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ABSTRACT 

Forecasting stock market prices has been a challenging task due to its volatile nature and 

nonlinearity. Recently, artificial neural networks (ANNs) have become popular in solving a 

variety of scientific and financial problems including stock market price forecasting. ANNs have 

the ability to capture the underlying nonlinearity and complex relationship between the 

dependent and independent variables. This paper aims to compare the performance of various 

neural networks including Feed Forward Neural Networks (FNN), Vanilla Recurrent Neural 

Network (RNN), and Long Short-Term Memory (LSTM) neural networks by forecasting stock 

market prices of three different companies. Empirical results show that the LSTM neural 

network performed well in forecasting stock market prices compared to both vanilla RNN and 

FNN.  
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1. INTRODUCTION 

Machine learning has gained popularity in the last decade. The field of machine learning 

consists of different models including, but not limited to, support vector machines, random 

forests, and artificial neural networks. Few models are specialized to study classification 

problems while other models are specialized in studying both classification and regression 

problems. Artificial Neural Network (ANN) is a good candidate for solving both classification 

and prediction problems [1]. Hence, ANN is the most widely used machine learning model. 

Previous studies have indicated that ANNs can approximate any universal function and are 

applied to solve broad range of problems in many fields including sales forecasting, price 

forecasting, finance, medicine, engineering, and physics etc. [1, 2]. Forecasting using ANN has 

been an active research area over the past few years.  

Primarily there are two types of machine learning techniques including supervised 

learning and unsupervised learning. Supervised learning consists of training the model with a 

predetermined explanatory (X) and explained (Y) variables. The unsupervised learning technique 

involves feeding the entire data to determine the structure of the data [3].  

This project compares different neural networks including feed forward neural networks, 

and recurrent neural networks (both vanilla and LSTM) by forecasting stock market prices of 

Amazon, S&P, eBay companies. The data are obtained from the Yahoo finance website [4].  

1.1. Forecasting 

Forecasting is the process of predicting the future using past data and current data. It is a 

process involving uncertainty [5]. The selection and implementation of a forecasting method is 

important for many businesses, since most financial and marketing decisions are made based on 
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the accuracy of the forecast. Literature on the topic consists of two most prevalent forecasting 

techniques, which are causal forecasting, and time series forecasting.  

1.1.1. Causal Forecasting 

In causal forecasting, the independent variables (Xt) are used to predict the dependent 

variable (Yt). Causal forecasting can be formulated as follows [5]: 

 𝑌" = 𝑓(𝑋'", 𝑋)", 𝑋*", 𝑋+", … . )	 (1) 

where Yt is the dependent variable, and Xit are the independent variables. Expert knowledge is 

needed to select the appropriate independent variables that predict the dependent variables 

accurately enough [5]. 

1.1.2. Time Series Forecasting 

A time series consists of data points obtained over time at equally spaced intervals (daily, 

monthly, quarterly, yearly) [6]. The fundamental difference between linear regression and time 

series is that time series data is time dependent whereas the linear regression model assumes that 

the data is independent of time, that means each observation is independent of each other. Time 

series data often contain seasonality and trend over time based on the frequency of the data [7]. 

There are two ways of analyzing time series. One is fundamental analysis, and the other is 

technical analysis. Fundamental analysis determines the future values based on the underlying 

factors that affect a company’s real business and its future predictions. Whereas technical 

analysis determines the future values based on the historical values and its behavior over time 

[8]. Time series forecasting is a technique used to predict the future values (𝑌"0', 𝑌"0), …) based 

on historical observations of the same variable (𝑌", 𝑌"1', 𝑌"1), …) and patterns that exist in the 

data [9]. 𝑌" is the value (output) at time t and inputs are the past observations of 𝑌". Time series 

forecasting can be formulated as follows: 
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 Y3 = f(Y31', Y31), Y31*, … ) (2) 

Few examples of time series data include Dow-Jones Industrial Average, sunspot 

activity, number of births in a community, air temperature in a building, etc. As mentioned 

earlier, the time series data is disaggregated into trend, seasonality, and noise components [10]. 

Trend is an increasing or decreasing behavior of the series over time while seasonality is the 

repetitive patterns or cycles of the data over time. Finally, noise is the variation in the dependent 

variable that cannot be explained by the independent variables [10]. 

Predictions are made using two types of lags. If predictions are made using only past 

values, then that type of prediction is called one-lag prediction. On the other hand, if predictions 

are made by appending the predicted value to the current input to predict the next value then that 

type of prediction is called multi-lag prediction. For instance, in one-lag prediction, T1, T2, T3, 

T4 are used to predict the T5 value. Whereas in multi-lag prediction T2, T3, T4, T5 are used to 

predict the T6 value and T3, T4, T5, T6 are used to predict the T7 value [6]. In this paper, one 

lag prediction approach was used to forecast stock market prices of Amazon, S&P, eBay 

companies. 

Forecasting models could be linear as well as nonlinear. Artificial neural networks 

(ANN) are examples of nonlinear forecasting models. A simple ANN contains an input layer, 

hidden layer, and an output layer. Activation (transfer) functions used in the hidden layer make 

the neural network nonlinear. The three main objectives of the project include: 1) highlight the 

differences between feed forward and recurrent neural network, 2) forecast time series and 

compare the results obtained using both the feed forward and recurrent neural networks in terms 

of RMSE, and 3) explain the neural network architecture in the context of time series 

forecasting. 
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Importance of Time Series Forecasting: The accuracy of forecasts is important for 

several reasons. First, the forecasts are used to make both short-term and long-term decisions. 

Second, the forecasts help to manage the uncertainty in the future. In many industries, most of 

the financial operations are based on the accuracy of forecast to make operative decisions in 

purchasing, marketing and advertising, etc. For instance, less accurate forecasts may lead the 

company to make wrong decisions and thereby will lead to loss in the revenues. Hence, the 

research to develop a good forecasting model and to improve the effectiveness of existing 

forecasting models has been an active area of research [11]. 

Importance of Stock Market Price Forecasting: Forecasting stock market price is 

important in financial and economic studies. It is an act of predicting the potential of the 

company. The successful prediction of a stock’s future price could yield significant profits to the 

company. Most of the times, it is very difficult to predict stock market prices accurately just by 

looking at its price history because of the uncertainty in the market, economic and political 

factors instantaneously [8], and by nature stock market is nonlinear and unstable [12]. Even 

though many classical methods such as Box-Jenkins, ARMA and ARIMA have been developed 

to forecast time series they fail to address the major challenges such as uncertainty and 

nonlinearity of the financial data, as they often assume a linear relationship between input and 

output variables. On the other hand, neural network models have been proven to be good at 

approximating the nonlinear function without requiring any apriori information [1].  
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1.2. Neural Networks 

A neural network may be assumed as a nonlinear regression function describing the 

relationship between the dependent variable (target) 𝒀 and the independent variables (inputs) 𝑿 

[13]. ANNs are inspired by the biological nervous systems. A simple ANN is typically organized 

into 3 layers including an input layer, hidden layer, and an output layer. Layers are made up of a 

few interconnected nodes, which contain an activation function. Weights in the network 

determine how strong two neurons are connected [14]. 

1.2.1. Biological Motivation 

ANNs are inspired from the biological nervous system [12]. The architecture and 

functionality of ANNs mimic the brain in the following way [2]. A neuron is a basic 

computational unit of a brain. Synapses connects all neurons in the human nervous system. 

Dendrites carry the signal to the cell body, where they all get summed up. The axon finally 

branches out and links via synapses to dendrites of other neurons. Each neuron gets input signals 

from its dendrites and produces an output signal along its axon [15].  Figure 1 shows the 

structures of both a biological neuron and the ANN mathematical model.  

 

 

Figure 1. Structure of both biological neuron and ANN model1 
                                                
 

1 Source: http://cs231n.github.io/neural-networks-1/ 
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In the ANN model, each neuron performs a dot product with the input (𝑥8) and its weight 

(𝑤8) along with the bias unit in the input layer. In the hidden layer, the result of the input layer is 

passed through a non-linear (or activation) function and the final result is passed on to the output 

layer [15].   

The rest of the paper is organized in following way. Chapter 2 describes the related work 

of time series forecasting and stock market price forecasting. Chapter 3 describes the different 

types of Neural Network architectures and different backpropagation training algorithms. 

Chapter 4 describes the data set and preprocessing techniques applied before executing the 

neural network algorithm. Results, in the form of table and diagrams, are presented in Chapter 5. 

Chapter 6 concludes the paper.  
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2. RELATED WORK 

In order to forecast time series, there are several linear statistical and econometric models 

are available including pure autoregressive (AR), pure moving average (MA), exponential 

smoothing and combined AR and MA (ARMA). However, the main disadvantage of all kinds of 

linear models is that they only capture the linear correlation and do not consider the nonlinear 

patterns that exist in the data [16]. To overcome the limitations of linear models some of the 

other nonlinear forecasting models such as bilinear model, the threshold autoregressive (TAR) 

model, and the autoregressive conditional heteroscedastic (ARCH) models have been developed 

but they can be applied to specific nonlinear problems. The applicability of these models to the 

general forecasting problems is limited [16].  

Many linear statistical models for time series forecasting are computationally inexpensive 

and have proven to be inaccurate in addressing the nonlinear patterns in the data. Whereas 

nonlinear models such as neural network account for nonlinear patterns in the data and predict 

future values accurately [6].  

For the first time in 1964, Hu stated his idea to use ANNs for prediction problems and 

used for forecasting weather without any learning algorithm [12]. In 1988, Werbos used a 

learning algorithm, which was introduced in 1980 to train the ANN, and stated that ANNs are 

better than regression methods and the Box-Jenkin model for prediction problems [12]. The main 

advantage of ANN’s nonlinear model is that it is good at capturing nonlinear patterns that exist 

in the data [16]. In [16], Zhang applied both the ARIMA (linear) model and the ANN (nonlinear) 

model to forecast the time series to improve the forecasting accuracy compared to either of the 

model separately. Experimental results on real data have shown that the combined (hybrid) 

model achieved good accuracy compared to either of the model. 



 

8 

In the recent decade, many researchers have used neural networks to predict stock market 

changes. For the first time, Kimmoto and his colleagues used neural networks to predict the 

index of the Tokyo stock market [10]. Mizuno and his colleagues also used neural networks to 

predict the trade of stocks in the Tokyo stock market and achieved a 63% precision [12].  

In [6], Chakraborty et al. used a feedforward neural network approach for multivariate time 

series analysis and predicted the monthly flour prices of Buffalo, Minneapolis and Kansas City 

over a period of a hundred months. Results show that the neural network approach leads to better 

results compared to the ARIMA model. 

Due to some special characteristics of Artificial Neural Networks (ANN) such as 

generalization ability and capturing underlying non-linear patterns of the data, the application of 

ANN for prediction problems became popular [12]. In [13], Kuan and Liu proposed a two-step 

procedure to estimate and select feedforward and recurrent neural networks and investigated 

nonlinear patterns in foreign exchange data using selected networks in different out-of-sample 

periods. They also found that the predictive stochastic complexity (PSC) is a reasonable criterion 

to select networks. Finally, results show that there is no major difference between feedforward 

and recurrent neural networks in terms of out-of-sample MSE (mean squared errors) and sign 

predictions (i.e., forecasts of the direction of future changes). 

In [1], Oancea, Bogdan, and Ciucu compared the performances of different neural 

networks such as feedforward and recurrent neural networks as well as using different training 

algorithms to predict the exchange rates of EUR/RON and USD/RON. Before applying the 

model, they applied preprocessing techniques to remove the correlation between data as well as 

to normalize the data. Based on the test results, Recurrent Neural Networks performed better 

than feed forward neural network.  
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In general, it is very difficult to predict stock market prices because more often, stock 

market prices react to news instantly. In [8], Xu and Yue predicted weekly changes in stock 

prices by combining conventional time series analysis with the information from the Google 

trend website and the Yahoo finance website and achieved better results compared to 

conventional time series analysis.   

In [14], Gamboa and Borges reviewed and summarized few deep learning techniques and 

some applications on time series analysis and concluded that applying deep learning techniques 

for time series analysis yielded better results than existing time series analysis techniques. 

In [17], Claveria and Torra evaluated the forecasting performance of artificial neural networks 

relative to different time series models such as autoregressive integrated moving average 

(ARIMA) models and self-exciting threshold auto regressions (SETAR) at the regional level by 

forecasting tourism demand. The results indicated that ARIMA models outperformed both 

SETAR and ANN models. RNNs have a long history, but their recent popularity is mostly due to 

the research works of Schmithuber, Hochreiter, and Graves. RNNs applications include areas 

ranging from speech recognition to driverless cars [27].  

In summary, ANNs performed well compared to traditional statistical models in almost 

all of the cases. 
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3. APPROACH 

3.1. Feed Forward Neural Network 

A typical ANN consists of 3 layers. The first layer is input layer, the second layer is/are 

the hidden layer(s), and the last layer is the output layer [12]. In feed forward neural networks, 

the information flow is unidirectional from the input layer to the hidden layer and from the 

hidden layer to the output layer. Most feed forward neural networks are organized in layers and 

this architecture is known as a Multilayer Perceptron (MLP) [19].  Figure 2 is an example of a 

neural network topology with a single hidden layer. 

 

Figure 2. ANN and its architecture with three layers2. 

There are usually four types of neurons and three types of layers in a neural network [20]: 

• Input Neurons - Each input neuron represents one element in the feature vector. 

• Hidden Neurons - Hidden neurons allow the neural network to process the input 

and to forward the result to the output. 

• Output Neurons - Each output neuron computes one part of the output. 

• Context Neurons - Holds the state between calls of the neural network to predict. 

                                                
 

2 Source: http://cs231n.github.io/neural-networks-1/ 
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• Bias Neurons - Works like the Y-intercept of a linear equation. 

These neurons are grouped into layers [20]: 

• Input Layer - The input layer accepts values from the dataset. Input layers 

usually have a bias neuron. 

• Output Layer - This layer consists of output of the neural network. The output 

layer does not have a bias neuron and activation functions. 

• Hidden Layers - Remain between the input and output layers. Each hidden layer 

will usually have a bias neuron.  

The number of layers of an ANN varies based on the application. The best way to 

determine the neural network architecture is the trial and error approach. Every neural network 

contains a single input layer and a single output layer, but varying numbers of hidden layers. The 

ANN structure is one of the major factors in achieving satisfactory prediction results. A very 

simple network may not be able to approximate the function well. Also, a very complex network 

may overfit the data. However, there is no exact approach regarding the determination of the 

network complexity [13]. One must design an ANN with an appropriate number of layers, 

neurons and connections [12]. Other factors that affect the prediction results are activation 

functions, evaluation measures, and training algorithms [12]. If an ANN contains more than one 

hidden layer, then that ANN is usually referred to as a deep neural network. Typically, a deep 

neural network has more learning capacity in order to learn more complex behavior than shallow 

neural networks. As the number of layers in the network increases the number of learning 

parameters (weights and biases) also increase.  

Selection of the number of neurons and the number of hidden layers is problem specific. 

For example, if one opts for more hidden layers for a simple problem then the network may 
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overfit the data. Overfitting occurs when the model fits the noise instead of the underlying 

relationship. Hence, one cannot claim that a deep neural network has always more learning 

capacity than a single hidden layer neural network.  

In machine learning, the first step is to disaggregate the entire data into a training set and 

test set. Given the training set, a neural network can learn using a learning algorithm. Most 

commonly used learning algorithm is the backpropagation algorithm. The backpropagation 

algorithm forms a mapping between the input and the desired output by updating the weights that 

connect the network. While testing the network with the new data, the network predicts the 

values using weights updated during training [6]. Data are presented to the network via the input 

layer, which communicates to one or more hidden layers where the actual processing occurs 

using weights. The hidden layers are then connected to output layer.  

Two important parameters are needed for building the architecture of the neural network. 

First, the number of hidden nodes in the hidden layer. Second, to determine the number of lagged 

values (past observations of the stock price), which are used as the inputs in the input layer. 

Using very few inputs and hidden nodes results in inadequate modeling, whereas, too many 

inputs and hidden nodes makes the model complicated [6]. Often a trial and error approach is 

used to determine the appropriate number of hidden nodes as well as the input nodes for the 

network. 

The entire learning process of a neural network can be generalized in three steps: 

1. Calculate the loss function 

2. Back propagate the loss value and calculate the gradient 

3. Update weights 
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Calculate loss function: The input data presented to the neural network goes through the 

whole network and then the accuracy between the predicted value and the desired value is 

compared. The loss is calculated as follows: 

 Error
loss = desired	output − actual	output (3) 

Backpropagation: At this stage, the gradients (derivative of loss function w.r.t to 

weights) are calculated. The backpropagation algorithm finds the minimum of the error/loss 

function in the weight space using gradient descent. The combination of weights, which 

minimizes the error function is considered as a solution of the learning problem [12].  

Weight Update: Weights are updated using the gradients calculated in the 

backpropagation phase scaled by the learning rate. The weights of the network are adjusted 

based on the error calculated between the actual output and the output predicted by the network 

until the network converges [18]. 

 WI = W− (learning	rate ∗ gradient) (4) 

where 𝑊 is the initial weight, while 𝑊I is the updated weight. 

The learning rate is an important hyper parameter in training the neural network because: 

1. If the learning rate is too low, then near accurate results will be calculated but the 

training process is very slow. 

2. If the learning rate is too high then it speeds up the training process, but the 

results may not be good enough. 

Common values for learning rates are 0.1, 0.01, 0.001. Figure 3 depicts the effect of the 

learning rate on the loss function. 
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Figure 3. Pictorial representation of different learning rates and the loss3 

3.2. Recurrent Neural network 

As mentioned earlier, the feed forward neural network always has forward connections. 

The flow of the data in feed forward networks is always from the input layer to the output layer 

through the hidden layers. In contrast, the Recurrent Neural Networks (RNNs) have connections 

in both forward and backward directions. The recurrent connections in the RNN connects the 

neurons in the current layer to the following neurons [20]: 

1. Neurons in the same layer 

2. Neurons in the previous layer 

3. Neurons itself 

The following are the key differences between the feed forward neural networks (FNNs) 

and recurrent neural networks (RNNs). First, RNNs use sequential information, which means it 

receives a sequence of values as input and it also produces a sequence of values as output while 

FNNs assume that data is non-sequential, and that each data point is independent of one another 

                                                
 

3 Source:  http://cs231n.github.io/neural-networks-3 
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[19]. As a result, the inputs are analyzed in isolation, which cause problems if there are 

dependencies in the data. Second, most RNNs maintain a state in the recurrent connections to 

capture previously computed information, whereas FNNs do not maintain any state. The state in 

the RNN acts as a short-term memory for the neural network. Thus, RNN will not produce the 

same output for a given input. When we unfold the RNN, each fold looks like a FNN with an 

extra input from its previous hidden state.  

Figure 4 shows the architecture of the recurrent neural networks. In the figure, 	𝑥" is the 

input at time step t, 𝑠" is the hidden state at time step t. 𝑠" acts as a short-term memory for the 

network to capture the previously computed information. 𝑠" is usually computed based on the 

previous hidden state and the current input. Usually, 𝑠" is computed using the following formula 

[19]:  

 s3 = f(Ux3 +Ws31') (5) 

Here, the function f is a non-linear function such as rectified linear unit (ReLU), tanh, or 

sigmoid. U, W are the parameters. Finally, 𝑜" is the output at time step t [19]. 

 

Figure 4. Recurrent neural networks and its architecture4 

                                                
 
4 Source: http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-

introduction-to-rnns/ 
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A few applications of RNNs include language modeling, image captioning, machine 

translation, and speech recognition etc. Training a RNN is similar to traditional Neural Network 

with small changes to the backpropagation algorithm since parameters shared by all time steps in 

the network calculation of the gradient depends not only on the current time step but also on the 

previous time steps. This process is known as Backpropagation Through Time (BPTT) [19]. The 

main disadvantage of vanilla RNNs is that they are not good at accounting for long-term 

dependencies (dependencies between steps that are far apart) due to the vanishing/exploding 

gradient problems [19]. A vanishing gradient is a situation in which the gradient gets smaller as 

we move backward across the hidden layers. That is, the neurons in the earlier layers learn much 

more slowly than the neurons in later layers. While an exploding gradient is a situation in which 

the gradient gets much larger in earlier layers. Hence RNNs are useful in a situation where the 

gap between the relevant information and the place that it required is small since the gap 

increases RNNs incapable of learning the required information [21]. 

3.3. Long Short-Term Memory Neural Network 

LSTMs are a special type of RNNs that are often used with deep neural networks. 

LSTMs were proposed by Hochreiter and Schmidhuber in late 1990s [9] and they are capable of 

learning long-term dependencies better than vanilla RNNs [19]. The only difference between 

LSTM, and vanilla RNNs architecture is that each one calculates the hidden state in a different 

way [14]. LSTMs have three different cells in the hidden state and they act as memory for the 

network. These cells take the previous hidden state (ℎ"1') and the current input (𝑥") together as 

input and decide the needed information in the memory. The number of neurons in the LSTM 

network defines the learning capacity. 



 

17 

LSTM uses two types of internal transfer functions. They are 1) sigmoid transfer function 

and 2) hyperbolic tangent (tanh) function. The sigmoid transfer function is used for the gated 

units inside of the unit, whereas the tanh transfer function is used to scale the output of the 

LSTM.  

 

Figure 5. LSTM and its architecture5 

The LSTM is made up of three gates: 

• Forget Gate (𝑓") – This gate decides the information to be retained from cell state. 

The sigmoid layer makes this decision and then it results in outputs between 0 and 1. 

The output “one” represents “completely keep this” while the output zero represents 

“completely forget this”. The following formula represents the forget gate layer [21]: 

 f3 = σ[WV(h31', x3) + bV] (6) 

• Input Gate (𝑖") – This gate decides when a value should be remembered by the 

context. The formula for input gate is shown below [21]: 

 i3 = σ[W[(h31', x3) 	+	b[] (7) 

                                                
 
5 Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 
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• Output Gate (𝑜") – The output gate decides the parts of the cell state that are sent as 

output. The formula for the output gate looks as follows [21]: 

 o3 = σ[W\(h31', x3) + b\] (8) 

To create an update to the state, we use the candidate value along with the forget gate and 

the input gate. The candidate value is calculated using the following formula [21]:  

 C3 = tanh	[W^(h31', x3) + b^] (9) 

To update the old state, 𝐶"1' to the new state 𝐶", we multiply the old state by 𝑓" then we 

add the new state multiplied by 𝑖" [21]: 

 C3 = (f3 × C31') + (i3 × C3) (10) 

To compute current hidden state ℎ", we apply tanh activation function to the new state 𝐶" 

and multiply it by 𝑜" as follows [21]. 

 h3 = o3 × tanh(C3) (11) 

In all above formulas, 𝑊 refers to the weight and 𝑏 refers to the bias value. Over a period 

of time, a recurrent neural network tries to learn how much information to retain from the past, 

and how much information to keep from the present state, which makes the RNN powerful as 

compared to a simple FNN. 

Optimization: It is the process of finding the appropriate weights, which minimizes the 

loss function [22]. 

Gradient descent: The process of repetitive evaluation of the gradient and then updating 

the weights is known as gradient descent. Although many different optimization algorithms exist, 

gradient descent is the most commonly used optimization algorithms to optimize the neural 

network loss functions [22]. 
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Mini-batch Gradient Descent: If the training data size is large enough then it is 

inefficient to compute the gradient using the entire data to update a single parameter. The usual 

approach to address this problem is to calculate the gradient over batches of training data rather 

than the whole data. The gradient from a mini-batch is a good estimate of the gradient computed 

using the entire data. Hence, faster convergence is possible by calculating mini-batch gradients 

to perform more frequent parameter updates [22]. 

Stochastic Gradient Descent or online gradient Descent: The process of computing 

gradients using a single observation at a time instead of a batch or the whole data. In this process, 

the batch size is equal to one. This process is computationally efficient to calculate the gradient 

for 100 observations rather than calculating the gradient for an observation 100 times [22]. 

3.4. Backpropagation 

The Backpropagation learning algorithm falls under the general category of gradient 

descent algorithm. The main objective of the gradient descent algorithms is to minimize the error 

function by iteratively moving in the direction of the negative slope of the function [1]. The main 

problem with the gradient descent algorithm is that it suffers from potentially getting trapped in a 

local minimum. 

Momentum Backpropagation: It is one of the backpropagation techniques. In the 

momentum back propagation, another hyper parameter called momentum is used to escape the 

gradient from the local minima. In this process, the weights are updated not only using the 

learning rate but also using the momentum. The previous change in the weight is scaled by the 

momentum and added to the current weight as shown below [23]:  

 WI = W− (	learning	rate	 × 	gradient	)

+ (	momentum × previous	amount	of	weight	change)										 (12) 
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The most commonly used value for the momentum is 0.9. 

Batch Backpropagation: If the weights are updated based on the sum of the gradients 

over all the training set elements then that training process is called batch backpropagation [23]. 

Online Backpropagation: If the weights are updated based on gradients calculated from 

a single training set element then that training process is called online backpropagation [23]. 

Epoch: is the number of times the whole training set was processed [23]. 

Batch size: Batch size is smaller than the whole training set and usually 32, 64, etc. 

Batch size controls the frequency level of updating the weights of the network [23]. 

Steps or Iteration: Training set size/batch size [23]. 

For instance, if the training set size is 1000 and the batch size is 100 then the number of steps or 

iterations equal to 10. In addition to the above training algorithms, there exists few other training 

algorithms, which do not depend on the leaning rate and momentum values [23]: 

• Resilient Propagation – It uses only the magnitude of the gradient and permits each 

neuron to learn at its own rate. There is no need of learning rate/momentum. But, the 

resilient propagation only works in full batch mode [23]. 

• Nesterov accelerated gradient – This helps to lessen the risk of choosing a bad mini-

batch [23]. 

• Adagrad –This allows an automatically decaying per-weight learning rate and 

momentum. The drawback of Adagrad is that in case of deep learning, the monotonic 

learning rate usually proves to be too aggressive and stops learning too early [23]. 

• Adadelta – It is an extension of Adagrad that seeks to decrease its aggressive, 

monotonically decreasing learning rate. 
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• Non-Gradient Methods – In some cases, the non-gradient methods could outperform 

gradient-based backpropagation methods. Few non-gradient methods include simulated 

annealing, genetic algorithms, particle swarm optimization, and Nelder Mead [23]. 

3.5. Data preparation 

Data set: For this experiment, the monthly stock market prices of three different 

companies have been collected from the Yahoo finance website with three different period 

ranges. The three companies’ datasets include Amazon monthly stock prices (2001-2016), eBay 

monthly stock prices (2001-2016), and S&P monthly stock prices (1951-2016). Each company 

dataset contains different columns of the data including open, high, low, closing and adjusted 

closing prices. In this paper, the closing price of each company was selected for forecasting. 

Data splitting: In machine learning models, the data are divided into train and test sets. 

The model learns the past behavior and patterns from the training data. Later, we can test the 

performance of the model by comparing the ground truth with the predicted test values [9]. The 

decision about splitting the data is based on the different factors including number of 

observations, quality of the data, and variation in the data. There is no hard and fast rule for data 

splitting. Depending on the number of observations in the dataset, the entire dataset could 

sometimes be split into three subsets including train, test, and validation sets. However, in this 

paper, 20% of the data was used as test data and the remaining 80% data was used as a training 

data for all datasets. 

Data preprocessing: Before applying the algorithm, the usual practice is to explore the 

data for any missing values and outliers. If the data contain any missing values or outliers, then 

one should delete them using the appropriate data preprocessing technique as they impact the 

results significantly. In this project, the dataset does not have any outliers or missing values. 
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Therefore, the preprocessing technique was not needed. Usually, time series data are sequential 

data that contain patterns including seasonality, and trend components. Stationarity of the data is 

a precondition for forecasting. Few data preprocessing techniques applied in this paper are 

shown below.  

Stationarity: Time series is a special type of data. Before fitting a model, one needs to 

convert the time series to stationary. We cannot fit the model to nonstationary data. When we 

make the data stationary the statistical properties of the data such as mean, variance, auto 

correlation, etc. are constant over time [7]. To make the data stationary, I have converted the data 

series in to time series object and removed the trend and seasonality.  

There are a number of statistical tests that exist to check whether the data is stationary. 

Among them, Augmented Dickey-Fuller (ADF) test is the most widely used statistical test. The 

null hypothesis (H0) of the test is that the time series is nonstationary. The alternate hypothesis 

(H1) of the test is that the time series is stationary. The tests results are interpreted using the p-

value. A p-value below a threshold (1% or 5%or 10%) indicates the rejection of the null 

hypothesis (stationary), otherwise accept the null hypothesis (non-stationary). 

p-value>0.05: Accept the null hypothesis (H0), the data is not stationary. 

p-value<=0.05: Reject the null hypothesis (H1), the data is stationary. 

Normalization: For this data preprocessing technique, the data are normalized so that the 

entire dataset is uniform. If one fails to normalize the data, then the larger input value 

overwhelms the smaller input value. This may lead to wrong conclusions. Normalization of the 

data helps the optimizations algorithm to converge quickly and also reduces the prediction error 

[24].  
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Standardization or Z-score normalization: This is one of the common types of 

normalization techniques. In this process the input values will be rescaled, as a result features 

will have the properties of a standard normal distribution with mean zero and standard deviation 

one. Standard score can be calculated using the following formula [24]. 

 
Z =

(x − µ)
s

 (13) 

In the above formula, 𝑥 is the input value, µ	is the mean and 𝜎	is the standard deviation. 

Min-Max scaling: It is an alternative approach to standardization. In this process, the 

data are scaled to fixed range either from 0 to 1 or -1 to 1. Min-Max scaling is typically applied 

using the formula below [24]: 

 
Xh\ij =

(X − Xj[h	)
(Xjkl − Xj[h)

	 (14) 

In the above formula, 𝑋 is the single data point, 𝑋mno	 is the minimum value, and 𝑋mpq is 

the maximum value. Depending on the dataset, one needs to choose an appropriate normalization 

technique. In this project, z-score normalization was used to preprocess the data.  

Weight initialization: Initializing the weights of the neural network is an important issue 

because if one initializes all weights with zero then every neuron in the network computes the 

same output. Also, the neurons compute the same gradients during backpropagation and update 

each weight with the same value. Thus, the network does not learn the underlying patterns. The 

best way to initialize the weights of the network is to randomly initialize the weights and make 

sure that they are close to zero but not exactly zero. The algorithm converges faster by 

computing different gradients and update each weight with a different value based on the input 

variable. 
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3.6. Activation functions 

Each neuron or node in the neural network processes the information using an activation 

function. The choice of activation function has a big impact on the network’s behavior. There are 

a number of activation functions used in artificial neural networks. Some of them are described 

in this section. 

Sigmoid: One of the most popular activation functions used for the backpropagation 

network is sigmoid. Sigmoid activation function has the mathematical form as follows:  

 '
'0rst

 where 𝑍 = 𝑤n𝑥n + 𝑏'	 (15) 

The sigmoid function is a non-linear function (shown in Figure 6) in which it takes the 

real valued numbers as an input and results in values usually between zero and one. That is, large 

negative numbers become 0 and large positive numbers become 1 [15].  

 

 

Figure 6. Pictorial representation of sigmoid function6 

One of the major disadvantages of the sigmoid function is the vanishing gradient 

problem. 
                                                
 
6 Source: http://cs231n.github.io/neural-networks-1/ 
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Vanishing gradient problem: When a neuron’s activation saturates at either tail of 0 or 

1, the gradient at these areas is almost zero. During backpropagation, local gradients will be 

multiplied with the gradient of this respective gates’ output. Hence, if the local gradient is very 

small, it will ultimately vanish and as a result, no signal passes through the neuron to its weights. 

To prevent this problem, one should be careful with weight initialization and need to test with 

different initialization of the weights. For instance, if the initial weights are too large then most 

neurons would become saturated and the network does not learn [15]. 

Tanh: Tanh non-linear function is shown in Figure 7. This function reduces a real-valued 

number in the range [-1,1]. Like the sigmoid neuron, the neurons in tanh also face the vanishing 

gradient problem, however, unlike the sigmoid neuron its output is zero-centered. The 

mathematical form for Tanh function is as follows [15]: 

 𝐹(𝑧) = rx1rsx

rx	0rsx
	, where 𝑧 = 𝑤n𝑥n + 𝑏' (16) 

 

 

Figure 7. Pictorial representation of tanh function7 
                                                
 
7 Source: http://cs231n.github.io/neural-networks-1/ 
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ReLU (Rectified Linear Unit): This function has become popular in the past few years. 

The mathematical function for ReLU is 𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) [15].   

Advantages of ReLU: 

1. ReLU accelerates the convergence of stochastic gradient descent compared to the 

sigmoid/tanh functions. It is argued that this is due to its linear, non-saturating form 

[19]. 

2. Sigmoid and Tanh neurons contain expensive procedures whereas ReLU can be 

implemented by simply thresholding a matrix of activations at zero [15]. 

Drawback: ReLU units can be unstable during training and can even die. For instance, a 

huge gradient flowing through a ReLU neuron could cause the weights to update in such a way 

that a neuron will never activate on any data point again [15]. 

Leaky ReLU: It is an effort to fix the drawback of ReLU, which is the dying ReLU 

problem. Rather than the function being zero when 𝑥 < 0, a leaky ReLU will instead have a 

small negative slope (0.01 or so). That is, the function calculates 𝑓(𝑥) = 1(𝑥 < 0)(𝛼𝑥) + 1(𝑥 >

= 0)(𝑥) where 𝛼 is a small constant. The disadvantage of this activation function is that its 

results are not always consistent [15]. 

 

 

 

  



 

27 

4. EXPERIMENTS AND RESULTS 

Root Mean Square Error (RMSE) was used to evaluate the forecast performances of the 

three different neural networks. To calculate the RMSE, first residuals are calculated by taking 

the difference between the actual value and the predicted value, 𝑦 − 𝑦�, where 𝑦 is the actual 

value, and 𝑦� is the predicted value. After that, the square of the differences is obtained in order to 

calculate the square root of the average values. RMSE can be calculated using the following 

formula: 

 
�∑ (y[ − y��))h

[�'
n  (17) 

In the above formula 𝑖 is an individual observation, and 𝑛 is the total number of 

observations. 𝑦n is the actual value and 𝑦�n is a predicted value. 

Figures 8, 12, and 16 show the closing prices of Amazon, S&P, and eBay, respectively. As 

shown in the figures, all three closing prices have an upward trend and seasonality. On the other 

hand, Figures 9, 13, and 17 show the decomposition of the closing price into trend, seasonality, 

and random/remainder components. In order to fit the model, the trend and seasonality 

components are removed from the original time series data. Figures 10, 14, and 18 show the 

architecture of the feed forward neural network with 3 layers, and Figures 11, 15 and 19 show 

the actual and predicted closing prices using FNN for Amazon, S & P and eBay companies, 

respectively. Figures 20, 21, and 22 show the actual and predicted prices using RNN for 

Amazon, S & P and eBay, respectively. Finally, Figures 23, 24, and 25 show the actual and the 

predicted prices using LSTM for Amazon, S & P and eBay, respectively. 
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4.1. Diagrams 

4.1.1. FNN Diagrams 

 

Figure 8. Closing price of Amazon 

 

Figure 9. Decomposed Amazon closing price 
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Figure 10. Feed forward neural network architecture for Amazon data 

 

Figure 11. Actual vs Predicted values of FNN (Amazon closing price) 
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Figure 12. Closing price of S & P 

 

Figure 13. Decomposed S & P closing price 

 

Figure 14. Feed forward neural network architecture for S & P data 
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Figure 15. Actual vs Predicted values of FNN (S & P closing price) 

 

Figure 16. Closing price of eBay 
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Figure 17. Decomposed eBay closing price 

 

Figure 18. Feed forward neural network architecture for eBay data 
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Figure 19. Actual vs Predicted values of FNN (eBay closing price) 

4.1.2. RNN Diagrams 

 

Figure 20. Actual vs Predicted values of RNN (Amazon closing price) 



 

34 

 

Figure 21. Actual vs Predicted values of RNN (S & P closing price) 

 

 

Figure 22. Actual vs Predicted values of RNN (eBay closing price) 
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4.1.3. LSTM Diagrams 

 

Figure 23. Actual vs Predicted values of LSTM (Amazon closing price) 

 

Figure 24. Actual vs Predicted values of LSTM (S & P closing price) 
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Figure 25. Actual vs Predicted values of LSTM (eBay closing price) 

4.1.4. Results 

First, a feedforward neural network was designed with three layers including an 

input layer, hidden layer and an output layer. Trial and error approach was used to choose 

the number of neurons in each layer. The best performing feed forward neural network has 

four input neurons, two hidden neurons and one output neuron as shown in the Figure 10. A 

logistic nonlinear activation function was used in the hidden layer.  

Second, two recurrent neural networks were built including 1) vanilla recurrent 

neural network, and 2) Long Short-Term Memory (LSTM) recurrent neural network. Both 

recurrent neural networks have the same neural network structure and configuration.  

The RMSE of the three different datasets executed with the three different networks are 

listed in Table 1. The table shows the results of three different neural networks. Based on 

the RMSE test error, the LSTM Neural Network performed well compared to both Feed 

Forward Neural Network and Recurrent Neural Network on the 3 different data sets. After 
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LSTM, the next best model is RNN and the least performing model is feed forward neural 

network. In the table 1 shown, the second column shows the datasets along with the years 

categorized into train and test sets. The third column shows the parameters on which the 

network is tuned. The fourth column shows the train error and finally the last column shows 

the test error. From each dataset, 80% of the data was used for training each type of neural 

network and 20% of the data was used for testing the trained neural network.  

4.1.5. Experiments and Discussion 

I performed a comparative study of the three different types of neural networks by 

forecasting stock market prices. Experiments were conducted on a Mac machine using the 

RStudio software to execute programs written in R language. Firstly, I have calculated the 

lag values for the closing prices of 3 different data sets. After that, I have divided the data 

into training (80%) and test (20%) data sets. Then, I have removed the trend and seasonality 

from the data and applied the z-score normalization before applying the model for faster 

convergence. While training the model, I have applied the logistic activation function and 

resilient backpropagation as the learning algorithm with 0.0001 as the learning rate. To get 

robust results, I ran the experiment 10 times and took the average of those results. Finally, I 

used the lowest Root Mean Square Error (RMSE) as the criteria to evaluate the trained 

model.  
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Table 1. Forecasting results of Amazon, S & P, and eBay companies closing prices using 
FNN, RNN, and LSTM 

 
FNN Amazon (2001-2016) Testyears=3 

learningrate=0.0001 
hidden =2 

Train Error 
7.539903866 

Test Error 
41.79418785 

S&P(1951-2016) Testyears=13 
learningrate=0.0001 
hidden =2 

Train Error 
15.55156718 
 

Test Error 
47.977658 

eBay(2001-2016) Testyears=3 
learningrate=0.0001 
hidden =2 

Train Error 
0.9611230537 

Test Error 
1.655409189 

RNN Amazon (2001-2016) Testyears=3 
Learning rate=0.0001 
Hidden_dim=4 
Num_epochs=10 
Batch_size=5 
learningrate_decay =2 

Train Error 
10.78449 

Test Error 
36.29156 

S&P(1951-2016) Testyears=13 
Learning rate=0.01 
Hidden_dim=10 
Num_epochs=10 
Batchsize=10 
learningrate_decay =2 

Train Error 
18.7136384 

Test Error 
47.37440424 

eBay(2001-2016) Testyears=3 
Learning rate=0.01 
Hidden_dim=10 
Num_epochs=10 
Batchsize=10 
learningrate_decay =2 

Train Error 
1.271471719 

Test Error 
1.540293374 

LSTM Amazon (2001-2016) Testyears=3 
Learning rate=0.01 
Hidden_dim=4 
Num_epochs=10 
learningrate_decay =2 
Batch_size=5 

Train Error 
10.59769 

Test Error 
36.09783 

S&P(1951-2016) Testyears=13 
Learning rate=0.01 
Hidden_dim=10 
Num_epochs=10 
Batchsize=10 
learningrate_decay =2 

Train Error 
18.89344805 

Test Error 
47.28993449 

eBay(2001-2016) Testyears=3 
Learning rate=0.01 
Hidden_dim=10 
Num_epochs=10 
Batchsize=10 
learningrate_decay =2 

Train Error 
1.220629173 

Test Error 
1.503575794 
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5. CONCLUSION 

This project compares the performance of different neural networks including feed 

forward neural networks, vanilla recurrent neural networks, and long short-term memory 

recurrent neural networks using different datasets. The datasets include the closing prices of 

Amazon, S&P, and eBay stocks.  

In all the three data sets of different companies, the long short-term memory recurrent 

neural networks performed well compared to the others. The next best performing model is 

vanilla recurrent neural networks across all three closing prices of companies. The performance 

of the recurrent neural networks can be explained due to their nature of remembering the most 

recent past information in the recurrent states. In recurrent neural networks, long short memory 

networks performed well because it has the ability to remember both long-term information as 

well as short-term information of the price in consideration.  

Future work could be focused on big data using more advanced neural networks such as 

deep neural networks.  
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