
INTELLIGENT AND EFFICIENT EMBEDDED VIDEO MEMORY DESIGN

IN THE ERA OF BIG DATA

A Thesis

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Jonathon David Edstrom

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Electrical and Computer Engineering

April 2017

Fargo, North Dakota

North Dakota State University

Graduate School

Title

INTELLIGENT AND EFFICIENT EMBEDDED VIDEO MEMORY

DESIGN IN THE ERA OF BIG DATA

 By

Jonathon David Edstrom

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Na Gong

 Chair

Jinhui Wang

Zhibin Lin

 Approved:

 4/5/17 Scott C. Smith

 Date Department Chair

iii

ABSTRACT

The growing popularity of smart phones, tablets, and other mobile devices has created an

exponential demand for video applications in today’s society. Mobile device users want their

devices to achieve a long battery lifetime while also being able to display high quality video.

When mobile devices display video, the embedded video memory in the device consumes a large

amount of power. Therefore, in this thesis, we present multiple novel, power-quality tradeoff

techniques for enabling good quality video output, while simultaneously enabling power

consumption reduction in order to maximize the lifetime of the battery. The described techniques

are designed using minimal area overhead and are compared against recent, related works by

researchers in the area of low power memory design.

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Na Gong, for her time, guidance, and knowledge in

completing all the works presented in this thesis. I would also like to thank my other committee

members, Dr. Jinhui Wang and Dr. Zhibin Lin for their feedback and assistance in presentations,

papers and other advice during my Masters study. I am thankful for all the help provided by the

other members of my lab, especially Dongliang Chen and Yifu Gong. Their help with preparing

experiments, calculating simulation results, and verifying designs was paramount in completing

the necessary work for conferences, journals, and graduation.

I am grateful to Dr. Mark McCourt and the Department of Psychology at NDSU for

allowing us to use their facility for psychophysical tests, without their help the process for

obtaining results would have taken much longer and been much more difficult.

Last, I would like to recognize and thank the National Science Foundation and ND

EPSCoR for the financial support from that made this research possible.

In reference to ACM and IEEE copyrighted material, which is used with permission in

this thesis, the ACM and IEEE do not endorse any of North Dakota State University’s products

or services. Internal or personal use of this material is permitted.

v

DEDICATION

To my parents, Fred and Terri, who have always been there to support me in everything I do.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

DEDICATION .. v

LIST OF TABLES ... ix

LIST OF FIGURES .. x

LIST OF ABBREVIATIONS .. xi

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. LUMINANCE-ADAPTIVE SMART VIDEO STORAGE SYSTEM 4

Quality of Experience Factors ... 4

User Experience... 5

Battery Life .. 5

Impact of Luminance on Quality of Experience ... 6

Video Format, Processing, and Conversion .. 6

Perception of the Output Video by the User ... 8

Determining the Number of Truncated Bits .. 9

System Design and Implementation .. 10

Embedded Hardware Setup ... 11

Embedded Software Utilization .. 12

Design Results ... 13

Hardware Design and Simulation ... 14

CHAPTER 3. DATA-DRIVEN LOW-COST ON-CHIP MEMORY WITH ADAPTIVE

POWER-QUALITY TRADE-OFF FOR MOBILE VIDEO STREAMING................................ 15

Mobile Video Data-Pattern Analysis .. 15

Data-Mining Assisted Video Analysis .. 16

Video Quality Metrics ... 19

vii

Proposed D-DASH Design .. 21

D-DASH-I ... 21

D-DASH-II .. 22

D-DASH-III ... 24

Simulation Results ... 25

Performance ... 26

Layout .. 26

Output Quality ... 26

Power Savings ... 27

CHAPTER 4. DATA-PATTERN ENABLED SELF-RECOVERY MULTIMEDIA

STORAGE SYSTEM FOR NEAR-THRESHOLD COMPUTING ... 30

Memory Failure Analsysis at Near-Threshold Voltage .. 30

Data Pattern Investigation for Self-Recovery ... 32

Rule Mining Enabled Horizontal Association ... 32

Rule Mining Enabled Vertical Correlation.. 34

Optimal Data Patterns for Self-Recovery .. 34

Recovery Failure Caused by Double Faults in Data Patterns.. 36

DPSR Hardware Implementation .. 36

Evaluation Methodology and Results ... 38

Performance ... 38

Layout .. 38

Video Output Quality .. 39

CHAPTER 5. DISCUSSION AND SUMMARY .. 41

Comparison of D-DASH to Prior Works .. 41

Comparison of DPSR to Prior Works ... 42

Summary and Future Work ... 42

viii

REFERENCES ... 44

APPENDIX A. SMART VIDEO STORAGE SYSTEM ARDUINO CODE 48

APPENDIX B. SMART VIDEO STORAGE SYSTEM RASPBERRY PI 2 CODE 49

APPENDIX C. D-DASH YUV VIDEO DATA TO ARFF CONVERSION CODE 55

APPENDIX D. DPSR ERROR MAPPING MATLAB CODE .. 60

APPENDIX E. DPSR WORD LINE FAULTS PROBABILITY CODE..................................... 61

APPENDIX F. DPSR ASSOCIATION RULE AND CORRELATION CODE 64

ix

LIST OF TABLES

Table Page

1. Calculated luminance contrast of benchmark videos ... 9

2. Luminance scenario definitions .. 10

3. Memory power savings based on hardware simulation .. 14

4. Discovered data-mining association rules .. 17

5. Data patterns for D-DASH design .. 19

6. PSNR and SSIM Calculations .. 24

7. Probability of each bit being 0 or 1 .. 28

8. RBL power consumption for different types of SRAM ... 29

9. Power savings of the different D-DASH schemes ... 29

10. Fault probability in a 32-bit SRAM word .. 32

11. Discovered horizontal data-pattern association rules ... 33

12. Vertical correlation probabilities .. 34

13. Optimal data patterns for enabling self-recovery ... 35

14. DPSR recovery failure rate ... 36

15. PSNR video quality comparison ... 39

16. D-DASH comparison with prior works on low power SRAM 41

17. DPSR comparison with prior works on low power SRAM.. 42

x

LIST OF FIGURES

Figure Page

1. Trade-off triangle relationship of hardware evaluation metrics 2

2. YUV 4:2:0 frame components and corresponding byte stream 7

3. In-memory byte organization for a YUV 4:2:0 frame .. 7

4. Hardware connections between both sub-systems ... 11

5. Arduino Leonardo and Raspberry Pi 2 code flowcharts ... 12

6. Sample video output images from print screen and external camera 13

7. Physical memory chip image .. 14

8. Data-mining assisted video data analysis ... 16

9. Rules diagram for chroma bit probability based on value of Cr1 19

10. Data-aware D-DASH bit-cells types and organization in a word-line 21

11. D-DASH with real-time adjustment between three schemes 23

12. Output of sign_irene benchmark based on the bit truncation technique 25

13. Layout of D-DASH memory design ... 26

14. D-DASH video output .. 27

15. Error maps in the SRAM array at 0.5V .. 31

16. 2D data-pattern enabled data self-correction .. 33

17. Proposed DPSR hardware design ... 37

18. Proposed DPSR layout ... 38

19. Video output comparison of the different techniques .. 40

xi

LIST OF ABBREVIATIONS

CMOS ..Complementary Metal-Oxide-Semiconductor

SRAM ..Static Random Access Memory

ECC ..Error-Correcting Code

LSB ..Least Significant Bit

PSNR..Peak Signal-to-Noise Ratio

QoE ..Quality of Experience

VQA ...Video Quality Assessment

HVS..Human Visual System

MSB ...Most Significant Bit

I2C ..Inter-Integrated Circuit

ADC ...Analog-to-Digital Converter

D-DASH ..Data-Driven Adaptable SRAM Hardware

MB ...Megabyte

MSE ...Mean Squared Error

SSIM ..Structural Similarity

RBL ..Read Bit-Line

Vdd ..Supply Voltage

RWL ...Read Word-Line

NMOS ..N-Type Metal-Oxide-Semiconductor

GND ...Ground

DPSR..Data Pattern Self-Recovery

RDF ..Random Dopant Fluctuation

MUX ..Multiplexer

POST ..Power-On Self-Test

1

 CHAPTER 1. INTRODUCTION

The research and development of energy-efficient memory for general use or application

specific designs has recently become of great interest [1]. There is now a need for new devices

that are capable of saving power intrinsically, while maintaining a robust, minimal failure

operation [2]. The detailed description of multiple techniques to allow for these savings,

including partially disabling circuitry or minimizing supply voltage to increase power-efficiency

and the use of self-correction techniques to mitigate errors and provide a high quality output, will

be introduced in the different chapters within this thesis.

Video applications have been shown to inherently possess error resiliency to some extent

[3]. This error resiliency enables those types of applications to be redesigned using approximate

computing methods for power savings. The majority of the memory designs described in this

thesis deal with video applications in particular; but these designs can be adapted for use in

devices that are a part of other application types as well. The different memories we have

designed use CMOS technology, but the methodologies used to incorporate power savings and

data correction may prove useful in future technologies as well.

In order to evaluate the effectiveness of video memories, we perform simulations to

measure critical performance parameters such as power efficiency, video quality, and area

overhead. The relationship between these three metrics is shown in Figure 1. By constraining

two of the three metrics and then improving the third, then comparing against recent research, we

are able to clearly show the improvements of our work against the state of the art. The following

chapters describe the entire design process, for three separate works, including comparison

against the latest research.

2

Power
Efficiency

Output
Quality

Silicon
Area

Figure 1. Trade-off triangle relationship of hardware evaluation metrics

The second chapter will describe the system implementation of a memory design capable

of dynamically adjusting the amount of circuitry it will enable. The use of a luminance sensor

that can detect the amount of light present within the devices environment will be used for

changing which mode of operation the memory will be in. Previous works [4, 5, 6, 7] have

shown the importance of different environmental scenarios and how they influence the user as

they are viewing video on mobile devices. Based on the knowledge that the environmental

surroundings impact the user’s perception, an intelligent bit truncation technique is proposed.

This technique involves disabling part of the memory circuitry based on the amount of

luminance in a present scenario. Using this technique, it is possible to reduce the power

consumption of the memory by a maximum of 32.6% while still maintaining good quality video

output [8].

The third chapter introduces the use of a data-mining based pattern discovery technique

used to discover meaningful patterns in video data. Other low power SRAM designs have been

developed for mobile video applications. 6T/8T and 8T/10T hybrid SRAM structures for

optimizing power efficient mobile video streaming are presented in [9] and [10], respectively. A

heterogeneous sizing scheme is presented in [11] to reduce the failure of conventional 6T bit-

cells. In [12], a two-port SRAM using majority logic and data reordering is presented to

minimize power consumption. The major issues with these works is their large area overhead

3

and inability to adjust their power-quality tradeoff, since it is set during the design of the SRAM.

Recently in [3], a voltage-scaled SRAM that can dynamically tradeoff between power and video

quality through the use of a write assist technique and ECC. The encoder and decoder circuits

used for implementing these techniques results in large computational complexity and silicon

area. We use these previous works for comparison to our presented data-mining enabled design

technique in the discussion chapter. The presented design for this memory exploits the use of

discovered patterns in order to maximize power savings up to 43.7% with negligible area

overhead [13].

The fourth chapter discusses data-pattern mining techniques that are used to discover

rules that allow for self-correction functionality. Recently, new low power memory designs that

make use of the inevitability of faults at scaled voltages, versus completely avoiding the faults,

have gained popularity. A shifting technique is presented in [14] that always stores the LSBs in

faulty cells in order to minimize output quality degradation. In [15], a squeezing technique is

presented that compresses zeros to store them in less memory space, allowing the memory to

avoid memory failures at low supply voltages. These works produce good quality results when

implemented, but at the cost of complex operations and high area overhead. We use these

previous works for comparison to our presented self-correction technique in the discussion

chapter. When our self-correction technique is applied to a voltage scaled, video-based memory,

the hardware can gain error resiliency, allowing it to output good quality video at near threshold

voltages [16].

All information, tables, and figures in chapters 2, 3, and 4 are either directly taken or

adapted, with permission to re-use, from [8], [13], and [16], respectively. The final chapter

discusses the comparison of these techniques with state of the art designs in other recent works.

4

 CHAPTER 2. LUMINANCE-ADAPTIVE SMART VIDEO STORAGE SYSTEM1

When designing mobile devices with modern advances in technology, two important

aspects to keep in mind are the user’s experience when using the device and the duration that the

battery will be able to power the device. This section describes the use of environmental lighting

in combination with adjustable video output in order to verify the potential for power savings

when designing a novel memory architecture for storing video data. We examine the influence of

ambient lighting on viewing experience for users, specifically the introduction of noise at

different levels and the influence this has on the subjective video quality users perceive. The

sensitivity of the human visual system is less when higher amounts of ambient luminance is

present, therefore the amount of noise in higher luminance scenarios is increased in order to

improve energy efficiency. We describe the system design, testing and verification process in

detail. The final design simulation shows potential for 32.6% power savings with good

subjective quality of experiences.

 Quality of Experience Factors

The use of mobile devices for watching videos has greatly increased in recent years. In

fact, according to a study by Cisco, between the years 2012 and 2014 there was a 400% increase

in mobile video views [17]. With this in mind, mobile video is becoming one of the most

important sources of information, and will continue to grow as time goes on. Now that people are

using their devices extensively for viewing mobile videos, the focus of this particular section is

to describe a way to supply mobile device users with good quality video while also maintaining a

long battery life.

1 The material in this chapter was co-authored by Jonathon Edstrom and Dongliang Chen. Jonathon Edstrom held

the primary responsibilities of building and programming the system, collecting data, and verifying results.

Dongliang Chen provided the presented SRAM hardware design with simulation results based on the concept

verified by the system implementation.

5

 User Experience

First, we perform an investigation of the quality that determines the user’s experience

while using mobile devices. The typical metric used for analyzing the quality of video is the

PSNR. The PSNR is a simple and widely used calculation that has a clear meaning to the

experimenter, but research has shown that the PSNR may not fully encompass the complete QoE

based on environmental conditions that are present in the surroundings of the mobile device’s

user. This has been verified by psychophysical experiments that show PSNR might not be the

best metric for calculating the quality of videos, especially in viewing conditions that have

varying levels of environmental factors such ambient luminance [4, 5, 6, 7]. Xue et al. found a

similar lack of correlation between VQA models and the true quality perceived by users and

because of this, they conducted multiple subjective tests in order to test how the environmental

factors played an influence in the output quality of video being displayed by mobile devices. The

VQA models typically included some objective metric, such as PSNR, and did not take the

contextual influences into account [4].

 Battery Life

Second, we examined the battery life of mobile devices while viewing video. The

memory included on mobile devices used for storing video data is one part of the system that

consumes the most power [10]. Reducing the energy consumption of this power hungry

component can potentially lead to high gains in battery life. By extending the total amount of

energy available on a single charge of the battery included with the mobile device, user’s will be

able to continue to watch mobile videos or use their devices for other functionality for longer,

thus this is an important aspect of the research proposed in this design.

6

 Impact of Luminance on Quality of Experience

Three factors that affect the human perception of videos: display size and viewing

distance, user movements, and ambient luminance. While the QoE of the user can be noticeably

influenced by all these factors [4], this section focuses on the ambient luminance as one specific

type of environmental context. The main objective is to examine the luminance of the user’s

surroundings while a mobile device is in use to view mobile videos, and to use this knowledge to

reduce power consumption of the mobile device while maintaining good video quality. By using

multiple scenarios with varying levels of luminance as a test environment, it is possible to

introduce the design and system implementation of a smart video memory that has the capability

of dynamically changing video output quality using bit truncation.

There are a number of influential factors regarding luminance involved with mobile

devices. The luminance level of the mobile device’s display, the surrounding ambient luminance

of the environment, and the reflection off the screen will all have an impact on how the user’s

perceives video images on the device. Previous works, such as [18], define models that describe

how brightness corresponds to perception within the HVS. We can use these models to adapt the

quality of displayed videos on mobile devices with the use of ambient luminance levels to

optimize power efficiency.

 Video Format, Processing, and Conversion

Raw YUV 4:2:0 format video were used for all testing and verification of the system

design. In this format, the luminance or luma (Y) component data has a byte of data for each

pixel and the chrominance or chroma components have one byte per four pixels for each chroma

component (U and V) as can be seen in Figure 2.

7

Figure 2. YUV 4:2:0 frame components and corresponding byte stream2

For a better understanding of how the data is organized in the memory an example, full

color image, is displayed in Figure 3 with a visualization of how each component is stored

sequentially in memory. Similar to the byte stream shown in Figure 1, for any single YUV 4:2:0

frame, the luma bytes are first stored, then the two chroma components bytes are stored

contiguously afterwards in the memory. This separation of each component when stored in

memory is illustrated in Figure 3.

Chroma (U/Cb) Data
8 bits/4 pixels

Chroma (V/Cr) Data
8 bits/4 pixels

Luma (Y) Data
8 bits/pixel

Frame Data in Memory

Displayed Image

Figure 3. In-memory byte organization for a YUV 4:2:0 frame

2 Public domain image obtained from: https://en.wikipedia.org/wiki/File:Yuv420.svg

8

The proposed method is to truncate more of the LSBs when there is a higher level of

ambient luminance present within the mobile device user’s surroundings. The truncation of LSBs

causes less degradation in output video quality in comparison to truncating the MSBs. For the

system implementation bit masking was used in order to achieve a working truncation process.

This bit truncation process is discussed in detail, with example code, in section 2.3.2.

 Perception of the Output Video by the User

The HVS dynamically adjusts the amount of luminance it takes in based on a logarithmic

scale. The two photoreceptors that are responsible for this type of adaptation are called rods and

cones and are located within the retina of each eye. Rods sense environmental brightness and

respond more to dark and moderate light levels, calculated to be approximately between 10-6 and

10+2 cd/m2. Cones on the other hand sense color in the environment and respond to dim to bright

light levels, calculated to be approximately between 10-1 to 10+8 cd/m2. LCD devices, such as the

mobile devices in question, typically display videos in the luminance range of 10-2 to 10+2 cd/m2,

which is within the range of both retinal rods and cones [18, 19].

Environmental luminance directly influences the ability of the HVS to sense changes in

contrast. When high levels of illumination are present and glare is introduced into a scenario

where a user is viewing a LCD screen, the HVS loses contrast sensitivity as described in [4]. A

recent work [20] shows losses in contrast sensitivity of 7% and 15% by user’s viewing LCD

devices in overcast and bright luminance conditions, respectively. Therefore, under these

conditions, users may perceive unchanged video quality, even though the video has been

degraded through the bit truncation technique. This useful noise-tolerance ability of the human

eyes is useful when exploited to create a power-efficient mobile video storage implementation.

9

 Determining the Number of Truncated Bits

In order to determine an optimal number of bits to truncate in different levels of ambient

luminance, a Luminance Contrast model was developed based upon the RGB luminance. RGB

Luminance (LRGB) can be expressed as:

 LRGB = 0.3R + 0.59G + 0.11B (1)

The Luminance Contrast (Contrast) is then defined as:

 Contrast = DiffLuminance / AveLuminance
 (2)

The LRGB is the RGB luminance, DiffLuminance and AveLuminance are the luminance difference

and average luminance, respectively. The Akiyo and Foreman benchmarks taken from [21] were

used to calculate the luminance contrast. The results from these calculations are listed in Table 1.

Table 1. Calculated luminance contrast of benchmark videos

Benchmarks Akiyo Foreman

Contexts
Truncated

Bits
AveLuminance DiffLuminance Contrast AveLuminance DiffLuminance Contrast

Dark

0 90 1207849 13420 170 1428896 8405

3 87 1229762 14135 166 1432373 8628

4 82 1249489 15237 161 1418935 8813

5 73 1269937 17396 150 1462527 9750

Overcast

0 70 837859 11969 150 1003382 6689

3 67 861422 12857 146 1005861 6889

4 62 876261 14133 141 997266 7072

5 53 888169 16757 130 1027670 7905

Sunlight

0 60 239310 3988 140 286762 2048

3 57 243927 4279 136 288654 2122

4 52 247075 4751 131 284979 2175

5 43 251374 5845 120 292400 2436

The results displayed in Table 1 show that the average luminance decreases by 20 and 30

lux in the overcast and sunlight scenarios, respectively. The luminance contrast also decreases by

a large factor when larger levels of sunlight are introduced. The human eyes will notice less of

10

the video distortion in higher levels of luminance, but as more bits are truncated from the video

data, the more noticeable this contrast caused by distortion will be to the user.

From our analysis based on the RGB Luminance and Luminance Contrast models, it was

possible to determine the optimal number of bits to truncate. The number of bits to truncate for

each scenario are listed in Table 2 [22]. In order to verify our truncation process, we conducted a

subjective test for different number of truncated bits in three viewing contexts: dark, overcast,

and sunlight. 15 participants between the age of 18 and 30 with normal vision were asked to

watch videos from each context. Once the participant finished viewing a sample, they were asked

to respond whether they could tell if there was a quality difference between the samples shown.

If they responded that there was no noticeable difference between sample videos at different

qualities, the videos were considered to have achieved the same quality. Based on the user

feedback received, it was possible to verify that the number of bits to truncate in each context

scenario are indeed a good fit for good video output quality while also benefitting from power

savings based on the truncation of video data.

Table 2. Luminance scenario definitions

Scenario Dark Overcast Sunlight

Luminance (lux) 0-1000 1000-10000 10000+

Data Bits 00 01 10

Luma Truncation xxxxxxxx xxxxx000 xxxx0000

 System Design and Implementation

This section provides a detailed explanation of the hardware and software

implementation of the proposed smart mobile video storage system. This system consists of two

separate sub-systems. The first sub-system is for receiving the ambient luminance of the

surrounding environment and outputting context data bits to the second system. The second sub-

11

system then uses this information to truncate bits of data from each pixel to be displayed in order

to emulate the bit truncation process and then outputs the bit truncated frame to an LCD display.

 Embedded Hardware Setup

The hardware for the first sub-system of the design consists of an Adafruit TSL2561 lux

sensor breakout board that is connected to an Arduino Leonardo as input through the use of an

I2C communication protocol. The lux sensor uses an onboard ADC to send the analog data

digitally to the Arduino development board. The Arduino has two digital pins defined as output

that it feeds into the second sub-system to tell it which environmental scenario is present. The

corresponding data bits can be seen in Table 2.

The other sub-system is a Raspberry Pi 2 development board that handles the majority of

the computational processes. The two digital outputs of the Arduino board are mapped into two

input pins on the Raspberry Pi 2 in order to define how many bits to truncate based on present

luminance scenario. Both sub-systems and their interconnections can be seen in Figure 4.

Figure 4. Hardware connections between both sub-systems

12

 Embedded Software Utilization

The Arduino Leonardo embedded board reads the luminance value from the lux sensor,

calculates which luminance scenario it is based on the analog reading and sends the

corresponding data bits using two I/O pins connected to wires. These two wires are constantly

being updated with the high or low voltages that represent the two bits that are being transmitted

to the Raspberry Pi 2 board. A flowchart displaying this process can be found in Figure 5.

Video data is stored on a micro SD card that is plugged into the Raspberry Pi 2. For each

frame in the video data, in the YUV 4:2:0 format, the Raspberry Pi 2 receives the luminance

scenario, calculates the amount of bits to be truncated and truncates that amount of LSBs from

every pixel’s luma data in the frame. After this truncation process finishes, the frame is sent to

the display via the HDMI output on the Raspberry Pi 2. The Raspberry Pi 2 repeats this process

until there are no frames remaining in the video data. This process can be seen in Figure 5.

START

Read Ambient
Luminance

0 < Lux ≤ 1000?

1000 < Lux ≤
10000?

Lux > 10000?

Dark
Output Bit 1 = 0
Output Bit 2 = 0

Overcast
Output Bit 1 = 0
Output Bit 2 = 1

Sunlight
Output Bit 1 = 1
Output Bit 2 = 0

START

Parse user
arguments

Split video
into frames

Load next
frame into
memory

Read data
bits from
Arduino

Truncate luma
data based on
Arduino input

Display
processed frame

More frames
to process?

END

F

F

T

T

T

T

F

Arduino Leonardo Flowchart Raspberry Pi 2 Flowchart

Figure 5. Arduino Leonardo and Raspberry Pi 2 code flowcharts

13

 Design Results

The finished system is able to play full length raw YUV 4:2:0 formatted video at any

resolution, larger resolutions will not have as high of a frame rate since the bit truncation process

is completed using software. When this design is implemented using hardware it will be able to

achieve much faster frame rates for higher resolution videos. Sample output for zero (dark

scenario), three (overcast scenario), and four (sunlight scenario) truncated bit frames can be seen

in Figure 6.

Software Screenshot of
LCD Screen (Print Screen)

Real World Screen Image
(External Camera Image)

0

3

4

Image
Type

Bits
Truncated

Figure 6. Sample video output images from print screen and external camera

14

 Hardware Design and Simulation

In order to evaluate the power efficiency of the proposed system implementation for the

memory design, a memory chip was created that would follow the same procedure for truncating

bits to save power. This memory chip can be seen in Figure 7. The simulation results of the

45nm CMOS technology design showed significant power reduction, reaching at most 32.6%

power savings with negligible area overhead. The results from the hardware simulation can be

seen in Table 3 [22].

Figure 7. Physical memory chip image

Table 3. Memory power savings based on hardware simulation

Context Dark Overcast Sunlight

Luma Truncation xxxxxxxx xxxxx000 xxxx0000

Write Power 2.88E-08 2.00E-08 1.88E-08

Read Power 1.11E-06 8.36E-07 7.49E-07

Power Savings 0% 24.8% 32.6%

15

CHAPTER 3. DATA-DRIVEN LOW-COST ON-CHIP MEMORY WITH ADAPTIVE

POWER-QUALITY TRADE-OFF FOR MOBILE VIDEO STREAMING3

Video based applications can potentially drain the battery of a mobile device very quickly

due to the high energy constraints of video hardware. The video decoding hardware includes

frequent accesses to on-chip memory that can consume as much as 30% of the system power

consumption and can occupy 65% or more of the entire video decoder area [23, 24]. A low-cost

Data-Driven power efficient Adaptable SRAM Hardware (D-DASH) design with the capability

for dynamic power-quality tradeoff for mobile video applications is presented. The proposed

design is discovered through the use of advanced data-mining techniques that reveal useful data

relationships that will be incorporated into the finalized hardware design for maximal power

savings. The D-DASH design is broken down into three separate schemes, each giving its own

power-quality tradeoff. The simulated hardware design allows for up to 43.7% power savings

with a negligible area overhead of 0.06%. A detailed description of the data-mining techniques

and their relationship with the resulting hardware design are presented in this chapter.

 Mobile Video Data-Pattern Analysis

Mobile video application processes display the potential to relate application-level video

data to its hardware-level equivalent. Three common characteristics that could assist in useful

data relationships in the hardware-level design process are [25]: (1) inputs: the video data is

noisy and redundant; (2) outputs: the videos on mobile devices are generated for humans and

minor variations cannot be discerned by humans’ eyes; and (3) computational patterns: statistical

computations during the video decoding process potentially results in specific data patterns,

3 The material in this chapter was co-authored by Jonathon Edstrom and Dongliang Chen. Jonathon Edstrom was in

charge of all pattern discovery, data analysis, and video quality metric and simulation results. Dongliang Chen

provided the presented SRAM hardware design with power simulation results based on the discovered patterns.

16

which can contribute to low-power hardware design. Hardware designers have the issue of being

able to recognize these patterns due to the large volume of video data that is being processed by

the mobile system. In order to alleviate the boundary introduced by this large data obstacle,

association data-mining techniques are introduced in order to explore the characteristics of

storing the video data in memory.

 Data-Mining Assisted Video Analysis

In current devices, video frames are stored using the raw YUV format. This format

includes one luma (Y) component, which contains the brightness information and two chroma

(Cb and Cr) components, which contain the blue-difference and red-difference color information.

A typical YUV 4:2:0 format frame of video data with resolution 352×288 is displayed in Figure

8. Every pixel within the frame contains 8 bits of luma data and 8 bits of subsampled chroma

data. The data for this frame is stored in on-chip memory as binary bits and with access to these

binary values we can perform association data-mining in order to discover bit-level patterns

within the data.

4:2:0 YUV Format

16x16

Pixels

Y Cb Cr

Luma(Y) Data

8 bits/pixel

Chroma (Cb) Data

8 bits/4 pixels
Chroma (Cr) Data

8 bits/4 pixels

MSB LSB

Cb1 Cb2 Cb3 Cb4 Cb5 Cb6 Cb7 Cb8

MSB LSB

Cr1 Cr2 Cr3 Cr4 Cr5 Cr6 Cr7 Cr8

Displayed Frame

4:4:4 YUV Format

Luma(Y) Data

8 bits/pixel

Chroma (Cb) Data

8 bits/pixel

Chroma (Cr) Data

8 bits/pixel

4:2:0

Subsampling

Transaction 1

Ite m

1

Ite m

2

Ite m

3
...

Item X ∈ {0,1}

Dataset/

Database

...

@attr ibute Cb1 {0,1}

@attr ibute Cb2 {0,1}

@attr ibute Cr1 {0,1}

@attr ibute Cr2 {0,1}

@data

0,1,1,1,1,1,0,1,1,0,0,0,0,0,1,0

0,1,1,1,1,1,0,1,1,0,0,0,0,0,1,1

0,1,1,1,1,1,0,1,1,0,0,0,0,0,1,0

0,1,1,1,1,1,0,0,1,0,0,0,0,0,0,1

0,1,1,1,1,1,1,0,1,0,0,0,0,0,0,1...

Item
Definitions

Transact ion

Item

Dataset

...
...

Association Rule

Mining

Figure 8. Data-mining assisted video data analysis

17

Table 4. Discovered data-mining association rules

Association Rules Support (%) Confidence (%)

Cr1=0 Cr2=1 → Cr3=1 38.341 94.050

Cr1=0 Cr2=1 Cr3=1 → Cr4=1 29.120 75.950

Cr1=0 Cr2=1 Cr3=1 → Cr5=1 28.270 73.731

Cr1=0 Cr2=1 Cr3=1 → Cb2=0 28.132 73.373

Cr1=0 Cr2=1 Cr3=1 → Cb3=0 25.450 66.377

Cr1=1 Cr2=0 → Cr3=0 57.153 98.798

Cr1=1 Cr2=0 Cr3=0 → Cr4=0 54.707 95.720

Cr1=1 Cr2=0 Cr3=0 Cr4=0 → Cr5=0 42.593 77.857

Cr1=1 Cr2=0 Cr3=0 Cr4=0 Cr5=0 → Cr6=0 30.338 71.229

Cr1=1 Cr2=0 Cr3=0 Cr4=0 Cr5=0 → Cr7=0 25.485 59.833

Cr1=1 Cr2=0 Cr3=0 → Cb1=0 50.019 87.517

Cr1=1 Cr2=0 Cr3=0 Cb1=0 → Cb2=1 45.947 91.860

Cr1=1 Cr2=0 Cr3=0 Cb1=0 Cb2=1 → Cb3=1 44.241 96.286

Cr1=1 Cr2=0 Cr3=0 Cb1=0 Cb2=1 Cb3=1 → Cb4=1 33.909 76.646

Association rule mining, which was originally introduced in 1993, is used to discover

relationships that may not be immediately apparent between different variables in large datasets

or databases [26]. Datasets in terms of association rule mining are constructed of many

transactions with a constant number of items. Each item in a transaction can be a binary attribute,

0 or 1, that describes whether or not that particular item is present within a transaction or not. An

example of this organization of the dataset including the transactions and their respective items

can be seen in Figure 8. Once the data-mining algorithm has iterated through the data,

discovering frequent occurrences of items, a list of rules are finalized and output. Each

association rule that is output from this process is an implication of the form X → Y. X and Y

are both either individual items, or a set of disjoint items. All rules also have related statistics,

including, but not limited to, the confidence and support. These values are important in

informing the user of how useful a given rule is, and also helps to organize the rules based on

how often they occur in the data. The support value for an individual, or set of items, is the

18

proportion of all transactions in a given dataset that contain that specific individual, or set of

items. The confidence is the proportion of transactions that contain X which also contain Y, also

known as the conditional probability, P(X|Y).

Using 12 videos from [21] and 4 videos from [27], association data-mining is used for

analysis. The total size of the videos used in the test data set is 415.6 MB. The 12 videos from

[21] were merged into a single .yuv file that contained a total of 3470 frames and 352×288 video

resolution. Code was written to extract binary bit values for the luma and chroma data in the .yuv

file and format it into .arff format for data analysis. After the .arff file is created and populated,

Weka [28] was used in order to association rule mine the data using the apriori algorithm. Both

subsampled chroma (i.e. YUV 4:2:0) and non-subsampled chroma (i.e. YUV 4:4:4) were

investigated in order to see how much impact the compression has on the video format. The non-

subsampled chroma has eight bits of each chroma component (Cb and Cr), the subsampled

format is the same except that those bits are shared among 4 pixels, resulting in ¼ of the total

chroma bits.

The most interesting pattern that was discovered from the results of mining the video data

was the strong association between the MSB of the Cr chroma component to other bit values.

Figure 9 displays that if Cr1 (i.e. the Cr chroma component’s MSB) is equal to 1 (0), then the

remaining bits in that Cr byte have a larger probability to be equal to the inverted value of the

MSB, 0 (1). A similar pattern arises in the Cb bits, other than Cb1, most Cb bits have a higher

probability to be 0 (1) when Cr1 equals 0 (1). Table 5 displays the probabilities of all possible

chroma bit values based on the value of Cr1. Based on these results, a power-quality adaption

theme for a flexible D-DASH design is now implementable.

19

Cr1=0Cr1=1

Cr3=1Cr3=0

Cr1?

Cr2=0 Cr2=1

99.55%97.97%

94.05%98.80%
Cr4=1

Cr4=0

95.72%
Cr5=1

Cb2=0Cb3=0

Cr5=0

Cr7=0Cr6=0

77.86%

Cb1=0

Cb2=1

Cb3=1

Cb4=1

81.86%

96.29%

76.65%

Figure 9. Rules diagram for chroma bit probability based on value of Cr1

Table 5. Data patterns for D-DASH design

Values Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8

Cr1=0, CrX=1 99.9% 92.2% 89.7% 71.8% 71.4% 64.3% 56.3%

Cr1=1, CrX=0 99.2% 97.8% 83.3% 67.5% 59.8% 57.3% 53.2%

Cr1=0, CbX=0 60.5% 60.4% 64.0% 56.6% 52.8% 48.6% 50.5%

Cr1=1, CbX=1 86.6% 82.9% 55.3% 51.4% 54.8% 49.5% 50.4%

 Video Quality Metrics

PSNR is used widely [6, 9, 3] by researchers to evaluate video quality which is defined as

[29]:

 𝑃𝑆𝑁𝑅 = 10 log10 (
2552

𝑀𝑆𝐸
) (3)

20

The MSE in the PSNR equation is the mean squared error between the original video

(Org) and degraded video (Deg), and is expressed as:

 𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ [𝑂𝑟𝑔(𝑖, 𝑗) − 𝐷𝑒𝑔(𝑖, 𝑗)]2𝑛−1

𝑗=0
𝑚−1
𝑖=0 (4)

The PSNR metric is well known and has been widely used in the past, however, it has

been shown that it does not necessarily capture the true human perception of the video since it

only takes the amount of error into account, not necessarily the influence the errors have on the

image that is being displayed to the user [30]. Due to this fact, the SSIM metric was developed to

predict the perceived image quality. It combines separate calculations for luminance, contrast

and structural changes together, and is expressed as [30]:

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]𝛼 ∙ [𝑐(𝑥, 𝑦)]𝛽 ∙ [𝑠(𝑥, 𝑦)]𝛾 =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
 (5)

The luminance comparison function l(x,y), is a function of the mean intensities, μx and μy,

the contrast comparison function c(x,y), is a function of the standard deviations, σx and σy, and

the structural comparison function s(x,y), is a function of the correlation between x and y, σxy.

Setting α = β = γ = 1 in the original equation results in the second equation. C1 (C2) is a constant

that is included to avoid instabilities when the sum of the means (standard deviations) squared is

equal to values near zero.

In the analysis of videos when applying D-DASH methodologies, both PSNR and SSIM

are used to evaluate the output video quality. The reduction in quality can be calculated using

these metrics with the following equation:

 𝑃𝑆𝑁𝑅(𝑆𝑆𝐼𝑀) % 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = (1 − (
𝑂𝑢𝑡𝑝𝑢𝑡 𝑃𝑆𝑁𝑅 (𝑆𝑆𝐼𝑀)

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑃𝑆𝑁𝑅 (𝑆𝑆𝐼𝑀)
)) × 100% (6)

21

 Proposed D-DASH Design

Based on the data patterns discovered in the previous section, three separate design

schemes are presented (D-DASH-I to D-DASH-III). These schemes provide a system of run-

time dynamic, power-quality trade-off for mobile video streaming devices.

 D-DASH-I

This scheme provides a zero cost, power efficient storage that uses data aware, low power

readout buffer connections that are based on the data patterns obtained previously. The

connections for the readout buffers are displayed in Figure 10. In conventional SRAM, a readout

buffer consists of two NMOS transistors that are used to access the stored value by connecting to

the reversed storage node (QB), as shown in Figure 10 (a) [31].

BL BLB

Q=1 QB=0

WWL

RBL = 1

RWL

Readout
buffer

OFF

(a) Low-power type-1 SRAM bitcell to read 1

BLB BL

Q=0QB=1

WWL

RBL = 1

RWL

Readout
buffer

OFF

(b) Low-power type-0 SRAM bitcell to read 0

Cr[7:0] Cb[7:0] Cr[7:0] Cb[7:0]31 23 15 724 16 8 0

Pixel 1 Pixel 2

Type

1

Type

0

Type

0

Type

0

Type

0

Type

0

Type

0

Type

0

Type

0

Type

1

Type

1

Type

1

Type

1

Type

1

Type

1

Type

1

(c) A word in D-DASH-I

Figure 10. Data-aware D-DASH bit-cells types and organization in a word-line

22

During the memory read process, the RBL is first pre-charged to the supply voltage, Vdd,

before the RWL is asserted. If a ‘1’ is stored in the SRAM cell and the RWL is asserted, RBL

will remain at the voltage Vdd, as the bottom NMOS will be turned off and there will be no

switching activity in the RBL, enabling a low-power reading process. If a ‘0’ is stored in the

SRAM cell, the RBL will be discharged to GND, resulting in large power consumption. The

discharging activity during the readout process contributes significant power consumption in

mobile video memory [9, 3, 12]. Based on this, data aware, low power readout buffer

connections are proposed based on the previously discovered data patterns. The traditional

connection, as shown in Figure 10 (a), are referred to as type-1 bit-cells. Alternatively, a type-0

bit-cell is presented to achieve low-power reading ‘0’ process, by connecting readout buffers to

Q, as shown in Figure 10 (b). Note that, as compared to the conventional SRAM bit-cell (type-1),

the type-0 bit-cell does not cause any silicon area overhead.

The chroma data patterns for each pixel display over a 70% probability that Cr will be

100000002 and Cb data will be 011111112, where both values are in binary. Based on these

patterns, type-0 and type-1 bit-cells are applied to the memory design in order to store and load

‘0’ and ‘1’ values, respectively. Switching activity will be significantly reduced with this design

scheme, reducing the power consumption of the hardware without area overhead. Figure 10 (c)

displays the structure of a single word-line in the D-DASH-I scheme. An optimal combination of

type-0 and type-1 bit-cells are used in order to enable zero overhead, power efficient, mobile

video on-chip storage.

 D-DASH-II

Additional power savings are introduced to the D-DASH-I design scheme in D-DASH-II

by adding an additional control hardware to exploit the Cr and Cb binary patterns for further

23

power savings. The MSB of the Cr data has a strong association to the value of many of the

remaining bits as shown by the identified patterns. From this, a write circuit and a read circuit are

added to the SRAM, as can be seen in Figure 11, in order to maximize the read bit-line power

savings. In the write circuit, the MSB of the Cr data is used to determine whether to invert the

input data or not, and use a flag-bit scheme similar to [31] in order to indicate if the data is

flipped or not. A ‘0’ value indicates the data is inverted while a ‘1’ indicates it is not inverted.

The design in [31] uses an extra bit-cell to store the flip bit, resulting in a 7% area overhead

while D-DASH-II uses the LSB of the chroma data to store the flag bit. Table 6 shows that using

the Cr LSB induces the least degradation (0.044% PSNR reduction and 0.058% SSIM

reduction). With this design scheme, D-DASH-II enables more power savings as compared to D-

DASH-I with negligible area overhead (+0.06%).

Write

Circuit x 4

Data[31:0] Read

Circuit x 4

32 32 32

SRAM

Block 3

SRAM

Block 2

SRAM

Block 1

SRAM

Block 0

W
ri

te
 D

ec
o
d

er
W

ri
te

 D
ec

o
d

erR
ea

d
 D

ec
o
d

er

R
ea

d
 D

ec
o
d

er

Driver

Cr[7:0] Cb[7:0] Cr[7:0] Cb[7:0]31 23 15 724 16 8 0

..
.

Flag Bits

2
5
6
 w

o
rd

li
n

es

Switch

Cr[0] out

Cr[0]

Cr[1] out

Cr[1]

..
.Cr[2]

Cr[6]

..
. Cr[2] out

Cr[6] out

..
.

Cr[7]
Cr[7] out

Cb[0] out

Cb[0]

Cb[7] out
Cb[7]

..
.

Cb[1]

Cb[6]

..
.

Cb[1] out

Cb[6] out

..
.

Switch

Cr[7] out

Cr[7]

Cr[6] out

Cr[6]

..
.Cr[5]

Cr[1]

..
. Cr[5] out

Cr[1] out

..
.

Cr[0] Cr[0] out

Cb[7] out

Cb[7]

Cb[0] out

Cb[0] ..
.

Cb[6]

Cb[1]

..
.

Cb[6] out

Cb[1] out

..
.

Pixel 1 Pixel 2

Type

1

Type

0

Type

0

Type

0

Type

0

Type

0

Type

0

Type

0

Type

0

Type

1

Type

1

Type

1

Type

1

Type

1

Type

1

Type

1

S
W

W
E

R
E

W
E

_
o
u

t

R
E

_
o
u

t

Bits to be truncated

Bit

Truncation

Circuit

Figure 11. D-DASH with real-time adjustment between three schemes

24

 D-DASH-III

In order to meet the power efficiency requirements of low power video applications, a

third design scheme, D-DASH-III, is introduced. This scheme maximizes the power saving

capabilities of the SRAM design by adopting all parts of the previous two designs and then

adding bit-truncation to increase power savings by reducing bit switching. The bit truncation

technique has been widely used in video memory design [22]. In order to determine how many

bits should be dropped using the truncation technique we apply truncation at varying number of

truncated bits, those results are listed in Table 6.

Table 6. PSNR and SSIM Calculations

of drop bits PSNR SSIM
PSNR %

Reduction

SSIM %

Reduction

0 (Original) 36.868 0.934367 0.000% 0.000%

0 (Flag Bit) 36.852 0.933826 0.044% 0.058%

1 36.848 0.933213 0.054% 0.124%

3 36.641 0.929893 0.616% 0.479%

5 35.544 0.922561 3.592% 1.264%

7 32.593 0.910895 11.595% 2.512%

9 27.874 0.895294 24.395% 4.182%

11 21.506 0.862433 41.667% 7.699%

13 14.851 0.756258 59.718% 19.062%

15 10.782 0.623662 70.756% 33.253%

When the number of truncated bits becomes larger than 7, the PSNR and SSIM reduction

are significant (PSNR reduction ≥ 24.395% and SSIM reduction ≥ 2.512%), indicating large

video quality degradation. The allowed number of bits for bit truncation is therefore either 5 or 7.

In order to further evaluate the video quality the sign_irene video benchmark, containing blue

and red colors that would be directly influenced by Cr and Cb truncation [32], is analyzed using

25

both 5 and 7 truncated bits, as can be seen in Figure 12. This shows that the truncation of 5 LSB

bits (2 Cr LSBs and 3 Cb LSBs) is an optimized tradeoff between power savings and video

quality. Figure 11 shows the proposed control circuitry to enable the bit truncation technique.

The control bit SW is connected to the write enable (WE) and read enable (RE) of the word-line.

When the value of the control bit, SW, is ‘0’, all of the 32 bit-cells connected to the word-line

work as traditional bit-cells; when SW is ‘1’, the D-DASH-III design scheme is enabled and the

outputs (WE_out and RE_out) will disable the write enable and read enable of the truncated bit-

cells (the yellow bit-cells shown in Figure 11). This process will enable the bit truncation

technique in order to achieve additional power savings beyond the savings from D-DASH-I and

D-DASH-II.

PSNR: 38.980559

SSIM: 0.942476

Original

PSNR: 37.047126

SSIM: 0.927677

5 Truncated Bits

PSNR: 33.689856

SSIM: 0.912546

7 Truncated Bits

Figure 12. Output of sign_irene benchmark based on the bit truncation technique

 Simulation Results

In order to evaluate the effectiveness of the proposed technique, a 32kb SRAM is

implemented using a high-performance 45-nm FreePDK CMOS process to meet the multi-

megahertz performance requirement of today’s mobile video decoders.

26

 Performance

The performance of the proposed D-DASH memory design is first analyzed for read and

write delay times. Both read and write delays are found to be approximately 0.15 ns, which

allows for successfully implementation of this memory in high-quality video format devices such

as applications that can deliver 8K Ultra HD video [33].

 Layout

The area overhead is analyzed for all three D-DASH schemes. The layout for D-DASH

can be seen in Figure 13. D-DASH-I has no additional area overhead; D-DASH-II has a

negligible area overhead of 0.64%; D-DASH-III, after careful layout design, with integrated

control circuits and read decoder has equal area overhead to D-DASH-II.

Write Circuit

D-DASH-II

Read Decoder &

 D-DASH-III circuit

Write

Decoder

SRAM Block 1

(32×256)

SRAM Block 3

(32×256)

SRAM Block 4

(32×256)

SRAM Block 2

(32×256)

Read Circuit

D-DASH-II

475.66 µm

1
2
5
.5

6
 µ

m

(3.0325 x 125.56)

Figure 13. Layout of D-DASH memory design

 Output Quality

Multiple videos are used to verify the output quality based on the proposed SRAM

schemes. Figure 14 shows three specific video benchmarks with their calculated PSNR and

SSIM metrics. D-DASH-I and D-DASH-II can deliver good video output quality and D-DASH-

III results in negligible video degradation to achieve optimal power efficiency.

27

D-DASH Akiyo Coastguard Foreman

Original /

D-DASH-I

PSNR: 41.250858

SSIM: 0.961865

PSNR: 35.638277

SSIM: 0.919692

PSNR: 37.355170

SSIM: 0.923900

D-DASH-II

PSNR: 41.194586

SSIM: 0.961432

PSNR: 35.638277

SSIM: 0.919196

PSNR: 37.335870

SSIM: 0.923268

D-DASH-III

PSNR: 37.971173

SSIM: 0.950497

PSNR: 34.781284

SSIM: 0.914910

PSNR: 35.829443

SSIM: 0.913802

Figure 14. D-DASH video output

 Power Savings

To evaluate the power efficiency of D-DASH, a model to determine the read bitline

(RBL) power consumption of mobile video memory is defined as:

 𝑃𝑟 = ∑ ∑ [𝐹𝑘(𝑖) ∙ 𝑃𝑟𝑘𝑡(𝑖) ∙ 𝑍(𝑘)]𝑖=0,1
16
𝑘=0

 (7)

28

Pr is the power consumption of the read operation; k is the bit number; t is the SRAM

type; i is the value stored in SRAM; F(i) indicates the probabilities of a bit to be 0 or 1, which is

shown in Table 7; Z(i) indicates if the bit will be truncated (if truncated, Z(i) will be 0, if not

truncated, Z(i) will be 1).

Table 7. Probability of each bit being 0 or 1

Bit-cell

type
Bit

D-DASH-I D-DASH-II

0 1 0 1

1 Cr1 0.2352 0.7648 0 1

0 Cr2 0.7588 0.2412 0.9940 0.0060

0 Cr3 0.7663 0.2337 0.9649 0.0351

0 Cr4 0.6615 0.3385 0.8482 0.1518

0 Cr5 0.5826 0.4174 0.6853 0.3147

0 Cr6 0.5247 0.4753 0.6254 0.3746

0 Cr7 0.5221 0.4779 0.5892 0.4108

0 Cr8 0.5097 0.4903 0.5097 0.4903

0 Cb1 0.7493 0.2507 0.8331 0.1669

1 Cb2 0.2456 0.7544 0.1958 0.8042

1 Cb3 0.2732 0.7268 0.2240 0.7760

1 Cb4 0.4923 0.5077 0.4265 0.5735

1 Cb5 0.5046 0.4954 0.4735 0.5265

1 Cb6 0.4702 0.5298 0.4568 0.5432

1 Cb7 0.5011 0.4989 0.5069 0.4931

1 Cb8 0.4986 0.5014 0.4956 0.5044

Table 8 displays the read power consumption for the two types of D-DASH bit-cells. The

probability for each bit being either ‘0’ or ‘1’ is also extracted from the 12 benchmark videos and

the results are listed in Table 7. The bits marked in grey are the bits that are truncated in D-

DASH-III.

29

Table 8. RBL power consumption for different types of SRAM

SRAM type Read 1 Read 0

Power of

Type-1
3.22e-8 5.80e-8

Power of

Type-0
5.88e-8 3.13e-8

Table 9 concludes the power savings of the proposed technique versus the traditional

SRAM design. D-DASH enables power savings from 7.82% (D-DASH-I) to 43.07% (D-DASH-

III).

Table 9. Power savings of the different D-DASH schemes

SRAM Designs Power (W) Power saving

Conventional SRAM 7.29E-07 -

D-DASH-I 6.72E-07 7.82%

D-DASH-II 6.33E-07 13.17%

D-DASH-III 4.15E-07 43.07%

30

CHAPTER 4. DATA-PATTERN ENABLED SELF-RECOVERY MULTIMEDIA

STORAGE SYSTEM FOR NEAR-THRESHOLD COMPUTING4

In mobile video devices, intensive computations with frequent accesses to embedded

memory consume large amounts of power and limit the battery life of such devices. In previous

works, low-voltage memory designs have allowed for power consumption reduction, but at the

cost of area overhead and complexity. This work describes a low-cost self-recovery video

storage system created by discovering meaningful data patterns within the mobile video data.

Data mining techniques allow for the discovery of both vertical and horizontal patterns hidden

within the data. Based on the optimal patterns discovered using this technique, we present a

novel DPSR SRAM design that achieves efficient near-threshold voltage computing while

delivering good output video quality. Using advanced data mining techniques, we investigate the

use of meaningful data patterns to enable self-recovery of the memory design. A 45nm 32kb

SRAM is designed that delivers good video quality at near-threshold voltage (0.5 V) with

negligible area overhead (3.97%).

 Memory Failure Analsysis at Near-Threshold Voltage

Previous research has shown maximum computing efficiency is obtainable when a circuit

is operating at near-threshold voltage [15]. However, at our target near-threshold voltage of

0.5V, SRAM failures become more severe due to the increased process variation. In particular,

RDF effects lead to threshold voltage variation and SRAM cell failures [34]. Current

manufacturing technologies describe the failure probability of a single SRAM cell to be between

the range of 10-3 and 10-2, depending on the area of the bit-cell in question [15, 35]. The

4 The material in this chapter was co-authored by Jonathon Edstrom and Dongliang Chen. Jonathon Edstrom was in

charge of all pattern discovery, data analysis, and video quality metric and simulation results. Dongliang Chen

provided the presented SRAM hardware design with power simulation results based on the discovered patterns.

31

minimum sized SRAM has a maximum failure rate of 10-2 and bit-cells larger than the minimum

sized version have lower failure rates. 58% area overhead over the minimized sized bit-cell will

reduce the failure rate from 10-2 to 10-3 [35]. In the analysis used for this work, we consider both

the minimum-sized SRAM with failure rate 10-2 and the upsized SRAM with failure rate 10-3.

Further optimization of the failure rate is possible using the priority-based sizing technique [36].

In order to get a better understanding of SRAM failure characteristics, we created error

maps for a 256-word × 64-bit SRAM at both 10-2 and 10-3 failure rates. We assume that all

memory faults have equal probability to occur in any given bit-cell position by using a uniform

distribution when injecting faults to the memory error maps. Figure 15 displays the resulting

error maps. Using 109 trials, we also examine the probability that multiple faults occur within the

same 32-bit word-line and the results are listed in Table 10. Based on these results it is apparent

that there are a low number of faulty bits in each word-line. Therefore, if a memory fault occurs

in a given word-line the SRAM may use other bits in the same word to perform self-recovery if

meaningful bit-level data-patterns exist.

(a) (b)

Figure 15. Error maps in the SRAM array at 0.5V

(a) Failure rate: 10-3 (0.001) (b) Failure rate: 10-2 (0.01)

32

Table 10. Fault probability in a 32-bit SRAM word

Number of faults

per wordline

SRAM failure rate:

10-3 (0.001)

SRAM failure rate:

10-2 (0.01)

0 96.8523477% 72.7279953%

1 3.0992274% 23.2812509%

2 0.0479198% 3.6012385%

3 0.0005023% 0.3611914%

4 0.0000028% 0.0267011%

5 0% 0.0015432%

6 0% 0.0000756%

7 0% 0.000004%

 Data Pattern Investigation for Self-Recovery

This section presents the methodology to discover data-patterns hidden within video data

to enable reliable self-recovery from faults. Specifically, we propose a new two-dimensional data

pattern approach to explore both horizontal and vertical data characteristics in order to find the

optimal data patterns for applying self-correction techniques.

 Rule Mining Enabled Horizontal Association

 The typical format for storing and processing mobile video is the YUV format. The

YUV format includes one luma (Y) component, which contains the brightness information of the

image and two chroma components, which contain the blue-difference (Cb), and red-difference

(Cr) color information. Figure 16 displays a typical frame of video data that could be stored in an

embedded memory using YUV 4:2:0, 352×288 resolution video as an example. As depicted,

each pixel has 8-bits of luma data and 8-bits of subsampled chroma data. Since video data I

stored in on-chip memory as binary bits, we utilize an association data mining technique to

identify horizontal bit-level data patterns.

33

4:2:0 YUV Video Frame

16x16

Pixels

Y Cb Cr

Luma(Y) Data

8 bits/pixel

Chroma (Cb) Data

8 bits/4 pixels
Chroma (Cr) Data

8 bits/4 pixels

MSB LSB

Cb1 Cb2 Cb3 Cb4 Cb5 Cb6 Cb7 Cb8

MSB LSB

Cr1 Cr2 Cr3 Cr4 Cr5 Cr6 Cr7 Cr8

4:2:0

Subsampling
MSB LSB

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

2D Data-Pattern

MSB LSB

Cb1 Cb2 Cb3 Cb4 Cb5 Cb6 Cb7 Cb8

MSB LSB

Cb1 Cb2 Cb3 Cb4 Cb5 Cb6 Cb7 Cb8

Horizontal Data Pattern

Vertical Data Pattern:

Traditional Correlation

Association Rule Mining

Enabled Horizontal

Data Pattern

Transaction 1

Ite m

1

Ite m

2

Ite m

3
...

Item X ∈ {0,1}

Dataset/

Database

...

Data Set for Data-Pattern Analysis

number of bits (number of frames)

(http://trace.eas.asu.edu/yuv/)

Akiyo 364,953,600 (300)

Coastguard 364,953,600 (300)

Container 364,953,600 (300)

Flower 304,128,000 (250)

Foreman 304,128,000 (250)

Hall 304,128,000 (250)

Mobile 304,128,000 (250)

Mother-
Daughter

304,128,000 (250)

News 304,128,000 (250)

Silent 304,128,000 (250)

Tempete 316,293,120 (260)

Waterfall 316,293,120 (260)

Total
4,221,296,640 bits

 (3470 frames)

Figure 16. 2D data-pattern enabled data self-correction

To enable association data mining for pattern discovery, we use 12 different video

benchmarks in order to build a dataset [21]. The total video data size is about 528 MBs based on

3470 YUV frames. Figure 16 shows the breakdown of each video size in bits. We define each bit

of video data as an individual item in our data-mining technique and we used Weka [28] to

perform the well-known association rule-mining algorithm called Apriori on our constructed

large dataset. Table 11 lists the horizontal data patterns we discovered for the chroma data in our

video dataset.

Table 11. Discovered horizontal data-pattern association rules

Association Rules Confidence Support Confidence × Support

Cb2=0 → Cb1=1 0.947547 0.232298 0.220113273

Cb2=1 → Cb1=0 0.975574 0.736405 0.718417571

Cb1=0 → Cb2=1 0.982838 0.736405 0.723766817

Cb1=1 → Cb2=0 0.926464 0.232298 0.215215734

Cr2=1 → Cr1=0 0.975149 0.235168 0.22932384

Cr2=0 → Cr1=1 0.999963 0.758811 0.758782924

Cr1=1 → Cr2=0 0.992164 0.758811 0.752864957

Cr1=0 → Cr2=1 0.999881 0.235168 0.235140015

Cr1=1 → Cr3=0 0.978025 0.747997 0.731559766

Cr1=0 → Cr3=1 0.922269 0.216914 0.200053058

34

 Rule Mining Enabled Vertical Correlation

Many researchers have studied vertical data correlation characteristics of multimedia

applications, such as video, in the past [10, 37]. These works indicate the MSBs of pixel data

have strong correlation with the neighboring pixels and that the switching probability is very

low. As listed in Table 12, the vertical correlation probability of the MSB in neighboring pixels

is over 93%, while there is a reduction to 53% for the LSB.

Table 12. Vertical correlation probabilities

Cb Bit: 1 (MSB) 93.786775% Cr Bit: 1 (MSB) 93.775505%

Cb Bit: 2 92.865158% Cr Bit: 2 93.584600%

Cb Bit: 3 90.774607% Cr Bit: 3 92.335457%

Cb Bit: 4 85.450795% Cr Bit: 4 88.349737%

Cb Bit: 5 77.947842% Cr Bit: 5 81.559365%

Cb Bit: 6 69.304415% Cr Bit: 6 73.180250%

Cb Bit: 7 59.986183% Cr Bit: 7 63.496048%

Cb Bit: 8 (LSB) 53.245386% Cr Bit: 8 (LSB) 55.157592%

 Optimal Data Patterns for Self-Recovery

In order to select an optimal data pattern from the discovered horizontal association data

patterns and vertical correlation probabilities, we define the Weighted Confidence, a metric

based on the support and confidence values of a particular rule as follows:

 Weighted Confidence = Confidence(Rule)×Support(Rule)+Confidence(Complement Rule)×Support(Complement Rule)
 (8)

For example, the Weighted Confidence of the association rule 𝐶𝑟1̅̅ ̅̅ ̅ → 𝐶𝑟2 would be:

 Weighted Confidence(𝐶𝑟1̅̅ ̅̅ ̅ → 𝐶𝑟2) = Confidence(𝐶𝑟1 = 0 → 𝐶𝑟2 = 1) × Support(𝐶𝑟1 = 0 → 𝐶𝑟2 = 1) +

 Confidence(𝐶𝑟1 = 1 → 𝐶𝑟2 = 0) × Support(𝐶𝑟1 = 1 → 𝐶𝑟2 = 0)

 = 0.999881 × 0.235168 + 0.992164 × 0.758811 = 0.988004972 (9)

35

We then use this value as the metric for the horizontal data patterns and compare to the

sum of the vertical correlation probabilities for ‘0’ and ‘1’ non-switching, which we label as the

correlation value as follows:

 Correlation = Confidence(Bitprevious = 0 → Bitcurrent = 0) + Confidence(Bitprevious = 1 → Bitcurrent = 1)
 (10)

Bitprevious and Bitcurrent represent the video data bits in the same position of two

neighboring pixels. As an example, the correlation of Cr2 would be calculated as follows:

 Correlation(Cr2) = Confidence(Cr2previous = 0 → Cr2current = 0) + Confidence(Cr2previous = 1 → Cr2current = 1)

 = 0.20908658 + 0.72675942 = 0.935846 (11)

Based on the weighted confidence and correlation calculations we obtain the optimal bit-

level data patterns with high prediction accuracy to enable self-recovery, as listed in Table 13.

Table 13. Optimal data patterns for enabling self-recovery

Cb bits
Optimal Data

Patterns

Correct

Prediction (%)
Cr bits

Optimal Data

Patterns

Correct

Prediction (%)

Cb1
Association

(𝐶𝑏2̅̅ ̅̅ ̅ → 𝐶𝑏1)
93.853084 Cr1

Association

(𝐶𝑟2̅̅ ̅̅ ̅ → 𝐶𝑟1)
98.810676

Cb2
Association

(𝐶𝑏1̅̅ ̅̅ ̅ → 𝐶𝑏2)
83.898255 Cr2

Association

(𝐶𝑟1̅̅ ̅̅ ̅ → 𝐶𝑟2)
98.800497

Cb3
Correlation

(𝐶𝑏3𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)
90.774607 Cr3

Association

(𝐶𝑏1̅̅ ̅̅ ̅ → 𝐶𝑟3)
93.161282

Cb4
Correlation

(𝐶𝑏4𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)
85.450795 Cr4

Correlation

(𝐶𝑟4𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)
88.349737

Cb5
Correlation

(𝐶𝑏5𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)
77.947842 Cr5

Correlation

(𝐶𝑟5𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)
81.559365

Cb6
Correlation

(𝐶𝑏6𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)
69.304415 Cr6

Correlation

(𝐶𝑟6𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)
73.180250

Cb7
Correlation

(𝐶𝑏7𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)
59.986183 Cr7

Correlation

(𝐶𝑟7𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)
63.496048

Cb8
Correlation

(𝐶𝑏8𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)
53.245386 Cr8

Correlation

(𝐶𝑟8𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠)
55.157592

36

Our previous calculations for horizontal weighted confidence and vertical correlation is

based on the chroma data (Cr and Cb) in the video dataset but could be extended to the luma (Y)

data. Our analysis shows that the luma bits have a more random switching trend and has less

association with the other bits in the same word-line and the optimal data patterns are all based

on the vertical correlation.

 Recovery Failure Caused by Double Faults in Data Patterns

If two faults occur simultaneously in the same word-line and both are associated with the

same data pattern it may cause recovery failure. We consider this and calculate the recovery

failure rate for both horizontal associations and vertical correlations, which are listed in Table 14.

The results show that DPSR has good reliability in these edge cases with extremely low self-

recovery failure (less than 0.2%).

Table 14. DPSR recovery failure rate

Double Fault Type SRAM Failure Rate: 10-3 SRAM Failure Rate: 10-2

Correlation Fault 0.0010899% 0.1077362%

Association Fault 0.0005957% 0.0587964%

DPSR Failure 0.0016856% 0.1665326%

 DPSR Hardware Implementation

This section presents a simple circuit-level DPSR scheme with low implementation

overhead. Figure 17 shows the array architecture of the proposed DPSR, where the total array

size is 32kb and there are four blocks with 256 words × 32 bits. Applying a hierarchical readout

bit-line scheme (local RBL and global RBL) reduces the access time. The self-recovery logic of

DPSR can implemented by simply connecting MUXs to RBLs of the conventional SRAM

design. As shown in Figure 17, each global bit-line (gbl) is connected to a MUX, which is

37

controlled by the received fault positions. If a fault is present, the optimal data pattern enables

self-recovery.

Sub_array 2

(32x32)

SRAM

Block 3

(256*32)

W
ri

te
 D

ec
o

d
er

W
ri

te
 D

ec
o
d

erR
ea

d
 D

ec
o
d

e
r

R
ea

d
 D

ec
o
d

e
r

Self-Recovery MUX & Readout

...

2
5
6
 w

o
rd

li
n

es

SRAM Block 4

SRAM

Block 4

(256*32)

SRAM

Block 1
(256*32)

SRAM

Block 2

(256*32)

Sub_array 1

(32x32)

Sub_array 8

(32x32)

. . .
w

b
l[

3
1

:0
]

g
b

lx
3

1

PRE PRE

32

32

lbl1[31:0]

PRE

32

g
b

lx
3

0

PRE

gblx[31:0] . . .

g
b

lx
0

PRE

memory fault

position
32

32
gbl[31:0]

w
b

lb
[3

1
:0

]

lbl2[31:0]

32

Cr Cb31 23 15 724 16 8 0

Previous pixel Current pixel

MSB LSB

Cb1 Cb2 Cb3 Cb4 Cb5 Cb6 Cb7 Cb8

MSB LSB

Cr1 Cr2 Cr3 Cr4 Cr5 Cr6 Cr7 Cr8

S31 S30

gb
lx

3
1

gb
lx

3
0

. . .

gb
lx

0

gb
lx

1
6

gb
l3

1

gb
l3

0

gb
l0

S0
Cr1 Cr2 Cb8

Self-Recovery MUX

Cr Cb

Figure 17. Proposed DPSR hardware design

Similar to other existing fault position aware mitigation techniques, DPSR receives pre-

determined locations of the faulty bits, usually executed either during post-fabrication testing or

during POST [15, 38, 39]. These processes can track the temporal degradation caused by

memory failures, such as the aging effect.

There is a significant reduction in implementation complexity in this DPSR design as

compared to existing techniques. For example, the shifting scheme presented in [15] needs to

calculate the shift values based on the received fault positions and then performs shifting to store

38

LSBs in the identified faulty bit-cells. The evaluation that follows displays that DPSR also

achieves a smaller area overhead, while still delivering good output video quality at near

threshold voltage.

 Evaluation Methodology and Results

To evaluate how effective our proposed technique is, we implement a 32kb SRAM using

a high-performance 45-nm FreePDK CMOS process in order to meet the multi-megahertz

performance requirement of today’s mobile video decoders.

 Performance

Due to the added MUXs, the read access time of DPSR increases from 0.27 ns to 0.31 ns,

which is still capable of delivering high-quality video to application formats such as 8K Ultra

HD [40].

 Layout

Embedded SRAMs usually occupy a large portion of the area in a video chip, and

therefore the area cost of embedded SRAM is an important design concern. Figure 18 shows the

layout of the DPSR hardware design. The added self-recovery logic MUXs occupy an area of

18.79 µm × 43.47 µm, resulting in 3.97% area overhead. The self-recovery logic is added to

RBLs and increasing the number of words in the memory is beneficial in reducing the area

overhead.

Write Decoder

SRAM Block 1

(32×256)

SRAM Block 3

(32×256)

SRAM Block 4

(32×256)

SRAM Block 2

(32×256)

MUX

(18.79×43.57µm)

482.85 µm

1
2

5
.5

6
 µ

m

Read Decoder

Figure 18. Proposed DPSR layout

39

 Video Output Quality

For verification, we use a separate dataset than before, including three videos from [21]

and five videos from [27]. We use the well-known PSNR [10] metric to evaluate the video

quality. Researchers have shown that the PSNR with 30 dB or higher for a video is considered

acceptable [15]. Table 15 compares the PSNR values using different techniques for failure rates

of 10-2 and 10-3. This comparison shows that our DPSR design has good recovery precision and

can deliver good video quality with PSNR over 35 dB, even with the minimum sized SRAM.

Figure 19 shows four of the videos from our verification dataset with failure rate 10-2. As shown

by these video output frames, DPSR achieves good video output quality at near-threshold

voltage.

Table 15. PSNR video quality comparison

Videos Original

decoded

video

Conventional:

10-3

DPSR:

10-3

Conventional:

10-2

DPSR:

10-2

Ref. [15]:

10-3

Ref. [15]:

10-2

akiyo 41.255457 37.135575 41.073712 29.297978 38.342717 41.253541 41.233291

bus 35.718543 34.120347 35.703515 28.636326 35.663232 35.707868 35.702169

city 36.80394 34.848668 36.798971 28.830418 36.766432 36.803067 36.79606

coastguard 35.669704 34.094057 35.667145 28.62693 35.656755 35.669025 35.663243

crew 37.145444 35.064527 37.117851 28.883566 36.914495 37.144506 37.136948

football 36.50373 34.655993 36.462596 28.778963 36.290119 36.502938 36.496437

foreman 37.214678 35.10653 37.208593 28.89477 37.171422 37.213679 37.205619

sign_irene 38.980559 36.109661 38.86677 29.114405 37.530671 38.979026 38.966286

40

Videos Original Video Conventional: 10-2 DPSR: 10-2 Shift [15]: 10-2

city

PSNR: 36.803940

PSNR: 28.830418

PSNR: 36.766432

PSNR: 36.796060

crew

PSNR: 37.145444

PSNR: 28.883566

PSNR: 36.914495

PSNR: 37.136948

football

PSNR: 36.503730

PSNR: 28.778963

PSNR: 36.290119

PSNR: 36.496437

Figure 19. Video output comparison of the different techniques

41

 CHAPTER 5. DISCUSSION AND SUMMARY

This chapter gives a brief comparison of our memory designs based on power efficiency,

video output quality, and silicon area overhead and summarizes our developed techniques.

 Comparison of D-DASH to Prior Works

Table 16 compares our D-DASH [13] design schemes against state of the art techniques

from recent works [3, 9, 10, 12]. D-DASH has the lowest implementation cost at only 0.06%

silicon overhead and includes dynamic power-quality tradeoff. D-DASH-I and D-DASH-II

exhibit the best video quality, except for [12], which is realized with large area overhead (~14%).

D-DASH-III demonstrates the highest power efficiency, other than [10], which requires bit-cell

array modification, resulting in as high as 52% area overhead.

Table 16. D-DASH comparison with prior works on low power SRAM

TVLSI’08

[12]

TCASVT’11

[9]

TCASII’12

[10]

JSCC’15

[3]

D-DASH [13]

D-DASH-

I
D-DASH-II D-DASH-III

video specific

characteristics

correlation

of MSB

contribution

of MSB and

LSB

different

contribution of

MSB and LSB

contribution

of MSB and

LSB

data-mining assisted video data patterns

exploration

dynamic

adaption
No No No Yes Yes

low-power

technique

data

filpping

6T+8T

bitcells

8T+10T

bitcells
ECC

data -

aware

bitline

connection

data- aware

bitline

connection and

data flipping

data-aware bitline

connection, data

flipping and bit

truncation

bitcell array

modification
Yes Yes

additional

word line
No No No No

additional

hardware

needed

majority

logic and

data

flipping

block

single-ended

6T,

peripheral

circuitries

No

ECC encoder

and decoder,

write assisted

circuit

No

control circuit

consists simple

gates

control circuit

consists simple gates

power penalty

for extra bits
Yes No No No No No No

readout power -14% -32% -95% -28% -7.82% -13.17% -43.07%

video quality good acceptable acceptable acceptable good good acceptable

area +14% +11.64% +52% +1.5% 0% +0.06% +0.06%

technology 90nm 90nm 45nm 28nm 45nm 45nm 45nm

42

 Comparison of DPSR to Prior Works

Table 17 displays a comparison of the performance of our DPSR [16] memory design

against other recent state of the art techniques. Using data-pattern enabled self-recovery, DPSR

has the lowest implementation cost (3.97%) and has reliable operation at near-threshold voltage,

allowing for maximum energy efficiency. DPSR also delivers the best video quality output,

except for [14], which is realized with large area overhead (~14%).

 Summary and Future Work

Video is everywhere today. However, due to the large data size and intensive

computation, video applications require frequent memory access and consume a large amount of

power, limiting battery life and frustrating mobile users. In this thesis, we have introduced data-

awareness and viewer-awareness to achieve better-informed and more efficient intelligent video

memory design. Both D-DASH and DPSR memory design schemes, with an overview of their

Table 17. DPSR comparison with prior works on low power SRAM

 TCASI’12 [11] DAC’15 [14] TC’16 [15] DPSR [16]

fault-position

awareness
No Yes Yes Yes

Low-power

techniques
bit-cell Sizing data-shifting data-squeezing

data-pattern

enabled self-

recovery

bit-cell modified Yes No No No

near-threshold

operation

No

(0.9V)

Yes

(-)

Yes

(0.5 V)

Yes

(0.5V)

additional logic

needed
No LUTs and shifter

Rearrangement

logic and tag array,

comparator, Mux
MUX

performance

overhead
- -

extra clock (for

decompression)
0.04 ns

video quality acceptable good - good

area overhead 11-65% 14% 6.3% 3.97%

43

makeup, are compared against recent works by other researchers working in the area of low

power memory design techniques. We plan to extend the proposed intelligent storage system to

other data-intensive applications such as the synaptic storage used in online learning systems.

44

REFERENCES

[1] E. Terzioglu, S. S. Yoon, C. Jung, R. Chaba, V. Boynapalli, M. Abu-Rahma, J. Wang, G.

Nallapati, A. Thean, C. Chidambaram, M. Han, G. Yeap and M. Sani, "Low Power

Embedded Memory Design - Process to System Level Considerations," in IEEE

International Conference on IC Design & Technology (ICICDT), Kaohsiung, May 2011.

[2] A. Pathak, D. Sachan, H. Peta and M. Goswami, "A Modified SRAM Based Low Power

Memory Design," in 29th International Conference on VLSI Design and 15th International

Conference on Embedded Systems (VLSID), Kolkata, Jan. 2016.

[3] F. Frustaci, M. Khayatzadeh, D. Blaauw, D. Sylvester and M. Alioto, "SRAM for Error-

Tolerant Applications With Dynamic Energy-Quality Management in 28 nm CMOS,"

IEEE Journal of Solid-State Circuits, vol. 50, no. 5, pp. 1310-1323, May 2015.

[4] J. Xue and C.-W. Chen, "A Study on Perception of Mobile Video with Surrounding

Contextual Influences," in Proceedings of the 4th International Workshop on Quality of

Multimedia Experience (QoMEX), Melbourne, Austrailia, Jul. 2012.

[5] J. Xue and C.-W. Chen, "Mobile JND: Environmental adapted perceptual model and

mobile video quality enhancement," in MMSys '12 Proceedings of the 3rd Multimedia

Systems Conference, Chapel Hill, Feb. 2012.

[6] J. Xue and C.-W. Chen, "Mobile Video Perception: New Insights and Adaptation

Strategies," IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 3, pp. 390-

401, Jun. 2014.

[7] J. Xue and C.-W. Chen, "Towards Viewing Quality Optimized Video Adaptation," in

International Conference on Multimedia and Expo (ICME), Barcelona, Jul. 2011.

[8] J. Edstrom, D. Chen, J. Wang, H. Gu, E. A. Vazquez, M. E. McCourt and N. Gong,

"Luminance-Adaptive Smart Video Storage System," in 2016 IEEE International

Symposium on Circuits and Systems (ISCAS), Montreal, 2016.

[9] I. J. Chang, D. Mohapatra and K. Roy, "A Priority-Based 6T/8T Hybrid SRAM

Architecture for Aggressive Voltage Scaling in Video Applications," IEEE Transactions on

Circuits and Systems for Video Technology, vol. 21, no. 2, pp. 101-112, Feb. 2011.

[10] N. Gong, S. Jiang, A. Challapalli, S. Fernandes and R. Sridhar, "Ultra-Low Voltage Split-

Data-Aware Embedded SRAM for Mobile Video Applications," IEEE Transactions on

Circuits and Systems II, vol. 59, no. 12, pp. 883-887, Dec. 2012.

45

[11] J. Kwon, I. J. Chang, I. Lee, H. Park and J. Park, "Heterogeneous SRAM Cell Sizing for

Low-Power H.264 Applications," IEEE Transactions on Circuits and Systems I, vol. 59,

no. 10, pp. 2275-2284, Oct. 2012.

[12] H. Fujiwara, K. Nii, J. Miyakoshi, Y. Murachi, Y. Morita, H. Kawaguchi and M.

Yoshimoto, "A Two-Port SRAM for Real-Time Video Processor Saving 53% of Bitline

Power with Majority Logic and Data-Bit Reordering," in Proceedings of the 2006

International Symposium on Low Power Electronics and Design, Tegernsee, Oct. 2006.

[13] D. Chen, J. Edstrom, X. Chen, J. Wei, J. Wang and N. Gong, "Data-Driven Low-Cost On-

Chip Memory with Adaptive Power-Quality Trade-off for Mobile Video Streaming," in

Proceedings of the 2016 International Symposium on Low Power Electronics and Design

(ISLPED '16), San Francisco, 2016.

[14] S. Ganapathy, G. Karakonstantis, A. Teman and A. Burg, "Mitigating the Impact of Faults

in Unreliable Memories for Error-Resilient Applications," in Proceedings of the 52nd

Annual Design Automation Conference (DAC), San Francisco, Jun. 2015.

[15] A. Ferrerón, D. Suárez-Gracia, J. Alastruey-Benedé, T. Monreal-Arnal and P. Ibáñez,

"Concertina: Squeezing in Cache Content to Operate at Near-Threshold Voltage," IEEE

Transactions on Computers, vol. 65, no. 3, pp. 755-769, Mar. 2016.

[16] N. Gong, J. Edstrom, D. Chen and J. Wang, "Data-Pattern Enabled Self-Recovery

Multimedia Storage System for Near-Threshold Computing," in IEEE 34th International

Conference on Computer Design (ICCD), Phoenix, 2016.

[17] G. Jarboe, "Tablets and Smartphone Video Views Up by 400% on 2012," Tubular Insights,

9 December 2014. [Online]. Available: http://tubularinsights.com/mobile-video-views-

increase-400-per-cent/. [Accessed 14 March 2017].

[18] H. Kobiki and M. Baba, "Preserving Perceived Brightness of Displayed Image Over

Different Illumination Conditions," in Proceedings of 2010 IEEE 17th International

Conference on Image Processing (ICIP), Hong Kong, Sep. 2010.

[19] M. A. Finkelstein and D. C. Hood, Handbook of Perception & Human Performance, New

York: John Wiley and Sons, 1986.

[20] Y. J. Kim, "An Automatic Image Enhancement Method Adaptive to the Surround

Luminance Variation for Small Sized Mobile Transmissive LCD," IEEE Transactions on

Consumer Electronics, vol. 56, no. 3, pp. 1161-1166, 2010.

[21] "YUV Video Sequences," [Online]. Available: http://trace.eas.asu.edu/yuv/. [Accessed 20

March 2017].

46

[22] D. Chen, X. Wang, J. Wang and N. Gong, "VCAS: Viewing Context Aware Power-

Efficient Mobile Video Embedded Memory," in Proceedings of the 28th IEEE

International SoC Conference (SoCC '15), Beijing, 2015.

[23] M. A. Hoque, M. Siekkinen and J. K. Nurminen, "Energy Efficient Multimedia Streaming

to Mobile Devices — A Survey," IEEE Communications Surveys & Tutorials, vol. 16, no.

1, pp. 579-597, Nov. 2012.

[24] Y. Benmoussa, J. Boukhobza, E. Senn and D. Benazzouz, "Energy Consumption Modeling

of H.264/AVC Video Decoding for GPP and DSP," in 2013 Euromicro Conference on

Digital System Design (DSD), Santander, Sep. 2013.

[25] S. Venkataramani, S. T. Chakradhar, K. Roy and A. Raghunathan, "Approximate

Computing and the Quest for Computing Efficiency," in 2015 52nd ACM/EDAC/IEEE

Design Automation Conference (DAC), San Francisco, Jun. 2015.

[26] R. Agrawal, T. Imieliński and S. Arun, "Mining Association Rules Between Sets of Items

in Large Databases," in Proceedings of the 1993 ACM SIGMOD International Conference

on Management of Data, Washington, D.C., May 1993.

[27] "Xiph.org Video Test Media," [Online]. Available: http://media.xiph.org/video/derf/.

[Accessed 20 March 2017].

[28] "Weka," [Online]. Available: http://www.cs.waikato.ac.nz/ml/weka/. [Accessed 20 March

2017].

[29] A. Hore and D. Ziou, "Image Quality Metrics: PSNR vs. SSIM," in 2010 20th

International Conference on Pattern Recognition (ICPR), Istanbul, Aug. 2010.

[30] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image Quality Assessment:

From Error Visibility to Structural Similarity," IEEE Transactions on Image Processing,

vol. 13, no. 4, pp. 600-612, Apr. 2004.

[31] H. Fujiwara, K. Nii, H. Noguchi, J. Miyakoshi, Y. Murachi, Y. Morita, H. Kawaguchi and

M. Yoshimoto, "Novel Video Memory Reduces 45% of Bitline Power Using Majority

Logic and Data-Bit Reordering," IEEE Transcations on Very Large Scale Integration

(VLSI) Systems, vol. 16, no. 6, pp. 620-627, Jun. 2008.

[32] W. Yueh, M. Cho and S. Mukhopadhyay, "Perceptual Quality Preserving SRAM

Architecture for Color Motion Pictures," in 2013 Design, Automation & Test in Europe

Conference & Exhibition (DATE), Grenoble, Mar. 2013.

[33] D. Zhou, S. Wang, H. Sun, J. Zhou, J. Zhu, Y. Zhao, J. Zhou, S. Zhang, S. Kimura, T.

Yoshimura and S. Goto, "14.7 A 4Gpixel/s 8/10b H.265/HEVC Video Decoder Chip for

47

8K Ultra HD applications," in 2016 IEEE International Solid-State Circuits Conference

(ISSCC), San Francisco, Feb. 2016.

[34] N. Gong, S. Jiang, A. Challapalli, M. Panesar and R. Sridhar, "Variation-and-Aging Aware

Low Power embedded SRAM for Multimedia Applications," in 2012 IEEE International

SOC Conference (SOCC), Niagara Falls, Sep. 2012.

[35] S.-T. Zhou, S. Katariya, H. Ghasemi, S. Draper and N. S. Kim, "Minimizing Total Area of

Low-Voltage SRAM Arrays through Joint Optimization of Cell Size, Redundancy, and

ECC," in 2010 IEEE International Conference on Computer Design (ICCD), Amsterdam,

Oct. 2010.

[36] S. A. Pourbakhsh, X. Chen, D. Chen, X. Wang, N. Gong and J. Wang, "Sizing-Priority

Based Low-Power Embedded Memory for Mobile Video Applications," in 2016 17th

International Symposium on Quality Electronic Design (ISQED), Santa Clara, Mar. 2016.

[37] H. Noguchi, Y. Iguchi, H. Fujiwara, Y. Morita, K. Nii, H. Kawaguchi and M. Yoshimoto,

"A 10T Non-Precharge Two-Port SRAM for 74% Power Reduction in Video Processing,"

in IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Porto Alegre, Mar. 2007.

[38] A. R. Alameldeen, I. Wagner, Z. Chishti, W. Wu, C. Wilkerson and S.-L. Lu, "Energy-

Efficient Cache Design Using Variable-Strength Error-Correcting Codes," in 2011 38th

Annual International Symposium on Computer Architecture (ISCA), San Jose, Jun. 2011.

[39] J. Chang, M. Huang, J. Shoemaker, J. Benoit, S.-L. Chen, W. Chen, S. Chiu, R. Ganesan,

G. Leong, V. Lukka, S. Rusu and D. Srivastava, "The 65-nm 16-MB Shared On-Die L3

Cache for the Dual-Core Intel Xeon Processor 7100 Series," IEEE Journal of Solid-State

Circuits, vol. 42, no. 4, pp. 846-852, Apr. 2007.

[40] D. Zhou, S. Wang, H. Sun, J. Zhou, J. Zhu, Y. Zhao, J. Zhou, S. Zhang, S. Kimura, T.

Yoshimura and S. Goto, "A 4Gpixel/s 8/10b H.265/HEVC Video Decoder Chip for 8K

Ultra HD Applications," in 2016 IEEE International Solid-State Circuits Conference

(ISSCC), San Francisco, Feb. 2016.

48

APPENDIX A. SMART VIDEO STORAGE SYSTEM ARDUINO CODE

/*

 * Lux Sensor Arduino Code

 * Jonathon Edstrom - 2015

 * Read analog luminance through lux sensor and send data bits as output through I/O

 * Department: NDSU ECE Graduate Research

 * Project: Luminance-Adaptive Smart Video Storage System

 */

#include "SPI.h"

#include <Wire.h>

#include <Adafruit_Sensor.h>

#include <Adafruit_TSL2561_U.h>

Adafruit_TSL2561_Unified tsl = Adafruit_TSL2561_Unified(TSL2561_ADDR_FLOAT, 12345);

void setup() {

 Serial.begin(9600); // for debugging over serial communication

 pinMode(12, OUTPUT); // set pin 12 to output

 pinMode(13, OUTPUT); // set pin 13 to output

 tsl.enableAutoRange(true);

 tsl.setIntegrationTime(TSL2561_INTEGRATIONTIME_13MS);

 // Initialize the sensor

 if(!tsl.begin())

 {

 // Problem with connection, fix it and restart

 Serial.println("No TSL2561 detected... ");

 Serial.println("Check your wiring / I2C ADDR!")

 while(1);

 }

}

void loop(void) {

 sensors_event_t event;

 tsl.getEvent(&event); // Get a new sensor event

 // Display results (light is measured in lux)

 if (event.light > 0)

 {

 digitalWrite(12, LOW); // Data bit 1 = 0

 digitalWrite(13, LOW); // Data bit 2 = 0

 }

 else if (event.light > 1000 && event.light < 10000)

 {

 digitalWrite(12, LOW); // Data bit 1 = 0

 digitalWrite(13, HIGH); // Data bit 2 = 1

 }

 else if (event.light > 10000)

 {

 digitalWrite(12, HIGH); // Data bit 1 = 1

 digitalWrite(13, LOW); // Data bit 2 = 0

 }

 else // If = 0 lux, the sensor is probably saturated

 {

 Serial.println("Sensor overload");

 }

 delay(250); // 250ms delay

}

49

 APPENDIX B. SMART VIDEO STORAGE SYSTEM RASPBERRY PI 2 CODE

/*

 * YUV420p Luminance Frame Truncation Program

 * Jonathon Edstrom - 2015

 * Truncates LSBs from luminance portion of YUV 4:2:0 frames

 * based on present environmental lighting conditions and outputs

 * them to the display in real time

 * Department: NDSU ECE Graduate Research

 * Project: Luminance-Adaptive Smart Video Storage System

 */

// includes

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <fcntl.h>

#include <linux/fb.h>

#include <sys/mman.h>

#include <time.h>

#include <wiringPi.h>

// instantiate globals

FILE * fileptr; // pointer for YUV data input/output files

unsigned char * buffer; // pointer for YUV data allocated memory

unsigned char * reset; // pointer value to reset the buffer to the beginning

unsigned char * tempholder; // holds starting value address between conversions

int filelen; // length of the input file (total bytes)

int xres; // width of the YUV video

int yres; // height of the YUV video

int bit1; // first bit of truncation info

int bit2; // second bit of truncation info

int lumsize; // luminance bytes per frame

int chromsize; // chromiance bytes per frame

int singlechromasize; // size of Cr or Cb in bytes per frame

unsigned char temp; // temporary holder for buffer byte

char * fbp = 0; // frame buffer pointer

struct fb_var_screeninfo vinfo; // screen info

struct fb_fix_screeninfo finfo; // screen info

// helper function to truncate bits on YUV frames

char truncate_bits(char byte)

{

 int truncbits = ((bit1 << 1) | bit2);

 switch(truncbits) {

 case 0:

 return byte; // don't truncate anything

 break;

 case 1:

 return (byte & 248); // bitwise AND with 11111000 (truncate 3 bits)

 break;

 case 2:

 return (byte & 240); // bitwise AND with 11110000 (truncate 4 bits)

 break;

 default:

 printf("The number of bits to truncate is not valid. Exiting...\n");

 exit(EXIT_FAILURE);

 }

}

// clamps value to 0-255 range

50

unsigned char clamp(float value)

{

 if(value < 0)

 {

 return 0;

 }

 else if(value > 255)

 {

 return 255;

 }

 else

 {

 return (unsigned char) value;

 }

}

// helper function for RGB pixel plotting

// credit given to: raspberrycompote.blogspot.com/2013/03/low-level-graphics-on-

// raspberry-pi-part_8.html

void put_pixel_RGB(int x, int y, int r, int g, int b)

{

 // calculate the pixel's byte offset inside the buffer

 // note: x * 3 as every pixel is 3 consecutive bytes

 int pix_offset = x * 3 + y * finfo.line_length;

 // approximately the same as 'fbp[pix_offset] = value'

 ((unsigned char)(fbp + pix_offset)) = b;

 ((unsigned char)(fbp + pix_offset + 1)) = g;

 ((unsigned char)(fbp + pix_offset + 2)) = r;

}

// helper function for drawing to the frame buffer

void draw(unsigned char * rgbdata)

{

 int x, y, r, g, b;

 unsigned char * data = rgbdata;

 for(y = 0; y < yres; y++)

 {

 for(x = 0; x < xres; x++)

 {

 r = *data; data++;

 g = *data; data++;

 b = *data; data++;

 put_pixel_RGB(x, y, r, g, b);

 }

 }

}

// converts yuv420 frames to rgb888 frames for output to display

// equations found at: https://en.wikipedia.org/wiki/YUV

unsigned char * yuv420p_to_rgb(unsigned char * yuvframe)

{

 unsigned char * rgb = (unsigned char *) calloc((lumsize * 3), sizeof(unsigned

char));

 unsigned char * ydata = yuvframe;

 unsigned char * udata = yuvframe + lumsize;

 unsigned char * vdata = udata + singlechromasize;

 float b,g,r;

 int x,y;

51

 unsigned char * ptr = rgb;

 for (y = 0; y < yres; y++)

 {

 for (x = 0; x < xres; x++)

 {

 int yy = ydata[(y * xres) + x];

 int uu = udata[((y / 2) * (xres / 2)) + (x / 2)];

 int vv = vdata[((y / 2) * (xres / 2)) + (x / 2)];

 int c = yy - 16, d = uu - 128, e = vv - 128;

 r = (298 * c + 409 * e + 128) >> 8;

 g = (298 * c - 100 * d - 208 * e + 128) >> 8;

 b = (298 * c + 516 * d + 128) >> 8;

 unsigned char rval = clamp(r);

 unsigned char gval = clamp(g);

 unsigned char bval = clamp(b);

 *ptr++ = rval;

 *ptr++ = gval;

 *ptr++ = bval;

 }

 }

 return rgb;

}

// application entry point

int main(int argc, char * argv[])

{

 wiringPiSetupGpio(); // Set up GPIO using BCM standard pin numbers

 pinMode(23, INPUT); // GPIO 23 set to INPUT

 pinMode(24, INPUT); // GPIO 24 set to INPUT

 if(argc != 3) // argc should be 3 for correct execution

 {

 // print usage assuming argv[0] is the program name

 printf("usage: %s xres yres\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 else // correct number of arguments

 {

 // initialize globals

 xres = atoi(argv[1]);

 yres = atoi(argv[2]);

 // calculate Y (luminance) and UV (chromiance) byte component sizes

 lumsize = xres*yres;

 chromsize = lumsize/2;

 singlechromasize = chromsize/2;

 tempholder = (unsigned char *) malloc((lumsize * 3) + 1);

 // turn off terminal cursor blink

 FILE * cursorfile = fopen("/sys/class/graphics/fbcon/cursor_blink", "w+");

 fprintf(cursorfile, "%c", '0');

 fclose(cursorfile);

 // framebuffer setup

 int fbfd = 0;

 struct fb_var_screeninfo orig_vinfo;

 long int screensize = 0;

 // open the framebuffer for reading/writing

52

 fbfd = open("/dev/fb0", O_RDWR);

 if(!fbfd)

 {

 printf("Error: cannot open framebuffer device.\n");

 exit(EXIT_FAILURE);

 }

 // get variable screen information

 if(ioctl(fbfd, FBIOGET_VSCREENINFO, &vinfo))

 {

 printf("Error reading variable information.\n");

 exit(EXIT_FAILURE);

 }

 // store screen information for reset (copy vinfo to vinfo_orig)

 memcpy(&orig_vinfo, &vinfo, sizeof(struct fb_var_screeninfo));

 // change variable screen information - force 24 bit and resolution

 vinfo.bits_per_pixel = 24;

 vinfo.xres = xres;

 vinfo.yres = yres;

 vinfo.xres_virtual = vinfo.xres;

 vinfo.yres_virtual = vinfo.yres;

 if(ioctl(fbfd, FBIOPUT_VSCREENINFO, &vinfo))

 {

 printf("Error setting variable information.\n");

 exit(EXIT_FAILURE);

 }

 // get fixed screen information

 if(ioctl(fbfd, FBIOGET_FSCREENINFO, &finfo))

 {

 printf("Error reading fixed information.\n");

 exit(EXIT_FAILURE);

 }

 // map framebuffer to user memory

 screensize = vinfo.xres * vinfo.yres * vinfo.bits_per_pixel / 8;

 fbp = (char *) mmap(0, screensize, PROT_READ|PROT_WRITE, MAP_SHARED, fbfd, 0);

 if((int) fbp == -1)

 {

 printf("Failed to mmap.\n");

 exit(EXIT_FAILURE);

 }

 // create frame filename string

 char framenum[4];

 int framecount = 1;

 sprintf(framenum, "%d", framecount++); // put frame number into string

 char name[20] = "frame";

 strcat(name, framenum);

 strcat(name, ".yuv");

 // assume name is the filename to open

 // open file using "rb" = read binary file access mode

 fileptr = fopen(name, "rb");

 // if fopen returns a NULL pointer it failed to open the file

 if(fileptr == NULL)

 {

 printf("Could not open file. Exiting program.\n");

 exit(EXIT_FAILURE);

 }

53

 int flag = 1;

 do

 {

 bit1 = digitalRead(23); // read bit 1 from GPIO 23

 bit2 = digitalRead(24); // read bit 2 from GPIO 24

 // file opened successful -> allocate memory buffer space

 fseek(fileptr, 0, SEEK_END); // jump to end of file

 filelen = ftell(fileptr); // get current byte offset in file

 rewind(fileptr); // jump to beginning of file

 buffer = (char *) malloc(filelen + 1); // enough memory for file + \0

 reset = buffer;

 if(buffer == NULL)

 {

 printf("Failed to allocate memory. Exiting program.\n");

 exit(EXIT_FAILURE);

 }

 fread(buffer, 1, filelen, fileptr); // read file into memory

 buffer = reset; // reset buffer pointer address to beginning

 int index = 0; // current array index

 int count = 0; // keeps track of luminance byte index

 while(index < filelen) // loop until EOF

 {

 while(count < lumsize) // loop until end of frame's luminance data

 {

 temp = *buffer; // store current byte

 *buffer = truncate_bits(temp); // truncate

 if(index < filelen)

 {

 // increment buffer address, index and count variables

 buffer++;

 index++;

 count++;

 }

 }

 count = 0; // reset luminance byte index

 if(index < filelen)

 {

 buffer += chromsize; // adjust ptr addr to next set of luma bytes

 index += chromsize; // adjust index to next set of luminance bytes

 }

 }

 buffer = reset; // reset buffer pointer to beginning of data

 tempholder = yuv420p_to_rgb(buffer); // convert to RGB888 data

 draw(tempholder); // draw the converted data to the screen

 // create next filename string

 sprintf(framenum, "%d", framecount++); // put frame number into string

 strcpy(name, "frame");

 strcat(name, framenum);

 strcat(name, ".yuv");

 // assume name is the filename to open

 // open file using "rb" = read binary file access mode

 fileptr = fopen(name, "rb");

 // keep opening frames until there aren't any frames left

54

 if(fileptr == NULL)

 {

 flag = 0;

 }

 } while(flag);

 // cleanup

 munmap(fbp, screensize);

 if(ioctl(fbfd, FBIOPUT_VSCREENINFO, &orig_vinfo))

 {

 printf("Error re-setting variable information.\n");

 }

 close(fbfd);

 buffer = reset; // reset buffer pointer address to free memory

 free(buffer); // deallocate memory block

 }

 return 0; // program success

}

55

 APPENDIX C. D-DASH YUV VIDEO DATA TO ARFF CONVERSION CODE

/*

 YUV to ARFF Data C Program

 Jonathon Edstrom - 2015

 Converts Raw YUV data to ARFF data

 Department: NDSU ECE Graduate Research

 Project: Data-Driven Low-Cost On-Chip Memory

 With Adaptive Power-Quality Trade-off

 For Mobile Video Streaming

*/

// includes

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <math.h>

// instantiate globals

FILE * fileptr; // ptr for YUV data input/output files

unsigned char *buffer, *cbPtr, *crPtr; // ptr for YUV data allocated memory

unsigned char *reset; // pointer value to reset the buffer to the beginning

unsigned int filelen; // length of the input file (total bytes)

unsigned int xres; // width of the YUV video

unsigned int yres; // height of the YUV video

unsigned int lumsize; // luminance bytes per frame

unsigned int totallumbytes; // total amount of luminance bytes to process

unsigned int chromsize; // chroma bytes per frame

unsigned int singlechromsize; // chroma bytes for either Cb or Cr per frame

unsigned char cbVal, crVal; // temporary holders for buffer bytes

unsigned int framecount; // the number of frames in the video

unsigned int frames; // the number of frames to analyse

int header = -1; // boolean value to include or disinclude the .arff header

unsigned int format; // indicates 420 or 444 format specified by user input

// function to write bit value data to output file

void writeDataCSV(char cbByte, char crByte, char *str)

{

 int count;

 unsigned char value;

 for(count = 0; count < 16; count++)

 {

 if(count < 8) // Cb Data

 {

 // bitwise AND with one-hot byte values masking out each bit

 value = (cbByte & pow(2, 7-count));

 if(value > 0)

 {

 strcat(str, "1,");

 }

 else

 {

 strcat(str, "0,");

 }

 }

 else if() // Cr Data

 {

 // bitwise AND with one-hot byte values masking out each bit

 value = (crByte & pow(2, 15-count));

 if(value > 0)

 {

56

 strcat(str, "1,");

 }

 else

 {

 strcat(str, "0,");

 }

 }

 }

}

// application entry point

int main(int argc, char * argv[])

{

 printf("YUV to ARFF Dataset Program (J.E. 2015)\n");

 if(argc != 7) // argc should be 7 for correct execution

 {

 // print argv[0] as program name w/ the following usage hint to user

 printf ("usage: %s filename xres yres frames header format\n", argv[0]);

 }

 else // correct number of arguments

 {

 printf("Setting things up...\n");

 // initialize globals

 xres = atoi(argv[2]);

 yres = atoi(argv[3]);

 frames = atoi(argv[4]);

 header = atoi(argv[5]);

 if(header != 0 && header != 1)

 {

 printf("header value must be 0 (false) or 1 (true). Exiting.\n");

 exit(EXIT_FAILURE);

 }

 format = atoi(argv[6]);

 if(format != 420 && format != 444)

 {

 printf("format value must be 420 or 444. Exiting.\n");

 exit(EXIT_FAILURE);

 }

 // create output file name string

 int len = strlen(argv[1]); // get length of input file name

 char filename[len];

 strcpy(filename, argv[1]); // get input file name

 filename[len-4] = '\0'; // chop off the ".yuv" extension

 len = len + 25; // add correct amount for output file naming

 char outputstr[len];

 strcpy(outputstr, filename);

 strcat(outputstr, "_data.arff");

 // assume argv[1] is the file name to open

 // open file using "rb" = read binary file access mode

 fileptr = fopen(argv[1], "rb");

 // if fopen returns a NULL pointer it failed to open the file

 if(fileptr == NULL)

 {

 printf("Could not open file. Exiting program.\n");

 exit(EXIT_FAILURE);

 }

 else // file opened successful -> allocate memory buffer space

 {

57

 printf("YUV input file opened successfully!\n");

 fseek(fileptr, 0, SEEK_END); // jump to end of file

 filelen = ftell(fileptr); // get current byte offset in file

 // calculate total frames

 if(format == 420)

 {

 framecount = (2 * filelen) / (xres * yres * 3);

 }

 else if(format == 444)

 {

 framecount = (filelen) / (xres * yres * 3);

 }

 if(frames < 1 || frames > framecount)

 {

 printf("Frames value must be >= 1 and < total frames. Exiting.\n");

 exit(EXIT_FAILURE);

 }

 // calculate Y (luminance) and UV (chrominance) byte component sizes

 lumsize = xres*yres;

 totallumbytes = lumsize*framecount;

 if(format == 420)

 {

 chromsize = lumsize/2;

 singlechromsize = lumsize/4;

 }

 else if(format == 444)

 {

 chromsize = lumsize*2;

 singlechromsize = lumsize;

 }

 printf("YUV filesize (bytes): %d\n# Frames: %d\n", filelen, framecount);

 rewind(fileptr); // jump to beginning of file

 // enough memory for file + \0 (EOF)

 buffer = (char *) malloc(filelen + 1);

 reset = buffer;

 if(buffer == NULL)

 {

 printf("Failed to allocate memory. Exiting program.\n");

 exit(EXIT_FAILURE);

 }

 else

 {

 printf("Memory allocated successfully!\n");

 }

 fread(buffer, 1, filelen, fileptr); // read file into memory

 buffer = reset; // reset buffer pointer address to beginning

 // open file using "w" = write file access mode

 fileptr = fopen(outputstr, "w");

 // if fopen returns NULL pointer it failed to open the file

 if(fileptr == NULL)

 {

 printf("Could not write to .arff output file. Exiting program.\n");

 exit(EXIT_FAILURE);

 }

58

 else // file opened successful -> write ARFF header

 {

 printf("Created .arff file!\n");

 fputs("", fileptr);

 if(header == 1)

 {

 fputs("@relation yuvdata\n\n", fileptr);

 fputs("@attribute Cb1 {0,1}\n", fileptr);

 fputs("@attribute Cb2 {0,1}\n", fileptr);

 fputs("@attribute Cb3 {0,1}\n", fileptr);

 fputs("@attribute Cb4 {0,1}\n", fileptr);

 fputs("@attribute Cb5 {0,1}\n", fileptr);

 fputs("@attribute Cb6 {0,1}\n", fileptr);

 fputs("@attribute Cb7 {0,1}\n", fileptr);

 fputs("@attribute Cb8 {0,1}\n", fileptr);

 fputs("@attribute Cr1 {0,1}\n", fileptr);

 fputs("@attribute Cr2 {0,1}\n", fileptr);

 fputs("@attribute Cr3 {0,1}\n", fileptr);

 fputs("@attribute Cr4 {0,1}\n", fileptr);

 fputs("@attribute Cr5 {0,1}\n", fileptr);

 fputs("@attribute Cr6 {0,1}\n", fileptr);

 fputs("@attribute Cr7 {0,1}\n", fileptr);

 fputs("@attribute Cr8 {0,1}\n\n", fileptr);

 fputs("@data\n", fileptr);

 }

 fclose(fileptr); // close the file

 }

 // open file using "a" = append file access mode

 fileptr = fopen(outputstr, "a");

 // if fopen returns NULL pointer it failed to open the file

 if(fileptr == NULL)

 {

 printf("Could not write to .arff output file. Exiting program.\n");

 exit(EXIT_FAILURE);

 }

 else // file opened successful -> write YUV ARFF data

 {

 printf("Appending bit values to .arff file...\n");

 buffer = reset; // set luma pointer to beginning of file

 unsigned int index = 0; // used for detecting EOF

 unsigned int count = 0; // used for moving to next set of luma data

 // calculate amount of bytes to analyze

 unsigned int length = (filelen / framecount) * frames;

 while(index < length)

 {

 cbPtr = buffer + lumsize; // point to beginning of next Cb

 crPtr = cbPtr + singlechromsize; // point to beginning of next Cr

 while(count < singlechromsize)

 {

 cbVal = *cbPtr;

 crVal = *crPtr;

 char *str = malloc (sizeof (char) * 100);

 writeDataCSV(cbVal, crVal, str);

 fputs(str, fileptr);

 free(str);

59

 if(index < filelen)

 {

 count++;

 }

 cbPtr++;

 crPtr++;

 }

 count = 0; // reset index place holder

 if(index < filelen)

 {

 // move buffer to next set of luma bytes (start of next frame)

 buffer = buffer + lumsize + chromsize;

 index = index + lumsize + chromsize;

 }

 }

 fclose(fileptr); // close the file

 }

 printf("Freeing up allocated memory\n");

 buffer = reset; // reset buffer pointer address to free memory

 free(buffer); // deallocate memory block

 printf("Data was successfully output!\n");

 }

 }

 return 0; // program success

}

60

 APPENDIX D. DPSR ERROR MAPPING MATLAB CODE

% SRAM Array Error Mapping MATLAB Program

% Plots a memory error map based on a uniformly distributed 2x2 matrix

% Code by: Jonathon Edstrom (4/26/2016)

function errorMapping(rows, columns, failureRate)

 % get uniformly distributed random 2x2 matrix of decimals in 0.0-1.0

 sramArray = rand(rows, columns);

 % set up the plot for the particular rows x columns size

 figure

 if(columns > 32 && columns <= 128)

 set(gca,'XTick',0:32:columns);

 xAdjustment = 1;

 elseif(columns > 128)

 set(gca,'XTick',0:256:columns);

 xAdjustment = 4;

 else

 set(gca,'XTick',0:1:columns-1);

 xAdjustment = 0.25;

 end

 if(rows > 32 && rows <= 128)

 set(gca,'YTick',0:32:rows);

 yAdjustment = 10;

 markerSize = 8;

 elseif(rows > 128)

 set(gca,'YTick',0:256:rows);

 yAdjustment = 20;

 markerSize = 4;

 else

 set(gca,'YTick',0:1:rows-1);

 yAdjustment = 1;

 markerSize = 16;

 end

 axis([-xAdjustment,columns,-yAdjustment,rows])

 title('Error map in SRAM array (errors are uniformly distrubuted)');

 xlabel('Column');

 ylabel('Row');

 hold on

 % open a progress bar for feedback to user

 progress = waitbar(0,'?/? (0%) Complete...');

 % calculate where the errors are based on the failureRate

 for i = 1:rows

 % calculate percentage completed and update progress bar

 percent = (i / rows) * 100.0;

 waitbar(i/rows, progress, sprintf('%d/%d (%d%%) Complete...',

 i, rows, uint8(percent)))

 for j = 1:columns

 if(sramArray(i, j) <= failureRate)

 % plot point if random value is within the failureRate range

 plot(j-1,i-1,'.','MarkerSize',markerSize,'Color','k')

 % display which bit as text if plot is small enough

 if(rows <= 64)

 text(j-1,i-1,sprintf(' Bit %d',j-1))

 end

 end

 end

 end

 close(progress); % close the progress bar

end

61

 APPENDIX E. DPSR WORD LINE FAULTS PROBABILITY CODE

/*

 Word Line Faults Monte Carlo Simulation Program

 Jonathon Edstrom - 2016

 Calculates the probability of faults that occur in a

 single word line using Monte Carlo methods based on failure rate

 Department: NDSU ECE Graduate Research

 Project: Data-Pattern Enabled Self-Recovery Multimedia

 Storage System for Near-Threshold Computing

*/

// includes

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

// function definitions

unsigned char injectFault(double errorRate);

int main(int argc, char * argv[])

{

 unsigned int wordLineBitSize; // size of the word line in bytes

 unsigned long long int numOfTrials; // # of trials to calculate probability

 double failureRate; // the failure rate of a single bit cell

 unsigned int seedValue; // used to seed the random number generator

 if(argc != 4 && argc != 5) // argc should be 4 or 5 for correct execution

 {

 // print the program name with the following usage hint to user

 printf ("usage: %s wordLineBitSize numOfTrials failureRate

 seedValue[optional]\n", argv[0]);

 }

 else // correct number of arguments

 {

 wordLineBitSize = atoi(argv[1]);

 numOfTrials = atoi(argv[2]);

 failureRate = atof(argv[3]);

 if(argc == 5)

 {

 seedValue = atoi(argv[4]); // seed to user specified argument value

 }

 else

 {

 srand((unsigned) time(NULL)); // seed to random number using time

 }

 // check arguments are valid inputs

 if(wordLineBitSize <= 0 || numOfTrials <= 0 || failureRate < 0.0 ||

 failureRate > 1.0)

 {

 printf("Argument error, wordLineBitSize and numOfTrials must be positive

 integers, failure rate must be a decimal between 0.0 and 1.0

 inclusive. Now exiting.\n");

 exit(EXIT_FAILURE);

 }

 unsigned long long int faultCount[wordLineBitSize+1]; // 0 to n faults count

 unsigned long long int i; // loop variable

 unsigned int j, k; // loop variables

 unsigned int faultsInWordLine = 0; // total faults in word line

62

 unsigned char wordLine[wordLineBitSize]; // wordline w/ 'wordLineBitSize' bits

 unsigned long long int specificFault = 0; // rule/correlation double faults

 unsigned long long int associationFault = 0; // association rule double faults

 unsigned long long int correlationFault = 0; // correlation double faults

 // initialize faultCount array values to zero

 for(j = 0; j < wordLineBitSize+1; j++)

 {

 faultCount[j] = 0;

 }

 // run Monte Carlo simulation for numOfTrials argument

 for(i = 0; i < numOfTrials; i++)

 {

 // reset total fault count

 faultsInWordLine = 0;

 // inject faults into wordLine at given failure rate

 for(j = 0; j < wordLineBitSize; j++)

 {

 wordLine[j] = injectFault(failureRate);

 if(wordLine[j] == 1)

 {

 faultsInWordLine++;

 }

 }

 // association rule fault check

 // Cb1 & Cb2

 if((wordLine[0] == 1 && wordLine[1] == 1) || (wordLine[16] == 1 &&

 wordLine[17] == 1))

 {

 specificFault++;

 associationFault++;

 //printf("Association Failure: Cb1 & Cb2 Both Failed!\n");

 }

 // Cr1 & Cr2

 if((wordLine[8] == 1 && wordLine[9] == 1) || (wordLine[24] == 1 &&

 wordLine[25] == 1))

 {

 specificFault++;

 associationFault++;

 //printf("Association Failure: Cr1 & Cr2 Both Failed!\n");

 }

 // Cr1 & Cr3

 if((wordLine[8] == 1 && wordLine[10] == 1) || (wordLine[24] == 1 &&

 wordLine[26] == 1))

 {

 specificFault++;

 associationFault++;

 //printf("Association Failure: Cr1 & Cr3 Both Failed!\n");

 }

 // Cb correlation fault check

 for(k = 2; k < 8; k++)

 {

 if(wordLine[k] == 1 && wordLine[k+16] == 1)

 {

 specificFault++;

 correlationFault++;

 }

 }

63

 // Cr correlation fault check

 for(k = 11; k < 16; k++)

 {

 if(wordLine[k] == 1 && wordLine[k+16] == 1)

 {

 specificFault++;

 correlationFault++;

 }

 }

 faultCount[faultsInWordLine]++;

 }

 printf("\n");

 // print out general amount of fault counts

 for(j = 0; j < wordLineBitSize+1; j++)

 {

 if(faultCount[j] > 0)

 {

 printf("%u Fault(s): %llu\n", j, faultCount[j]);

 }

 }

 // print specific results

 printf("\nCorrelation Double Fault: %llu\nAssociation Rule Double Fault:

 %llu\nTotal Double Faults: %llu\n\n", correlationFault,

 associationFault, specificFault);

 }

 return 0; // program success

}

// function that will calculate if a fault should exist based on failure rate

unsigned char injectFault(double errorRate)

{

 double randomNumber;

 // Don't divide by 0

 if(errorRate == 0.0)

 {

 randomNumber = 1.0;

 }

 else

 {

 double error = (1 / errorRate);

 unsigned long long int errorVal = (unsigned long long int) error;

 randomNumber = rand() % (errorVal + 1);

 }

 if(randomNumber >= 1.0)

 {

 // no fault

 return 0;

 }

 else

 {

 // fault

 return 1;

 }

}

64

 APPENDIX F. DPSR ASSOCIATION RULE AND CORRELATION CODE

/*

 Chroma Bit Association Rule or Correlation Program

 Jonathon Edstrom - 2016

 Apply associations or correlation at a specified bit cell failure rate

 Department: NDSU ECE Graduate Research

 Project: Data-Pattern Enabled Self-Recovery Multimedia

 Storage System for Near-Threshold Computing

*/

// includes

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include <math.h>

// instantiate globals

FILE *fileptr; // pointer for YUV data input/output files

unsigned char *buffer, *origBuffer; // pointer for YUV data allocated memory

unsigned char *reset, *origReset; // ptr value to reset the buffer

unsigned long long int filelen; // length of the input file (total bytes)

unsigned long long int xres; // width of the YUV video

unsigned long long int yres; // height of the YUV video

unsigned long long int lumsize; // luminance bytes per frame

unsigned long long int chromsize; // chrominance bytes per frame

unsigned long long int singlechromsize; // size of one chrominance component

unsigned char cb,cbComp,cr,crComp; // temporary holder for buffer byte

unsigned long long int framecount; // the number of frames in the video

long double errorRate; // decimal that sets how often a bit has a fault

long double randomNumber; // stores random numbers for inputting faults

unsigned int cborcr, bit, corrorrule, seedValue; // user input options

// function definitions

unsigned char getBitValue(unsigned char byte, int bitNum);

unsigned char injectFault();

// application entry point

int main(int argc, char * argv[])

{

 printf("Chroma Bit Association Rule or Correlation Program (J.E.

 2016)\n");

 if(argc != 8) // argc should be 8 for correct execution

 {

 // print program name with the following usage hint to user

 printf ("usage: %s filename xres yres corr(0)-or-rule(1)-or-

 noCorrection(2) failureRate cb(0)-or-cr(1) bitNum(MSB=1-

 >LSB=8)\n", argv[0]);

 }

 else // correct number of arguments

 {

 printf("Setting things up...\n");

 // initialize globals

 xres = atoi(argv[2]);

 yres = atoi(argv[3]);

 corrorrule = atoi(argv[4]);

 errorRate = atof(argv[5]);

 cborcr = atoi(argv[6]);

65

 bit = atoi(argv[7]);

 // check bounds on arguments

 if(cborcr < 0 || cborcr > 1)

 {

 printf("%s is an invalid input. cb(0)-or-cr(1) argument must be

 0 or 1. Exiting program.\n", argv[4]);

 exit(EXIT_FAILURE);

 }

 if(bit < 1 || bit > 8)

 {

 printf("%s is an invalid input. bitNum(MSB=1->LSB=8) argument

 must be an integer between 1 and 8 inclusive. Exiting

 program.\n", argv[5]);

 exit(EXIT_FAILURE);

 }

 if(corrorrule < 0 || corrorrule > 2)

 {

 printf("%s is an invalid input. corr(0)-or-rule(1)-or-

 noCorrection(2) argument must be 0, 1, or 2. Exiting

 program.\n", argv[6]);

 exit(EXIT_FAILURE);

 }

 if(errorRate < 0.0 || errorRate > 1.0)

 {

 printf("%s is an invalid input. failureRate argument must be a

 decimal value between 0.0 and 1.0 inclusive. Exiting

 program.\n", argv[7]);

 exit(EXIT_FAILURE);

 }

 // set up random number generator

 if(cborcr == 0)

 {

 seedValue = bit;

 }

 else if(cborcr == 1)

 {

 seedValue = bit+8;

 }

 srand(seedValue); // seed to user specified argument value

 // create output file name string

 int len = strlen(argv[1]); // get length of input file name

 char filename[len];

 strcpy(filename, argv[1]); // get input file name

 // assume argv[1] is the filename to open

 // open file using "rb" = read binary file access mode

 fileptr = fopen(argv[1], "rb");

 // if fopen returns a NULL pointer it failed to open the file

 if(fileptr == NULL)

 {

 printf("Could not open file: \"%s\". Exiting program.\n",

 argv[1]);

 exit(EXIT_FAILURE);

 }

 else // file opened successful -> allocate memory buffer space

 {

 printf("YUV file: \"%s\" opened successfully!\n", argv[1]);

 fseek(fileptr, 0, SEEK_END); // jump to end of file

 filelen = ftell(fileptr); // get current byte offset in file

66

 framecount = (2 * filelen) / (xres * yres * 3);

 // calculate Y (luma) and UV (chroma) byte component sizes

 lumsize = xres*yres;

 chromsize = lumsize/2;

 singlechromsize = chromsize/2;

 printf("Size of YUV file in bytes: %llu\nNumber of frames in

 video: %llu\n", filelen, framecount);

 rewind(fileptr); // jump to beginning of file

 // enough memory for file + \0 (EOF)

 buffer = (char *) malloc(filelen + 1);

 // enough memory for file + \0 (EOF)

 origBuffer = (char *) malloc(filelen + 1);

 reset = buffer;

 origReset = origBuffer;

 if(buffer == NULL || origBuffer == NULL)

 {

 printf("Failed to allocate memory. Exiting program.\n");

 exit(EXIT_FAILURE);

 }

 else

 {

 printf("Memory allocated successfully!\n");

 }

 fread(buffer, 1, filelen, fileptr); // read file into memory

 rewind(fileptr); // jump to beginning of file

 fread(origBuffer, 1, filelen, fileptr); // read file to memory

 buffer = reset; // reset buffer pointer address to beginning

 origBuffer = origReset; // reset buffer ptr address to beginning

 int index = 0;

 int count = 0;

 while(index < filelen)

 {

 buffer += lumsize; // skip luma data & jump to Cb data

 origBuffer += lumsize;

 index += lumsize; // inc. index by luma frame size (bytes)

 srand(seedValue); // seed each frame to same fault positions

 while(count < singlechromsize)

 {

 cbComp = *origBuffer;

 cb = *(origBuffer + 1);

 crComp = *(origBuffer + singlechromsize);

 cr = *(origBuffer + singlechromsize + 1);

 unsigned char faultExists;

 faultExists = injectFault();

 unsigned char replacementBit;

 // Cb

 if(cborcr == 0)

 {

 // correlation

 if(corrorrule == 0)

 {

 if(faultExists == 1)

67

 {

 replacementBit = getBitValue(cbComp, bit);

 *(buffer + 1) = (cb & (0 << (8 - bit)));

 *(buffer + 1) = (cb | (replacementBit << (8 - bit

)));

 }

 }

 // association rule

 else if(corrorrule == 1)

 {

 if(faultExists == 1)

 {

 // Cb1

 if(bit == 1)

 {

 replacementBit = getBitValue(cb, 2);

 replacementBit = ~replacementBit;

 *(buffer + 1) = (cb & (0 << (8 - bit)));

 *(buffer + 1) = (cb | (replacementBit << (8 –

 bit)));

 }

 // Cb2

 else if(bit == 2)

 {

 replacementBit = getBitValue(cb, 1);

 replacementBit = ~replacementBit;

 *(buffer + 1) = (cb & (0 << (8 - bit)));

 *(buffer + 1) = (cb | (replacementBit << (8 –

 bit)));

 }

 // default to correlation otherwise

 else

 {

 replacementBit = getBitValue(cbComp, bit);

 *(buffer + 1) = (cb & (0 << (8 - bit)));

 *(buffer + 1) = (cb | (replacementBit << (8 –

 bit)));

 }

 }

 }

 // no correction -> inject error

 else

 {

 if(faultExists == 1)

 {

 replacementBit = getBitValue(cb, bit);

 replacementBit = ~replacementBit;

 *(buffer + 1) = (cb & (0 << (8 - bit)));

 *(buffer + 1) = (cb | (replacementBit << (8 - bit

)));

 }

 }

 }

 // Cr

 else

 {

 // correlation

 if(corrorrule == 0)

 {

 if(faultExists == 1)

 {

 replacementBit = getBitValue(crComp, bit);

68

 *(buffer + singlechromsize + 1) = (cr & (0 << (8

 - bit)));

 *(buffer + singlechromsize + 1) = (cr | (

 replacementBit << (8 - bit)));

 }

 }

 // association rule

 else if(corrorrule == 1)

 {

 if(faultExists == 1)

 {

 // Cr1

 if(bit == 1)

 {

 replacementBit = getBitValue(cr, 2);

 replacementBit = ~replacementBit;

 *(buffer + singlechromsize + 1) = (cr & (0 <<

 (8 - bit)));

 *(buffer + singlechromsize + 1) = (cr | (

 replacementBit << (8 - bit)));

 }

 // Cr2

 else if(bit == 2)

 {

 replacementBit = getBitValue(cr, 1);

 replacementBit = ~replacementBit;

 *(buffer + singlechromsize + 1) = (cr & (0 <<

 (8 - bit)));

 *(buffer + singlechromsize + 1) = (cr | (

 replacementBit << (8 - bit)));

 }

 // Cr3

 else if(bit == 3)

 {

 replacementBit = getBitValue(cr, 1);

 replacementBit = ~replacementBit;

 *(buffer + singlechromsize + 1) = (cr & (0 <<

 (8 - bit)));

 *(buffer + singlechromsize + 1) = (cr | (

 replacementBit << (8 - bit)));

 }

 // default to correlation otherwise

 else

 {

 replacementBit = getBitValue(crComp, bit);

 *(buffer + singlechromsize + 1) = (cr & (0 <<

 (8 - bit)));

 *(buffer + singlechromsize + 1) = (cr | (

 replacementBit << (8 - bit)));

 }

 }

 }

 // no correction -> inject error

 else

 {

 if(faultExists == 1)

 {

 replacementBit = getBitValue(cr, bit);

 replacementBit = ~replacementBit;

 *(buffer + singlechromsize + 1) = (cr & (0 << (8

 - bit)));

 *(buffer + singlechromsize + 1) = (cr | (

 replacementBit << (8 - bit)));

69

 }

 }

 }

 if(index < filelen)

 {

 buffer++;

 origBuffer++;

 index++;

 count++;

 }

 }

 count = 0; // reset index place holder

 buffer += singlechromsize; // move to next frame

 origBuffer += singlechromsize; // move to next frame

 index += singlechromsize; // move to next frame

 }

 buffer = reset; // reset buffer pointer address

 origBuffer = origReset; // reset buffer pointer address

 // open file using "w+b" = write/update binary file access mode

 fileptr = fopen(filename, "w+b");

 // if fopen returns NULL pointer it failed to open the file

 if(fileptr == NULL)

 {

 printf("Could not write output file. Exiting program.\n");

 exit(EXIT_FAILURE);

 }

 else // file opened successful -> write back YUV data

 {

 printf("Created file: \"%s\", writing data...\n", filename);

 fwrite(buffer, 1, filelen, fileptr); // write data to file

 fclose(fileptr); // close the file

 }

 printf("Freeing up allocated memory\n");

 buffer = reset; // reset buffer pointer address to free memory

 free(buffer); // deallocate memory block

 free(origBuffer); // deallocate memory block

 printf("Data was successfully output!\n");

 }

 }

 return 0; // program success

}

// function to check value of the bit specified for a given byte

unsigned char getBitValue(unsigned char byte, int bitNum)

{

 // instantiate local variables

 unsigned char value;

 // bitwise AND with one-hot byte value

 value = (byte & pow(2, 7-bitNum));

 if(value > 0)

 {

 return 1;

 }

 else

 {

70

 return 0;

 }

}

// function that will calculate if a fault should exist based on failure rate

unsigned char injectFault()

{

 // Don't divide by 0

 if(errorRate == 0.0)

 {

 randomNumber = 1.0; // no error

 }

 else

 {

 long double error = (1 / errorRate);

 unsigned long long int errorVal = (unsigned long long int) error;

 randomNumber = rand() % (errorVal + 1);

 }

 if(randomNumber >= 1.0)

 {

 // no fault

 return 0;

 }

 else

 {

 // fault

 return 1;

 }

}

