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ABSTRACT 

Ndungu, Alfred Mungai, M.S., Department of Statistics, College of Science and 
Mathematics, North Dakota State University, April 2011. A Nonparametric Test for the 
Non-decreasing Alternative in an Incomplete Block Design. Major Professor: Dr. Rhonda 
Magel. 

The purpose of this paper is to present a new nonparametric test statistic for testing 

against ordered alternatives in a Balanced Incomplete Block Design (BIBD). This test will 

then be compared with the Durbin test which tests for differences between treatments in a 

BIBD but without regard to order. For the comparison, Monte Carlo simulations were used 

to generate the BIBD. Random samples were simulated from: 

• Normal Distribution 

• Exponential Distribution 

• T distribution with three degrees of freedom 

The number of treatments considered was three, four and five with all the possible 

combinations necessary for a BIBD. Small sample sizes were 20 or less and large sample 

sizes were 30 or more. The powers and alpha values were then estimated after 10,000 

repetitions. 

The results of the study show that the new test proposed is more powerful than the 

Durbin test. Regardless of the distribution, sample size or number of treatments, the new 

test tended to have higher powers than the Durbin test. 
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1. INTRODUCTION 

Nonparametric tests, compared to parametric tests, are ideal when the underlying 

assumptions necessary for the parametric test are not met; for instance, the distribution of 

the population violates a test assumption or when there is not enough information 

regarding the population. Nonparametric tests usually offer test legitimacy with very few 

assumptions. They can be used even when the distribution is unknown. There are several 

advantages to using nonparametric tests outlined in Applied Nonparametric Statistics by 

Wayne (1990) among which is the fact that the measurement scale required for some 

nonparametric tests can be as weak as the nominal. 

One common area where nonparametric tests are employed is the testing of 

treatment effects. There are two basic assumptions when designing an experiment for 

testing the hypothesis - whether treatment effects differ from one another. One assumes 

the samples being tested are independent and the other that the samples are dependent on 

one another. This paper particularly looks at the latter. 

The major problem when there is dependence is that the results of the test might be 

influenced by an external factor not of interest. A common term for this phenomenon is 

called confounding. For instance, suppose a researcher wants to know which diet plan is 

the best among several and scoring is based on the average weight loss. The Body Mass 

Index (BMI) of the subjects is a significant factor. Therefore, when randomly assigning 

subjects to the different diet plans, subjects with a high BMI may end up with one of the 

plans thereby showing that the particular plan is the best. In order to have a better design, 

one that eliminates confounding, a method called blocking is used. In blocking, subjects 

are divided into homogeneous subgroups called blocks (Wayne 1990) and the application 
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, 
of treatments is done in random order within the blocks. As a result each subject within the 

block randomly receives a treatment. This design is called the Randomized Complete 

Block Design (RCBD). There are several tests for testing differences in treatment effects 

while blocking. However, we shall look at the two main ones: Friedman (Friedman, 1937, 

1940) and Page's (Page, 1963). 

The Friedman Test (Friedman, 1937, 1940) tests for differences in treatment effects 

using an RCBD. The treatment effects are ranked within the block thus comparisons are 

only within the subgroups (Wayne 1990). Suppose a researcher wants to know whether 

different over the counter medications have the same effect in reducing headaches. 

Subjects suffering from the headaches are randomly given one of the medications and they 

report their pain on a scale after a certain time. The next time they suffer another headache 

they are randomly given one of the remaining medication and again asked to report their 

pain after a certain time. Ranking is then done within the same person. The sum of the 

ranks of each medication is then obtained and the test statistic is computed using the sums. 

Page's Test (Page, 1963) is used to test for differences in treatment effects also, but 

it has the additional assumption that if treatment effects are not equal, they are in a non­

decreasing order. Thus, the alternative hypothesis is that the treatment effects are non­

decreasing. For instance, a research company wants to find out if higher doses of a certain 

drug would cause a reduction in number of tumors. Testing is done at three levels 25mg, 

50mg and 75mg. Therefore, it is believed that the number of tumors developed by subjects 

at 25mg will be more than at 50mg which in tum will be higher than at 75mg. Blocking is 

done based on gender and age level. Ranking is then done within the blocks as in the 
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Friedman case and the appropriate test statistic computed using the sum of the ranks. 

Page's, like Friedman, also uses the RCBD. 

A Balanced Incomplete Block Design (BIBO) is a derivation of the RCBD. 

However, due to other factors such as limited resources, the RCBD may not be ideal thus a 

BIBD would be more practical. In the BIBD, only certain treatments would be applied 

within a block; not all treatments are applied within a block. Therefore, each block would 

have a different combination of treatments applied. However, the design is such that each 

block would have the same number of treatments applied, each treatment would be applied 

the same number of times, and each pair of treatments would appear the same number of 

times. 

The Durbin Test (Durbin, 1951 ), like the Friedman, tests for differences in 

treatment effects. Ranking is done within a block also and the test statistic is computed 

based on the sum of the treatment ranks. However, unlike the Friedman and Page's Tests, 

the Durbin Test employs a Balanced Incomplete Block Design (BIBO). 

Whereas the Page's statistic tests for ordered alternatives in an RCBD and the 

Durbin tests for differences in treatment effects in a BIBD, currently there is no test for 

ordered alternatives in a BIBD. The test statistic proposed in this paper thus aims to solve 

this problem. The test statistic assumes that the blocks are independent and that the data 

collected can be ranked in order of magnitude. The test extends the idea of Page's Test to a 

BIBD. The test also uses the ranking method used by Durbin when assigning ranks. 

Ranking, in the new test, is also done within each block and the sum of ranks of the 

treatments is obtained at the end. The test statistic is then computed using the sum of the 

treatment ranks. Chapter three looks at the proposed test in detail. 
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The next chapter goes over the survey of literature where the two tests - Page's and 

Durbin - are further explored. 
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2. SURVEY OF LITERATURE 

There are several nonparametric tests developed for testing for differences in 

treatment effects (or samples); each based on different sets of assumptions. The main 

assumption considered in this chapter is independence of samples tested. This chapter 

briefly looks at the development of these tests starting with the basic case where two 

samples are tested. 

The Mann - Whitney Test (Mann and Whitney, 1947) proposed by Mann and 

Whitney (Daniel, 1990), tests for differences between two treatment effects. One 

assumption that must hold for validity of the test is that the samples are independent. 

Furthermore, Mann - Whitney uses ranks to compute its test statistic~ therefore, the 

measurement scale must at least be ordinal. This test can be used for all three hypotheses: 

• Ho: LJ 2:: L2 VS. Ha: LJ < L2 

• Ho: LI :'.S L2 VS. Ha: LI > L2 

(Two sided) 

(One sided) 

(One sided) 

However, when the independence assumption does not hold and thus the two 

samples are related, a test called the Wilcoxon Signed Rank (WSR) Test (Wilcoxon, 1945) 

can be applied. It does not require the independence assumption. The WSR Test deals with 

pairs of observations; it is based on the differences between the matched pair of 

observations to compute its test statistic and the hypothesis is tested that Mo is zero where 

Mo is the median of the differences. Therefore, one requirement is that the measurement 

scale of the data is at least interval. The hypotheses tested that can be tested are: 

• Ho: Mo = 0 vs. Ha: Mo f. 0 

• Ho: Mo2:: 0 VS. Ha: Mo< 0 

(Two sided) 

(One sided) 
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• Ho:MosOvs.Ha:Mo >O (One sided) 

This test is further explored later on in the chapter. 

When testing more than two treatments for differences in effect, one test that is 

used is the Kruskal - Wallis Test (Kruskal and Wallis, 1953). This test is equivalent to the 

Mann - Whitney Test in the case of two treatments (Wayne, 1990). Likewise, the 

assumption of independence of samples must hold for validity of the test and the 

measurement scale should at least be ordinal. The Kruskal - Wallis Test is based on the 

location of the medians and draws inferences on the population distribution of the 

treatment effects. Daniel (Daniel, 1990) gives the hypotheses tested as follows: 

Ho: The k population distribution functions are identical; 

Ha: The k populations do not all have the same medians. 

Another test used for testing more than two treatments is the Jonckheere - Terpstra 

(JT) Test (Terpstra, 1952 & Jonckheere, 1954). Like the Kruskal - Wallis, this test also 

depends on the independence of the samples. However, the JT Test tests for differences in 

treatment effects when the effects are believed to be non-decreasing if different. This test 

provides more power when the non-decreasing assumption is true than just testing for 

inequality. The null and alternative are therefore: 

Ho: r1 = r2 = ... = 'tk 

Ho: r1 s T2 s ... s Tk (at least one inequality is strict) 

When testing several related samples, the independence assumption is violated and 

the three tests mentioned in Chapter One: Friedman (Friedman, 1937, 1940), Page's (Page, 

1963) and the Durbin (Durbin 1951) tests can be used. These tests are based on a random 

block design where experimental units considered homogeneous are grouped together to 
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form a block. Both Page's test and the Friedman test use a complete block design in which 

every treatment appears in a block. The Durbin test uses an incomplete block design so not 

every treatment appears in every block. The following section looks at the WSR, Page's 

and the Durbin Tests in detail. 

2.1. Wilcoxon Signed Rank (WSR) Test 

As mentioned earlier, the WSR (Wilcoxon, 1945) tests for differences between two 

related samples. The design of the test is such that the samples form a paired set of data, 

say (X, Y), and the test statistic is based on the difference of X and Y. There are other 

assumptions that must hold for the validity of the test as outlined by Wayne (Wayne, 

1990). 

• The pair of observations must be taken on the same subject or similar subjects (a 

form of blocking); 

• Differences, Di's, are continuous random variables and independent of each other 

• Distribution of difference must be symmetric around their median, Mn. 

• The measurement scale is at least interval 

The test statistic is calculated as follows: 

• Calculate the difference absolute value of !Di I= IYi - Xi I and rank them 

• Assign a + or - to the ranks based on the sign of the differences before taking the 

absolute value; 

• Sum the+ ranks T+, or the -- ranks T", (Wayne, 1990). These are the test statistics. 

The null hypothesis is rejected for sufficiently small values of the test statistics (the test 

statistic used depends on the alternative hypothesis). 
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2.2. Page's Test 

Page's Test (Page, 1963), as mentioned, considers non-decreasing ordered 

alternative in a Randomized Complete Block Design (RCBD). The assumptions necessary 

for Page's as listed by Daniel (Daniel, 1990) are: 

• The blocks are independent 

• Variable is continuous 

• No interaction between blocks and treatments 

• Observations may be ranked in order of magnitude 

The hypotheses are 

Ho: 'ti = 't2 = ... = 'tk 

Ho: 't1 :S 't2 :S . . . :S 'tk ( at least one inequality is strict) 

The test statistic is calculated as follows: 

• Rank all observations within a block; 

• Sum the ranks of each treatment, Rj - sum of the ranks of treatment}; 

• The test statistic is, 

L = LJ=tj x Ri, where t = total number of treatments 

Note that Page's statistic assigns 'weights' to the sum of ranks with treatments of expected 

larger magnitude having larger 'weights'. Hence, if the alternative hypothesis can be 

sufficiently supported, Lis expected to have larger values. Hence, reject the null for large L 

values. 

A standardized value of Page's test statistic can be used and is given below as Z. 

The standardized version has an asymptotic standard normal distribution under the 

assumption that the null hypothesis is true 
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L _ [bt(t: 1)2] 

z = -;:::::======== .J b(t3 - t) 2 /144(t - 1) 
where b = total number of blocks. 

2.3. Durbin Test 

The Durbin Test (Durbin, 1951) is used in a Balanced Incomplete Block Design 

(BIBO) to test for differences among treatment effects. There are two main assumptions 

with the Durbin: 

• Blocks are mutually independent 

• Observations may be ranked in order of magnitude 

Ranking and summation of the treatment ranks is similar to Page's. Treatments not 

appearing in this design are assigned a rank of 0. However, the Durbin Test is based on the 

summation of the squared sum of Ranks, i.e. L}=t Rj2. The test statistic, as given is Daniel 

(Daniel, 1990), is 

T = l2(t - l) "'t R· 2 _ 3r(t - l)(k + 1) 
rt(k - l)(k + 1)Lj=1 1 k -1 

where 

t = the total number of treatments 

k = total number of subjects per block (k < t) 

r = the number of times each treatment occurs. 

T has an asymptotically Chi Square distribution with t - l d. funder Ho for large values of 

r. 

2.4. Cao and Magel's Comparison 

Note that a BIBD with two subjects per block can be thought of as a paired 

observation within a block. In 2010, Cao conducted a simulation study comparing the 
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estimated powers of the Durbin test with the estimated powers of the WSR test when there 

were two treatments per block for the non-decreasing (or non-increasing alternative). Her 

findings were the following: 

• If at least one treatment effect is different and the treatment effects following a 

non-decreasing ( or non-increasing pattern), the WSR test is generally more 

powerful than the Durbin test. 

• The Durbin test tends to be more powerful than the WSR test when the order is 

random 

A new nonparametric test for the non-decreasing order alternative in a Balanced 

Incomplete Block Design (BIBD) is introduced in chapter 3. A simulation study is 

described in chapter 4 which compares the powers of the proposed test with existing tests. 

Results are given in chapter 5 and conclusions in chapter 6. 
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3. PROPOSED TEST STATISTIC 

This chapter examines the development of the proposed test statistic. It will look at 

the assumptions underlying the test; the development of the expected value; the variance 

and the eventual large sample asymptotic distribution of the test statistic when the null 

hypothesis is true. The distribution of ranks is used to derive the expected value of the test 

statistic and its variance. 

Throughout this chapter, the following are defined as such 

t = the total number of treatments in the experiment; 

k = the number of subjects within a block (k < t); 

b = the total number of blocks; 

r = the number oftimes a treatment appears (r < b); 

~ = the sum of the ranks of the j1'1 treatment. 

The hypotheses are 

lfo: l"I = l"2 = ... = 'tk 

Ha: l"1 = 't2 = ... = tk 

3.1. Assumptions 

The assumptions underlying the test statistic are similar to those that the Page's and 

Durbin test require as the test is a derivation from the two. These are 

• The b blocks are independent of each other 

• The observations can be ranked in order of magnitude 

• Variable of interest is continuous so theoretically there are no ties in the ranks 
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3.2. Procedure 

The first step is to rank the observations within each block. Since it is a BIBD there 

are treatments that will not have an observation. For these a rank of O (zero) is assigned 

just like in the Durbin case. The ranks are then totaled for each ofthej treatments in the 

experiment to get Rj. The test statistic is defined as follows: 

(1) 

Treatment 1 Treatment 2 ... Treatment t 

Block 1 r11 r12 ru 

Block 2 r21 r22 r21 

... 

Block b rb1 rb2 rbt 

Total R1 R2 ... Rt 

ri.i = 0 if treatment is not applied. 

The test statistic is then standardized by computing M* = ;-E (M) which asymptotically 
var (M) 

follows a standard normal distribution when the null hypothesis is true. This follows from 

the asymptotic distribution of Page's Test (Page, 1963). Rejection rule: Reject Ho ifM * > 

3.3. Expected Value E(M) and Variance 

The BIBD presents a challenge in finding a general formula for the expected values 

of the different cases. For each case oft treatments with k appearing at a time there are(!) 

unique number of blocks. The(!) is the minimum number of blocks required to form a 

BIBD. These are repeated to generate the required number of blocks in an experiment. 
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Therefore, b must be a multiple of(!). Independence of the blocks allows computation to 

be done by looking at one block. The general steps involved are 

• List the (!) unique blocks (I) 

• For each block, list the k! combinations of ranks within that block given that 

the blanks remain fixed. <2) 

• 

• 

• 

• 

Calculate Mi , the test statistic for each combination i, i = 1, ... , k! <3) 

}:t Mi (4) 
Calculate the average, M1, by 1-k1, for the expected value of block / . 

Compute the variance ofM; <5) 

The expected value and variance of the test statistic for the(!) unique blocks 

is the sum of the Mz <6) and the sum of the variances of Mi respectively. <7) 

• Finally, multiply the expected values in the above step appropriately for an 

experiment with b blocks. <8l 

3.4. Example: Three Treatments with Two Treatments Per Block 

Fort= 3 and k = 2, there are(~)= 3 unique number of blocks that form a BIBO. 

The possible ranks to be assigned are 0, 1 and 2. The following table shows the step-by­

step derivation of the expected value and variance. 

The expected value and variance for 3 blocks are 18 and 1.5 respectively. 

Therefore, if an experiment is using 30 blocks, the expected values and variance are: 

Var(M) = 1.5 x 10 = 15C9) & E(M) = 18 X 10 = 180(7). 
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Table 1. Expected Value and Variance when t = 3 and k = 2 

Treatment 1 Treatment 2 Treatment 3 Mi M, Var(M;) 

Block 1 

Block 2 

Block 3 

combination 

1 

2 

1 

2 

I 

2 

1 

2 

I 

2 

0 

0 

2 

1 

0 

0 

1 

2 

0 

0 

2 

1 

2 

1 

5 4.5 

4 

7 6 

5 

8 7.5 

7 

0.25 

I 

0.25 

(6) ( ) 

18 1.5 

In this case Treatments 3, 2 and 1 are not applied in blocks 1, 2 and 3 respectively. 

The following table lists computed values (Appendix A. tables Al to AS along with 

table 1 above). 

Table 2. Number of Unique Blocks, Expected Values and Variances 

Case 

3 treatments 2 per block 

4 treatments 2 per block 

4 treatments 3 per block 

Number of 

unique blocks 

3 

6 

4 

14 

E(M) 

18 

45 

60 

Var(M) 

1.5 

5 

13.33 



Table 2. continued 

5 treatments 2 per block 

5 treatments 3 per block 

5 treatments 4 per block 

10 

10 

5 

15 

90 

180 

150 

12.5 

50 

62.5 



4. SIMULATION STUDY 

This chapter discusses the details of a Monte Carlo Simulation study using SAS 

9.1. This process provides random samples of data in a Balanced Incomplete Block Design 

(BIBD) to be used for the different cases discussed in this paper. The goal of the 

simulations is to determine the power of the proposed test statistic and compare it to that of 

Durbin. In selected cases, the estimated powers of the Wilcoxon Signed Ranks (WSR) 

(Wilcoxon, 1945) test as found by Cao (20 IO) will also be compared to the proposed test. 

Samples are generated from three main distributions: Normal, Exponential and T 

(with three degrees of freedom). Power is then estimated for the different cases listed in 

Table 2 in chapter 3. The minimum number of blocks for the design to be balanced is first 

calculated. For example when there are 3 treatments with 2 treatments appearing per block, 

3 blocks are needed as a minimum for the design to be balanced. When there are 5 

treatments, with 3 treatments appearing per block, 10 blocks are needed for the design to 

be balanced. The minimum number of blocks with treatments appearing an equal number 

of times is first replicated to get the desired number of blocks. For instance, in the case of 

three treatments with two appearing per block, the unique blocks are replicated ten times 

resulting in a BIBD with thirty blocks. The data is simulated 10,000 times and then power 

is estimated by counting the number oftimes the test statistic rejects the null hypothesis 

divided by 10,000. This process is performed for both the Durbin and the proposed test. 

Also, several configurations of the location parameters are considered to see how power 

compares. 
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4.1. Distributions 

SAS generates data from the three distributions using two main steps. The first step 

generates the seeds to be used in the second step. Seeds tell the SAS random number 

generator where to start generating values. For instance, if seed = 0 then SAS generates a 

seed based on time since midnight and each run of the code would therefore produce a 

different set of data (Bailer, 2010 ). The SAS routine for the first step is the RANUNI. This 

tells SAS to generate random numbers from a Uniform distribution. The second step uses 

the seeds to generate data from a specific distribution. In our case, there are three specific 

distributions used. 

In order to generate values from a normal distribution, the Call RANNOR routine 

is used with the syntax 

call rannor(trtl, y ). 

The above subroutine generates a random sample of size one from a standard 

normal distribution. The symbol Trtl is the seed value andy is the name of the variable 

that stores the value that was generated. In order to generate a random sample of size n, the 

subroutine is called n times. It is noted that the seed value changes after each call. To 

create a random sample from a normal distribution with a different mean, say mu, the value 

mu is added to each value in the random sample from the standard normal. 

The Exponential distribution random numbers are generated by the Call Ranexp 

routine. The syntax for the routine is 

call ranexp( trt 1, y) 

where trtl is the seed andy stores the generated value. The mean and variance in this case 

are the same, 1. Again this routine would be called n times, the seed changing each time, to 
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create a random sample from a standard exponential distribution. If mu were then added to 

each of these values, this would simulate a random sample from an exponential with mean 

mu + 1 and variance still 1. 

The T distribution, with 3 degrees of freedom, random numbers are generated by 

the RAND routine. This requires a different method of assigning the seed value so instead 

of using the Ranuni routine, seeds are generated by the function 

Call streaminit (seed). 

The syntax for generating the treatment values is 

Y = rand ('T', 3) + mu, 

where T is the name of the distribution, 3 is the degrees of freedom and mu is the constant 

added to create different location parameters. 

4.2. Sample Sizes 

This study examines the power of both the Durbin test and the proposed test for 

various sample sizes ranging from 10 to 30. Powers are estimated based on two sample 

sizes for each case. Note that the large sample approximation version of the Durbin test is 

always used. The large sample approximation was also always used for the proposed test. 

The following table shows the number of blocks considered for both sample sizes. 

Table 3. Number of Blocks Considered 
Case 

3 treatments 2 per block 

4 treatments 2 per block 

4 treatments 3 per block 

Smaller Sample 

18 

12 

12 

12 

Larger Sample 

30 

30 

32 



Table 3. continued 
Case Smaller Sample Larger Sample 

5 treatments 2 per block 20 30 

5 treatments 3 per block 10 30 

5 treatments 4 per block 10 30 

* A sample size of IO yields dismal power hence 20 is used in order to get significant 

powers. 

4.3. Location Parameters 

As mentioned before, different location parameters are used to compare the power 

of the proposed test to that of the Durbin. Shifting the location parameters in several ways 

does this. This section looks at the case-by-case methods categorized by the number of 

treatments being tested. 

For the case with three treatments, there are five main ways used to shift the 

different location parameters, viz.: 

a. The third parameter is different from the first two, e.g. (0, 0, I); 

b. The first parameter is different from the last two, e.g. (0, 1, l); 

c. The location parameters differ with equal spacing between them, e.g. (0, 1, 

2); 

d. The location parameters differ with unequal spacing between them, e.g. (0, 

1, 3); 

e. The location parameters are ordered randomly thus violating the non 

decreasing alternatives assumption, e.g. (1, 0, 1) 
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For the case with four treatments, there are six main ways used to shift the location 

parameters, viz.: 

a. The fourth parameter is different from the others, e.g. (0, 0, 0, l); 

b. The first two parameters are equal but different from the last two which are 

also equal to each other, e.g. (0, 0, 1, 1 ); 

c. The first parameter is different from the others, e.g. (0, 1, 1, 1 ); 

d. The location parameters differ with equal spacing between them, e.g. (0, 1, 

2, 3); 

e. The location parameters differ with unequal spacing between them, e.g. 

(0, 0.5, 1.2, 1.5); 

f The location parameters are ordered randomly thus violating the non 

decreasing alternatives assumption, e.g. (1, 0, 1, 0.5); 

For the case with five treatments, there are seven main ways used to shift the 

location parameters, viz.: 

a. The fifth parameter is different from the others, e.g. (0, 0, 0, 0, 1 ); 

b. The last two parameters are equal but different from the first three, e.g. 

(0, 0, 0, 1, 1); 

c. The last three parameters are equal but different from the first two, e.g. 

(0, 0, 1, 1, 1); 

d. The first parameter is different from the others, e.g. (0, 1, 1, 1, 1); 

e. The parameters differ with equal spacing between them, e.g. (0, 1, 2, 3, 4); 

f The parameters differ with unequal spacing between them, e.g. (0, 1, 1.5, 3, 

4); 
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g. The parameters are ordered randomly violating the non decreasing 

alternatives assumption, e.g. (0, 1, 0, 0, I); 
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5. RESULTS 

This chapter discusses the findings of the Monte Carlo Simulations. The powers of 

the proposed (M), Wilcoxon Signed Rank (WSR) (Wilcoxon, 1945) and the Durbin 

(Durbin, 1951) tests are compared. The results are listed in Tables 4 to 39 at the end of this 

chapter. The results are grouped by the number of treatments being tested and the number 

of treatments appearing in each block. 

5.1. Three Treatments with Two Appearing Per Block 

5.1.1. Normal Distribution 

In the large sample case, as shown in Table 4, when the location parameters are in a 

non-decreasing pattern, M and WSR have similar powers but both are more powerful than 

the Durbin Test. When the non-decreasing assumption is violated, the M test has powers 

lower than the Durbin and often less than WSR test. For example, when the parameters are 

ordered 1, 0, 0.5, the Durbin test rejects 40.11% of the time, the WSR test 17.88% of the 

time and the M test .24% of the time. When the assumption is violated we do not want to 

reject the null hypothesis. Therefore, we want a test with low power in this case. 

The results in Table 5 show that when the sample size is small (b = 12), M tends to 

be more powerful than the Durbin Test provided the order is non-decreasing. However, 

when this assumption is violated, the Durbin Test tends be more powerful. We are looking 

for a test with this characteristic. 

5.1.2. Exponential Distribution 

When the sample size is large, Table 6 shows that the M tends to be the most 

powerful, followed by the WSR and the Durbin tests. This holds as long as the order is 

non-decreasing. When the order is no longer non-decreasing, the Durbin test becomes the 
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most powerful of the three; WSR and M suffer and have powers as low as around 2% 

compared to Durbin with around 75%. 

In the small sample size comparison between the Durbin and M, the latter tends to 

be more powerful as shown in Table 7 when the assumption is correct. For example, when 

the location parameters are 0, 0.6, 0.9, the M test rejects 39.73% of the time while the 

Durbin test rejects 26.98% of the time. When the assumption is not correct, the M test has 

very low power in the situations we considered. We want this to be the case since the 

alternative hypothesis is not true. 

5.1.3. T Distribution 

In the T distribution case, Table 8 shows that when the order is non-decreasing, M 

tends to be the most powerful followed by WSR and Durbin being the least powerful. 

Generally, when the assumption of order is violated, the Durbin Test tends to be the most 

powerful. WSR and the proposed test tend to have similar power in most cases. When the 

assumed ordering is not correct, the M test generally has powers a lot lower than the 

Durbin and close to or less than the WSR test. The one exception is when the parameters 

are (0.25, 0, 0.75). The M test rejects 20.55% of the time while the Durbin test and WSR 

test reject 16.35% and 14.22% of the time, respectively. 

When the sample size is small comparison between the proposed Test and the 

Durbin, Table 9 shows that the proposed Test is more powerful as long as the order is non­

decreasing. The Durbin Test, however, is more powerful when the order is not non­

decreasing. 
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5.2. Four Treatments with Two Appearing Per Block 

5.2.1. Normal Distribution 

Table IO shows that when the sample size is large and the order is non-decreasing, 

M and WSR generally tend to have similar powers that are higher than the Durbin test. The 

M test does have estimated powers higher than the WSR test in more cases. However, the 

Durbin test tends to the most powerful when the order assumption is violated. In a few 

cases the estimated powers of the WSR test are quite a lot higher than the estimated 

powers of the M test when the assumption is violated. 

Table 11 shows that when the sample size is small, M tends to have higher power 

than the Durbin test as long as the order assumption holds. The Durbin test has more power 

compared to M when the assumption is violated. 

5.2.2. Exponential Distribution 

The results in Table 12 show that Mis the most powerful of the three tests as long 

as the order is non-decreasing~ WSR in tum is generally more powerful than the Durbin 

test. The Durbin test, however, is the most powerful test when the order assumption is 

violated; WSR and M have small powers. When the assumption is violated, the M test 

never rejects more than 13.19% of the time in the cases considered. The WSR test has a 

higher rejection percentage than this in two cases. 

Table 13 shows the results of the power comparison between M and the Durbin 

when the sample size is small. The former is more powerful when the order is non­

decreasing but the latter has more power when the order assumption is violated. 
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5.2.3. T Distribution 

M is the most powerful test when the order is non-decreasing and the sample size is 

large while WSR tends to be more powerful than the Durbin. The Durbin test becomes the 

most powerful test of the three when the order assumption is violated. This is shown in 

Table 14. The WSR test often has higher rejection percentages than the M test when the 

assumption is violated. 

The comparison of power between M and the Durbin, when the sample size is 

small, is shown in Table 15 with the former being more powerful when the order is non­

decreasing. When the order assumption is violated, the Durbin test becomes the more 

powerful one. 

5.3. Four Treatments with Three Appearing Per Block 

5.3.1. Normal Distribution 

The results show that M is significantly more powerful than the Durbin test when 

the order is non-decreasing regardless of the sample size; as shown in both Tables 16 and 

17. However, when the order assumption is violated, the Durbin test tends to be 

significantly more powerful. 

5.3.2. Exponential Distribution 

When the distribution is Exponential, Mis still more powerful than the Durbin test 

when the order is non-decreasing regardless of the sample size. However, the Durbin test is 

significantly more powerful than M when the order is not non-decreasing. This is shown in 

Tables 18 and 19. 
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5.3.3. T Distribution 

The results show that the conclusion is the same even when the distribution is T: M 

is significantly more powerful than the Durbin when the order is non-decreasing regardless 

of the sample size; the Durbin is significantly more powerful when the order is not non­

decreasing. This is shown in Tables 20 and 21. 

5.4. Five Treatments with Two Appearing Per Block 

5.4.1. Normal Distribution 

The results in Table 22 show the same trend: Mis the most powerful followed by 

WSR and the Durbin test when the order is non-decreasing and the sample size is large. 

However, when the order is not non-decreasing, the Durbin test tends to be the most 

powerful of all three. WSR and M tend to be equally powerful. 

Table 23 shows the comparison between M and the Durbin test when the sample 

size is small. Here, M still is significantly more powerful than the Durbin provided that the 

order is non-decreasing. However, the reverse is true when the order is not non-decreasing. 

5.4.2. Exponential Distribution 

M again is significantly more powerful than WSR and the Durbin test given that 

the order is non-decreasing. WSR in tum is more powerful than the Durbin. When the 

order is not non-decreasing, however, the Durbin becomes the more powerful than the 

others. There are cases where M and WSR have high values of power albeit still smaller 

than Durbin's. This is shown in Table 24. 

Table 25 shows that Mis more powerful than the Durbin test when the order is 

non-decreasing and the sample size is small. The Durbin test tends to be more powerful 

when the order is not non-decreasing. 
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5.4.3. T Distribution 

The results are the same for the T distribution with M being the most powerful 

when order is non-decreasing. When the order is not non-decreasing, the Durbin test tends 

to be the most powerful, regardless of sample size as seen in Tables 26 and 27. 

5.5. Five Treatments with Three Appearing Per Block 

The results show that M is the most powerful of the two tests given that the order is 

non-decreasing; and the Durbin test is the most powerful when order is not non-decreasing, 

regardless of the sample size or the distribution. The results are shown in Tables 28 to 33. 

5.6. Five Treatments with Four Appearing Per Block 

Tables 34 to 39 reflect the same trend that Mis the more powerful than the Durbin 

test when the order is non-decreasing and vice versa when the order is not non-decreasing, 

regardless of the sample size. 
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Table 4. Power Comparison under Normal Distribution t = 3, k = 2 & b = 30 

111 J1l JU M% 95%CI Durbin 95%CI WSR 95%CI 
% 

Non decreasing 0 0 0 4.57 4.16 4.98 3.81 3.43 4.19 5.33 4.8 5.8 
0 0.5 1 67.27 66.35 68.19 41.66 40.69 42.63 67.21 66.29 68.13 

0 0.25 0.25 47.65 46.67 48.63 25.64 24.78 26.5 43.81 42.84 44.78 

0 0.25 1 67.42 66.5 68.34 44.78 43.81 45.75 67.05 66.13 67.97 

0 0.8 1 66.9 65.98 67.82 44.87 43.9 45.84 66.83 65.91 67.75 

0 0.3 0.5 27.51 26.63 28.39 12.51 11.86 13.16 23.14 22.31 23.98 

0 0 1 65.94 65.01 66.87 52.79 51.81 53.77 64.32 63.38 65.26 

0 1 1 65.49 64.56 66.42 53.06 52.08 54.04 64.43 63.49 65.37 

Randomly order 0 1 0 3.59 3.23 3.95 52.75 51.77 53.73 2.19 1.9 2.48 

1 0 1 4.03 3.64 4.42 53.87 52.89 54.85 2.2 1.91 2.49 
N 1 0 0.5 0.24 0.14 0.34 41.07 40.11 42.03 17.88 17.13 18.63 
00 

0.3 0.5 0 0.95 0.76 1.14 12.52 11.87 13.17 10.39 9.79 10.99 

Table 5. Power Comparison under Normal Distribution t = 3, k = 2 & b = 12 

111 J1l JU M% 95%CI 
Durbin 95% CI 
% 

Non decreasing 0 0 0 2.92 2.59 3.25 5.13 4.70 5.56 

0 0 1 27.84 26.96 28.72 23.17 22.34 24.00 

0 0.5 1 29.89 28.99 30.79 18.82 18.05 19.59 

0 1 1 27.46 26.59 28.33 22.70 21.88 23.52 

0 0.5 1.5 51.99 51.01 52.97 36.37 35.43 37.31 

Random order 0 1 0 2.68 2.36 3.00 23.30 22.47 24.13 

1 0 1 2.50 2.19 2.81 22.67 21.85 23.49 



Table 6. Power Comparison under Exponential Distribution t = 3, k = 2 & b = 30 

Jll µ2 JJ3 M% 95%CI Durbin 95%CI WSR 95%CI % 
Non decreasing 0 0 0 4.65 4.24 5.06 4.17 3.78 4.56 4.99 4.56 5.42 

0 0.5 1 87.95 87.31 88.59 67.21 66.29 68.13 79.39 78.59 80.18 
0 0.25 0.75 71.32 70.43 72.21 46.44 45.46 47.42 57.3 56.33 58.27 
0 0.25 1 86.68 86.01 87.35 69.12 68.21 70.03 78.55 77.75 79.35 
0 0.8 I 85.71 85.02 86.40 69.78 68.88 70.68 77.72 76.9 78.54 
0 0.3 0.5 47.34 46.36 48.32 24.51 23.67 25.35 32.67 31.75 33.59 
0 0 1 82.83 82.09 83.57 75.02 74.17 75.87 74.84 73.99 75.69 
0 1 1 82.67 81.93 83.41 74.95 74.10 75.80 74.89 74.04 75.74 

Random order 0 1 0 3.50 3.14 3.86 74.90 74.05 75.75 2.02 1.74 2.29 
1 0 1 3.61 3.24 3.98 74.26 73.40 75.12 1.56 1.32 1.8 

N 1 0 0.5 0.05 0.01 0.09 67.46 66.54 68.38 22.54 21.72 23.26 
'° 0.8 0 1 11.66 11.03 12.29 69.45 68.55 70.35 4.76 4.34 5.18 

0.3 0.5 0 0.40 0.28 0.52 24.91 24.06 25.76 13.13 12.47 13.79 
0.25 0 0.75 39.55 38.59 40.51 47.01 46.03 47.99 27.05 26.18 27.92 

0.25 1 0 0.45 0.32 0.58 69.31 68.41 70.21 6.51 6.02 6.99 

Table 7. Power Comparison under Exponential Distribution t = 3, k = 2 & b = 12 
111 ,a JJ3 M% 95%CI Durbin% 95% CI 

Non decreasing 0 0 0 3.20 2.86 3.54 4.99 4.56 5.42 

0 0 1 38.74 37.79 39.69 34.23 33.30 35.16 

0 1 1 39.41 38.45 40.37 34.18 33.25 35.11 

0 0.5 1 45.59 44.61 46.57 30.25 29.35 31.15 

0 0.6 0.9 39.73 38.77 40.69 26.98 26.11 27.85 



Table 7. continued 

Jll pl p3 M% 95%CI Durbin 95%CI % 

Random order 0 1 0 2.02 1.74 2.30 33.59 32.66 34.52 

1 0 1 2.03 1.75 2.31 34.97 34.04 35.90 

2 0 I 0.02 0.00 0.05 68.85 67.94 69.76 

0.25 1 0 0.81 0.63 0.99 30.40 29.50 31.30 

Table 8. Power Comearison under the T Distribution t = 3, k = 2 & b = 30 

J&l ,a p3 M% 95%CI Durbin 95%CI WSR 95%CI 
% 

Non decreasing 0 0 0 4.29 3.89 4.69 4.03 3.64 4.42 5.66 5.21 6.11 
0 0.5 1 51.12 50.14 52.10 26.77 25.90 27.64 42.25 41.28 43.22 
0 0.25 0.75 35.01 34.08 35.94 16.98 16.24 17.72 26.23 25.37 27.09 
0 0.25 1 50.77 49.79 51.75 29.11 28.22 30.00 41.47 40.50 42.44 

w 
0 0 0.8 1 50.54 49.56 51.52 29.43 28.54 30.32 41.50 40.53 42.47 

0 0.3 0.5 21.34 20.54 22.14 9.14 8.58 9.70 14.85 14.15 15.55 
0 0 1 49.23 48.25 50.21 35.56 34.62 36.50 41.52 40.55 42.49 

0 1 I 49.48 48.50 50.46 34.33 33.40 35.26 40.46 39.50 41.42 

Random order 0 1 0 4.00 3.62 4.38 35.38 34.44 36.32 3.93 3.55 4.31 
I 0 1 4.07 3.68 4.46 35.96 35.02 36.90 3.47 3.11 3.83 

1 0 0.5 0.49 0.35 0.63 27.89 27.01 28.77 12.33 11.69 12.97 

0.8 0 1 8.44 7.90 8.98 30.90 29.99 31.81 5.22 4.78 5.66 

0.3 0.5 0 1.23 1.01 1.45 9.09 8.53 9.65 8.36 7.81 8.90 
0.25 0 0.75 20.55 19.76 21.34 17.09 16.35 17.83 14.22 13.54 14.90 
0.25 1 0 1.48 1.24 1.72 29.23 28.34 30.12 5.05 4.62 5.48 



Table 9. Power Comearison under the T Distribution t = 3, k = 2 & b = 12 
pl J12 p3 M% 95%CI Durbin% 95%CI 

Non decreasing 0 0 0 2.94 2.61 3.27 5.21 4.77 5.65 

0 0.6 1.5 37.00 36.05 37.95 24.94 24.09 25.79 

0 1 2 54.63 53.65 55.61 38.26 37.31 39.21 

0 2 2 48.31 47.33 49.29 43.70 42.73 44.67 

0 0 2 48.75 47.77 49.73 44.32 43.35 45.29 

Random order 0 1 0 2.79 2.47 3.11 16.44 15.71 17.17 

1 0 1 2.45 2.15 2.75 16.77 16.04 17.50 

2.5 0 0 0.00 0.00 0.00 58.47 57.50 59.44 

0.25 1 0 1.47 1.23 1.71 14.85 14.15 15.55 

Table 10. Power Com~arison under Normal distribution t = 4, k = 2 & b = 30. 
w pl ,a p3 "4 M% 95%CI Durbin% 95%CI WSR% 95%CI - Non decreasing 0 0 0 0 4.46 4.06 4.86 4.97 4.54 5.40 5.03 4.6 5.46 

0 0.5 1 1.5 84.65 83.94 85.36 56.95 55.98 57.92 84.81 84.11 85.51 
0 0.25 0.75 1.75 91.46 90.91 92.01 73.29 72.42 74.16 91.91 91.38 92.44 
0 0.1 0.4 1.3 70.85 69.96 71.74 49.89 48.91 50.87 68.61 67.7 69.52 
0 0.8 1 1.3 69.43 68.53 70.33 44.86 43.89 45.83 68.33 67.42 69.24 
0 0.3 0.5 0.6 27.23 26.36 28.10 12.99 12.33 13.65 23.56 22.73 24.39 
0 0 1 1 68.96 68.05 69.87 48.20 47.22 49.18 63.26 62.32 64.2 
0 0 0 1 44.96 43.98 45.94 36.94 35.99 37.89 39.72 38.76 40.67 

Random order 1 0 0.5 0.8 3.68 3.31 4.05 28.41 27.53 29.29 3.23 2.88 3.58 
1 1.5 0.5 0.8 0.42 0.29 0.55 27.01 26.14 27.88 13.02 12.36 13.68 
0 1 0.1 0.5 7.60 7.08 8.12 30.36 29.46 31.26 4.41 4.01 4.81 
I 1 0 1 1.00 0.80 1.20 37.05 36.10 38.00 6.02 5.55 6.49 



Table 11. Power Coml!arison under Normal distribution t = 4, k = 2 & b = 12. 
pl µ.2 µ3 p4 M% CI Durbin% CI 

Non decreasing 0 0 0 0 5.04 3.65 4.43 2.79 2.47 3.11 

0 0 0 3 57.49 56.52 58.46 26.48 25.62 27.34 

0 0 1.5 1.5 56.89 55.92 57.86 31.12 30.21 32.03 

0 2 2 2 44.95 43.98 45.92 19.44 18.66 20.22 
0 0.7 1.4 2.1 69.62 68.72 70.52 27.13 26.26 28.00 
0 0.7 1.8 2 71.14 70.25 72.03 32.65 31.73 33.57 

Random order 3 0 0.5 3 0.71 0.55 0.87 81.27 80.51 82.03 
3 0 0.5 0 0.00 0.00 0.00 30.13 29.23 31.03 

3 0 0 0 0.00 0.00 0.00 27.04 26.17 27.91 

3 0.75 0 0 0.00 0.00 0.00 35.00 34.07 35.93 

\.,.,) 

N 
Table 12. Power Comparison under Exponential distribution t = 4, k = 2 & b = 30 

pl µ.2 µ3 p4 M% CI Durbin CI WSR 
% % CI 

Non decreasing 0 0 0 0 4.66 4.25 5.07 5.03 4.60 5.46 4.65 4.23 5.06 
0 0.5 1 1.5 94.97 94.54 95.40 76.80 75.97 77.63 91.15 90.59 91.77 
0 0.25 0.75 1.75 97.34 97.02 97.66 86.61 85.94 87.28 95.13 94.71 95.55 
0 0.1 0.4 1.3 86.64 85.97 87.31 69.75 68.85 70.65 78.13 77.32 78.94 
0 0.8 I 1.3 86.98 86.32 87.64 66.51 65.58 67.44 78.8 77.99 79.6 
0 0.3 0.5 0.6 46.56 45.58 47.54 24.03 23.19 24.87 31.6 30.69 32.51 
0 0 I 1 85.28 84.59 85.97 69.26 68.36 70.16 68.48 74.46 76.15 
0 0 0 I 60.42 59.46 61.38 55.55 54.58 56.52 49.86 48.88 50.84 



Table 12. continued 

µ.1 µ.2 µ3 p4 M% 95%CI Durbin% 95%CI WSR 95%CI % 
Random order 1 0 0.5 0.8 2.82 2.50 3.14 49.74 48.76 50.72 2.96 2.63 3.29 

1 1.5 0.5 0.8 0.16 0.08 0.24 47.61 46.63 48.59 15.13 14.42 15.83 
0 1 0.1 0.5 8.68 8.13 9.23 51.77 50.79 52.75 4.33 3.93 4.37 
1 0 0.5 0.1 0.03 0.00 0.06 51.63 50.65 52.61 28.47 27.59 29.35 
1 0 1 1 13.19 12.53 13.85 56.27 55.30 57.24 6.58 6.09 7.07 
1 I 0 1 0.75 0.58 0.92 54.86 53.88 55.84 6.66 6.17 7.15 

Table 13. Power Com(!arison under Exeonential distribution t = 4, k = 2 & b = 12 
µ.1 µ.2 µ3 p4 M% 95%CI Durbin% 95%CI 

Non decreasing 0 0 0 0 3.86 3.48 4.24 3.02 2.68 3.36 

w 0 0 0 2 46.93 45.95 47.91 21.13 20.33 21.93 
w 

47.03 46.05 48.01 22.46 21.64 23.28 0 0 1 1 

0 2 2 2 45.73 44.75 46.71 20.40 19.61 21.19 

0 1 2 3 93.96 93.49 94.43 59.17 58.21 60.13 

0 1 1.5 3 92.01 91.48 92.54 51.17 50.19 52.15 

Random order 3 0 0.5 0 0.00 0.00 0.00 34.25 33.32 35.18 

3 0 0 0 0.00 0.00 0.00 24.89 24.04 25.74 

3 0.75 0 0 0.00 0.00 0.00 42.25 41.28 43.22 

3 0 0.5 3 0.90 0.71 1.09 78.02 77.21 78.83 



Table 14. Power Comearison under the T distribution t = 4, k = 2 and b = 30. 
µ.1 µ.2 µ3 µ.4 M% 95%CI Durbin% 95%CI WSR% 95%CI 

Non decreasing 0 0 0 0 4.36 3.96 4.76 4.97 4.54 5.40 5.08 4.65 5.51 

0 0.5 1 1.5 68.34 67.43 69.25 38.26 37.31 39.21 58.03 57.06 58.99 

0 0.25 0.75 1.75 77.14 76.32 77.96 51.37 50.39 52.35 69.3 68.4 70.2 

0 0.1 0.4 1.3 54.26 53.28 55.24 32.82 31.90 33.74 44.01 43.04 44.98 
0 0.8 1 1.3 53.48 52.50 54.46 29.44 28.55 30.33 43 42.03 43.98 

0 0.3 0.5 0.6 21.50 20.69 22.31 10.13 9.54 10.72 14.83 14.13 15.53 

0 0 1 1 52.41 51.43 53.39 31.94 31.03 32.85 40.63 39.67 41.59 

0 0 0 1 34.07 33.14 35.00 24.29 23.45 25.13 25.32 24.47 26.17 

Random order 1 0 0.5 0.8 3.99 3.61 4.37 18.98 18.21 19.75 4.08 3.69 4.47 

1 1.5 0.5 0.8 0.56 0.41 0.71 18.66 17.90 19.42 9.92 9.33 10.51 

0 I 0.1 0.5 6.87 6.37 7.37 21.20 20.40 22.00 4.77 4.35 5.19 

w I 0 0.5 0.1 0.21 0.12 0.30 20.81 20.01 21.61 14.88 14.19 15.58 
~ 

Table 15. Power Comearison under the T distribution t = 4, k = 2 and b = 12. 
µ.1 µ.2 µ3 p4 M% 95%CI Durbin% 95%CI 

Non decreasing 0 0 0 0 3.88 3.50 4.26 2.81 2.49 3.13 

0 0.5 1 1.5 34.19 33.26 35.12 9.88 9.30 10.46 

0 0.25 0.75 1.75 39.68 38.72 40.64 12.22 11.58 12.86 

0 0.1 0.4 1.3 25.68 24.82 26.54 7.89 7.36 8.42 

0 0.8 1 1.3 25.63 24.77 26.49 7.25 6.74 7.76 

0 0 1 1 25.13 24.28 25.98 9.08 8.52 9.64 

Random order 3 0.75 0 0 0.00 0.00 0.00 24.19 23.35 25.03 

3 0 0 0 0.00 0.00 0.00 19.91 19.13 20.69 

3 0 0.5 3 1.85 1.59 2.11 52.24 51.26 53.22 



Table 16. Power Com(!arison under Normal distribution with t = 4, k = 3 & b = 32 
l!l µ2 p3 )14 M% 95%CI Durbin% 95%CI 

Non decreasing 0 0 0 0 5.34 4.90 5.78 4.73 4.31 5.15 
0 0.25 0.5 0.75 71.21 70.32 72.10 38.39 37.44 39.34 
0 0.25 0.75 1 92.12 91.59 92.65 70.30 69.40 71.20 
0 0 0.75 0.75 83.49 82.76 84.22 65.58 64.65 66.51 
0 0 0 1 81.54 80.78 82.30 77.22 76.40 78.04 
0 0.75 0.75 0.75 62.03 61.08 62.98 50.41 49.43 51.39 

Random order 1 0 0 0 0.00 0.00 0.00 78.48 77.67 79.29 
1 0.5 0.1 0 0.00 0.00 0.00 69.24 68.34 70.14 
0 1 0 1 51.03 50.05 52.01 89.92 89.33 90.51 
1 0.3 0.6 0.5 0.33 0.22 0.44 32.64 31.72 33.56 

w Table 17. Power Comearison under Normal distribution with t = 4, k = 3 & b = 12 
VI l!l µ2 µ3 1-14 M% 95%CI Durbin% 95%CI 

Non decreasing 0 0 0 0 4.68 4.27 5.09 3.89 3.51 4.27 
0 0.25 0.75 1 56.24 55.27 57.21 24.76 23.91 25.61 
0 0 0 1 44.26 43.29 45.23 29.67 28.77 30.57 
0 0 0.75 0.75 45.06 44.08 46.04 23.38 22.55 24.21 
0 0.75 0.75 0.75 30.44 29.54 31.34 17.14 16.40 17.88 
0 0.25 0.5 0.75 37.03 36.08 37.98 13.30 12.63 13.97 

Random order 1 0 0 0 0.04 0.00 0.08 29.68 28.78 30.58 
1 0.5 0.1 0 0.01 0.00 0.03 24.65 23.81 25.49 
0 1 0 1 23.66 22.83 24.49 41.01 40.05 41.97 
0 3 0 0.5 0.35 0.23 0.47 99.05 98.86 99.24 



Table 18. Power Com2arison under Ex2onential distribution with t = 4, k = 3 & b = 32 
1!1 p2 µ3 p4 M% 95%CI Durbin% 95%CI 

Non decreasing 0 0 0 0 5.61 5.16 6.06 4.84 4.42 5.26 
0 0.2 0.4 0.6 82.27 81.52 83.02 52.52 51.54 53.50 
0 0.2 0.45 0.5 75.37 74.53 76.21 45.38 44.40 46.36 
0 0 0.5 0.5 81.38 80.62 82.14 62.22 61.27 63.17 
0 0 0 0.5 60.43 59.47 61.39 49.53 48.55 50.51 
0 0.5 0.5 0.5 59.99 59.03 60.95 46.97 45.99 47.95 

Random order 1 0 0 0 0.00 0.00 0.00 95.71 95.31 96.11 
1 0.5 0.1 0 0.00 0.00 0.00 93.51 93.03 93.99 
0 1 0 1 66.77 65.85 67.69 98.67 98.45 98.89 
1 0.3 0.6 0.5 0.08 0.02 0.14 63.68 62.74 64.62 

w Table 19. Power Com2arison under Ex2onential distribution with t = 4, k = 3 & b = 12 
O'I 1!1 p2 µ3 p4 M% 95%CI Durbin% 95%CI 

Non decreasing 0 0 0 0 4.72 4.3 5.14 3.93 3.55 4.31 
0 0 0 1 58.93 57.97 59.89 47.18 46.20 48.16 
0 0 1 1 82.35 81.60 83.10 62.09 61.14 63.04 
0 1 1 1 58.40 57.43 59.37 46.53 45.55 47.51 
0 0.3 0.6 0.9 69.80 68.90 70.70 34.63 33.70 35.56 
0 0.3 0.5 1 72.73 71.86 73.60 38.68 37.73 39.63 

Random order I 0 0 0 0.00 0.00 0.00 46.43 45.45 47.41 
1 0.5 0.1 0 0.00 0.00 0.00 44.11 43.14 45.08 
0 1 0 1 31.02 30.11 31.93 61.97 61.02 62.92 
0 3 0 0.5 0.50 0.36 0.64 99.16 98.98 99.34 



Table 20. Power Comparison under the T distribution with t = 4, k = 3 & b = 32 
µ1 µ2 p3 µ4 Mo/o 9S%CI Durbin% 9S%CI 

Non decreasing 0 0 0 0 5.38 4.94 5.82 4.51 4.10 4.92 
0 0 0 0.75 48.48 47.50 49.46 33.75 32.82 34.68 
0 0 0.75 0.75 68.96 68.05 69.87 45.07 44.09 46.05 
0 0.75 0.75 0.75 48.47 47.49 49.45 34.77 33.84 35.70 
0 0.25 0.5 0.75 56.96 55.99 57.93 25.91 25.05 26.77 
0 0.25 0.75 1 79.77 78.98 80.56 49.01 48.03 49.99 

Random order 0 1 0 1 39.61 38.65 40.57 71.21 70.32 72.10 
1 0.3 0.6 0.5 0.67 0.51 0.83 21.51 20.70 22.32 
1 0 0 0 0.01 0.00 0.03 56.09 55.12 57.06 
1 0.5 0.1 0 0.01 0.00 0.03 48.98 48.00 49.96 

w Table 21. Power Comparison under the T distribution with t = 4, k = 3 & b = 12 
-...J pl µ2 p3 ,i4 Mo/o 9S%CI Durbin% 9S%CI 

Non decreasing 0 0 0 0 4.74 4.32 5.16 4.00 3.62 4.38 
0 0 0 0.75 22.86 22.04 23.68 11.93 11.29 12.57 
0 0 0.75 0.75 34.07 33.14 35.00 15.58 14.87 16.29 
0 0.75 0.75 0.75 22.97 22.15 23.79 11.90 11.27 12.53 
0 0.25 0.5 0.75 26.97 26.10 27.84 9.70 9.12 10.28 
0 0.25 0.75 1 41.94 40.97 42.91 16.82 16.09 17.55 

Random order 0 1 0 1 18.38 17.62 19.14 26.39 25.53 27.25 
I 0.3 0.6 0.5 1.21 1.00 1.42 8.69 8.14 9.24 
1 0 0 0 0.14 0.07 0.21 19.61 18.83 20.39 
0 3 0 0.5 0.58 0.43 0.73 86.29 85.62 86.96 



Table 22. Power Com~arison under Normal distribution t = 5, k = 2 & b = 30 
ei µ2 p3 J&4 p5 Mo/o 95%CI Durbin% 95% CI WSR % 95% CI 

Non 0 0 0 0 0 4.84 4.42 5.26 4.40 4.00 4.80 4.91 4.48 5.33 
decreasing 0 0.25 0.5 0.75 1 47.87 46.89 48.85 18.50 17.74 19.26 43.3 42.32 44.27 

0 0.1 0.3 0.5 1.5 68.01 67.10 68.92 39.15 38.19 40.11 65.64 64.71 66.57 
0 0.05 0.2 0.65 2 87.12 86.46 87.78 66.51 65.58 67.44 86.52 85.85 87.19 
0 0.8 1 1.3 1.4 66.69 65.77 67.61 34.95 34.02 35.88 63.77 62.83 64.71 
0 0.3 0.5 0.6 1 43.03 42.06 44.00 16.07 15.35 16.79 38.17 37.22 39.12 
0 0 0 1 1 59.86 58.90 60.82 35.11 34.17 36.05 54.82 53.19 55.15 
0 1 1 1 1 32.05 31.14 32.96 22.04 21.23 22.85 26.94 26.07 27.81 
0 0 0 0 31.31 30.40 32.22 22.11 21.30 22.92 26.41 25.55 27.27 

Random 1 0 0.5 0.1 0.6 1.02 0.82 1.22 19.58 18.80 20.36 5.86 5.4 6.32 
order 1 1.5 0.5 0.8 0.2 0.06 0.01 0.11 28.46 27.58 29.34 33.24 32.32 34.16 

0 1 0.1 0.5 1 22.02 21.21 22.83 26.51 25.64 27.38 15.73 15.02 16.44 
1 0 1 1 1 12.79 12.14 13.44 22.40 21.58 23.22 8.42 7.88 8.96 

w 
1 1 0 1 1 4.05 3.66 4.44 22.30 21.48 23.12 3.35 2.99 3.7 00 

Table 23. Power Comparison under Normal distribution t = 5, k = 2 & b = 20. 
µ.1 µ.2 p3 J&4 µ.5 Mo/o 95% CI Durbin% 95%CI 

Non 0 0 0 0 0 4.54 4.13 4.95 4.51 4.10 4.92 

decreasing 0 0.25 0.5 0.75 l 37.28 36.33 38.23 12.14 11.50 12.78 

0 0.1 0.3 0.5 1.5 52.42 51.44 53.40 23.20 22.37 24.03 

0 0.05 0.2 0.65 2 71.24 70.35 72.13 40.46 39.50 41.42 

0 0.8 1 1.3 1.4 51.03 50.05 52.01 21.42 20.62 22.22 

0 0.3 0.5 0.6 1 32.43 31.51 33.35 11.82 11.19 12.45 

0 0 0 1 1 46.08 45.10 47.06 22.65 21.83 23.47 

0 1 1 l 1 24.54 23.70 25.38 14.61 13.92 15.30 

0 0 0 0 1 24.79 23.94 25.64 14.20 13.52 14.88 



Table 23. continued 
pl f.ll p3 µ4 p5 M% 95%CI Durbin% 95%CI 

Random 0 2 0.5 0 2 15.56 14.85 16.27 65.17 64.24 66.10 

order I 1.5 0.5 0.8 0.2 0.05 0.01 0.09 17.63 16.88 18.38 

0 1 0.1 0.5 1 16.82 16.09 17.55 16.58 15.85 17.31 

1 0 I I 1 10.97 10.36 11.58 13.96 13.28 14.64 

1 1 0 1 1 3.52 3.16 3.88 14.18 13.50 14.86 

Table 24. Power Comparison under Exponential distribution t = 5, k = 2 & b = 30. 
µ.1 f.ll p3 µ4 J15 M% 95%CI Durbin% 95%CI WSR% 95%CI 

Non 0 0 0 0 0 4.30 3.90 4.70 4.24 3.85 4.63 5.11 4.68 5.54 
decreasing 0 0.25 0.5 0.75 I 72.19 71.31 73.07 34.73 33.80 35.66 56.6 55.63 57.57 

0 0.1 0.3 0.5 1.5 83.71 82.99 84.43 56.26 55.29 57.23 80.29 79.51 81.07 
~ 0 0.05 0.2 0.65 2 94.16 93.70 94.62 78.78 77.98 79.58 91.62 91.08 92.16 '° 

0 0.8 1 1.3 1.4 85.24 84.54 85.94 53.29 52.31 54.27 75.04 74.19 75.89 

0 0.3 0.5 0.6 1 65.70 64.77 66.63 30.94 30.03 31.85 50.34 49.36 51.32 

0 0 0 1 1 77.72 76.90 78.54 54.30 53.32 55.28 65.25 64.32 66.18 

0 I 1 1 I 44.27 43.30 45.24 34.90 33.97 35.83 34.62 33.69 35.55 

0 0 0 0 1 43.01 42.04 43.98 34.51 33.58 35.44 33.47 32.55 34.39 

Random 1 0 0.5 0.1 0.6 0.68 0.52 0.84 35.03 34.09 35.97 6.12 5.65 6.59 

order 1 1.5 0.5 0.8 0.2 0.01 0.00 0.03 47.90 46.92 48.88 43.23 42.26 44.2 

0 1 0.1 0.5 1 30.21 29.31 31.11 45.97 44.99 46.95 19.33 18.56 21.1 

1 0 l 1 1 16.54 15.81 17.27 34.91 33.98 35.84 9.43 8.86 10 

1 1 0 1 1 3.48 3.12 3.84 35.10 34.16 36.04 2.74 2.42 3.06 



Table 25. Power Comparison under Exponential distribution t = 5, k = 2 & b = 20. 
111 pl µ3 J14 µ5 M% 95%CI Durbin% 95%CI 

Non 0 0 0 0 0 4.57 4.16 4.98 4.37 3.97 4.77 

decreasing 0 0.25 0.5 0.75 1 56.15 55.18 57.12 21.61 20.80 22.42 

0 0.1 0.3 0.5 1.5 69.01 68.10 69.92 34.22 33.29 35.15 

0 0.05 0.2 0.65 2 81.96 81.21 82.71 51.53 50.55 52.51 

0 0.8 1 1.3 1.4 69.06 68.15 69.97 33.37 32.45 34.29 

0 0.3 0.5 0.6 1 50.26 49.28 51.24 18.89 18.12 19.66 

0 0 0 1 1 62.11 61.16 63.06 34.89 33.96 35.82 

0 1 1 1 1 32.41 31.49 33.33 20.71 19.92 21.50 

0 0 0 0 1 32.46 31.54 33.38 21.25 20.45 22.05 

Random 0 2 0.5 0 2 16.59 15.86 17.32 73.14 72.27 74.01 

order 1 1.5 0.5 0.8 0.2 0.04 0.00 0.08 29.52 28.63 30.41 

~ 0 1 0.1 0.5 1 23.30 22.47 24.13 29.14 28.25 30.03 
0 

1 0 1 1 1 12.88 12.22 13.54 20.42 19.63 21.21 

I 1 0 1 1 3.91 3.53 4.29 19.70 18.92 20.48 

Table 26. Power Com~arison under the T distribution t = 5, k = 2 & b = 30. 
Jll pl µ3 J14 µ5 M% 95%CI Durbin% 95%CI WSR% 95%CI 

Non 0 0 0 0 0 4.28 3.88 4.68 4.21 3.82 4.60 4.94 4.52 5.36 
decreasing 0 0.25 0.5 0.75 1 36.56 35.62 37.50 13.19 12.53 13.85 26.35 25.49 27.21 

0 0.1 0.3 0.5 1.5 52.48 51.50 53.46 25.53 24.68 26.38 41.14 40.18 42.1 

0 0.05 0.2 0.65 2 71.09 70.20 71.98 44.15 43.18 45.12 61.65 60.7 62.6 

0 0.8 1 1.3 1.4 51.32 50.34 52.30 22.82 22.00 23.64 39.94 38.98 40.9 

0 0.3 0.5 0.6 1 32.84 31.92 33.76 11.99 11.35 12.63 23.42 22.59 24.25 

0 0 0 l 1 45.85 44.87 46.83 22.52 21.70 23.34 34.42 33.49 35.35 

0 1 1 1 1 24.23 23.39 25.07 15.46 14.75 16.17 17.53 16.78 18.28 
0 0 0 0 1 24.56 23.72 25.40 15.32 14.61 16.03 16.86 16.13 17.59 



Table 26. continued 
J1l µ.2 µ3 JL4 p5 Mo/o 95% CI Durbin o/o 95% CI WSR o/o 95% CI 

Random 1 0 0.5 0.1 0.6 1.59 1.34 1.84 13.49 12.82 14.16 5.55 5.1 6 

order 1 1.5 0.5 0.8 0.2 0.14 0.07 0.21 18.09 17.34 18.84 21.67 20.86 22.48 

0 1 0.1 0.5 1 16.87 16.14 17.60 17.82 17.07 18.57 10.98 10.37 11.59 

1 0 1 1 1 11.05 10.44 11.66 15.22 14.52 15.92 7 6.5 7.5 

1 1 0 1 1 3.85 3.47 4.23 14.94 14.24 15.64 3.93 3.55 4.31 

Table 27. Power Comparison under the T distribution t = S, k = 2 & b = 20. 
Jll µ.2 µZ JL4 p5 Mo/o 95% CI Durbin o/o 95% CI 

Non 0 0 0 0 0 4.60 4.19 5.01 4.31 3.91 4.71 

decreasing 0 0.25 0.5 0.75 1 27.61 26.73 28.49 9.96 9.37 10.55 

0 0.1 0.3 0.5 1.5 39.22 38.26 40.18 16.15 15.43 16.87 
~ 0 0.05 0.2 0.65 2 55.15 54.18 56.12 26.49 25.63 27.35 - 0 0.8 1 1.3 1.4 38.40 37.45 39.35 14.90 14.20 15.60 

0 0.3 0.5 0.6 1 24.96 24.11 25.81 9.07 8.51 9.63 

0 0 0 1 1 34.44 33.51 35.37 15.41 14.70 16.12 

0 1 1 1 1 19.15 18.38 19.92 10.71 10.10 11.32 

0 0 0 0 1 19.24 18.47 20.01 10.80 10.19 11.41 

Radom 0 2 0.5 0 2 12.95 12.29 13.61 42.61 41.64 43.58 

order 1 1.5 0.5 0.8 0.2 0.32 0.21 0.43 12.95 12.29 13.61 

0 1 0.1 0.5 1 13.98 13.30 14.66 12.85 12.19 13.51 

1 0 1 1 1 10.09 9.50 10.68 10.85 10.24 11.46 

1 1 0 1 1 4.28 3.88 4.68 10.78 10.17 11.39 



Table 28. Power Comparison under Normal Distribution t = 5, k = 3 & b = 30 

µ1 µ2 µ3 1,14 1,15 M% 95%CI Durbin% 95%CI 
Non 0 0 0 0 0 4.72 4.30 5.14 4.51 4.10 4.92 

decreasing 0 0 0 0 1 60.68 59.72 61.64 55.80 54.83 56.77 
0 0 0 1 1 90.92 90.36 91.48 78.88 78.08 79.68 

0 0 1 1 1 91.17 90.61 91.73 78.60 77.80 79.40 

0 1 1 1 1 61.01 60.05 61.97 56.08 55.11 57.05 
0 0.25 0.5 0.75 1 81.63 80.87 82.39 47.82 46.84 48.80 

0 0.25 0.6 0.9 1 84.13 83.41 84.85 53.88 52.90 54.86 

Random 
0.5 0 0 0 0 0.29 0.18 0.40 15.96 15.24 16.68 

order 
0.5 0.6 0 1 0 0.71 0.55 0.87 53.12 52.14 54.10 
0.6 0.5 0.4 0.3 0.2 0.34 0.23 0.45 9.60 9.02 10.18 
0 0 0.5 0 0 4.53 4.12 4.94 15.56 14.85 16.27 

~ 
N 

Table 29. Power Com(!arison under Normal Distribution t = 5, k = 3 & b = 10 
1,11 µ2 µ3 1,14 1,15 M% 95%CI Durbin% 95%CI 

Non 0 0 0 0 0 5.39 4.95 5.83 3.33 2.98 3.68 

decreasing 0 0 0 0 1 29.45 28.56 30.34 13.63 12.96 14.30 

0 0 0 l l 53.13 52.15 54.11 21.98 21.17 22.79 

0 0 1 1 1 53.48 52.50 54.46 21.45 20.65 22.25 

0 1 1 l l 30.07 29.17 30.97 14.50 13.81 15.19 

0 0.25 0.5 0.75 1 42.48 41.51 43.45 11.54 10.91 12.17 

0 0.25 0.6 0.9 1 46.56 45.58 47.54 13.16 12.50 13.82 

Random 1 2 0 0 0 0.00 0.00 0.00 53.64 52.66 54.62 

order 0.5 0.6 0 1 0 1.94 1.67 2.21 13.57 12.90 14.24 

0.6 0.5 0.4 0.3 0.2 1.28 1.06 1.50 4.18 3.79 4.57 

0 0 0.5 0 0 4.96 4.53 5.39 5.63 5.18 6.08 



Table 30. Power Comparison under Exponential Distribution t = 5, k = 3 & b = 30 
Jll µ2 p3 J14 p5 Mo/o 95%CI Durbin% 95%CI 

Non 0 0 0 0 0 4.75 4.33 5.17 4.64 4.23 5.05 

decreasing 0 0 0 0 0.5 40.79 39.83 41.75 31.47 30.56 32.38 

0 0 0 0.5 0.5 70.81 69.92 71.70 49.06 48.08 50.04 

0 0 0.5 0.5 0.5 69.81 68.91 70.71 47.35 46.37 48.33 
0 0.5 0.5 0.5 0.5 41.35 40.38 42.32 32.09 31.18 33.00 

0 0.1 0.2 0.3 0.4 48.01 47.03 48.99 19.81 19.03 20.59 
0 0.1 0.22 0.3 0.6 68.02 67.11 68.93 35.65 34.71 36.59 

Random 0.5 0 0 0 0 0.03 0.00 0.06 31.10 30.19 32.01 

order 0.5 0.6 0 1 0 0.39 0.27 0.51 82.77 82.03 83.51 

0.6 0.5 0.4 0.3 0.2 0.02 0.00 0.05 19.75 18.97 20.53 

0 0 0.5 0 0 4.37 3.97 4.77 30.29 29.39 31.19 
.,I:>. 
w 

Table 31. Power Comparison under Exponential Distribution t = 5, k = 3 & b = 10 
µ1 µ2 p3 J14 p5 Mo/o 95%CI Durbin% 95%CI 

Non 0 0 0 0 0 5.12 4.69 5.55 3.24 2.89 3.59 

decreasing 0 0 0 0 1 38.56 37.61 39.51 20.09 19.30 20.88 

0 0 0 1 1 70.15 69.25 71.05 35.59 34.65 36.53 

0 0 1 1 1 69.81 68.91 70.71 36.67 35.73 37.61 

0 I 1 I 1 39.48 38.52 40.44 24.58 23.74 25.42 

0 0.25 0.5 0.75 1 64.52 63.58 65.46 21.22 20.42 22.02 

0 0.25 0.6 0.9 1 66.53 65.61 67.45 24.81 23.96 25.66 

Random 1 2 0 0 0 0.00 0.00 0.00 65.94 65.01 66.87 

order 0.5 0.6 0 1 0 1.18 0.97 1.39 24.94 24.09 25.79 

0.6 0.5 0.4 0.3 0.2 0.58 0.43 0.73 6.31 5.83 6.79 

0 0 0.5 0 0 5.05 4.62 5.48 8.26 7.72 8.80 



Table 32. Power Comparison under the T Distribution t = 5, k = 3 & b = 30 
)11 µ2 µ3 )14 p5 M% 95%CI Durbin% 95%CI 

Non 0 0 0 0 0 4.45 4.05 4.85 4.80 4.38 5.22 

decreasing 0 0 0 0 0.5 46.47 45.49 47.45 36.93 35.98 37.88 

0 0 0 0.5 0.5 77.17 76.35 77.99 56.58 55.61 57.55 

0 0 0.5 0.5 0.5 76.96 76.13 77.79 56.28 55.31 57.25 

0 0.5 0.5 0.5 0.5 45.67 44.69 46.65 37.24 36.29 38.19 

0 0.1 0.2 0.3 0.4 64.62 63.68 65.56 30.92 30.01 31.83 

0 0.1 0.22 0.3 0.6 69.08 68.17 69.99 36.73 35.79 37.67 

Random 0.5 0 0 0 0 0.04 0.00 0.08 36.54 35.60 37.48 

order 0.5 0.6 0 1 0 0.74 0.57 0.91 42.60 41.63 43.57 

0.6 0.5 0.4 0.3 0.2 0.01 0.00 0.03 31.04 30.13 31.95 

0 0 0.5 0 0 4.23 3.84 4.62 37.11 36.16 38.06 

t 
Table 33. Power Comparison under the T Distribution t = 5, k = 3 & b = 10 

)11 )12 µ3 )14 )15 M% 95%CI Durbin% 95%CI 
Non 0 0 0 0 0 5.12 4.69 5.55 3.50 3.14 3.86 

decreasing 0 0 0 0 1 22.82 22.00 23.64 9.80 9.22 10.38 

0 0 0 1 1 40.08 39.12 41.04 14.55 13.86 15.24 

0 0 1 1 1 40.05 39.09 41.01 14.40 13.71 15.09 

0 1 1 I 1 22.66 21.84 23.48 9.93 9.34 10.52 

0 0.25 0.5 0.75 1 32.27 31.35 33.19 8.33 7.79 8.87 

0 0.25 0.75 0.9 1 34.42 33.49 35.35 9.84 9.26 10.42 

Random 1 3 0 0 0 0.00 0.00 0.00 56.94 55.97 57.91 

order 1 2 0 0 0 0.01 0.00 0.03 33.70 32.77 34.63 

1 0 2 0 0 0.37 0.25 0.49 32.83 31.91 33.75 

0 0 1 0 0 4.56 4.15 4.97 9.68 9.10 10.26 



Table 34. Power Comparison under Normal distribution t = 5, k = 4 & b = 30 
µ.1 µ2 µ3 µ4 µ.5 M% 95%CI Durbin% 95%CI 

Non 0 0 0 0 0 5.50 5.05 5.95 5.00 4.57 5.43 

decreasing 0 0 0 0 1 80.40 79.62 81.18 81.86 81.10 82.62 

0 0 0 0.5 0.5 62.19 61.24 63.14 38.21 37.26 39.16 

0 0 0.5 0.5 0.5 62.59 61.64 63.54 37.98 37.03 38.93 

0 0.5 0.5 0.5 0.5 36.47 35.53 37.41 26.13 25.27 26.99 

0 0.2 0.4 0.6 0.8 83.83 83.11 84.55 50.69 49.71 51.67 

0 0.2 0.5 0.6 0.9 88.70 88.08 89.32 60.15 59.19 61.11 

Random 0.5 0 0 0 0 0.18 0.10 0.26 25.87 25.01 26.73 

order 0.5 0 I 0 0.2 0.62 0.47 0.77 78.31 77.50 79.12 

0.8 0.4 0.3 0.1 0 0.00 0.00 0.00 48.41 47.43 49.39 

0 0 0.3 0 1 82.26 81.51 83.01 80.39 79.61 81.17 

~ 
V, 

Table 35. Power Comparison under Normal distribution t = 5, k = 4 & b = 10 
µ.1 µ2 µ3 µ4 µ.5 M% 95%CI Durbin% 95%CI 

Non 0 0 0 0 0 5.09 4.66 5.52 3.91 3.53 4.29 

decreasing 0 0 0 0 1 40.23 39.27 41.19 26.74 25.87 27.61 

0 0 0 0.5 0.5 30.20 29.30 31.10 11.42 10.80 12.04 

0 0 0.5 0.5 0.5 29.49 28.60 30.38 12.34 11.70 12.98 

0 0.5 0.5 0.5 0.5 18.12 17.37 18.87 8.78 8.23 9.33 

0 0.2 0.4 0.6 0.8 43.25 42.28 44.22 15.23 14.53 15.93 

0 0.2 0.5 0.6 0.9 49.60 48.62 50.58 17.51 16.77 18.25 

Random 2 1 0 0 0 0.00 0.00 0.00 85.89 85.21 86.57 

order 0.5 0 1 0 0.2 1.44 1.21 1.67 25.25 24.40 26.10 

0.8 0.4 0.3 0.1 0 0.09 0.03 0.15 14.26 13.57 14.95 

0 0 0.3 0 1 40.90 39.94 41.86 25.30 24.45 26.15 



Table 36. Power Comparison under Exponential distribution t = 5, k = 4 & b = 30 
111 µ.2 µ3 Jl4 JlS M% 95%CI Durbin% 95%CI 

Non 0 0 0 0 0 5.22 4.78 5.66 4.66 4.25 5.07 

decreasing 0 0 0 0 0.25 27.16 26.29 28.03 16.74 16.01 17.47 

0 0 0 0.25 0.25 46.33 45.35 47.31 24.44 23.60 25.28 

0 0 0.25 0.25 0.25 47.47 46.49 48.45 24.85 24.00 25.70 

0 0.5 0.5 0.5 0.5 58.86 57.90 59.82 50.76 49.78 51.74 
0 0.1 0.2 0.3 0.4 65.81 64.88 66.74 31.32 30.41 32.23 

0 0.1 0.15 0.4 0.55 87.16 86.50 87.82 58.40 57.43 59.37 

Random 0.5 0 0 0 0 0.01 0.00 0.03 54.28 53.30 55.26 

order 0.5 0 1 0 0.2 0.22 0.13 0.31 97.67 97.37 97.97 

0.8 0.4 OJ 0.1 0 0.00 0.00 0.00 83.01 82.27 83.75 

0 0 0.3 0 1 95.09 94.67 95.51 97.52 97.22 97.82 

~ 
0-.. 

Table 37. Power Comparison under Exponential distribution t = 5, k = 4 & b = 10 
111 pl µ3 Jl4 JlS M% 95%CI Durbin% 95%CI 

Non 0 0 0 0 0 4.83 4.41 5.25 3.53 3.17 3.89 

decreasing 0 0 0 0 1 52.72 51.74 53.70 41.87 40.90 42.84 

0 0 0 0.5 0.5 48.37 47.39 49.35 22.48 21.66 23.30 

0 0 0.5 0.5 0.5 47.37 46.39 48.35 23.11 22.28 23.94 

0 0.5 0.5 0.5 0.5 27.54 26.66 28.42 16.42 15.69 17.15 

0 0.2 0.4 0.6 0.8 67.65 66.73 68.57 29.28 28.39 30.17 

0 0.2 0.5 0.6 0.9 73.37 72.50 74.24 34.43 33.50 35.36 

Random 0.5 0 0 0 0 0.28 0.18 0.38 14.50 13.81 15.19 

order 0.5 0 1 0 0.2 0.80 0.63 0.97 44.12 43.15 45.09 

0.8 0.4 0.3 0.1 0 0.00 0.00 0.00 27.21 26.34 28.08 

2 I 0 0 0 0.00 0.00 0.00 94.81 94.38 95.24 



Table 38. Power Comparison under the T distribution t = 5, k = 4 & b = 30 
111 ,a J13 "" 

,..s M% 95%CI Durbin% 95%CI 
Non 0 0 0 0 0 5.27 4.83 5.71 4.77 4.35 5.19 

decreasing 0 0 0 0 1 65.17 64.24 66.10 60.91 59.95 61.87 

0 0 0 1 1 92.71 92.20 93.22 81.32 80.56 82.08 

0 0 1 1 1 92.77 92.26 93.28 81.54 80.78 82.30 

0 1 1 1 1 64.88 63.94 65.82 60.76 59.80 61.72 

0 0.25 0.5 0.75 1 83.75 83.03 84.47 50.57 49.59 51.55 

0 0.25 0.75 0.9 1 87.35 86.70 88.00 59.10 58.14 60.06 

Random order 1 0 0 0 0 0.02 0 0.05 60.02 59.06 60.98 

0.8 0.2 0 1 0 0.56 0.41 0.71 66.49 65.56 67.42 

1 0.5 0.25 0.1 0 0.01 0 0.03 50.41 49.43 51.39 

~ 0 0 1 0 0 4.79 4.37 5.21 60.77 59.81 61.73 
-...J 

Table 39. Power Comparison under the T distribution t = 5, k = 4 & b = 10 
111 ,a J13 p4 ,..s M% 95%CI Durbin% 95%CI 

Non 0 0 0 0 0 4.85 4.43 5.27 4.01 3.63 4.39 

decreasing 0 0 0 0 1 30.21 29.31 31.11 17.56 16.81 18.31 

0 0 0 1 1 53.97 52.99 54.95 27.39 26.52 28.26 

0 0 1 1 1 54.35 53.37 55.33 27.73 26.85 28.61 

0 1 1 1 1 30.29 29.39 31.19 18.23 17.47 18.99 

0 0.25 0.5 0.75 I 44.04 43.07 45.01 15.06 14.36 15.76 

0 0.25 0.75 0.9 1 47.14 46.16 48.12 18.10 17.35 18.85 

Random 1 0 0 0 0 0.21 0.12 0.30 17.69 16.94 18.44 

order 0.8 0.2 0 l 0 1.38 1.15 1.61 19.86 19.08 20.64 

2 1 0 0 0 0.00 0.00 0.00 61.61 60.66 62.56 

0 0 1 0 0 4.44 4.04 4.84 18.07 17.32 18.82 



6. CONCLUSION 

The study shows that, overall, the proposed test (M) can be used to test for ordered 

alternatives in a Balanced Incomplete Block Design (BIBO). The results, however, are 

limited to the three main cases looked at: three, four and five treatments. The power of the 

test is generally good while the probability of type I error is comparable to other 

established tests at around 0.05. 

The study also compared M to the Durbin (Durbin, 1951) test. The study shows 

that Mis significantly more powerful when testing for ordered alternatives regardless of 

the underlying distribution or sample size. Furthermore, M was compared to the Durbin 

and Wilcoxon Signed Rank (WSR) (Wilcoxon, I 945) tests when testing two non­

decreasing treatment effects in a BIBO. The study shows that Mis generally more 

powerful than both WSR and the Durbin regardless of the underlying distribution; 

comparison on a small sample was not done. 

The study also shows that Mis heavily dependent on the assumption that the order 

of treatment effects is non-decreasing. When this assumption is violated, M tends to have 

very low power regardless of the underlying distribution or the sample size. This is a good 

characteristic to have because we do not want a test to reject if Ha is not true and if the 

treatment effects are not non-decreasing, Ha is not true. 
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APPENDIX A. EXPECTED V ALOES AND VARIANCES 

Table Al. Four Treatments with Two Treatments Per Block 

Fort= 4 and k = 2, there are (!) = 6 unique of blocks. The possible ranks are 0, 

1 and 2. The following table illustrates the calculation. 

t,h combination t1 t2 t3 t4 M; Mi Var(M;) 

Block 1 1 1 2 0 0 5 4.5 0.25 

2 2 1 0 0 4 

B1ock2 1 1 0 2 0 7 6 1 

2 2 0 1 0 5 

B1ock3 1 0 1 2 0 8 7.5 0.25 

2 0 2 1 0 7 

B1ock4 1 0 1 0 2 10 9 1 

2 0 2 0 1 8 

B1ock5 1 0 0 1 2 11 10.5 0.25 

2 0 0 2 1 10 

B1ock6 1 1 0 0 2 9 7.5 2.25 

2 2 0 0 1 6 

45 5 
E(M) = 45 and Var(M) = S 
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Table Al. Four Treatments with Three Treatments Per Block 

Fort= 4 and k = 3, there are (j) = 4 unique blocks. The possible ranks are 

0, 1, 2 and 3. The following table illustrates the calculation. 

l-6 combination tl t2 t3 t4 M; M, Var(M,> 
Block 1 1 2 3 0 14 12 2.000 

1 
2 1 3 2 0 13 
3 2 1 3 0 13 
4 2 3 1 0 11 
5 3 1 2 0 11 
6 3 2 1 0 10 

Block 1 
1 2 0 3 17 14 4.667 

2 
2 1 3 0 2 15 
3 2 1 0 3 16 
4 2 3 0 1 12 
5 3 1 0 2 13 
6 3 2 0 1 11 

Block 1 
1 0 2 3 19 16 4.667 

3 
2 1 0 3 2 18 
3 2 0 1 3 17 
4 2 0 3 1 15 
5 3 0 1 2 14 
6 3 0 2 1 13 

Block 1 
0 1 2 3 20 18 2.000 

4 
2 0 1 3 2 19 
3 0 2 1 3 19 
4 0 2 3 1 17 
5 0 3 1 2 17 
6 0 3 2 1 16 

60 13.3333 

E(M) = 60 and Var(M) = 13.3333 
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Table A3. Five Treatments with Two Treatments Per Block 

Fort= 5 and k = 2, there are (~) = 10 unique blocks. The possible ranks are 

0, 1 and 2. The following table illustrates the calculation. 

I 
t1 t2 t3 t4 ts M; M; Var(M;) 

combination 
Block 1 1 1 2 0 0 0 5 4.5 0.25 

2 2 1 0 0 0 4 

Block2 1 1 0 0 0 2 11 9 4 
2 2 0 0 0 1 7 

Block3 1 0 0 0 1 2 14 13.5 0.25 
2 0 0 0 2 1 13 

B1ock4 1 1 0 0 2 0 9 7.5 2.25 
2 2 0 0 1 0 6 

BlockS I 0 0 1 2 0 11 10.5 0.25 

2 0 0 2 1 0 10 

Block6 1 0 0 1 0 2 13 12 I 
2 0 0 2 0 I 11 

Block 7 I 0 I 0 0 2 12 10.5 2.25 
2 0 2 0 0 I 9 

Block 8 I 0 1 2 0 0 8 7.5 0.25 
2 0 2 1 0 0 7 

Block9 1 1 0 2 0 0 7 6 1 
2 2 0 1 0 0 5 

Block 1 0 I 0 2 0 10 9 1 
10 

2 0 2 0 1 0 8 
90 12.5 

E(M) = 90 and Var(M) = 12.5 
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Table A4. Five Treatments with Three Per Block 

Fort= 5 and k = 3, there are (~) = 10 unique blocks. The possible ranks are 

0, 1, 2 and 3. The following table illustrates the calculation. 

fh combination ti t2 t3 t4 t5 M; M, Var(Mi} 
Block 1 I I 2 3 0 0 14 12 2.000 

2 I 3 2 0 0 13 
3 2 1 3 0 0 13 
4 2 3 1 0 0 11 

5 3 1 2 0 0 11 

6 3 2 1 0 0 10 

Block2 I 1 2 0 3 0 17 14 4.667 
2 1 3 0 2 0 15 
3 2 1 0 3 0 16 
4 2 3 0 I 0 12 
5 3 1 0 2 0 13 
6 3 2 0 1 0 11 

B1ock3 1 1 0 2 3 0 19 16 4.667 
2 I 0 3 2 0 18 
3 2 0 1 3 0 17 
4 2 0 3 1 0 15 
5 3 0 1 2 0 14 
6 3 0 2 1 0 13 

B1ock4 1 0 1 2 3 0 20 18 2.000 
2 0 1 3 2 0 19 
3 0 2 1 3 0 19 
4 0 2 3 1 0 17 
5 0 3 1 2 0 17 
6 0 3 2 1 0 16 

BlockS 1 0 1 2 0 3 23 20 4.667 
2 0 1 3 0 2 21 
3 0 2 1 0 3 22 
4 0 2 3 0 1 18 
5 0 3 1 0 2 19 
6 0 3 2 0 1 17 
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Table A4. continued 

Block6 I 0 I 0 2 3 25 22 4.667 
2 0 1 0 3 2 24 
3 0 2 0 I 3 23 
4 0 2 0 3 I 21 
5 0 3 0 I 2 20 
6 0 3 0 2 I 19 

Block 7 I 0 0 I 2 3 26 24 2.000 
2 0 0 I 3 2 25 
3 0 0 2 I 3 25 
4 0 0 2 3 1 23 
5 0 0 3 I 2 23 
6 0 0 3 2 1 22 

Block8 1 1 0 2 0 3 22 18 8.000 
2 1 0 3 0 2 20 
3 2 0 1 0 3 20 
4 2 0 3 0 1 16 
5 3 0 I 0 2 16 
6 3 0 2 0 I 14 

Block9 1 1 0 0 2 3 24 20 8.667 
2 1 0 0 3 2 23 
3 2 0 0 1 3 21 
4 2 0 0 3 1 19 
5 3 0 0 1 2 17 
6 3 0 0 2 1 16 

Block 10 1 1 2 0 0 3 20 16 8.667 
2 I 3 0 0 2 17 
3 2 1 0 0 3 19 
4 2 3 0 0 1 13 
5 3 1 0 0 2 15 
6 3 2 0 0 1 12 

180 50 
E(M) = 180 and var(M) = 50 
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Table AS. Five Treatments with Four Per Block 

Fort= 5 and k = 4, there are (!) = 5 unique blocks. The possible ranks are 

0, 1, 2, 3 and 4. The following table illustrates the calculation. 

l-6 combination t1 t2 t3 t4 t5 M, M, var(Mi 
Block 1 1 1 2 3 4 0 30 25 8.333 

2 1 2 4 3 0 29 
3 1 3 2 4 0 29 
4 1 3 4 2 0 27 
5 1 4 2 3 0 27 
6 1 4 3 2 0 26 
7 2 1 3 4 0 29 
8 2 1 4 3 0 28 
9 2 3 1 4 0 27 
10 2 3 4 1 0 24 
11 2 4 1 3 0 25 
12 2 4 3 1 0 23 
13 3 1 2 4 0 27 
14 3 1 4 2 0 25 
15 3 2 1 4 0 26 
16 3 2 4 1 0 23 
17 3 4 1 2 0 22 
18 3 4 2 1 0 21 
19 4 1 2 3 0 24 
20 4 1 3 2 0 23 
21 4 2 1 3 0 23 
22 4 2 3 1 0 21 
23 4 3 1 2 0 21 
24 4 3 2 1 0 20 

27. 
Block2 1 1 2 3 0 4 34 5 14.583 

2 1 2 4 0 3 32 
3 1 3 2 0 4 33 
4 1 3 4 0 2 29 
5 1 4 2 0 3 30 
6 1 4 3 0 2 28 
7 2 1 3 0 4 33 
8 2 1 4 0 3 31 
9 2 3 1 0 4 31 
10 2 3 4 0 1 25 
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Table AS. continued 
11 2 4 1 0 3 28 
12 2 4 3 0 1 24 
13 3 1 2 0 4 31 
14 3 1 4 0 2 27 
15 3 2 1 0 4 30 
16 3 2 4 0 1 24 
17 3 4 1 0 2 24 
18 3 4 2 0 1 22 
19 4 1 2 0 3 27 

20 4 1 3 0 2 25 

21 4 2 1 0 3 26 

22 4 2 3 0 1 22 

23 4 3 1 0 2 23 

24 4 3 2 0 1 21 

B1ock3 1 I 2 0 3 4 37 30 16.667 

2 I 2 0 4 3 36 

3 I 3 0 2 4 35 
4 I 3 0 4 2 33 

5 1 4 0 2 3 32 

6 I 4 0 3 2 31 

7 2 1 0 3 4 36 
8 2 1 0 4 3 35 
9 2 3 0 1 4 32 
10 2 3 0 4 1 29 

11 2 4 0 I 3 29 
12 2 4 0 3 I 27 
13 3 1 0 2 4 33 
14 3 1 0 4 2 31 
15 3 2 0 1 4 31 

16 3 2 0 4 1 28 
17 3 4 0 I 2 25 
18 3 4 0 2 I 24 

19 4 1 0 2 3 29 
20 4 1 0 3 2 28 
21 4 2 0 1 3 27 

22 4 2 0 3 1 25 
23 4 3 0 1 2 24 

24 4 3 0 2 1 23 
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Table AS. continued 
B1ock4 1 1 0 2 3 4 39 32.5 14.583 

2 1 0 2 4 3 38 
3 1 0 3 2 4 38 
4 1 0 3 4 2 36 
5 1 0 4 2 3 36 
6 1 0 4 3 2 35 
7 2 0 1 3 4 37 
8 2 0 1 4 3 36 
9 2 0 3 1 4 35 
10 2 0 3 4 1 32 
11 2 0 4 1 3 33 
12 2 0 4 3 1 31 
13 3 0 1 2 4 34 
14 3 0 1 4 2 32 
15 3 0 2 1 4 33 
16 3 0 2 4 1 30 
17 3 0 4 1 2 29 
18 3 0 4 2 1 28 
19 4 0 1 2 3 30 
20 4 0 1 3 2 29 
21 4 0 2 1 3 29 
22 4 0 2 3 1 27 
23 4 0 3 1 2 27 
24 4 0 3 2 1 26 

B1ock5 1 0 1 2 3 4 40 35 8.333 
2 0 1 2 4 3 39 
3 0 1 3 2 4 39 
4 0 1 3 4 2 37 
5 0 1 4 2 3 37 
6 0 1 4 3 2 36 
7 0 2 1 3 4 39 
8 0 2 1 4 3 38 
9 0 2 3 1 4 37 
10 0 2 3 4 1 34 
11 0 2 4 1 3 35 
12 0 2 4 3 1 33 
13 0 3 1 2 4 37 
14 0 3 1 4 2 35 
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Table AS. continued 
15 0 3 2 1 4 36 
16 0 3 2 4 I 33 
17 0 3 4 I 2 32 
18 0 3 4 2 1 31 
19 0 4 1 2 3 34 
20 0 4 1 3 2 33 
21 0 4 2 1 3 33 
22 0 4 2 3 1 31 
23 0 4 3 1 2 31 
24 0 4 3 2 I 30 

150 62.5 
E(M) = 150 and var(M) = 62.5 
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APPENDIX B. SAS CODE FOR RANKING DATA 
************************************************************************* 
This macro ranks the data for all the cases considered. It is called by each of the other 
codes listed from Appendix III to V. The name of the macro is rankvar. 
************************************************************************* 
0/omacro rankvar(dta, vam, newdta); 

data tmpl; 
set &dta; 

idn+l; 
run; 

data temp(keep=idn y grp ); 
set tmpl; 

array dummy{*} yl-y&vam; 

do i=l to &vam; 

y=dummy { i}; 
grp=1; 
output; 

end; 

run· 
' 

proc sort data=temp; 
by idn; 

run; 

proc rank data=temp out=rankpair; 
by idn; 
vary; 

run; 

data rankpair; 
set rankpair; 

ify=. then y=O; 
run; 
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proc sort data=rankpair; 
by icln; 

run; 

proc transpose data=rankpair out=trnp prefix=r; 
by idn; 
vary; 

run; 

data &newdta( drop=idn _NAME __ LABEL_ ); 
merge tmp 1 tmp; 
by idn; 

run; 

0/omend rankvar; 

60 



APPENDIX C. SAS CODE FOR THREE POPULATIONS 
******************************************************************* 

This code generates data for 3 treatments with 2 appearing per block in a Balanced 
Incomplete Block Design for the three distributions Normal, Exponential and T (3 d.t). 
The Normal and Exponential distributions here have a variance of 1. The powers of the 
proposed test (M) and the Durbin test are calculated using a 5% significance level. 
******************************************************************* 

%macro generate32( sim,dist,t,k,r ,reps,mu l ,mu2,mu3,sigma); 

data raw32 (keep=sim rep block yl-y3); 
array trt{3} trtl-trt3; 
do i=l to 3; 

trt{i}=int(ranuni(O)*le6); 
end; 
put trtl-trt3; 

call streaminit(321); 

do sim=l to &sim; 
do rep=l to &reps; 

do block=l to 3; 
if &dist= 'normal' then do; 

call rannor(trtl ,yl ); 
yl =yl +&mul; 

call rannor(trt2 ,y2 ); 
y2=y2+&mu2; 

call rannor(trt3 ,y3 ); 
y3=y3+&mu3; 

end; 
else if &dist = 'exp' then do; 

call ranexp(trtl ,yl ); 
yl=(&mul)+yl; 

call ranexp(trt2 ,y2 ); 
y2=( &mu2)+y2; 

call ranexp(trt3 ,y3 ); 
y3=(&mu3)+y3; 

end; 
else if &dist = 't' then do; 

yl=rand('T', 3) + &mul; 
y2=rand('T', 3) + &mu2; 
y3=rand('T', 3) + &mu3; 

end; 

ifblock=l then do; yl=.; end; 
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end; 
end; 

end; 
run· 

' 

%rankvar(raw32, 3, new32); 

data n32; 
set new32 end=eof; 
by sun; 

array r{3} rl-r3; 

output; 

array sumr{3} sumrl-sumr3; 
array sumrtn { 3} sumrtn 1-sumrtn3; 

else ifblock=2 then do; y2=.; end; 
else if block=3 then do; y3=.; end; 

array sumrtd { 3} sumrtd 1-sumrtd3; 

do i=l to 3; 
if first.sim then 
do; 

sumr{i}=O; 
end; 

sumr{i}+r{i}; 
if last.sim then 

do; 
sumrtn { i }=sumr{i} *i; 

sumrtd { i }=sumr{ i} * *2; 
end; 

end; 

totRsumn=(sumrtnl + sumrtn2 + sumrtn3); 
totRsumd=(sumrtdl + sumrtd2 + sumrtd3); 

if last.sim then do; 

ar = (totRsumn - (18*&reps))/((l.5*&reps)**(l/2)); 
if ar> l.64S then pow_ ar+ 1; 

durbin = (12*(&t- 1) * totRsumd /((&r*&reps)*&t*(&k - l)*(&k + 1))) -
(3*(&r*&reps)*(&t -l)*(&k+l))/(&k-1); 

if durbin > 5.991 then pow_durbin+l; 
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output; 
end; 

if eofthen do; 

run; 

p _ ar=pow _ ar/&sim; 
p _ durbin=pow _ durbin/&sim; 
file 'C:\Documents and Settings\Alfred.Ndungu\Desktop\power32.txt' mod; 

put@l "&dist,&mul,&mu2,&mu3," p_ar "," p_durbin; 

end; 

%mend generate32; 
************************************************************************* 
This section illustrates an example of the command used to call the above macro 
generate32. 
************************************************************************* 
%generate32(10000,'normal',3,2,2,4,0,0,0,l); 

%generate32(10000,'exp',3,2,2,4,0.2S,1,0,1); 

%generate32(10000,'t',3,2,2,4,0.25,l,0,1 ); 
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APPENDIX D. SAS CODE FOR FOUR POPULATIONS 
************************************************************************* 
This code generates data for 4 treatments with 2 appearing per block in a Balanced 
Incomplete Block Design for the three distributions Normal, Exponential and T (3 d.f). 
The Normal and Exponential distributions here have a variance of l.The powers of the 
proposed test (M) and the Durbin test are calculated using a 5% significance level. 
************************************************************************* 

%macro generate4 2( sim,dist,t,k,r ,reps,mu l ,mu2,mu3,mu4,sigma); 

data raw42 (keep=sim rep block yl-y4); 
array trt{4} trtl-trt4; 

do i=l to 4; 
trt{i}=int(ranuni(O)*le6); 

end; 
put trtl-trt4; 

call streaminit(421); 

do sim=l to &sim; 
do rep= 1 to &reps; 

do block=l to 6; 
if &dist= 'normal' then do; 

call rannor(trtl ,yl ); 
yl =(&mul )+&sigma*y 1; 

call rannor(trt2 ,y2 ); 
y2=( &mu2)+&sigma*y2; 

call rannor(trt3 ,y3 ); 
y3=(&mu3)+&sigma*y3; 

call rannor(trt4 ,y4 ); 
y4=( &mu4)+&sigma*y4; 

end; 
else if &dist= 'exp' then do; 

call ranexp(trtl ,yl ); 
yl=(&mul)+yl; 

call ranexp(trt2 ,y2 ); 
y2=( &mu2)+y2; 

call ranexp(trt3 ,y3 ); 
y3=( &mu3)+y3; 

call ranexp(trt4 ,y4 ); 
y4=(&mu4)+y4; 

end; 
else if &dist = 't' then do; 

yl=rand('T', 3) + &mul; 
y2=rand('T', 3) + &mu2; 
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y3=rand('T', 3) + &mu3; 
y4=rand('T', 3) + &mu4; 

end; 

if block=l then do; yl =.; y2=.; end; 
else if block=2 then do; yl =.; y3=.; end; 
else if block=3 then do; y 1 =.; y4=.; end; 
else ifblock=4 then do; y2=.; y3=.; end; 
else ifblock=5 then do; y2=.; y4=.; end; 
else ifblock=6 then do; y3=.; y4=.; end; 

end; 
end; 

end; 
run-

' 

%rankvar(raw42, 4, new42); 

data n42; 
set new42 end=eof; 
by sim; 

array r{4} rl-r4; 

output; 

array sumr{4} sumrl-sumr4; 
array sumrtn { 4} sumrtn 1-sumrtn4; 

array sumrtd{4} sumrtdl-sumrtd4; 

do i=l to 4; 
if first.sim then 
do; 

sumr{i}=O; 
end; 

sumr{ i }+r{ i}; 
if last.sim then 

do; 
sumrtn {i }=sumr{ i} *i; 

sumrtd { i} =sumr { i} * *2; 
end; 

end; 

totRsumn=sum( of sumrtn: ); 
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totRsumd=sum( of sumrtd: ); 

iflast.sim then do; 

ar = (totRsumn - (45*&reps))/((5*&reps)**(l/2)); 
if ar>l.645 then pow_ar+l; 

durbin = (12*(&t - 1) * totRsumd /((&r*&reps)*&t*(&k - l)*(&k + 1))) -
(3*(&r*&reps)*(&t-l)*(&k+l))/(&k-1); 

if durbin > 7 .815 then pow_ durbin+ 1; 

output; 
end; 

if eofthen do; 

p _ ar=pow _ ar/&sim; 
p _ durbin=pow _ durbin/&sim; 
file 'C:\Documents and Settings\Alfred.Ndungu\Desktop\power42.txt' mod; 

put@l 11&dist,&mul,&mu2,&mu3,&mu4,11 p_ar "," p_durbin; 

end; 
run; 

%mend generate42; 

************************************************************************* 
This section illustrates the command used to call the above macro generate42. 
************************************************************************* 

%generate42(10000,'normal',4,2,3,2,0,0,0,0,l); 
%generate42(10000,'exp' ,4,2,3,2,0,0,0,0,1 ); 
%generate42(10000, 1t1 ,4,2,3,2,0,0,0,0,1 ); 
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************************************************************** 
This code generates data for 4 treatments with 3 appearing per block in a Balanced 
Incomplete Block Design for the three distributions Normal, Exponential and T (3 d.f). 
The Normal and Exponential distributions have a variance of 1. The powers of the 
proposed test (M) and the Durbin test are calculated using a 5% significance level. 
*************************************************************· 

' 

%macro generate43(sim,dist,t,k,r,reps,mul ,mu2,mu3,mu4,sigma); 

data raw43 (keep=sim rep block yl-y4); 
array trt{4} trtl-trt4; 

do i=l to 4; 
trt{i}=int(ranuni(O)*le6); 

end; 
put trtl-trt4; 

call streaminit( 431 ); 

do sim=l to &sim; 
do rep=l to &reps; 

do block=l to 4; 
if &dist= 'normal' then do; 

call rannor(trtl ,yl ); 
y 1 =( &mul )+&sigma*y 1; 

call rannor(trt2 ,y2 ); 
y2=( &mu2)+&sigma*y2; 

call rannor(trt3 ,y3 ); 
y3=(&mu3)+&sigma*y3; 

call rannor(trt4 ,y4 ); 
y4=(&mu4)+&sigma*y4; 

end; 
else if &dist = 'exp' then do; 

call ranexp(trtl ,yl ); 
yl=(&mul)+yl; 

call ranexp(trt2 ,y2 ); 
y2=( &mu2)+y2; 

call ranexp(trt3 ,y3 ); 
y3=(&mu3)+y3; 

call ranexp(trt4 ,y4 ); 
y4=(&mu4)+y4; 

end; 
else if &dist = 't' then do; 

yl=rand('T', 3) + &mul; 
y2=rand('T', 3) + &mu2; 
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y3=rand{'T', 3) + &mu3; 
y4=rand('T', 3) + &mu4; 

end; 

ifblock=l then do; yl=.; end; 
else ifblock=2 then do; y2=.; end; 
else if block=3 then do; y3=.; end; 
else ifblock=4 then do; y4=.; end; 

end; 
end; 

end; 
run· 

' 
%rankvar(raw43, 4, new43); 

data n43; 
set new43 end=eof; 
by sim; 

array r{4} rl-r4; 

output; 

array sumr{4} sumrl-sumr4; 
array sumrtn{4} sumrtnl-sumrtn4; 

array sumrtd { 4} surnrtd 1-sumrtd4; 

do i=l to 4; 
if first.sim then 

do; 
sumr{i}=O; 

end; 

sumr{i }+r{ i}; 
if last.sim then 

do; 
sumrtn{i}=sumr{i} *i; 

sumrtd{i }=sumr{ i} **2; 
end; 

end; 

totRsumn=sum( of sumrtn: ); 
totRsumd=sum( of sumrtd: ); 

if last.sim then do; 
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ar = (totRsumn - (60•&reps))/((13.3333•&reps)••(1/2)); 
if ar> 1.645 then pow_ ar+ 1; 

durbin = (12*(&t- 1) • totRsumd /((&r*&reps)•&t•(&k - l)*(&k + 1))) -
(3*(&r•&reps)*(&t -l)•(&k+l))/(&k-1); 

if durbin > 7.815 then pow_durbin+l; 

output; 
end; 

if eof then do; 

p _ ar=pow _ ar/ &sim; 
p _ durbin=pow _ durbin/&sim; 
file 'C:\Documents and Settings\Alfred.Ndungu\Desktop\power43.txt' mod; 

put@l "&dist,&mul,&mu2,&mu3,&mu4," p_ar "," p_durbin; 

end; 
run· 

' 
0/omend generate43; 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
This section illustrates an example of the command used to call the above macro 
generate43 . 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
%generate43(10000,'normal',4,3,3,3,l,0,0,0,1); 
%generate43( 10000, 'exp' ,4,3,3,3,1,0.3,0.6,0.5,1 ); 
%generate43(10000, 't' ,4,3,3,3,0,l,0,1,1 ); 
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APPENDIX E. SAS CODE FOR FIVE POPULATIONS 
************************************************************** 
This code generates data for 5 treatments with 2 appearing per block in a Balanced 
Incomplete Block Design for the three distributions Normal, Exponential and T (3 d.f). 
The Normal and Exponential distributions have a variance of I.The powers of the 
proposed test (M) and the Durbin test are calculated using a 5% significance level. 
*************************************************************· 

' 

0/omacro generate52(sim,dist,t,k,r,reps,mul ,mu2,mu3,mu4,mu5,sigma); 

data raw52 (keep=sim rep block yl-y5); 
array trt{5} trtl-trt5; 

do i=l to 5; 
trt { i} =int(ranuni(O)* 1 e6); 

end; 
put trtl-trt5; 

do sim=l to &sim; 

call strearninit( 521 ); 

do rep=l to &reps; 
do block=l to 10; 

if &dist= 'normal' then do; 
call rannor(trtl ,yl ); 

yl =(&mul)+&sigma*yl; 
call rannor(trt2 ,y2 ); 

y2=( &mu2)+&sigma*y2; 
call rannor(trt3 ,y3 ); 

y3=(&mu3)+&sigma*y3; 
call rannor(trt4 ,y4 ); 

y4=( &mu4)+&sigma*y4; 
call rannor(trt5 ,y5 ); 

y5=(&mu5)+&sigma*y5; 
end; 
else if &dist = 'exp' then do; 

call ranexp(trtl ,yl ); 
yl=(&mul)+yl; 

call ranexp(trt2 ,y2 ); 
y2=( &mu2)+y2; 

call ranexp(trt3 ,y3 ); 
y3=(&mu3)+y3; 

call ranexp(trt4 ,y4 ); 
y4=(&mu4)+y4; 

call ranexp(trt5 ,y5 ); 
y5=(&mu5)+y5; 
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end; 
else if &dist= 't' then do; 

yl=rand('T', 3) + &mul; 
y2=rand('T', 3) + &mu2; 
y3=rand('T', 3) + &mu3; 
y4=rand('T', 3) + &mu4; 
y5=rand('T', 3) + &mu5; 

end; 

ifblock=l then do; yl=.; y2=.; y3=.; end; 
else if block=2 then do; y2=.; y3=.; y4=.; end; 
else ifblock=3 then do; y3=.; y4=.; y5=.; end; 
else if block=4 then do; yl =.; y3=.; y4=.; end; 
else if block=5 then do; yl =.; y4=.; y5=.; end; 
else ifblock=6 then do; y2=.; y4=.; y5=.; end; 
else ifblock=7 then do; yl=.; y2=.; y4=.; end; 
else ifblock=8 then do; yl=.; y2=.; y5=.; end; 
else if block=9 then do; y2=.; y3=.; y5=.; end; 
else ifblock=lO then do; yl =.; y3=.; y5=.; end; 

output; 
end; 

end; 
end; 

run; 

%rankvar(raw52, 5, new52); 

data n52; 
set new52 end=eof; 
by sim; 

array r{5} rl-r5; 
array swnr{5} swnrl-swnr5; 

array sumrtn{5} sumrtnl•sumrtn5; 
array sumrtd { 5} sumrtd 1-sumrtd5; 

do i=l to 5; 
if first.sim then 
do; 

sumr{i}=O; 
end; 

swnr{ i }+r{ i}; 
if last.sim then 
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do; 
sumrtn { i }=sumr { i} * i; 

sumrtd{ i }=sumr{ i} **2; 
end; 

end; 

totRsumn=sum( of sumrtn: ); 
totR.sumd=sum( of sumrtd: ); 

iflast.sim then do; 

ar = (totR.sumn - (90*&reps))/((12.5*&reps)**(l/2)); 
if ar> 1.645 then pow_ ar+ 1; 

durbin = (ll*(&t- 1) * totRsumd /((&r*&reps)*&t*(&k - l)*(&k + 1))) -
(3*(&r*&reps)*(&t -l)*(&k+l))/(&k-1); 

if durbin > 9.488 then pow_durbin+l; 

output; 
end; 

if eof then do; 

p _ ar=pow _ ar/ &sim; 
p _ durbin=pow _ durbin/&sim; 
file 'C:\Documents and Settings\Alfred.Ndungu\Desktop\power52.txt' mod; 

put@l "&dist,&mul,&mu2,&mu3,&mu4,&mu5,11 p_ar 11 , 11 

p_durbin; 

end; 
run; 

%mend generate52; 
************************************************************************* 
This section illustrates an example the command used to call the above macro generate52. 

************************************************************************* 
%generate52(10000,'normal',S,2,4,3,0,0,0,0,0,l); 
o/ogenerate52(10000,'exp' ,5,2,4,3,0,0.25,0.6,0. 7 ,1,1 ); 
o/ogenerate52(10000,'t',5,2,4,3,0,1,l,l,l,1); 
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************************************************************** 
This code generates data for 5 treatments with 3 appearing per block in a Balanced 
Incomplete Block Design for the three distributions Normal, Exponential and T (3 d.f). 
The Normal and Exponential distributions have a variance of I.The powers of the 
proposed test (M) and the Durbin test are calculated using a 5% significance level. 
*************************************************************· 

' 

%macro generate53(sim,dist,t,k,r,reps,mul,mu2,mu3,mu4,mu5,sigma); 

data raw53 (keep=sim rep block yl-y5); 
array trt{5} trtl-trt5; 

do i=l to 5; 
trt{i }=int(ranuni(O)*le6); 

end; 
put trtl-trtS; 

do sim=l to &sim; 

call streaminit(531); 

do rep=l to &reps; 
do block= 1 to 1 O; 

if &dist = 'normal' then do; 
call rannor(trtl ,yl ); 

y 1 =( &mul )+&sigma*y 1; 
call rannor(trt2 ,y2 ); 

y2=( &mu2)+&sigma*y2; 
call rannor(trt3 ,y3 ); 

y3=( &mu3)+&sigma*y3; 
call rannor(trt4 ,y4 ); 

y4=(&mu4)+&sigma*y4; 
call rannor(trt5 ,y5 ); 

y5=( &mu5)+&sigma*y5; 
end; 
else if &dist = 'exp' then do; 

call ranexp(trtl ,yl ); 
yl=(&mul)+yl; 

call ranexp(trt2 ,y2 ); 
y2=( &mu2)+y2; 

call ranexp(trt3 ,y3 ); 
y3=( &mu3)+y3; 

call ranexp(trt4 ,y4 ); 
y4=( &mu4 )+y4; 

call ranexp(trt5 ,y5 ); 
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y5=( &mu5)+y5; 
end; 
else if &dist= 't' then do; 

yl =rand('T', 3) + &mul; 
y2=rand('T', 3) + &mu2; 
y3=rand('T', 3) + &mu3; 
y4=rand('T', 3) + &mu4; 
y5=rand('T', 3) + &mu5; 

end; 

ifblock=l then do; yl =.; y2=.; end; 
else ifblock=2 then do; yl=.; y3=.; end; 
else if block=3 then do; yl =.; y4=.; end; 
else ifblock=4 then do; yl=.; y5=.; end; 
else if block=5 then do; y2=.; y3=.; end; 
else ifblock=6 then do; y2=.; y5=.; end; 
else ifblock=7 then do; y2=.; y4=.; end; 
else ifblock=8 then do; y3=.; y4=.; end; 
else if block=9 then do; y3=.; y5=.; end; 
else ifblock=lO then do; y4=.; y5=.; end; 

output; 
end; 

end; 
end; 

run· 
' 

o/orankvar(raw53, 5, new53); 

data n53; 
set new53 end=eof; 
by sim; 

array r{5} rl-r5; 
array sumr{5} sumrl-sumr5; 

array sumrtn{5} sumrtnl-sumrtn5; 
array sumrtd { 5} sumrtd l -sumrtd5; 

do i=l to 5; 
if first.sim then 

do; 
sumr{i}=O; 

end; 

sumr{ i }+r{ i}; 
if last.sim then 
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do; 
sumrtn{i}=swnr{i}*i; 

sumrtd { i }=sumr{ i} * *2; 
end; 

end; 

totRsumn=sum( of sumrtn: ); 
totRswnd=sum(of sumrtd:); 

if last.sim then do; 

ar = (totRsumn - (180*&reps))/((50*&reps)**(l/2)); 
if ar>l.645 then pow_ar+l; 

durbin = (12*(&t - 1) * totRsumd /((&r*&reps)*&t*(&k - l)*(&k + 1)))­
(3*(&r*&reps)*(&t-1)*(&k+l))/(&k-1); 

if durbin > 9.488 then pow_durbin+l; 

output; 
end; 

if eof then do; 

p _ ar=pow __ ar/ &sim; 
p _ durbin=pow _ durbin/&sim; 
file 'C:\Documents and Settings\Alfred.Ndungu\Desktop\power53.txt' mod; 

put@l "&dist,&mul,&mu2,&mu3,&mu4,&mu5," p_ar "," 
p_durbin; 

end; 
run· 

' 

%mend generate53; 
************************************************************************* 
This section illustrates an example of the command used to call the above macro 
generate53. 
************************************************************************* 

%generate53(10000, 'normal' ,5,3,6,l ,0,0,0.5,0,0, 1 ); 
%generate53(10000,'exp',5,3,6,l,0.6,0.5,0.4,0.3,0.2,l); 
%generate53(10000, 'exp' ,5,3,6, 1,0,0,0.5,0,0, 1 ); 
%generate53(10000, 't' ,5,3,6, l,O,O,l ,0,0,l ); 
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************************************************************** 
This code generates data for 5 treatments with 4 appearing per block in a Balanced 
Incomplete Block Design for the three distributions Normal, Exponential and T (3 d.f). 
The Normal and Exponential distributions have a variance of 1. The powers of the 
proposed test (M) and the Durbin test are calculated using a 5% significance level. 
*************************************************************· • 

%macro generate54(sim,dist,t,~r,reps,mul,mu2,mu3,mu4,mu5,sigma); 

data raw54 (keep=sim rep block yl-y5); 
array trt{5} trtl-trtS; 

do i=l to 5; 
trt { i }=int(ranuni(O)*le6); 

end; 
put trtl-trtS; 

do sim=l to &sim; 

call streaminit(541); 

do rep=l to &reps; 
do block=l to 5; 

if &dist= 'normal' then do; 
call rannor(trtl ,yl ); 

yl =( &mul )+&sigma*y 1; 
call rannor(trt2 ,y2 ); 

y2=( &mu2)+&sigma*y2; 
call rannor(trt3 ,y3 ); 

y3=( &mu3)+&sigma*y3; 
call rannor(trt4 ,y4 ); 

y4=( &mu4 )+&sigma*y4; 
call rannor(trt5 ,y5 ); 

y5=(&mu5)+&sigma*y5; 
end; 
else if &dist = 'exp' then do; 

call ranexp(trtl ,yl ); 
yl=(&mul)+yl; 

call ranexp(trt2 ,y2 ); 
y2=( &mu2)+y2; 

call ranexp(trt3 ,y3 ); 
y3=(&mu3)+y3; 

call ranexp(trt4 ,y4 ); 
y4=(&mu4)+y4; 

call ranexp(trtS ,y5 ); 
y5=(&mu5)+y5; 

end; 
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else if &dist = 't' then do; 
yl =rand('T', 3) + &mul; 

y2=rand('T', 3) + &mu2; 
y3=rand('T', 3) + &mu3; 
y4=rand('T', 3) + &mu4; 
y5=rand('T', 3) + &mu5; 

end; 
end; 

end; 
run· 

' 

%rankvar(raw54, 5, new54); 

data n54; 
set new54 end=eof; 
by sim; 

array r{5} rl-r5; 

end; 

output; 

array sumr{5} sumrl-sumr5; 
array sumrtn { 5} sumrtn 1-sumrtn5; 

ifblock=l then do; yl=.; end; 
else ifblock=2 then do; y2=.; end; 
else if block=3 then do; y3=.; end; 
else if block=4 then do; y4=.; end; 
else ifblock=5 then do; y5=.; end; 

array sumrtd{5} sumrtdl-sumrtd5; 

do i=l to 5; 
if first.sim then 

do; 
sumr{i}=O; 

end; 

sumr{i}+r{i}; 
if last.sim then 

do; 
sumrtn { i }=sumr{ i} *i; 

sumrtd { i}=sumr{ i} **2; 
end; 

end; 
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totRsumn=sum( of sumrtn: ); 
totRsumd=sum( of sumrtd: ); 

if last.sim then do; 

ar = (totRsumn - (150*&reps))/((62.5*&reps)**(1/2)); 
if ar> 1.645 then pow_ ar+ 1; 

durbin = (12*(&t- 1) * totRsumd /((&r*&reps)*&t*(&k- l)*(&k + 1))) -
(3*(&r*&reps)*(&t -l)*(&k+l))/(&k-1); 

if durbin > 9.488 then pow_ durbin+ 1; 

output; 
end; 

if eof then do; 

p _ ar=pow _ ar/ &sim; 
p _ durbin=pow _ durbin/ &sim; 
file 'C:\Documents and Settings\Alfred.Ndungu\Desktop\power54.txt' mod; 

put@l "&dist,&mul,&mu2,&mu3,&mu4,&mu5," p_ar "," 
p_durbin; 

end; 
run-, 

%mend generate54; 
************************************************************************* 
This section illustrates an example of the command used to call the above macro 
generate 54. 

************************************************************************* 
%generate54(10000, 'normal',5,4,4,2,0,0,0.3,0,l,1 ); 
%generate54(10000, 'exp' ,S,4,4,2,0,0,0.3,0,1,l ); 
%generate54(10000, 't' ,S,4,4,2,9,0,l,O,O,l ); 
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