
 
 

EVALUATING THE USABILITY OF COLLABORATION TOOL FOR SOFTWARE 

INSPECTION PROCESS 

 

 

 

A Paper 

Submitted to the Graduate Faculty 

of the 

North Dakota State University 

of Agriculture and Applied Science 

 

 

 

 

By 

 

Mounisha Kasireddy 

 

 

 

 

In Partial Fulfillment of the Requirements 

for the Degree of 

MASTER OF SCIENCE  

 

 

 

 

Major Program: 

Software Engineering 

 

 

 

April 2019 

 

 

 

 

Fargo, North Dakota 
  



 
 

North Dakota State University 

Graduate School 
 

Title 
 

Evaluating the Usability of Collaboration Tool for Software Inspection Process 

  

  

  By   

  

Mounisha Kasireddy 

  

     

    

  The Supervisory Committee certifies that this disquisition complies with North Dakota 

State University’s regulations and meets the accepted standards for the degree of 

 

  MASTER OF SCIENCE  

    

    

  SUPERVISORY COMMITTEE:  

    

  
 Dr. Gursimran Walia 

 

  Chair  

  
Dr. Oksana Myronovych 

 

  
Dr. Limin Zhang 

 

  
  

 

    

    

  Approved:  

   

 04/05/19   Dr. Gursimran Walia   

 Date  Department Chair  

    

 



 

iii 

 

ABSTRACT 

To develop a good software product, the first and foremost step to master is creating 

complete and accurate software requirements specification document. Requirements documents 

are created from through research and are documented for inspection. The inspection team work 

on finding defects at an early stage, to avoid defects passed on to design team, reduce software 

development time and improve the product quality. Inspection process, when done in conventional 

method is labor intensive, cost ambitious and takes overwhelming time. But the benefits of 

inspection outweigh the difficulties. Software Collaboration tool is one such tool to improve 

inspection process, help produce complete and accurate SRS document. This paper reviews newly 

developed Software Collaboration tool and conducts a user acceptance study to evaluate tool’s 

quality attributes, functionalities, experience, usefulness and collect suggestions for future 

development. This paper employs survey research to determine whether the tool characters and 

functionalities meet user needs. 

 

  



 

iv 

 

ACKNOWLEDGEMENTS 

I would like to thank my adviser Dr. Gursimran Walia for his thorough guidance, support 

during this paper and making the whole journey a sweet memory. I have gained immense 

knowledge and experience working with you.  Thank you for being very flexible with the time, 

generous support, coaching, and teaching me that a simple genuine smile can go a long way. 

Thanks again for being a great mentor.  

I would also like to thank my graduate committee Dr. Oksana Myronovych and Dr. Limin 

Zhang for being very helpful and encouraging during this process. Thank you for your motivations 

and sharing defense tips, you have been very kind and generous towards me.  

Finally, I would like to thank the North Dakota State University, Computer Science 

Department Faculty and Staff for your complete support during the past two years.  



 

v 

 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................................... iii 

ACKNOWLEDGEMENTS ........................................................................................................... iv 

LIST OF TABLES ........................................................................................................................ vii 

LIST OF FIGURES ..................................................................................................................... viii 

1. INTRODUCTION ...................................................................................................................... 1 

2. BACKGROUND ........................................................................................................................ 4 

2.1. Inspection Process (Fagan Inspection Process) .................................................................... 4 

2.1.1. Fagan Inspection – Operations and Roles ..................................................................... 5 

2.1.2. Fagan Inspection – Advantages and Disadvantages ...................................................... 7 

2.2. Current Inspection Process Support Tools ........................................................................... 7 

3. SOFTWARE COLLABORATION TOOL .............................................................................. 10 

3.1. Key Functions..................................................................................................................... 10 

3.2. Software Collaboration Interface ....................................................................................... 11 

4. EXPERIMENT METHOD ....................................................................................................... 14 

4.1. Research Questions and Hypotheses .................................................................................. 14 

4.2. Survey Questions ................................................................................................................ 15 

4.3. Survey Participants ............................................................................................................. 16 

4.4. Software Requirement Artifacts ......................................................................................... 17 

4.5. Experiment Procedure ........................................................................................................ 17 

4.6. Data Collection ................................................................................................................... 19 

5. DATA ANALYSIS AND RESULTS ....................................................................................... 20 

5.1. Software Collaboration Tool Quality Attributes and Functionalities ................................ 20 

5.2. Experience using Software Collaboration Tool for Inspection Process ............................. 25 



 

vi 

 

5.3. Enhancement Suggestions .................................................................................................. 28 

6. DISCUSSION OF RESULTS................................................................................................... 29 

6.1. Summary of Results ........................................................................................................... 29 

6.2. Improvements to Software Collaboration tool ................................................................... 32 

6.3. Threats to Validate ............................................................................................................. 33 

6.4. Future Work ....................................................................................................................... 33 

7. CONCLUSION ......................................................................................................................... 34 

REFERENCES ............................................................................................................................. 35 



 

vii 

 

LIST OF TABLES 

Table Page 

1. Experiment Teams ............................................................................................................... 17 

 

  



 

viii 

 

LIST OF FIGURES 

Figure Page 

1. Michael Fagan’s Process- Advances in Software Inspection (1976) ..................................... 4 

2. Software Collaboration Tool Login Page ............................................................................ 11 

3. Software Collaboration Tool Home Screen ......................................................................... 12 

4. Software Collaboration Tool Annotations Screen ............................................................... 13 

5. Software Collaboration Tool Consolidate Fault List Screen ............................................... 13 

6. Experiment Flow Chart ........................................................................................................ 18 

7. Software Collaboration Tool Non-functional Parameters ................................................... 22 

8. Software Collaboration Tool Functional Parameters ........................................................... 23 

9. Software Collaboration Tool SRS Document Quality ......................................................... 24 

10.  Software Collaboration Tool Overall Quality..................................................................... 25 

11. Software Collaboration Tool User's Experience .................................................................. 26 

12. Software Collaboration Tool Usefulness in Software Inspection Process........................... 27 

13. Recommend Software Collaboration Tool to Others........................................................... 28 

 



 

1 
 

1. INTRODUCTION 

To develop a good software product, the first and foremost step to master is creating 

complete and accurate software requirements specification document [1]. The benefits of having 

gathered quality product requirements are huge. To list a few, saves time to identify defects/faults 

after design, reduces time spent to correct these defects, remove/reduce tool evolution stage after 

deployment, hence reducing cost of developing the product and so running an efficient software 

development process. But, to build a fault free requirements document it is compulsory to review 

the requirements thoroughly at an early stage. And often, this step requires a group of reviewers 

spend time, effort to inspect the documents, find the defects and correct them, and/or some 

software improvement tool to filter the defects out of the requirements document.   

Researchers have tried for years to improve the quality and accuracy of software product 

requirements. Many methods were explored and tested to add more value to requirements 

documents by eliminating defects. Methods such as practitioner’s approach [3], checklists [4,5], 

testing, quality assurance, quantifiable improvement [7] and prototyping [6]. All methods have 

produced some improvements to the requirements but none of them have made it to the table due 

to facing the difficulties of unable to detect the faults that were introduced after the approach and 

have become harder to resolve at a later stage in the development process [9] or for being not able 

to justify the cost to results [8, 10].  

Among all the methods tried, Fagan’s Inspection method has success stories with reducing 

the defects by about 90% in one case and more than 50% in two other cases tested in a three-case 

study experiment [1]. Fagan’s method has been extensively used in requirements inspection 

process since its introduction and it’s safe to say that this process can detect defects at any step of 

the software development lifecycle and is justifiable on cost versus benefit measure [1]. 



 

2 
 

Fagan Inspection has huge benefits in requirements review stage, but it is noted that the 

process is time consuming and labor intensive. So, to further support the software development 

industry, make the inspection process less labor and cost intensive. Researches are working to 

streamline the process and to introduce tool support/automation to reduce time and effort. Thus, 

making the process more valuable and time saving. Some of the tools used to improve inspection 

process are ICICLE – Intelligent Code Inspection in a C Language Environment [19, 20], Scrutiny 

[21], Collaborative Software inspection [22] and many more. Each of these tools have their own 

merits as described in the research paper “A Review of Tool Support for Software Inspection” 

[14]. More research is being led to build supporting tools for Fagan’s inspection process.  

This paper performs a brief study on the available tools in support of inspection process 

and introduces newly developed Software Collaboration tool. Collaboration tool is designed to 

ease the inspection process by streamlining the preparation stage, inspection meeting and 

generating consolidated fault list for effortless review. Collaboration tool’s functionality and 

interface is described in the background. An elaborate study is conducted in this research through 

survey questionnaire to rate Software Collaboration tool’s quality attributes, functionality, 

usefulness, experience and collect suggestions to further improve the tool. The goal of this research 

is to evaluate user perception of the Software Collaboration tool in terms quality attributes 

(usability, performance, look & feel, availability, reliability, portability), functionalities (finding 

SRS documents, SRS document quality, adding faults, removing faults), user experience, and 

usefulness and future improvement areas. 

In the next section, this paper will review the Fagan’s inspection process, its benefits and 

the need to streamline the process. Current tools to support inspection process will be discuss in 

subsequent sections before introducing Software Collaboration tool, features and interface in 



 

3 
 

chapter three. Chapter four will review the need for the survey, advantages and few steps taken to 

reduce the survey weakness. Experiment details are also provided in section 4. Collected data from 

the survey results are showed in section 5 with results discussion in chapter 6, and, finally 

conclusions.  

  



 

4 
 

2. BACKGROUND 

This section reviews the original Fagan Inspection Process, advantages as well as 

downsides. Further, this section will introduce some of the supportive software inspection tools 

currently being used in the software development stages.  

2.1. Inspection Process (Fagan Inspection Process) 

Introduction of Fagan inspection process into software development industry goes back to 

1972, when Michael Fagan at IBM used a cyclic continuous improvement process to improve 

software requirements specification or code. Fagan Inspection process contains six basic 

operational steps to inspect any software development requirements or code [2]. These operations 

are as follows Planning, Overview, Preparation, Inspection, Rework and Follow-up. These 

operations are managed and controlled by a small team of Inspectors, Moderator, Reader, Recorder 

and Author.   

Planning 

Overview Preparation

Rework Follow-up 

Inspection

 

Figure 1. Michael Fagan’s Process- Advances in Software Inspection (1976) 

Overtime, the process has been tweaked differently by different industries based on their 

own necessity but the core method is kept intact to serve the review process [4,6]. This method 

has transformed software development industry due to its simple, efficient and economical method 

of finding errors in software creation [1].  This method soon picked up the name ‘Fagan Inspection’ 

and has found its way to all corners of the industry.  



 

5 
 

2.1.1. Fagan Inspection – Operations and Roles 

Fagan’s process comprises of six operational stages and five individual team roles as 

explained below.  

Planning: Planning is the first step of the process, during this stage general checks are made 

to ensure document or code to be inspected meets the system entry criteria. Then a group of people 

are selected and given the roles of inspectors, moderator, reader, recorder and author. Planning 

stage is used for scheduling meetings between the team, setting timelines, select stakeholder’s 

distribution list and to determine if an overview operation is required.  

Overview: To use overview stage is determined in the planning stage. So, this stage is an 

elective step. If selected, this stage is used to update inspection team with project background and 

purpose. If the team is already aware of this information overview stage can be skipped. 

Preparation: This is where the actual document inspection takes place and so is the most 

important step of the process. Inspectors break out to work independently, review the product and 

identify potential defects. These defects are well documented by the individual inspectors to 

reviewed with the whole team in the next step.  

Inspection: Preplanned meeting from the planning stage where all the members of the team 

meet to review defects found during the preparation stage. During this operation, defects are 

record, categorize, and organize, but not resolve. Defects are noted by a recorder and are passed 

on to the author.  

Rework: Recorded defects are passed to the author to work or take on corrective 

requirements for the product. If there are many defects or the moderator suggests the need to 

regroup and review the product again, the team moves back to planning to inspect the product 

again. This process goes on until the team is happy with the product requirements.   



 

6 
 

Follow-up: Follow-up is between the author and moderator to discuss next steps or 

sometimes the whole team. This stage is to verify that all defects are corrected and no new threats 

are introduced.    

Below are the team members/roles who would participate in the six step Fagan Inspection 

operations.  

Inspectors: Everyone in the inspection team is an inspector. Apart from working on 

reviewing the documents and finding defects, inspectors also act as author, moderator, reader and 

recorder, as necessary.   

Author:  Author is the primary inventor of the product requirements document. He is 

responsible to give all the other inspectors a complete background of the product and a training if 

needed. Also, the author is responsible to correct the defects found during the inspection process. 

It also helps if the author is also involved in discussions with the customer business when creating 

requirements.  

Moderator: Moderator role is responsible to make sure the entire inspection process runs 

smooth and successful. Selecting the team, schedule the meetings and ensuring to capture most of 

the faults during the process. Since this is an important operation, companies usually provide 

training and build the portfolio to handle this work.   

Reader: Reader is responsible for running the inspection meetings. As the name suggests 

reader reads the product requirements and the associated defects to open the floor for discussions. 

It would be beneficial for the organization if the reader is someone who represents the next step in 

the software development process – design phase. Reading the documents and understanding is 

helpful to become acquainted with the requirements.  



 

7 
 

Recorder: Recorder is the one taking notes during the inspection operation. He is 

responsible to note all the defects found, discussions and record them in an organized and timely 

manner.  

2.1.2. Fagan Inspection – Advantages and Disadvantages 

As explained previously, the advantages of the Fagan Inspection process are to produce 

complete and accurate requirements documents, find and eliminate defeats at an early stage, 

(Fagan Inspection process can be used at any step of Software development lifecycle to review 

document, code or tool), reduce/eliminate time spend in fixing defects. Thus, saves time and cost 

to increase productivity, promote efficiency.  

Like with any entity, there is no absolute perfect method. Fagan Inspection methods also 

shares this suspicion. The process is considered time consuming and labor intense due to having 

to spend tedious amount of time to maliciously review documents/code, so the cost. However, the 

benefits achieved by this process outweighs this limitation. In the past decade, researches have 

worked and have been working to streamline and/or automate this process to address the 

deficiency.    

2.2. Current Inspection Process Support Tools 

This section provides a brief review of the available inspection process support tools. Each 

tool described here uses a different tactic but, the common goal is to improve inspection process. 

All support tool models use some distinction of the Fagan’s process.  

Collaboration Software Inspection (CSI) [22]: This tool employs Humphrey [24] or 

Yourdon [23] model. But one clear difference between Fagan Process and CSI is, the inspectors 

provide a copy of their defects report from individual preparation to the author before the 

inspection meeting. The author then reviews the defects on his own before reviewing them in the 



 

8 
 

inspection team meeting. CSI assigns a serial number to each line in the document, these lines can 

be annotated when selected to insert a fault and a notepad is available to leave comments. Author 

will be able to assort all the faults from the tool into one fault list to accept, reject, rate and 

categorize.  

Scrutiny [21]: A four stage inspection method similar to Fagan’s six stage operation. Stage 

one is called initiation to review requirements document and know background of it. Second stage 

is called preparation which is like Fagan’s model. Third stage is the inspection stage to review 

faults in a meeting setting and final stage is called completion to make corrections to requirements 

and follow-up just like in Fagan Inspection process. Scrutiny only supports text format and within 

the tool inspectors can add faults using annotation to record defects, questions or remarks. This 

tool creates an automated defects list from the inspection meeting review. However, the tool does 

not assist any supporting documents or checklists and all defects must be found manually.  

ICICLE (Intelligent Code Inspection in a C Language Environment) [19, 20]: This tool is 

an automated inspection support for C Language Code inspection. This tool cannot be used for 

general inspection process but works great to identify common defects in a C code review. The 

interface can be split to see two parts of the code at one time and options either to flag a code line 

or comment specifying the defect or make notes. ICICLE also allow the users to cross reference 

the notes/defects across document and allows the author to accept or reject the defects during 

inspection process. 

InspeQ (Inspecting software in phases to ensure Quality): is a multi-phased inspection 

technique developed by Knight and Myers [25, 26] to provide an inspection process that is 

“rigorous, tailored per request, automated and efficient in using resources”. Apart from providing 

being able to view multiple segments of the document at a given instance like other tools, InspeQ 



 

9 
 

allow the inspectors to search the document using keywords. Inspectors can record defects, index 

the line numbers and write notes with in the defects for references. There are several other 

advantages to the tool such as using checklists to ensure all parts of the document are reviewed 

while marking each line with a status. These checklists are supported by standard displays and 

highlights option to focus on specific function code throughout the document while checking for 

defects. However, InspeQ is built to support individual inspectors and cannot be used to 

consolidate defects or be presented for group review or during inspection meeting operation.    

Collaborative Software Review System (CSRS) [27, 28, 29]: This tool is to support FTArm 

(Formal Technical Asynchronous review method) [30] also known as Asynchronous Fagan 

Inspection method. In this method, documents and annotations are stored as a series of nodes in 

the database. Annotations can be added as an issue, an action or a comment publicly to all 

inspectors. This visibility allows the inspections to review nodes unaddressed, helps moderator 

plan the inspection stage based on node status. Additionally, CSRS also sends notifications to the 

inspectors when a new defect or comment is posted and helps moderator by producing a master 

defect list in a LaTeX format report.  

All the tools mentioned above has merits of its own, consequently good in their own way 

to support inspection process [14]. There are many notable functions in each tool to help improve 

the inspection process to make it more organized and efficient. There is no equal scale to vote all 

the tools on one measure, hence it is impossible to say which tool is the best. 

Also along this corridor is a new tool “Software Collaboration tool” for inspection process. 

In the next section, discussions will be focused on the Software Collaboration Tool, key functions 

and user interface.  

  



 

10 
 

3. SOFTWARE COLLABORATION TOOL 

Software Collaboration tool for inspection process is somewhat similar to the tools 

explained in section 2.2. There are some qualities to the software collaboration tool that are similar 

and some functionalities previously not covered in other software inspection tools, at the same 

time a few of the services covered by the other tools are missing from Software Collaboration too. 

Down below are some of the functionalities available in Software Collaboration tool.  

3.1. Key Functions 

Software Collaboration tool is developed to streamline Fagan Inspection process. The tool 

is predominantly used during preparation and inspection meeting operations. When the 

requirements documents are uploaded, the inspectors can review the documents independently 

while entering their comments, faults and author/moderator can consolidate the faults to create 

master list during or after the inspection meeting. During the meeting, inspectors have access to 

their own documents and faults list in the tool. Inspectors can access their documents and fault list 

online via tool if the meeting is conducted and attended by individuals from multiple locations.  

Software collaboration tool supports documents from different formats like file types, 

charts, figures, use case diagrams etc., Within the tool SRS document can be opened in multiple 

tab, so different parts of the document can be simultaneously reviewed on multiple screens. A time 

log can be maintained in the tool to record time when the fault was entered. Faults list are kept 

private; each inspector can only view his/her own faults. A serial number is devoted to each fault 

to keep track of the number of faults entered by inspectors. Users can create faults and delete it if 

deemed unnecessary or redundant. Faults can be classified into ambiguous information, omission, 

incorrect facts, inconsistent information, extraneous and miscellaneous types to give 

moderator/author clear understanding of fault specifics.   



 

11 
 

List of Key Features: 

• Various document formats are accepted in the tool.  

• Multiple screens can be setup to review different parts of the document. 

• Faults can be classified into ambiguous, omission, incorrect facts, inconsistent information, 

extraneous and miscellaneous categories.  

• Manual time log can be maintained.  

• Individual inspector’s faults list is kept private from others.  

3.2. Software Collaboration Interface 

In this section, Software Collaboration tool interface with home screen, annotations screen 

and consolidate fault list are provided. Below are some screenshots depicting the tool interface. 

Figure 2 is the login screen for users to login using their ID/password and to the bottom right of 

the dialog box is a button to sign up for the tool.  

 

Figure 2. Software Collaboration Tool Login Page 



 

12 
 

Figure 3 is the tool’s home screen with teams Software Requirements Specification 

documents. Tool admins have visibility to all the team’s documents but inspectors only have 

visibility, read and write access to their own documents. Tool admin/moderator can grant access 

to users based on the team they are part of.   

 

Figure 3. Software Collaboration Tool Home Screen 

Figure 4 is the Annotations page where inspectors can enter the defects or comments. 

Inspectors also have options to edit existing faults or delete redundant annotations. Inspectors can 

also enter time manually.  

 



 

13 
 

 

Figure 4. Software Collaboration Tool Annotations Screen 

Figure 5 is the final list of all defects visible to the moderator/author to view. Table 

provides inspector ID, defect type, page number, requirements number and description.  

 

Figure 5. Software Collaboration Tool Consolidate Fault List Screen 

  



 

14 
 

4. EXPERIMENT METHOD 

Surveys have been identified as simple but efficient data collection instrument to 

understand distinguishing characteristics using a group of people. Surveys are used to rate specific 

aspects of a research population, results from the survey are collected from people. Therefore, they 

are subjective and survey findings can be generalized to a larger population [32]. Therefore, Survey 

is used in this research to evaluate Software Collaboration Tool key performance parameters as 

identified by the researcher.  However, as mentioned by Bell 1996 paper [31], Surveys have 

weaknesses and this SC Tool research has taken few steps to minimize this survey weaknesses. 

Three major weaknesses listed on Bell 1996 paper [31] are population biases – lack of response 

from participants or nature and accuracy of the results, intentional misreporting, and participants 

may have difficulty assessing their own behavior or have poor recall of the circumstances 

surrounding their behavior. To overcome these weakness participants were encouraged to 

complete the survey within one week of project completion to maintain fresh, accurate memory of 

the tool behavior and thereby reducing most of the above stated survey weakness. Intentional 

misreporting of behaviors by participants are outside this research’s control and are consider as 

outliers from the survey results.  

4.1. Research Questions and Hypotheses 

As mentioned previously, this researchers’ intentions are to study Software Collaboration 

Tool quality attributes, functionalities, user experience, and usefulness. Motivation for this 

subjective study is to address three prime research questions. The primary emphasis is to evaluate 

the Software Collaboration tool quality attributes and functional features. The secondary focus is 

to study Software Collaboration tool user experience, usefulness. And finally, to understand the 

possible improvement areas that the tool developers can work on for future development.  



 

15 
 

Research Question 1: How did participants perceive software collaboration tool in terms 

of quality attributes (usability, performance, look & feel, availability, reliability, portability) and 

functionalities (finding SRS documents, SRS document quality, adding faults, removing faults)?  

Research Question 2: How did participants perceive collaboration tool’s usefulness and 

overall experience? 

Research Questions 3: What are the future areas to improve the Software Collaboration 

Tool?  

4.2. Survey Questions 

Survey questions were designed to capture user experience, satisfaction and fulfilment of 

tools quality attributes, functionalities to determine Software Collaboration tool effectiveness to 

help customers with software inspection process. Questions were asked to understand time spent 

reviewing Software Collaboration tool by each individual and their previous experience with any 

other inspection tools. Participants were also asked to provide suggestions to improve Software 

Collaboration tool. Participants were asked to respond to the questions immediately after using the 

tool to retain accuracy of their experience and reduce misreporting due to poor recall of tool 

behavior. Below are all ten survey questions used during this experiment:  

1. Prior to using the “Software Collaboration” tool for review, did you use any other 

Software Inspection tool? 

2. How many hours did you spend reviewing and learning about “Software Collaboration” 

tool? 

3. How satisfied are you about "Software Collaboration" tool on the below parameters: 

(Usability, Look and Feel, Availability, Reliability, Performance, Portability)? 



 

16 
 

4. How easy or difficult are the functionalities in "Software Collaboration" tool? 

(Logging in, finding documents, adding/deleting faults, changing password) 

5. How satisfied are you with the quality of SRS document in "Software Collaboration" 

tool? (document handling) 

6. How do you rate your experience on "Software collaboration" tool? 

7. How much do you agree with this statement: "Software Collaboration tool is very useful 

in the Software Inspection process"? 

8. How satisfied are you about "Software Collaboration" tool quality? 

9. How likely would you recommend "Software Collaboration" to others? 

10. Do you have any suggestions for improving "Software Collaboration" tool? 

Most questions were framed to capture responses on a 1 to 5 scale to keep the statistical analysis 

outcome in a standard format. For the last question, text form was provided for the participants to 

enter their suggestions.  

4.3. Survey Participants 

All 65 students of ‘Principles of Software Engineering’ class at North Dakota State 

University were invited to take the survey due to their equivalent knowledge of software 

development process. Students have attended three to four months of schooling in the concepts of 

Planning, Requirements gathering, Software Requirements Specification document, Software 

Design, Implementation, Software Testing and Debugging, Deployment, and Maintenance which 

covers overall Software Development Lifecycle stages. All students were in the age group between 

18 and 24 and were given a one hour extensive training on how to use Software Collaboration tool. 

Students were randomly grouped into five teams of 11 to 14 participants. Each team was then 



 

17 
 

tasked to develop Software Requirements Specification document for different projects assigned 

by the professor.  

4.4. Software Requirement Artifacts 

All five teams were asked to create Software Requirements Specification document for 

their respective systems show in table below (number of participants per team, requirements 

document description and document size is specified in the below table). Participants have used 

the same software requirements document created by their team to look for Ambiguous 

information, Omission, Incorrect facts, Inconsistent information, Extraneous, Miscellaneous 

faults. Team inspectors have then entered their faults into the Software Collaboration Tool. Team 

moderator have then compiled all the faults and remove any duplicate or false-positive faults to 

create master list for their identified system.   

Table 1 

Experiment Teams 

Team 

Number 

Team Name No. of 

Participants 

Document 

Name 

System Description Document 

Size 

1 Team 1  14 WOW Weather Data Recording 

Application 

12 

2 Team 2 13 SO Science Olympiad Scoring System 25 

3 Team 3 14 SBREB Sugar Beet Research and 

Education Board 

7 

4 Team 4 13 DC Dissertation Calculator  29 

5 Team 5 11 CCM Capstone Course Management  30 

 

4.5. Experiment Procedure 

Participants were given information about the software development lifecycle and the steps 

involved to create outstanding software. It was clear that to produce an efficient and well served 

software the first and most important step of the process was to create the requirements 

specifications. Participants were educated in both traditional/paper inspection process and 



 

18 
 

computer based inspection process. They are aware of the background and benefits of computer 

based inspection process. 

Train Students to 

create SRS 

Documents & 

Inspection Method 

Create Project Teams  

Teams Develop SRS 

Documents 

Inspection Operation 

is Performed using 

SC Tool

Conduct Survey

Software 

Collaboration Tool 

Training

Data Review and 

Analysis 

 

Figure 6. Experiment Flow Chart  

All 65 students were given 90 minutes of Software Collaboration tool training after 

completing the SRS documents. During the training, participants were taught to login to the 

system, change password and customize per their convenience. Participants were explained about 

Software Collaboration tool interface and how to navigate through the system. Extensive training 

was provided on how to upload SRS Document in the tool and access it individually. Participants 

were allowed to practice entering faults, select fault type, requirement number, page number, 

description and manual entry time. Later in the training, participants were taught to retrieve 



 

19 
 

previously entered faults and identify fault type (read the data which is entered). Finally, users 

were taught to create master list. All participant’s questions were answered at end of the session 

and were asked to contact the trainer or assistant with any questions while working in the tool. 

After the training, Software Collaboration tool administrators have created 65 individual 

user accounts for each participant by using their college ID and unique password for each group. 

Participants were asked to change their passwords up on their first login. Admins have uploaded 

5 team’s SRS documents to the tool. Teams were given access, visibility to their own SRS 

document and other team’s documents were not visible to users.  Teams have then reviewed their 

SRS documents, entered faults, other respective information in the tool and generated master list.  

4.6. Data Collection 

After project conclusion participants were asked to complete a short 10 questions survey 

listed in 4.2 section to rate tool quality attributes, functionalities, experience, usefulness and their 

satisfaction. The survey was built on Qualtrics tool [33], which is a tool to conduct surveys and 

record user experience. Participants were given 14 days to complete the survey.  

The questionnaire was designed to convert qualitative information regarding the tool and 

report on quantitative Likert 5-point scale system. This data are later be converted to present the 

results. Qualitative tool feedback suggestions were also collected using the survey. All the results 

will be directly reported to the tool developers for tool enhancement.  

  



 

20 
 

5. DATA ANALYSIS AND RESULTS 

This chapter provides a detailed analysis of the data collected from the research survey and 

suggestions proposed by the participants. The analysis performed on the research questions listed 

in section 4.1 are checked to see how the participants have perceived software collaboration tool 

and provides the evidence for future direction.   

Subjective results from the survey research which are marked on Likert 5-point scale are 

converted into percentages to represent measures on common proportions. Percentages are 

calculated by taking the number of selections made per 5-point scale rating on a parameter to the 

total number of selections made against the same parameter. This percentage conversation allows 

to compare multiple parameters, ratings to establish clear and measurable goals for this research.  

Survey questions from the research are broadly categorized into the segments as stacked 

below:  

• Questions to rate software collaboration tool quality attributes and functional features.  

• Questions to rate participant experience and usefulness of the tool.  

• Question to collect future enhancement suggestions from the participants  

Results of all the questions from survey research are shared in the next sections by the above 

categories.   

5.1. Software Collaboration Tool Quality Attributes and Functionalities 

Following queries in the questionnaire are meant to capture Software Collaboration tool 

usability, performance, look & feel, availability, reliability, portability and other key 

functionalities like finding SRS documents, SRS document quality, adding faults, and removing 

faults. 



 

21 
 

1. How satisfied are you about "Software Collaboration" tool on the below parameters: 

(Usability, Look and Feel, Availability, Reliability, Performance, Portability)? 

As shown in figure 7, the vertical axis depicts the rating percentage and the horizontal axis 

represents software collaboration tool parameters. From the chart results, majority of the survey 

population have either expressed extreme to somewhat satisfaction on all the six parameters. 

Breaking down the results from left to right, the first parameter tool usability has received 50% 

somewhat satisfied rating and 23.1% are extremely satisfied. 19.2% were undecided on tool 

usability and 7.8% expressed dissatisfaction.  

Tool ‘Look and Feel’ parameter has received the lowest rating for satisfaction among all 

six parameters with only 11.6% population showing extreme satisfaction and 38.5% said 

somewhat satisfied a combined total of 50.1%. Whereas 30.8% users said they were undecided 

making it the third highest undecided choice for the users, sharing the stage with ‘Finding 

Documents’ and ‘Changing Password’ tool functionality. And, giving it the last position in the 

overall tool parameters.  

The next two parameters in the list – availability and reliability go hand in hand with the 

overall satisfaction and dissatisfaction ratings. As both have a 76.9% approval rating, 15.3% 

undecided and 7.8% disapproval. Overall ‘Performance’ parameter of the survey has received an 

aggregate total satisfaction of 84.6%. Whereas 7.7% population undecided and extremely 

unsatisfied, hence topping the charts in tool experience parameters. Portability parameter has 

received a 28% extremely and 44% somewhat satisfied rating, 24% population was undecided with 

only 4% extremely dissatisfied.   



 

22 
 

 

Figure 7. Software Collaboration Tool Non-functional Parameters 

2. How easy or difficult are the functionalities in "Software Collaboration" tool? 

(Logging in, finding documents, adding/deleting faults, changing password) 

Participants were asked to rate various tool functionalities to determine the effectiveness 

of the software collaboration tool. From the survey results, it is quite evident that only 7.8% or less 

users have expressed any level difficulties with each of five tool functions and that puts the overall 

tool functionalities in satisfaction zone or users have no opinion.  

Going by the individual functionality (left to right in the figure). For ‘logging in’ 

functionality, 50% user have said that it was extreme easy for them to ‘log in’ to the tool and 27% 

users said it was somewhat easy. The remaining 15.4% participants were undecided and 7.8% had 

difficulties. Half the participants have alleged it was very easy and 15.4% users have said it was 

somewhat easy for them to find documents in the system. Almost one third of the users had no 

Usability
Look and

Feel
Availability Reliability

Performanc
e

Portability

Extremely satisfied 23% 12% 42% 35% 46.1% 28%

Somewhat satisfied 50% 39% 35% 42% 38.5% 44%

Neither satisfied nor dissatisfied 19% 31% 15% 15% 8% 24%

Somewhat dissatisfied 4% 15% 3.90% 3.90% 0% 0%

Extremely dissatisfied 4% 4% 3.90% 3.90% 8% 4%

0%

10%

20%

30%

40%

50%

60%

How satisfied are you about "Software Collaboration" tool on 
the below parameters

Extremely satisfied Somewhat satisfied Neither satisfied nor dissatisfied

Somewhat dissatisfied Extremely dissatisfied



 

23 
 

recollection and only 3.9% said it was extremely difficult to find documents. When asked about 

‘Adding faults functionality, 80.9% participants have reported it was easy, 11.6% remained 

undecided and 7.8% said it was difficult to add faults. Deleting faults have a similar rating as 

adding faults functionality with 76.9% agreeing it was easy, 15.4 undecided and 7.8% said deleting 

faults was difficult.  

 

Figure 8. Software Collaboration Tool Functional Parameters 

Changing tool password functionality has received some discontentment with half the 

population rating the function neither easy nor difficult. (leading us to assume that users have not 

changed their initial password while reviewing SRS document)   

3. How satisfied are you with the quality of SRS document in "Software Collaboration" tool? 

Logging in
Findingdocumen

ts
Adding faults Deleting faults

Changing
password

Extremely easy 50% 50% 46% 42% 12%

Somewhat easy 27% 15% 35% 35% 31%

Neither easy nor difficult 15% 31% 12% 15% 50%

Somewhat difficult 4% 0% 4% 4% 4%

Extremely difficult 4% 4% 4% 4% 4%

0%

10%

20%

30%

40%

50%

60%

How easy or difficult are the functionalities in "Software 
Collaboration" tool?

Extremely easy Somewhat easy Neither easy nor difficult Somewhat difficult Extremely difficult



 

24 
 

For this survey question, 16% of the participants have said they were extremely satisfied 

with the SRS document quality and majority of users (64%) have said they were somewhat 

satisfied. Other 16% had no opinion and 4% has shown dissatisfaction with the document quality.  

 

Figure 9. Software Collaboration Tool SRS Document Quality 

4. How satisfied are you about "Software Collaboration" tool quality? 

Tool general quality survey results are immensely tilted to the satisfied side of the Likert 

scale with 16.7% population extremely satisfied and 58.3% expressed mostly satisfied ratings. 

20.8% of the users have remained in the middle undecided area and only 4.2% have reported some 

displeasure and no user has expressed complete disapproval with the tool quality.   

16%

64%

16%

0%
4%

0%

10%

20%

30%

40%

50%

60%

70%

Extremely satisfied Somewhat satisfied Neither satisfied
nor dissatisfied

Somewhat
dissatisfied

Extremely
dissatisfied

How satisfied are you with the quality of SRS document 
in "Software Collaboration" tool? 



 

25 
 

 

Figure 10.  Software Collaboration Tool Overall Quality 

5.2. Experience using Software Collaboration Tool for Inspection Process 

Overall user experience with software collaboration tool for inspection process was 

recorded using below five survey questions.   

1. Prior to using the Software Collaboration tool for review, did you use any other software 

inspection tool?  

This question allowed researchers to understand participant’ level of expertise with the 

software inspection tools. The survey results show that 96% people were using software 

collaboration tool for the first time.  

2. Survey participants are asked “how many hours did you spend reviewing and learning 

about Software Collaboration tool?”  two thirds of the users have spent between 1 to 2 

hours to review the tool and learn about the tool functionality. One quarter of the users 

have spent less than one hour to learn about the tool. Around 8% of the users have spent 

more than two hours to learn the tool functionality.  

3. How do you rate your experience on "Software collaboration" tool?  

16.70%

58.30%

20.80%

4.20%
0%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

Extremely
satisfied

Somewhat
satisfied

Neither satisfied
nor dissatisfied

Somewhat
dissatisfied

Extremely
dissatisfied

How satisfied are you about "Software 
Collaboration" tool quality? 



 

26 
 

This question is to rate the general user experience during their time using the tool. Survey 

results indicate that 25% of users are extremely satisfied with the tool and about 58.3% users are 

somewhat satisfied. The rest of the users (16.7%) either have no opinion or were dissatisfied with 

the tool.  

 

Figure 11. Software Collaboration Tool User's Experience 

4. How much do you agree with this statement: "Software Collaboration tool is very useful 

in the Software Inspection process"?  

Participants have strongly (79.2%) agreed that the Software Collaboration tool was helpful 

in their Software Inspection process. Among the rest, about 12.5% users neither agree or disagree 

to this question, leaving 8.4% of the population disagreed with the statement.  

25%

58.30%

8.30%
4.20% 4.20%

0%

10%

20%

30%

40%

50%

60%

70%

Extremely good Somewhat good Neither good nor
bad

Somewhat bad Extremely bad

How do you rate your experience on "Software 
collaboration" tool? 



 

27 
 

 

Figure 12. Software Collaboration Tool Usefulness in Software Inspection Process 

5. How likely would you recommend "Software Collaboration" to others? 

Question was considered to check if the survey participant would entrust the tool with a 

colleague or associate who is likely to work in the inspection process.  8% of the users have 

expressed strong likeliness to endorse the tool to others and a majority of 52% have slightly agreed 

to recommend. Whereas 32% participants were undecided and 8% participants have said they 

would not recommend the tool.  

 

41.70%

37.50%

12.50%

4.20% 4.20%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

Strongly agree Somewhat agree Neither agree nor
disagree

Somewhat
disagree

Strongly disagree

How much do you agree with this statement: "Software 
Collaboration tool is very useful in the Software 

Inspection process" ? 



 

28 
 

 

Figure 13. Recommend Software Collaboration Tool to Others 

5.3. Enhancement Suggestions 

Last survey question, “do you have any suggestions for improving "Software 

Collaboration" tool?” is to gather firsthand experience and suggestions from the participants 

regarding the tool after having using the tool for a live project with actual inspection process. The 

outcome to this research question is, participants have genuinely valued the tool’s support during 

their software inspection process and have also suggested a few enhancements requests to improve 

the tool appearance and performance.  Participants have also shared tool behavior when working 

on generating defects list. These suggestions and tool behavior is further discussed in the summary 

of results and improvements to Software collaboration improvements section.    

8%

52%

32%

0%

8%

0%

10%

20%

30%

40%

50%

60%

Extremely likely Somewhat likely Neither likely nor
unlikely

Somewhat
unlikely

Extremely
unlikey

How likely would you recommend "Software 
Collaboration" to others? 



 

29 
 

6. DISCUSSION OF RESULTS 

This section summarized the survey results from chapter 5. Each of the three research 

questions are answered using the subjective survey results. Section also includes improvements to 

software collaboration tool, threats to validate and future work. 

6.1. Summary of Results 

In this section, the study discusses the survey results and presents its summary in response 

to the initially stated research questions. 

Research Question 1: How did participants perceive software collaboration tool in terms 

of quality attributes (usability, performance, look & feel, availability, reliability, portability) and 

functionalities (finding SRS documents, SRS document quality, adding faults, removing faults)?  

Survey results show that participants were satisfied with the collaboration tool and have 

expressed that using the tool has helped them in the inspection process. More than a landslide 

worth of Results indicate that major tool parameters and functionalities are satisfying for the 

customers which are specific for user loyalty. Some of the results from the survey are discussed 

below to show the tool’s eminent magnitude and all the downsides per participants’ survey results 

are also listed below.  

• Almost 85% users have liked the tool’s performance and were happy to use the tool 

for inspection process. These participants have said that the tool’s capability to 

perform inspection operations were effective and satisfying. A clear indication that 

the tool is proficient in performing inspection process.   

• 77% participants have expressed their satisfaction with the availability, reliability of 

the tool. Implying that the tool is consistently operable without any cause for concern 

and it is dependable/trustworthy in the software inspection process. 



 

30 
 

• Around 72% users have said the tool was portable and rated high on usability. Telling 

the tool could be used at different environments/browsers and tool is easy to use.   

• 50% users were satisfied with the look and feel of the tool, 30% were undecided and 

20% were dissatisfied. Users have also suggested in the feedback field to improve 

interface. Explaining some need to improve look and feel of the tool. 

• Close to 80% of the users have expressed that functionalities listed in the survey 

question 4 were easy to use. Consequently, explaining that it is easy to find 

documents, enter faults or delete faults making it an easy tool to navigate and operate 

for inspection process.    

• 50% users were undecided when asked if changing the tool password was easy. 

Indicating, that they have either not attempted changing password or have attempted 

changing but were undecided with this functionality.  

• On tool functionality question, of all the participants only 8% have expressed the tool 

functionalities were difficult. Which is a good indicator to show that the software 

collaboration tool functionalities are helpful.  

• 80% users were satisfied with SRS document quality, signifying that the Software 

Collaboration tool has accepted multiple text formats, pictures, charts and table 

information.  

• Participants have rate the tool high (75%) on overall quality. Quality of the tool is 

important to drive tool popularity and loyalty in the software development industry. 

Having approval from three quarters of the total population is a certificate of fineness.  

Research Question 2: How did participants perceive collaboration tool’s usefulness and 

overall experience? 



 

31 
 

• 83% have rated good experience implying it was easy or smooth running the tool 

without difficulties.  

• 60% people are willing to recommend the tool to others and 32% undecided – shows 

participants loyalty towards tool.  

• Four out of every five users have said the tool is very helpful in the inspection 

process.   

Research Questions 3: What are the future areas to improve the Software Collaboration 

Tool?  

Last question of the survey is for the participants to suggest improvements to the software 

collaboration tool. This question was intentionally left open ended to collect participant’s opinion 

and suggestions for the tool. Students have provided valuable feedback for the Software 

Collaboration tool evaluation.  Some of the major suggestions are discussed here and a copy of all 

suggestions will be passed on to the Software Collaboration tool developers.  

From the list of suggestions received for the survey question the first was to improve the 

tool interface, this was also observed in the tool “functionality survey question 4” with low rating. 

So, this would be of high importance for the developers to work on in the tool evolution stage. One 

of the participants have requested to be able to create an automatic link from the fault to the line 

in the SRS document. This functionality is available in Collaboration Software Inspection CSI 

tool. It is also evident from one user comment that he had fields covered up by entry form indicting 

of either an abnormality or a glitch. This wasn’t observed by the other users, making us to reflect 

that it was one off occurrence and we could consider this an outlier. Suggestions to improve the 

drop-down menu for the fault type, navigation and to correct numbering system. Users have asked 

developers to automate date/time (instead of entering date/time manually). One user has stated an 



 

32 
 

ambiguous comment “Home page design looked a little funny if I recall correctly but it worked 

fine for what we needed it to do”. Participants felt difficulty to export consolidated fault list and 

work on it. Instead they requested to edit consolidated fault list on tool itself.  

6.2. Improvements to Software Collaboration tool 

These are the list of improvements/changes that should be include in the evolution plan of 

Software Collaboration tool: 

• Firstly, software collaboration tool user interface should be enhanced by using better 

formatting, dropdown menu for the fault types and more importantly navigation (menu 

options).  

• The number system is off in software collaboration tools annotation page (figure 4). This 

minor mistake should be fixed.   

• Moderator cannot verify the time spent by each inspector in the tool. This functionality 

should be included in the tool to estimate state of inspector’s preparation and ensure 

sufficient time spent for the review.  

• Inspectors are putting an extra effort to enter date/time manually in software collaboration 

tools annotation page (figure 4). This should be prevented by automating date/time entry.  

• Software Collaboration tool cannot highlight specific features of the document to make it 

a stand out. This feature is important for inspector during their preparation period. Thus, 

faults should be linked to SRS document lines to track specific fault location.  

• Author/moderator should be able to modify the consolidated faults list on the tool to 

remove duplicate and false-positive faults before generating master list.  



 

33 
 

6.3. Threats to Validate 

Although this research has taken steps to minimize threats presented by survey study, the 

experiment has faced one unplanned threat that was outside researcher’s control. The challenge 

was lack of response from intended participants. Out of 65 intended class group only half 

population has completed the survey even after encouraging the class to participate by explaining 

the need for this research. This can be negated by future researchers by making user take the survey 

in class. Taking the survey would take less than 10 mins and Qualtrics [33], the software used for 

the survey can be accessed on smart phone or all internet browsers. Research results securely 

indicate that the lack of participation threat has not affected the outcome of the research as the 

results were unbiased and almost all participants had same experience. 

6.4. Future Work 

Our survey research has shown that tools performance is well accepted by the participants 

with minor improvements as suggested in the previous subsection.  The suggestions provided by 

the participants and the survey results will be shared with the tool developers to include them in 

the tool evolution plan. When the enhancements are included in the tool, this tool will be ready to 

be used in the software development industry for requirements inspection process. 

 

  



 

34 
 

7. CONCLUSION 

In general, the survey participants are satisfied with the Software Collaboration tool and 

have agreed that the tool is very useful for software inspection process. Based on the survey results 

on hand, participants have expressed profound satisfaction for Software Collaboration Tool 

usability, appearance, performance, availability, reliability and portability. Also, the participants 

have thoroughly rated the logging in, finding documents, adding/deleting fault functionalities as 

easy to use but, were indistinct with ease to change password function. Like any new software user 

acceptance research, there were also a few users (less than 8%) who have expressed displeasure 

with the tool appearance and functionalities (listed in the data analysis and results). These 

suggestions were reviewed, documented and will be passed on to Software Collaboration tool 

developers to include them in the tool evolution plan.    

  



 

35 
 

REFERENCES 

[1] Fagan, M.E. (1976). Design and code inspections to reduce errors in program 

development. IBM System Journal, Vol. 15, No.3, pp.182-211. 

[2] Fagan, M.E. (1986). Advances in software inspections. Software Engineering IEEE 

Transactions on, 12(7), 744-751. 

[3] Pressman, R. S. (1982). Software engineering: A practitioner's approach. New York: 

McGraw-Hill.  

[4] Parnas, D., & Lawford, M. (2003). The role of inspection in software quality assurance. 

IEEE Transactions on Software Engineering IIEEE Trans. Software Eng., 29(8), 674- 676. 

[5] Laitenberger, O. (2002). A Survey of software inspection technologies. Handbook of 

Software Engineering and Knowledge Engineering. Volume II: Emerging Technologies In 

2 Volumes, 517-555. Retrieved April 11, 2016, from 

http://programmingresearch.com/content/misc/a-survey-of-sw-inspection-technologies- 

Laitenberger.pdf  

[6] Subramanian, G. H., Jiang, J. J., & Klein, G. (2007). Software quality and IS project 

performance improvements from software development process maturity and IS 

implementation strategies. Journal of Systems and Software, 80(4), 616-627. 

[7] Tian, J. (2005). Software quality engineering: Testing, quality assurance, and quantifiable 

improvement. Hoboken, NJ: Wiley.  

[8] Freimut, B., Briand, L., & Vollei, F. (2005). Determining inspection cost-effectiveness by 

combining project data and expert opinion. IEEE Transactions on Software Engineering 

IIEEE Trans. Software Eng., 31(12), 1074-1092.  



 

36 
 

[9] Briand, L., Freimut, B., & Vollei, F. (n.d.). (2000). Assessing the cost-effectiveness of 

inspections by combining project data and expert opinion. Proceedings 11th International 

Symposium on Software Reliability Engineering. ISSRE.  

[10] Perry, W. E. (2006). Effective methods for software testing: Includes complete guidelines, 

checklists, and templates. New York: Wiley.  

[11] Brereton, P., Kitchenham, B.A., Budgen, D., Turner, M., & Khalil, M. (2007). Lessons 

from applying the systematic literature review process within the software engineering 

domain. The Journal of Systems and Software 80 (2007) 571–583.  

[12] Bassil, S., & Keller, R.K. (2001). Software visualization tools: Survey and analysis. 

Proceedings 9th International Workshop on Program Comprehension. IWPC. 

[13] Glasow, P.A. (25988). (2005, April). Fundamentals of survey research methodology. 

Mitre, Washington C3 Center McLean, Virginia. 

[14] Macdonald, F., Miller, J., Brooks, A., Roper, M., & Wood, M. (1995, January). A Review 

of tool support for software inspection. Empirical Foundations of Computer Science 

(EFoCS) University of Strathclyde RR-95-181 [EFoCS-6-95]. 

[15] National Aeronautics. (1993, August). Software formal inspections guidebook. Space 

Administration Washington, DC 20546. 

[16] Gupta, M. (2014, February). Investigating the use of model-based method for improving 

the quality of natural language requirements: a controlled empirical study. North Dakota 

State University Paper. 

[17] Lu, Z. (2016, April). A software tool to facilitate automate creation of virtual inspection 

teams and inspection performance evaluation. North Dakota State University Paper. 

 

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7346


 

37 
 

[18] Kollanus, S., & Koskinen, J. (2009). Survey of software inspection research. The Open 

Software Engineering Journal, Volume 3, 15-34. 

[19] Sembugamoorthy, V., & Brothers, L. (1990, October). ICICLE: Intelligent code inspection 

in a C language environment. The 14th Annual Computer Software and Applications 

Conference, pp.146-154.  

[20] Brothers, L., Sembugamoorthy, V., & Muller, M. (1990, October). ICICLE: Groupware for 

code inspections. In Proceedings of the 1990 ACM Conference on Computer Supported 

Cooperative Work, pp.169-181. 

[21] Gintell, J.W., Arnold, J., Houde, M., Kruszelnicki, J., McKenney, R., & Memmi, G. (1993, 

September). Scrutiny: A collaborative inspection and review system. In Proceedings of the 

Fourth European Software Engineering Conference, Garwisch-Partenkirchen, Germany. 

[22] Mashayekhi, V., Drake, J.M., Tsai, W.T., & Reidl, J. (1993, September). Distributed, 

collaborative software inspection. IEEE Software, Vol. 10, No. 5, pp.66-75. 

[23] Yourdon, E. (1989). Structured walkthroughs. Prentice Hall.  

[24] Humphrey, W.S. (1989). Managing the software process. Addison-Wesley. 

[25] Knight, J.C., & Meyers, E.A. (1991, July). Phased inspections and their implementation. 

Software Engineering Notes, Vol. 16, No. 3, pp.29-35.  

[26] Knight, J.C., & Meyers, E.A. (1993, November). An improved inspection technique. 

Communications of the ACM, Vol. 11, No. 11, pp.51-61.  

[27] Johnson, P.M., & Tjahjono, D. CSRS users guide. Technical Report ICS-TR-93-16, 

University of Hawaii. 



 

38 
 

[28] Johnson, P.M., & Tjahjono, D.  (1993, September). Improving software quality through 

computer supported collaborative review.  In Proceedings of the Third European 

Conference on Computer Supported Cooperative Work, Milan, Italy. 

[29] Johnson, P.M., Tjahjono, D., Wan, D., & Brewer, R. (1993). Experience with CSRS: An 

instrumented software review environment. In Proceedings of the Pacific Northwest 

Software Quality Conference, Portland, OR. 

[30] Johnson, P.M. (1994, May). An instrumented approach to improving software quality 

through formal technical review. In Proceedings of the 16th International Conference on 

Software Engineering, Sorrento, Italy.  

[31] Bell, S. (1996). Learning with information systems: Learning cycles in information 

systems development. New York: Routledge.  

[32] Pinsonneault, A., & Kraemer, K. L. (1993). Survey research methodology in management 

information systems: An assessment. Journal of Management Information Systems, 10, 75-

105.  

[33] The survey for this research was generated using Qualtrics Software. Copyright year 2019. 

Qualtrics and all other Qualtrics product or service names are registered trademarks of 

Qualtics, Provo, UT, USA. https://www.qualtrics.com 


