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ABSTRACT 

Leafy spurge and purple loosestrife are noxious weeds that displace native vegetation. 

Herbicides are often applied to these weeds during flowering, making it ideal to identify them 

early in the season. This paper evaluates the spectral separability of the inflorescences and leaves 

of these plants from surrounding vegetation. Spectral data of leafy spurge, purple loosestrife, and 

surrounding vegetation were collected from sites in southeastern North Dakota. Partial least 

squares discriminant analysis (PLS-DA) was used to separate the spectral signatures of these 

weeds in the visible and near infrared wavelengths. Using PLS-DA the weeds were discriminated 

from their surroundings with R2 values of 0.86 to 0.92. Analysis of the data indicated that the 

bands contributing the most to each model were in the red and red edge spectral regions. 

Identifying these weeds by the leaves allows them to be identified earlier in the season, allowing 

more time to plan herbicide application.  
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1. INTRODUCTION 

1.1. Background 

Invasive species can inhabit rangeland, ditches, and wetlands causing competition with 

the native vegetation for necessary resources (Goodell and Parker 2017; Levine et al. 2003). 

Identifying the areas infested with these noxious weeds is necessary for tracking them and 

controlling the infestations. Previous studies have shown remote sensing to be a possible solution 

to efficiently and effectively identify noxious weeds (Garcia-Ruiz et al. 2015; Hung et al. 2014; 

Mitchell and Glenn 2009; Peña et al. 2013). Aerial multispectral or hyperspectral imagery of 

land where noxious weeds grow can be analyzed to identify the spectral signatures of different 

plant species in the imagery, thereby identifying the noxious weeds of interest. Small unmanned 

aerial vehicles (UAV) are beginning to be used for the purpose of collecting imagery over land at 

a relatively low cost with many current models being user-friendly. Identifying noxious weeds in 

imagery with small UAVs would reduce the need for ground surveys and could potentially allow 

interested parties to survey more land than is possible by foot.  

1.2. Noxious Weeds in North Dakota 

Leafy spurge (Euphorbia esula L.) and purple loosestrife (Lythrum salicaria L.) are two 

major invasive plant species found in North Dakota, each with distinctly colored inflorescences 

that are identifiable from surrounding green vegetation (Bourchier et al. 2006; North Dakota 

Department of Agriculture 2016; Wilson et al. 2004). The North Dakota Department of 

Agriculture (NDDA) maintains a list of noxious weeds for the state of North Dakota, with leafy 

spurge and purple loosestrife being two of the weeds on the list (North Dakota Department of 

Agriculture 2016). These noxious weeds are invasive plant species that cause problems within 

the state or have a high potential to do so (Goodell and Parker 2017; Leistritz et al. 2004; North 
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Dakota Department of Agriculture 2016). If not managed, invasive species can replace native 

vegetation and take over large areas of land. Leafy spurge was estimated to infest over 400,000 

hectares of land in North Dakota in 2017, and over 2 million hectares in the Rocky Mountain 

West and Northern Great Plains in 2006 (Bourchier et al. 2006; North Dakota Department of 

Agriculture 2017). Purple loosestrife infests over 1000 hectares in North Dakota, but has the 

potential to spread quickly in aquatic areas (North Dakota Department of Agriculture 2017). 

Small infestations of noxious weeds are easier and more economical to manage than large 

infestations; therefore, identifying these two noxious weeds early and effectively is important. 

1.2.1. Leafy Spurge 

Leafy spurge is a perennial plant that generally grows about 60 to 100 cm tall and 

produces yellow bracts in late May to early June and green flowers around mid-June (Bourchier 

et al. 2006; Hunt et al. 2007; Lym 1998). Many herbicides are often best applied to actively 

growing plants or during the true flower growth stage (Knezevic et al. 2004; Lym 1998; Mullin 

1998). Leafy spurge spreads easily through both seeds and the root system and takes nutrients 

from the surrounding vegetation, making controlling this weed difficult (Bourchier et al. 2006; 

Lym and Messersmith 1985). Leafy Spurge often grows in rangeland and pastureland, along 

ditches, and in other uncultivated areas (Dunn 1979). If found in pastureland or hay eaten by 

animals, leafy spurge can be toxic (Bourchier et al. 2006; Dunn 1979).  

1.2.2. Purple Loosestrife 

Purple loosestrife is a perennial plant often found in aquatic environments, such as along 

rivers and wetlands (Blossey et al. 2001; Thompson et al. 1987; Wilson et al. 2004). During 

flowering, purple loosestrife has distinct purple flowers organized along spikes (Wilson et al. 

2004). In North Dakota, these flowers generally appear in early July to the middle of September 
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(Thompson et al. 1987; Wilson et al. 2004). If not managed in these areas, this plant can cause 

damage to the wetland ecosystems by quickly replacing the native vegetation and affecting the 

habitat of wildlife that depend on the native vegetation, including waterfowl (Weihe and Neely 

1997; Wilson et al. 2004). Controlling purple loosestrife can be complicated because any 

herbicides used in wetlands must have approval to be used near water. Herbicide application is 

often recommended while the plants are actively growing and blooming (Knezevic et al. 2004; 

Mullin 1998). Small infestations can be controlled with herbicides, manual removal, and 

plowing; however, controlling large infestations with these methods can be expensive and 

difficult (Welling and Becker 1993; Wilson et al. 2004). 

1.2.3. Current Survey Methods 

North Dakota county and city weed boards collect information about the noxious weeds 

in their specific areas (CA Penuel, NDDA, personal communication). These data are primarily 

collected by weed officers with the NDDA who conduct ground surveys and scout the land. They 

visually locate the weeds and log the GPS coordinates. The noxious weed information collected 

by NDDA is then shared with the public through an interactive map on the agency’s website (CA 

Penuel, NDDA, personal communication; North Dakota Department of Agriculture 2016). 

Currently, aerial imagery and surveying with small UAVs has not been implemented as part of 

these scouting practices. 

1.3. Research Significance 

Remote sensing methods of detection that focus on specific plant characteristics, such as 

spectral signatures, shape, or textures, have the ability to distinguish noxious weeds from other 

vegetation. In recent years, new technology and studies have shown possibilities of making the 

detection of noxious weeds more efficient and accurate. Sensors and platforms are becoming 
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more advanced, which allows the spatial resolution of the imagery available for identifying 

weeds to be much higher than in the past. This has promising applications for detecting small 

infestations of the invasive species on the North Dakota noxious weed list before the infestations 

expand. Developing methods of detection and mapping using this technology for North Dakota 

means that the NDDA and other similar agencies will be able to detect and track noxious weeds 

more effectively than by visually identifying them through ground surveys and manually logging 

their locations. 

Previous research attempting to identify leafy spurge and purple loosestrife has primarily 

used imagery collected from satellites or manned aircraft with spatial resolutions of 1.5 m or 

lower (Glenn et al. 2005; Mitchell and Glenn 2009; Swain et al. 2011). This paper proposes a 

method of identifying leafy spurge and purple loosestrife, by both the plant inflorescences and 

leaves, through the spectral signatures. This method has potential for furthering research into 

using spectral signatures in ultra-high spatial resolution imagery for scouting areas around crop 

fields and rangeland easily and efficiently. 

1.4. Objective 

The objective of this research was to classify leafy spurge and purple loosestrife noxious 

weeds based on spectral data manually collected in the field. To accomplish this objective, the 

parts of the plants that are most distinct and the best wavelengths to use in data collection to 

distinguish leafy spurge and purple loosestrife noxious weeds from other vegetation were 

identified. 



 

5 

1.5. Hypothesis 

The main hypothesis of this paper is that both the inflorescences and leaves of leafy 

spurge and purple loosestrife are spectrally different from the surrounding vegetation and soil 

materials and can be distinguished by the plant spectral signatures from the surroundings. 
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Dunn PH (1979) The distribution of leafy spurge (Euphorbia esula) and other weedy Euphorbia 

spp. in the United States. Weed Sci 27:509–515 
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Environ 95:399–412 

Goodell K, Parker IM (2017) Invasion of a dominant floral resource: Effects on the floral 

community and pollination of native plants. Ecol 98:57–69 

Hung C, Xu Z, Sukkarieh S (2014) Feature learning based approach for weed classification using 

high resolution aerial images from a digital camera mounted on a UAV. Remote Sens 

6:12037–12054 



 

6 

Hunt ER, Daughtry CST, Kim MS, Parker Williams AE (2007) Using canopy reflectance models 

and spectral angles to assess potential of remote sensing to detect invasive weeds. J Appl 

Remote Sens 1:013506 

Knezevic SZ, Smith D, Kulm R, Doty D, Kinkaid D, Goodrich M, Stolcpart R (2004) Purple 

loosestrife (Lythrum salicaria) control with herbicides: Single-year application. Weed 

Technol 18:1255–1260 

Leistritz FL, Bangsund DA, Hodur NM (2004) Assessing the economic impact of invasive 

weeds: The case of leafy spurge (Euphorbia esula). Weed Technol 18:1392–1395 

Levine JM, Vilà M, D’Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms 

underlying the impacts of exotic plant invasions. Proc R Soc Lond B Biol Sci 270:775–

781 

Lym RG, Messersmith CG (1985) Leafy spurge control with herbicides in North Dakota: 20-year 

summary. J Range Manag 38:149–154 

Lym, RG (1998) The biology and integrated management of leafy spurge (Euphorbia esula) on 

North Dakota rangeland. Weed Technol 12:367–373 

Mitchell JJ, Glenn NF (2009) Leafy spurge (Euphorbia esula) classification performance using 

hyperspectral and multispectral sensors. Rangel Ecol Manag 62:16–27 

Mullin BH (1998) The biology and management of purple loosestrife (Lythrum salicaria). Weed 

Technol 12:397–401 

North Dakota Department of Agriculture (2016) Noxious Weeds. http://www.nd.gov/ndda/plant-

industries/noxious-weeds. Accessed: November 1, 2016 



 

7 

North Dakota Department of Agriculture (2017) Weed Survey Report. 

www.agdepartment.vision-technology.com/weedsurvey/report.asp. Accessed: December 

9, 2018 

Peña JM, Torres-Sánchez J, de Castro AI, Kelly M, López-Granados F (2013) Weed mapping in 

early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) 

images. PLOS One 8:e77151 

Swain S, Narumalani S, Mishra DR (2011) Monitoring invasive species: Detecting purple 

loosestrife and evaluating biocontrol along the Niobrara River, Nebraska. GIsci Remote 

Sens 48:225–244 

Thompson DQ, Stuckey RL, Thompson EB (1987) Spread, Impact, and Control of Purple 

Loosestrife (Lythrum salicaria) in North American Wetlands. Washington, DC: US 

Department of the Interior, Fish and Wildlife Service. 55 p 

Weihe PE, Neely RK (1997) The effects of shading on competition between purple loosestrife 

and broad-leaved cattail. Aquat Bot 59:127–138 

Welling CH, Becker RL (1993) Reduction of purple loosestrife establishment in Minnesota 

wetlands. Wildl Soc Bull 21:56–64 

Wilson LM, Schwarzlaender M, Blossey B, Bell Randall C (2004) Biology and Biological 

Control of Purple Loosestrife. US Department of Agriculture, Forest Service, Forest 

Health Technology Enterprise Team. 78 p 

  



 

8 

2. LITERATURE REVIEW 

2.1. Introduction 

Past research into identifying invasive plant species with aerial imagery has used a 

variety of spatial and spectral resolutions and classification methods (Bradley 2014; He et al. 

2011; He et al. 2015; Thorp and Tian 2004). Platforms and sensors used in these studies have 

also differed, ranging from satellites to small UAVs, and from multispectral cameras to 

hyperspectral cameras. The platform and sensor technology used has an impact on the spatial and 

spectral resolutions of the images. Both the technology and classification methods have certain 

benefits and limitations for specific applications. Therefore, the best configuration to use for a 

project depends on the scope of the research and the resources available.  

Plant species have spectral signatures, which often allow them to be separated from one 

another when these signatures are distinct (Bradley 2014). For this reason, much of the previous 

research has focused on analyzing these spectral signatures and their characteristics. However, 

some studies have utilized spatial features of the plants in imagery, including texture, shape, and 

other morphological features such as location with respect to crop rows (Hung et al. 2014; Peña 

et al. 2013; Pérez-Ortiz et al. 2015; Torres-Sánchez et al. 2013). 

2.2. Spatial Resolution and Platforms 

The spatial resolution of imagery has a significant impact on what plant characteristics 

can be identified in the imagery. Spatial resolution is roughly categorized as low, high, and ultra-

high. The category is determined by the remote sensing platform used to hold the sensor, as well 

as the specifications of the sensor itself. Three common remote sensing platforms for collecting 

imagery used in weed detection are satellites, manned aircraft, and small UAVs, all of which 

have both benefits and drawbacks, depending on the specific purpose of the application.  
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2.2.1. Low Spatial Resolution 

Low spatial resolution imagery is often collected from sensors on satellite or manned 

aircraft platforms, which can cover large swaths of land relatively quickly. In this paper, low 

spatial resolution refers to images with a pixel size of 20 m or more. Several studies have used 

low resolution imagery from satellite platforms, such as the Landsat, Satellite Pour l’Observation 

de la Terre (SPOT), and Earth Observing-1 (EO-1), to detect large infestations of invasive 

species, including saltcedar (Tamarix spp., tamarisk) and leafy spurge (Carter et al. 2009; Diao 

and Wang 2016; Hunt and Parker Williams 2006; Mitchell and Glenn 2009). Low spatial 

resolution imagery from manned aircraft platforms, such as the Airborne Visible-Infrared 

Imaging Spectrometer (AVIRIS) sensor, were used to detect invasive species, including leafy 

spurge and downy brome (Bromus tectorum L.) (Hunt and Parker Williams 2006; Hunt et al. 

2010; Noujdina and Ustin 2008; Parker Williams and Hunt 2002). Plot sizes used for accuracy 

assessments were based on the size of the imagery resolution of 20 m. Mitchell and Glenn (2009) 

obtained 78% accuracy in circular plots with 7.3 m radiuses and greater than 20% leafy spurge 

coverage, while several other studies used plots of 30 m2 or greater, measuring the presence or 

absence of the invasive species in the plots and obtaining up to 88% accuracy (Carter et al. 2009; 

Hunt and Parker Williams 2006; Hunt et al. 2010). Imagery with spatial resolutions of 20-30 m 

allowed the researchers to investigate methods of detecting large infestations of these plants, but 

the resolution was inadequate to detect small infestations. Additionally, mixed pixels − pixels 

that were an average of the spectral data of the plants of interest and the surrounding vegetation, 

− affected the classification accuracy. 



 

10 

2.2.2. High Spatial Resolution 

High spatial resolution imagery is also collected from sensors on either satellites or 

manned aircraft, although with different specifications from those that collect low spatial 

resolution. These systems are generally not able to cover as large an area, or as quickly, as lower 

resolution sensors on similar platforms. High spatial resolution in this paper refers to images 

with a pixel size of 1 m or greater but less than 20 m. Studies using high spatial resolution 

imagery for weed detection have generally used imagery ranging from 1.5 m to 4 m resolution 

(Casady et al. 2005; Swain et al. 2011). Sensors on both satellite and aerial platforms are able to 

attain high spatial resolution; however, manned aircraft are often able to collect data at higher 

spatial resolutions than satellites due to their proximity to the ground (Bradley 2014).  

Satellite imagery, such as that from the QuickBird and IKONOS satellites, and aerial 

imagery from fixed-wing aircraft, such as the HyMap, the Compact Airborne Spectrographic 

Imager (CASI), and the Airborne Imaging Spectroradiometer for Applications (AISA), were 

evaluated to detect invasive species, including saltcedar, leafy spurge, spotted knapweed 

(Centaurea maculosa Lam.), and flowering purple loosestrife (Carter et al. 2009; Casady et al. 

2005; de Castro et al. 2013; Glenn et al. 2005; Lass et al. 2005; Mirik et al. 2013; Mitchell and 

Glenn 2009; Swain et al. 2011). Plot sizes used for accuracy assessments were smaller than those 

used for low spatial resolution imagery. Mirik et al. (2013) validated the presence or absence of 

flowering musk thistle (Carduus nutans L.) with 1 m2 plots with 91% accuracy, Swain et al. 

(2011) obtained 82% accuracy, validating with 2 m2 plots, and Carter et al. (2009) achieved 91% 

accuracy with 10 m2 plots. Imagery with high spatial resolutions allows researchers to identify 

smaller weed infestations with higher accuracy, ranging from 59% to 91%, compared to low 
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spatial resolution imagery, although this may be at the expense of increased collection time, 

financial cost, or larger amounts of data required to analyze and store. 

2.2.3. Ultra-High Spatial Resolution 

Ultra-high spatial resolution images are often gathered with sensors attached to small 

UAVs (UAVs weighing less than 25 kg), which fly at lower altitudes than either satellites or 

manned aircraft and generally collect imagery within 125 m above the ground. Ultra-high spatial 

resolution in this paper refers to pixel size of less than 1 m. This ultra-high spatial resolution data 

are more appropriate for detecting small patches or even individual plants (Bradley 2014). Small 

UAVs have become more popular due to the fast development of UAV technology since they 

were introduced to the civilian market. One benefit of small UAVs over satellite platforms is the 

versatility and potential to carry a variety of sensor payloads. Many small UAVs are also able to 

takeoff and land in a variety of locations and are not limited to paved runways, compared to 

fixed-wing manned aircrafts. However, while cloudy and rainy weather is a limiting factor for 

remote sensing from all platforms, small UAVs are also limited by high wind speeds more than 

satellites or manned aircrafts. Nevertheless, for studies requiring higher spatial resolution, such 

as weed identification, and time-critical applications, small UAVs are an attractive option. 

UAV imagery with spatial resolutions of 1.3 mm to 20 cm were used to identify invasive 

plants, such as Canada thistle (Cirsium arvense L., creeping thistle), water hyacinth (Eichhornia 

crassipes Mart.), and other weeds in crop fields (Garcia-Ruiz et al. 2015; Hung et al. 2014; Lu 

and He 2018; Peña et al. 2013; Pérez-Ortiz et al. 2015; Tamouridou et al. 2017; Torres-Sánchez 

et al. 2013). Imagery was collected at a variety of altitudes ranging from 2 m to 115 m above 

ground level, with several researchers collecting data at an altitude of 30 m. Studies utilizing 
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ultra-high spatial resolution imagery were able to discriminate between invasive species and the 

surrounding vegetation with up to 95% accuracy. 

2.2.4. Comparison of Platforms 

Each of the remote sensing platforms has advantages and disadvantages, and the best one 

to use for a specific application is dependent on the objectives, scope, environment, and funding 

of the project. Some of the factors to consider while choosing a platform include sensor 

resolution, timing, and cost. 

2.2.4.1. Sensor resolution  

The distance of satellites and manned aircraft above the ground allows them to collect 

data in large swaths, acquiring large amounts of data in short periods of time. Due to the very 

high altitudes of satellites, the imagery they collect often have relatively lower spatial resolution 

compared to aerial platforms. However, some of the recent satellite platforms collect images in 

ultra-high spatial resolution, such as those deployed by Planet, which collect imagery with a 

resolution of up to 72 cm. The imagery collected from both satellites and manned aircraft can 

range in spatial resolution, depending on the sensor specifications (Bradley 2014). In addition, 

imagery collected from satellites and manned aircraft at high altitudes have higher atmospheric 

interference and must take into consideration atmospheric corrections to the imagery before 

analysis (Hunt and Parker Williams 2006; Hunt et al. 2010). On the other hand, small UAVs fly 

at low altitudes, often collecting imagery within 100 m above the ground, which removes the 

necessity for atmospheric corrections.  

2.2.4.2. Timing  

The timing of the data collection differs between the three platforms in terms of when 

and how often the data are collected, and the feasibility of collecting imagery over a specific spot 
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at a specific time. When identifying plant species in imagery, it is important to know the best 

point in the growth stage for plant identification, as well as to time the data collection during this 

growth stage. Improper timing can lead to less accurate results (Carter et al. 2009; Mladinich et 

al. 2006). For example, Laba et al. (2005) found that purple loosestrife, common reed 

(Phragmites australis Cav.), and cattail (Typha spp.) were most easily identifiable using the 

wavebands of 680 nm to 740 nm in late summer in upstate New York when the flower heads 

matured to seed, resulting in a distinguishable phenological change. 

In addition to phenological and vegetation factors, environmental and technological 

factors also have an impact on imagery collection timing. Satellite imagery is not always 

available for the desired data collection time; and even if imagery is available, there is no 

guarantee cloud cover will not be present over part or the entire area of interest (Mladinich et al. 

2006; Rodriguez-Moreno et al. 2017). Satellite sensors often cover large areas of land in regular 

intervals, allowing researchers to find historical image data, as well as to know in advance future 

data collection schedules. For example, Diao and Wang (2016) used a series of satellite imagery 

over several months to identify saltcedar in low spatial resolution imagery. Satellites with larger 

swath widths and lower spatial resolution have a higher likelihood of collecting imagery over a 

specific area within the desired time frame than satellites with smaller swath widths. Although 

the swath widths are narrower, manned aircraft and UAVs offer the ability to have more 

flexibility and control over the timing of flights, an advantage over satellites (Rodriguez-Moreno 

et al. 2017). This can alleviate certain issues, including limiting the likelihood of cloud cover in 

the imagery as well as having data available for a specific time period, such as during the 

flowering growth stage of a plant species being investigated. Compared to manned aircraft, small 

UAVs fly at very low altitudes and can fly under cloud cover, although there may still be cloud 
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shadows in the imagery. Due to the ease of use and versatility, small UAVs can collect imagery 

over the same land area at frequent time intervals. Small UAVs, however, are slower in covering 

similar areas compared to satellites or larger aircraft. They also tend to have a limited flight time 

due to battery life. If very large areas of data are needed, satellites and manned aircraft are more 

appropriate. However, the flexibility in data collection timing with manned aircraft and small 

UAVs makes these platforms more ideal when specific time periods or frequent data collections 

are needed.  

2.2.4.3. Cost of imagery 

The cost of imagery acquired from various platforms is a major factor affecting the 

viability for certain applications, such as plant species detection. These costs can vary a great 

deal and are dependent on a variety of factors, including spatial and spectral resolutions, cost of 

the platform and sensors, cost of data collection, accessibility, and availability. Imagery from 

some satellites, such as Landsat, is available free of charge, while other image data are available 

at a cost (Bradley 2014). Higher spatial resolution image data can be costly, such as WorldView 

4, which costs about $25 per km2 for 30 cm, 4-band imagery (K Nale, eMap International, 

personal communication). Similarly, while some data previously collected by manned aircrafts 

are freely available for new research, other data, such as that collected by the AVIRIS sensor, 

could still be expensive, especially the data at higher spatial resolutions (Bradley 2014). Some 

sensors on manned aircraft platforms, such as the AISA sensors, are available for a one-time 

purchase, but aircraft operation costs must then be factored into the overall cost. Similarly, small 

UAVs and attached sensors can be purchased once and used routinely without a need to purchase 

the imagery each time. Also, small UAV operating costs are generally lower than those of 
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manned aircraft. The overall cost of imagery collected with small UAVs is dependent on the cost 

of the UAV and sensor.  

2.3. Spectral Resolution and Sensors 

Imaging sensors used to detect plant species can be put into one of two categories: 

multispectral sensors, including red, green, blue (RGB) or visible light sensors, and hyperspectral 

sensors; both are able to detect light in a range of wavelengths along the electromagnetic 

spectrum (Thorp and Tian 2004). Both of these sensor types have benefits and drawbacks in 

regard to cost, accessibility, image resolution, and image quality, as well as the amount of 

information required to sort through, analyze, and store. Additional factors that can affect the 

performance of a sensor in an application include the number of bands, the wavelengths, and 

bandwidth the sensor is able to collect. 

2.3.1. Multispectral 

Multispectral sensors collect imagery in the visible light and infrared spectra in multiple 

spectral bands (Bradley 2014). Many of the studies using multispectral imagery used bands 

primarily between 400 nm and 1000 nm (Carter et al. 2009; Casady et al. 2005; Garcia-Ruiz et 

al. 2015; Peña et al. 2013; Pérez-Ortiz et al. 2015; Torres-Sánchez et al. 2013). However, 

multispectral Landsat imagery includes bands within the range of 400-2400 nm (Diao and Wang 

2016; Hunt and Parker Williams 2006; Mitchell and Glenn 2009). The number of multispectral 

bands generally ranges from four to ten. Multispectral imagery is often acquired from satellite 

and manned aircraft platforms at lower cost and higher availability than imagery with higher 

spectral resolutions (Bradley 2014; Hunt and Parker Williams 2006).  

Common multispectral sensors on satellite platforms that have been used in plant 

identification studies include the QuickBird, IKONOS, Landsat, and SPOT sensors, with spatial 
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resolution ranging from 2-30 m (Carter et al. 2009; Casady et al. 2005; de Castro et al. 2013; 

Diao and Wang 2016; Hunt and Parker Williams 2006; Mitchell and Glenn 2009). In recent 

years several studies aimed at plant species detection have used multispectral cameras to collect 

imagery at ultra-high spatial resolutions with small UAVs (Garcia-Ruiz et al. 2015; Lu and He 

2018; Peña et al. 2013; Pérez-Ortiz et al. 2015; Torres-Sánchez et al. 2013). The spatial 

resolution of the imagery in these studies has ranged from sub-centimeter to 20 cm, and the 

wavelengths used in these studies were collected in the range of 400-1000 nm. A variety of 

classification methods were used, including partial least squares discriminant analysis (PLS-DA), 

which resulted in classification accuracies of up to 95% (Garcia-Ruiz et al. 2015). While many 

studies involving multispectral imagery did achieve high accuracies, the spectral resolution alone 

was not enough to attain these notable results and depended a great deal on the high spatial 

resolutions and classification strategies. 

RGB sensors are multispectral sensors that collect images in three bands within the 

visible light wavelengths, which range from about 400 nm to 700 nm (Thorp and Tian 2004). 

Many studies investigating weed detection methods utilize visible wavelengths, but generally 

these wavelengths are included within a wider spectral range that also includes near-infrared 

(NIR) wavelengths (Bradley 2014; Thorp and Tian 2004). Nevertheless, Hung et al. (2014) used 

RGB imagery to classify several plants and relied on multiple features, including shape and 

texture of the plants. By combining the low spectral resolution of an RGB camera with ultra-high 

spatial resolution of less than 1 cm, water hyacinth and serrated tussock (Nassella trichotoma 

(Nees) Hack.) were classified with 94% and 93% accuracy, respectively. However, only 72% 

accuracy was attained for tropical soda apple (Solanum viarum Dunal) because there was not 

enough distinction between the invasive species and the surrounding vegetation. Mafanya et al. 



 

17 

(2017) achieved 87.7% accuracy using a maximum likelihood (ML) algorithm to identify an 

invasive species using ultra-high spatial resolution RGB imagery. Although RGB imagery alone 

has not been widely utilized in plant detection, Hung et al. (2014) and Mafanya et al. (2017) 

found that when paired with ultra-high spatial resolution, plant detection with RGB imagery does 

have potential, depending on which plant species require identification. 

2.3.2. Hyperspectral 

Hyperspectral sensors collect image data in the same electromagnetic range as 

multispectral sensors, but in hundreds of narrow spectral bands rather than only a few broad 

bands (Bradley 2014; He et al. 2011). Because of the high number of spectral bands used in these 

sensors, the imagery has very high spectral resolution. Due to this high spectral resolution, 

hyperspectral images can be used to detect subtle differences between the invasive species and 

the surrounding vegetation or soil (Bradley 2014). The high number of bands allows algorithms 

to use many more data points along the electromagnetic spectrum to detect differences between 

spectral signatures. However, more bands also mean more data, which can take longer to analyze 

and require more storage space. Hyperspectral sensors and imagery can be expensive, and data 

may not be readily available for a location of interest (He et al. 2011; Narumalani et al. 2009). 

By contrast, multispectral imagery is more readily available, and image analysis does not require 

the same level of proficiency as hyperspectral data (Hunt and Parker Williams 2006; Narumalani 

et al. 2009).  

While analyzing large amounts of hyperspectral data can pose challenges, the large 

database can also provide more precise information, as evidenced by studies attaining accuracies 

of up to 94% when classifying hyperspectral imagery (Glenn et al. 2005; Narumalani et al. 

2009). The number of bands of hyperspectral imagery used in invasive plant detection studies 
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ranged from 50 bands for the AISA Eagle sensor to 242 bands for the Hyperion sensor on the 

EO-1 satellite (Carter et al. 2009; Mirik et al. 2013). The hyperspectral sensors generally operate 

within the range of 350-2500 nm (Carter et al. 2009; Glenn et al. 2005; Hunt and Parker 

Williams 2006); although many sensors and plant monitoring applications only use bands up to 

1000 nm (Lass et al. 2005; Mirik et al. 2013; Parker Williams and Hunt 2002; Swain et al. 2011). 

In addition to airborne sensors, some studies collected the spectral reflectance in the range of 

400-2400 nm of plants using a ground spectrometer (Garcia-Ruiz et al. 2015; Shapira et al. 2010; 

Shapira et al. 2013; Shirzadifar et al. 2018; Ustin and Santos 2010). Several of these studies 

attained high classification accuracies; however, in several cases when compared with 

multispectral imagery of the same spatial resolution, classification of hyperspectral imagery had 

no clear benefit (Carter et al. 2009; Hunt and Parker Williams 2006; Mitchell and Glenn 2009). 

2.3.3. Comparison of Multispectral and Hyperspectral Imagery 

Several studies have compared multispectral and hyperspectral imagery for identifying 

specific plant species and have found that, while providing additional information that can help 

distinguish spectral signatures, analyzing hundreds of narrow bands can add noise that distracts 

from important spectral characteristics (Carter et al. 2009; Hunt and Parker Williams 2006; Hunt 

et al. 2007; Mitchell and Glenn 2009).  

Comparisons of multispectral and hyperspectral imagery with varying spatial resolutions 

for classifying leafy spurge and saltcedar had similar results, even when using different 

classification methods (Carter et al. 2009; Mitchell and Glenn 2009). Mitchell and Glenn (2009) 

acquired high spatial resolution hyperspectral imagery over a study area with leafy spurge. They 

spectrally and spatially degraded the imagery and used the mixture-tuned matched filtering 

(MTMF) classification method to compare classification accuracy under varying spectral and 
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spatial resolutions. Accuracies achieved were 91% and 85% for the high spatial resolution 

multispectral and hyperspectral imagery, respectively. Carter et al. (2009) classified images 

using normalized difference vegetation index (NDVI) threshold values and ML methods at 

different spectral and spatial resolutions. The study did not include high spatial resolution 

hyperspectral imagery; however, based on the three categories that were compared, analysis of 

high spatial resolution multispectral imagery produced the highest classification accuracy of 91% 

with NDVI threshold values, similar to the results of Mitchell and Glenn (2009). Based on the 

results of these studies, high spatial resolution multispectral imagery produced better accuracies 

than hyperspectral imagery for plant species classification. The 88% accuracy of the low spatial 

resolution hyperspectral imagery in Carter et al. (2009) could have been lower than that of the 

91% accuracy high spatial resolution multispectral imagery in Mitchell and Glenn (2009) in part 

because of the lower spatial resolution. However, another possible reason for this is the higher 

number of bands from the hyperspectral imagery, compared to multispectral imagery, can create 

more noise, causing poorer classification results (Mitchell and Glenn 2009). 

While high spatial resolution multispectral imagery achieved better classification 

accuracies than hyperspectral imagery, comparisons between multispectral and hyperspectral 

imagery at low spatial resolutions had mixed results. At low spatial resolutions, some studies 

found higher accuracies with hyperspectral imagery (Carter et al. 2009; Hunt et al. 2007). Hunt 

et al. (2007) had higher success rates with hyperspectral imagery than multispectral imagery to 

identify flowering leafy spurge using spectral angle mapper (SAM). They achieved 74% overall 

accuracy with hyperspectral imagery, but the highest overall accuracy achieved for multispectral 

imagery was 61% when using only the visible and NIR bands. However, other studies had higher 

accuracies with multispectral imagery (Hunt and Parker Williams 2006; Mitchell and Glenn 
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2009). While hyperspectral imagery provides more spectral information that has potential to 

identify smaller variations in spectra, multispectral imagery may be less likely to add noise that 

can degrade results. 

2.4. Classification Methods Used for Plant Species Identification 

Classification methods can be broadly divided into unsupervised and supervised 

classification. Unsupervised classification methods use a computer to separate the data into 

different classes with minimal user inputs. These methods divide the image pixels into a 

specified number of natural groups. These groups are then matched to the desired categories of 

vegetation (Jensen 2016). Supervised classification methods require user inputs to define classes 

and training data to determine which pixels belong in which classes. These methods require input 

data of known categories, such as spectral data or physical characteristics of the plant species of 

interest (Jensen 2016). Most published studies identify invasive species using the supervised 

classification methods, but some have used unsupervised classification methods (Mladinich et al. 

2006; Stitt et al. 2006; Swain et al. 2011). 

2.4.1. Iterative Self-Organizing Data Analysis Technique (ISODATA) 

The ISODATA is an unsupervised classification method that divides pixels into clusters 

depending on which cluster mean is nearest to the pixel mean. After the first iteration, the cluster 

means are recalculated and the pixels are again sorted into clusters based on the distance between 

the cluster mean and pixel value. This method continues to run through a specified number of 

iterations or until there are minimal changes in clusters (Jensen 2016). ISODATA does not 

require predefined patterns describing the data, which can be beneficial when the patterns are 

very complex (Ball and Hall 1965). 
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Mladinich et al. (2006), Stitt et al. (2006), and Swain et al. (2011) have used the 

ISODATA classification method to identify purple loosestrife and leafy spurge. Mladinich et al. 

(2006) used the ISODATA method for mapping leafy spurge due to a lack of ground reference 

data, with 63% classification accuracy. The ISODATA algorithm separated the image pixels into 

clusters of different vegetation types, soil, and water. The clusters were then matched up with the 

areas on the ground that were known to contain specific vegetation types. Stitt et al. (2006) 

reached 66% accuracy when using 30 m multispectral imagery resampled to 10 m to identify 

leafy spurge. Swain et al. (2011) attained 82.1% accuracy with high spatial resolution 

hyperspectral imagery when identifying purple loosestrife using ISODATA classification. Most 

of the purple loosestrife pixels that were misclassified as grassland were located along the border 

between these two vegetative areas and may be the result of pixel mixing. ISODATA 

classification is an option when little information is known about the area of interest or when 

there is a lack of ground data, however, when reference spectra are available, supervised 

classification methods may be a better option when classifying imagery. 

2.4.2. Statistical Methods 

Partial least squares regression (PLSR), discriminant analysis (DA), and soft independent 

modeling of class analogy (SIMCA) are some of the statistical methods used to construct models 

using the spectral signatures of the plant species of interest and distinguish the spectral signatures 

from each other or from surrounding vegetation. PLSR creates a linear regression model using X 

and Y variables and determines the best factors of X that will most accurately predict Y. SIMCA 

uses principal component analysis (PCA) to develop a model separating the plant species. 

Several studies using PLSR, DA, or a combination of these methods have been able to 

achieve overall accuracies ranging from 87% to 95% (Garcia-Ruiz et al. 2015; Girma et al. 2005; 
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Shapira et al. 2013). These studies differentiated green vegetation species using the spectral 

signatures collected with spectrometers both in the field and in the greenhouse. These methods 

were also used to determine the best wavelengths to use for specific plant species. Garcia-Ruiz et 

al. (2015) found that some of the pixels at the edges of sugarbeet (Beta vulgaris L.) leaves were 

misclassified as Canada thistle, lowering the overall accuracy, but still achieving 89% and 95% 

accuracies for sugarbeet and thistle, respectively. A PLS-DA model using spectral reflectance 

data collected with a spectroradiometer was developed and applied to multispectral imagery with 

sub-centimeter resolution. Shapira et al. (2013) achieved 87% accuracy using these methods, 

which may have been influenced by soil mixed in with some vegetation spectral samples.  

Shirzadifar et al. (2018) used the SIMCA method to separate kochia (Kochia scoparia 

L.), lamb’s-quarters (Chenopodium album L.), and water-hemp (Amaranthus rudis Sauer) in the 

greenhouse with 88.9% accuracy using the 400-920 nm wavelengths and 100% overall accuracy 

using the 920-2500 nm wavelengths. These statistical methods have shown promise in the 

potential to differentiate green vegetation species with similar leaf shape. 

2.4.3. Spectral Angle Mapper 

Spectral angle mapper (SAM) is a supervised classification method that has been used to 

identify weeds based on the leaves and canopies from aerial imagery. SAM requires a reference 

spectra, such as a spectral signature or endmembers taken from an image. The algorithm 

compares the angle between a reference spectra and an unknown pixel vector to classify in the 

spectral space and place the pixel in the nearest class. The use of SAM does not assume specific 

statistical distribution of the data; therefore, the data does not need to be normally distributed   

(Petropoulos et al. 2010). In SAM the angle of the spectra is the same regardless of the 

illumination (i.e. shadows). SAM takes only the direction of the spectra into account and does 
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not use the length of the spectra in the calculation (Kruse et al. 1993; Rashmi et al. 2014). 

Smaller spectral angles indicate more similar spectra (Kruse et al. 1993). 

SAM has primarily been used with hyperspectral imagery (Hunt et al. 2010; Kloppenburg 

2014; Lass et al. 2005; Narumalani et al. 2009); however, this method has also been used with 

multispectral imagery, although not necessarily with the best results (Rodriguez-Moreno et al. 

2017). O’Neill et al. (2000) used a combination of Minimum Noise Fraction (MNF) and SAM to 

achieve 93% accuracy using low spatial resolution hyperspectral imagery to identify a number of 

species, including leafy spurge. Hunt et al. (2010) and Narumalani et al. (2009) used SAM with 

low and high spatial resolution hyperspectral images, to classify invasive species in Wyoming 

and Nebraska, both obtaining 74% overall accuracy. Overall accuracies are calculated as the 

number of correctly classified pixels as a percentage of the total number of pixels (Jensen 2016).  

When separating out the user and producer accuracies, both Hunt et al. (2010) and 

Narumalani et al. (2009) had acceptable accuracies for specific categories. User accuracy is a 

measure of commission error, which is when pixels are inaccurately included in a specific class. 

A high user’s accuracy indicates low commission error so that the map pixels classified as a 

specific class have a high likelihood of actually representing that class on the ground (Jensen 

2016). Producer’s accuracy is a measure of the omission error, which is when pixels are 

inaccurately omitted from the correct class. A high producer’s accuracy indicates a low omission 

error so that the plant species on the ground are correctly classified in the map pixels (Jensen 

2016). Hunt et al. (2010) obtained 93% user accuracy when identifying leafy spurge. The lower 

overall accuracy in this study may have been a result of misclassification of nonflowering leafy 

spurge.  
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Narumalani et al. (2009) obtained greater than 90% for both producer’s and user’s 

accuracies for saltcedar and Russian olive (Elaeagnus angustifolia L.). However, the producer’s 

and user’s accuracies were below 75% in areas of mixed invasive species. Lass et al. (2005) used 

SAM to classify spotted knapweed and babysbreath (Gypsophila paniculata L.) from 

hyperspectral imagery with an overall accuracy rate of 67% for spotted knapweed and 83.5% for 

babysbreath. One reason for the low accuracy rate of spotted knapweed was the uncertainty 

caused by high moisture variation in the field (Lass et al. 2005). 

While applying SAM to hyperspectral imagery resulted in varying accuracies, SAM 

applied to multispectral imagery did not consistently perform well for plant species 

classification. The highest overall accuracy achieved by Hunt et al. (2007) using SAM on low 

spatial resolution multispectral imagery to identify leafy spurge was 61%, while the user’s 

accuracy was 85%. This same study achieved 74% overall accuracy with low spatial resolution 

hyperspectral imagery. Rodriguez-Moreno et al. (2017) achieved 49% overall accuracy with 

SAM applied on sub-centimeter resolution multispectral imagery to identify plants and materials 

in a field. This low accuracy was attributed to the overlapping of spectral signatures in the 

classes caused by collecting imagery in uncontrolled settings in order to be representative of real 

environmental conditions.  

2.4.4. Object-Based and Spectral and Spatial Feature Learning Methods 

Several recent studies utilizing ultra-high spatial resolution imagery collected from UAV 

sensors have incorporated the use of spectral and spatial features, such as edge and texture 

information, into their algorithms (Hung et al. 2014; Mafanya et al. 2017; Peña et al. 2013; 

Pérez-Ortiz et al. 2015; Torres-Sánchez et al. 2013). Ultra-high spatial resolution imagery allows 

for more plant features to be used to detect specific plant species or for crop rows to aid in 
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identifying weeds due to the increase of information available when individual plants are visible. 

Using ultra-high spatial resolution aerial RGB imagery, Hung et al. (2014) employed spatial and 

spectral feature learning to identify invasive plant species, obtaining 94% accuracy for water 

hyacinth and 93% accuracy for serrated tussock. This method was deemed viable only when the 

plant species of interest could be differentiated from the surroundings, such as during changes in 

the plant life-cycle. Identifying the crop rows can aid in separating the weed pixels from the crop 

pixels in images of agricultural fields (Peña et al. 2013; Pérez-Ortiz et al. 2015; Torres-Sánchez 

et al. 2013). Methods such as Hough transform and object-based image analysis (OBIA) can be 

used to separate crop rows and identify the weeds between and within the rows. The OBIA uses 

segmentation to identify objects with spectral and spatial similarity (Jensen 2016). Using OBIA, 

Peña et al. (2013) achieved 86% accuracy when identifying weeds within a maize field. Lu and 

He (2018) used geographic OBIA to separate grass species and achieved 83% accuracy with 

ultra-high spatial resolution multispectral imagery. With ultra-high spatial resolution imagery 

where spatial characteristics of the plants are clearly visible, spatial feature detection and object-

based methods have good potential for accurate plant species identification. 

2.4.5. Mixture-Tuned Matched Filtering 

Mixture-tuned matched filtering (MTMF) is a partial unmixing supervised classification 

method that produces matched filtering and a feasibility value for each pixel (Mundt et al. 2007). 

The MTMF method is performed on an MNF transform file and has been used in several studies 

to detect leafy spurge, with both high and low spatial resolution imagery (Glenn et al. 2005; 

Kloppenburg 2014; Mitchell and Glenn 2009; Parker Williams and Hunt 2002). With high 

spatial resolution hyperspectral imagery, up to 94% accuracy was achieved when there was at 

least 40% leafy spurge cover (Glenn et al. 2005). When using spectrally degraded hyperspectral 
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imagery to simulate high spatial resolution multispectral imagery, Mitchell and Glenn (2009) 

achieved 91% accuracy. Parker Williams and Hunt (2002) noted that MTMF performed better in 

prairie areas than in woodland areas. The MTMF method has primarily been used with 

hyperspectral imagery, but has also shown promising results with simulated multispectral 

imagery. 

2.4.6. Maximum Likelihood 

Maximum likelihood (ML) classification method uses class probability to determine the 

likelihood that a pixel belongs to a class in normally distributed data. The target classes are 

defined prior to calculating the likelihood, or probability, that a pixel belongs in a particular class 

(Jensen 2016). The ML method has successfully identified plant species in multispectral imagery 

(Carter et al. 2009; Casady et al. 2005; de Castro et al. 2013; Laba et al. 2010; Mafanya et al. 

2017; Tamouridou et al. 2017). 

Tamouridou et al. (2017) achieved 81% accuracy with 0.1 m resolution and 87% 

accuracy with degraded 1 m resolution multispectral imagery with a texture layer included using 

ML classification. Carter et al. (2009) used ML and NDVI threshold values at differing spectral 

and spatial resolutions for plant species classification. The highest accuracy produced by ML 

was 80% for low spatial resolution multispectral imagery; however, better accuracies were 

achieved with NDVI to classify high spatial resolution multispectral imagery and low spatial 

resolution hyperspectral imagery.  

Casady et al. (2005) used ML to classify multi-date multispectral imagery over two years, 

which resulted in accuracies of 59% to 87%. Leafy spurge was detected in a mixed grass area at 

two different sites, with one site having a higher forb content. There was a high error of 

commission rate, meaning that a high number of pixels were classified as leafy spurge when the 
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weed did not actually exist on the ground in those locations. The relatively low accuracy range 

was attributed to misclassification of vegetation as leafy spurge during the ground survey, as 

well as interference of a higher forb content in that site, indicating that ML may perform better in 

areas with higher grass content. Laba et al. (2010) used ML to identify purple loosestrife, 

achieving a user’s accuracy of 75% and a producer’s accuracy of 78%. De Castro et al. (2013) 

identified flowering cruciferous weeds within wheat fields with 91.3% accuracy using ML on 

high spatial resolution multispectral imagery. The ML classification method has shown 

promising results using multispectral imagery. 

2.4.7. Vegetation Indices 

Vegetation indices (VI) can identify several aspects about green vegetation, including the 

health and density of the vegetation. Using VI, Carter et al. (2009), de Castro et al. (2013), and 

Hunt and Parker Williams (2006) identified saltcedar, cruciferous weeds, and leafy spurge, 

respectively, with varying results. Carter et al. (2009) compared accuracies of NDVI threshold 

values and the ML classification method to identify saltcedar and achieved accuracies of up to 

91% using NDVI threshold values. NDVI is a ratio using the near infrared and red bands to show 

green vegetation in an image. Pixels are plotted between -1 and 1, with values falling closer to 1 

representing more green vegetation (Jensen 2016; Rouse et al. 1973). Carter et al. (2009) 

produced higher accuracies with NDVI threshold values than with ML for high spatial resolution 

multispectral imagery and for low spatial resolution hyperspectral imagery at 91% and 88% 

accuracy, respectively. Using low spatial resolution multispectral and hyperspectral imagery, 

Hunt and Parker Williams (2006) compared the results of VI and their correlation with leafy 

spurge presence. They compared NDVI, green normalized difference vegetation index (GNDVI), 

and green to red ratio (G/R), with poor correlation results for all three indices with all of the 
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imagery types. The GNDVI is a ratio that uses the near infrared band, similar to NDVI, but uses 

the green band instead of the red band (Gitelson et al. 1996). The G/R uses a ratio of the green 

and red bands to analyze vegetation (Motohka et al. 2010; Tucker 1979). De Castro et al. (2013) 

identified flowering cruciferous weeds within wheat fields with 89.45% accuracy using a blue to 

green ratio (B/G) on high spatial resolution multispectral imagery. Previous studies utilizing VI 

did not consistently provide acceptable results for multispectral imagery, making this a less 

promising method than other methods discussed in this chapter. 

2.5. Conclusion 

The general trend of research is moving towards the use of higher spatial resolution 

imagery when investigating methods of identifying invasive plant species in aerial imagery. 

Small UAVs allow researchers to collect imagery close to the ground, resulting in ultra-high 

spatial resolutions. Spatial resolution from sensors on satellites and manned aircraft has 

increased as well. In regard to spectral resolution, both multispectral and hyperspectral imagery 

has been used with promising results.  

Imagery with spatial resolutions of 1.5 m to 30 m has been collected from satellites or 

manned aircraft and used in previous research to investigate the ability to detect leafy spurge and 

purple loosestrife in imagery. The use of small UAVs can result in imagery with much higher 

spatial resolutions and more flexibility in the timing of data collection than imagery collected 

using manned aircraft or satellites. Higher resolution imagery will allow smaller patches of 

weeds to be detected. Many herbicides used to control these weeds should be applied at true 

flowering, allowing a limited time window to collect and analyze imagery. Small UAVs have the 

flexibility to collect within a specific time window at an affordable cost. Ultra-high spatial 

resolution imagery has been used successfully with statistical, object-based, and feature learning 
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methods of classification, which utilize the larger amount of data about the plant species of 

interest to achieve high accuracies. 

Previously the spectral signatures of the plants, collected by either imagery or 

spectrometers, have identified specific plant species of interest. Statistical methods have shown 

promise in separating out these spectral signatures, making these viable and potential methods 

for future research. The research presented in this paper uses spectral signatures of leafy spurge 

and purple loosestrife, both of their leaves and inflorescences, to separate these plant species 

from their surrounding vegetation with PLSR. This research may contribute to future methods 

where more affordable and accessible options are available to survey land for invasive plant 

species such as leafy spurge and purple loosestrife.  
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3. CLASSIFICATION OF LEAFY SPURGE AND PURPLE LOOSESTRIFE BASED ON 

SPECTRAL DATA 

3.1. Introduction 

Leafy spurge and purple loosestrife are two commonly found noxious weeds in North 

Dakota (North Dakota Department of Agriculture 2016). North Dakota county weed boards and 

weed officers monitor the state for noxious weeds, to ensure that they are controlled and do not 

replace native vegetation. When used, herbicides are often applied to actively growing plants or 

to the true flowers of these plants making it necessary to identify the plants by the time the 

flowers are visible (Knezevic et al. 2004; Lym 1998; Mullin 1998). It is important to identify 

these noxious weeds early and efficiently because small infestations of noxious weeds are easier 

and less costly to manage than large infestations. 

As technology has improved, higher spatial resolutions of imagery have become more 

readily available. A number of studies have used imagery collected from sensors on satellites and 

manned aircraft to identify plant species (de Castro et al. 2013; Hunt et al. 2010; Mirik et al. 

2013; Noujdina and Ustin 2008; Swain et al. 2011). However, in recent years small UAVs have 

become available at more affordable costs and have provided an accessible method of acquiring 

ultra-high spatial resolution imagery at desired locations and times. Several studies using ultra-

high spatial resolution imagery have utilized the higher levels of details and information 

available by using statistical methods and object-based and feature learning methods, many 

achieving accuracies above 90% (Garcia-Ruiz et al. 2015; Girma et al. 2005; Hung et al. 2014; 

Mafanya et al. 2017; Peña et al. 2013; Pérez-Ortiz et al. 2015; Shapira et al. 2013; Shirzadifar et 

al. 2018; Torres-Sánchez et al. 2013). The studies using statistical methods differentiated specific 

plant species from the surrounding green vegetation, achieving accuracies of up to 95% when 
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using wavelengths ranging from 400-1000 nm (Garcia-Ruiz et al. 2015; Girma et al. 2005; 

Shapira et al. 2013; Shirzadifar et al. 2018).  

Both hyperspectral and multispectral data have been used to identify plant species with 

levels of accuracy above 90% (Garcia-Ruiz et al. 2015; Glenn et al. 2005; Hung et al. 2014; 

Mafanya et al. 2017; Narumalani et al. 2009); however, hyperspectral imagery also has the 

potential to add in noise, unwanted data that does not provide useful information, that can 

decrease accuracies (Carter et al. 2009; Hunt and Parker Williams 2006; Hunt et al. 2007; 

Mitchell and Glenn 2009). 

Attempts to identify leafy spurge and purple loosestrife by spectral reflectance of the 

inflorescences have generally not included the spectral signatures of the plant leaves prior to 

flowering to identify the plant species (Hunt et al. 2010; Kloppenburg 2014; Laba et al. 2010; 

Mitchell and Glenn 2009; Swain et al. 2011). Non-flowering plants within the stand can decrease 

the accuracy of the studies when a plant such as leafy spurge is identified solely by the 

inflorescences (Hunt et al. 2010). Identifying plants both with and without flowers may increase 

classification accuracies.  

Separation of the spectral signatures of flowering leafy spurge from sweet clover 

(Melilotus spp.), another yellow flowering plant, was difficult (O’Neill et al. 2000; Parker 

Williams and Hunt 2002; Ustin and Santos 2010). Using hyperspectral data Parker Williams and 

Hunt (2002) noted that the spectral signatures of leafy spurge were distinguishable from those of 

yellow sweet clover (Melilotus officinalis) because leafy spurge showed less reflectance in the 

550-685 nm wavelengths but higher reflectance in the NIR region than sweet clover. Using SAM 

on field spectra, O’Neill et al. (2000) obtained up to 99% accuracy when separating out leafy 

spurge, sweet clover, and snowberry (Symphoricarpos albus). SAM is a classification method 
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that compares the angle between a reference spectra and an unknown pixel to classify the 

spectral space and match the pixel to the nearest class. Ustin and Santos (2010) were able to 

separate sweet clover from leafy spurge using field spectra; however, they had less success when 

moving to the image scale. This indicates that sweet clover is spectrally distinct from leafy 

spurge; however, more work is needed to separate these species in imagery. 

Based on the hypothesis that the spectral signatures of leafy spurge and purple loosestrife 

are unique from other species, and in order to classify these two plant species based on their 

spectral signatures, this chapter utilized ground-collected spectral data. Using PLS-DA, the 

spectral signatures of the inflorescences and leaves of leafy spurge and purple loosestrife were 

separated from the surrounding vegetation. PLS-DA uses the dependent variable, X, and 

response variable, Y, to create a linear regression model that determines the latent variables of X 

that will predict Y, and subsequently classifies the samples based on the model. The spectral 

signatures were collected from sites located in southeastern North Dakota where either leafy 

spurge or purple loosestrife was visible. The objective of this research was to classify leafy 

spurge and purple loosestrife by the spectral signatures and the spectral data of the inflorescences 

and the leaves that was manually collected in the field. 

3.2. Methods and Materials 

3.2.1. Study Area 

Two sites (leafy spurge site: 46.543°N, 97.141°W; purple loosestrife site: 46.963°N, 

98.184°W) in southeastern North Dakota were included in the study area. The leafy spurge 

collection site was rangeland on the Albert Ekre Grassland Preserve in northeast Richland 

County, North Dakota, that was infested with leafy spurge. The purple loosestrife collection site 
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was a slough, located next to a soybean field in central Barnes County, North Dakota, west of 

Valley City that was infested with purple loosestrife. 

3.2.2. Data Collection Dates 

Data were collected for leafy spurge and purple loosestrife before flowering and during 

flowering in order to compare the spectral signatures of both the leaves of young plants and the 

plant flowers or bracts with the surrounding vegetation. Purple loosestrife is most easily 

identifiable in the near-infrared range when the flowers mature to seed (Laba et al. 2005); 

however, many herbicides are applied to purple loosestrife when the plants are still flowering 

(Knezevic et al. 2004; Mullin 1998). Therefore, field data were collected prior to this change in 

the plant life-cycle in order to identify the plants within a time range that herbicides would 

normally be applied.  

The ground-collected spectral reflectance data for leafy spurge, the surrounding 

vegetation, and background were collected on 26 May 2017. The ground-collected spectral 

reflectance data for purple loosestrife, the surrounding vegetation, and background were 

collected on 6 September 2017.  

3.2.3. Spectral Data Collection 

Spectral data were collected in order to gather precise and accurate spectral signatures of 

the plants of interest and to classify these plants accurately. The collected data included spectral 

reflectance of the inflorescences and leaves of the noxious weeds as well as the surrounding 

vegetation and soil background from both sites (Table 1). For leafy spurge, the spectral 

reflectance of the bracts was collected instead of the flowers because the bracts were a more 

distinct yellow in color than the flowers. Spectral signatures of the leaves were collected from 

leafy spurge and purple loosestrife plants before flowering.  
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The spectral data of the vegetation were collected with a spectrometer system consisting 

of a UV-NIR spectrometer (model USB2000+XR1-ES, Ocean Optics, Largo, Florida, USA) and 

an NIR spectrometer (model NIRQuest512-2.5, Ocean Optics, Largo, Florida, USA). The 

USB2000+XR1-ES used a Sony ILX511B detector (2048-element linear silicon charge coupled 

device (CCD) array), collected data in the wavelength range of 200-1025 nm, and had an optical 

resolution of about 1.7-2.1 nm full width half maximum (FWHM). The NIRQuest512-2.5 used a 

Hamamatsu G9208-512W InGaAs linear array detector, collected data in the wavelength range 

of 900-2500 nm, and had an optical resolution of about 6.3 nm FWHM. The light source for the 

spectrometer system was an Ocean Optics tungsten halogen lamp (HL-2000). 

Table 1. The ten spectral data classes from the leafy spurge and purple loosestrife sites and the 
sample totals collected at each site.  

Class  Calibration sample # Validation sample # Total samples 
Leafy spurge leaves 72 24 96 
Leafy spurge bracts 78 26 104 
Grass 73 25 98 
Background material 33 11 44 
Plant litter 72 23 95 
Soil 18 7 25 
Purple loosestrife 
leaves 

81 26 107 

Purple loosestrife 
flowers 

45 16 61 

Background plants 81 27 108 
Background material 65 22 87 
Totals 618 207 825 
The spectral data classes with the calibration and validation sample totals. The calibration group 
was comprised of 75% of the samples, and the validation group was comprised of 25% of the 
samples. 

The spectrometers were calibrated with a reference measurement taken from a Spectralon 

Diffuse Reflectance Standards calibration panel (model USRS-99-010, Labsphere, North Sutton, 
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New Hampshire, USA) with 99% reflectance in the measured wavelengths. The reference and 

dark spectra were periodically checked throughout the sample collection in order to ensure that 

the machine was calibrated correctly. About 50-100 plants from each class were gathered from 

across the study areas and brought to the spectrometers for data collection. The target plant 

material was generally small; therefore, multiple leaves or petals were layered for data collection 

to ensure the spectrometer did not collect data from outside the target material. One reflectance 

spectra was acquired per cluster of plant material. The spectral reflectance of each sample was 

collected with a fiber optic probe held within 1 cm above the plant material so that data were 

collected on only a small portion of the plant. This was especially important when collecting data 

of the inflorescences, which were small in size, in order to obtain pure spectral signatures. Data 

were collected in the late morning to early afternoon. 

3.2.4. Spectral Data Analysis Using Partial Least Squares Discriminant Analysis 

Partial least squares discriminant analysis (PLS-DA) was used to analyze the spectral 

data collected with the spectrometer for leafy spurge and purple loosestrife in order to identify 

how well the spectral signatures of the plants could be distinguished from the surrounding 

vegetation and materials, as well as to identify the bands that provided the most information to 

distinguish these invasive plants from the surroundings. PLS-DA combines PLSR and DA as a 

classification method. PLSR creates a linear regression model that uses X and Y variables to 

determine the latent variables of X that will best predict Y. PLS-DA models the material classes 

using PLSR and subsequently categorizes these classes. This method was chosen because of the 

ability to classify spectral signatures and the promising results in previous studies (Garcia-Ruiz 

et al. 2015; Shapira et al. 2010). The data preprocessing and PLS-DA model development of the 

spectral data were performed using the Unscrambler v10.4.1 (CAMO, Oslo, Norway). 
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3.2.4.1. Initial setup of data 

The spectral data of leafy spurge, the surrounding vegetation, and the soil background 

included six classes; while the spectral data of purple loosestrife and the surrounding vegetation 

and materials included four classes (Table 1). At both sites, wavelengths 400-1000 nm were 

used, which resulted in 1490 bands. Previous studies identifying invasive species utilized 

wavelengths within this range with positive results (Garcia-Ruiz et al. 2015; Peña et al. 2013; 

Swain et al. 2011). 

The samples were divided into calibration and validation groups. The calibration data 

were used to develop the PLSR models, and the validation data were used to validate the models 

and show how well each class was predicted. The calibration group consisted of 75% of the 

samples and the validation groups consisted of the remaining 25% of the samples. The samples 

were arranged in the order in which they were collected so that each of the two groups would be 

representative of the data. Every fourth sample was categorized as validation, and the remaining 

samples were categorized as calibration. This pattern was used until all samples were labeled as 

either calibration or validation. 

3.2.4.2. Spectral data preprocessing 

The raw spectra in the calibration category were preprocessed prior to developing the 

PLSR models. The second derivative was calculated using a Savitzky-Golay transform with a 

second order polynomial in order to reduce the additive effects in the spectral data and to 

highlight the peaks of interest (Savitzky and Golay 1964). The second derivative measures the 

change in the slope of the data curves and removes linear baseline effects and sloping. This can 

be beneficial to use because the peaks are kept in the same places as in the original data. The 

Savitzky-Golay filter smoothed the spectral data and removed excess noise. The total smoothing 
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points used were 31, with 15 smoothing points on each side. The standard normal variate (SNV) 

was then used to analyze the second derivative transformed data to remove scatter effects. SNV 

divides the mean from across the spectrum by the standard deviation across the spectrum, and is 

calculated: 

𝑥!,! =  
𝑥! −  𝑥
𝑠   

where xT,k is the wavelength with the SNV transformation applied, xk is the observed spectra 

prior to the SNV transformation, 𝑥 is the mean spectra, and s is the standard deviation of the 

spectra. 

3.2.4.3. Partial least squares regression model development 

Four different PLSR models were created using the preprocessed data that was labeled as 

calibration. Models 1 and 2 were developed using the leafy spurge spectral data in the calibration 

group, and models 3 and 4 were developed using the purple loosestrife spectral data in the 

calibration group. For each model, spectral data was divided into either two or three categories. 

Each category was given a numerical value, which was used as the Y value. The X values 

consisted of the preprocessed spectra. The models were initially validated using random cross-

validation. 

• Model 1 was comprised of three target categories, namely leafy spurge bracts, leafy 

spurge leaves, and background consisting of the four classes of background plants 

and materials (grass, background material, plant litter, and soil). 

• Model 2 was comprised of two categories, namely leafy spurge leaves and 

background consisting of the four classes of background plants and materials. 

• Model 3 was comprised of three categories, namely purple loosestrife flowers, purple 

loosestrife leaves, and the background plants and materials.  



 

44 

• Model 4 was comprised of two categories, namely purple loosestrife leaves and the 

background plants and materials. 

PLSR was initially run on every tenth band of the spectral signatures; therefore, of the 

total 1490 bands that were collected, 149 bands were initially used to develop each model. 

3.2.4.4. Uncertainty test 

Martens’ Uncertainty Test was used to determine the significant bands, or the bands that 

significantly contributed to the development of each model, doing so by using a jack-knifing 

method to detect the variables that did not significantly contribute to the model (Martens and 

Martens 2000). The significant bands were determined using the regression coefficients. If the 

uncertainty limit of the regression coefficient of the band crossed zero, then the band was not a 

predicting variable and was not significant to the model. In the Unscrambler, this test highlighted 

the bands that contributed to the model and gave the option to recalculate the model using only 

these significant bands. Each model was recalculated using only the significant bands until all of 

the remaining bands were deemed significant according to the uncertainty test. 

3.2.4.5. Random cross-validation 

Random cross-validation was used to validate the models and indicate how the models 

performed at predicting samples in the validation group. The number of factors used in each of 

the four models was reduced from the original number of five, six, or seven factors to four 

factors. The smaller number of factors, or latent variables, made the models simpler and, 

therefore, more robust than the five to seven factors used in each initial model. The effectiveness 

of each of the models was similar when decreased to a 4-factor models. However, reducing the 

factors past this point decreased the R2 values and how well the data was explained by the 

models.  
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3.2.4.6. Validation using prediction 

After developing the PLSR models and running cross-validation, a prediction using the 

regression model was run on the validation group, using the four suggested components, or 

factors, of each model and all 1490 bands for each model. This prediction value indicated how 

well the spectral signatures were able to be differentiated from each other. 

3.3. Results 

3.3.1. Spectral Signature Analysis 

Initial visual analysis of the raw spectra and the second derivative after SNV correction 

found that purple loosestrife and leafy spurge can be separated from the surrounding vegetation, 

both by the plant inflorescences and by the leaves (Figures 1 and 2). The raw spectral data 

needed to be normalized before accurate comparisons could be made about the data. The data 

normalized with the second derivative and SNV had comparable spectral signatures while still 

highlighting plant differences. Visible distinctions between the spectral signatures were observed 

within the range of 500-750 nm, which corresponded with the green, red, and near infrared 

regions. The leafy spurge bracts were most visually distinguishable starting at 665 nm until about 

730 nm, and the leafy spurge leaves were most visually distinguishable between 675 nm and 725 

nm (Figure 1). The purple loosestrife flowers were most visually distinguishable between 575 

nm and 680 nm, while the purple loosestrife leaves were most visually distinguishable between 

680 nm and 750 nm (Figure 2). The second derivative and SNV preprocessed data had a peak for 

the leafy spurge inflorescence and leaves and purple loosestrife flowers at 685-690 nm and a dip 

around 710-725 nm. However, the purple loosestrife flowers peaked around 590 nm and dipped 

around 665 nm. 
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Figure 1. Averaged spectral data for each of the six classes from the leafy spurge collection site. 
Averaged raw spectra of each class of materials from the leafy spurge collection site (left). 
Averaged preprocessed spectra of each class of materials from the leafy spurge collection site 
after 2nd derivative and SNV transformation (right). 

 

 

Figure 2. Averaged spectral data for each of the four classes from the purple loosestrife 
collection site. 
Averaged raw spectra of each class of materials from the purple loosestrife collection site (left). 
Averaged preprocessed spectra of each class of materials from the purple loosestrife collection 
site after 2nd derivative and SNV transformation (right). 
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3.3.2. Model Development and Calibration  

The model performance was analyzed based on random cross-validation and the score 

plots. Analysis of the methods found weaknesses in the models that needed to be modified prior 

to running the final prediction analysis on the validation group. All four models were reduced to 

4-factor models, making them simpler and more robust than the 5- to 7-factor models initially 

produced, while still explaining the data and attaining R2 values above 0.85 (Table 2). The 

number of bands used in each model was reduced as well. Each model was initially developed 

using 149 bands, which were reduced by the final variation of each model. 

3.3.2.1. Random cross-validation 

• Model 1 (all of the leafy spurge data and the surrounding background plants and 

materials) was recalculated five times using only the variables marked as significant 

by Martens’ Uncertainty Test, reducing the model from a 6-factor model to a 4-factor 

model. The final variation used 73 bands, and both the calibration and validation R2 

values from the random cross-validation were 0.92. 

• Model 2 (leafy spurge leaves and the surrounding background plants and materials) 

was recalculated four times using only the variables marked as significant by 

Martens’ Uncertainty Test, reducing the model from a 7-factor model to a 4-factor 

model. The final variation used 21 bands, and both the calibration and validation R2 

values from the random cross-validation were 0.88. 

• Model 3 (all of the purple loosestrife data and the surrounding background plants and 

materials) was recalculated five times using only the variables marked as significant 

by Martens’ Uncertainty Test, reducing the model from a 7-factor model to a 4-factor 
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model. The final variation used 37 bands. The calibration R2 value from the random 

cross-validation was 0.91, and validation R2 value was 0.90. 

• Model 4 (purple loosestrife leaves and the surrounding background plants and 

materials) was recalculated five times using only the variables marked as significant 

by Martens’ Uncertainty Test, reducing the model from a 5-factor model to a 4-factor 

model. The final variation used 25 bands. The calibration R2 value from the random 

cross-validation was 0.89, and validation R2 value was 0.88. 

Table 2. The PLSR model development depicting the number of categories, factors, and bands 
used in developing each model. 

 Noxious 
weed 

# of 
categories 

Initial # 
of factors 

Final # of 
factors 

Final # of 
bands Cal. R2  Val. R2  

Model 1 Leafy 
spurge 

3 6 4 73 0.92 0.92 

Model 2 Leafy 
spurge 

2 7 4 21 0.88 0.88 

Model 3 Purple 
loosestrife 

3 7 4 37 0.91 0.90 

Model 4 Purple 
loosestrife 

2 5 4 25 0.89 0.88 

PLSR models with random cross-validation R2 results for both calibration and validation, 
showing the number of categories included in each model, the number of factors used to develop 
the initial models, and the number of factors and bands used in the final models. 

3.3.2.2. Score plots 

The score plot is a scatter plot that uses two factors. Factors 1 and 2, the first two of the 

latent variables of X that best predict Y, described more variation in the data than the other 

factors, making the score plot depicting these two factors the most informative. Factor 1 

explained the majority of the variance in the models. Factors 2 and 3 also explained a significant 

amount of the variance. Factor 4 explained a small, but still important amount of the variance, 
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while factors 5-7 did not explain enough of the variance to warrant being included in the final 

models (Figure 3). 

 

Figure 3. Explained variance of the four models by each of the validation factors, the latent 
variables of X that best predict Y.  
Factors 1-4 explained a significant amount of the variance in the models. Factors 5-7 did not 
explain enough of the variance and were not included in the models. 

The score plots show patterns in the data and sample grouping. The samples depicted 

close together in the score plots indicate that they have characteristics that are more similar to 

each other than to samples that are depicted farther away in the score plots (Figure 4). In models 

1 and 2, the background material, soil, and litter are concentrated together, far away from leafy 

spurge leaves and bracts and the grass. The grass and leafy spurge leaves overlap somewhat in 

both models. In model 1 the leafy spurge bracts appear mostly between the grass and the leafy 

spurge leaves, overlapping both classes slightly, but overlapping the leaves more than the grass. 

This indicates that much of the lower accuracy of models 1 and 2 is likely due to the overlapping 

spectral signatures of the leafy spurge bracts, leaves, and grass. 

In models 3 and 4, there is a considerable amount of overlap between the background 

plants and materials, but the purple loosestrife flower and leaf samples appear in individual 
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clusters showing distinct separation from each other and from the background plants and 

materials. Removing one of the classes changed the values of the scores, but the patterns in the 

data were still visible between models 1 and 2 and models 3 and 4. 

 

 

 

Figure 4. Score plots depicting patterns of plant and background samples in scatterplots.  
The score plots of factors 1 and 2 for models 1 and 2 show overlap between the samples of leafy 
spurge bracts, leafy spurge leaves, and grass. The score plots of factors 1 and 2 for models 3 and 
4 show almost no overlap between the samples of purple loosestrife flowers and purple 
loosestrife leaves, either with each other or the other classes. 

Model 2 Scores Model 1 Scores 

Model 3 Scores Model 4 Scores 
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3.3.3. Significant Bands 

Analysis of the spectral bands identified the significant bands, or the bands that 

contributed to model development, for each model using Martens’ Uncertainty Test. These are 

the bands, or the X variables, that describe the Y variables well and are important for predicting 

Y. Once the significant bands were identified, each model was recalibrated using only these 

significant bands. By this method, the number of bands used for each model was reduced from 

149 to include only the bands that explained the data well, which ranged from 21 to 73 bands for 

the four models.  

Identifying which bands are useful for each model can determine which bands and 

sensors are best to use when collecting and analyzing imagery of the plant species in each model. 

The most important of these wavelengths can also be identified depending on which ones have 

the largest regression coefficients. While all of the bands used in the final models were 

important, the X variables with the largest regression coefficients were the variables that 

contributed the most to the model.  

The most important wavelengths generally fell within the visually distinct range of 500-

750 nm (Figures 5-8). The single most important or useful wavelengths – those with the largest 

regression coefficients – for models 1 and 3 were located within the red spectral range at 648.2 

nm and 656.5 nm, respectively. The single most useful wavelengths for models 2 and 4 were 

located within the red edge and NIR ranges at 701.5 nm and 832.4 nm, respectively. Model 3 had 

the most distinct band clusters of the four models, especially at 560-610 nm, 650-675 nm, and 

720-740 nm (Figure 7). Model 2 had only a single loose cluster within 685-720 nm (Figure 6). 

Model 4 also showed a loose cluster of bands in the range of 635-735 nm (Figure 8). Model 1 

was the most difficult of the models to select distinct clusters due to the high number of bands 
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used; however, the densest areas of significant bands occurred between about 480 nm and 735 

nm (Figure 5). Bands with wavelengths at the very edges of the 400-1000 nm spectral range 

were also included in Model 1. All four of the models had a cluster of bands around 700 nm; 

therefore, this chlorophyll absorption and red edge region is an important group of wavelengths 

to include in sensors to detect these weeds.  

 

Figure 5. Model 1 preprocessed spectral signatures indicating relative significance of wavebands. 
Model 1 identified 73 significant bands with the densest areas of significant bands occurring 
between about 480 nm and 735 nm and the most important wavelength occurring at 648.2 nm. 
Clusters of significant bands around 700 nm can be seen in all four of the models as chlorophyll 
absorption in this region is an important factor in plant identification. 
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Figure 6. Model 2 preprocessed spectral signatures indicating relative significance of wavebands. 
Model 2 identified 21 significant bands with the only loose cluster occurring within 685-720 nm 
and the most important wavelength occurring at 701.5 nm.  

 

Figure 7. Model 3 preprocessed spectral signatures indicating relative significance of wavebands. 
Model 3 identified 37 significant bands and had the most distinct band clusters of the four 
models, which occurred at 560-610 nm, 650-675 nm, and 720-740 nm. The most important 
wavelength occurred at 656.5 nm. 
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Figure 8. Model 4 preprocessed spectral signatures indicating relative significance of wavebands. 
Model 4 identified 25 significant bands and showed a loose cluster of bands between 635-735 
nm. The most important wavelength occurred at 832.4 nm.  

3.3.4. Spectral Model Performance 

The results of PLS-DA modeling had accuracies greater than 85% when distinguishing 

the inflorescences of the plants of interest, as well as their leaves, from the surrounding 

vegetation. Prediction results using the 4-factor PLSR models were calculated on all 1490 

original bands of the validation group, resulting in R2 values for each of the models (Table 3). 

The R2 values indicated how much of the variability in the response variable was explained by 

the model. Model 1, which compared leafy spurge bracts, leaves, and the background plants and 

material, had the best prediction results of any of the models, with an R2 value of 0.92. Models 2 

and 4 had very close results, with R2 values of 0.89 and 0.88, respectively. These two models 

compared the leaves of leafy spurge and purple loosestrife with surrounding background 

materials. Model 3, which compared purple loosestrife flowers, leaves, and the background 

plants and material, had the lowest prediction result, with an R2 value of 0.86.  
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The accuracies found in this study are comparable to the accuracies (89-95%) reported by 

Garcia-Ruiz et al. (2015), when analyzing the spectral signatures of Canada thistle and sugarbeet, 

and Shirzadifar et al. (2018) when spectral data were used to discriminate three weeds species 

using SIMCA model (88.89-100%).  

Table 3. Performance of PLS-DA models to discriminate two invasive plant species.  

 Noxious weed # of categories # of factors # of bands Cal. R2 Val. R2 
Model 1 Leafy spurge 3 4 73 0.92 0.92 
Model 2 Leafy spurge 2 4 21 0.88 0.89 
Model 3 Purple 

loosestrife 
3 4 37 0.91 0.86 

Model 4 Purple 
loosestrife 

2 4 25 0.89 0.88 

This table shows the calibration R2 results from the model development and the final validation 
R2 results. Model 1 had the best prediction value of 0.92. 

3.3.5. Discussion 

While models 2, 3, and 4 reduced the number of significant bands to fewer than 40, 

model 1 required almost twice as many bands in order to achieve the R2 value of 0.92. This 

larger number of bands puts more of a limitation on model 1 than on the other models, making it 

a more complex and less robust model. Model 3 consisted of nearly half the number of bands as 

model 1, at 37, while models 2 and 4 consisted of nearly one-third the number of bands, at 21 

and 25 bands, respectively. The smaller number of bands allowed clusters of the significant 

bands to be identified, indicating which groups of wavelengths would be best to include in 

sensors to identify the weeds. If the number of bands needed for a model can be reduced to less 

than ten, then a multispectral sensor can be used to analyze the data. Otherwise, a hyperspectral 

sensor would be necessary, which would increase the cost of the equipment. Model 1 required 

two to three times as many bands as the other models; therefore, reducing the number of bands to 
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few enough in order to use a multispectral sensor to identify leafy spurge would be more difficult 

with model 1. 

Additionally, models 1 and 3 consisted of three categories each, while models 2 and 4 

consisted of two categories each. The larger number of categories of models 1 and 3 may have 

contributed to the larger number of bands required to achieve the accuracies of these models.  

The inflorescences of leafy spurge and purple loosestrife were distinct yellow and purple 

colors, respectively, and were visually separable from the surrounding vegetation. Therefore, it is 

not surprising that the distinctly colored material was separated out in models 1 and 3. However, 

what is of more interest is that models 2 and 4 were able to achieve decent results when 

separating the green leaves of leafy spurge and purple loosestrife from the surrounding green 

vegetation. 

The leaves of leafy spurge and purple loosestrife were compared in models 2 and 4 with 

the surrounding vegetation without including the inflorescences in the models, resulting in only 

two categories instead of three categories. Good results were achieved with each of these models 

using fewer bands than models 1 or 3. As mentioned above, if these noxious weeds can be 

identified by their leaves, then they can be identified earlier in the season before they start 

flowering. Because many herbicides are applied during flowering, identifying them early would 

allow for more time to plan and coordinate the herbicide application. 

3.4. Conclusion 

The objective of this paper was to classify leafy spurge and purple loosestrife noxious 

weeds based on spectral data manually collected in the field. The spectral data in this study 

shows promise for separating the spectral signatures of these two noxious weeds from the 

surrounding green vegetation and materials both by their inflorescences and their leaves. In this 
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study, the results of PLS-DA when comparing the spectral signatures of leafy spurge and purple 

loosestrife and the surrounding vegetation and materials indicated that both the inflorescences 

and leaves of the noxious weeds were spectrally distinct from their surroundings. The red and red 

edge wavelength regions appeared to be the most important regions for separating these plants 

from the surroundings. In each of the models, clusters of significant bands around 700 nm can be 

seen because chlorophyll absorption in this region is important in separating and identifying 

plants. Bands in these wavelength regions from about 600 nm to 730 nm should be included in 

sensors used to identify leafy spurge and purple loosestrife. 

Determining that the spectral signatures of these noxious weeds were separable from their 

surroundings was the first step before using the spectral signatures to classify and identify the 

weeds in aerial imagery. Future research should include separating the spectral signatures of 

leafy spurge and purple loosestrife in ultra-high spatial resolution imagery, both before and 

during flowering. Including additional visible aspects of the plants in the imagery, such as 

texture or shape, could also be included to enhance the accuracy of the classification. Analysis of 

imagery during flowering, either in the greenhouse or in field conditions, should include yellow 

and purple flowering plants that grow in similar habits to leafy spurge or purple loosestrife. 

There is high potential for identifying leafy spurge and purple loosestrife early in the 

season when the spectral signatures of the plant leaves or inflorescences are identifiable. 

Identifying the noxious weeds by their leaves will allow the noxious weeds to be identified 

earlier than when identifying the plants by their inflorescences. This, in turn, would allow for 

more time to identify the plants and plan for methods of eradication.  

 



 

58 

3.5. Reference 

Carter GA, Lucas KL, Blossom GA, Lassitter CL, Holiday DM, Mooneyhan DS, Fastring DR, 

Holcombe TR, Griffith JA (2009) Remote sensing and mapping of tamarisk along the 

Colorado River, USA: A comparative use of summer-acquired Hyperion, Thematic 

Mapper and QuickBird data. Remote Sens 1:318–329 

de Castro AI, López-Granados F, Jurado-Expósito M (2013) Broad-scale cruciferous weed patch 

classification in winter wheat using QuickBird imagery for in-season site-specific 

control. Precis Agric 14:392–413 

Garcia-Ruiz FJ, Wulfsohn D, Rasmussen J (2015) Sugar beet (Beta vulgaris L.) and thistle 

(Cirsium arvensis L.) discrimination based on field spectral data. Biosyst Eng 139:1–15 

Girma K, Mosali J, Raun WR, Freeman KW, Martin KL, Solie JB, Stone ML (2005) 

Identification of optical spectral signatures for detecting cheat and ryegrass in winter 

wheat. Crop Sci 45:477–485 

Glenn NF, Mundt JT, Weber KT, Prather TS, Lass LW, Pettingill J (2005) Hyperspectral data 

processing for repeat detection of small infestations of leafy spurge. Remote Sens 

Environ 95:399–412 

Hung C, Xu Z, Sukkarieh S (2014) Feature learning based approach for weed classification using 

high resolution aerial images from a digital camera mounted on a UAV. Remote Sens 

6:12037–12054 

Hunt ER, Daughtry CST, Kim MS, Parker Williams AE (2007) Using canopy reflectance models 

and spectral angles to assess potential of remote sensing to detect invasive weeds. J Appl 

Remote Sens 1:013506 



 

59 

Hunt ER, Gillham JH, Daughtry CST (2010) Improving potential geographic distribution models 

for invasive plants by remote sensing. Rangel Ecol Manag 63:505–513 

Hunt ER, Parker Williams AE (2006) Detection of flowering leafy spurge with satellite 

multispectral imagery. Rangel Ecol Manag 59:494–499 

Kloppenburg C (2014) Detecting Leafy Spurge in Native Grassland Using Hyperspectral Image 

Analysis. MS thesis. Lethbridge, AB: University of Lethbridge. 93 p 

Knezevic SZ, Smith D, Kulm R, Doty D, Kinkaid D, Goodrich M, Stolcpart R (2004) Purple 

loosestrife (Lythrum salicaria) control with herbicides: Single-year application. Weed 

Technol 18:1255–1260 

Laba M, Blair B, Downs R, Monger B, Philpot W, Smith S, Sullivan P, Baveye PC (2010) Use 

of textural measurements to map invasive wetland plants in the Hudson River National 

Estuarine Research Reserve with IKONOS satellite imagery. Remote Sens Environ 

114:876–886 

Laba M, Tsai F, Ogurcak D, Smith S, Richmond ME (2005) Field determination of optimal dates 

for the discrimination of invasive wetland plant species using derivative spectral analysis. 

Photogramm Eng Remote Sensing 71:603–611 

Lym, RG (1998) The biology and integrated management of leafy spurge (Euphorbia esula) on 

North Dakota rangeland. Weed Technol 12:367–373 

Mafanya M, Tsele P, Botai J, Manyama P, Swart B, Monate T (2017) Evaluating pixel and 

object based image classification techniques for mapping plant invasions from UAV 

derived aerial imagery: Harrisia pomanensis as a case study. ISPRS J Photogramm 

Remote Sens 129:1–11 



 

60 

Martens H, Martens M (2000) Modified Jack-knife estimation of parameter uncertainty in 

bilinear modelling by partial least squares regression (PLSR). Food Qual Prefer 11:5–16 

Mirik M, Ansley RJ, Steddom K, Jones DC, Rush CM, Michels GJ, Elliott NC (2013) Remote 

distinction of a noxious weed (musk thistle: Carduus nutans) using airborne 

hyperspectral imagery and the support vector machine classifier. Remote Sens 5:612–630 

Mitchell JJ, Glenn NF (2009) Leafy spurge (Euphorbia esula) classification performance using 

hyperspectral and multispectral sensors. Rangel Ecol Manag 62:16–27 

Mullin BH (1998) The biology and management of purple loosestrife (Lythrum salicaria). Weed 

Technol 12:397–401 

Narumalani S, Mishra DR, Wilson R, Reece P, Kohler A (2009) Detecting and mapping four 

invasive species along the floodplain of North Platte River, Nebraska. Weed Technol 

23:99–107 

North Dakota Department of Agriculture (2016) Noxious Weeds. http://www.nd.gov/ndda/plant-

industries/noxious-weeds. Accessed: November 1, 2016 

Noujdina NV, Ustin SL (2008) Mapping downy brome (Bromus tectorum) using multidate 

AVIRIS data. Weed Sci 56:173–179 

O’Neill M, Ustin SL, Hager S, Root R (2000) Mapping the distribution of leafy spurge at 

Theodore Roosevelt National Park using AVIRIS. Pages 0-18 in Proceedings of the 

Ninth JPL Airborne Earth Science Workshop. Pasadena, California: NASA Jet 

Propulsion Laboratory 

Parker Williams A, Hunt ER (2002) Estimation of leafy spurge cover from hyperspectral 

imagery using mixture tuned matched filtering. Remote Sens Environ 82:446–456 



 

61 

Peña JM, Torres-Sánchez J, de Castro AI, Kelly M, López-Granados F (2013) Weed mapping in 

early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) 

images. PLOS One 8:e77151 

Pérez-Ortiz M, Peña JM, Gutiérrez PA, Torres-Sánchez J, Hervás-Martínez C, López-Granados 

F (2015) A semi-supervised system for weed mapping in sunflower crops using 

unmanned aerial vehicles and a crop row detection method. Appl Soft Comput 37:533–

544 

Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares 

procedures. Anal Chem 36:1627–1639 

Shapira U, Herrmann I, Karnieli A, Bonfil DJ (2013) Field spectroscopy for weed detection in 

wheat and chickpea fields. Int J Remote Sens 34:6094–6108 

Shapira U, Herrmann I, Karnieli A, Bonfil JD (2010) Weeds detection by ground-level 

hyperspectral data. Theory to Pract XXXVIII:27–33 

Shirzadifar A, Bajwa S, Mireei SA, Howatt K, Nowatzki J (2018) Weed species discrimination 

based on SIMCA analysis of plant canopy spectral data. Biosyst Eng 171:143–154 

Swain S, Narumalani S, Mishra DR (2011) Monitoring invasive species: Detecting purple 

loosestrife and evaluating biocontrol along the Niobrara River, Nebraska. GIsci Remote 

Sens 48:225–244 

Torres-Sánchez J, López-Granados F, de Castro AI, Peña-Barragán JM (2013) Configuration and 

specifications of an unmanned aerial vehicle (UAV) for early site specific weed 

management. PLOS One 8:e58210 



 

62 

Ustin SL, Santos MJ (2010) Spectral identification of native and non-native plant species. Pages 

1–17 in Proceedings of ASD and IEEE GRS; Art, Science and Applications of 

Reflectance Spectroscopy Symposium, Vol. 2. Boulder, CO 

 


