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ABSTRACT

Ndungu, Alfred Mungai, M.S., Department of Statistics, College of Science and
Mathematics, North Dakota State University, April 2011. A Nonparametric Test for the
Non-decreasing Alternative in an Incomplete Block Design. Major Professor: Dr. Rhonda
Magel.

The purpose of this paper is to present a new nonparametric test statistic for testing
against ordered alternatives in a Balanced Incomplete Block Design (BIBD). This test will
then be compared with the Durbin test which tests for differences between treatments in a
BIBD but without regard to order. For the comparison, Monte Carlo simulations were used
to generate the BIBD. Random samples were simulated from:

¢ Normal Distribution

e Exponential Distribution

¢ T distribution with three degrees of freedom
The number of treatments considered was three, four and five with all the possible
combinations necessary for a BIBD. Small sample sizes were 20 or less and large sample
sizes were 30 or more. The powers and alpha values were then estimated after 10,000
repetitions.

The results of the study show that the new test proposed is more powerful than the

Durbin test. Regardless of the distribution, sample size or number of treatments, the new

test tended to have higher powers than the Durbin test.
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1. INTRODUCTION

Nonparametric tests, compared to parametric tests, are ideal when the underlying
assumptions necessary for the parametric test are not met; for instance, the distribution of
the population violates a test assumption or when there is not enough information
regarding the population. Nonparametric tests usually offer test legitimacy with very few
assumptions. They can be used even when the distribution is unknown. There are several
advantages to using nonparametric tests outlined in Applied Nonparametric Statistics by
Wayne (1990) among which is the fact that the measurement scale required for some
nonparametric tests can be as weak as the nominal.

One common area where nonparametric tests are employed is the testing of
treatment effects. There are two basic assumptions when designing an experiment for
testing the hypothesis — whether treatment effects differ from one another. One assumes
the samples being tested are independent and the other that the samples are dependent on
one another. This paper particularly looks at the latter.

The major problem when there is dependence is that the results of the test might be
influenced by an external factor not of interest. A common term for this phenomenon is
called confounding. For instance, suppose a researcher wants to know which diet plan is
the best among several and scoring is based on the average weight loss. The Body Mass
Index (BMI) of the subjects is a significant factor. Therefore, when randomly assigning
subjects to the different diet plans, subjects with a high BMI may end up with one of the
plans thereby showing that the particular plan is the best. In order to have a better design,
one that eliminates confounding, a method called blocking is used. In blocking, subjects

are divided into homogeneous subgroups called blocks (Wayne 1990) and the application



of treatments is done in random order within the blocks. As a result each subject within the

block randomly receives a treatment. This design is called the Randomized Complete
Block Design (RCBD). There are several tests for testing differences in treatment effects
while blocking. However, we shall look at the two main ones: Friedman (Friedman, 1937,
1940) and Page’s (Page, 1963).

The Friedman Test (Friedman, 1937, 1940) tests for differences in treatment effects
using an RCBD. The treatment effects are ranked within the block thus comparisons are
only within the subgroups (Wayne 1990). Suppose a researcher wants to know whether
different over the counter medications have the same effect in reducing headaches.
Subjects suffering from the headaches are randomly given one of the medications and they
report their pain on a scale after a certain time. The next time they suffer another headache
they are randomly given one of the remaining medication and again asked to report their
pain after a certain time. Ranking is then done within the same person. The sum of the
ranks of each medication is then obtained and the test statistic is computed using the sums.

Page’s Test (Page, 1963) is used to test for differences in treatment effects also, but
it has the additional assumption that if treatment effects are not equal, they are in a non-
decreasing order. Thus, the alternative hypothesis is that the treatment effects are non-
decreasing. For instance, a research company wants to find out if higher doses of a certain
drug would cause a reduction in number of tumors. Testing is done at three levels 25mg,
50mg and 75mg. Therefore, it is believed that the number of tumors developed by subjects
at 25mg will be more than at 50mg which in turn will be higher than at 75mg. Blocking is

done based on gender and age level. Ranking is then done within the blocks as in the



Friedman case and the appropriate test statistic computed using the sum of the ranks.

Page’s, like Friedman, also uses the RCBD.

A Balanced Incomplete Block Design (BIBD) is a derivation of the RCBD.
However, due to other factors such as limited resources, the RCBD may not be ideal thus a
BIBD would be more practical. In the BIBD, only certain treatments would be applied
within a block; not all treatments are applied within a block. Therefore, each block would
have a different combination of treatments applied. However, the design is such that each
block would have the same number of treatments applied, each treatment would be applied
the same number of times, and each pair of treatments would appear the same number of
times.

The Durbin Test (Durbin, 1951), like the Friedman, tests for differences in
treatment effects. Ranking is done within a block also and the test statistic is computed
based on the sum of the treatment ranks. However, unlike the Friedman and Page’s Tests,
the Durbin Test employs a Balanced Incomplete Block Design (BIBD).

Whereas the Page’s statistic tests for ordered alternatives in an RCBD and the
Durbin tests for differences in treatment effects in a BIBD, currently there is no test for
ordered alternatives in a BIBD. The test statistic proposed in this paper thus aims to solve
this problem. The test statistic assumes that the blocks are independent and that the data
collected can be ranked in order of magnitude. The test extends the idea of Page’s Test to a
BIBD. The test also uses the ranking method used by Durbin when assigning ranks.
Ranking, in the new test, is also done within each block and the sum of ranks of the
treatments is obtained at the end. The test statistic is then computed using the sum of the

treatment ranks. Chapter three looks at the proposed test in detail.



The next chapter goes over the survey of literature where the two tests — Page’s and

Durbin - are further explored.



2. SURVEY OF LITERATURE

There are several nonparametric tests developed for testing for differences in
treatment effects (or samples); each based on different sets of assumptions. The main
assumption considered in this chapter is independence of samples tested. This chapter
briefly looks at the development of these tests starting with the basic case where two
samples are tested.

The Mann - Whitney Test (Mann and Whitney, 1947) proposed by Mann and
Whitney (Daniel, 1990), tests for differences between two treatment effects. One
assumption that must hold for validity of the test is that the samples are independent.
Furthermore, Mann - Whitney uses ranks to compute its test statistic; therefore, the
measurement scale must at least be ordinal. This test can be used for all three hypotheses:

e Hitu=nvsHitu#nm (Two sided)
e Hitznvs Hati<m (One sided)
e Hynu<tnvsHati>1 (One sided)

However, when the independence assumption does not hold and thus the two
samples are related, a test called the Wilcoxon Signed Rank (WSR) Test (Wilcoxon, 1945)
can be applied. It does not require the independence assumption. The WSR Test deals with
pairs of observations; it is based on the differences between the matched pair of
observations to compute its test statistic and the hypothesis is tested that Mp is zero where
Mp is the median of the differences. Therefore, one requirement is that the measurement
scale of the data is at least interval. The hypotheses tested that can be tested are:

e HyMp=0vs. Hy: Mp#0 (Two sided)
e Hy Mp>0vs Hya: Mp<0 (One sided)
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o Hy:Mp<Ovs. HyMp >0 (One sided)
This test is further explored later on in the chapter.

When testing more than two treatments for differences in effect, one test that is
used is the Kruskal — Wallis Test (Kruskal and Wallis, 1953). This test is equivalent to the
Mann — Whitney Test in the case of two treatments (Wayne, 1990). Likewise, the
assumption of independence of samples must hold for validity of the test and the
measurement scale should at least be ordinal. The Kruskal — Wallis Test is based on the
location of the medians and draws inferences on the population distribution of the
treatment effects. Daniel (Daniel, 1990) gives the hypotheses tested as follows:

Hy: The & population distribution functions are identical;

H.: The k populations do not all have the same medians.

Another test used for testing more than two treatments is the Jonckheere — Terpstra
(JT) Test (Terpstra, 1952 & Jonckheere, 1954). Like the Kruskal — Wallis, this test also
depends on the independence of the samples. However, the JT Test tests for differences in
treatment effects when the effects are believed to be non-decreasing if different. This test
provides more power when the non-decreasing assumption is true than just testing for
inequality. The null and alternative are therefore:

Hoti=n2=... =%«

Ho: 11 €12 € ... <1¢(at least one inequality is strict)

When testing several related samples, the independence assumption is violated and
the three tests mentioned in Chapter One: Friedman (Friedman, 1937, 1940), Page’s (Page,
1963) and the Durbin (Durbin 1951) tests can be used. These tests are based on a random

block design where experimental units considered homogeneous are grouped together to



form a block. Both Page’s test and the Friedman test use a complete block design in which
every treatment appears in a block. The Durbin test uses an incomplete block design so not
every treatment appears in every block. The following section looks at the WSR, Page’s
and the Durbin Tests in detail.
2.1. Wilcoxon Signed Rank (WSR) Test
As mentioned earlier, the WSR (Wilcoxon, 1945) tests for differences between two

related samples. The design of the test is such that the samples form a paired set of data,
say (X, Y), and the test statistic is based on the difference of X and Y. There are other
assumptions that must hold for the validity of the test as outlined by Wayne (Wayne,
1990).

¢ The pair of observations must be taken on the same subject or similar subjects (a

form of blocking);

¢ Differences, D;’s, are continuous random variables and independent of each other

¢ Distribution of difference must be symmetric around their median, Mp.

¢ The measurement scale is at least interval
The test statistic is calculated as follows:

o Calculate the difference absolute value of |D; |= |Y; — X; | and rank them

e Assign a + or — to the ranks based on the sign of the differences before taking the

absolute value;

e Sum the + ranks T", or the — ranks T", (Wayne, 1990). These are the test statistics.

The null hypothesis is rejected for sufficiently small values of the test statistics (the test

statistic used depends on the alternative hypothesis).



2.2. Page’s Test
Page’s Test (Page, 1963), as mentioned, considers non-decreasing ordered
alternative in a Randomized Complete Block Design (RCBD). The assumptions necessary
for Page’s as listed by Daniel (Daniel, 1990) are:
e The blocks are independent
e Variable is continuous
e No interaction between blocks and treatments
e Observations may be ranked in order of magnitude
The hypotheses are
Hetu=n=... =u
Ho: 11 €12 € ... <1 (at least one inequality is strict)
The test statistic is calculated as follows:
e Rank all observations within a block;
¢ Sum the ranks of each treatment, R; — sum of the ranks of treatment j;
o The test statistic is,
L= ¥'_,jXR;, wheret = total number of treatments
Note that Page’s statistic assigns ‘weights’ to the sum of ranks with treatments of expected
larger magnitude having larger ‘weights’. Hence, if the alternative hypothesis can be
sufficiently supported, L is expected to have larger values. Hence, reject the null for large L
values.
A standardized value of Page’s test statistic can be used and is given below as Z.
The standardized version has an asymptotic standard normal distribution under the

assumption that the null hypothesis is true



L [bt(t + 1)2]
Z= 4 where b = total number of blocks.
Jb(3 — t)2/144(t — 1)

2.3. Durbin Test
The Durbin Test (Durbin, 1951) is used in a Balanced Incomplete Block Design

(BIBD) to test for differences among treatment effects. There are two main assumptions
with the Durbin:

¢ Blocks are mutually independent

e Observations may be ranked in order of magnitude
Ranking and summation of the treatment ranks is similar to Page’s. Treatments not
appearing in this design are assigned a rank of 0. However, the Durbin Test is based on the
summation of the squared sum of Ranks, i.e. Z§=1 Rj?. The test statistic, as given is Daniel
(Daniel, 1990), is

_12(t-1) £, 3rt—-1)(k+1)
Tortk-Dk+ D)Ly 7 k—1

where
t = the total number of treatments

k = total number of subjects per block (k <t)

il

r the number of times each treatment occurs.

T has an asymptotically Chi Square distribution with t — 1 d. funder H, for large values of
r.

2.4. Cao and Magel’s Comparison

Note that a BIBD with two subjects per block can be thought of as a paired

observation within a block. In 2010, Cao conducted a simulation study comparing the



estimated powers of the Durbin test with the estimated powers of the WSR test when there
were two treatments per block for the non-decreasing (or non-increasing alternative). Her
findings were the following:
¢ If at least one treatment effect is different and the treatment effects following a
non-decreasing (or non-increasing pattern), the WSR test is generally more
powerful than the Durbin test.
e The Durbin test tends to be more powerful than the WSR test when the order is
random
A new nonparametric test for the non-decreasing order alternative in a Balanced
Incomplete Block Design (BIBD) is introduced in chapter 3. A simulation study is
described in chapter 4 which compares the powers of the proposed test with existing tests.

Results are given in chapter S and conclusions in chapter 6.
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3. PROPOSED TEST STATISTIC

This chapter examines the development of the proposed test statistic. It will look at
the assumptions underlying the test; the development of the expected value; the variance
and the eventual large sample asymptotic distribution of the test statistic when the null
hypothesis is true. The distribution of ranks is used to derive the expected value of the test
statistic and its variance.

Throughout this chapter, the following are defined as such

t = the total number of treatments in the experiment;

k = the number of subjects within a block (k <t);

b = the total number of blocks;

r = the number of times a treatment appears (r <b);

R; = the sum of the ranks of the j" treatment.

The hypotheses are
H()i T1=Ty ™~ ... =Tk
Hai T1h =Ty~ ... — Tk

3.1. Assumptions
The assumptions underlying the test statistic are similar to those that the Page’s and

Durbin test require as the test is a derivation from the two. These are
e The b blocks are independent of each other
e The observations can be ranked in order of magnitude

e Variable of interest is continuous so theoretically there are no ties in the ranks

11



3.2. Procedure

The first step is to rank the observations within each block. Since it is a BIBD there
are treatments that will not have an observation. For these a rank of 0 (zero) is assigned
just like in the Durbin case. The ranks are then totaled for each of the j treatments in the

experiment to get R;. The test statistic is defined as follows:

M=Xi_,jxR; (D
Treatment 1 Treatment 2 Treatment t
Block 1 I 2 It
Block 2 21 2 I
Block b Tbl T2 Tt
Total R, R» R,

r;j= 0 if treatment is not applied.

The test statistic is then standardized by computing M* = ?ﬁ which asymptotically

follows a standard normal distribution when the null hypothesis is true. This follows from
the asymptotic distribution of Page’s Test (Page, 1963). Rejection rule: Reject Hp if M * >
Z,.

3.3. Expected Value £(M) and Variance

The BIBD presents a challenge in finding a general formula for the expected values

of the different cases. For each case of 7 treatments with k appearing at a time there are (;)

unique number of blocks. The (t) is the minimum number of blocks required to form a

k

BIBD. These are repeated to generate the required number of blocks in an experiment.

12



Therefore, b must be a multiple of (t

k)' Independence of the blocks allows computation to

be done by looking at one block. The general steps involved are
. t . )
e List the ( k) unique blocks

o For each block, list the k! combinations of ranks within that block given that
the blanks remain fixed. @

e Calculate M; , the test statistic for each combinationi, i=1, ..., k! ®

z{" Li Mi

e Calculate the average, M,, by ==— ! for the expected value of block 7.

e Compute the variance of M;
. . t .
o The expected value and variance of the test statistic for the ( k) unique blocks

is the sum of the M; ® and the sum of the variances of M, respectively. "
¢ Finally, multiply the expected values in the above step appropriately for an
experiment with b blocks. ®

3.4. Example: Three Treatments with Two Treatments Per Block
For =3 and & = 2, there are(g) = 3 unique number of blocks that form a BIBD.

The possible ranks to be assigned are 0, 1 and 2. The following table shows the step-by-
step derivation of the expected value and variance.

The expected value and variance for 3 blocks are 18 and 1.5 respectively.
Therefore, if an experiment is using 30 blocks, the expected values and variance are:

Var(M) = 15 x10=15® & E(M) = 18 x 10 = 180,

13



Table 1. Expected Value and Variance when t = 3 and k = 2

P
Treatment 1 Treatment2 Treatment3 M; M; Var(M,)
combination
[§3) (2) G & ©)
Block 1 1 1 2 0 5 45 0.25
2 2 1 0 4
Block 2 1 1 0 2 7 6 1
2 2 0 1 5
Block 3 1 0 1 2 8 175 0.25
2 0 2 1 7
) (@)
18 1.5

In this case Treatments 3, 2 and 1 are not applied in blocks 1, 2 and 3 respectively.
The following table lists computed values (Appendix A. tables Al to AS along with
table 1 above).

Table 2. Number of Unique Blocks, Expected Values and Variances

Number of
Case E(M) Var(M)
unique blocks
3 treatments 2 per block 3 18 1.5
4 treatments 2 per block 6 45 5
4 treatments 3 per block 4 60 13.33

14



Table 2. continued

S treatments 2 per block 10 90 12.5
5 treatments 3 per block 10 180 50
S treatments 4 per block 5 150 62.5

15



4. SIMULATION STUDY

This chapter discusses the details of a Monte Carlo Simulation study using SAS
9.1. This process provides random samples of data in a Balanced Incomplete Block Design
(BIBD) to be used for the different cases discussed in this paper. The goal of the
simulations is to determine the power of the proposed test statistic and compare it to that of
Durbin. In selected cases, the estimated powers of the Wilcoxon Signed Ranks (WSR)
(Wilcoxon, 1945) test as found by Cao (2010) will also be compared to the proposed test.

Samples are generated from three main distributions: Normal, Exponential and T
(with three degrees of freedom). Power is then estimated for the different cases listed in
Table 2 in chapter 3. The minimum number of blocks for the design to be balanced is first
calculated. For example when there are 3 treatments with 2 treatments appearing per block,
3 blocks are needed as a minimum for the design to be balanced. When there are S
treatments, with 3 treatments appearing per block, 10 blocks are needed for the design to
be balanced. The minimum number of blocks with treatments appearing an equal number
of times is first replicated to get the desired number of blocks. For instance, in the case of
three treatments with two appearing per block, the unique blocks are replicated ten times
resulting in a BIBD with thirty blocks. The data is simulated 10,000 times and then power
is estimated by counting the number of times the test statistic rejects the null hypothesis
divided by 10,000. This process is performed for both the Durbin and the proposed test.
Also, several configurations of the location parameters are considered to see how power

compares.
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4.1. Distributions

SAS generates data from the three distributions using two main steps. The first step
generates the seeds to be used in the second step. Seeds tell the SAS random number
generator where to start generating values. For instance, if seed = 0 then SAS generates a
seed based on time since midnight and each run of the code would therefore produce a
different set of data (Bailer, 2010). The SAS routine for the first step is the RANUNI. This
tells SAS to generate random numbers from a Uniform distribution. The second step uses
the seeds to generate data from a specific distribution. In our case, there are three specific
distributions used.

In order to generate values from a normal distribution, the Call RANNOR routine
is used with the syntax

call rannor(trtl, y ).

The above subroutine generates a random sample of size one from a standard
normal distribution. The symbol 777/ is the seed value and y is the name of the variable
that stores the value that was generated. In order to generate a random sample of size n, the
subroutine is called n times. It is noted that the seed value changes after each call. To
create a random sample from a normal distribution with a different mean, say mu, the value
mu is added to each value in the random sample from the standard normal.

The Exponential distribution random numbers are generated by the Call Ranexp
routine. The syntax for the routine is

call ranexp(trtl, y)
where #rt] is the seed and y stores the generated value. The mean and variance in this case

are the same, 1. Again this routine would be called n times, the seed changing each time, to

17



create a random sample from a standard exponential distribution. If mu were then added to
each of these values, this would simulate a random sample from an exponential with mean
mu + 1 and variance still 1.

The T distribution, with 3 degrees of freedom, random numbers are generated by
the RAND routine. This requires a different method of assigning the seed value so instead
of using the Ranuni routine, seeds are generated by the function

Call streaminit (seed).
The syntax for generating the treatment values is
Y =rand (‘T’, 3) + mu,
where T is the name of the distribution, 3 is the degrees of freedom and mu is the constant
added to create different location parameters.
4.2. Sample Sizes

This study examines the power of both the Durbin test and the proposed test for
various sample sizes ranging from 10 to 30. Powers are estimated based on two sample
sizes for each case. Note that the large sample approximation version of the Durbin test is
always used. The large sample approximation was also always used for the proposed test.

The following table shows the number of blocks considered for both sample sizes.

Table 3. Number of Blocks Considered

Case Smaller Sample Larger Sample
3 treatments 2 per block 12 30
4 treatments 2 per block 12 30
4 treatments 3 per block 12 32

18



Table 3. continued

Case Smaller Sample Larger Sample
5 treatments 2 per block 20" 30
5 treatments 3 per block 10 30
5 treatments 4 per block 10 30

* A sample size of 10 yields dismal power hence 20 is used in order to get significant
powers.
4.3. Location Parameters
As mentioned before, different location parameters are used to compare the power
of the proposed test to that of the Durbin. Shifting the location parameters in several ways
does this. This section looks at the case-by-case methods categorized by the number of
treatments being tested.
For the case with three treatments, there are five main ways used to shift the
different location parameters, viz.:
a. The third parameter is different from the first two, e.g. (0, 0, 1);
b. The first parameter is different from the last two, e.g. (0, 1, 1);
c. The location parameters differ with equal spacing between them, e.g. (0, 1

2);
d. The location parameters differ with unequal spacing between them, e.g. (O,
1,3);

e. The location parameters are ordered randomly thus violating the non

decreasing alternatives assumption, e.g. (1, 0, 1)
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For the case with four treatments, there are six main ways used to shift the location

parameters, Viz.:

a. The fourth parameter is different from the others, e.g. (0, 0, 0, 1);

b. The first two parameters are equal but different from the last two which are
also equal to each other, e.g. (0,0, 1, 1);

c. The first parameter is different from the others, e.g. (0, 1, 1, 1);

d. The location parameters differ with equal spacing between them, e.g. (0, 1,
2,3);

e. The location parameters differ with unequal spacing between them, e.g.
(0,05, 1.2, 1.5);

f.  The location parameters are ordered randomly thus violating the non
decreasing alternatives assumption, e.g. (1, 0, 1, 0.5);

For the case with five treatments, there are seven main ways used to shift the
location parameters, viz.:

a. The fifth parameter is different from the others, e.g. (0, 0, 0, 0, 1);

b. The last two parameters are equal but different from the first three, e.g.
(0,0,0,1, 1),

c. The last three parameters are equal but different from the first two, e.g.
0,0, 1,1, 1)

d. The first parameter is different from the others, e.g. (0, 1, 1, 1, 1);

e. The parameters differ with equal spacing between them, e.g. (0, 1, 2, 3, 4);

f. The parameters differ with unequal spacing between them, e.g. (0, 1, 1.5, 3,

4);
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g. The parameters are ordered randomly violating the non decreasing

alternatives assumption, e.g. (0, 1, 0, 0, 1);
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S. RESULTS

This chapter discusses the findings of the Monte Carlo Simulations. The powers of
the proposed (M), Wilcoxon Signed Rank (WSR) (Wilcoxon, 1945) and the Durbin
(Durbin, 1951) tests are compared. The results are listed in Tables 4 to 39 at the end of this
chapter. The results are grouped by the number of treatments being tested and the number
of treatments appearing in each block.

5.1. Three Treatments with Two Appearing Per Block
5.1.1. Normal Distribution

In the large sample case, as shown in Table 4, when the location parameters are in a
non-decreasing pattern, M and WSR have similar powers but both are more powerful than
the Durbin Test. When the non-decreasing assumption is violated, the M test has powers
lower than the Durbin and often less than WSR test. For example, when the parameters are
ordered 1, 0, 0.5, the Durbin test rejects 40.11% of the time, the WSR test 17.88% of the
time and the M test .24% of the time. When the assumption is violated we do not want to
reject the null hypothesis. Therefore, we want a test with low power in this case.

The results in Table 5 show that when the sample size is small (b = 12), M tends to
be more powerful than the Durbin Test provided the order is non-decreasing. However,
when this assumption is violated, the Durbin Test tends be more powerful. We are looking
for a test with this characteristic.

S.1.2. Exponential Distribution

When the sample size is large, Table 6 shows that the M tends to be the most

powerful, followed by the WSR and the Durbin tests. This holds as long as the order is

non-decreasing. When the order is no longer non-decreasing, the Durbin test becomes the
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most powerful of the three; WSR and M suffer and have powers as low as around 2%
compared to Durbin with around 75%.

In the small sample size comparison between the Durbin and M, the latter tends to
be more powerful as shown in Table 7 when the assumption is correct. For example, when
the location parameters are 0, 0.6, 0.9, the M test rejects 39.73% of the time while the
Durbin test rejects 26.98% of the time. When the assumption is not correct, the M test has
very low power in the situations we considered. We want this to be the case since the
alternative hypothesis is not true.

5.1.3. T Distribution

In the T distribution case, Table 8 shows that when the order is non-decreasing, M
tends to be the most powerful followed by WSR and Durbin being the least powerful.
Generally, when the assumption of order is violated, the Durbin Test tends to be the most
powerful. WSR and the proposed test tend to have similar power in most cases. When the
assumed ordering is not correct, the M test generally has powers a lot lower than the
Durbin and close to or less than the WSR test. The one exception is when the parameters
are (0.25, 0, 0.75). The M test rejects 20.55% of the time while the Durbin test and WSR
test reject 16.35% and 14.22% of the time, respectively.

When the sample size is small comparison between the proposed Test and the
Durbin, Table 9 shows that the proposed Test is more powerful as long as the order is non-
decreasing. The Durbin Test, however, is more powerful when the order is not non-

decreasing.
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5.2. Four Treatments with Two Appearing Per Block
5.2.1. Normal Distribution

Table 10 shows that when the sample size is large and the order is non-decreasing,
M and WSR generally tend to have similar powers that are higher than the Durbin test. The
M test does have estimated powers higher than the WSR test in more cases. However, the
Durbin test tends to the most powerful when the order assumption is violated. In a few
cases the estimated powers of the WSR test are quite a lot higher than the estimated
powers of the M test when the assumption is violated.

Table 11 shows that when the sample size is small, M tends to have higher power
than the Durbin test as long as the order assumption holds. The Durbin test has more power
compared to M when the assumption is violated.

5.2.2. Exponential Distribution

The results in Table 12 show that M is the most powerful of the three tests as long
as the order is non-decreasing; WSR in turn is generally more powerful than the Durbin
test. The Durbin test, however, is the most powerful test when the order assumption is
violated; WSR and M have small powers. When the assumption is violated, the M test
never rejects more than 13.19% of the time in the cases considered. The WSR test has a
higher rejection percentage than this in two cases.

Table 13 shows the results of the power comparison between M and the Durbin
when the sample size is small. The former is more powerful when the order is non-

decreasing but the latter has more power when the order assumption is violated.
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5.2.3. T Distribution

M is the most powerful test when the order is non-decreasing and the sample size is
large while WSR tends to be more powerful than the Durbin. The Durbin test becomes the
most powerful test of the three when the order assumption is violated. This is shown in
Table 14. The WSR test often has higher rejection percentages than the M test when the
assumption is violated.

The comparison of power between M and the Durbin, when the sample size is
small, is shown in Table 15 with the former being more powerful when the order is non-
decreasing. When the order assumption is violated, the Durbin test becomes the more
powerful one.

5.3. Four Treatments with Three Appearing Per Block
5.3.1. Normal Distribution

The results show that M is significantly more powerful than the Durbin test when
the order is non-decreasing regardless of the sample size; as shown in both Tables 16 and
17. However, when the order assumption is violated, the Durbin test tends to be
significantly more powerful.

5.3.2. Exponential Distribution

When the distribution is Exponential, M is still more powerful than the Durbin test
when the order is non-decreasing regardless of the sample size. However, the Durbin test is
significantly more powerful than M when the order is not non-decreasing. This is shown in

Tables 18 and 19.
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5.3.3. T Distribution

The results show that the conclusion is the same even when the distribution is T: M

is significantly more powerful than the Durbin when the order is non-decreasing regardless
of the sample size; the Durbin is significantly more powerful when the order is not non-
decreasing. This is shown in Tables 20 and 21.
5.4. Five Treatments with Two Appearing Per Block

5.4.1. Normal Distribution

The results in Table 22 show the same trend: M is the most powerful followed by
WSR and the Durbin test when the order is non-decreasing and the sample size is large.
However, when the order is not non-decreasing, the Durbin test tends to be the most
powerful of all three. WSR and M tend to be equally powerful.

Table 23 shows the comparison between M and the Durbin test when the sample
size is small. Here, M still is significantly more powerful than the Durbin provided that the
order is non-decreasing. However, the reverse is true when the order is not non-decreasing.

5.4.2. Exponential Distribution

M again is significantly more powerful than WSR and the Durbin test given that
the order is non-decreasing. WSR in turn is more powerful than the Durbin. When the
order is not non-decreasing, however, the Durbin becomes the more powerful than the
others. There are cases where M and WSR have high values of power albeit still smaller
than Durbin’s. This is shown in Table 24.

Table 25 shows that M is more powerful than the Durbin test when the order is
non-decreasing and the sample size is small. The Durbin test tends to be more powerful

when the order is not non-decreasing.
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5.4.3. T Distribution

The results are the same for the T distribution with M being the most powerful
when order is non-decreasing. When the order is not non-decreasing, the Durbin test tends
to be the most powerful, regardless of sample size as seen in Tables 26 and 27.

5.5. Five Treatments with Three Appearing Per Block

The results show that M is the most powerful of the two tests given that the order is
non-decreasing; and the Durbin test is the most powerful when order is not non-decreasing,
regardless of the sample size or the distribution. The results are shown in Tables 28 to 33.
5.6. Five Treatments with Four Appearing Per Block

Tables 34 to 39 reflect the same trend that M is the more powerful than the Durbin

test when the order is non-decreasing and vice versa when the order is not non-decreasing,

regardless of the sample size.
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Table 4. Power Comparison under Normal Distributiont=3,k=2& b=30

Durbin
[1)

pul g2 pu3 M% 95% CI e 95% CI WSR 95% CI
Non decreasing 0 0 0 457 416 498 3.81 343  4.19 5.33 4.8 5.8
0 05 1 67.27 66.35 68.19 41.66 40.69 4263 67.21 66.29 68.13
0 0.25 025 4765 46.67 48.63 25.64 2478 26.5 43.81 4284 4478
0 025 1 6742 66.5 68.34 44.78 43.81 45.75 67.05 66.13 6797
0 08 1 669 6598 67.82 44.87 439 4584 66.83 6591 67.75
0 03 05 2751 26.63 2839 12.51 11.86 13.16 23.14 2231 2398
0 0 1 6594 65.01 66.87 52.79 51.81 53.77 6432 6338 65.26
0 1 1 6549 64.56 66.42 53.06 52.08 54.04 64.43 6349 6537
Randomly order 0 1 0 3.59 3.23 3.95 52.75 51.77 53.73 2.19 1.9 2.48
1 0 1 4.03 364 442 53.87 52.89 54.85 22 1.91 2.49
1 0 0.5 024 0.14 034 41.07 40.11 42.03 17.88 17.13 18.63
0.3 05 0 0.95 0.76 1.14 12.52 11.87 13.17 1039 9.79 10.99
Table 5. Power Comparison under Normal Distribution t=3, k=2 & b=12
pl w2 g3 M%  95%CI ourbin 5% cr
Non decreasing 0 0 0 292 2.59 3.25 5.13 4.70 5.56
0 0 1 27.84 2696 28.72 23.17 2234  24.00
0 0.5 1 29.89 28.99 30.79 18.82 18.05 19.59
0 1 1 2746 26.59 2833 22.70 21.88 23.52
0 0.5 1.5 5199 51.01 5297 36.37 3543 3731
Random order 0 1 0 2.68 236 3.00 23.30 2247 2413
1 0 1 2.50  2.19 2.81 22.67 21.85 23.49
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Table 6. Power Comparison under Exponential Distribution t=3, k=2 & b =30

pl @2 w3 M% 95% CI g,“"’“‘ 95% CI WSR 95% CI
Non decreasing 0 0 0 465 424 506 417 378 456 499 456 542
0 05 1 8795 8731 8859 6721 6629 68.13 7939 7859 80.18
0 025 075 7132 7043 T221 4644 4546 47.42 573 5633 5827
0 025 1 8668 8601 8735  69.12 6821 70.03 7855 7775 7935
0 08 1 8571 8502 8640 6978 68.88 70.68 7772 769  78.54
0 03 05 4734 4636 4832 2451 2367 2535 3267 3175 33.59
0 0 1 828 8209 8357 7502 7417 75.87 7484 7399  75.69
0 1 1 8267 8193 8341 7495 7410 75.80 7489 7404 7574
Random order 0 1 0 350 314 386 7490 7405 7575 202 174 229
I 0 1 361 324 398 7426 7340  75.12 156 132 18
I 0 05 005 00l 009 67.46  66.54 6338 254 2172 2326
08 0 1 1166 1103 1229 6945 6855 7035 476 434 518
03 05 0 040 028 052 2491 2406 2576 1313 1247 1379
025 0 075 3955 3859 4051 4701 4603 47.99 2705 2618 2792
025 1 0 045 032 058 6931 6841 7021 651 602 699

Table 7. Power Comparison under Exponential Distribution t=3,k=2& b=12

pl p2 pu3 M % 95% CI Durbin % 95% CI
Non decreasing 0 0 0 320 286 3.54 4.99 456 542
0 0 1 38.74 37.79 39.69 34.23 33.30 35.16
0 1 1 39.41 3845 4037 34.18 33.25 3s5.11
0 05 1 4559 44.61 46.57 30.25 29.35 31.15
0 06 09 39.73 3877 40.69 26.98 26.11 27.85
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Table 7. continued

pl w2 g3 M% 95% CI g’“""“ 95% CI
Randomorder 0 1 0 202 174 230 3359 32.66 34.52
10 1 203 175 231 3497 3404 3590
2 0 1 002 000 005 68.85 6794  69.76
025 1 0 081 063 099 3040 2950  31.30
Table 8. Power Comparison under the T Distributiont=3, k=2 & b =30
pl 2 3 M%  95%CI Srbin 95% CI WSR  95% CI
Nondecreasing 0 0 0 429 389 469 403 364 442 566 521 611
0 05 1  SLI2 5014 5210 2677 2590 27.64 4225 4128 4322
0 025 075 3501 3408 3594 1698 1624 1772 2623 2537 27.09
0 025 1 5077 4979 5175 201 2822 3000 4147 4050 42.44
0 08 1 5054 4956 5152 2943 2854 3032 4150 40.53 42.47
0 03 05 2134 2054 2214 914 858 970 1485 1415 1555
0 0 1 4923 4825 5021 3556 3462 3650  41.52 4055 42.49
0 1 1 4948 4850 5046 3433 3340 3526 4046 39.50 41.42
Randomorder 0 1 0 400 362 438 3538 3444 3632 393 355 431
1 0 1 407 368 446 3596 3502 3690 347 311  3.83
I 0 05 049 035 063 2789 2701 2877 1233 1169 1297
08 0 1 844 790 898 3090 2999 3181 522 478 566
03 05 0 123 101 145 9.09 853  9.65 836 7.81 890
025 0 075 2055 1976 2134  17.09 1635 17.83 1422 1354 14.90
025 1 0 148 124 172 2923 2834 3012 505 462 548
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Table 9. Power Comparison under the T Distribution t=3, k=2 & b=12

131 P2 W3 M% 95% CI Durbin % 95% CI
Non decreasing 0 0 0 294 26l 3.27 5.21 4.77 5.65
0 06 1.5 37.00 36.05 37.95 24.94 24.09 25.79
0 1 2 5463 53.65 55.61 38.26 37.31 39.21
0 2 2 48.31 4733 49.29 43.70 42.73 44.67
0 0 2 48.75 47.77 49.73 4432 43.35 45.29
Random order 0 1 0 2.79 247 3.11 16.44 15.71 17.17
1 0 1 2.45 2.15 2.75 16.77 16.04 17.50
25 ¢ 0 0.00 0.00 0.00 58.47 57.50 59.44
025 1 0 1.47 1.23 1.71 14.85 14.15 15.55
Table 10. Power Comparison under Normal distribution t=4, k=2 & b =30.
pt g2 w3 W M% 95% CI Durbin % 95% CI WSR % 95% CI
Non decreasing 0 0 0 0 4.46 406 4.86 4.97 454 540 5.03 4.6 5.46
0 05 1 1.5 84.65 8394 85.36 56.95 5598 57.92 84.81 84.11 85.51
0 025 075 1.75 9146 9091 92.01 73.29 7242 74.16 91.91 91.38 92.44
0 01 04 13 7085 6996 71.74 49.89 4891 50.87 68.61 67.7 69.52
0 08 1 1.3 6943 68.53 7033 44.86 43.89 45.83 68.33 67.42 69.24
0 03 05 06 2723 2636 28.10 12.99 1233 13.65 23.56 22.73 24.39
0 o 1 1 68.96 68.05 69.87 48.20 4722 49.18 63.26 6232 64.2
0 o 0 1 4496 4398 4594 36.94 3599 37.89 39.72 38.76 40.67
Random order 1 05 08 3.68 331 4.05 28.41 27.53 29.29 3.23 2.88 3.58
1 15 05 08 042 029 055 27.01 26.14 27.88 13.02 1236 13.68
0 1 0.1 05 7.60 7.08 8.12 30.36 2946 31.26 441 401 481
1 1 0 1 1.00 0.80 1.20 37.05 36.10 38.00 6.02 5.55 649
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Table 11. Power Comparison under Normal distributiont=4, k=2 & b =12.

nml 2 p3 M M% CI Durbin % cI

Non decreasing 0 0 0 0 5.04 3.65 443 2.79 247 3.11
0 0 0 3 5749 56.52 58.46 26.48 2562 2734
0 0 1.5 1.5 5689 5592 5786 31.12 30.21  32.03
0 2 2 2 4495 4398 4592 19.44 18.66 20.22
0 0.7 14 21 6962 68.72 70.52 27.13 2626 28.00
0 0.7 18 2 71.14 7025 72.03 32.65 31.73 33.57

Random order 3 0 05 3 0.71 0.55 0.87 81.27 80.51 82.03
3 0 05 0 0.00 0.00 0.00 30.13 2923 31.03
3 0 0 0 0.00 0.00 0.00 27.04 26.17 2791
3 075 0 0 0.00 0.00 0.00 35.00 34.07 3593

Table 12. Power Comparison under Exponential distributiont=4,k=2 & b=30
pl p2 u3 ud M% CI g)urbm CI \o?/\:SR -

Non decreasing 0 0 0 0 4.66 4.25 5.07 5.03 4.60 5.46 4.65 423 5.06
0 05 1 1.5 9497 9454 9540 76.80 75.97 77.63 91.15 90.59 91.77
0 025 075 175 9734 97.02 97.66 86.61 85.94 87.28 95.13 94.71 95.55
0 0.t 0.4 1.3 86.64 8597 8731 69.75 68.85 70.65 78.13 7732 78.94
0 038 1 1.3 8698 8632 87.64 66.51 65.58 67.44 78.8 7799 79.6
0 03 05 06 4656 4558 47.54 24.03 23.19 24.87 31.6 30.69 32.51
0 0 1 1 8528 84.59 8597 69.26 68.36 70.16 68.48 74.46 76.15
0 0 0 1 6042 5946 61.38 55.55 54.58 56.52 49.86 48.88 50.84
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Table 12. continued

wl p2 p3 p4 M%  95%CI Durbin %  95% CI Yo es%cr
Randomorder 10 05 08 282 250 3.4 4974 2876 5072 296 263 329
I 15 05 08 016 008 024 476l 4663 4859 1513 1442 1583
0 1 01 05 868 813 923 51.77 5079 5275 433 393 437
1 0 05 01 003 000 006 5163 50.65 5261 2847 27.59 2935
1 0 1 1 1319 1253 1385 5627 5530 5724 658 609 7.07
I 10 1 075 058 092 54.86 5388 5584 666 617 1S

Table 13. Power Comparison under Exponential distributiont=4, k=2 & b =12

pl B2 w3 M M% 95% CI Durbin % 95% CI
Non decreasing 0 0 0 0 386 348 424 3.02 268 336
0 0 0 2 4693 4595 4791 21.13 2033 2193
6 0 1 1 47.03 46.05 48.01 22.46 21.64 23.28
0o 2 2 2 45.73 4475 46.71 20.40 19.61 21.19
0 1 2 3 93.96 93.49 94.43 59.17 5821 60.13
0 1 1.5 3 92.01 9148 9254 51.17 50.19  52.15
Random order 3 0 05 0 0.00 0.00 0.00 34.25 3332 35.18
3 0 0 0 000 0.00 0.00 24.89 24.04 2574
3 075 0 0 000 000 0.00 42.25 4128 4322
3 0 05 3 090 0.71 1.09 78.02 7721 78.83
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Table 14. Power Comparison under the T distribution t=4, k=2 and b = 30.

pl 2 p3 4 M% 95%CI Durbin % 95% CI WSR % 95% CI
Non decreasing 0 0 0 0 436 3.96 4.76 497 4.54 5.40 5.08 4.65 5.51
0 0.5 i 1.5 6834 6743 69.25 38.26 37.31 39.21 58.03 57.06 58.99
0 025 0.75 1.75 77.14 7632 77.96 51.37 50.39 52.35 69.3 68.4 70.2
0 0.1 0.4 1.3 5426 53.28 55.24 32.82 31.90 33.74 44 .01 43.04 4498
0 0.8 1 1.3 53.48 52.50 54.46 29.44 28.55 30.33 43 42.03 4398
0 0.3 0.5 0.6 21.50 2069 2231 10.13 9.54 10.72 14.83 14.13 15.53
0 0 1 1 5241 5143 53.39 31.94 31.03 32.85 40.63 39.67 41.59
0 0 0 1 34.07 33.14 35.00 24.29 23.45 25.13 25.32 2447 26.17
Random order 1 0 0.5 0.8 3.99 3.61 437 18.98 18.21 19.75 4.08 3.69 4.47
1 1.5 05 038 0.56 0.41 0.71 18.66 17.90 19.42 992 9.33 10.51
0 1 0.1 0.5 6.87 6.37 7.37 21.20 20.40 22.00 4.77 4.35 5.19
1 0 05 01 0.21 0.12 0.30 20.81 20.01 21.61 14.88 14.19 15.58
Table 15. Power Comparison under the T distribution t=4,k=2 and b =12.
pl 2 B3 M M% 95% CI Durbin % 95% CI
Non decreasing 0 0 0 0 3.88 3.50 4.26 2.81 2.49 3.13
0 0.5 1 1.5 34,19 3326 35.12 9.88 9.30 10.46
0 025 075 1.75 3968 38.72 40.64 12.22 11.58 12.86
0 01 04 1.3 25.68 2482 26.54 7.89 7.36 8.42
0 0.8 1 1.3 25.63 2477 2649 7.25 6.74 7.76
0 0 1 1 25.13 2428 25098 9.08 8.52 9.64
Random order 3 075 0 0 0.00 0.00 0.00 24.19 23.35 25.03
3 0 0 0 0.00 0.00 0.00 19.91 19.13 20.69
3 0 05 3 1.85 1.59 2.11 52.24 51.26 53.22
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Table 16. Power Comparison under Normal distribution witht=4, k=3 & b=32

pl g2 pn3 né M % 95% CI Durbin % 95% CI
Non decreasing 0 0 0 0 5.34 4.90 5.78 4.73 431 5.15
0 0.25 0.5 0.75 71.21 70.32 72.10 38.39 37.44 39.34
0 0.25 0.75 1 92.12 91.59 92.65 70.30 69.40 71.20
0 0 0.75 0.75 83.49 82.76 84.22 65.58 64.65 66.51
0 0 0 1 81.54 80.78 82.30 77.22 76.40 78.04
0 0.75 0.75 0.75 62.03 61.08 62.98 50.41 49.43 51.39
Random order 1 0 0 0 0.00 0.00 0.00 78.48 77.67 79.29
1 0.5 0.1 0 0.00 0.00 0.00 69.24 68.34 70.14
0 1 0 1 51.03 50.05 52.01 89.92 89.33 90.51
1 03 0.6 0.5 0.33 0.22 0.44 32.64 31.72 33.56
w> _Table 17. Power Comparison under Normal distribution with t =4, k=3 & b =12
pl  p2 pn3 pd M % 95% CI Durbin % 95% CI
Non decreasing 0 0 0 0 4.68 4.27 5.09 3.89 3.51 4.27
0 0.25 0.75 1 56.24 55.27 57.21 24.76 23.91 25.61
0 0 0 1 44.26 43.29 45.23 29.67 28.77 30.57
0 0 0.75 0.75 45.06 44.08 46.04 23.38 22.55 24.21
0 0.75 0.75 0.75 30.44 29.54 31.34 17.14 16.40 17.88
0 0.25 0.5 0.75 37.03 36.08 37.98 13.30 12.63 13.97
Random order 1 0 0 0 0.04 0.00 0.08 29.68 28.78 30.58
1 0.5 0.1 0 0.01 0.00 0.03 24.65 23.81 25.49
0 1 0 1 23.66 22.83 24.49 41.01 40.05 41.97
0 3 0 0.5 0.35 0.23 047 99.05 98.86 99.24
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Table 18. Power Comparison under Exponential distribution witht=4, k=3 & b =32

pl g2 3 M M% 95% CI Durbin % 95% CI
Non decreasing 0 0 0 0 5.61 5.16 6.06 4.84 4.42 5.26
0 02 04 0.6 8227 81.52 83.02 52.52 51.54 53.50
0 02 045 0.5 75.37 74.53 76.21 45.38 44.40 46.36
0 0 0.5 0.5 81.38 80.62 82.14 62.22 61.27 63.17
0 0 0 0.5 60.43 59.47 61.39 49.53 48.55 50.51
0 05 05 0.5 59.99 59.03 60.95 46.97 45.99 47.95
Random order 1 0 0 0 0.00 0.00 0.00 95.71 95.31 96.11
1 0.5 0.1 0 0.00 0.00 0.00 93.51 93.03 93.99
0 1 0 1 66.77 65.85 67.69 98.67 98.45 98.89
1 03 06 0.5 0.08 0.02 0.14 63.68 62.74 64.62
Table 19. Power Comparison under Exponential distribution witht=4, k=3 & b=12
pl 2  p3 M M% 95% CI Durbin % 95% CI
Non decreasing 0 0 0 0 4.72 4.3 5.14 3.93 3.55 431
0 0 0 1 58.93 57.97 59.89 47.18 46.20 48.16
0 0 1 1 82.35 81.60 83.10 62.09 61.14 63.04
o 1 1 1 58.40 57.43 59.37 46.53 45.55 47.51
0 03 06 09 69.80 68.90 70.70 34.63 33.70 35.56
0 03 05 1 72.73 71.86 73.60 38.68 37.73 39.63
Random order 1 0 0 0 0.00 0.00 0.00 46.43 45.45 4741
1 0.5 0.1 0 0.00 0.00 0.00 44.11 43.14 45.08
0 1 0 1 31.02 30.11 31.93 61.97 61.02 62.92
0 3 0 0.5 0.50 0.36 0.64 99.16 98.98 99.34
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Table 20. Power Comparison under the T distribution witht=4, k=3 & b=32

wl 2 u3 pd M % 95% CI Durbin % 95% CI
Non decreasing 0 0 0 0 5.38 4.94 5.82 4.51 4.10 4.92
0 0 0 0.75 48.48 47.50 49.46 33.75 32.82 34.68
0 0 0.75 0.75 68.96 68.05 69.87 45.07 44.09 46.05
0 0.75 0.75 0.75 4847 47.49 49.45 34.77 33.84 35.70
0 0.25 0.5 0.75 56.96 55.99 57.93 2591 25.05 26.77
0 0.25 0.75 1 79.77 78.98 80.56 49.01 48.03 49.99
Random order 0 1 0 1 39.61 38.65 40.57 71.21 70.32 72.10
1 0.3 0.6 0.5 0.67 0.51 0.83 21.51 20.70 22.32
1 0 0 0 0.01 0.00 0.03 56.09 55.12 57.06
] 0.5 0.1 0 0.01 0.00 0.03 48.98 48.00 49.96
Table 21. Power Comparison under the T distribution witht=4,k=3& b=12
pl w2 u3 nd M % 95% CI Durbin % 95% CI
Non decreasing 0 0 0 0 4.74 432 5.16 4.00 3.62 4.38
0 0 0 0.75 22.86 22.04 23.68 11.93 11.29 12.57
0 0 0.75 0.75 34.07 33.14 35.00 15.58 14.87 16.29
0 0.75 0.75 0.75 22.97 22.15 23.79 11.90 11.27 12.53
0 0.25 0.5 0.75 26.97 26.10 27.84 9.70 9.12 10.28
0 0.25 0.75 1 41.94 40.97 4291 16.82 16.09 17.55
Random order 0 1 0 1 18.38 17.62 19.14 26.39 25.53 27.25
1 0.3 0.6 0.5 1.21 1.00 1.42 8.69 8.14 9.24
1 0 0 0 0.14 0.07 0.21 19.61 18.83 20.39
0 3 0 0.5 0.58 0.43 0.73 86.29 85.62 86.96
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Table 22. Power Comparison under Normal distribution t=5, k=2 & b =30

nl 2 n3 nsS M% 95% CI Durbin % 95% CI WSR % 95% CI
Non 0 0 0 0 0 4.84 4.42 5.26 4.40 4.00 4.80 4.91 448 533
decreasing 0 025 05 075 1 4787 46.89 48.85 18.50 17.74 1926 433 4232 4427
0 0.1 03 05 1.5 68.01 67.10 68.92 39.15 38.19 40.11 65.64 64.71  66.57
0 005 02 065 2 87.12 8646 87.78 66.51 65.58 67.44 86.52 85.85 87.19
0 0.8 1 i.3 1.4 6669 6577 67.61 34.95 3402 3588 63.77 62.83 64.71
0 03 0.5 0.6 1 43.03 42.06 44.00 16.07 1535 16.79 38.17 3722 39.12
0 0 0 1 1 59.86 5890 60.82 35.11 3417 36.05 54.82 53.19 55.15
0 1 1 1 1 32.05 31.14 3296 22.04 2123 2285 2694 26.07 2781
0 0 0 0 1 3131 3040 3222 22.11 2130 2292 2641 2555 27.27
Random 1 0 05 0.1 0.6 102 0.82 1.22 19.58 18.80 2036 5.86 54 6.32
order 1 1.5 05 038 02 0.06 0.01 0.11 28.46 2758 2934 3324 3232  34.16
0 1 0.1 05 1 22.02 2121 22.83 26.51 2564 2738 15.73 15.02 1644
1 0 1 1 1 1279  12.14 13.44 22.40 21.58 2322 842 7.88 8.96
1 1 0 1 1 4.05 3.66 4.44 22.30 2148 23,12 335 2.99 3.7
Table 23. Power Comparison under Normal distributiont =5,k =2 & b = 20.
n g2 p3 M p5 M% 95% CI Durbin % 95% CI
Non 0 0 0 0 0 4.54 4.13 4.95 4.51 4.10 4.92
decreasing 0 025 0.5 075 1 37.28 36.33 38.23 12.14 1150 12.78
0 0.1 03 05 1.5 5242 5144 53.40 23.20 2237 24.03
0 0.05 02 065 2 71.24 70.35 7213 40.46 3950 4142
0 0.8 1 1.3 14 51.03 50.05 52.01 21.42 20,62 2222
0 0.3 0.5 06 1 32.43 3151 3335 11.82 11.19 1245
0 0 0 1 1 46.08 45.10 47.06 22.65 21.83 2347
0 1 1 1 i 24.54 23.70 2538 14.61 1392 15.30
0 0 0 0 1 2479 2394 2564 14.20 13.52  14.88
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Table 23. continued

pml 2 p3 4 pS M% 95% CI Durbin % 95% CI
Random 0 2 05 0 2 15.56 14.85 16.27 65.17 64.24 66.10
order 1 1.5 05 08 02 005 0.01 0.09 17.63 16.88  18.38
0 1 0.1 05 1 16.82 16.09 17.55 16.58 15.85 17.31
1 0 1 1 1 10.97 1036 11.58 13.96 13.28 14.64
1 1 0 1 1 3.52 3.16 3.88 14.18 13.50 14.86
Table 24. Power Comparison under Exponential distributiont=5,k=2 & b =30.
pl p2 p3 pd pS M% 95% CI Durbin % 95% CI WSR % 95% CI
Non 0 0 0 0 0 430 390 4.70 424 3.85 4.63 5.11 468  5.54
decreasing 0 025 05 075 1 72.19 7131 73.07 34.73 33.80 35.66 56.6 55.63 57.57
0 01 03 05 15 8371 82.99 84.43 56.26 5529 5723 80.29 79.51 81.07
0 005 02 065 2 9416 9370 94.62 78.78 7798  79.58 91.62 91.08 92.16
0 08 1 13 1.4 8524 84.54 85.94 53.29 52.31 5427 75.04 74.19 75.89
0 03 05 06 1 6570  64.77 66.63 30.94 30.03 3185 5034 4936 51.32
0 0 0 1 1 7772 7690 78.54 54.30 5332 5528 65.25 6432 66.18
0 1 1 1 1 4427 4330 4524 34.90 3397 3583 34.62 33.69 35.55
0 0 0 o0 1 43.01  42.04 4398 34.51 33.58 3544 3347 32.55 34.39
Random 1 0 05 01 06 068 052 0.84 35.03 3409 3597 6.12 565  6.59
order 1 1.5 05 08 02 001 0.00 0.03 47.90 4692 4888 4323 4226 442
0 1 0.1 0.5 1 30.21 29.31 31.11 45.97 44,99 4695 19.33 18.56 21.1
1 0 1 1 1 16.54  15.81 17.27 3491 3398 3584 943 8.86 10
1 1 0 1 1 3.48 3.12 384 35.10 34.16 36.04 274 2.42 3.06
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Table 25. Power Comparison under Exponential distribution t=5,k=2 & b = 20.

M 2 p3 4 pS M% 95% CI Durbin % 95% CI
Non 0 0 0 0 0 4.57 416 4098 437 3.97 4.77
decreasing 0 025 05 075 1 56.15 55.18 57.12 21.61 20.80 22.42
0 0.1 03 0.5 1.5 69.01 68.10 69.92 34.22 33.29 35.15
0 005 02 065 2 81.96 81.21 82.71 51.53 50.55 52.51
0 08 1 13 14 69.06 68.15 69.97 33.37 32.45 34.29
0 03 05 06 1 50.26 4928 51.24 18.89 18.12 19.66
0 0 0 1 1 62.11 61.16 63.06 34.89 33.96 35.82
0 1 1 1 1 32.41 3149 33.33 20.71 19.92 21.50
0 0 0 0 1 32.46 31.54 3338 21.25 20.45 22.05
Random 0 2 05 0 2 16.59 15.86 17.32 73.14 72.27 74.01
order 1 1.5 05 08 02 004 0.00 0.08 29.52 28.63 30.41
0 1 0.1 05 1 23.30 2247 24.13 29.14 28.25 30.03
i 0 1 1 1 12.88 12.22 13.54 20.42 19.63 21.21
1 1 0 1 1 3.91 353 429 19.70 18.92 20.48
Table 26. Power Comparison under the T distribution t=5,k=2 & b = 30.
pl p2 p3 p4 p5 M% 95% CI Durbin % 95% CI WSR % 95% CI
Non 0 0 0 o0 0 428 3.88 4.68 4.21 3.82 460 494 452 536
decreasing 025 05 075 1 36.56 35.62 37.50 13.19 12.53 13.85 2635 2549 2721
0 0.1 03 05 1.5 52.48 51.50 53.46 25.53 24.68 2638 41.14 40.18 42.1
0 005 02 065 2 71.09 70.20 71.98 44.15 43.18 45.12 61.65 60.7 62.6
0 0.8 1 1.3 1.4 51.32 50.34 52.30 22.82 22.00 23.64 3994 3898 40.9
0 03 05 06 1 32.84 3192 33.76 11.99 11.35 12.63 2342 22.59 2425
0 0 0 1 1 45.85 44,87 46.83 22.52 21.70 2334 3442 33.49 3535
0 1 1 1 1 24.23 23.39 25.07 15.46 14.75 16.17 17.53 16.78 18.28
0 0 0 0 1 24.56 23.72 25.40 15.32 14.61 16.03 16.86 16.13 17.59
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Table 26. continued

pl 2 3 d  pS5 M% 95% CI Durbin % 95% CI WSR % 95% CI
Random 1 0 0.5 0.1 06 1.59 1.34 1.84 13.49 12.82 14.16 5.55 5.1 6
order 1 1.5 05 08 02 0.14 0.07 0.21 18.09 17.34 18.84 21.67 20.86 22.48
0 1 0.1 0.5 1 16.87 16.14 17.60 17.82 17.07 18.57 10.98 1037 11.59
1 0 1 1 1 11.05 10.44 11.66 15.22 14.52 1592 7 6.5 7.5
1 1 0 1 1 3.85 347 423 14.94 1424 1564 3.93 355 431
Table 27. Power Comparison under the T distribution t=5,k=2 & b =20.
pl p2 p2 p4 p5 M% 95% CI Durbin % 95% CI
Non 0 0 0 0 0 4.60 4.19 5.01 431 3.91 4.71
decreasing 0 025 05 075 1 27.61 26.73 28.49 9.96 9.37 10.55
0 0.1 03 05 1.5 39.22 38.26 40.18 16.15 15.43 16.87
0 005 02 065 2 55.15 54.18 56.12 26.49 25.63 2735
0 0.8 1 1.3 1.4 38.40 37.45 39.35 14.90 14.20 15.60
0 0.3 05 0.6 1 24.96 24.11 25.81 9.07 8.51 9.63
0 0 0 1 1 3444  33.51 35.37 15.41 1470  16.12
0 1 1 1 1 19.15 18.38 19.92 10.71 10.10  11.32
0 0 0 0 1 19.24 18.47 20.01 10.80 10.19 11.41
Radom 0 2 05 0 2 12.95 12.29 13.61 42.61 41.64 43.58
order 1 1.5 05 08 02 032 0.21 0.43 12.95 1229 13.61
0 1 0.1 0.5 1 13.98 13.30 14.66 12.85 12.19  13.51
1 0 1 1 1 10.09 9.50 10.68 10.85 1024 1146
1 1 0 1 1 4.28 3.88 4.68 10.78 10.17 11.39
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Table 28. Power Comparison under Normal Distribution t=5, k=3 & b=30

pl 2 3 4 p5 M% 95% CI Durbin % 95% CI
Non 0 0 0 0 0 4.72 4.30 5.14 451 4.10 4.92
decreasing 0 0 0 0 1 60.68 59.72 61.64 55.80 54.83 56.77
0 0 0 1 1 90.92 90.36 91.48 78.88 78.08 79.68
0 0 1 1 1 91.17 90.61 91.73 78.60 77.80 79.40
0 1 1 1 1 61.01 60.05 61.97 56.08 55.11 57.05
0 025 05 075 1 81.63 80.87 82.39 47.82 46.84 48.80
0 025 06 09 1 84.13 83.41 84.85 53.88 5290 54.86
oRliiziom 05 0 0 0 0 0.29 0.18 0.40 15.96 1524 16.68
05 06 0 1 0 0.71 0.55 0.87 53.12 52.14 54.10
06 05 04 03 O 0.34 0.23 0.45 9.60 9.02 10.18
0 0 05 0 0 4.53 4.12 4.94 15.56 14.85 16.27
Table 29. Power Comparison under Normal Distribution t=5,k=3& b=10
pl 2 p3 p4  pS M% 95% CI Durbin % 95% CI
Non 0 0 0 0 0 539 495 5.83 3.33 298  3.68
decreasing 0 0 0 0 1 29.45 28.56 30.34 13.63 1296 1430
0 0 0 1 1 53.13 52.15 54.11 21.98 21.17 22.79
0 0 1 1 1 53.48 52.50 54.46 21.45 20.65 2225
0 1 1 1 1 30.07 29.17 30.97 14.50 13.81 15.19
0 025 05 075 1 42.48 41.51 43.45 11.54 1091 12.17
0 025 06 09 1 46.56 45.58 47.54 13.16 1250 13.82
Random 1 2 0 0 0 0.00 0.00 0.00 53.64 52.66 54.62
order 05 06 O 1 0 1.94 1.67 2.21 13.57 1290 1424
06 05 04 03 O 1.28 1.06 1.50 4.18 3.79 4.57
0 0 05 0 0 4.96 4.53 5.39 5.63 5.18 6.08
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Table 30. Power Comparison under Exponential Distribution t=5, k=3 & b =30

pl 2 p3 M pS M% 95% CI Durbin % 95% CI
Non 0 0 0 0 0 4.75 433 5.17 4.64 4.23 5.05
decreasing 0 0 0 0 05 4079 3983 4175 31.47 30.56 32.38
0 0 0 0.5 05 7081 69.92 71.70 49.06 48.08 50.04
0 0 05 05 05 6981 68.91 70.71 47.35 4637 4833
0 05 05 05 05 4135 40.38 42.32 32.09 31.18 33.00
0 0.1 02 03 04 4801 47.03 48.99 19.81 19.03  20.59
0 01 022 03 06 6802 67.11 6893 35.65 3471 36.59
Random 05 0 0 0 0 0.03 0.00 0.06 31.10 30.19 32.01
order 0.5 06 O 1 0 0.39 0.27 0.51 82.77 82.03  83.51
06 05 04 03 02 002 0.00 0.05 19.75 1897 20.53
0 0 05 0 0 4.37 397 4.77 30.29 2939 31.19
Table 31. Power Comparison under Exponential Distribution t=5,k=3& b=10
pl 2 3 M pS M% 95% CI Durbin % 95% CI
Non 0 o0 0 0 0 512  4.69 5.55 3.24 289 3.59
decreasing 0 0 0 0 1 3856 37.61  39.51 20.09 19.30  20.88
0 0 0 1 1 70.15 69.25  71.05 35.59 34.65 36.53
0 0 1 1 1 69.81 6891 70.71 36.67 3573 37.61
0 1 1 1 1 39.48 38.52 40.44 24.58 23.74 2542
0 025 05 075 1 64.52 63.58 65.46 21.22 2042 22.02
0 025 06 09 1 66.53  65.61 67.45 2481 23.96 25.66
Random 1 2 0 0 0 000 0.00 0.00 65.94 65.01 66.87
order 05 06 0 1 0 1.18 0.97 1.39 2494 24.09 25.79
06 05 04 03 02 058 043 0.73 6.31 583 6.79
0 0 05 O 0 5.05 4.62 5.48 8.26 7.72 8.80




Table 32. Power Comparison under the T Distribution t=5, k=3 & b=30

pl 2 P M s M% 95% CI Durbin % 95% CI
Non 0 o 0 0 0 445 4.05 4.85 4.80 438 522
decreasing 0 0 0 0 0.5 4647 4549 4745 36.93 3598  37.88
0 0 0 05 05 77.17 76.35 77.99 56.58 55.61  57.55
0 o0 05 05 05 7696  76.13 77.79 56.28 5531  57.25
0 05 05 05 05 4567  44.69 46.65 37.24 3629  38.19
0 01 02 03 04 64.62 63.68 65.56 30.92 30.01  31.83
0 01 022 03 06 6908 6817 69.99 36.73 35.79  37.67
Random 0.5 0 0 0 0 0.04 0.00 0.08 36.54 3560  37.48
order 05 06 O 1 0 074 0.57 0.91 42.60 41.63  43.57
06 05 04 03 02 001 0.00 0.03 31.04 30.13  31.95
0 0 05 0 0 423 3.84 4.62 37.11 36.16  38.06
Table 33. Power Comparison under the T Distribution t=5,k=3& b=10
pl p2 W3 W w5 M% 95% CI Durbin % 95% CI
Non 0 0 0 0 0 512 4.69 5.55 3.50 3.14  3.86
decreasing 0 0 0 0 1 22.82  22.00 23.64 9.80 9.22 10.38
0 0 0 1 1 40.08 39.12 41.04 14.55 13.86 1524
0 0 1 1 ] 40.05 39.09 41.01 14.40 13.71  15.09
0 1 1 1 1 22.66 21.84 23.48 9.93 9.34 10.52
0 025 05 075 1 3227 3135 33.19 8.33 779  8.87
0 025 075 09 1 34.42  33.49 35.35 9.84 9.26 10.42
Random 1 3 0 0 0 0.00  0.00 0.00 56.94 5597 5791
order 1 2 0 0 0 0.01  0.00 0.03 33.70 3277  34.63
1 0 2 0 0 037 025 0.49 32.83 3191  33.75
0 0 1 0 0 456  4.15 497 9.68 9.10 10.26
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Table 34. Power Comparison under Normal distributiont=5, k=4 & b=30

pl 2 p3 o S M% 95% CI Durbin % 95% CI
Non 0 0 0 0 0 5.50 5.05 595 5.00 4,57 543
decreasing 0 0 0 0 1 8040 79.62 81.18 81.86 8§1.10 82.62
0 0 0 0.5 05 6219 6124 63.14 38.21 37.26 39.16
0 0 05 05 05 6259 61.64 63.54 37.98 37.03 38.93
0 05 05 05 05 3647 3553 3741 26.13 2527 2699
0 02 04 06 08 8383 8311 8455 50.69 49.71 51.67
0 02 05 06 09 88.70 88.08 8932 60.15 59.19  61.11
Random 065 O 0 0 0 0.18 0.10 0.26 25.87 25.01 26.73
order 05 0 i 0 0.2 0.62 0.47 0.77 78.31 77.50  79.12
08 04 03 01 O 0.00 0.00 0.00 48.41 4743 49.39
0 0 03 0 1 82.26 81.51 83.01 80.39 79.61 81.17
Table 35. Power Comparison under Normal distribution t=5, k=4 & b=10
pl @2 3 pd p5 M% 95% CI Durbin % 95% CI
Non 0 0 0 0 0 509 4.66 5.52 3.91 3.53 4.29
decreasing 0 0 0 0 1 40.23 39.27 41.19 26.74 25.87 27.61
0 0 0 05 05 30.20 29.30 31.10 11.42 10.80 12.04
0 0 0.5 05 05 29.49 28.60 30.38 12.34 11.70 12.98
0 05 05 05 05 18.12 17.37 18.87 8.78 8.23 9.33
0 02 04 06 038 4325 4228 4422 15.23 14.53 15.93
0 02 05 06 0.9 49.60 48.62 50.58 17.51 16.77 18.25
Random 2 1 0 0 0 0.00 0.00 0.00 85.89 85.21 86.57
order 05 0 1 0 0.2 144 1.21 1.67 25.25 24.40 26.10
08 04 03 01 O 0.09 0.03 0.15 14.26 13.57 14.95
0 0 03 0 1 40.90 3994 41.86 25.30 24.45 26.15
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Table 36. Power Comparison under Exponential distribution t=5,k=4 & b=30

pl 2 p3 4 ws M% 95% CI Durbin % 95% CI
Non 0 0 0 0 0 522 478 5.66 4.66 4.25 5.07
decreasing 0 0 0 0 025 27.16 2629 28.03 16.74 16.01 17.47
0 0 0 025 025 4633 4535 4731 24.44 23.60 2528
0 0 025 025 025 4747 4649 4845 24.85 24.00 25.70
0 05 05 05 05 58.86 57.90 59.82 50.76 49.78 51.74
0 0.1 02 03 04 65.81 64.88 66.74 31.32 3041 32.23
0 0.1 0.1s 04 055 87.16 86.50 87.82 58.40 57.43 59.37
Random 05 0 0 0 0 0.01 0.00 0.03 54.28 53.30 55.26
order 05 0 1 0 0.2 022 0.13 0.31 97.67 97.37 97.97
08 04 03 01 0 0.00 000  0.00 83.01 82.27 83.75
0 0 03 0 1 95.09 94.67 95.51 97.52 97.22 97.82
Table 37. Power Comparison under Exponential distributiont=5,k=4 & b=10
pl 2 3 M uS  M% 95% CI Durbin % 95% CI
Non 0 o 0 0 0 4.83 4.41 5.25 3.53 3.17 3.89
decreasing 0 0 0 0 1 52.72 51.74 53.70 41.87 40.90 42.84
0 0 0 05 05 48.37 4739 4935 22.48 21.66 23.30
0 0 05 05 05 47.37 46.39 4835 23.11 22.28 23.94
0 05 05 05 05 27.54 26.66 28.42 16.42 15.69 17.15
0 02 04 06 038 67.65 66.73  68.57 29.28 28.39 30.17
0 02 05 06 09 73.37 7250 74.24 34.43 33.50 35.36
Random 05 0 0 0 0 0.28 0.18 0.38 14.50 13.81 15.19
order 05 0 1 0 0.2 0.80 063 097 44.12 43.15 45.09
08 04 03 0.1 0 0.00 0.00 0.00 27.21 26.34 28.08
2 1 0 0 0 0.00 0.00 0.00 94.81 94.38 95.24




Ly

Table 38. Power Comparison under the T distribution t=5, k=4 & b= 30

pt p2 P i ps M% 95% CI Durbin % 95% CI
Non 0 0 0 0 0 527 483 5.71 4,77 435 5.19
decreasing 0 o 0 0 1 6517 6424  66.10 60.91 59.95 61.87
0 0 0 1 1 9271 9220 9322 81.32 80.56 82.08
0 o 1 1 1 9277 9226 9328 81.54 80.78 82.30
0 1 1 1 1 6488 6394 6582 60.76 59.80 61.72
0 025 05 075 1 8375 83.03 8447 50.57 49.59 51.55
0 025 075 09 1 8735 8670  88.00 59.10 58.14 60.06
Random order 1 0 0 0 0 002 0 0.05 60.02 59.06 60.98
08 02 0 1 0 056 041 0.71 66.49 65.56 67.42
1 05 025 01 o0 001 0 0.03 50.41 49.43 51.39
0 0 1 0 0 479 437 521 60.77 59.81 61.73

Table 39. Power Comparison under the T distribution t=5, k=4 & b=10

pt  p2  p3 M pS5 M% 95% CI Durbin % 95% CI
Non 0 o 0 0 0 4385 4.43 527 4.01 3.63 439
decreasing 0 0 0 0 1 3021 2931 3111 17.56 16.81 1831
0 0 0 1 1 5397 5299 5495 27.39 26.52 2826
0 0 1 1 1 5435 5337 5533 27.73 26.85  28.61
0 1 1 1 1 3029 2939  31.19 18.23 1747 1899
0 025 05 075 1 4404 4307 4501 15.06 1436  15.76
0 025 075 09 1 47.14 46.16  48.12 18.10 1735  18.85
Random 1 0 0 0 0 021 0.12 0.30 17.69 1694  18.44
order 08 02 0 1 0o 138 1.15 1.61 19.86 19.08  20.64
2 1 0 0 0 0.00 0.00 0.00 61.61 60.66  62.56
0 0 1 0 0 444 4.04 4.84 18.07 1732 18.82




6. CONCLUSION

The study shows that, overall, the proposed test (M) can be used to test for ordered
alternatives in a Balanced Incomplete Block Design (BIBD). The results, however, are
limited to the three main cases looked at: three, four and five treatments. The power of the
test is generally good while the probability of type I error is comparable to other
established tests at around 0.05.

The study also compared M to the Durbin (Durbin, 1951) test. The study shows
that M is significantly more powerful when testing for ordered alternatives regardless of
the underlying distribution or sample size. Furthermore, M was compared to the Durbin
and Wilcoxon Signed Rank (WSR) (Wilcoxon, 1945) tests when testing two non-
decreasing treatment effects in a BIBD. The study shows that M is generally more
powerful than both WSR and the Durbin regardless of the underlying distribution;
comparison on a small sample was not done.

The study also shows that M is heavily dependent on the assumption that the order
of treatment effects is non-decreasing. When this assumption is violated, M tends to have
very low power regardless of the underlying distribution or the sample size. This is a good
characteristic to have because we do not want a test to reject if H, is not true and if the

treatment effects are not non-decreasing, H, is not true.
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APPENDIX A. EXPECTED VALUES AND VARIANCES

Table Al. Four Treatments with Two Treatments Per Block
For t =4 and k= 2, there are (;) = 6 unique of blocks. The possible ranks are 0,

1 and 2. The following table illustrates the calculation.

i combination 1 2 3 4 M M, Var(M;)

Block 1 1 1 2 0 0 5 4.5 0.25
2 2 1 0 0 4

Block 2 1 1 0 2 0 7 6 1
2 2 0 1 0 5

Block 3 1 o 1 2 0 8 7.5 0.25
2 0o 2 1 0 7

Block 4 1 o 1 0 2 10 9 1
2 0 0 1 8

Block 5 1 0 0 1 2 11 10.5 0.25
2 0o 0 2 1 10

Block 6 1 1 0 0 2 9 7.5 2.25
2 2 0 0 1 6

45 5

E(M) = 45andVar(M) = 5
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Table A2. Four Treatments with Three Treatments Per Block

For t =4 and k = 3, there are (g) = 4 unique blocks. The possible ranks are

0, 1, 2 and 3. The following table illustrates the calculation.

i™® combination ¢1 2 3 t4 M; M, VarM)
B“l’c“ 1 1 2 3 0 14 12 2000
2 1 3 2 0 13
3 2 1 3 0 13
4 2 3 1 0 11
5 3 1 2 0 11
6 3 2 1 0 10
Blgck ! 1 2 0 317 14 4667
2 1 3 0 2 15
3 2 1 0 3 16
4 2 3 0 1 12
5 3 1 0 2 13
6 3 2 0 1 11
Blgck 1 1 0 2 3 19 16 4.667
2 1 0 3 2 18
3 2 0 1 3 17
4 2 0 3 1 15
5 3 0 1 2 14
6 3 0 2 1 13
B':d‘ 1 0 1 2 3 20 18  2.000
2 0 1 3 2 19
3 0 2 1 3 19
4 0 2 3 1 17
5 0 3 1 2 17
6 0 3 2 1 16
60  13.3333

E(M) = 60 and Var(M) = 13.3333
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Table A3. Five Treatments with Two Treatments Per Block
Fort=35 and k = 2, there are (g) = 10 unique blocks. The possible ranks are

0, 1 and 2. The following table illustrates the calculation.

+{h
]
combination tl 2 t3 t4 t5 M; M; Var(M))

Block 1 1 1 2 0 0 0 5 4.5 0.25
2 2 1 0 0 0 4

Block 2 1 1 0 0 0 2 11 9 4
2 2 0 0 0 1

Block 3 1 0 0 0 1 2 14 13.5 0.25
2 0 0 0 2 1 13

Block 4 1 1 0 0 2 0 9 7.5 2.25
2 2 0 0 1 0 6

Block 5 1 0 0 1 2 0 11 10.5 0.25
2 0 0 1 0 10

Block 6 1 0 0 1 0 2 13 12 1
2 0 0 2 0 1 11

Block 7 1 0 1 0 0 2 12 10.5 2.25
2 0 2 0 0 1 9

Block 8 1 0 1 2 0 0 8 7.5 0.25
2 0 2 1 0 0 7

Block 9 1 1 0 2 0 0 7 6 1
2 0 1 0 0 5

Block
10 1 0 1 0 2 0 10 9 1

2 0 2 0 1 0 8

90 12.5
E(M) = 90 and Var(M) = 125
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Table A4. Five Treatments with Three Per Block
For t =5 and k = 3, there are (g) = 10 unique blocks. The possible ranks are

0, 1, 2 and 3. The following table illustrates the calculation.

i" combination ¢l 12 t3 t4 t5 M; M, Var(Mi)

Block 1 1 1 2 3 0 0 14 12 2.000
2 1 3 2 0 0 13
3 2 1 3 0 0 13
4 2 3 1 0 0 11
5 3 1 2 0 0 11
6 3 2 1 0 0 10
Block 2 1 1 2 0 3 0 17 14 4.667
2 1 3 0 2 0 15
3 2 1 0 3 0 16
4 2 3 0 1 0 12
5 3 1 0 2 0 13
6 3 2 0 1 0 11
Block 3 1 1 0 2 3 0 19 16 4.667
2 1 0 3 2 0 18
3 2 0 1 3 0 17
4 2 0 3 1 0 15
5 3 0 1 2 0 14
6 3 0 2 1 0 13
Block 4 1 0 1 2 3 0 20 18 2.000
2 0 1 3 2 0 19
3 0 2 1 3 0 19
4 0 2 3 1 0 17
5 0 3 1 2 0 17
6 0 3 2 1 0 16
Block 5 1 0 1 2 0 3 23 20 4.667
2 0 1 3 0 2 21
3 0 2 1 0 3 22
4 0 2 3 0 1 18
5 0 3 1 0 2 19
6 0 3 2 0 1 17
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Table A4. continued

22 4.667

25

1

Block 6

24
23

21

20

19

26 24 2.000
25

3

Block 7

25

23

23

22

8.000

18

22

Block 8

20
20

16
16
14

8.667

20

24
23

1

Block 9

21

19
17
16

8.667

16

20

1

Block 10

17
19
13
15

12

50

180

E(M) = 180 and var(M) = 50
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Table AS. Five Treatments with Four Per Block

For t =5 and k = 4, there are (5

4) = 5 unique blocks. The possible ranks are

0, 1, 2, 3 and 4. The following table illustrates the calculation.

i combination t1 £ 3 t4 5 M, M, varMi

Block 1 1 1 2 3 4 0 30 25 8333
2 1 2 4 3 0 29
3 1 3 2 4 0 29
4 1 3 4 2 0 27
5 1 4 2 3 0 27
6 1 4 3 2 0 26
7 2 ] 3 4 0 29
8 2 1 4 3 0 28
9 2 3 1 4 0 27
10 2 3 4 1 0 24
11 2 4 1 3 0 25
12 2 4 3 1 0 23
13 3 1 2 4 0 27
14 3 1 4 2 0 25
15 3 2 1 4 0 26
16 3 2 4 1 0 23
17 3 4 1 2 0 22
18 3 4 2 1 0 21
19 4 1 2 3 0 24
20 4 1 3 2 0 23
21 4 2 1 3 0 23
22 4 2 3 1 0 21
23 4 3 1 2 0 21
24 4 3 2 1 0 20

27.

Block 2 1 1 2 3 0 4 34 5 14583
2 1 2 4 0 3 32
3 1 3 2 0 4 33
4 1 3 4 0 2 29
5 1 4 2 0 3 30
6 1 4 3 0 2 28
7 2 1 3 0 4 33
8 2 1 4 0 3 31
9 2 3 1 0 4 31
10 2 3 4 0 1 25
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Table AS. continued

28

11

24

12
13
14
15
16
17
18
19
20
21

31

27

30
24

24

22

27

25

26

22

22
23

23

21

24

37 30 16.667

36
35

Block 3

33

32
31

36
35

32
29

10

11

29

27

12
13
14
15
16
17
18
19
20

33

31

31

28

25

24

29

28

27

21

25

22
23

24
23

24
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Table AS. continued

Block 4

14.583

39 325
38
38

4

36
36
35

37
36
35

32
33
31

10
11
12
13
14
15
16
17
18
19
20
21

34
32
33
30
29

28

30
29
29

27

22
23

27

26

24

8.333

35

40

Block 5

39
39
37
37
36
39
38

37
34
35

10

11

33

12
13
14

37
35
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Table AS. continued

36
33

15
16
17
18
19
20
21

32
31

34
33

33
31

22

31

23

30

24

62.5

150

E(M) = 150 and var(M) = 62.5
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APPENDIX B. SAS CODE FOR RANKING DATA

e 3 e o e o o e o 2 3 sk e ok ok 3 3 3 o ke ok ke ok ek o ok s s ok ok sl ok ok ke o e ok ok e ok e o 3l ok Sk o o o 3 ok ke 3 ok ke ek ok ke ok e sk ek Rk ok Ak ok kR

This macro ranks the data for all the cases considered. It is called by each of the other
codes listed from Appendix III to V. The name of the macro is rankvar.

L T T T T S L Rl L T T T T e T P P T T e e

% macro rankvar(dta, varn, newdta);

data tmpl;
set &dta;
idn+1;
nun,

data temp(keep=idn y grp);
set tmp1;

array dummy{*} yl-y&varn;
do i=1 to &varn;

y=dummy{i};
gIp=1;
output;

end;

run;
proc sort data=temp;

by idn;
run;

proc rank data=temp out=rankpair;
by idn;
var y;

run;

data rankpair;
set rankpair;
if y=. then y=0;

mn;
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proc sort data=rankpair;
by idn;

run;

proc transpose data=rankpair out=tmp prefix=T;
by idn ;
var y;

run,

data &newdta(drop=idn NAME__LABEL_ );
merge tmpl tmp;
by idn;

run;

% mend rankvar;
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APPENDIX C. SAS CODE FOR THREE POPULATIONS
303 2 3 o 2 e ok o o ook ok 3 ok ok ok ok ok ok ske ok ok ol ol e ok ok sl ok ok e ok ok sk o ok sk s o s o sk sl ok sk sk ok ok o o ok sk ol ok ske e ke ok o ok ok ok ok 3k k ok
This code generates data for 3 treatments with 2 appearing per block in a Balanced
Incomplete Block Design for the three distributions Normal, Exponential and T (3 d.f).
The Normal and Exponential distributions here have a variance of 1.The powers of the
proposed test (M) and the Durbin test are calculated using a 5% significance level.

ek 3 o 3k ok 3 o o ok 3k ok ok ok ok ok o ok ok o ke ok ok o 3k ok ok ok ok 6 o 3k o ok ko 3 ok 3k o 3k ok o ke ok ok ke ok ok ok o 3k o o ke ke ok ok ok ok o e ok ok

%macro generate32(sim,dist,t,k,r,reps,mul,mu2,mu3,sigma);

data raw32 (keep=sim rep block y1-y3);
array trt{3} trtl-trt3;
doi=1t03;
trt{i}=int(ranuni(0)*1e6);
end;
put trt1-trt3;

call streaminit(321);

do sim=1 to &sim;
do rep=1 to &reps;
do block=1 to 3;
if &dist = 'normal' then do;
call rannor(trtl ,y1);
yl=yl+&mul;
call rannor(trt2 ,y2 ),
y2=y2+&mu2;
call rannor(trt3 ,y3 );
y3=y3+&mu3;
end;
else if &dist = 'exp' then do;
call ranexp(trtl ,yl);
yl=(&mul)tyl;
call ranexp(trt2 ,y2 );
y2=(&mu2)+y2;
call ranexp(trt3 ,y3 );
y3=(&mu3)+y3;

end;
else if &dist = 't' then do;
yl=rand('T", 3) + &mul;
y2=rand('T", 3) + &mu?2;
y3=rand('T", 3) + &mu3;
end;

if block=1 then do; y1=.; end;
61



else if block=2 then do; y2=.; end;
else if block=3 then do; y3=.; end;

output;
end,
end;
end;
run,

Yorankvar(raw32, 3, new32);

data n32;
set new32 end=eof;
by sim;

array r{3} rl-r3;

array sumr{3} sumrl-sumr3;
array sumrtn{3} sumrtnl-sumrtn3;

array sumrtd{3} sumrtd1-sumrtd3;

doi=1to 3;
if first.sim then
do;
sumr{i}=0;
end;

sumr{i}+r{i};
if last.sim then
do;
sumrtn{i}=sumr{i}*i;
sumrtd {i}=sumr{i}**2;
end;
end;

totRsumn=(sumrtn]l + sumrtn2 + sumrtn3);
totRsumd=(sumrtd1 + sumrtd2 + sumrtd3);

if last.sim then do;

ar = (totRsumn - (18* &reps))/((1.5* &reps)**(1/2));
if ar>1.645 then pow_ar+1;

durbin = (12*(&t - 1) * totRsumd /((&r* &reps)* &t*(&k - 1)*(&k +1))) -
(3*(&r*&reps)* (&t -1)*(&k+1))/(&k-1);
if durbin > 5.991 then pow_durbin+1;
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output;

end;
if eof then do;
p_ar=pow_ar/&sim;
p_durbin=pow_durbin/&sim;
file 'C:\Documents and Settings\Alfred.Ndungu\Desktop\power32.txt' mod;
put @1 "&dist,&mul,&mu2,&mu3," p_ar "," p_durbin ;
end;
run;

%mend generate32;
o 3 e ok ok o s e e ol o ok e ook ok ok ook e e sk ok ok ke o ek ke ok sk e e e ok ok ok e sk e ke ke ek ok ke kR ok k ok ok kk ok Rk kR kk Rk kR k&

This section illustrates an example of the command used to call the above macro
generate32.
3 3k 3 o 3 3k o o ok sk sk ok ol e ok ok s ok sk afe ofe sk 3l o Sk sk s o o o e ofe o sk e ok e o 3 e ok ok ok e ok ale e ok ok Sk ke ok ok ok ok ok e ok oKk ok ok ok ok ok K kR ok kK

%generate32(10000,'normal',3,2,2.4,0,0,0,1);
Y%generate32(10000,'exp’.3,2,2.4,0.25,1,0,1);
%generate32(10000,'t',3,2,2.4.0.25,1,0,1);
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APPENDIX D. SAS CODE FOR FOUR POPULATIONS
¢ 3 o ok ok e e o o o o o ok sk ok ok ol sk ok sk ok ol ok ok ke sk 3 ok ok ok ok o o ok sk ok ok sk ok ok sk ok e ok ok ok ok ok o ok ok ok o ok ok ok ok ok sk ol ke ok o ke o o ke ok ok ok ok ok o
This code generates data for 4 treatments with 2 appearing per block in a Balanced
Incomplete Block Design for the three distributions Normal, Exponential and T (3 d.f).
The Normal and Exponential distributions here have a variance of 1.The powers of the
proposed test (M) and the Durbin test are calculated using a 5% significance level.

FRERRRRARRRRE Rk Rk Rk kR kR ARk R kR kR RR R Rk R ARk Rk R Rk kR R Rk Rk

%macro generate42(sim,dist,t,k,r,reps,mul,mu2,mu3,mu4,sigma);

data raw42 (keep=sim rep block y1-y4);
array trt{4} trt1-trt4;
doi=1to 4;
trt{i}=int(ranuni(0)*1e6);
end;
put trt1-trt4;

call streaminit(421);

do sim=1 to &sim;
do rep=1 to &reps;
do block=1 to 6;
if &dist = 'normal’ then do;
call rannor(trtl ,yl );
y1=(&mul )+&sigma*yl;
call rannor(trt2 ,y2 );
y2=(&mu2)+&sigma*y2;
call rannor(trt3 ,y3 );
y3=(&mu3)+&sigma*y3;
call rannor(trt4 ,y4 );
y4=(&mud)+&sigma*y4;
end;
else if &dist = 'exp' then do;
call ranexp(trtl ,yl );
yl=(&mul)+yl;

call ranexp(trt2 ,y2 );
y2=(&mu2)+y2;
call ranexp(trt3 ,y3 );
y3=(&mu3)+y3;
call ranexp(trt4 ,y4 );
4=(&mud)+y4;
end;
else if &dist ="t' then do;

yl=rand('T", 3) + &mul;
2=rand('T", 3) + &mu2;
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y3=rand('T', 3) + &mu3;
y4=rand('T', 3) + &mu4,
end;

if block=1 then do; y1=.; y2=,; end;
else if block=2 then do; y1=.; y3=.; end;
else if block=3 then do; yl=.; y4=.; end;
else if block=4 then do; y2=.; y3=.; end;
else if block=5 then do; y2=.; y4=.; end;
else if block=6 then do; y3=.; y4=.; end;

output;
end;
end;
end;
run;

%rankvar(raw42, 4, new42);,

data n42;
set new42 end=eof;
by sim;

array r{4}rl-r4;
array sumr{4} sumrl-sumr4;
array sumrtn{4} sumrtnl-sumrtn4,
array sumrtd{4} sumrtd1-sumrtd4;

doi=1to 4;
if first.sim then
do;
sumr{i}=0;
end;

sumr{i}+r{i};
if last.sim then
do;
sumrtn {i}=sumr{i}*i;
sumrtd {i}=sumr{i}**2;
end;
end;

totRsumn=sum(of sumrtn:);
65



totRsumd=sum(of sumrtd:);
if last.sim then do;

ar = (totRsumn - (45* &reps))/((5* &reps)**(1/2));
if ar>1.645 then pow_ar+1;

durbin = (12*(&t - 1) * totRsumd /((&r*&reps)* &t*(&k - 1)*(&k +1))) -
(3*(&r* &reps)* (&t -1)*(&k+1))/(&k-1);
if durbin > 7.815 then pow_durbin+1;

output;
end;
if eof then do;
p_ar=pow_ar/&sim;
p_durbin=pow_durbin/&sim;
file 'C:\Documents and Settings\Alfred.Ndungu\Desktop\power42.txt' mod;
put @1 "&dist,&mul ,&mu2,&mu3,&mu4," p_ar "," p _durbin;
end;
run;

%mend generate42;

3 3 ok e 3 ok ok e dk o 3 ok ke e ok o e ok o o 3k ok ok ok o s ok ok s e o ke ok o ke sl ok 3 ke 36 3B o 2 ok ol Sl e ok o e ke ke e e ok ok ok ok ok ok ok R ok ok o ok ok ke ok

This section illustrates the command used to call the above macro generate42.
ok kkkkkkdkokokkokkkk ko dkok ok ok kokokadkokkok ek kokkkokokokokokokkkkk ko ki kkkkk ok kkkkkkkkkkokk

%generate42(10000,'normal' 4,2,3,2.0,0,0,0,1);
Yogenerate42(10000,'exp'.4,2,3,2,0,0,0,0,1);
Y%generate42(10000,'t',4,2,3.2.0,0,0,0,1);
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This code generates data for 4 treatments with 3 appearing per block in a Balanced
Incomplete Block Design for the three distributions Normal, Exponential and T (3 d.f).
The Normal and Exponential distributions have a variance of 1. The powers of the

proposed test (M) and the Durbin test are calculated using a 5% significance level.
**#************#*************#**##***##*****#*#**************;

%macro generate43(sim,dist,t.k,r,reps,mul,mu2,mu3,mu4,sigma);

data raw43 (keep=sim rep block y1-y4),
array trt{4} trtl-trt4;
doi=1to 4,
trt{i}=int(ranuni(0)*1e6);
end;
put trt1-trt4;
call streaminit(431);

do sim=1 to &sim;
do rep=1 to &reps;
do block=1 to 4;
if &dist = 'normal’ then do;
call rannor(trtl ,yl );
y1=(&mul)+&sigma*yl;
call rannor(trt2 ,y2 );
y2=(&mu2)+&sigma*y2;
call rannor(trt3 ,y3 ),
y3=(&mu3)+&sigma*y3;
call rannor(trt4 ,y4 );
y4=(&mud)+&sigma*y4;
end,;
else if &dist ="exp' then do;
call ranexp(trtl ,yl );
yl=(&mul)+yl;
call ranexp(trt2 ,y2 );
y2=(&mu2)+y2;
call ranexp(trt3 ,y3 );
y3=(&mu3)+y3;
call ranexp(trt4 ,y4 );
y4=(&mud)+y4;
end;
else if &dist ="'t' then do;
yl=rand('T’, 3) + &mul;
y2=rand('T", 3) + &mu2;
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y3=rand('T’, 3) + &mu3;
y4=rand('T', 3) + &mu4;
end;

if block=1 then do; y1=.; end;
else if block=2 then do; y2=.; end;
else if block=3 then do; y3=.; end;
else if block=4 then do; y4=.; end;

output;
end;
end;
end;
run;

Y%rankvar(raw43, 4, new43);

data n43;
set new43 end=eof;
by sim;

array r{4}rl-r4;
array sumr{4} sumrl-sumr4;
array sumrtn{4} sumrtnl-sumrtn4;
array sumrtd{4} sumrtd1-sumrtd4;

doi=1to 4;
if first.sim then
do;
sumr{i}=0;
end;

sumr{i}+r{i};
if last.sim then
do;
sumrtn{i}=sumr{i}*i;
sumrtd {i}=sumr{i}**2;
end;
end;

totRsumn=sum(of sumrtn:);
totRsumd=sum(of sumrtd:);

if last.sim then do;

68



ar = (totRsumn - (60* &reps))/((13.3333* &reps)* *(1/2));
if ar>1.645 then pow_ar+1;

durbin = (12*(&t - 1) * totRsumd /((&r* &reps)* &t*(&k - 1)*(&k + 1))) -
(3*(&r*&reps)* (&t -1)*(&k+1))/(&Kk-1);
if durbin > 7.815 then pow_durbin+1;

output;
end;
if eof then do;
p_ar=pow_ar/&sim,;
p_durbin=pow_durbin/&sim;
file 'C:\Documents and Settings\Alfred. Ndungu\Desktop\power43.txt' mod;
put @1 "&dist,&mul ,&mu2,&mu3,&mu4," p_ar "," p_durbin ;
end;
run;

%mend generated3;

o ok oo o o o R ook S R s s o o o ok ok ok ok R kR R kR Rk ok

This section illustrates an example of the command used to call the above macro

generate43. .
e 3 3¢ ok 3k 3 ok o e 2k ok e o sk s ok ok ke ak ok o e 3k o 3 ok 3 3k e ok ol sk Ak ke e o e ok e ok ok sk sk sk sk ke e ok sk ok ok kR ke sk ok ke sk ok ke ke ke ok ke dk ok ke ok K

Y%generate43(10000,'normal’,4,3,3,3,1,0,0,0,1);
Y%generate43(10000,'exp',4,.3,3,3,1,0.3,0.6,0.5,1);
%generate43(10000,'t',4,3,3.3,0,1,0,1,1);
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APPENDIX E. SAS CODE FOR FIVE POPULATIONS
Rk ok okok ok ek Rk kR ok ko ko okok ok ok ok ks sk skok ok ke ok sk sk ok ok ok ok ok ok Rk kb ok bk ok ok Rk ok ok kkok ok
This code generates data for 5 treatments with 2 appearing per block in a Balanced
Incomplete Block Design for the three distributions Normal, Exponential and T (3 d.f).
The Normal and Exponential distributions have a variance of 1.The powers of the
proposed test (M) and the Durbin test are calculated using a 5% significance level.

********************************#****#***********************;

%macro generate52(sim,dist,t,k,r,reps,mul, mu2,mu3,mu4,mus,sigma);

data raw52 (keep=sim rep block y1-yS5);
array trt{S} trt1-trt5;
doi=1to5;
trt{i}=int(ranuni(0)*1e6);
end;
put trtl-trt5;
call streaminit(521);

do sim=1 to &sim;
do rep=1 to &reps;
do block=1 to 10;
if &dist = 'normal’ then do;
call rannor(trtl ,yl1 );
yl=(&mul)+&sigma*yl;
call rannor(trt2 ,y2 );
y2=(&mu2)+&sigma*y2;
call rannor(trt3 ,y3 );
y3=(&mu3)+&sigma*y3;
call rannor(trt4 ,y4 );
y4=(&mud)+&sigma*y4;
call rannor(trtS ,y5 );
y5=(&muS)+&sigma*ys;
end;
else if &dist = 'exp' then do;
call ranexp(trtl ,y1 );
yl=(&mul)+yl;
call ranexp(trt2 ,y2 );
y2=(&mu2)+y2;
call ranexp(trt3 ,y3 );
y3=(&mu3)+y3;
call ranexp(trt4 ,y4 );
y4=(&mu4)+y4;
call ranexp(trt5 ,y5 );
y5=(&mu5)+ys;
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end;
else if &dist ="' then do;
yl=rand('T', 3) + &mul;
y2=rand('T", 3) + &mu2;
y3=rand('T", 3) + &mu3;
y4=rand('T", 3) + &mu4;
yS=rand('T", 3) + &muS5;
end;

if block=1 then do; yl=.; y2=.; y3=.; end;
else if block=2 then do; y2=.; y3=.; y4=.; end;
else if block=3 then do; y3=.; y4=.; y5=.; end;
else if block=4 then do; y1=.; y3=.; y4=.; end;
else if block=5 then do; y1=.; y4=.; y5=.; end;
else if block=6 then do; y2=.; y4=.; y5=.; end;
else if block=7 then do; y1=.; y2=.; y4=.; end;
else if block=8 then do; y1=.; y2=.; y5=.; end,;
else if block=9 then do; y2=.; y3=.; y5=.; end;
else if block=10 then do; yl1=.; y3=.; y5=.; end;

output;
end;
end;
end;
run;

Y%rankvar(raw52, 5, new52);

data nS2;
set new52 end=eof;
by sim;

array r{S}rl-r5;
array sumr{S} sumrl-sumr5;
array sumrtn{5} sumrtnl-sumrtn5;
array sumrtd {5} sumrtd1-sumrtd5;

doi=1to §;
if first.sim then
do;
sumr{i}=0;
end;

sumr{i}+r{i};
if last.sim then
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do;
sumrtn{i}=sumr{i}*i;
sumrtd{i}=sumr{i}**2;
end,
end;

totRsumn=sum(of sumrtn:);
totRsumd=sum(of sumrtd:);

if last.sim then do;

ar = (totRsumn - (90* &reps))/((12.5* &reps)**(1/2));
if ar>1.645 then pow_ar+1;

durbin = (12*(&t - 1) * totRsumd /((&r*&reps)*&t*(&k - 1)*(&k + 1))) -
(3*(&r*&reps)* (&t -1)* (&k+1))/(&k-1);
if durbin > 9.488 then pow_durbin+1;

output;
end;
if eof then do;
p_ar=pow_ar/&sim;
p_durbin=pow_durbin/&sim;
file 'C:\Documents and Settings\Alfred. Ndungu\Desktop\power52.txt' mod;
put @1 "&dist,&mul,&mu2,&mu3,&mud,&mus," p_ar","
p_durbin ;
end;
rumn;

% mend generate52;
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This section illustrates an example the command used to call the above macro generate52.

e ke ok 3k e sk ok sk 3 e e 3k ok 3k 3k 3k e ke ok ok ok 3k ke Sk ok o B 3k 3k ok ok 3 ok o ok ok ok sk ok Sl ok ke ok sk o sk ok s ok ke ok ok ok ke ok s ok s ok ok ok ok ok o ok ok ok ok ok ke

Ygenerate52(10000,'normal’,5,2,4,3,0,0,0,0,0.1);
%generate52(10000,'exp',5,2,4,3,0,0.25,0.6,0.7,1,1);
Yegenerate52(10000,'t'.5,2,4.3,0,1,1.1,1.1);
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This code generates data for 5 treatments with 3 appearing per block in a Balanced
Incomplete Block Design for the three distributions Normal, Exponential and T (3 d.f).
The Normal and Exponential distributions have a variance of 1.The powers of the

proposed test (M) and the Durbin test are calculated using a 5% significance level.
*****************************#************#*****#**********#*;

%macro generate53(sim,dist,tk, r,reps,mul,mu2,mu3,mu4,mus,sigma);

data raw53 (keep=sim rep block y1-y5);
array trt{S} trtl-trt5;
doi=1to§;
trt{i}=int(ranuni(0)*1e6);
end;
put trt1-trt5;
call streaminit(531);

do sim=1 to &sim;
do rep=1 to &reps;
do block=1to 10;
if &dist = 'normal’ then do;
call rannor(trtl ,y1 );
yl=(&mul +&sigma*yl;
call rannor(trt2 ,y2 );
y2=(&mu2)+&sigma*y2;
call rannor(trt3 ,y3 );
y3=(&mu3)+&sigma*y3;
call rannor(trt4 ,y4 );
y4=(&mud)+&sigma*y4,
call rannor(trt5 ,y5 );
y5=(&muS)+&sigma*yS5;
end;
else if &dist = 'exp' then do;
call ranexp(trtl ,yl );
yl=(&mul)+yl;
call ranexp(trt2 ,y2 );
y2=(&mu2)+y2;
call ranexp(trt3 ,y3 );
y3=(&mu3)+y3;
call ranexp(trt4 ,y4 );
y4=(&mu4d)+y4;
call ranexp(trt5 ,y5 );
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y5=(&muS)+ys;
end;
else if &dist ='t' then do;
yl=rand('T", 3) + &mul;
y2=rand('T", 3) + &mu2;
y3=rand('T’, 3) + &mu3;
y4=rand('T', 3) + &mu4,
yS=rand('T’, 3) + &mu5;
end;

if block=1 then do; yl=.; y2=,; end;
else if block=2 then do; y1=.; y3=.; end;
else if block=3 then do; y1=.; y4=.; end;
else if block=4 then do; y1=.; y5=.; end;
else if block=5 then do; y2=.; y3=.; end;
else if block=6 then do; y2=.; y5=; end;
else if block=7 then do; y2=.; y4=.; end;
else if block=8 then do; y3=.; y4=.; end;
else if block=9 then do; y3=.; y5=.; end,
else if block=10 then do; y4=.; y5=.; end;

output;
end;
end;
end;
run;

Y%rankvar(raw53, 5, new53);

data n53;
set new53 end=eof;
by sim;

array {5} rl-r5;
array sumr{5} sumrl-sumr5;
array sumrtn{S} sumrtnl-sumrtn$;
array sumrtd{5} sumrtd1-sumrtds5;

doi=1to§;
if first.sim then
do;
sumr{i}=0;
end;

sumr{i}+r{i};
if last.sim then
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do;
sumrtn{i}=sumr{i}*i;
sumrtd {i}=sumr{i}**2;
end;
end;

totRsumn=sum(of sumrtn:);
totRsumd=sum(of sumrtd:);

if last.sim then do;

ar = (totRsumn - (180* &reps))/((50* &reps)**(1/2));
if ar>1.645 then pow_art+1;

durbin = (12*(&t - 1) * totRsumd /((&r* &reps)* &t*(&k - 1)*(&k + 1))) -
(3*(&r*&reps)* (&t -1)*(&k+1))/(&k-1);
if durbin > 9.488 then pow_durbin+1;

output;
end;
if eof then do;
p_ar=pow_ar/&sim;
p_durbin=pow_durbin/&sim;
file 'C:\Documents and Settings\Alfred. Ndungu\Desktop\power53.txt' mod;
put @1 "&dist,&mul ,&mu2,&mu3,&mu4,&mus," p_ar ","
p_durbin ;
end;
run;

% mend generate53;
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This section illustrates an example of the command used to call the above macro

generate3.
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%generate53(10000,'normal',5,3,6,1,0,0,0.5,0,0,1);
Ygenerate53(10000,'exp',5,3,6,1,0.6,0.5,0.4,0.3,0.2,1);
Y%generate53(10000,'exp',5,3,6,1,0,0,0.5,0,0,1);
%generate53(10000,'t'.5,3,6,1,0,0,1,0,0.1);
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This code generates data for 5 treatments with 4 appearing per block in a Balanced
Incomplete Block Design for the three distributions Normal, Exponential and T (3 d.f).
The Normal and Exponential distributions have a variance of 1.The powers of the
proposed test (M) and the Durbin test are calculated using a 5% significance level.

****#************************#*********************#*********;

%macro generateS54(sim,dist,t,k.r,reps,mul,mu2,mu3,mu4,muS,sigma);

data raw54 (keep=sim rep block y1-y5);
array trt{S} trt1-trt5;
doi=1to§;
trt{i}=int(ranuni(0)*1¢6);
end;
put trt1-trt5;
call streaminit(541);

do sim=1 to &sim;
do rep=1 to &reps;
do block=1to §;
if &dist = 'mormal’ then do;
call rannor(trtl ,y1 );
yl=(&mul)+&sigma*yl;
call rannor(trt2 ,y2 );
y2=(&mu2)+&sigma*y2;
call rannor(trt3 ,y3 );
y3=(&mu3)+&sigma*y3;
call rannor(trt4 ,y4 );
y4=(&mu4)+&sigma*y4;
call rannor(trt5 ,y5 );
y5=(&mu5)+&sigma*ys;
end;
else if &dist = 'exp' then do;
call ranexp(trtl ,y1);
yl=(&mul)+yl;
call ranexp(trt2 ,y2 );
y2=(&mu2)+y2;
call ranexp(trt3 ,y3 );
y3=(&mu3)+y3;
call ranexp(trt4 ,y4 );
y4=(&mu4)+y4;
call ranexp(trt5 ,y5 );
y5=(&mus)+yS;
end;
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else if &dist = 't' then do;
yl=rand('T", 3) + &mul;
y2=rand('T', 3) + &mu2;
y3=rand('T', 3) + &mu3;
y4=rand('T’, 3) + &mud;
y5=rand('T", 3) + &mu5;
end;

if block=1 then do; yl1=.; end;
else if block=2 then do; y2=.; end;
else if block=3 then do; y3=.; end;
else if block=4 then do; y4=.; end;
else if block=5 then do; y5=.; end;

output;
end;
end;
end;
run,

%rankvar(raw54, 5, new54);

data n54;
set new54 end=eof;
by sim;
array r{5} rl-r5;
array sumr{5} sumrl-sumr$5;
array sumrtn{S} sumrtnl-sumrtnS5;
array sumrtd{S} sumrtd1-sumrtd5;

doi=1to5;
if first.sim then
do;
sumr{i}=0;
end;

sumr{i}+r{i};
if last.sim then
do;
sumrtn {i}=sumr{i}*i;
sumrtd {i}=sumr{i}**2;
end;
end;
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totRsumn=sum(of sumrtn:);
totRsumd=sum(of sumrtd:);

if last.sim then do;

ar = (totRsumn - (150* &reps))/((62.5* &reps)**(1/2));
if ar>1.645 then pow_ar+1;

durbin = (12*(&t - 1) * totRsumnd /((&r*&reps)* &t*(&k - 1)*(&k + 1))) -
(3*(&r* &reps)* (&t -1)*(&k+1))/(&k-1);
if durbin > 9.488 then pow_durbin+1;

output;
end;
if eof then do;
p_ar=pow_ar/&sim;
p_durbin=pow_durbin/&sim;
file 'C:\Documents and Settings\Alfred. Ndungu\Desktop\power54.txt' mod;
put @1 "&dist,&mul,&mu2,&mu3,&mud,&mus," p_ar ","
p_durbin ;
end;
run;

% mend generate54;
dkede sk skokokakokokokok ok kb ok k ok kR kkkokkkok ok ko sk ok ok kol sk kokodkak ok ok ok ok Rk Rk sk ok Rk kkokkokkkkkkk kk k

This section illustrates an example of the command used to call the above macro
generate’4.
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Ygenerate54(10000,'normal',5,4,4,2,0,0,0.3,0,1,1);
Y%generate54(10000,'cxp',5,4,4,2,0,0,0.3,0,1,1);
Y%generate54(10000,'t,5,4,4,2,9,0,1,0,0,1);
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