.70 0.264±0.033 19.96 80.04
14 (8811-2940).jpg 0.53 0.25 0.21 0.28 31.13 42.27 45.44 0.259±0.038 17.97 82.03
15 (11748-2940).jpg 0.51 0.25 0.24 0.27 31.66 42.97 52.54 0.248±0.032 12.54 87.46
16 (0-4410).jpg 0.51 0.25 0.24 0.29 33.92 43.39 53.54 0.247±0.036 12.31 87.69
17 (2937-4410).jpg 0.56 0.26 0.17 0.27 31.63 44.43 40.69 0.274±0.049 24.58 75.42
18 (5874-4410).jpg 0.48 0.29 0.23 0.28 28.61 42.26 49.47 0.256±0.031 16.44 83.56
19 (8811-4410).jpg 0.43 0.26 0.31 0.29 21.06 32.46 38.76 0.266±0.060 21.04 78.96
20 (11748-4410).jpg 0.44 0.25 0.31 0.29 21.83 31.60 43.08 0.256±0.057 16.34 83.66
21 (0-5880).jpg 0.57 0.16 0.27 0.27 40.07 49.23 77.43 0.219±0.063 −0.32 99.68
22 (2937-5880).jpg 0.52 0.20 0.28 0.28 31.41 43.24 58.72 0.241±0.074 9.62 90.38
23 (5874-5880).jpg 0.55 0.17 0.28 0.27 35.84 43.30 60.07 0.242±0.093 9.99 90.01
24 (8811-5880).jpg 0.57 0.15 0.28 0.25 33.82 40.98 55.90 0.242±0.108 10.04 89.96
25 (11748-5880).jpg 0.53 0.12 0.34 0.28 32.41 43.53 84.35 0.192±0.042 −12.77 87.23

Average 0.52 0.22 0.26 0.27 31.12 41.59 52.32 0.249±0.021 14.19b 85.80
SD 0.05 0.05 0.06 0.02 2.27 3.17 12.91 0.052±0.022 7.62b 7.62

Set II image (V4–V6)**
15.jpg 0.65 0.23 0.11 0.23 44.42 53.53 54.97 0.318±0.057 17.85 82.15
19.jpg 0.70 0.25 0.04 0.24 48.49 58.27 50.07 0.343±0.054 27.14 72.86
20.jpg 0.69 0.18 0.12 0.27 46.26 58.43 61.29 0.305±0.029 12.84 87.16
32.jpg 0.58 0.24 0.17 0.21 43.01 55.08 59.71 0.322±0.089 19.13 80.87
50.jpg 0.49 0.38 0.12 0.28 37.74 51.00 36.61 0.379±0.047 40.56 59.44

Average 0.62 0.25 0.11 0.24 43.98 55.26 52.53 0.334±0.026 23.51b 76.49
SD 0.08 0.06 0.04 0.02 3.62 2.84 8.87 0.055±0.019 9.68b 9.68

Note: Ideal, skip, multiple index and precision were calculated using equations 5.13 and 5.16; DU - distribution uniformity (eq. 5.17),
UC - uniformity coefficient (eq. 5.18), UI - uniformity index (eq. 5.19), and SD - standard deviation. a Error and accuracy were
calculated by comparing row-wise plant spacing with the ideal spacing (SI = 0.22 m for “Set I” images, and SI = 0.27m for “Set II”
images). b average and SD values were calculated based on absolute values, * Set I image represents sunflower at V2–V4 stage, UAS
altitude = 12.2 m (≈40 ft), SI = 0.22 m, and ** Set II image represents sunflower at V4–V6 stage, UAS altitude = 23 m (≈75 ft),
SI = 0.27 m.

The uniformity indices adapted from sprinkler irrigation systems (table 5.4), such as

lower quartile DU and Christiansen’s UC (eqs. 5.17 and 5.18) showed consistent results

among the section images (31.12 and 41.59), which was corroborated by low SD values

(2.27 and 3.17). The SD values of DU and UC were only 7.3 % and 7.6 % of their respective

average values. It can be observed that both the trends of DU and UC were similar and DU

was consistently lower than UC, which indicated that any one of these can be used. Based
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on these observations, any of these uniformity indices, derived from the specialization of

irrigation, can be extended to the plant stand spatial distribution analysis.

The ideal spacing uniformity index - ISUI, developed in this study, showed a wide

range between 33.61 % and 84.35 % unlike DU or UC (fig. 5.13). The wide range was

obvious because it is sensitive to the deviations from the ideal spacing (SI = 0.22 m) and

penalizes these deviations, unlike DU and UC. The ISUI produced increased values only

when the spacings are uniform and coincided with the ideal spacing; however, the DU and

UC produced increased values with uniform spacing even though it deviated from the ideal

spacing. Thus, an increased value of DU and UC may not represent a desirable plant

spacing distribution, but an increased ISUI is always desirable. Both ISUI and UC had

somewhat similar variation but high values of UC may not always coincide with high values

of ISUI, indicating uniformity but deviation from the ideal spacing. It is also interesting to

observe that the ISUI followed the trend of accuracy, which is desirable because both were

related to the ideal spacing (fig. 5.13). Therefore, the ISUI will serve as the best parameter

to evaluate precision planters and plant spatial distribution in modern precision agriculture

of the present and the future.

In addition, it should be noted that these spatial distribution parameter values may

not solely indicate the planter’s performance, as the evaluation was based on only the

emerged plants. However, it is interesting to note that the range of values was well within

the range of coefficient of precision (CP3) values between 17.1 and 83.2 reported

(Panning, Kocher, Smith, & Kachman, 2000), which is also an indicator of seed spacing

uniformity. This demonstrates that the developed indices, especially the developed ISUI,
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can be potentially employed in future studies of UAS-based plant spatial distribution

analysis, which are quick, efficient, and meaningful.

Row-wise plant spacing for all section images is expected to be close to the SI

(0.22 m). The row-wise average spacing values among the section images ranged between

0.192–0.291 m. The mean value was majorly affected because of the presence of skips.

As the skips are more, the number of plants will be less, which in turn increased the mean

value. Any slight deviation from the SI can be observed in the error value. For example,

section 7 produced the maximum error (31.93 %), whose skip index was the maximum

(0.30) among different section images. However, in the case of maximum multiples, there

was no considerable effect on the plant spacing error. The average accuracy of row-wise

plant spacing was about 85.80±7.62 %, which was fairly good and reasonable in a practical

plant emergence scenario.

5.4.8. Plugin Run Performance and Future Scope

The plugin was developed and analyzed in a Windows laptop (Windows 10,

2.20 GHz Intel Core i5-5200U processor, and 8 GB RAM). The plugin took a CPU time of

31.73±1.23 s for a field area of 46.03±3.07 m2 for Set I images and 4.17±0.56 s for a field

area of 23.76±1.25 m2 for Set II images. Even though the field area in Set II images was

only half of Set I images, the analysis time reduced by ≈86.9 %. This was due to the lower

image resolution of Set II images (0.00635 m/pixel) compared to Set I images

(0.00331 m/pixel). This indicates that the CPU time is expected to increase with the

resolution for the same field area as Set I images. The plugin was also tested for a major

portion (20 of 25 representative sections) of the Set I stitched image for a field area of
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995 m2 and took a CPU time of 916.28± 12.06 s (≈15 min) for performing all the

operations and producing the labeled image (figure C1).

The automatic row identification is a vital operation in the developed plant stand

count plugin. Currently, the plugin algorithm addresses straight row planted crops, which

is commonly practiced in modern agriculture. However curvilinear planting is also

followed in limited situations of irregular and curved boundary fields. Therefore, in the

future, the plugin can be improved to tackle situations with irregular boundaries and

curvilinearly planted rows.

With further programming, the planting pattern can be determined automatically

based on profile and used in the program instead of obtaining it as user input.

Furthermore, using plant spacing information, the plant spatial distribution (row-wise and

overall) can be determined from which the planter performance on seed placement and

spacing can be evaluated.

As the plugin was developed based on the profile and geometrical principles of the

objects in the image, the plugin is expected to perform equally well with other row crops

(e.g., soybeans, corn, cotton) between V2 and V6 stages. Unlike the black-box approaches

generally followed and reported, the open source user-coded plugin approach does not

require any image set for training and can be applied for other crops by suitably modifying

the cutoff value and constants.

5.5. Conclusions

This study developed and demonstrated the potential of a user-coded open source

ImageJ plugin, starting from scratch using a simple geometrical approach that addressed

UAS image-based analysis research needs, such as row orientation correction, row
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identification, plant cluster segmentation, and plant stand counting. For thresholding, a

new method of using the YUV color channel by adjusting only the U channel was found to

produce the binary images used in further analysis. Unlike the reported studies, a simple

method developed using profile analysis to identify the crop rows orientation and align the

rows vertically was found efficient. The developed row identification method using pixel

profile of vertical rows accurately identified the rows up to a row length of ≈100 m. It is

expected to work accurately even >100 m, as long as the rows are straight, which is

possible with modern planters used in precision agriculture.

A novel segmentation approach was developed to resolve the plant clusters, which

used the plant cluster’s sideways profile to identify the overlapping portion for the

segmentation followed by simple geometry applications using bounding box height and

area. This combination approach of strategies resolved all clusters of sunflower plants in

V2 to V6 stages successfully. The ARcut value of 0.04 worked well for the tested images.

The ARcut value is influenced by the image resolution. For images with higher resolution,

a higher ARcut value should be used to capture the valleys better. The proportions of

segmentation performed based on the combined profile and geometry were 52.1 % and

47.9 %, respectively for V2–V4 growth stages, and 70.8 % and 29.2 % for V4–V6 stage.

Test images from the two set of UAS stitched images from sunflower fields (Set I and

Set II) from different field locations (Carrington and Prosper, ND), UAS flight altitudes

(12.2 m and 23 m), and growth stages (V2–V4 and V4–V6) were used for the plugin

validation. The plugin performed the stand count with an overall accuracy of 95.9 % for

Set I images and 84.9 % for Set II images. For the spatial distribution analysis, a new index

termed ideal spacing uniformity index (ISUI), which utilized the ideal seed spacing, was
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developed and analyzed along with six different existing measures and found to be the best

to evaluate plant spatial distribution. The plant spacing distribution was compared with

ideal spacing and achieved an accuracy of 85.8 % and 76.49 % for Set I and Set II images,

respectively. The graphical outputs such as the spatial distribution map and the histogram

helped in visualizing the “location” and “count” of ideal, skip, and multiple, respectively.

The overall analysis took a CPU time of 31.7 s for a field area of 46 m2 for Set I images and

4.2 s for a field area of 23.76 m2 for Set II images.

This study results proved the potential of an open source user-coded ImageJ plugin

could match the capability of commercial professional software and extend their capability

in terms of applicability, flexibility, and accuracy. The plugin can be suitably modified to

handle other crops at different growth stages and attain good accuracy as observed in this

study (>95 %). Most importantly, being an “open source” application, the processing

software (ImageJ), the developed image processing application (ImageJ plugin), and the

image data can reside in the user’s system where the analysis can be performed in-house or

even offline, at any time, thus ensuring “data security,” apart from free and easily installed

and run in any system.
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6. PHENOCAM APPLICATION IN AGRICULTURAL

CROPPING ENVIRONMENT: TIME AND DISTANCE EFFECT

ON COLOR VEGETATION INDICES OF SOYBEAN

PHENOLOGY *

6.1. Abstract

A PhenoCam is a near-surface remote sensing system traditionally used for

monitoring phenological changes in forested landscapes. But, limited studies are applying

PhenoCam images to crop phenology in agricultural ecosystems and clear guidelines on

phenological analysis of the images are also lacking. Therefore, a study was conducted

from two PhenoCam fields near Mandan, ND, USA on vegetation phenology of soybean

(Glycine max L.) during the 2018 growing season to formulate image analysis guidelines.

The phenological stages of soybean were also recorded through a manual visual assessment

weekly to compare with PhenoCam images. PhenoCam images captured between 10:00 h

and 14:00 h at 30 min intervals were used in this analysis. A user-coded ImageJ plugin was

developed to extract the color values from a specified region of interest (ROI) from these

images. A total of 15 color vegetation indices (CVIs), 13 existing and two new, were

* This chapter will be submitted as two papers in the journal of Agricultural and Forest Meteorology. Authors
involved in the two publications are from: Sunoj, S., Igathinathane, C., Saliendra, N., Hendrickson, J., Archer,
D., and Liebig, M. Paper #1 deals with the development of vegetation indices and Paper #2 deals with the
simplified phenological trend analysis through kymograph. Sunoj has developed the plugin, analyzed and
visualized data, and wrote the manuscript. The major advisor Dr. Cannayen played a pivotal role in research
outline, technical discussions, analyses, and manuscript review and other collaborators have assisted in all
aspects of the paper.
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considered that best represented the observed phenological trend from RGB, HSB′, and Lab

color spaces. Of the CVIs analyzed, green leaf index (GLI), green chromatic coordinates

(GCC), excess green (EXG), and a color index of vegetation (CIVE) were selected based on

the reduced deviation from their loess smoothed phenological curve. The time of image

capture produced at least two groups across the time (10:00–14:00). The camera distance

also had significant differences among distance on some of the selected CVIs but not on all.

Furthermore, a simplified, straightforward, and no-code method of analyzing the

phenological trend using the “kymograph” was successfully developed. This simplified

kymograph method showed promising results, characterized distinct phenology stages,

and operated ≈73.3 % faster than the regular multiple image-based plugin method.

6.2. Introduction

A PhenoCam is a near-surface remote sensing tool configured to produce time-lapse

images (e.g., ≈30 min) from which phenological transitions with respect to time were

observed and recorded. Phenology is defined as the seasonal activity of plants and animals,

which is a sensitive indicator of the impacts of climate change (T. B. Brown et al., 2016;

Keenan et al., 2014). As of now, the phenological transition trends in plants, such as the

timing of initial growth, peak greenness, or flowering and fruit production, have been

instrumental in making management decisions (Browning, Karl, Morin, Richardson, &

Tweedie, 2017). Such phenology transitions in plants are displayed in terms of changes in

color, typically greenness. Color digital images from PhenoCams are used to obtain, from

appropriate relationships, the greenness that indirectly indicates the amount of

photosynthetically active green leaves and their growth conditions such as peak bloom and

senescence (T. B. Brown et al., 2016).
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Methods to monitor plant phenology can be classified broadly into two categories:

(i) manual and (ii) instrument-based monitoring. The manual method involves direct

human observation of only the major events such as flowering and budburst (Richardson,

Bailey, Denny, Martin, & O’Keefe, 2006). However, in the manual method, the visual

assessment is time-consuming, inaccurate, and can cover only a limited portion (sample) of

the field. Instrument-based monitoring is otherwise called as “remote sensing,” wherein,

for example, a light-sensitive sensor is used to record the reflectance at different

wavelengths that indicate the status of the plant. Satellite remote sensing is the most

common remote sensing method. Although it covers a wide area, the lack of spatial and

temporal resolution makes it less suitable for continuous monitoring of plant phenology

(White et al., 2009; X. Zhang, Friedl, & Schaaf, 2006). Information about the classes of

application of PhenoCam and PhenoCam network is presented in Appendix D.1.

Typically, the imagery obtained from PhenoCam comprises of three color channels –

red (R), green (G), and blue (B), which are used to derive the various color vegetation

indices (CVIs) and correlate them to different phenology stages. Research studies in several

literature correlated CVIs to phenology transition dates in forest ecosystems (Richardson et

al., 2007; Sonnentag et al., 2012). However, the application of PhenoCam to monitor

phenology changes in an agricultural crop as well as the use of various CVIs in crop

phenology monitoring, even though PhenoCams are available in many agricultural fields

are not available. Therefore, it is desirable to use PhenoCam images from two agricultural

fields with soybean (Glycine max L. ) as the test crop and evaluate the various CVIs and

correlate to phenological stages of the crop.
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Digital cameras with a variety of configurations, end application, size, quality, and

imaging sensors are being used in different test sites within the PhenoCam network (Sunoj,

Igathinathane, & Hendrickson, 2016). Using the RGB pixel values from the images, CVIs

are derived by mathematical expressions of pixel values from two or more color channels to

highlight features of vegetation (Xue & Su, 2017). These CVIs provide quantitative and

qualitative information of vegetation and are indicative of parameters such as plant cover,

vigor, and crop stress. Color CVIs are the simplest form as they accentuate a particular

color such as the greenness, which is intuitive to humans (G. Meyer & Neto, 2008;

Woebbecke et al., 1995).

The PhenoCam network has widely used only green chromatic coordinates (GCC)

and excess green (EXG) for monitoring canopy greenness. It was reported that these two

CVIs produced fluctuations due to scene illuminations (Andresen et al., 2018). This was

because the PhenoCam images are captured in open atmospheric conditions, the brightness

and darkness caused by clouds and the time of the day result in such color variations.

Lighting variation during image acquisition in agricultural fields is the most common issue

in monitoring phenology and it is inevitable (Barbedo, 2016). Various color CVIs have been

developed and used in various agricultural remote sensing applications (G. Meyer & Neto,

2008; Torres-Sánchez et al., 2014). However, the applicability of these CVIs in the

PhenoCam network has not been evaluated so far. Therefore, in this study, the variations of

CVIs from RGB color space and other spaces were evaluated and it was hypothesized that

some CVIs (existing or developed) will have minimum variations on images captured on

each day at finer time intervals (≈30 min).
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PhenoCam being a fixed location imaging device the subject’s (plant) color might

vary as a function of distance (Richardson et al., 2009). In the PhenoCam image, a region

of interest (ROI) was usually identified in the field of view and the color information from

the ROI was extracted for analysis. The image in the ROI represents objects at an increased

distance from the bottom to the top. It is hypothesized that this variation in the distance is

negligible and the ROI information can be used in the analysis irrespective of the pixel’s

location. However, this information was not reported and therefore deserved to be studied.

Another technical and common issue with PhenoCam data is the necessity to handle

a very high volume of information in the form of images (about 16 useful images/day

collected over ≈140 days). Even though this can be analyzed using a computer with decent

speed and RAM, it will be desirable to simplify the image handling process and yet perform

a representative analysis (Richardson et al., 2018b). In this research, a kymograph (a

montage of thin ROI across time span) was tested for its suitability to simulate the

phenological trend (Goldstein, 2011). As the kymograph is a single flat image representing

the whole growing season, it will be easy to handle and subject to different analyses, and if

successful would serve as a simplified method of PhenoCam analysis.

Given the background, the overall goal of this research was to use the PhenoCam

images and evaluate the variations produced by different CVIs (from 10:00 to 14:00 each

day), validate them against observed variation, and determine a set of best CVIs, which

produced the least variation, suitable for PhenoCam application. This study used

PhenoCam images from two research fields (Mandan-H5 and Mandan-I2) with soybean

crop from the 2018 growing season. The recommended set of CVIs from this research are

expected to serve as a better indicator and can be applied in future PhenoCam network
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crop-based studies to obtain better phenological comparisons. Therefore, the specific

objectives formulated for this research are as follows:

1. Evaluate the variations of existing RGB-based CVIs and develop new other color

spaces-based CVIs with reference to the observed phenological trend of soybean crop

(30 min interval for ≈140 days; 2018 growing season).

2. Determine a set of best CVIs that produced minimum variation and validate them

against the actual field phenological trend.

3. Evaluate the selected CVIs’ variation with respect to the distance from the PhenoCam.

4. Develop a simplified approach to obtain phenological curve from kymograph using

profile analysis and test its suitability for phenological studies.

6.3. Materials and Methods

6.3.1. Site and Management Description

Two experiment fields, Mandan-H5 (46.775° N, 100.951° W) and Mandan-I2

(46.761° N, 100.923° W), of the Area IV SCD Cooperative Research Farm, Mandan, North

Dakota, USA were selected for the study (fig. 6.1). The area of these fields were ≈19.8 ha

and ≈22.1 ha, respectively. Soybean (Mycogen seeds 5B024, The Dow Chemical Company,

Midland, MI) was planted using a John Deere 1890 planter at ≈543 631 seeds/ha

(220000 seeds/ac) in both the fields on May 29 and 31, 2018, respectively. Row and plant

spacing were maintained as ≈0.19 m and ≈0.06 m. The soybean crops were harvested on

October 18 and 17, 2018, respectively.

6.3.2. PhenoCam and Images Collection for Phenological Curve

Both fields were installed with a NetCam color digital camera (NetCam SC IR,

StarDot Technologies, Buena Park, CA, USA). The digital cameras were placed inside a
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Figure 6.1. Location of PhenoCam study experiment fields in Area IV SCD Cooperative
Research Farm, Mandan, ND, USA, PhenoCam setup used in this study, phenology
visual measurements in the field, and an overview of the two PhenoCam fields –
Mandan-H5 (≈19.8 ha) and Mandan-I2 (≈22.1 ha). Ten yellow points in each field
indicate the locations for visual assessment of phenology (ground truth) and the
yellow triangle represents the approximate field of view area (≈0.27 ha) for each
PhenoCam. Note: Top panel aerial image was obtained from Google Maps for
showing the two fields location and details.
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weather-proof enclosure for continuous monitoring and were configured based on the

instructions provided by the PhenoCam network (Richardson, Seyednasrollah, Hufkens, &

Milliman, 2017b) and illustrated in figure 6.2. Some of the critical aspects on camera

installation are: (1) the camera should be set to automatic exposure setting, (2) camera

should be mounted on a rigid tower or building overlooking the vegetation canopy,

(3) camera should be inclined downward at 20°–40° and partly cover some portion of the

sky, and (4) camera should be pointed towards north to minimize lens flare and direct

exposure to sun (Richardson, Klosterman, & Toomey, 2013b).

Mounting 

tower

Images sent 

to the server 

at 30 min 

time interval

20°-40° downward

RGB digital 

camera

Reference 

panel for 

calibration

North

Figure 6.2. An illustration of the PhenoCam network system showing various
components (Sunoj et al., 2016).

The cameras installed in PhenoCam network tower captured images automatically

at time intervals of 30 min, transferred via file transfer protocol (FTP), and stored on the

PhenoCam server. The images were downloaded from the PhenoCam website
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(https://phenocam.sr.unh.edu/webcam/gallery/) for each field separately

(“mandanh5” and “mandani2”) by specifying the dates and time span.

For this study, the dates specified were the planting and harvest dates for

Mandan-H5 (May 29–Oct. 18, 2018), and Mandan-I2 (May 31–Oct. 17, 2018), respectively.

The total number of growing days between planting and harvest dates were 143 d for

Mandan-H5, and 139 d for Mandan-I2. Within these days, a time span specified from 10:00

to 14:00 on each day was used for images collection, even though the PhenoCam captured

the images from 8:00 to 20:30 continuously. This time span is commonly followed in

PhenoCam studies (Sonnentag et al., 2012), however, the usable images with better

lighting fall in a reduced span. For the study’s time span (10:00 to 14:00), with the images

captured at 30 min interval generated nine images per day. Therefore, the total number of

images collected for the entire growing period in Mandan-H5 was 1287 images (143× 9)

and Mandan-I2 was 1251 images (139× 9).

The detailed procedure to download the PhenoCam images for a specific field from

the website, on required days and time span is provided in Appendix D.2. Along with

PhenoCam images, a few data files (spreadsheet) that contain several parameters, such as

daily mean RGB values, mean GCC, 5–95th percentile RGB values, 3-day mean RGB, etc.

were also make available. These data are also accessible through the PhenoCam website

and can be used for other calculations. In this study, for comparing among different CVIs,

the daily mean RGB values from these data were used.

6.3.3. Visual Assessment of Phenological Stages

Visual assessment was performed weekly on each field to record the phenological

stages (fig. 6.1). Ten random locations were identified in each field and marked with flags
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for consistently recording phenological trends throughout the growing season. At each

location, the phenological observation was performed and five samples were considered as

a replication. Soybean phenology stages were identified according to D. R. Berglund,

McWilliams, and Endres (2015). The phenology observation was started after the

emergence of seedlings and all the locations in both fields were assessed on the same day.

The vegetative and reproductive stages were indicated with the letters V and R,

respectively. Some of the important phenology stages in soybean recorded include VC

(cotyledon stage), V1 (first trifoliate), V2 (second trifoliate), V3 (third trifoliate), R1 (first

flowering), R2 (full bloom), R3 and R4 (pod development), R5 and R6 (seed

development), and R7 and R8 (plant maturation).

6.3.4. Image Color Value Extraction — ImageJ Plugin Development

To process the downloaded images, a user-coded plugin was developed using Fiji

(Ver. ImageJ 1.52n, Java 1.6.0_24 [64-bit], Rasband (2018); Schindelin et al. (2012)).

The plugin was coded in Java language and comprised of several methods for performing

individual tasks. The process flowchart (fig. 6.3A) shows the sequence of tasks and the

front panel of the developed plugin (fig. 6.3B) shows the options available for ROI

specification and color value extraction from PhenoCam images and stores the results in a

file for reading and further processing.

The images should be opened and ROI should be specified before running the

plugin. To open a series of images in a folder as a convenient stack, the user should

navigate to the folder and drag and drop the entire folder in the ImageJ panel. This action

pops up an “Open Folder” (with Convert to RGB and Use Virtual Stack options — can be

checked/unchecked as desired) dialog and clicking on the “Yes” button opens all the
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Figure 6.3. Process flowchart and front panel of the color values extraction plugin for
PhenoCam images: (A) Process flowchart outlining the sequence of tasks, and (B)
front panel of the developed plugin showing the options available for color values
extraction and ROI specification.
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images of the folder as a stack. A polygonal ROI (usually a rectangular quadrilateral) on

any of the images in the stack can be drawn using the “Polygonal selections” tool. Once

drawn, this ROI was applied to all the images in the stack.

Then, running the plugin displayed the front panel of the plugin (fig. 6.3B).

The polygonal ROI’s vertices coordinates were applied to all the images and they define an

area from which the basic color information is extracted and converted into different color

spaces. This operation was possible because the PhenoCam has a fixed field of view, hence

will not have any distortion/shift among images.

There are three color space options available in the plugin and the user should

choose at least one color space (or all three) for the analysis. However, from the ROI

options, the user can select only one option — either “Single ROI” or “Multiple ROI.” With

the multiple ROI option, the user can specify the required number of rows and columns for

analysis (fig. 6.3B). The plugin internally divides the polygonal ROI and each sub-ROI was

considered separately for color values extraction. By default, the plugin runs for 3 rows and

3 columns when the multiple ROI is chosen. The plugin execution will be started by

clicking on the “Run” button.

The plugin automatically opened each image in the stack in sequence, overlaid the

ROI on each image, and extracted the color values. All the pixel color values, primarily

RGB, were collected and a mean RGB value was calculated. The mean values were used to

convert into HSB′ color values (H: hue, S: saturation, and B′: brightness) by

Color.RGBtoHSB() method and Lab (L: lightness, a: green–red, b: blue–yellow) by

ColorSpaceConverter.RGBtoLAB() method in Java. The plugin was developed in such a

way that the color values were extracted for all the images in the stack, in a single run, and
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outputs generated as the comma separated value (CSV) file and stored in the general

“Documents” folder. The plugin took a CPU time of ≈7.5 min to extract the color values

from all images in the folder (1287 images) at nine ROIs, from three color spaces, and

store the values in a CSV file. This automated process saved a lot of time in extracting the

color values from all three color spaces, otherwise manually performing these tasks would

consume more time and cumbersome.

6.3.5. Multiple ROIs used for Color Values Extraction

In this study, a multiple ROI with 3 rows and 3 columns was used for color values

extraction. Care was exercised in specifying the polygonal ROI so that it matches with the

polygonal ROI specified by the PhenoCam network for Mandan-H5 and Mandan-I2

(fig. 6.4). The ROI was split into nine sub-ROIs (3× 3 grid) that served as replications in

the analysis. To study the effect of time (10:00 to 14:00 at 30 min interval) on the CVIs,

three replications were considered by averaging the sub-ROIs along each column (e.g., the

average of sub-ROIs 1, 4, and 7 was considered one replication). And, to study the effect of

distance from the camera on CVIs, the sub-ROIs within each row were considered as

replications. The sub-ROIs 1, 2, and 3 served as replications for testing “far;” similarly, the

4, 5, and 6 for “middle;” and the 7, 8, and 9 for “near” (fig. 6.4).

6.3.6. Color Vegetation Indices Evaluation and Analysis using R

From the data obtained through the developed plugin, the CVIs calculation,

statistical analysis, and data visualization codes were developed using the open source

statistical analysis software R (R Core Team, 2018). An integrated development

environment ‘RStudio’ (RStudio Team, 2018) was used to run R. The output CSV file,

generated by the plugin, was directly imported to RStudio for CVI calculations.
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Figure 6.4. An example PhenoCam image of Mandan-H5 and Mandan-I2 soybean
fields with ROI provided by the PhenoCam network (yellow solid line) and sub-ROIs
(yellow dotted line) considered for analyzing the effect of time of image capture and
distance from the camera on various CVIs.

6.3.7. Color Vegetation Indices from RGB Color Space

The CVIs are mathematical expressions of reflectance values from two or more color

channels that are designed to highlight a particular property of vegetation (Xue & Su,

2017). The CVIs provide qualitative and quantitative evaluations of vegetation. Using

RGB-based CVIs is easy for humans to perceive and interpret (G. Meyer & Neto, 2008;

Woebbecke et al., 1995).

In this study, 12 CVIs from RGB color space, which are common in the agricultural

application for estimating the vegetation fraction (Torres-Sánchez et al., 2014), identify

plant biomass (G. Meyer & Neto, 2008), and weed monitoring (Hague et al., 2006), were

considered that were calculated using the following equations:

GCC=
G

R + G + B
(6.1)

NGRDI=
G−R
G + R

(6.2)
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NGBDI=
G−R
G + B

(6.3)

MGRVI=
G2 −R2

G2 +R2 (6.4)

RGBVI=
G2 − BR
G2 + BR

(6.5)

NDI= 128×
�

G−R
G+R

+ 1
�

(6.6)

GLI=
2G−R− B
2G + R + B

(6.7)

RGRI=
R
G

(6.8)

EXG= 2gc − rc − bc (6.9)

CIVE= 0.441rc − 0.881gc + 0.385bc + 18.787 45 (6.10)

VEG=
gc

r c
a bc

(1−a)
(6.11)

EXGR= EXG− 1.4rc + gc (6.12)

where GCC is green chromatic coordinate, NGRDI is normalized green red difference index,

NGBDI is normalized green blue difference index, MGRVI is modified green red vegetation

index, RGBVI is red green blue vegetation index, NDI is normalized difference index, GLI is

green leaf index, RGRI is red green ratio index, EXG is excess green, gc is G/(R + G + B),

rc is R/(R + G + B), bc is B/(R + G + B), CIVE is color index for vegetation, VEG is

vegitativen, a is 0.667, and EXGR is excess green minus excess red.

6.3.8. Color Vegetation Indices from Other Color Spaces

Three CVIs from other color spaces, such as HSB′ (hue, saturation, and brightness),

and Lab (Lightness, chroma1, chroma2), tested in the study are HSB’s hue (HSBhue), Lab’s

inverted a (Laba′), and dark green color index (DGCI) derived from HSB′. Out of the three
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CVIs, dark green color index (DGCI) is a common index used in identifying turfgrass

quality (Karcher & Richardson, 2003) and nitrogen status in cotton (Raper, Oosterhuis,

Siddons, Purcell, & Mozaffari, 2012). The expressions for these CVIs are:

HSBhue = H (6.13)

Laba′ = 1/a (6.14)

DGCI=
(H− 60)/60) + (1− S) + (1− B′)

3
(6.15)

Typically, the Lab “a” channel produced an inverted phenological curve; therefore, to follow

the same trend of a typical phenological curve, the “a” channel value was inverted (as

“1/a”) in the Laba′ and used for comparison.

6.3.8.1. Color vegetation index normalization

For comparisons among different CVIs, while studying the time and distance effects,

it is desirable to have the values on a common scale. Therefore, the CVI values were

normalized to have a fixed scale between 0 and 1. This operation is common and being

followed in some of the reported PhenoCam studies to compare among cameras and sites

(Browning et al., 2017; Keenan et al., 2014). If the normalization is performed for each

replication (derived from sub-ROIs) as a subset, the variation in the values among

replications will be lost. Therefore, in this study, the maximum and minimum values were

obtained including the replications and normalized for each CVI that preserves the

variation trends among the replications. The maximum and minimum values were

obtained using min() and max() functions in R and used to obtain the normalized values:

CVInorm =
CVIi −CVIGmin

CVIGmax −CVIGmin
(6.16)
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where CVInorm in the normalized CVI value ranging between 0 and 1, CVIi is the value at

ith day, CVIGmin is the minimum CVI value among replications, and CVIGmax is the maximum

CVI value among replications (appropriate sub-ROIs; fig. 6.4).

6.3.9. Color Vegetation Index Variation Comparison with Loess Smoothing

To evaluate the variations in a CVI curve, it is important to have a “reference curve”

with which the variation can be compared. A smoothed curve, from the respective

PhenoCam data, served as the reference curve in this study. The smoothed curve

corresponding to the selected data was obtained using loess function (Cleveland, 1979) in

R, with a ‘span’ value fixed as 0.3. This operation determined the smoothed curve

parameters and the predict() function was used to obtain the values of the smoothed

curve.
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Figure 6.5. An example normalized GCC curve and its respective loess smoothed
curve using a span of 0.3. Similar curves can be generated based on different times
and selected ROIs and normalized based on equation 6.16.

It can be seen that the curve produced from normalized CVI values (raw points) is

very rough (fig. 6.5) when compared to and this variation may be due to the changes in
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lighting conditions and not because of changes in the plant canopy among subsequent

images. While the smoothed curve (red) had gradual variations. To determine the

roughness of the curve, we used the curve length as a measure. With curve length, a rough

curve will be lengthier than a smooth curve. The curve length was calculated as:

Lcurve =
n
∑

i=1

Æ

1+ (CVIi+1 −CVIi)2 (6.17)

where Lcurve is the curve length, i is the day after planting, n is the total number of study

days, and CVIi+1 and CVIi are the normalized CVI values at each time (e.g., 12:00 in

fig. 6.5) on i + 1 and ith day.

Ideally, it is expected to have a gradually varying CVI curve if the effect of scene

illumination is minimized. However, it is practically challenging to minimize variations in

open atmospheric conditions. The deviation of length between normalized original CVI

curve and the reference smooth curve provides a measure of variations caused by scene

illuminations and other factors. Therefore, the deviation of curve length (LDeviation) was

defined as:

LDeviation (%) =
(Lraw − Lsmooth)

Lsmooth
× 100 (6.18)

where Lraw is the length of raw normalized CVI curve and Lsmooth is the length of the

smoothed curve (pixel).

6.3.10. Statistical Analysis and Visualizations

Statistical analysis was performed using R by employing Duncan’s multiple range

test using the R package agricolae (de Mendiburu, 2019). The LDeviation values (eq. 6.18)
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produced by different CVIs for the time span between 10:00 and 14:00 were subjected to

the analysis. Mean comparison among time intervals for different CVIs determined a set of

best-performing CVIs that produced a minimum LDeviation among time. Similarly, mean

comparison among just the CVI values determined the set of best-performing CVIs.

The effect of distance from the camera was statistically analyzed for three levels far,

middle, and near. This analysis will imply whether an ROI can be overlaid at any location

in the image. For visualizing the results, the R package ggplot2 (Wickham, 2016) was

used and which generated the high-quality vector-based graphics with various

customization opportunities.

6.3.11. A Simplified Phenological Curve Analysis With Kymograph Profile

A kymograph is a graphical representation of changes in a particular spatial position

over time. It is especially useful in processing time-lapse images. Kymographs can be

produced in ImageJ from the basic image stack commands. The time-lapse images should

be first loaded in ImageJ and converted as a stack (section 6.3.4). On any image in the

stack, a line ROI of any specified length can be drawn on the image as the reference source

to build the kymograph. By choosing the inbuilt tool “Reslice [/]...” (Image . Stacks) in

ImageJ produced the kymograph. Also, a rectangular ROI will produce a stack of

kymographs based on the pixel width of the ROI. The “Rotate 90 degrees” option is usually

chosen to have the kymograph with time on the horizontal axis.

For the study, a horizontal line ROI was drawn in the middle along the image width.

The resulting image was a composite image with the specified line ROI portion was

extracted from each image and stacked side-by-side. The pixel width of this composite

image indicates the number of images used for creating the kymograph. The kymograph
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gives overall visual information about the changes in each image over time at the specified

location. The generated kymograph was further processed with basic inbuilt tools of

ImageJ to test whether the same phenological trend can be observed from the original

images dataset and the kymograph.

For a simplified analysis, the kymograph was split into individuals channels of RGB,

HSB, and Lab color space. In ImageJ, this can be obtained using “RGB Stack,” “HSB

Stack,”, and “Lab Stack” options (Image . Type). The individual channel was subjected to

simple profile analysis (Analyze . Plot Profile). This analysis generates a plot that

represents the column-wise average of gray pixel values. This plot can be matched with the

phenology stages from visual assessment and used for interpretations. If found suitable,

this novel approach of using kymographs will considerably reduce the processing time and

will be a beneficial approach to study the phenology without any coding.

6.4. Results and Discussion

6.4.1. A Typical GCC Phenological Curve and Comparison with Visual Assessment

The normalized GCC curve obtained from PhenoCam images of two fields,

Mandan-H5 and -I2 followed a similar pattern (fig. 6.6). Even though the visual

assessment was performed weekly, only the significant phenology stages manually recorded

was presented. In both fields, the GCC started to increase rapidly after the VC stage, which

is ideally considered as the start of the growing season (D. R. Berglund et al., 2015). The

VC stage, in the field, was characterized by the expansion of leaves, and this was displayed

in the GCC curve with an increase in the GCC values. It is expected that the soybean

reaches the VC stage within 10–15 days after planting (DAP) and this was consistent with

visual assessment and GCC curve from PhenoCam images.
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Figure 6.6. An example of a phenological curve from normalized GCC values. Dashed
lines indicate different phenology stages observed during manual visual assessment.
VC - cotyledon stage, V1 - first trifoliate, R1 - first flowering, R2 - full bloom, R4 - pod
development, R5 - seed development, R7 - beginning maturity, and R8 - matured
plants.

As the first vegetative stage (V1) was identified on ≈23 DAP, there was no

prominent feature observed in the GCC curve except a consistent inclination in the GCC

slope. The other vegetative stages (V2 and V3) were short and passed within a week,

which was also not captured in the GCC curve. The GCC values further increased and were

attaining the maximum as it entered into the reproductive stage (R1). This is the stage

when the soybean starts flowering; however, it happens only in the nodes and cannot be

seen at the canopy level (above) by the PhenoCam. To capture such subtle phenological

stages, a close-up camera setup will be desirable, which is available in other PhenoCam

experimental sites in Oregon (Phenocam, 2019).

As the soybean entered the R2 stage, which was identified as “full bloom,” the GCC

curve attained the maximum peak on 49th and 47th DAP on Mandan-H5 and -I2,

respectively. This is a prominent phenological transition and was also characterized by
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canopy closure in the PhenoCam images. After the R2, the GCC gradually decreased when

the soybean “pod set” started. This decrease in GCC was because the flowers start to

convert into pods and it starts from the upper four nodes. Therefore, the canopy greenness

reduced which is indicated with a downward slope after the R2.

The gradual decrease continues up to 85–90 DAP, which might be the R6 stage

called “full seed set.” After the R6, the seeds start to mature (R7) and turns from green to

yellow. This phenomenon is observed by a sudden decrease in the GCC value at ≈95 DAP.

At this stage, the crop is safe from a majority of the stresses (D. R. Berglund et al., 2015).

As the crop matures and enters into the R8 stage, it starts to shed leaves and transitions

from yellow to brown. This is characterized by a further drop in GCC value to almost the

minimum value, which indicates the end of the season. The crop is usually left in the field

for 10–15 days after it reached R8 to reduce the moisture. At this stage where harvest and

logistics plans were made.

These observations indicate that the GCC curve followed the actual phenology

transitions in soybean as observed visually. With such interpretations, the GCC values can

be used to obtain the phenology stages even without visiting the fields often. In the future,

the PhenoCam images can be potentially used to identify stress that causes discolorations

in the leaves, such as the iron deficiency chlorosis in soybean.

6.4.2. Effect of Time on General GCC Phenological Curve

The effect of time on GCC was important as it helps to understand whether the

images captured at the same time on different DAP produce similar variation in GCC.

Variations with respect to time are illustrated (fig. 6.7) with the GCC value obtained from

the whole ROI of each image captured at different times (10:00–14:00; 9 curves).

201



Irrespective of the time of image capture, all GCC curves followed a similar trend. Even

though images at 10:00 had slightly lower values and 12:00 had slightly higher GCC

values, this difference overall is not apparent but should be subject to statistical analysis

(see section 6.4.5).
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Figure 6.7. Effect of different time of image capture (10:00 to 14:00) on the general
GCC trend from the whole ROI.

Until 45–50 DAP, all the curves were overlapped and the trend was steadily

increasing among different times. More fluctuations were observed after attaining the

reproductive stage (40–85 DAP). After 85 DAP, all the curves merged again and produced

less variation among different times. The variations among DAP were random and it is

entirely due to ambient conditions. Ideally, each curve is expected to be smooth with

minimum fluctuations. But, those fluctuations were unavoidable, which are caused by

image color differences due to clouds interference with incoming sun’s radiation during

image capture.
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If desired to minimize these variations, a color calibration procedure with a color

calibration chart should be performed on images among the days (Sunoj et al., 2018b).

Furthermore, it is also desirable to study the effect of time with other CVIs, so that any

particular CVI that produced minimum variation will be useful for phenological analysis.

In general, based on the observations with GCC (fig. 6.7), it may be concluded that the

time of imaging in the range of 10:00 to 14:00 for the whole ROI (similar to that used in

the phenology network) is not affecting the overall phenological trend of soybean. As any

time in the range of 10:00 to 14:00 can be suitable to capture the phenological trend, this

result has a good implication on data reduction in terms of the number of images required

per day to build the phenological trend for simple analysis. It should be noted that within

the curve there is a lot of variation across the dates due to variations in lighting conditions.

6.4.3. Effect of Camera Distance on General GCC Phenological Curve

The GCC phenological trend from each ROI of the images captured at 12:00 for

Mandan-H5 and -I2 are presented (fig. 6.8). Changing the camera distance can be thought

of as selecting the sub-ROI in the vegetation field of view along the vertical direction.

To demonstrate the effect of camera distance, nine ROIs were selected (fig. 6.4). A set of

three ROIs, which was at the same level vertically, was assumed to be in the same distance

from the camera. These sets can be considered as the regions representing far, middle, and

near the camera (section 6.3.5).

Up to 45–50 DAP, the nature of trends from sub-ROIs (1–3) that represented the far

region from the camera exhibited higher GCC values than the sub-ROIs (7–9) that

represented the near region. The GCC trend from the middle sub-ROIs (4–6 ) was in

between the far and the near. Even though the crop growth was uniform all over the field,
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Far

Middle

Near

Figure 6.8. Effect of camera distances on the general GCC phenological trend from
different ROIs arranged vertically at 12:00.

this phenomenon was observed because of the PhenoCam’s oblique view angle, the

increasing actual depth in the field with a fixed ROI height as the distance from the camera

increases, and the normal fading effect the increased distance creates. The ROIs from the

area that was near the camera even captured some portions of soil and residue until

50 DAP, hence lower GCC value was obtained. This pattern was prominently expressed in

Mandan-H5, but to a lesser extent in Mandan-I2.

After 50 DAP, the nature of curves reversed. The ROIs that were far from the

camera showed lower GCC value than the ones that were near. This was because the

regions that were far from the camera were less focused and had poor resolution, which

represented only the canopy. While the plants near the camera were well focused and had

better resolution such that even some of the leaves were visually noticeable. Also, the

reflections on the leaves, caused by the sun, were seen in the near regions compared to far.

These reflections increased the color intensity values in the ROI and produced higher GCC

values for plants that are near the camera.
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Based on these general observations (fig. 6.8), it may be concluded that the distance

of the camera from the field regions alters the CVIs, unlike the time of image capture, and

influences the phenological trends. Therefore, it is necessary to have a consistent distance

or averaging the sub-ROIs or a larger ROI may be necessary to address the variations. It

can also be concluded that a smaller sub-ROI cannot be used to replace a larger ROI based

on the observed variations.

6.4.4. Phenological Curve Pattern of Different CVIs

The phenological curve for all CVIs showed a clear pattern highlighting different

phenology stages (fig. 6.9). Among the curves, only RGRI and CIVE showed a flipped

pattern because of the nature of their respective mathematical relationships. In the RGRI

calculation (eq. 6.8), the G value was considered inversely proportional to RGRI, whereas

with CIVE (eq. 6.10), though it was a linear relationship, the increased weight assigned to

g (0.881) and the negative sign associated with g produced the flipped pattern.

Irrespective of the two different patterns (flipped and non-flipped), the phenology stages

matched with the manual visual assessment.

Ideally, the VC stage (fig. 6.6) is expected in the phenological curves at 10–15 DAP.

In some of the CVIs, the VC stage was barely noticeable (e.g., NGRDI, NGBDI, RGRI, EXGR,

Laba′), which makes it difficult to identify the start of the growing season. While, a few

other CVIs (e.g., GCC, MGRVI, RGBVI, GLI, EXG, CIVE, HSBhue) prominently exhibited the

VC stage. In PhenoCam studies, different threshold values, such as 10 %, 25 %, and 50 % of

amplitude, were reported to identify the start of growing season (Browning et al., 2017;

Richardson et al., 2018b). This means the DAP at which the CVI value exceeds the

threshold was identified as the VC stage.
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Gmax =   0.57
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Figure 6.9. Phenological curves of different CVIs for Mandan-H5 and -I2 fields showing the different soybean
phenological stages. The Gmax and Gmin values used in the normalization can be used to infer the actual CVI values.
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In this study, the threshold value can be directly related to the graduations in the

y-axis (normalized CVI value; fig. 6.8). The threshold value of 10 % and 50 % was found

less suitable as they did not correctly represent the VC stage. Based on the observations, a

threshold value of 25 % was better, because some of the CVIs (e.g., GCC, RGBVI, EXG, VEG,

HSBhue) correctly represented the VC stage.

The peak bloom of vegetation was identified in all the CVIs on 45–50 DAP that was

also matched with manual visual assessment. In a phenological curve, this was the point

when the CVIs attained the maximum value except for RGRI and CIVE (minimum value).

It was interesting to note that the crop growth was uniform in both fields until this point

and displayed a minor separation afterward (fig. 6.8). This separation might be due to the

actual growth difference between field or some of the agronomic factors such as field

history, soil fertility, and nutrition. From the CVI curves, it was clear that the peak bloom

(vegetative) was distinctly noticeable from any CVI (45–50 DAP).

The phenology transition into the maturity stage had deviations between both fields

— plants in Mandan-I2 matured faster than Mandan-H5 (fig. 6.8). This was observed with

the separation in the CVI curve after >85 DAP. However, this phenomenon was observed

distinctly only with those CVIs, in which the VC stage was not detectable. Further

investigation and comparison with other agronomic factors would reveal striking inferences

at this phenology stage.

The end of the growing season was obvious in all CVI curves. This was characterized

by the minimum value for all the CVIs, but the maximum value for RGRI and CIVE.

The curve almost becomes flat once the plants reached maturity. Some studies identified
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the end of the growing season using the same threshold value used to identify the VC stage.

However, the threshold value used in this study did not work well for all the CVIs.

6.4.5. Selection of a Set of Best CVIs — Based on Curve Smoothness and Time of Capture

Even though the time of image capture produced similar variation among the GCC

values (fig. 6.7), the variations in the GCC values across DAP exist within each curve and

an ideal CVI will minimize such variation. Therefore, it is desirable to study the variation

caused by all other CVIs across DAP, with respect to a smoothed curve, to determine a set of

best CVI that produced minimum variation statistically analyzed across different times of

image capture. For this purpose, the variation produced by each CVI was quantified by

comparing with their respective smoothed curve and LDeviation (eq. 6.18). The LDeviation

produced by different CVIs from the images captured between 10:00 and 14:00 at 30 min

interval is presented in table 6.1.

Among different times of image capture, the overall LDeviation for both fields ranged

between 0.072 % and 0.412 %, and daily mean ranged between 0.052 % and 0.263 %.

It was interesting to observe that none of the CVIs produced statistically the same LDeviation

for the entire time span. There were at least two distinct groups observed for each CVI.

Although the expressions were different for GCC (eq. 6.1) and EXG (eq. 6.9), the same

LDeviation was produced between them. Similarly, the NGRDI (eq. 6.2) and NDI (eq. 6.6)

produced the same LDeviation.

208



Table 6.1. Curve length deviations of 15 different color vegetation indices from their respective smoothed curve from
the images captured between 10:00 and 14:00 during the 2018 growing season.

Vegetation Curve length deviation from smoothed curve (%) Rank

Index 10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 Daily mean†

Mandan-H5
GLI 0.119±0.021 ab 0.144±0.013 a 0.145±0.015 a 0.102±0.017 b 0.129±0.023 ab 0.125±0.019 ab 0.113±0.015 ab 0.129±0.023 ab 0.148±0.019 a 0.052±0.015 c 1
GCC 0.122±0.022 ab 0.15±0.014 a 0.151±0.017 a 0.109±0.019 b 0.14±0.026 ab 0.132±0.022 ab 0.123±0.017 ab 0.139±0.027 ab 0.16±0.023 a 0.054±0.015 c 2
EXG 0.122±0.022 ab 0.15±0.014 a 0.151±0.017 a 0.109±0.019 b 0.14±0.026 ab 0.132±0.022 ab 0.123±0.017 ab 0.139±0.027 ab 0.16±0.023 a 0.054±0.015 c 3
CIVE 0.115±0.022 ab 0.144±0.013 a 0.142±0.016 a 0.103±0.017 b 0.132±0.024 ab 0.123±0.019 ab 0.113±0.016 ab 0.126±0.024 ab 0.143±0.02 a 0.054±0.014 c 4
VEG 0.14±0.029 b 0.168±0.02 ab 0.171±0.026 ab 0.131±0.028 b 0.185±0.04 ab 0.161±0.035 ab 0.165±0.03 ab 0.182±0.047 ab 0.215±0.043 a 0.058±0.013 c 5
EXGR 0.119±0.023 abc 0.149±0.014 a 0.127±0.018 ab 0.101±0.014 bc 0.124±0.021 abc 0.122±0.014 abc 0.094±0.012 c 0.1±0.015 bc 0.098±0.015 bc 0.07±0.011 d 6
RGBVI 0.202±0.029 b 0.186±0.02 b 0.192±0.026 b 0.159±0.038 b 0.208±0.041 b 0.225±0.048 ab 0.196±0.029 b 0.229±0.046 ab 0.278±0.042 a 0.079±0.019 c 7
MGRVI 0.183±0.025 a 0.172±0.01 a 0.125±0.016 b 0.125±0.01 b 0.172±0.02 a 0.178±0.01 a 0.116±0.009 b 0.117±0.01 b 0.109±0.015 b 0.081±0.014 c 8
NGRDI 0.175±0.025 a 0.177±0.013 a 0.13±0.019 b 0.123±0.012 b 0.162±0.021 a 0.172±0.011 a 0.11±0.009 b 0.113±0.01 b 0.104±0.014 b 0.086±0.013 c 9
NDI 0.175±0.025 a 0.177±0.013 a 0.13±0.019 b 0.123±0.012 b 0.162±0.021 a 0.172±0.011 a 0.11±0.009 b 0.113±0.01 b 0.104±0.014 b 0.086±0.013 c 10
RGRI 0.168±0.027 b 0.211±0.027 a 0.159±0.032 b 0.13±0.022 bcd 0.144±0.027 bc 0.166±0.021 b 0.097±0.015 d 0.113±0.011 cd 0.094±0.013 d 0.106±0.012 cd 11
NGBDI 0.159±0.03 abc 0.21±0.033 a 0.171±0.041 ab 0.132±0.028 bcd 0.135±0.032 bcd 0.168±0.031 ab 0.098±0.019 d 0.11±0.015 cd 0.09±0.012 d 0.118±0.01 c 12

HSBhue 0.244±0.028 a 0.096±0.002 d 0.095±0.006 d 0.101±0.006 d 0.172±0.01 b 0.237±0.014 a 0.141±0.008 c 0.107±0.007 d 0.116±0.01 d 0.146±0.01 c 13
Laba′ 0.178±0.006 b 0.198±0.014 a 0.165±0.006 bc 0.136±0.009 d 0.16±0.004 c 0.179±0.01 b 0.119±0.007 e 0.158±0.009 c 0.138±0.01 d 0.159±0.008 c 14
DGCI 0.403±0.009 a 0.206±0.019 e 0.199±0.017 ef 0.176±0.015 f 0.277±0.009 c 0.342±0.02 b 0.199±0.012 ef 0.251±0.011 d 0.219±0.006 e 0.252±0.013 d 15

Mandan-I2
GLI 0.114±0.016 b 0.133±0.013 b 0.114±0.007 b 0.136±0.007 b 0.14±0.008 b 0.146±0.015 a 0.157±0.02 a 0.13±0.02 b 0.163±0.016 a 0.068±0.087 c 1
GCC 0.124±0.019 b 0.138±0.015 b 0.121±0.008 b 0.144±0.007 b 0.154±0.008 a 0.16±0.018 a 0.171±0.023 a 0.141±0.024 b 0.173±0.019 a 0.072±0.089 c 3
EXG 0.124±0.019 b 0.138±0.015 b 0.121±0.008 b 0.144±0.007 b 0.154±0.008 a 0.16±0.018 a 0.171±0.023 a 0.141±0.024 b 0.173±0.019 a 0.072±0.089 c 4
CIVE 0.119±0.017 b 0.134±0.014 ab 0.115±0.007 b 0.138±0.006 ab 0.143±0.009 a 0.155±0.015 a 0.162±0.021 a 0.136±0.022 ab 0.169±0.017 a 0.071±0.084 c 2
VEG 0.18±0.033 bcd 0.173±0.028 cd 0.164±0.017 d 0.198±0.016 abcd 0.238±0.013 ab 0.237±0.038 ab 0.258±0.043 a 0.204±0.049 abcd 0.234±0.036 abc 0.097±0.084 e 6
EXGR 0.113±0.012 e 0.146±0.007 bc 0.106±0.003 e 0.136±0.009 c 0.116±0.013 de 0.157±0.006 b 0.136±0.011 c 0.132±0.011 cd 0.173±0.01 a 0.08±0.078 f 5
RGBVI 0.209±0.034 b 0.236±0.039 ab 0.233±0.015 ab 0.246±0.024 ab 0.296±0.02 a 0.269±0.042 ab 0.256±0.032 ab 0.224±0.045 b 0.26±0.049 ab 0.149±0.132 c 13
MGRVI 0.125±0.01 de 0.158±0.009 bc 0.099±0.01 f 0.143±0.016 cd 0.102±0.018 f 0.173±0.014 b 0.118±0.01 ef 0.138±0.009 cde 0.197±0.014 a 0.102±0.098 f 7
NGRDI 0.121±0.01 ef 0.166±0.008 bc 0.104±0.011 f 0.145±0.015 cd 0.104±0.018 f 0.172±0.013 ab 0.119±0.01 ef 0.137±0.009 de 0.192±0.014 a 0.107±0.089 f 8
NDI 0.121±0.01 ef 0.166±0.008 bc 0.104±0.011 f 0.145±0.015 cd 0.104±0.018 f 0.172±0.013 ab 0.119±0.01 ef 0.137±0.009 de 0.192±0.014 a 0.107±0.089 f 9
RGRI 0.118±0.012 d 0.228±0.007 a 0.141±0.018 cd 0.17±0.021 bc 0.128±0.024 d 0.166±0.018 bc 0.133±0.012 d 0.146±0.017 cd 0.194±0.022 b 0.133±0.084 d 12
NGBDI 0.133±0.013 e 0.25±0.008 a 0.174±0.018 cd 0.193±0.02 bc 0.159±0.023 de 0.192±0.014 bc 0.149±0.011 de 0.159±0.012 de 0.208±0.019 b 0.161±0.07 de 14

HSBhue 0.134±0.009 c 0.08±0.005 ef 0.073±0.005 f 0.127±0.008 cd 0.072±0.012 f 0.178±0.014 b 0.091±0.008 e 0.116±0.003 d 0.224±0.012 a 0.122±0.008 d 11
Laba′ 0.111±0.003 cd 0.156±0.012 a 0.103±0.006 d 0.124±0.015 bc 0.103±0.008 d 0.127±0.007 b 0.124±0.003 bc 0.136±0.006 b 0.168±0.008 a 0.128±0.007 b 10
DGCI 0.239±0.011 cde 0.272±0.034 bcd 0.174±0.032 f 0.245±0.032 cde 0.217±0.03 ef 0.307±0.036 b 0.222±0.021 def 0.282±0.024 bc 0.412±0.025 a 0.263±0.027b 15

Note: †Daily mean value of each CVI was calculated from the daily RGB mean and standard deviation values provided by the PhenoCam network for the whole ROI (solid line, fig. 6.4),
GLI - green leaf index, GCC - green chromatic coordinate, EXG - excess green, CIVE - color index of vegetation, VEG - vegitativen, EXGR - excess green minus excess red, RGBVI - red green
blue vegetation index, MGRVI - modified green red vegetation index, NGRDI - normalized green red difference index, NDI - normalized difference index, RGRI - red green ratio index,
NGBDI - normalized green blue difference index, HSBhue- hue channel value from HSB color space, Laba′ - inverted “a” channel value from Lab color space, and DGCI - dark green color
index. Dissimilar letter groups (a–f) denote significant differences in the curve length deviations among time.
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The CVIs from HSB and Lab color spaces had more deviation than the ones from

RGB color space. Among the three color spaces, the Laba′ produced the minimum

deviation, followed by HSBhue and DGCI (table 6.1). The reason for the higher deviation of

DGCI might be because the index calculation (eq. 6.15) involved the S and B′ components

that were influenced due to the color intensity variation. The application of DGCI is

primarily on quantifying the variations among fine shades of green and hence it is sensitive

to even slight intensity variation (Karcher & Richardson, 2003). If only HSBhue (eq. 6.13)

was considered, ignoring S and B′ channels, the LDeviation reduced by about half when

compared to the DGCI (table 6.1).

The CVIs were ranked based on the LDeviation in Mandan-H5 using daily mean RGB

values in ascending order, and it was observed that the GLI produced the minimum and

DGCI produced the maximum LDeviation in both fields (table 6.1). The ranking order of the

rest of the CVIs was different for Mandan-I2 and did not have a specific order between the

fields. This might be because the location of the two fields were away (≈3.2 km), one field

could have possibly had a cloud cover while others did not. This cloud cover reduced the

image color intensity and thus varied the CVI value between fields. Also, the inherent field

conditions such as soil type and moisture availability would have created some differences

in crop growth. However, the top six CVIs were similar in both fields but a different order.

The CIVE, even though the phenological pattern was flipped (fig. 6.8), the LDeviation value

was less and comparable with other top-five CVIs.

Out of all the grouping labels from mean separation, the CVI that produced less

number of groups was considered ideal in this study, because it denotes significantly less

variation among different time. Some of the CVIs produced up to six groups (a–f) among
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different times (e.g., DGCI, NGRDI in Mandan-I2). This indicated that any minor changes

in ambient lighting conditions among time caused a significant effect on the CVI values.

A few CVIs in Mandan-H5, such as MGRVI, NGRDI, NDI, also produced just two groups, but

their LDeviation values were higher. Therefore, the selection of CVI based on a combination of

“fewer groups” and “lower LDeviation value” indicated a better CVI that was less affected by

lighting conditions among time.

Based on the above-mentioned criteria, four CVIs from RGB color space selected

were: GLI, GCC, EXG, and CIVE. The other CVIs that closely followed were VEG and EXGR.

Also, in the interest of exploring other color spaces, all three CVIs in this study, namely,

HSBhue, Laba′ , and DGCI were selected and analyzed. However, it was found that these

other color space CVI were ranked the lowest (10–15 out of 15) and have also produced

several significant groups among times of image capture (table 6.1).

It can be seen that GCC and EXG were already well established in the PhenoCam

network in monitoring phenology (Andresen et al., 2018; Crimmins & Crimmins, 2008).

The other two CVIs, such as GLI and CIVE were also comparable with GCC and likely to be

suitable for the analysis. The GLI produced the least LDeviation among the CVIs. Therefore,

along with GCC and EXG, the GLI and CIVE can also be possibly considered in future

PhenoCam related measurement and analysis. It will be also worthwhile to validate these

CVIs with different crops and ecosystems (forest and agricultural) in future studies.

6.4.6. Phenological Pattern on Selected CVIs

The phenological curve for selected CVIs at different times of image capture showed

differences among CVIs (fig. 6.10). To consider the selected CVIs in future studies, it is

important to see whether the CVIs followed the phenological pattern. The variation in the
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phenological pattern among CVIs at a specific time can be visually observed by following

through the panels in each column (fig. 6.10). It should be noted that each column

corresponds to the same set of images (143 images for Mandan-H5 and 139 images for

Mandan-I2) at a specified time and thus the color values extracted are also the same

throughout each panel in the columns. The differences in pattern among CVI at a specified

time are solely due to the mathematical relationships used for deriving these CVIs.

The GLI closely followed a typical phenological curve and there was no much

difference between Mandan-H5 and -I2. Irrespective of the time of image capture, GLI

clearly showed some of the significant phenology stages, such as VC, R2, and R8 at

10–15 DAP, 40–45 DAP, and 110–120 DAP, respectively. Though there were some

distortions observed in the pattern, it is possibly due to the cloud cover during image

capture. Although the LDeviations produced by GCC and EXG were the same (table 6.1),

the phenological pattern produced looks different. On the basis of following the

phenological pattern among time, the CIVE was better than EXG, even though it was

flipped. The difference in the curve between the two fields was also less in CIVE.

Specifically, considering the image at 12:00 (midday), except for Laba′ , all other CVIs

produced an irregular pattern.

In other color spaces, the simple HSBhue and Laba′ were moderately suitable for this

application of monitoring phenological trend; however, it can be seen that DGCI was less

suitable because of the irregular fluctuations throughout the growing season. But, it may

be useful in identifying crop stress such as nitrogen (Raper et al., 2012). Therefore, this

can be further explored in PhenoCam fields with stress trials in the field.
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Max:  0.25
Min: −0.08

Max: 0.46
Min:  0.29 

Max:  0.46
Min: −0.09

Max:  1.59
Min:  0.84

Max: 0.89
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Figure 6.10. Phenological trend variations in the selected CVIs between 10:00 and 14:00 for Mandan-H5 and
Mandan-I2. Note: GLI - green leaf index, GCC - green chromatic coordinates, EXG - excess green, CIVE - color index of
vegetation, HSBhue- hue channel value from HSB color space, Laba′- inverted “a” channel value from Lab color space,
and DGCI - dark green color index. Note: The Max and Min values provided in the row panel title can be used to
obtain the actual CVI value from the normalized CVI value.
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6.4.7. Comparison Among Different CVIs

Statistical comparisons among different CVIs help understand the similarity among

them and lead to the selection of a set of similar CVIs. The curve length deviations from the

daily mean values of each CVI was used to perform the analysis (fig. 6.11). It was found

that the selected CVIs from RGB color space such as GLI, GCC, EXG, and CIVE were

statistically similar in both fields. For Mandan-H5, the CVIs such as RGBVI, MGRVI, NGRDI,

and NDI were statistically similar, while not for Mandan-I2.
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Figure 6.11. Curve length deviations for different CVIs with daily RGB mean values.
Note: Dissimilar letter groups (a-g) of the same color denote significant differences
among CVIs of the same experimental plot.

For all the CVIs from RGB color space, Mandan-I2 had consistently produced a

higher curve length deviation than Mandan-H5, while in HSB and Lab color spaces,

Mandan-I2 produced lower curve length deviation. This is an interesting observation and

gives an insight that the mathematical relationships with RGB color space and other color

spaces are different. Also, it can be seen that DGCI produced the minimum deviation
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between the two fields, but the phenological pattern (fig. 6.9) was not suitable. Therefore,

slightly modifying the DGCI equation or deriving a new index similar to DGCI would

possibly suit the phenological applications and which will be a future scope of the study.

6.4.8. Effect of Camera Distance on Selected CVIs

Only the selected CVIs that had the minimum deviations and had two mean groups

were used for testing the effect of camera distance. The camera distances — represented by

far, middle, and near ROIs were assumed at the same horizontal level (fig. 6.4), with the

component sub-ROIs at each level served as the replications. The results indicated that

camera distance had a significant effect on some CVIs but not on all (fig. 6.12).

HSBhue Laba′

Figure 6.12. Effect of camera distance on selected CVIs for Mandan-H5 and -I2.
Dissimilar letter groups (a and b) denote that the selected CVI is significantly
different from camera distance.

A general trend of the CVIs variation with the distance of near producing higher

deviation than middle and far was observed. This was because the regions near the camera
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captured more features with a better resolution and focus. For example, even the sun’s

reflections on the leaves were noticeable in the near portions, which caused more

fluctuations in the CVI values and were captured by curve length deviation. While the

regions that were away from the camera barely captured the leaves (low-resolution and

leaves defined by fewer pixels) and also had the fading effect. A combination of these

effects reduced the variation in the CVI curves and produced smaller values of curve length

deviation for the near camera distance.

In both the fields, the DGCI produced the maximum deviation. In Mandan-H5,

except HSBhue all other CVIs did not have a significant effect on distance. However,

in Mandan-I2 all the CVIs from RGB color space produced significant differences among

camera distance (fig. 6.11). In some of the PhenoCam studies, the ROI is selected randomly

without considering the effect of distance (Yan, Scott, Moore, Biederman, & Smith, 2019).

The ROIs that were far from the camera is not a proper representative to monitor the crop

growth. Therefore, it can be concluded that the selection of the ROI location in the

PhenoCam image is crucial and should be chosen appropriately so that it provides a

considerable and representative region for phenology monitoring and other analysis.

6.4.9. Results of Simplified Phenological Curve Analysis by Kymograph

The downloaded images from Mandan-H5 and -I2 were used to generate the

kymograph in ImageJ, a composite image made from one pixel ROI from each time-lapse

image that provides a glimpse of the whole growing season (fig. 6.13A). Simple operations

such as separating the color channels into HSB and Lab stack and analyzing the profile

enabled to observe the entire phenological trend of the crop from this simple image

(fig. 6.13B–E).
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Figure 6.13. Simplified phenological curve analysis from PhenoCam images:
(A) kymographs generated using ImageJ for Mandan-H5 and Mandan-I2, (B) hue
channel image from HSB color space, (C) hue channel profile for the whole
kymograph, (D) inverted “a” channel image from Lab color space, and (E) inverted
“a” channel profile for the whole kymograph.
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The kymograph, as a single image, itself served as a good reference to observe the

phenology transitions. It can be observed that the soil or residue on the left side of the

kymograph slowly disappeared and the vegetation started to increase. Once the peak

vegetation bloom/canopy closure was attained, the green vegetation portion remained

until the plants started to mature. The transition from green to “yellowish” can be seen in

the kymograph. Once the plant was fully matured, the portion towards the right of the

kymograph was in brown. The color difference between soil (left of kymograph) and

matured plant (right of kymograph) was interesting to observe and this color difference

can be used to discern between matured plant and soil.

The hue channel produced from the kymograph (fig. 6.13B) showed a slight

variation in a gray color that represented the vegetation. The beginning of maturity

(yellowness) was not observed in this channel image through simple observation. However,

the profile (fig. 6.13C) obtained from the hue image was useful and exhibited the

phenological trend. The x-axis of the profile showed the number of images used in the

kymograph. The corresponding DAP values can be obtained by dividing the x-axis by nine

since nine images per day (10:00–14:00) were used in this study. All four significant

phenology stages were identified in the profile similar to the typical GCC curve (fig. 6.6).

The “a” channel image from Lab color space was not directly useful; hence, the

image was inverted and used for analysis (fig. 6.13D). The vegetation portion was seen in

lighter shades of gray, while the matured portion was seen in dark gray. Visually the

phenology transitions were noticeable from the image. The corresponding profile plot

(fig. 6.13E) was flat compared to the hue channel profile (fig. 6.13C). The VC stage was
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not seen in Mandan-I2. The variations produced in the profile after the plant reached

maturity did not convey any meaningful observation from the kymograph.

This simplified analysis using kymograph was straightforward and does not require

any plugin coding (fig. 6.13). The generation of kymographs from 1287 images took a CPU

time of ≈2 min including opening the image as a stack. This is quite understandable as the

kymograph used only a single line ROI to build the composite image, and thus took less

time in processing but the major portion of time in reading the images and the stack

creation. The reduction in processing time compared to the plugin-based method, which

used all the images in the raw form, was about ≈73.3 %.

The results showed that this simplified approach has a potential scope to be used in

the PhenoCam network as it considerably reduces the processing time and storage (once

kymographs were made). This simplified approach should also be extended to other CVIs

and compared with the regular method and statistically analyzed. A similar concept of

obtaining a kymograph with a rectangular ROI window will be a potential for further

investigation and extension to this simplified approach; however, it requires user-coded

plugin development.

6.5. Conclusions

This study successfully determined the phenological trends of soybean (two

PhenoCam sites: Mandan-H5 and Mandan-I2) through various color vegetation indices

(CVIs; 15 CVIs RGB, HSB, and Lab color spaces), evaluated the effect of time of image

capture (10:00–14:00) and distance from the PhenoCam (far, middle, and near) on the

CVIs, and selected a set of best CVIs that will be suitable for PhenoCam application and

analysis in agricultural environment. The developed user-coded ImageJ plugin was found
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efficient in extracting the color values from a specified region of interest (ROI) from the

PhenoCam images and generated values in the different color spaces for analysis. It was

observed that the phenology stages from manual visual assessment matched well with the

features in the typical green chromatic coordinates (GCC) phenological curve.

The time of image capture had a significant effect on all CVIs with at least two mean

groups and the best CVIs were selected based on minimum deviation from its respective

smoothed curve and least number of statistical groups. The best CVIs selected were green

leaf index (GLI), green chromatic coordinates (GCC), excess green (EXG), and a color

index of vegetation (CIVE). Out of these four CVIs that were not significantly different, the

GLI was the best and it closely followed the phenological trend. The CVIs from other color

spaces such as HSB and Lab were not found suitable. The regions near the PhenoCam

produced more deviation than the middle followed by far because of better resolution and

focus when tested with the selected CVIs. There was a significant difference among camera

distances for all RGB-based CVIs with Mandan-I2 site, but not in Mandan-H5 site.

A simplified no-code approach to identify the phenology using the kymograph has

produced promising results. The hue channel from the kymograph displayed distinct

phenology stages. The kymograph method was simple and was ≈73.3 % faster in analysis

than the plugin-based method dealing with multiple PhenoCam images.
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7. GENERAL CONCLUSIONS AND SUGGESTIONS FOR

FUTURE WORK

7.1. General Conclusions

There are several digital image processing applications available in agriculture;

however, the literature on the field applications is limited (<35 %). Working with

agricultural field images is quite challenging due to the variations in lighting, improper

focus, and the presence of artifacts. Moreover, several of the applications are developed

using commercial software and it was reported that it requires high technical knowledge to

operate in general and the processing software packages is inaccessible to users/farmers.

Therefore, this study focused on developing four agricultural field applications of digital

image processing using Fiji, an open source no-cost image processing platform. Fiji is a

distribution of ImageJ and enables easier plugins development experience using Java

language. All the plugins were developed on a personal computer with the following

configuration of Windows 10, Intel Core i5, and 8 GB RAM. The selection of four objectives

was based on field requirements in modern agriculture and problems already existing that

can be addressed through image processing applications. The findings from each objective

are presented here:

• Objective 1: An ImageJ plugin to measure the dimensions of the field sunflower floral

components was developed and tested successfully. The plugin performed multiple

radial measurements using the “pixel-march” method and produced the accurate

221



dimensions. The recommended number of measurements that best represented

sunflower head and ray florets was 32, and for the disc was 8. Dimensions of the

sunflower head and disc obtained from the pixel-march method were statistically

similar to the equivalent diameter as well as minor axis methods of ImageJ. However,

accurate dimensions of ray florets were possible only through this plugin as there

were no standard methods available in ImageJ or any other image processing

software. The measurement took ≈11 s to perform 180 measurements on all

sunflower components.

• Objective 2: A color calibration ImageJ plugin termed “ColorCal” to standardize the

image intensity variations was developed and tested with laboratory and field images.

The user-developed plugin produced calibrated images by deriving a color calibration

matrix (CCM) by comparing the standard 24 patches color chart in the image with its

respective standard values. The developed calibration performance index (CPI) was

useful in observing the effect of the number of color patches and deciding the

minimum number of color patches. The calibration using only the 3 patches namely

red, green, and blue (R, G, and B) produced visually homogenous intensity images,

while the commonly followed neutral colors namely white and gray patches

produced differences in image intensity. The plugin took ≈7 s/image to produce a

calibrated image and performed well equally in laboratory and field conditions.

• Objective 3: A user-coded open source ImageJ plugin, developed from scratch using a

simple profile and geometrical approach to perform stand counting and spatial

distribution from UAS images was developed successfully. The rows were accurately
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identified up to a row length of ≈100 m based on profile analysis, and is expected to

work even >100 m, as long as the rows are straight. A novel segmentation approach

to resolve the plant cluster based on sideways profile and object geometry showed

promising results. The plugin achieved an accuracy of 95.9 % and 84.9 % on the

stand count tested with two sets of images (different sites, resolution, and growth

stages). For the spatial distribution analysis, a new index termed “ideal spacing

uniformity index” (ISUI) was developed, utilizing the ideal seed spacing, and found

to be the best to evaluate plant spatial distribution. The plant spacing distribution

was compared with ideal spacing and accuracy of >76.5 % was found. The graphical

outputs such as the spatial distribution map and the histogram helped in visualizing

the “location” and “count” of ideal, skip, and multiples. The CPU time taken for the

analysis was 31.7 s and 4.2 s for two sets of images, respectively. The CPU time was

affected by image resolution and expected to increase with a higher resolution for the

same field area.

• Objective 4: Soybean growth monitoring using various color vegetation indices

derived from PhenoCam images was evaluated. The developed user-coded ImageJ

plugin efficiently extracted the color values from a specified region of interest (ROI)

from the PhenoCam images and generated values in the different color spaces (RGB,

HSB, and Lab) for analysis. The phenology stages from manual visual assessment

matched well with the features in the typical phenology curve. The time of image

capture (10:00–14:00) had a significant effect on all CVIs and the best CVIs were

selected based on minimum deviation value and the least number of statistical

groups. The best CVIs selected were green leaf index (GLI), green chromatic
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coordinates (GCC), excess green (EXG), and a color index of vegetation (CIVE).

These four CVIs were not significantly different from each other, but the GLI was the

best as it closely followed the observed phenology trend. The CVIs from other color

spaces such as HSB and Lab were not found suitable. There was a significant

difference among PhenoCam distances (far, middle, near) for all RGB-based CVIs in

one field but not on the other field. The regions near the phenocam produced more

deviation than the middle followed by far because of better resolution and focus for

the near regions. A simplified no-code approach to identify the phenology using the

kymograph displayed distinct phenology stages from the hue channel. The

kymograph method was simple and significantly reduced the analysis time by

≈73.3 % compared to the plugin-based method dealing with multiple phenocam

images.

7.2. Suggestions for Future Work

The future research works suggested here pertain to possible work that can be

extended from each of the objectives considered in this dissertation.

1. Develop an image processing approach to count the number of seeds in the

sunflower disc and correlate it with the seed yield estimates.

2. Develop a higher order color calibration matrix by including the square terms

and interaction terms.

3. Develop an efficient row identification method for curvilinear rows and perform

stand count on irregular field geometry.
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4. Study the phenology trend for different crops and evaluate the variation in color

vegetation indices as well as apply time-series analysis for phenology trend

prediction.
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APPENDIX A. PSEUDOCODE OF THE DEVELOPED

SUNFLOWER DIMENSION MEASUREMENT PLUGIN

This appendix provides the pseudocode of the sunflower floral dimensions

measurement plugin with appropriate sections, task specific Java methods, package

imports, and comments are presented subsequently for following the overall algorithm and

better understanding of the processes.

/********************************************************************************
* Sunflower floral dimensions measurement plugin
* Developed by S. Sunoj & C. Igathinathane; ABEN, NDSU
*********************************************************************************/

// Other standard ImageJ plugin imports
import java.awt.geom.Point2D;
import imagingbook.lib.interpolation.InterpolationMethod;
import imagingbook.pub.geometry.mappings.Mapping;
import imagingbook.pub.geometry.mappings.linear.ProjectiveMapping;
/*************************************************************************/
public class Sunflower_dimensions_plugin implements PlugIn {

public void run(String arg) {
Read_user_inputs_and_image; // Generic dialog box - front panel of plugin
int[][] cmarkers = Find_circular_markers (Input_image);
ImagePlus cor_image = Projective_transform(Input_image, cmarkers);
ImagePlus bw_image = binarize_image (cor_image);
ImagePlus wp_image = draw_wrapping_polygon (bw_image);
double direct_mean_dim = pixel_march(bw_image, n_measurements); // direct method
double wp_mean_dim = pixel_march(wp_image, n_measurements); // wrapping polygon
float[] shapes_bw = get_shape_param (bw_image); // e.g., area, circularity...
float[] shapes_wp = get_shape_param (wp_image);

}

/****************** Developed Java methods *******************/
/***************** Identifying circular markers *****************/
public int[][] Find_circular_markers (Input_image){

IJ.run(Input_image, "8-bit", "");
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IJ.run(Input_image, "Minimum", ""); // minimum thresholding scheme
IJ.run("Set Measurements...", "area centroid redirect=None decimal=3");
IJ.run(imp, "Analyze Particles...", "size=0-2000 circularity = 0.85-1.00

show=mask"); // identifies only markers

rt = Analyzer.getResultsTable();
float[] x_cent = rt.getColumn(ResultsTable.X_CENTROID);
float[] y_cent = rt.getColumn(ResultsTable.Y_CENTROID);

// convert float[] to int[4][2] using a ‘‘for’’ loop
return Cent_XY;
}

/********************** Distortion correction **********************/
public ImagePlus Projective_transform(Input_image, Cent_XY){

Point2D p0 = new Point(Cent_XY[0][0], Cent_XY[0][1]);
Point2D p1 = new Point(Cent_XY[1][0], Cent_XY[1][1]);
Point2D p2 = new Point(Cent_XY[2][0], Cent_XY[2][1]);
Point2D p3 = new Point(Cent_XY[3][0], Cent_XY[3][1]);

// Target was fixed as 3000 by 3000 pixels with 100 pixel margin
Point2D q0 = new Point(100, 100);
Point2D q1 = new Point(3100, 100);
Point2D q2 = new Point(3100, 3100);
Point2D q3 = new Point(100, 3100);

// Methods from ‘‘imagingbook’’ imports
Mapping map = new ProjectiveMapping(p0, p1, p2, p3, q0, q1, q2, q3);
map.applyTo(ip2, InterpolationMethod.Bicubic);

ImagePlus cor_image = new ImagePlus ("Projective transformation", ip2);

return cor_image;
}

/********************** Image binarization **********************/
public ImagePlus binarize_image (cor_image){

// Sunflower head (SH) --- ‘‘default’’ thresholding scheme
// Sunflower disc (SD) --- ‘‘shanbhag’’ thresholding scheme

// Obtaining ray florets image
ImageCalculator ic = new ImageCalculator();
ImagePlus RF = ic.run("Ray florets image", SH, SD); // ray florets

return RF;
}
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/********************** Drawing wrapping polygon **********************/
public ImagePlus draw_wrapping_polygon (bw_image){

int[][] obj_cent = get_object_centroids (bw_image);
int[] obj_outline = get_obj_outline (bw_image); // use ‘‘Wand()’’
double[] rad_dist = get_radial_distance (obj_cent, obj_outline);

if (rad_dist[i-1] < rad_dist[i] && rad_dist[i] > rad_dist[i+1]){
// Select as a rayfloret tip --- (xpts, ypts)

}

// Draw a polygonal ROI with selected tip points and fill with black
PolygonRoi proi = new PolygonRoi(xpts, ypts, npts, Roi.POLYGON);
WP_img.setRoi(proi);
IJ.setColor(Color.BLACK);
IJ.run(WP_img, "fill...", "");

return WP_img;
}

/********************** Pixel-march dimensions **********************/
public double pixel_march (bw_image, n_measurements){

ang_step = 180/n_measurements;

double ang = 0.0;
for (int i = 0; i < n_measurements; i++){

if (ang < 45 || ang > 135){
// x_increment

} else {
// y_increment

}
// March outwards from centroid and find object edge point
// Calculate distance and store it in a double[] "dists".
ang = ang + ang_step;
}

DescriptiveStatistics ds = new DescriptiveStatistics(dists);
mean_dim = ds.getMean();

return mean_dim;
}

/********************** Obtain object shape parameters ***************/
public float[] get_shape_param (bw_image){

IJ.run("Set Measurements...", "area centroid perimeter bounding fit shape
feret’s redirect=None decimal=3");

257



IJ.run(imp, "Analyze Particles...", "size=2000-Infinity show=mask"); //
Records all listed shape parameters

rt = Analyzer.getResultsTable();
float[] area = rt.getColumn(ResultsTable.AREA);
float[] perim = rt.getColumn(ResultsTable.PERIMETER);
float[] circularity = rt.getColumn(ResultsTable.CIRCULARITY);
float[] soliditiy = rt.getColumn(ResultsTable.SOLIDITY);

return shape_values;
}

} // End class
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APPENDIX B. DATA AND PSEUDOCODE OF THE

DEVELOPED COLOR CALIBRATION PLUGIN

This appendix provides (i) some result data obtained by running the plugin, and (ii)

pseudocode of the ColorCal plugin. The data provided were used to generate the modified

total error plot (fig. B1), calibration performance index plot (fig. B2), and intensity

variations plot (fig. B3). A common spreadsheet program was used to generate the plots.

The corresponding figures are also reproduced for ready reference. The pseudocode is also

provided in Java that briefly describes the major components of the ColorCal plugin.

B1. Data used for Modified Total Error in Calibrated Images by Different Color

Schemes in Dark and Light Conditions (Fig. 4.7 - Reproduced as Fig. B1)
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Figure B1. Variations in modified total error in calibrated images by different color
schemes in dark and light conditions.
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Table B1. Data used for variations in modified total error in calibrated images by dif-
ferent color schemes in dark and light conditions.

Lighting Number of Modified total error (em)

condition patches Set 1 Set 2 Set 3s Set 4 Set 5 Set6

Dark 1 0.14 0.12 0.18 0.21 0.12 0.12
2 0.31 0.27 0.11 0.10 0.25 0.27
3 0.31 0.25 0.09 0.07 0.23 0.25
4 0.11 0.27 0.08 0.07 0.11 0.11
5 0.11 0.25 0.08 0.07 0.07 0.07
6 0.06 0.24 0.07 0.07 0.08 0.07
7 0.06 0.21 0.07 0.07 0.07 0.07
8 0.06 0.21 0.07 0.07 0.06 0.06
9 0.06 0.08 0.06 0.06 0.06 0.06
10 0.06 0.08 0.06 0.06 0.06 0.06
11 0.06 0.07 0.06 0.06 0.06 0.06
12 0.06 0.06 0.06 0.06 0.06 0.06
13 0.06 0.06 0.06 0.06 0.06 0.06
14 0.06 0.06 0.06 0.06 0.06 0.06
15 0.06 0.06 0.06 0.06 0.06 0.06
16 0.06 0.06 0.06 0.06 0.06 0.06
17 0.06 0.06 0.06 0.06 0.06 0.06
18 0.06 0.06 0.06 0.06 0.06 0.06
19 0.06 0.06 0.06 0.06 0.06 0.06
20 0.06 0.06 0.06 0.06 0.06 0.06
21 0.06 0.06 0.06 0.06 0.06 0.06
22 0.06 0.06 0.06 0.06 0.06 0.06
23 0.06 0.06 0.06 0.06 0.06 0.06
24 0.06 0.06 0.06 0.06 0.06 0.06

Light 1 0.10 0.09 0.17 0.21 0.09 0.09
2 0.08 0.22 0.09 0.10 0.22 0.22
3 0.11 0.21 0.03 0.06 0.19 0.20
4 0.03 0.24 0.04 0.06 0.03 0.07
5 0.03 0.21 0.04 0.05 0.02 0.04
6 0.03 0.25 0.04 0.04 0.03 0.03
7 0.03 0.22 0.04 0.04 0.03 0.03
8 0.03 0.20 0.04 0.04 0.03 0.03
9 0.03 0.05 0.03 0.03 0.03 0.03
10 0.03 0.03 0.03 0.03 0.03 0.03
11 0.02 0.03 0.03 0.03 0.03 0.03
12 0.02 0.03 0.03 0.03 0.03 0.03
13 0.02 0.03 0.03 0.03 0.03 0.03
14 0.02 0.03 0.03 0.03 0.03 0.03
15 0.02 0.02 0.03 0.03 0.03 0.03
16 0.02 0.02 0.03 0.03 0.03 0.03
17 0.02 0.02 0.03 0.03 0.03 0.03
18 0.03 0.02 0.03 0.03 0.03 0.03
19 0.03 0.02 0.03 0.03 0.03 0.03
20 0.03 0.02 0.03 0.03 0.03 0.03
21 0.02 0.02 0.02 0.02 0.02 0.02
22 0.02 0.02 0.02 0.02 0.02 0.02
23 0.02 0.02 0.02 0.02 0.02 0.02
24 0.02 0.02 0.02 0.02 0.02 0.02
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B2. Data used for Calibration Performance Index in Calibrated Images by Different

Color Schemes (Fig. 4.8 - Reproduced as Fig. B2)
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Figure B2. Variations in calibration performance index (CPI) in calibrated images by
different color schemes in dark and light conditions.
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Table B2. Data used for variations in calibration performance index in calibrated im-
ages by different color schemes in dark and light conditions.

Lighting Number of Calibration performance index (CPI)

condition patches Set 1 Set 2 Set 3s Set 4 Set 5 Set6

Laboratory 1 0.319 0.261 0.506 0.501 0.261 0.261
synthetic 2 0.988 0.424 0.283 0.338 0.424 0.424
images 3 0.952 0.560 0.205 0.254 0.363 0.390

4 0.232 0.531 0.241 0.254 0.647 0.340
5 0.232 1.000 0.221 0.232 0.156 0.174
6 0.152 0.685 0.208 0.208 0.171 0.175
7 0.149 0.839 0.206 0.206 0.174 0.158
8 0.150 0.702 0.197 0.197 0.153 0.153
9 0.148 0.240 0.183 0.183 0.151 0.151
10 0.147 0.184 0.180 0.180 0.151 0.151
11 0.139 0.178 0.168 0.168 0.150 0.150
12 0.138 0.162 0.156 0.156 0.146 0.146
13 0.141 0.150 0.158 0.158 0.145 0.145
14 0.143 0.156 0.157 0.157 0.145 0.145
15 0.143 0.156 0.158 0.158 0.143 0.143
16 0.140 0.154 0.158 0.158 0.143 0.143
17 0.140 0.140 0.155 0.155 0.143 0.143
18 0.153 0.141 0.153 0.153 0.142 0.142
19 0.135 0.142 0.135 0.135 0.135 0.135
20 0.134 0.138 0.134 0.134 0.134 0.134
21 0.132 0.137 0.132 0.132 0.132 0.132
22 0.130 0.134 0.130 0.130 0.130 0.130
23 0.129 0.134 0.129 0.129 0.129 0.129
24 0.128 0.128 0.128 0.128 0.128 0.128

Laboratory 1 0.391 0.281 0.616 0.568 0.281 0.281
cilantro 2 0.480 0.618 0.316 0.393 0.618 0.618
images 3 1.000 0.695 0.244 0.230 0.608 0.617

4 0.198 0.561 0.238 0.231 0.206 0.237
5 0.192 0.572 0.235 0.226 0.179 0.166
6 0.182 0.552 0.211 0.211 0.160 0.167
7 0.172 0.538 0.203 0.203 0.161 0.163
8 0.175 0.260 0.189 0.189 0.158 0.158
9 0.171 0.232 0.182 0.182 0.154 0.154
10 0.171 0.184 0.180 0.180 0.154 0.154
11 0.159 0.181 0.172 0.172 0.153 0.153
12 0.159 0.172 0.161 0.161 0.152 0.152
13 0.164 0.170 0.163 0.163 0.152 0.152
14 0.160 0.174 0.164 0.164 0.152 0.152
15 0.159 0.168 0.164 0.164 0.153 0.153
16 0.158 0.169 0.164 0.164 0.152 0.152
17 0.158 0.161 0.160 0.160 0.152 0.152
18 0.157 0.161 0.157 0.157 0.152 0.152
19 0.151 0.164 0.151 0.151 0.150 0.150
20 0.150 0.162 0.150 0.150 0.150 0.150

Continued. . .
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Table B2. Data used for variations in calibration performance index in calibrated im-
ages by different color schemes in dark and light conditions (continued).

Lighting Number of Calibration performance index (CPI)

condition patches Set 1 Set 2 Set 3s Set 4 Set 5 Set6

21 0.149 0.161 0.149 0.149 0.149 0.149
22 0.149 0.160 0.149 0.149 0.149 0.149
23 0.150 0.159 0.150 0.150 0.150 0.150
24 0.150 0.150 0.150 0.150 0.150 0.150

Field 1 0.246 0.449 0.290 0.427 0.449 0.449
images 2 0.251 0.580 0.236 0.330 0.580 0.580

3 0.913 0.948 0.239 0.315 0.492 0.485
4 0.234 1.000 0.239 0.277 0.273 0.746
5 0.236 0.534 0.241 0.256 0.293 0.354
6 0.237 0.534 0.255 0.255 0.295 0.308
7 0.246 0.474 0.246 0.246 0.293 0.279
8 0.247 0.643 0.250 0.250 0.288 0.288
9 0.248 0.427 0.250 0.250 0.271 0.271
10 0.253 0.244 0.245 0.245 0.271 0.271
11 0.249 0.246 0.246 0.246 0.271 0.271
12 0.251 0.247 0.247 0.247 0.263 0.263
13 0.252 0.256 0.249 0.249 0.263 0.263
14 0.250 0.259 0.249 0.249 0.263 0.263
15 0.248 0.258 0.250 0.250 0.262 0.262
16 0.251 0.265 0.250 0.250 0.263 0.263
17 0.252 0.259 0.250 0.250 0.262 0.262
18 0.252 0.261 0.252 0.252 0.263 0.263
19 0.258 0.263 0.258 0.258 0.261 0.261
20 0.262 0.262 0.262 0.262 0.262 0.262
21 0.262 0.258 0.262 0.262 0.262 0.262
22 0.261 0.260 0.261 0.261 0.261 0.261
23 0.260 0.259 0.260 0.260 0.260 0.260
24 0.260 0.260 0.260 0.260 0.260 0.260
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B3. Data used for Intensity Variation of Input Field Images at Different Aperture

Settings and the Fitted Linear Models (Fig. 4.11 - Reproduced as Fig. B3)

Images 

processed

Alfalfa 

(green, left) 

Spring wheat 

(brown, right)

Overall image 

(both)

Input y = –12.04x + 154.28

(R2 = 0.996)

y = –11.96x + 157.74 

(R2 = 0.997)

y = –11.67x + 152.02 

(R2 = 0.996)

White balanced y = –10.14x + 143.91 

(R2 = 0.991)

y = –9.88x + 145.98 

(R2 = 0.989)

y = –9.72x + 140.8 

(R2 = 0.989)

Calibrated y = –2.69x + 83.55 

(R2 = 0.976)

y = –2.31x + 84.21 

(R2 = 0.996)

y = –2.42x + 81.38 

(R2 = 0.990)
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Figure B3. Intensity variations of input, white balanced, and the calibrated images in
field (alfalfa and spring wheat) at different aperture settings. The calibrated image
was obtained using the three R, G, and B color patches and the fitted linear models.

Table B3. Data used for intensity variation of input field images of alfalfa and spring
wheat at different aperture settings.

Aperture setting Input image White balance 3× 3 Calibration

f/6.3 141.7 134.72 77.83
f/7.1 128.19 122.13 76.58
f/8 113.96 108.53 74.31
f/9 108.18 103.24 72.74
f/10 92.8 88.87 69.82
f/11 82.92 80.55 67.35
f/13 68.04 70.4 64.13
f/14 57.36 63.65 61.39
f/16 48.61 57.44 59.35
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B4. Pseudocode of the ColorCal Plugin Developed in ImageJ using Java Language

The pseudocode of the plugin with appropriate sections and comments is presented

subsequently for following the overall algorithm and better understanding of the processes.

/********************************************************************************
* ColorCal - Image color calibration and comparison
* Developed by S. Sunoj & C. Igathinathane; ABEN, NDSU
*********************************************************************************/

// Other standard ImageJ plugin imports
import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.linear.SingularValueDecomposition;
/*************************************************************************/
public class ColorCal_plugin implements PlugIn {

double[][] ColorChecker_values = {{115, 82, 69},..., {52, 52, 52}};
// X-Rite color chart standard values imported

public void run(String arg) {
Read_user_inputs_and_image; // Generic dialog box - front panel of plugin
Get_ROI_average(Input_image); // Semi-automatic color patch selection
Calculate_CCM (ROI_average, ColorChecker_values, Selected_patches);
Apply_CCM_to_image(Input_image, CCM); // Calibrated image generated
Evaluate_performance_measures (Input_image, Cal_image); // em and DII calculated
Calibration_performance_index(Input_image1, Input_image2); // CPI calculated

}

/***************** Calculating color calibration matrix *****************/
public Calculate_CCM (ROI_avg, CC_std_values, sel_patches){

RealMatrix I_RGB = new Array2DRowRealMatrix(SelectedROI); // 3 x N
RealMatrix S_RGB = new Array2DRowRealMatrix(SelectedStdCC); // 3 x N
RealMatrix I_RGBT = I_RGB.transpose(); // N x 3 matrix

RealMatrix RHSa = S_RGB.multiply(I_RGBT); // Produces 3 x 3 matrix
RealMatrix RHSb = I_RGB.multiply(I_RGBT);
RealMatrix RHSbinverse = new SingularValueDecomposition(RHSb)
RHSbinverse.getSolver();
RHSbinverse.getInverse();
RealMatrix CCM = RHSa.multiply(RHSbinverse); // Color calibration matrix

return CCM;
}
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/************************* Applying CCM to image *************************/
public Apply_CCM_to_image (Input image, CCM){
RealMatrix ImagePix = new Array2DRowRealMatrix(AllPixels); // 3 x WH
RealMatrix Cal_image = CCM.multiply(ImagePix); //(3 x 3).(3 x WH) = (3 x WH)

return Cal_image;
}

/******************* Evaluating performance measures *********************/
public Evaluate_performance_measures (Input_image, Cal_image){

//********** Total error **********
// std[][] contains ColorChecker_values from X-Rite -> 24 x 3 matrix
// CC[][] contains ROI_average from image -> 24 x 3 matrix

for (int i = 0; i<std.length ; i++){
T_error += (Math.sqrt(Math.pow((std[i][0]- CC[i][0]),2) + ...

Math.pow((std[i][1]-CC[i][1]),2) + ...
Math.pow((std[i][2]-CC[i][2]), 2)));

}
e_m = ((T_error/(double)CC.length))/(247+203+224);

//********** Difference index **********
if (NoImages != 2){
IJ.error("Two images required for comparison!");

return 0.0;
}

ImageCalculator ic = new ImageCalculator();
ImagePlus imp3 = ic.run("Difference create", imp1, imp2);
imp3.show(); // Display difference index

for (int v = 0; v < h ; v++){
for (int u=0; u<w; u++){
Pix = imp3.getPixel(u,v,Pix);
DI_R = Pix[0]; DI_G = Pix[1]; DI_B = Pix[2];
sumR += DI_R; sumG += DI_G; sumB += DI_B;

}
}

long denom = (w*h*3*255);
long numer = (sumR + sumG + sumB);
double DII = numer/denom; // DII calculated here
perf_meas[0] = e_m; // Modified total error
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perf_meas[1] = DII; // Difference image index

return perf_meas;
}

//************ Calculating calibration performance index (CPI) **************
public Calibration_performance_index(Input_image1, Input_image2){
W1 = 0.35; W2 = 0.35; W3 = 0.30; // Weight factors

dark_ref = DII (dark_calimg, dark_refimg);
light_ref = DII (light_calimg, light_refimg);
dark_light = DII (dark_calimg, light_calimg);
CPI = W1*dark_ref + W2*light_ref + W3*dark_light;

return CPI;
}

} // End class

Note: The lead authors are willing to extend their help and collaboration to the interested

readers in calibrating the images. If the reader provides the images with the ColorChecker

calibration chart within the image, we can make the calibrated images and send them back

to the readers for educational and non-commercial use at no-cost for a reasonable number

of requests.
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APPENDIX C. DATA AND PSEUDOCODE OF THE

DEVELOPED PLANT STAND COUNT, SPATIAL

DISTRIBUTION, AND VIGOR ANALYSIS PLUGIN

This appendix provides (i) profile ratio values for planting pattern determination,

(ii) pseudocode of the developed plant stand count plugin, and (iii) plant stand count

labeled output for a UAS stitched image of field area ≈995 m2.

C1. Data used for Profile Ratio Cutoff Selection in Planting Pattern Determination

A few sample images of lengthwise and widthwise planting pattern were rotated

between 0° and 160° and the data obtained is presented (table C1).

Table C1. Variation in developed profile ratio at field angles between 0◦ and 160◦ for
planting pattern determination.

Field angle, θf Profile ratio

(degrees) Lengthwise Widthwise

0 0.191±0.053 0.886±0.049
20 0.123±0.053 0.873±0.074
40 0.173±0.086 0.843±0.086
60 0.146±0.077 0.815±0.062
80 0.183±0.085 0.824±0.077
100 0.221±0.081 0.797±0.091
120 0.233±0.098 0.849±0.073
140 0.159±0.057 0.837±0.093
160 0.172±0.085 0.846±0.088

Mean 0.177±0.075 0.841±0.077
SD 0.033±0.077 0.026±0.077
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C2. Pseudocode of the Developed Plant Stand Count Plugin in ImageJ using Java

Language

Pseudocode of the plant stand count, spatial distribution, and vigor analysis plugin

with important package imports, sequence of operations, appropriate sections, task specific

Java methods, and comments are presented for better understanding of the processes.

/***********************************************************************************
* Plant stand counting, spatial distribution, and plant vigor
* analysis plugin for UAS images
* Developed by S. Sunoj & C. Igathinathane; ABEN, NDSU
************************************************************************************/

// Other ImageJ imports
import org.apache.commons.math3.stat.descriptive.DescriptiveStatistics;
import org.apache.commons.math3.analysis.interpolation.LoessInterpolator;
/************************************************************************************/
public class PlantSCSDPV_plugin implements PlugIn {

int n_iter = 3; // Iterations for angle decimal search
double clsprt = 87.0; // Cluster selection cutoff in percentile
double ARcut = 0.04; // Area ratio cutoff
double plant_spacing = 22; // 8.5" converted to cm
double row_spacing = 76; // 30" converted to cm

public void run(String arg) {
Read_image_and_user_inputs; // Generic dialog box - front panel of plugin
Preprocess_image (input_image, U_thresh, area_filt); // RGB to binary image
Align_crop_rows_vertically (binary_image); // Row orientation determination
Identify_crop_rows (vertical_rows_img); // Crop row identification
Segment_plant_clusters_by_profile(vertical_rows_img); // Segment by profile
Segment_plant_clusters_by_geometry(prof_seg_img); // Segment by geometry
Count_plants_rowwise(final_seg_img, row_pts); // Counting row-wise
Spatial_distribution_map(final_seg_img, row_pts); // Spatial distribution map
Plant_vigor_map(final_seg_img, row_pts); // Color-coded plant vigor map

}

/*************************** Preprocessing input image ***************************/
public Preprocess_image(input_image, U_thresh, area_filt){

// Image binarization
pixcol = ip.getPixel(x,y); get pixel value at x and y
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Y = 0.299*R + 0.587*G + 0.114*B; // RGB to YUV conversion
U = -0.147*R - 0.289*G + 0.436*B;
V = 0.615*R - 0.515*G + 0.100*B;

if (U < U_thresh){ // U_thresh is 127 for Set I, 118 for Set II
bwip.putPixel(x, y, 255);

}

// Area filtering and morphological operations
pa = new ParticleAnalyzer( , , , 0.0, Inf.); // area lower limit as 0.0
float[] area = rt.getColumn(rt.AREA); // area of all objects
avg_area = getMean(area); // getMean from DescriptiveStatitstics class
area_cut = area_filt * avg_area; // Area cutoff found in pixels

pa = new ParticleAnalyzer( , , , area_cut, Inf.); // area limit as area_cut
// Mask image from particle analysis is used further
return binary_img;

}

/************************* Aligning crop rows vertically *************************/
public Align_crop_rows_vertically (binary_image) {

theta = get_field_angle (binary_image); //pass field ROI to IJ.measure()

if ((theta >= 90 && planting_pattern == Lengthwise) ||
(theta < 90 && planting_pattern == Widthwise)){
perform_CW_rotation;

} else if ((theta <= 90 && planting_pattern == Lengthwise) ||
(theta > 90 && planting_pattern == Widthwise)) {
perform_CCW_rotation;

}

double sel_ang = 0.0; // Initializing variables for iteration
double ang_step = 10.0; // First iteration step angle
double st_pt = -10.0, e_pt = 100.0; // Start and end point

for(int k = 0 ; k < n_iter; k++){ // Iteration start here
n_ang = ((e_pt - st_pt)/ang_step) + 1; // No. of test angles

for (int i = 0; i < n_ang; i++){
test_angle[i] = st_pt + (i * ang_step);
IJ.run(binary_image, "Rotate...", test_angle[i]); // Rotate by test angle
binary_image.setRoi(0, 0, wd, ht); // SetRoi to get profile
double[] prof_vals = IJ.getProfile(); // Profile obtained
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DescriptiveStatistics ds = new DescriptiveStatistics(prof_vals);
// Mean, median, Pmax, SD, skewness, kurtosis, and SD*maximum

if (SD*Pmax == maximum){
sel_angle = test_angle[i]; // Optimum rotation angle selected
st_pt = test_angle[i-1]; // One step before optimum
e_pt = test_angle[i+1]; // One step after optimum

}
}
ang_step = ang_step/10; // reduced by 1/10th after each iteration

} // end angle iterations

IJ.run(binary_image, "Rotate...", "sel_angle"); // Rotate image by sel_angle
return vertical_rows_img;
}

/************************ Identifying vertical crop rows *************************/
public Identify_crop_rows (vertical_rows_img){

vertical_rows_img.setRoi(0,0, wd, ht);
double[] prof = pplot.getProfile();
double[] pvals = ls.smooth(xvals, prof); // Method from LoessInterpolator

double min_sd = 10000.0; // Initializing with a high value
for (int i = 0; i < pvals.length; i++){
pcut = i; // Profile cut point

// Finding left edge of each peak
for (int j = 0; j < (pvals.length)-1; j++){

if (pvals[j] < pcut < pvals[j+1]){
left_edge.add(); // Stored using arraylist

}
}
int nrows = (left_edge.length+1); // No. rows identified at each cutoff

// Calculate distance between two consecutive cut points
for (int k = 0; k < (left_edge.size())-1; k++){
del_x[k] = left_edge[k+1] - left_edge[k]; // Difference in x points

}

mean_del_x = getMean(del_x); // Using DescriptiveStatistics() class
SD_del_x = getgetStandardDeviation(del_x);

if (SD_del_x < min_sd){ // Finding the minimum SD
sel_ycutoff = pcut; // Selected cutoff value
min_sd = SD_del_x; // Updating min_sd for next check
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sel_mean = mean_del_x; // Selected mean for overlaying row ROI
sel_rows = nrows; // No. rows at selected cutoff

}
}

// Find peak points as maximum between two consecutive left_edge points
row_pts[0][i] = peak_pt[i] - 0.2*sel_mean; // 20\% on either sides of peak
row_pts[1][i] = peak_pt[i] + 0.2*sel_mean;
return row_pts;

}

/********************* Segmenting plant clusters by profile **********************/
public Segment_plant_clusters_by_profile (vertical_rows_img){

pa = new ParticleAnalyzer(); // Get object properties for the binary image
BBH = rt.getColumn(ResultsTable.ROI_HEIGHT);
BBHcut = getPercentile(clsprt); // Calculating BBHcut value

if (BBH > BBHcut){
cluster = imp.crop(); // Crop only selected cluster portion
cluster.rotateLeft(); // Rotate CCW
double[] pvals = pplot.getProfile(); // Sideways profile obtained
valley_area = getValleyArea(pvals); // By Heron’s formula
profile_area = getProfileArea(pvals); // By method of trapezoid
AR = valley_area/profile_area;

if (AR > ARcut) { // Potential segmentation location
ip.drawLine(x1, y1, x2, y2); // Digital segmentation
ip.insert(x, y, cluster); // Insert back in binary image

}
}
return prof_seg_img;

}

/********************* Segmenting plant clusters by geometry *********************/
public Segment_plant_clusters_by_geometry (prof_seg_img){

pa = new ParticleAnalyzer();
A = rt.getColumn(ResultsTable.AREA);
BBH = rt.getColumn(ResultsTable.ROI_HEIGHT);
Acut = getPercentile(clsprt); // Area cutoff calculated

if (BBH > BBHcut && A < Acut){
cut_by_BBH(); // Cut horizontally

}
else if (BBH > BBHcut && A > Acut){
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cut_by_Area(); // Cut horizontally
}
else if (BBH < BBHcut && A > Acut){

cut_by_Area(); // Cut vertically
}
return final_seg_img;

}

/**************************** Counting plants row-wise ***************************/
public ImagePlus Count_plants_rowwise(final_seg_img, row_pts){

imp.setRoi(row_pts[0][i], 0, roi_wd, roi_ht);
pa = new ParticleAnalyzer();
p = rt.getCounter();
centx = rt.getColumn(ResultsTable.X_CENTROID); // Centroid points for marker
centy = rt.getColumn(ResultsTable.Y_CENTROID);

rgb_ip.fillOval(centx, centy, marker_size, marker_size);
int xloc = xcen+35; // providing a shift for label
int yloc = ycen-35;
label_no = plant_no + p; // Running counter - inside for loop
String plabel = String.valueOf(label_no);
tr = new TextRoi(xloc, yloc, plabel); // Labeling near centroid
plant_count += label_no; // Total plant stand count - updated for each row
return labeled_image;

}

/**************************** Spatial distribution map ***************************/
public ImagePlus spatial_distribution_map(final_seg_img, row_pts){

ImagePlus spatial_dist_map = NewImage.createRGBimage(W, H);
ImageProcessor distribution_map_ip = distribution_map.getProcessor();

double R1 = (plant_spacing*0.5); // Spacing classes cutoff
double R2 = (plant_spacing*1.5);
double R3 = (plant_spacing*2.5);
double R4 = (plant_spacing*3.5);

pl_dist = Math.sqrt(((y2-y1)*(y2-y1)) + ((x2-x1)*(x2-x1)));
plants_dist = pl_dist*sf; // Plants dist in cm

if (plants_dist <= R1){
distribution_map_ip.setColor(Color.BLUE);
multple++;

} if (plants_dist > R1 && plants_dist <= R2){
distribution_map_ip.setColor(Color.GREEN);
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idl++;
} if (plants_dist > R2 && plants_dist <= R3){

distribution_map_ip.setColor(Color.YELLOW);
sskp++;

} if (plants_dist > R3 && plants_dist <= R4){
distribution_map_ip.setColor(Color.ORANGE);
dskp++;

} if (plants_dist > R4){
distribution_map_ip.setColor(Color.RED);
tskp++;

}
distribution_map_ip.fillRect(rect_start_x, rect_start_y, rect_wd, rect_ht);
spatial_dist_map.setTitle("Spatial distribution map");

return spatial_dist_map;
}

/******************************** Plant vigor map *******************************/
public ImagePlus plant_vigor_map(final_seg_img, row_pts){

ImagePlus vigor_map = NewImage.createRGBimage(W, H, #);
// # Further arguments required - e.g., image title, background fill color

pa = new ParticleAnalyzer(); // Get object properties for the binary image
pl_area = rt.getColumn(ResultsTable.AREA);
nplants = rt.getCounter(); area_max = getMax(pl_area);
area_min = getMin(pl_area);

int R = 255, G = 255, B = 255;
for (int i = 0; i < nplants; i++){

IJ.doWand(cent_x[i], cent_y[i]);
norm_area = (pl_area[i] - area_min)/(area_max-area_min);
int fR = norm_area * R;
int fG = norm_area * G;
int fB = norm_area * B;
IJ.setForegroundColor(fR, fG, fB);
IJ.run(vigor_map, "Fill", "slice");

}

vigor_map.killRoi();
vigor_map.setTitle("Plant vigor map");
return vigor_map;
}

} // End class
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Figure C1. Plant stand count plugin performance on a stitched image from CREC. UAS - DJI Phantom 4 Pro, flight altitude
- 40 ft, field area - 995 m2 (≈0.24 ac.). Plugin counted plants - 5347, CPU time taken - 916.28 ± 12.06 s (≈15 min). Five
selected portions of the labeled output image are provided (a–e) to indicate the segmented clusters and sequentially
counted plant stands.
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APPENDIX D. PHENOCAM APPLICATIONS AND IMAGE

DOWNLOADING PROCEDURE

This appendix provides more information about the applications of PhenoCam and

the detailed procedure to download the PhenoCam images for specific period and time

span.

D1. Application of Phenocam and Phenocam Network

The application of PhenoCam can be broadly grouped into four classes: (i) close-up

observation sites to capture subtle phenological events (e.g., “willamettewheat” and

“willamettepoplar” sites at Oregon); (ii) long-term observation of phenology at forest

landscapes (Bartlett forest, Richardson et al. (2007)); (iii) regional and continental scale

networks to observe phenology changes across different climatic zones and vegetation

types (Hufkens et al., 2016; Melaas et al., 2016); (d) controlled environment experiments,

where factors such as temperature, precipitation, and CO2 were manually controlled in a

chamber to observe the effects on phenology (Richardson et al., 2018c).

A collective near-surface remote sensing method termed the “PhenoCam Network,”

was established in 2008 to address the spatial and temporal resolution issues from manual-

and satellite-based methods and to continuously monitor the vegetation phenology in

forested ecosystem (Richardson et al., 2018b). This was earlier a collaborative,

regional-scale camera network in the northeastern US, but currently, PhenoCam refers to

any digital camera that captures time-lapse images to study phenology (T. B. Brown et al.,
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2016). As of April 2019, there are about 592 sites installed with these camera spanning

from Alaska to Texas, and from Hawaii to Maine. The images from these PhenoCams are

accessible to anyone through the PhenoCam website

(https://phenocam.sr.unh.edu/webcam/gallery/) and also provides a permanent,

continuous visual record of the ecosystem for many years (Richardson et al., 2017a), and

are available for further analyses, such as image processing, time-series modeling, to

mention a few. These images also help to bridge the gap between on-the-ground manual

observations and satellite-based monitoring (Browning et al., 2017; Richardson, Hufkens,

Milliman, & Frolking, 2018d) as the image acquisition is rather continuous, unlike the

aforementioned methods.

D2. Downloading Information from Phenocam Network

Users can download the PhenoCam images of any desired PhenoCam site through

the PhenoCam website (https://phenocam.sr.unh.edu/webcam/). The images can be

downloaded for one site at a time and only 2 GB allowed per download. For >2 GB,

multiple download sessions have to be performed. The step by step procedure to download

the PhenoCam images are given below:
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Step 1: Open any browser and enter https://phenocam.sr.unh.edu/webcam/.

This opens the home page of the PhenoCam network (fig. D1). Multiple page links are

available for the user to know about the network, educational materials, list of site

locations, etc.

Figure D1. Home page of the PhenoCam website accessed through https://phenocam
.sr.unh.edu/webcam/.
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Step 2: Click on “Login” in the homepage and the PhenoCam - Login page (fig. D2)

appears.

Figure D2. Login page for getting access to download images. New members should
register first and then login.

The user should be registered as a member to download the images. To register,

click on the “Register!” link. It is a free registration process and basic details such as

preferred username and password should be provided there. The user should also have a

valid email address to receive the confirmation email from the PhenoCam network.
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Step 3: Enter the credentials (Username and password) in the login page and click

on “Log in”. It automatically directs you to the PhenoCam Gallery page (fig. D3). User can

find their username appear on the right top of the page.

Figure D3. Gallery page of the PhenoCam website showing the thumbnails of all the ac-
tive sites. The thumbnails provided in this page are the latest image that was uploaded
to the server.
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Step 4: To go to the download page, the user should click on the “Data” tab that is

provided on the top panel. The page directs to the PhenoCam - Image Data Download

Form.

Figure D4. PhenoCam image data download form with instructions for entering in the
respective fields.

The user should select a site from the drop down list provided. All the active sites

are listed alphabetically in the drop down menu. Enter the “Start Date” and “End Date” as

the desired period in YYYY-MM-DD format. Similarly, the “Start Time” and “End Time”

should be entered in the 24 h format. It is always better to have a 10 min additional margin

for the desired time range. This was because sometimes there will be some delay of

2–3 min in the image capture. This clock is set by the PhenoCam network and any technical

issues will slightly alter the time of image capture.
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Step 5: Once all the fields are entered click on “Submit” button (fig. D4). The

website will take ≈2 min to gather all the images at the specified date and time and

automatically directs to the PhenoCam - Data Request page (fig. D5).

Figure D5. Data request summary page showing entered details, number of images in
the file, and download folder size.

This page (fig. D5) provides a summary of the request such as details entered by the

user, the number of images gathered based on the entries, and the total size of the

download folder. As seen the the summary, there are 1285 images that falls in our

requirement and size of compressed folder is 661.9 MB. The download automatically starts

and the folder is stored in the “Downloads” folder of the user’s computer. All the images

will be sequentially sorted based on date and time of the images. This folder can be directly

loaded to ImageJ, which opens the image as stack. The developed plugin runs directly on

the stack images.
Image
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