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ABSTRACT 

The pattern of shorter telomere lengths in older individuals has been observed across 

many vertebrates, but has not been well-documented in bony fishes. Bony fish (i.e., Class 

Osteichthyes) represent the most speciose and oldest group of vertebrates, and understanding 

their telomere dynamics can fill gaps in our understanding of the process and evolution of aging 

in vertebrates. In this study we quantified telomere length, immune function, and stress in 

bigmouth buffalo (Ictiobus cyrpinellus), a long-lived bony fish in the family Catostomidae, to 

characterize variation in telomeres and condition. We found that length of telomeres extracted 

from red blood cells was not related to age. We also found that the neutrophil/lymphocyte ratio 

was lower in older individuals, and immune function was greater in older individuals. Our 

findings suggest bigmouth buffalo may be capable of intrinsic regulation of telomere shortening 

and provide support for the existence of negligible senescence in some vertebrates. 
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TELOMERE LENGTH AND SENESCENCE IN A LONG-LIVED FISH (ICTIOBUS 

CYPRINELLUS) 

Introduction 

Telomeres and their association with senescence are a relatively new approach to 

studying growth, aging, and longevity. Telomeres are repetitive sequences of DNA located on 

the ends of linear chromosomes which play a protective role in cellular division. Telomere 

lengths generally get shorter each time a cell replicates, placing a “mitotic clock” on every cell 

that limits the number of divisions the cell can undergo before its telomeres reach a critically 

short length. This critical telomere length reduces the ability of cells to function and replicate, 

which is why telomere length has been associated with senescence and mortality (Horn et al. 

2010). Senescence results from an accumulation of damage due to the decline in an organism's 

ability to repair cellular damage, and leads to dysfunction in organism-level processes and 

ultimately mortality. Critically short telomeres have been shown to be directly associated with 

DNA damage response proteins (Fagagna et al. 2003). However, telomerase is an enzyme that 

has been shown to add repetitive sequences onto telomeres (Aubert and Lansdorp 2008), 

potentially buffering cellular damage associated with aging cells. The relationship between 

telomere length and telomerase is complex, and little is known about this relationship across 

different species. Still, chronologic age is negatively correlated with telomere length in many 

vertebrates, including humans. 

Telomere length has been negatively correlated with age in humans (Tsuji et al. 2002), 

birds (Haussmann & Vleck 2002), dogs, cattle, mice, primates (Haussmann et al. 2003), snakes 

(Bronikowski 2008), alligators (Scott et al. 2006), and sea turtles (Hatase et al. 2008). Due to the 

consistent observation of shorter telomeres in older individuals across species, it is thought that 
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telomere length can predict lifespan. In fact, Heidinger et al. (2011) found that telomere length in 

the early stages of life was a strong predictor of realized lifespan in zebra finches (Taeniopygia 

guttata).  

The connection between age and telomere length has led to the application of telomere 

length for estimating age and fitness in an ecological context (Horn et al. 2010). If age-related 

changes in physiological processes are a result of telomere length, selection can act on telomere 

length. Because age and telomere length are correlated, age-related observations related to 

condition and fitness may be attributable to telomere length. For example, function of the 

immune system in humans and other mammals degrades with age (Utsuyama et. al 1991). The 

impacts of this decline in immune function are significant. Roberts-Thomson et al. (1974) found 

that older (age 60+ years) humans with decreased immune function displayed higher rates of 

mortality when compared to humans with immune function in a normal range. Greeley et al. 

(2001) reported age-related decline in absolute numbers of immune cells such as lymphocytes, 

T-cells, CD4-cells, and CD8-cells in Labrador retrievers. In a wild population of collared 

flycatchers (Ficedula albicollis), the humoral response of the immune system was significantly 

weaker in older birds (Chichon et al. 2003). The primary hypothesis proposed to explain these 

patterns is that there is a decrease in helper T-cell activity as an individual grows older. T-cells 

are made in the thymus during the newborn stages of life, but very few cells are made during 

adulthood (Makinodan & Kay 1980). In mice, the ability of the thymus to create T-cells changes 

with age, as does the characteristics of the T-cells created (Utsuyama et. al 1991).  

The age-related changes observed in immune function may be a result of changes in 

telomere length. The immune system is thought to be sensitive to the shortening of telomeres 

because immune system function relies on cell renewal and replication of T and B-cells 
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(Kaszubowska 2008). Telomere shortening limits the proliferation of these cells, and 

consequently limits the capacity of the immune system. Damjanovic et al. (2007) suggest that 

telomere loss negatively alters T-cell function and accelerates the aging of T-cells in humans, 

resulting in a decline in immune function. A number of immune-related diseases have been 

associated with shorter telomere length (Andrews et al. 2010). In horses, decreased telomere 

length correlated with decreased proliferative response in peripheral blood mononuclear cells 

(Katepalli et al. 2008).  

In fishes, the relationship between age and telomere length is uncertain. Telomere 

dynamics follow a consistent pattern among terrestrial vertebrates; in general, telomere length 

shortens across the lifespan, causing changes in cellular function. However, lifespan, the source 

of telomeric DNA, sex, environmental conditions, and telomerase levels can alter the dynamic 

relationship between age and telomere length in fishes. In laboratory studies, Eastern 

mosquitofish (Gambusia holbrooki) displayed telomere shortening with increasing age, but water 

temperature also affected telomere length (Rollings et al. 2014). Anchelin et al. (2011) found 

that telomere length in zebrafish (Danio rerio) does not steadily decline with age, but sharply 

decreases at old ages (despite the expression of telomerase at all ages). Wild-strain turquoise 

killifish (Nothobranchius furzeri) exhibit age-dependent telomere shortening despite high 

telomerase activity, but their laboratory-strain counterparts do not (Hartmann et al. 2009). 

Common carp (Cyprinus carpio) show a positive correlation between body size (which is 

positively, but non-linearly correlated with age) and telomere length (Izzo et al. 2014), while 

Japanese medaka (Oryzias latipes) display differences in telomere lengths between male and 

female fish (Gopalakrishnan et al. 2013). Furthermore, Hatakeyama et al. (2016) found that 

telomere length does not steadily decline in Japanese medaka, but is a reflection of the variation 
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in telomerase activity throughout different life stages. The uncertainty surrounding telomere 

dynamics in fishes is substantial, and creates a gap in our understanding of aging and telomere 

length in vertebrates.  

Some extrinsic factors have been shown to influence the rate of change in telomere 

length. For instance, chronic stress has been shown to accelerate telomere loss (Kotrschal et al. 

2011). In fact, von Zglinicki (2002) suggests that stress-induced DNA damage may cause more 

telomere erosion than cellular replication. Shorter telomere length and decreased telomerase 

activity was observed in mothers of chronically ill children when compared to mothers of healthy 

children (Epel et al. 2004). Moreover, mothers that were caretakers for more years showed 

decreased telomere length compared to mothers that were caretakers for shorter time periods 

(Epel et al. 2004). Tyrka et al. (2010) found that adults exposed to abuse during childhood had 

shorter telomeres than adults of the same age that were not exposed to abuse. In king penguins 

(Aptenodytes patagonicus) high levels of oxidative stress are correlated with shorter telomere 

length in DNA from red blood cells (Geiger et al. 2012). Chronic environmental stress appears to 

affect telomere length and the rate of cellular aging, suggesting that stress response plays an 

important role in telomere dynamics. 

White blood cell enumeration provides a quantitative measure of stress in vertebrates. 

The effect that glucocorticoids have on white blood cell production is consistent across 

vertebrate taxa. Specifically, an increase in glucocorticoid hormones will increase the relative 

number of neutrophils and decrease the relative number of lymphocytes in the blood (Davis et al. 

2008). Therefore, an increase in glucocorticoid concentrations leads to an increase in the 

neutrophil to lymphocyte ratio (henceforth, NLR) within an individual. Chronic exposure to 

stress, and subsequent chronic elevation in glucocorticoid concentrations can be quantified 
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among individuals using the NLR (Vleck et al. 2000) Neutrophils and lymphocytes can be 

identified in fish blood smears, and the observed patterns appear identical to those seen in other 

vertebrates (Davis et al., 2008). Furthermore, there is time lag between the exposure to a stressor, 

change in glucocorticoid concentration and the expression of a leukocyte response. This time lag 

is longer in ectothermic organisms (Davis et al. 2008), possibly due to their relatively slow 

metabolism compared to endotherms. The effects of handling and transport stress were not 

observed in the white blood cell counts in channel catfish (Ictalurus punctatus) for 12 hours, and 

the maximum response was observed only after 24 hours (Bly et al. 1990). In practice this time 

lag allows for the quantification of stress levels experienced prior to handling, capture or 

transport in free-living individuals.  

Fish can be exposed to a variety of environmental stressors in their natural habitat, 

including those caused from anthropogenic substances (Iwama 1998). In prior research, fish have 

been exposed to a variety of stressors including cold water temperatures (Bennett & Gaudio 

Neville 1975), constant daylight (Valenzuela, Silva, & Klempau 2008), and handling and 

translocation (Ellsaesser & Clem 1986), all of which caused an increase in NLR. In fact, 

researchers have even utilized NLR to quantify the effects of heavy metals on a variety of fish 

species (Witeska 2005, Dethloff et al., 1999, Dick and Dixon 1985).  

The ratio of neutrophils to lymphocytes (henceforth, NLR) can also give insight into the 

life stage of individuals. In healthy human populations, older individuals have higher NLR than 

younger individuals (Li et al. 2015), and an increase in NLR with age has also been observed in 

horses (Satue et al. 2009). Aging individuals tend to exhibit overall deteriorating condition, 

suggesting the NLR may be correlated with condition as well. In fact, in birds low lymphocyte 

counts have been associated with increased susceptibility to disease (Al-Murrani et al. 2002), 
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slow growth rates (Moreno et al. 2002), and lower survival to the next breeding season (Lobato 

et al. 2005), indicating that leukocyte quantification can provide information about the fitness of 

individuals.  

Quantifying the relationships among age, stress, immune function, and telomere length 

can give us information about the onset and progression of senescence. Finch (1994) categorized 

senescence into three categories based on rapid, gradual, or negligible rates of progression. Fish 

appear to display great diversity in their senescence patterns, but some long-lived fishes that 

grow indeterminately show minimal signs of senescence (Finch 1998). Fishes exhibit 

asymptotic, but indeterminate growth instead of the terminal growth seen in mammals and birds. 

Indeterminate growth in fish suggests that all somatic cells require a high replication capacity. 

Klapper et al. (1998) investigated telomerase activity in different tissues of rainbow trout 

(Oncorhynchus mykiss) and found relatively high levels of telomerase activity in liver, skin, 

heart, muscle and brain tissue regardless of age and size. Brain and muscle tissue showed the 

lowest levels of telomerase, but even these levels were similar to fast growing tumor cells in 

humans (Klapper et al. 1998). In humans, telomerase is only expressed in tissues with high 

proliferation capacity, such as stem cells (Greider 1998). The telomere dynamics of long-lived 

fishes with lifespans similar to that of humans are not known, but could provide insight into 

differences in the aging process in indeterminate versus determinate growth. 

Bigmouth buffalo (Ictiobus cyprinellus) are a long-lived, freshwater fish in the Family 

Catostomidae. Bigmouth buffalo are native to the Mississippi River basin from Canada to the 

Gulf of Mexico (Johnson 1963), inhabiting shallow lakes and slow-moving rivers where they 

feed on zooplankton suspended in the water column (Adamek et al. 2003). Until recently, 

bigmouth buffalo life history (e.g., growth rate, lifespan, reproductive maturation) had not been 
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accurately quantified. Recent research using otoliths indicates bigmouth buffalo from the Red 

River of the North (henceforth, Red River) and Mississippi River basins in Minnesota can live to 

110 years (Lackmann et al. in review). Their growth rate is asymptotic, increasingly slowly after 

age 20 (Lackmann et al. in review). Females reach larger sizes than males and may not spawn 

every year (Johnson 1963). Sexual maturity is reached at 7-10 years of age (Lackmann et al. in 

review).  

These life history traits make the bigmouth buffalo an ideal fish species for studying 

telomere dynamics and aging. The majority of studies on telomere length in fish have focused on 

short-lived species. The lifespan and growth rate of bigmouth buffalo is comparable to that of 

humans, yet their poikilothermic, indeterminate growth reflects differences indicative of bony 

fishes. In addition, teleost fishes comprise about half of all vertebrate species (Finch 1994), 

making them a crucial part of understanding vertebrate evolution and life history. We measured 

telomere length in DNA from red blood cells, muscle tissue, and gonadal tissue in bigmouth 

buffalo spanning a wide range in age. We also quantified chronic stress using NLR and measured 

immune function of individuals using a bactericidal assay. Using these measurements, we looked 

for correlations among and between age, telomere length, stress, and immune function to gain 

understanding of telomere dynamics and the progression of senescence in long-lived fish. 

Methods 

Fish Collection 

Bigmouth buffalo were collected in Minnesota from sites within the Red River and 

Mississippi River basins. Fish were obtained from Artichoke Lake (date of collection May 4th, 

2017) and Lake Minnetaga (Sept 22nd, 2017) in the Mississippi River basin and from the Ottertail 

River (just downstream of Orwell Dam) (April 7th, 2018), Lake Lizzie (August 2017), Pelican 
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Lake (August 2016 through July 2017), Rush Lake (May 2018), and North Lida Lake (July 

2017) in the Red River basin. Fish from Artichoke and Minnetaga Lakes were purchased from 

commercial fisherman, but all of the other fish were obtained from recreational fisherman. 

Immediately following collection, total length ( 0.1 cm) and wet mass ( 0.1 kg) were recorded 

from each fish.  

A small blood sample was obtained from as many individual fish as possible. Following 

collection and measurements of size, fish were euthanized by overanesthetizing with tricaine 

methanesulfonate and a blood sample (approximately 3 mL) was obtained from a gill arch and 

placed in a heparinized container (BD Vacutainer®). Following blood collection, whole fish 

carcasses were placed on ice and returned to the lab at North Dakota State University within 

three hours where they were frozen at -20 C. Blood samples were also placed on ice and returned 

to the lab, where a small drop of whole blood was smeared on a glass microscope slide for each 

sample, then the samples were centrifuged (1700 G for 10 minutes) for plasma separation. 

Individual plasma samples were removed with a pipette and placed in 1.5 mL Eppendorf tubes, 

and the packed red blood cells were left in the original BD Vacutainer®, then red blood cell and 

plasma samples were frozen (-20º C) until later analysis. Blood smears were allowed to air dry, 

then stained with a Hemacolor® staining kit.  

Dissection 

Carcasses were dissected to determine sex, collect tissue samples for DNA extraction, 

and collect otoliths for age determination. Muscle biopsies were obtained by cutting 

approximately 25 grams of muscle tissue from the ventral side of each fish. Whole gonads were 

extracted and weighed ( 0.1 g) from each fish, and sex recorded for each individual. The tissue 

samples were then frozen (-20º C) until use in DNA extraction. As many otoliths as possible 
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were extracted from each fish by cutting into the cranium and first vertebral column from the 

ventral side of the fish and removing the labyrinth organ. Otoliths were extracted from the 

labyrinth organ and stored at room temperature in 1.5 mL Eppendorf tubes filled with water prior 

to preparation for age analysis. 

We obtained age estimates from counts of annuli in thin-sectioned otoliths, as explained 

in Lackmann et al. (in review). We will briefly describe the aging procedure here. Otoliths were 

removed from the fish, rinsed clean and dried for 30 minutes at 55°C then embedded in ACE® 

quick-setting epoxy within 1.5 cm3 compartments (lined with petroleum jelly) in a plastic tray. 

After the epoxy hardened, the epoxy block was placed in a Buehler IsoMet™ 1000 low-speed 

saw equipped with diamond-embedded thin-sectioning blades to obtain 300-500 μm sections via 

the wafer method (Campana et al. 2008). Thin sections of the otoliths were mounted on a glass 

microscope slide, photographed at 75X under a compound microscope using transmitted light, 

and images were then examined for annuli that could be quantified and were digitally marked. 

Otolith sections were assigned ages by multiple readers, with consensus readings used to 

determine the final age assigned to each specimen. First, a primary and secondary reader 

independently marked annuli on duplicate images of the thin section. Discrepant annuli counts 

between the primary and secondary reader were identified using a minimum criterion of one year 

per decade of age. For example, reader counts for individuals scored 0-9 years of age were 

deemed discrepant if the primary and secondary reader scores differed by more than  1 annulus 

count. This approach was used for individuals scored up to 110-119 years (deemed discrepant if 

the primary and secondary reader scores differed by more than  12 annulus counts). Images of 

otoliths identified as discrepant were then either independently analyzed by a third reader (n=29), 

or another otolith section(s) already available from the same fish was aged by both primary and 
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secondary readers. If consensus scores were still not obtained between readers, then yet another 

otolith was thin-sectioned from that specimen and again scored independently by the primary 

and secondary reader, at which point all age estimates were resolved. Otoliths for which annuli 

counts were not identical between readers, but not identified as discrepant (e.g., scored 12 by the 

primary and 13 by the secondary), a final age determination was made by the primary reader. 

The overall between-reader precision (primary and secondary) had a coefficient of variation 

(CV) of 5.6%. Precision varied with age and was highest in the youngest group of fish. For 

individuals across each of the 12 decadal age groups in this study (from 0-9, to 110-119 years) 

the CV was 10.4, 5.7, 4.0, 4.5, 4.5, 3.6, NA, 3.3, 2.9, 3.4, and 2.7, and 3.9% respectively 

(Lackmann et al., in review). 

Leukocyte Analysis 

We obtained counts of leukocytes from the stained blood smears. Smears were examined 

under a compound microscope (400X magnification), and neutrophils and lymphocytes were 

counted until the combined total count exceeded 100 (Vleck et al., 2000). NLR was calculated 

by dividing the number of neutrophils by the number of lymphocytes. We also recorded the 

number of microscope viewing fields required to achieve the 100 cell count for the NLR. 

Telomere Length Analysis 

We determined telomere length from DNA extracted from red blood cells, muscle tissue, 

and gonadal tissue. Genomic DNA was extracted from blood using a Nucleospin® Blood kit 

(Macherey-Nagel, Inc.) and from muscle and gonadal tissues using a Nucleospin® Tissue kit 

(Macherey-Nagel, Inc.). Concentration and purity of extracted DNA was measured using a 

NanoDrop™ spectrophotometer. DNA extractions were then diluted with ultra-pure water to 

approximately 200 ng/µl, mixed with Promega Blue/Orange 6X Loading Dye (Promega, Inc.), 
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and loaded into ethidium-bromide enriched agarose gel wells. Gel electrophoresis was conducted 

for approximately 1.5 hours at 30 V before the gel was illuminated with UV light and 

photographs were taken. Only DNA extractions with full integrity were utilized in telomere 

length analysis. 

Telomere length was measured using quantitative PCR (qPCR) on an Mx3000P qPCR 

system (Stratagene, Cheshire, UK). This method yields a relative measure that can be used for 

comparison within and among individuals of the same species (Heidinger et al. 2016). We 

followed the methods of Heidinger et al. (2016) with slight modifications for species. 

Modifications included using beta-actin primers (from the available genome of a species related 

to bigmouth buffalo) as the control, single copy gene, and measuring each reaction in duplicate. 

The suitability of our control, single copy gene was tested by a melt curve analysis, which 

established that the dissociation curve had a single peak. Telomere and beta-actin reactions were 

undergone on separate plates. Telomere length was calculated as the ratio (T/S) of telomere 

repeat copy number (T) to control, single gene copy number (S) of the focal sample relative to a 

reference sample (Heidinger et al. 2016). Telomere length from blood was calculated across 

three microplates, while telomere length from gonad and muscle each had their own single plate. 

This eliminated inter-plate variation for gonad and muscle telomere measurements. Intra-plate 

variation in cycle threshold (Ct) values among duplicates was calculated for all plates. An 

arbitrary, single sample was run on all red blood cell plates to allow for the calculation of inter-

plate variation of T/S ratios that were run on three separate plates. Every plate also included a 

blood sample from the same single individual that was serially diluted to produce a standard 

curve, and used to measure reaction efficiencies. 
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Immune Function Analysis 

We quantified immune system strength using a bactericidal assay. This assay assesses the 

ability of the immune system to eliminate an actual pathogen and involves the use of phagocytes, 

opsonizing proteins, and natural antibodies (French et al. 2010). We used a bactericidal assay 

described by Zysling et al. (2009) with the following modifications: we used plasma instead of 

whole serum, measured each sample in triplicate, and adjusted concentrations to yield control 

plates with approximately 250 bacterial colonies. Briefly, a working solution of E. coli 

(EpowerTM Microorganisms #0483E7, ATCC 8739, MicroBioLogics, St. Cloud, MN) was 

mixed with serum that was diluted with CO2-independent media. This solution was activated by 

incubation at 37º C for 30 minutes. Fifty microliters (50 µl) of solution was then plated on tryptic 

soy agar plates and allowed to incubate overnight. Control plates were created by diluting the 

working solution with media alone. Colonies were counted on each plate and the mean number 

of colonies on sample plates was divided by the mean number of colonies on control plates. This 

fraction was subtracted from 1 and multiplied by 100 to express killing capacity as the 

percentage of bacteria killed relative to control plates. 

Statistical Analysis 

We analyzed relationships among age, body size, condition, sex, site, telomere length, 

immune system strength, and NLRs using general linear models. Telomere lengths and NLRs 

followed a log-normal distribution, so we log-transformed both for statistical analysis. Killing 

capacity was logit-transformed. We obtained residuals (on the mass axis) from an orthogonal 

regression of log-transformed mass and log-transformed total length of males and females 

separately, and refer to the residual as condition. We analyzed relationships among blood 

telomere length, gonad telomere length, muscle telomere length, NLR, and killing capacity using 
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Pearson’s correlation coefficient. We used paired t-tests to compare telomere lengths from 

different tissues within the same individual. We used ANCOVA to look for effects between 

killing capacity, NRL, age, and site. We assumed statistical significance at α=0.05. All statistical 

analyses were conducted using JMP 13 for Windows (SAS Institute Inc., Cary, NC, USA). 

Results 

Age and Size Distributions 

We obtained size, age and sex from 240 individuals. Ages of fish ranged from 2-102 

years old and were not uniformly distributed among sites (Figure 1). Individuals from Lake 

Minnetaga were significantly younger than individuals from Rush Lake, Lake Lizzie, North Lida 

Lake, and Pelican Lake (Figure 1). Individuals from Orwell Dam and Artichoke Lake had similar 

age distributions (Figure 1). Total lengths ranged from 30.7-96.9 cm and masses ranged from 

0.45-14.33 kg, with females reaching larger size at age than males (Figure 2). Like age, size was 

not uniformly distributed among sites. An orthogonal regression indicated log-transformed total 

length was significantly correlated to log-transformed mass (for females: ln total length = 1.35 + 

0.34 * ln mass, R2 = 0.99, n = 128; for males: ln total length = 1.37 + 0.34 * ln mass, R2 = 0.98, n 

= 127). Residuals from the regression were used to quantify condition. 
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Figure 1. Age distributions of bigmouth buffalo collected from different sites throughout 

Minnesota. 

 

 

Figure 2. Age and size (total length above, mass below) for individual bigmouth buffalo. Red 

dots represent males and blue dots represent females. 
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Neutrophil/Lymphocyte Ratio 

We were able to quantify NLR from 92 individuals. These 92 individuals came from 

Artichoke Lake (37), Lake Minnetaga (24), Rush Lake (9) and the Ottertail River below Orwell 

Dam (21). Age explained approximately 48% of the variation in log-transformed NLR (F1,88 = 

78.26, p < 0.01, r2 = 0.48) (Figure 3). Total length (F1,91 = 27.3, p < 0.01 r2 = 0.23), mass (F1,91 = 

27.4, p < 0.01, r2 = 0.23) and condition (F1,92 = 8.54, p < 0.01, r2 = 0.09) also explained a 

significant amount of NLR variation, but sex did not explain any of the variation (F1,92 = 0.00 p = 

0.95 r2 < 0.01) in NLR. Although site explained 46% of the variation in NLR (F3,91 = 24.71, p < 

0.01, r2 = 0.45), this was due to skewed age distributions at certain populations. We ran a 

restricted ANCOVA with only individuals from Artichoke Lake and the Ottertail River below 

Orwell Dam because these populations had similar age distributions with range similar to that of 

the overall sample. The restricted ANCOVA showed age (F1,59 = 7.82, p < 0.01, r2 = 0.12) and 

the age by site interaction (F1,59 = 6.24, p = 0.02, r2 = 0.08) had a significant effect on NLR, but 

site alone did not (F1,59 = 0.49, p = 0.49, r2 = 0.01). In addition there was a significant increase in 

the number of microscope fields required to count at least 100 leukocytes (necessary for 

determining the NLR) with age at Artichoke Lake (F1,37 = 7.29, p = 0.01, r2 = 0.17), and an 

increase that approached significance for all sites combined (F1,88 = 3.78, p = 0.06, r2 = 0.04), but 

not for individuals from the Ottertail River below Orwell Dam (F1,22 = 2.99, p = 0.09, r2 = 0.13). 

NLR was negatively correlated with telomere length from blood (R = -0.27, n = 63, p = 0.03), 

but not significantly correlated with telomere length from muscle (R = 0.18, n = 26, p = 0.37) or 

gonad (R = -0.31, n = 18, p = 0.21). 
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Figure 3. Age and log-transformed NLR for bigmouth buffalo individuals.  

Telomere Length 

Telomere length was successfully quantified from genomic DNA in red blood cells (97 

individuals), muscle (29), and gonad (26) of bigmouth buffalo. The average reaction efficiencies 

for the beta-actin (mean ± 1 SEM: 94.8 ± 1.22%) and telomere (101.1 ± 0.62%) plates were close 

to 100%, so we did not adjust for efficiency differences when calculating telomere lengths. For 

red blood cell telomere measurements, the inter-plate coefficient of variation for the repeated 

sample T/S ratios was 11.0%. Reactions were highly replicable, with the average coefficient of 

variation between replicates across all plates equal to 0.52%. Age did not explain any of the 

variation in telomere length from blood ((F1,97 = 0.65, p = 0.42, r2 = 0.01) (Figure 4), muscle 

(F1,29 = 0.12, p = 0.73, r2 < 0.01), or gonad (F1,26 = 2.55, p = 0.12, r2 = 0.09). Total length and 

mass, respectively, did not explain a significant amount of the variation in telomere length from 

blood (F1,97 = 0.72, p = 0.40, r2 = 0.01) ( F1,97 = 1.58, p = 0.21, r2 = 0.02) , muscle (F1,29 = 0.76, p 
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= 0.39, r2 = 0.03 ) (F1,29 = 0.58, p = 0.45, r2 = 0.02), or gonad (F1,26 = 0.39, p = 0.54, r2 = 0.02) 

(F1,26 = 0.61, p = 0.44, r2 = 0.03). Sex and condition also failed to explain a significant amount of 

variation in telomere length from blood (F1,97 = 0.05, p = 0.82, r2 = 0.00) (F1,97 = 1.09, p = 0.30, r2 

= 0.01), muscle (F1,29 = 1.64, p = 0.21, r2 = 0.05) (F1,29 = 0.00, p = 0.97, r2 < 0.01), or gonad (F1,26 

= 0.02, p = 0.66, r2 = 0.01) (F1,26 = 0.00, p = 0.97, r2 = 0.00). Site did not explain a significant 

amount of the variation in telomere length from blood (F1,97 = 2.22, p = 0.06, r2 = 0.11). Muscle 

and gonad telomere lengths were each measured from a single population, so site could not 

explain any variation in telomere lengths from these tissues. Telomere length from muscle (R = 

0.66, n = 26 p < 0.01) correlated positively with telomere length from blood, and telomere length 

from gonad approached a significant positive correlation with telomere length from blood (R = 

0.51, n = 14, p = 0.06). Mean telomere length from blood (-0.35 ± 0.04) was significantly shorter 

than gonad (-0.044 ± 0.07) and muscle (-0.08523 ± 0.07) (F = 11.05, p < 0.01, r2 = 0.13). A 

paired t-test indicated that mean blood telomere length (-0.3708) was significantly shorter than 

gonad (0.00347) (n =14, t = 4.018, p < 0.01) for individuals from which we measured telomeres 

from both tissues. A paired t-test indicated that mean blood telomere length (-0.2938) was also 

significantly shorter than muscle (-0.085) (n = 26, t = 3.154, p < 0.01) for individuals from which 

we measured telomeres from both tissues. 
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Figure 4. Age and relative telomere length measured from red blood cells (expressed as the 

natural log of the T/S ratio) of bigmouth buffalo. 

 

Bacteria Killing 

Immune function was successfully quantified in 89 individuals. These 89 individuals 

came from Artichoke Lake (31), Lake Lizzie (12), Lake Minnetaga (25), North Lida Lake (1), 

Ottertail River below Orwell Dam (16), and Pelican Lake (4). Total length (F1,87 = 1.21, p = 0.27, 

r2 = 0.01), mass (F1,87 = 0.23, p = 0.63, r2 < 0.01), and condition (F1,89 = 0.01, p = 0.91, r2 < 0.01) 

did not explain a significant amount of the variation in bacteria-killing capacity, but sex 

explained approximately 4% of the variation (F1,87 = 3.99, p = 0.04, r2 = 0.04). Site explained a 

significant amount of the variation in killing capacity (F1,88 = 12.40, p < 0.01, r2 = 0.37) (the 

single individual collected from North Lida Lake was excluded from this analysis). Individuals 

from Lake Minnetaga had significantly higher bacteria-killing capacity than fish from the other 

sites combined (F1,89 = 30.11, p < 0.0001, r2 = 0.25). However, individuals from Minnetaga were 

all younger than 15 years old. Because of this, we separated Minnetaga individuals from all 
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individuals from other sites and separated individuals less than 15 years old from individuals 

greater than 15 years old for comparison. An ANOVA analyzing only individuals under the age 

of 15 years old showed that individuals from Minnetaga had significantly higher killing capacity 

than individuals from all other sites combined (F1,51 = 51.72, p < 0.01, r2 = 0.51). ANCOVA for 

individuals greater than 15 years old showed a significant effect of age on killing capacity (F1,35 

= 4.49, p = 0.04, r2 = 0.12) (Figure 5). ANCOVA for individuals less than 15 years old also 

showed a significant effect of both site (Minnetaga versus all other sites combined) (F1,51 = 

59.47, p < 0.01, r2 = 0.55) and age (F1,51 = 4.28, p = 0.04, r2 = 0.04). Note that an interaction term 

was not significant in the full ANCOVA, so we eliminated it in the post-hoc reduced ANCOVA 

with only additive effects. There was a significant negative correlation between telomere length 

in blood and bacteria-killing capacity (R = -0.27, n = 70, p = 0.03), but no correlation between 

killing capacity and telomere length from muscle (R = 0.09, n = 20, p = 0.51) or gonad (R = -

0.15, n = 16, p = 0.58). NLR was not significantly correlated with bacteria-killing capacity (R = 

0.15, n = 59, p = 0.25). 
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Figure 5. Age and logit-transformed bacteria killing capacity from bigmouth buffalo individuals 

15 years of age or older. 

 

Discussion 

 Neutrophil/Lymphocyte Ratio 

 In general, NLR has been shown to increase with chronic stress or disease (reviewed by 

Davis et al. 2008). The ratio of neutrophils to lymphocytes is significantly related to 

glucocorticoid levels, which in turn increase in vertebrates as stress exposure increases. In 

bigmouth buffalo, NLRs were significantly lower (i.e., the number of neutrophils decreased 

relative to the number of lymphocytes) in older fish (Figure 3). There is a well-documented 

increase in NLR in response to stress in vertebrates (Davis et al. 2008), and our findings suggest 

that older bigmouth buffalo generally experience lower levels of chronic stress than younger 

individuals. The stress of predator exposure in smaller, younger fish may explain the observed 
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difference in leukocyte profiles. Large, adult bigmouth buffalo have no natural predators 

(excluding humans) (Johnson 1963) and thus, may exhibit lower markers for chronic stress. NLR 

is also known to increase with age (Li et al. 2015, Satue et al. 2009). Lower stress levels in older 

individuals also indicates them to have higher fitness than younger fish. Chronic stress 

negatively impacts fitness. In birds, chronic stress evidenced by a low number of lymphocytes 

has been associated with increased susceptibility to disease (Al-Murrani et al. 2002), slow 

growth (Moreno et al. 2002), and even survival rates (Lobato et al. 2005). The oldest bigmouth 

buffalo had the highest lymphocyte counts (Figure 3), suggesting higher fitness than younger 

individuals. Our results contradict the patterns observed in terrestrial vertebrates in which higher 

NLR occur in older individuals.  

An age-related decline in overall leukocyte production could explain the pattern we 

observed in bigmouth buffalo. If the production of neutrophils decreases at a greater rate than the 

production of lymphocytes, the NLR would decrease even though overall production of 

neutrophils and lymphocytes decreased as well. Indeed, the number of microscope viewing fields 

required to count 100 leukocytes (per the protocol for determining the NLR) increased with age. 

Using the number of microscope viewing fields to estimate cell density is limited, however our 

findings are consistent with the hypothesis that leukocyte production declines with age in 

bigmouth buffalo.  

 Chronic stress has been shown to reduce telomere length in vertebrates (Epel et al. 2004, 

Tyrka et al. 2010, Geiger et al. 2012, reviewed by Houben et al. 2008,). Our data also indicated 

that individuals with higher NLR had shorter red blood cell telomeres. Thus, individuals 

expressing markers positively related to exposure to chronic stress had shorter telomeres, which 

is consistent with the consensus of findings in other vertebrates. We did not see this signal in 
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muscle and gonad telomeres, but the sample sizes were smaller for these tissues. Although 

chronic stress explained a significant amount of variation in red blood cell telomere length in 

bigmouth buffalo, age did not, which is not consistent with observations in terrestrial vertebrates. 

Therefore, extrinsic factors such as environmental stress may play a larger role in telomere 

dynamics in bigmouth buffalo and other long-lived fishes, especially if these species have 

mechanisms (e.g., telomerase production) for preventing telomere deterioration caused by 

intrinsic factors.   

Telomere Length 

Telomere length shortens with age in terrestrial vertebrates, but telomerase activity may 

alter this pattern in fish. Fish exhibit continuous, but asymptotic growth. Shorter telomeres in 

larger (and presumably older) fish were not evident in common carp (Cyprinus carpio) (Izzo et 

al. 2014). Common carp and bigmouth buffalo share the same order (Cypriniformes) and 

habitats in North America, and have similar life histories (including lifespans) (Sanz et al. 2013). 

Our findings for bigmouth buffalo are consistent with those of Izzo et al. (2014) for common 

carp. According to the telomere hypothesis, cellular replication leads to telomere shortening, but 

telomerase, a reverse transcriptase, adds base pairs to restore telomeres. Anchelin et al. found 

that telomerase-deficient zebrafish exhibited shorter telomere lengths and premature aging 

symptoms compared to normal, wild-type zebrafish (2013). Telomerase may diminish 

senescence through telomere regulation, and high telomerase activity is observed in fishes 

(Anchelin et al. 2011, Hartmann et al. 2009, Hatakeyama et al. 2016, Klapper et al. 1998). 

Measuring telomerase levels within individuals is needed to determine if telomerase plays a 

significant role in determining telomere length in bigmouth buffalo and other long-lived fishes.  
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Telomere lengths were consistent for DNA extracted from different tissues in bigmouth 

buffalo. We found that red blood cell telomere lengths were significantly correlated with muscle 

telomere lengths, and approached (p = 0.06 for a sample size of 14) a significant correlation with 

gonad telomere lengths. Thus, if an individual had relatively long telomeres in DNA from red 

blood cells, we would expect the individual to have relatively long telomeres in DNA from 

muscle or gonad cells. That is, telomere lengths throughout different tissues within an individual 

bigmouth buffalo are relatively similar. The correlation between three tissues suggests that any 

trend observed in our large sample of red blood cell telomere lengths is likely to occur in other 

tissues. Our findings suggest that telomere measurements from red blood cells can offer general 

insight into telomere patterns in other tissues in bigmouth buffalo. 

In addition, we found that telomere lengths from gonadal tissue and muscle tissue were 

significantly longer than telomere lengths from red blood cells. This result is consistent with 

prior works which found that telomere length in sperm was significantly longer than telomere 

length in normal somatic cells (Cook and Smith 1986) and that telomere length is maintained in 

human germline cells (Harley et al. 1990). Our results suggest that telomere regulation or 

starting telomere lengths can be tissue-dependent in bigmouth buffalo. Previous research has 

demonstrated that telomerase activity can differ across tissues (Prowse and Greider 1995, 

Klapper et al. 1998). Differences in telomerase activity among tissues could drive the observed 

differences in telomere length among gonad, muscle, and red blood cells in bigmouth buffalo. 

The initial telomere length could also vary across tissues. The rate of telomere loss could be 

similar throughout tissues, but gonadal tissue could simply begin with longer telomeres. Further 

research on initial lengths and rate of loss in telomeres from different tissues of bigmouth buffalo 

is needed to determine the underlying mechanism. Regardless of the mechanism, our observation 
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of longer telomeres in gonadal tissue indicates increased investment. For instance, reproductive 

cells may be protected from oxidative damage. Santiso et al. (2010) found that human sperm 

cells with longer telomeres were more successful at swim-up, and speculates there is selection 

for sperm with longer telomeres. Protection or restoration of telomeres in reproductive tissues 

could be one way in which bigmouth buffalo maintain reproductive fitness to the oldest ages of 

their lifespan. 

The disposable soma theory suggests that organisms adjust their investment of resources 

between reproduction, self-maintenance, and growth (Kirkwood 1992). Accordingly, the 

optimum path is to invest the fewest resources into maintenance of somatic tissues that are only 

necessary for indeterminate survival, and to maximize resource allocation into reproduction. 

However, bigmouth buffalo appear to continue to invest in somatic maintenance long after 

sexual maturation. In terms of natural selection, this life-history strategy should act 

disadvantageously because it consumes resources that could be used for reproduction (Kirkwood 

1992). However, in indeterminate growers, there may be advantages to continuing to invest in 

somatic tissue. Larger individuals produce more gametes and thereby increase potential 

reproductive output. If the benefits gained by reaching larger size exceed the costs of investing 

into somatic maintenance, there would be selection for continual investment into growth and 

longevity. This hypothesis is supported by evidence that the oldest individuals continue to 

produce viable gametes (Lackmann et al., in review). The bigmouth buffalo reproductive 

strategy may require repeated attempts at reproducing throughout life, especially when an 

individual is older and larger and reproductive potential is at its greatest, to take advantage of 

fortuitous seasons for offspring recruitment that may occur infrequently (Winemiller & Rose 

1992). 
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Longitudinal studies have shown that individuals that start life with relatively long 

telomeres have higher fitness and survive to the oldest ages (Haussmann and Mauck 2008, 

Salomons et al. 2009). If this is the case for bigmouth buffalo, then our observations could have 

occurred if a large proportion of individuals had relatively long telomeres when spawned, and 

these individuals survived to old age because selection pressures favor longer telomeres (and 

telomere maintenance or restoration need not occur). However, if selection were acting on 

telomere length, we would expect the variation in telomere length to decrease at older ages, 

which we did not observe. Indeed, we observed significant variation in telomere lengths at all 

ages (Figure 4). 

Our observations on telomere length variation in bigmouth buffalo do support Finch’s 

(1994) hypothesis of negligible senescence. We observed many old individuals with long 

telomeres (Figure 4), and many old individuals with high condition values. In natural 

populations, the majority of adults do not survive to ages where senescence is expressed (Finch 

1994). However, bigmouth buffalo grow indeterminately and likely are exposed to little 

predation risk after they reach 15-20 years (Figure 2). This suggests an intrinsic mechanism of 

mortality, but, unlike terrestrial vertebrates, telomere length does not appear to regulate the 

mechanism. Anchelin et al. (2011) reported telomere lengthening in the first 18 months of the 

three-year zebrafish lifespan, but a sharp decline in telomere length at 24 months. Certain teleost 

species may exhibit terminal senescence, in which senescence is delayed until the final stages of 

the lifespan, at which point rapid senescence occurs. This is pattern would not be detected if our 

sample of fish did not include any individuals nearing the end of their lifespan. Still, telomere 

length from relatively old individuals we collected suggests that senescence is negligible in 

individuals over 80 years old.  



 

 

26 

Bacteria Killing 

Furthermore, the ability of plasma immune constituents to kill a common bacteria 

improved with age in bigmouth buffalo. Relatively old individuals not only failed to display the 

age-related decline in immune function observed in other vertebrates (including humans), but 

displayed increased killing capacity relative to younger individuals (Figure 5). In humans, the 

immune system exhibits progressive development. Newborns begin with an immature and weak 

immune system which develops and matures throughout infancy and childhood until reaching its 

optimum in adulthood. The immune system then begins to decline in old age, leading to major 

impacts on human health and mortality (Simon et al. 2015). While fish and humans share some 

similarities in physiology, the immune system of fish has different mechanistic pathways than 

mammalian immune system. The thymus regulates immune response of fishes and other non-

mammalian vertebrates. However, contrary to more derived vertebrates, the size of the thymus 

varies with season as well as hormone levels in fish (Press & Evensen 1999). Furthermore, there 

is great diversity in the morphology of the immune system cells across the 20,000+ teleost 

species, adding further complexity to understanding the immune system in fishes (Press & 

Evensen 1999). Still, our findings for bigmouth buffalo indicate that senescence of the immune 

system is not observed in individuals of 90+ years old, and even suggest that the immune system 

of these individuals is operating at its optimum (Figure 5). 

The energetic trade-off between reproductive investment, growth, and immune function 

may provide some insight into why we observed older fish with stronger immune function. 

Younger bigmouth buffalo grow at a much faster rate than older individuals (Figure 2), and may 

invest relatively more resources into somatic growth, which could limit their investment in 

immune constituents. Furthermore, older individuals may have accumulated exposure to a 
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greater number of pathogens and as a consequence acquired more antibodies or 

immunoglobulins, which is consistent with the variation we observed in killing capacity and age 

as well as sites because individuals from sites with more pathogens would also have greater 

accumulated exposure. Future research could look for correlations between killing capacity and 

pathogen abundance and diversity at site of collection. 

Much like in telomeres, bigmouth buffalo life history strategy may explain investment in 

the immune system. Continued investment into immunity represents investment in potential 

future reproductive attempts, which is characteristic of species exploiting episodic, fortuitous 

reproductive seasons (Winemiller 1992, Winemiller & Rose 1992). Similar to somatic 

maintenance, immune function upkeep may be a mechanism that enables bigmouth buffalo to 

survive to old ages and sizes where reproductive potential is greatest. Although terminal 

senescence of immune function in bigmouth buffalo may eventually occur, our findings 

demonstrate that fish nearing 100 years old are not experiencing immunosenescence.  

Despite the association of shorter telomere length with weak immune function (Roberts-

Thomson et al. 1974, Katepalli et al. 2008), we found a negative correlation between telomere 

length and immune function in bigmouth buffalo. Individuals with longer telomeres from red 

blood cells had plasma less effective at inhibiting bacterial growth than individuals with shorter 

telomeres. This result contradicts the current understanding of telomere length and immune 

function. However, we did not analyze telomere length in cells that are associated with the 

immune system. While telomere length could be regulated separately in immune cells, telomere 

lengths of DNA from red blood cells was consistent with lengths from DNA in muscle and 

gonad. Normal lymphocytes generally express telomerase suggesting that telomere regulation 

may be an important part of maintaining function of T and B cells (Hodes et al. 2002). Future 
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research exploring the variation between immune function and telomere length in immune cells 

or between telomere length of erythrocytes and leukocytes of long-lived fish such as bigmouth 

buffalo would be helpful in elucidating cellular mechanisms maintaining immune constituents.  

Conclusions 

Telomere dynamics in bigmouth buffalo, a long-lived teleost fish, exhibit unique and 

often contradictory patterns compared to the dynamics seen in terrestrial vertebrates. Telomere 

length was not related to age, and yet lengths were consistent in three different tissues (humoral, 

muscular and gonadal). Chronic stress explained some of the variation in telomere length, but 

telomere dynamics in bigmouth buffalo remain perplexing. Prior research on telomere dynamics 

in different fish species has not provided a general framework. However, prior to our study, 

almost no information was available on age and telomere dynamics in fish over 10 years old. Our 

findings were consistent with findings from Izzo et al. (2014) on telomere dynamics with size. 

Izzo et al. (2014) did not determine age in the common carp used in their study, but based on 

size the largest individuals were likely over 20 years of age, and common carp have a 

comparable, but shorter, lifespan than bigmouth buffalo (Lackmann et al. in review). Thus, we 

hypothesize that telomeres do not shorten with age in long-lived fish, and that these species have 

an intrinsic mechanism of telomere maintenance. 

We found no evidence of age-related decline in bigmouth buffalo that were approaching 

100 years old. NLR decreased with age and immune function improved with age, both 

observations that contradict the typical path of age-related senescence observed in humans and 

other vertebrates. Finch and Austad (2001) described the criteria for negligible senescence to 

include a lack of age-related increase in mortality or decrease in reproduction, as well as a lack 

of age-related decline in physiological capacity or disease resistance. Our data are consistent 
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with these criteria and provide evidence for negligible senescence in the bigmouth buffalo. 

Negative senescence is characterized by increased fecundity, decreased mortality, and improved 

function with age (Vaupel et al. 2004). Some of the patterns we observed could emerge with 

negative senescence. However, our findings are based on cross-sectional rather than longitudinal 

observations of individuals, which masks individual telomere length dynamics (Dunshea et al. 

2011) because there is variation among individuals in initial telomere lengths, rates of loss and 

restoration, telomerase levels, and rates of cellular turnover (Monaghan and Haussmann 2006). 

Longitudinal studies within individuals are needed at a species-specific level to help clarify 

telomere dynamics and senescence in long-lived fish. Nevertheless, our findings for bigmouth 

buffalo provided consistent evidence of negligible senescence using different metrics in the 

oldest freshwater teleost fish (Lackmann et al. in review). Telomere dynamics in species that do 

not exhibit senescence can help us understand the mechanistic explanations for apparent 

immortality. 
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