
MULTI-AGENT BASED SIMULATION OF AN UNMANNED AERIAL

VEHICLES SYSTEM

A Paper
Submitted to the Graduate Faculty

ofthe
North Dakota State University

of Agriculture and Applied Science

By

Karthiksivaram Murugesan

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Department:
Computer Science

October 2011

Fargo, North Dakota

North Dakota State University
Graduate School

Title

MULTI -AGENT BASED SIMULATION OF

UNMANNED AERIAL VEHICLES SYSTEM

By

KARTHIK SIVARAM MURUGESAN

The Supervisory Committee certifies that this disquisition complies with North Dakota State
University's regulations and meets the accepted standards for the degree of

MASTER OF SCIENCE

North Dakota State University Libraries Addendum

To protect the privacy of individuals associated with the document, signatures have been
removed from the digital version of this document.

ABSTRACT

Murugesan, Karthiksivaram, M.S., Department of Computer Science, College of Science
and Mathematics, North Dakota State University, October 2011. Multi-Agent Based
Simulation of an Unmanned Aerial Vehicles System. Major Professor: Dr. Kendall Nygard.

The rapid growth of using Unmanned Aerial Vehicles (UA V) for civilian and

military applications has promoted the development of research in many areas. Most of the

unmanned aerial vehicles in use are manually controlled [4]. Often, UAVs require highly

trained pilot operators. Hence, the main challenge faced by researchers has been to make

UAVs autonomous or semiautonomous.

The goal of this research project is to develop and implement a simulation for a

user-defined environment allowing UAVs to maneuver in free environments and obstacle

laden environments using Boid's algorithm of flocking with obstacle avoidance. The users

are permitted to analyze the maneuvering area and coverage efficiency of the UA Vs and to

dynamically change environments. This project makes use of Boid's flocking algorithm to

generate different kinds of movements for the flying agents, enabling the user to analyze

the effectiveness of patrolling in that particular scenario.

The number of UAVs and the type of environment are set by the user. The set

number of UAVs moves as a flock or swarm inside the set environment by using Boid's

rules of flocking: cohesion, alignment, and separation. The coverage efficiency of the

UAVs in that particular environment is reported based on the ratio between the area

covered and the time when the search time reaches a threshold. The advantages and

feasibilities of the approach are discussed with the simulation results.

111

ACKNOWLEDGEMENTS

I would like to acknowledge and express my deep gratitude to the following people

who enabled and encouraged me to complete this paper successfully: my esteemed adviser,

Dr. Kendall Nygard, for his continued support, help, and direction; my family and friends

for their guidance and constant follow up; and everyone whose comments and suggestions

aided the improvement of this project. My sincere thanks to Dr. Simone Ludwig, Dr. Tariq

King, Dr. Kendall Nygard, and Dr. Limin Zhang for serving on the committee.

lV

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGEMENTS .. iv

LIST OF TABLES .. ix

LIST OF FIGURES ... X

CHAPTER 1 - INTRODUCTION ... 1

1.1. Problem Statement .. 2

1.2. Objective ... 3

CHAPTER 2 - BACKGROUND ... 4

2.1. Introduction ... 4

2.2. Multi-Agent Systems .. 5

2.3. Applications of a Multi-Agent System ... 6

2.3.1. Problem Solving ... 6

2.3.2. Multi-Agent Simulation ... 6

2.3.3. Collective Robotics .. 7

2.3.4. Kinetic Program Design ... 7

2.4. Swarm Approach .. 7

2.5. Flocking .. 8

2.5.1. Boid's Algorithm ... 8

V

2.6. Unmanned Aerial Vehicles ... 9

2.6.1. Advantages ofUAVs ... 9

2.6.2. Applications ofUAVs .. 10

2.7. Problems Identified when UAVs Flock .. 10

2. 7 .1. Approaches .. 10

2.7.2. Flocking - Communication Problems in UAVs ... 11

2.7.3. Cooperative Search .. 11

2.7.4. NASA-Networked UAV Teaming Experiment.. ... 11

2.8. Simulation Environments .. 12

2.8.1. Survey of Simulation Tools ... 12

2.8.2. NetLogo ... 14

2.8.3. Simulation Interface ... 15

CHAPTER 3 - METHODOLOGY .. 18

3.1. Analysis ... 18

3 .1.1. Agent Description .. 18

3.1.2. Input Description ... 21

3.1.3. Approach .. 22

3.2. Design ... 23

3.2.1. Sequence Diagram ... 23

3.2.2. Use Case Diagram .. 23

VI

3.3. Algorithm .. 25

3.3.1. Main Method .. 26

3.3.2. Flock Method ... 27

3.3.3. Procedure to Avoid Obstacles .. 27

3.3.4. Procedure to Find Flockmates ... 27

3.3.5. Procedure to Find Nearest Neighbor .. 28

3.3.6. Procedure to Separate .. 28

3.3.7. Procedure to Align ... 28

3.3.8. Procedure to Cohere ... 28

CHAPTER 4 - EXPERIMENTATION AND RESULTS .. 29

4.1. Methods Used ... 29

4.1.1. Random Placement Method ... 29

4.1.2. Observer Placement Method .. 29

4.1.3. Altitude .. 30

4.1.4. Reporter Agent. ... 30

4.1.5. Plot ... 31

4.2. Results ... 31

4.2.1. Setting 1 ... 31

4.2.2. Setting 2 ... 31

4.2.3. Setting 3 ... 33

Vll

4.2.4. Setting 4 ... 35

4.2.5. Wall Test .. 36

4.3. Plot Analysis ... 38

CHAPTER 5 - CONCLUSION ... 39

5.1. Observations ... 39

CHAPTER 6 - FUTURE RECOMMEND A TIO NS ... 40

REFERENCES .. 41

Vlll

LIST OF TABLES

Table Page

2.1: Comparison of Agent-Based Modeling Systems [15] .. 13

4.1: Results of Setting 1 ... 32

4.2: Results of Setting 2 ... 33

4.3: Results of Setting 3 ... 34

4.4: Results of Setting 4 ... 36

lX

LIST OF FIGURES

Figure

2.1: Department of Defense UAV Annual Funding (3) ... 4

2.2: Comparison of Accident Rates (3). ... 5

2.3: Boid's Flocking with Cylindrical Obstacles [5]. .. 9

2.4: UAV Used in Network UAV Teaming Experiment [17] ... 12

2.5: NetLogo Interface ... 16

3.1: Separation (5) .. 19

3.2: Alignment ... 19

3.3: Cohesion (5) .. 20

3.4: Sequence Diagram .. 24

3.5: Use case Diagram ... 25

4.1: Screenshot Showing the Result for the Second Test of Setting 3 34

4.2: Simulation Result (n=lO) .. 35

4.3: Simulation Result: Wall Test. ... 37

4.4: Plot Generated: Wall Test. .. 37

4.5: Example of Logarithmic Plot, Generated by the Simulation .. 38

X

CHAPTER 1 - INTRODUCTION

During the past few years, the use of Unmanned Air Vehicles (UA V) has been

growing tremendously for ensuring public safety and military operations. UAVs have

found a place in a wide variety of applications, such as remote sensing, transport, and

surveillance, as well as in other military operations, such as search and rescue. The usage

of UAVs provides us a lot of advantages, such as better maneuverability, reduced cost,

reduced radar signatures, longer endurance, and lower risks to crew members [1].

The growth in military applications ofUAVs has been remarkable. This growth has

demanded highly sophisticated manual controllers or pilots who can maneuver the UA V.

This growth has led to demanding research for automating or semi-automating the UAVs

across their application space [3].

Attempts to build such an autonomous or semi-autonomous UAV using artificial

intelligence has often adopted a decentralized coordination of multiple UA Vs using multi

agent systems [4]. This project is aimed at designing a simulation model of such an

autonomous system in which UAVs can maneuver with less involvement of manual control

using a multi-agent environment.

Multi-agent systems have been investigated extensively by many researchers.

During the past few years, there has been a growth of interest in the potential of agent

technology within the context of software engineering.

In this paper, I present a UA V simulation model based on the evolvement of multi

agent systems. This model was designed and developed using NetLogo. NetLogo is a

cross-platform, multi-agent, programmable modeling environment that helps to define and

1

model intelligent agent systems. A multi-DAV system involves searching an observation

space by using UAVs flying across an environment.

In computer science, this problem is considered to be a challenging search problem

because the observation space is complex, and it might have obstacles and other constraints

such as time and space [9]. The area covered in a particular amount of time has been

considered the prime factor in these search problems. It is very challenging because the

obstacles keep changing. This simulation will offer a better way to analyze the number of

pixels covered in different kinds of search spaces by applying Boid's flocking algorithm to

maneuver UAVs. Finally, the simulation also provides a plot to concentrate upon the pixel

coverage efficiency of the algorithm.

1.1. Problem Statement

The requirements of the system would be to fly the agents in a space and then

observe their interaction with other agents [7]. This simulation would require us to set up

the observation space which should be random because spaces are not the same at all

places.

The foremost requirement of such a simulation system would be to simulate the

environment close to real-world happenings and to still satisfy the atomicity and integrity

properties of all agents.

UA V simulation is highly challenging, being in a huge and partially visible

environment with more agents to be synchronized. This research also requires an analysis

of the real-world scenario.

The simulation uses NetLogo, one of the premier agent simulation systems used to

observe multi-agent mteractions. The simulation design should enable us to

2

1. Set up the number of U AV s (flights).

2. Set up the environment (search space) with a collection of obstacles with various sizes

and shapes.

3. Traverse the set group ofUAVs across the pixels in the set environment.

4. Efficiently maneuver UAVs by avoiding the other UAVs and obstacles m the

environment.

5. Mark the covered pixels of the environment and calculate the coverage percentage of

the traversal (search).

6. Report the results of the simulation.

1.2. Objective

1. To study the problems in the prevailing methods of maneuvering UA Vs.

2. To identify a maneuvering technique that can reduce collisions across a simulated

environment.

3. To identify techniques to reduce the time taken to cover all pixels across the simulated

environment.

4. To enable users to simulate an environment that is much closer to real-world

environments with high buildings and other obstacles which are sometimes dynamic.

5. To study the advantages of the formulated simulation and its ability to address the

problems identified using experimentation over the formulated system.

3

CHAPTER2-BACKGROUND

This chapter briefly discusses the concepts involving the multi-agent based UA V

simulation system and, further, references and outlines the ongoing science and technology

related to the project. The topics discussed in this section served as motivation to develop

the simulation.

2.1. Introduction

UAVs have found their application in various domains. Several countries have

extended research in this domain. Hence, the growth of UA V demand is tremendous and

has grown at a significant rate as represented by Figure 2.1 on Department of Defense

(DOD) annual funding for UAVs. The growing demand of UAVs has led to a larger

demand for pilots and automation. Figure 2.2 show that UAV accidents occur at a rate

several times that of commercial aircraft.

Department of D•ense UAV Annual Funding

3000 --- ---------

2500 --- ---------------
.;;
c:
~2000 -- -- ------------------

~
*51soo ·· ···························
'is
0

1000 ··-------································ -----·--------------·-·-·····

1is5 1990 1995 2000 2005 2010 201s
Year

Figure 2.1: Department of Defense UAV Annual Funding [3].

4

Accldert Rate Comparison of UAVs and Mamed Alrcran

'

, , iUAV i
.! B' 102 _______ _l ________ ~--------1 t.. --~---------~--- ----~--------;
~g : : : : : : :
~ C!. : : : : : : :
.g 8 101 ••••••••~••••••••~•••••••••~••••••••~••••••• t I I I

u ~ : : : : : ! i"lrFo~.c• /. u l! ' : ' ' '
<. 0 ' ' ' ' ' ' f ~ 10 ·······r······ r·······r······r·····-;--· ··1.··· ···1.·········:.:········1.
>- ~ ·1 : : : : :

10 ; :--···•·••:•········; ; ~ : ~ ;

! ! ! : ; ! fomm~rclal !
10

·
2 ·······i········r·····r·······i·······t······· :"·······r· ·
3 : : : : : :

1
~986 19~8 1990 1992 19~ 1996 19°98 2000 2002 2004

YHr

Figure 2.2: Comparison of Accident Rates [3].

The above findings have increased the demand of the research needed to formulate

better maneuvering for UAVs. Usage of a manual controller across the UAV domain has

introduced lot of constraints or problems for covering a particular area. Most searches

resulted in collisions with obstacles, making the search performed by UAVs less reliable.

In this paper, a novel simulation ofUAVs is designed, developed, and tested with reference

to the research introduced in this chapter.

2.2. Multi-Agent Systems

Intelligent systems are a class of multi-agent systems (MAS) that originated from

the field of Distributed Artificial Intelligence (DAI) [13]. Artificial intelligence (AI) was

defined by Russell and Norvig as the study and design of intelligent agents. Intelligent

agents refer to software agents that can act as autonomous entities and interact with the

surroundings [20]. It acts accordingly based on its learning from the environment.

F: P*--->A ,
5

Where, P* = Percept

A=Action

DAI is a term used to denote the research division of artificial intelligence that is

dedicated to complex problems development of distributed solutions. Multi-agent systems

originated from DAI, where the agents are autonomous and collectively use intelligence to

achieve a solution for a complex problem.

An agent-based model (ABM) deals with a class of computational models for

simulating the actions and interactions of autonomous agents with a view to assess their

effects on the system as a whole.

2.3. Applications of a Multi-Agent System

2.3.1. Problem Solving

The MAS can serve as an alternative to centralized problem solving, either because

problems are distributed or because the distribution of problem solving between different

agents reveals itself to be a more efficient way to organize the problem solving. MAS will

be flexible and allow failures in the system or it will be the only way to solve the problem

[13].

2.3.2. Multi-Agent Simulation

Simulating MAS is widely used to enhance knowledge in biology or in the social

sciences. MAS allow us to make small laboratories for testing theories about local

behaviors called the artificial universes [13].

Construction of Synthetic Worlds: These artificial universes can be used to describe

specific interaction mechanisms and to analyze their impact at a global level in the system.

6

The entities are mainly inspired by animal behaviors (hunting, searching, or gathering

habits), so they are called as Animates [13].

2.3.3. Collective Robotics

Defining the robots as MAS where each subsystem has a specific goal and deals

with that goal only. All the small tasks accomplished can result in solving a bigger

problem. This approach can also be used in the coordination of different mobile robots in a

common space [13].

2.3.4. Kinetic Program Design

MAS can also be seen as an efficient way to introduce modularity to a program

[13]. Modularity makes the system design more flexible.

2.4. Swarm Approach

Swarming is a collective and emergent behavior exhibited by living organisms

during movement. Some of the natural examples of swarms are an ant colony, animal

herding, and birds flocking. This behavior gains interest in the area of artificial intelligence

where such movements are analyzed to apply them to intelligent systems. The swarming

approach is considered to be a viable way to control and coordinate the movement of

robots which can act autonomously or semi-autonomously [8].

Swarming is defined to have a solution for a complex problem that can address

almost all problems in emergent and self-organizing systems [12]. In computer science, one

of the important examples of emergent and self-organizing systems is multi-agent systems.

The simple interactions between each autonomous agent of the system can address

complex patterns and problems similar to the interaction between the animals which result

7

in an organized group solution. The coordination between smaller, autonomous agents can

be addressed by swarm interactions. One such concept with applications that are yet to be

explored is Stigmergy. Stigmergy helps with the coordination and communication between

intelligent systems such as robotics, computer networks, and multi-agent systems [12].

2.5. Flocking

Flocking is a collective behavior exhibited by a group of birds in flight. Flocking

behavior was first simulated by Craig Reynolds. Reynolds used the flocking metaphor in

his seminal paper on boids in the context of computer animation [5].

2.5.1. Boid's Algorithm

In this project for the simulation of unmanned aerial vehicles, the famous Boid's

Algorithm is used. The design of the algorithm involves studying and analyzing the Boids'

separation, alignment, and cohesion relative with the position and velocities to other Boid's

[5]. Reynolds et al. [5] showed that the flocking behavior of birds is controlled by three

simple rules:

Separation: avoid crowding neighbors who fly at a particular distance

Alignment: steer towards the average heading of neighbors to achieve polarity

Cohesion: steer towards the average position of neighbors to form a group

The basic rules were identified for understanding the other behaviors of birds. The

aggregate motion of the simulated flock created by Reynolds et al. [5] was a distributed

behavioral model much like the one at work in a natural flock. Each simulated bird was

considered an autonomous actor. These actors were navigated according to their local

perception of the dynamic environment set up as an environment. Reynolds extended a

8

simulation into an informal paper on another elaborate behavioral model of birds to avoid

obstacles that were used by the earlier researchers. Following figure 2.3 shows an example

flocking with cylindrical obstacles.

Figure 2.3: Boid's Flocking with Cylindrical Obstacles [5].

The implementation of the flocking algorithm took O (n2
) computational time. The

obstacle avoidance performed by the Boid's used a 360-degree turn when an obstacle was

found exactly in center of the path for a particular Boid [5].

2.6. Unmanned Aerial Vehicles

The class of aircraft with no pilot on board is generalized as unmanned aerial

vehicles. UAVs can be remote-controlled aircraft or can fly semi-autonomously based on

pre-programmed flight plans. One of the main challenges faced in the UA Vs research space

is to make them autonomous or semiautonomous because these systems require highly

sophisticated controllers [16].

2.6.1. Advantages of UAVs

The military role of UAVs is growing at unprecedented rates. Some of the

advantages that make UAVs viable for military roles are as follows [2]:
9

1. Reduced risk to human life

2. Maneuverability across varied landscapes

3. Reduced radar signatures

4. Longer endurance

2.6.2. Applications ofUAVs

1. Military operations such as search and rescue, missile launch, and spy operations

2. Transport goods [6]

3. Scientific research

2.7. Problems Identified when UAVs Flock

The main constraints identified when UAVs flock are coverage, connectivity, and

coordination [4]. These problems become more complex when UAVs are given autonomy.

These problems can be solved with the introduction of more UAVs across the same

environment. The drawback is that their high cost prohibits large-scale deployment at the

current time. Hence, it is cost-effective to minimize the number ofUAVs [10].

2.7.1. Approaches

This research investigates the problems and analyzes two approaches to solve them,

the control system approach and the cognitive modeling approach. The first approach deals

with adding a layer over the flight control system to control the mission and the second

approach includes usage of the human metaphor of agency more seriously and implements

an autonomous controller based on a model of human decision making widely referenced

in the military command and control literature [7].

10

2.7.2. Flocking - Communication Problems in UAVs

This research investigates the UA V placement and navigation strategies with the

end goal of improving network connectivity. Because the ground nodes can be mobile, a

fixed placement strategy is either inadequate or wasteful; hence, this paper proposes the use

of local flocking rules that aerial living beings, such as birds and insects, follow to address

communication problems. It showed that the simulation using a flocking-based navigation

strategy is adaptive to the motion of ground nodes and can, indeed, maintain high

connectivity in a mobile ground network [4].

2.7.3. Cooperative Search

This research explains that a well-defined swarm, such as UAVs flocking, can

distinctively enhance the sensing and detection operations of the system while minimizing

the transmission of excessive control information for adaptation of the team's topology.

This paper proved mathematically that such an algorithm will increase the probability of

detection, minimize the expected time to detect the target and the number of UAVs

employed, and can yield a better search plan [8].

2.7.4. NASA-Networked UAV Teaming Experiment

This experiment was perfom1ed by the engineers and technicians from NASA's

Ames Research Center and Dryden Flight Research Center. They conducted flight tests

over a "virtual" forest fire in early 2005 to evaluate new flight-control software that will

allow unmanned aerial vehicles (UA V) to autonomously react to obstacles as they fly pre

programmed missions. The tests were conducted to investigate cooperative flight strategies

for airborne monitoring, surveillance of natural disasters and for atmospheric sampling.

Figure 2.4 shows an UA V used during networked teaming experiment.

11

The scientists believed that this emerging software technology may, one day, enable

swarms of aircraft to move safely from one area to another as a flock or group, "stacked" in

a vertical column with instruments to collect air samples for future science missions or to

help ground personnel monitor forest fires and other natural disasters [17].

Figure 2.4: UA V Used in Network UA V Teaming Experiment [17]

2.8. Simulation Environments

The simulation environments which are used to counterfeit multi-agent systems are

denoted as Agent-Based Modeling Systems (ABMS). There are several ABMSs used to

address and model different types of agent modeling, each of which is custom suited based

on the problem addressed [15].

2.8.1. Survey of Simulation Tools

This survey identified lot of agent-based modeling environments which are in use

and outlined in the list as follows:

12

Agent Sheets, Andromeda, Any Logic, Ascape, Breve, Cormas, DEVS: Discrete

Event System Specification, EcoLab, FLAME: Flexible Agent Modeling Environment,

JAS: Java Agent Based Simulation Library, LSD: Laboratory for Simulation Development,

MAML: Multi-Agent Modeling Language, MATSim, MASON: Multi-Agent Simulation of

Neighborhoods, MASS: Multi-Agent Simulation Suite, MetaABM, MIMOSE, MobiDyc:

ModelizationBaseesur les Individus pour la Dynamique des Communautes,Modelling4all,

Net Logo, Open Star Logo, Repast: Recursive Porous Agent Simulation Toolkit, Repast

Symphony, SimPack, SimPy, SOARS: Spot Oriented Agent Role Simulator, StarLogo,

SugarScape, Swarm, VisualBots, Xholon, A-globe, ABLE: Agent Building and Leaming

Environment, Cougaar: Cognitive Agent Architecture, FIP A: Foundation for Physical

Intelligent Agents, JAD;E: Java Agent Development Framework, Jason, MadK.it, MAGSY,

MASIF, SDML: Strictly Declarative Modeling Language, SeSAm: Shell for Simulated

Agent Systems, SimAgent, Zeus [15]. Table 2.1 gives a survey of terminologies used in

four different agent-modeling environments.

Table 2.1: Comparison of Agent-Based Modeling Systems [15]

Concept/Term MASON NETLOGO REPAST SWARM

Object that builds Model Observer Model Modelswarm
and controls
simulation

objects
User-opened Inspector Monitor Probe probe
display of an display
agent's state

An agent Steppable Procedure Action Action
behavior or event

to be executed
Queue of events Schedule Forever Schedule Schedule

executed procedure
repeatedly

13

2.8.2. N etLogo

NetLogo, originally named StarLogoT, is a high-level platform providing a simple,

powerful programming language imbibing with built-in graphical interfaces and extensive

documentation. It is predominantly well adapted for the development of models involving

complex systems evolving over time. One of its uses can be seen extensively for deploying

models over the internet. Instructions can be given to huge number of agents operating

parallel using these models. Exploring the relationship between the micro-level attributes

of individuals and the macro-level patterns that result from the interaction of many

individuals is possible [18].

Although NetLogo maintains the heritage of StarLogo in areas such as educational

tool, its main architectural design objective is to operate easily. To reduce the programming

effort greatly, NetLogo consists of high-level structures and primitives. The language

inherits from Logo, a dialect of Lisp. Although it does not consist of structuring capabilities

from a standard programming language, it contains most of them [18].

NetLogo is, more or less, a programmable modeling environment for simulating

natural and social phenomena. It has been in continuous evolvement ever since it was made

at the Center for Connected Leaming and Computer-Based Modeling from its development

by Uri Wilensky in 1999. NetLogo makes it possible for students to open simulations and

"explore" with them, analyzing their attributes under several situations and conditions.

Perhaps, it enables students, teachers, and curriculum developers to design their own

models. Students and teachers can easily execute the simulations and can even build their

own model using NetLogo. Researchers can use NetLogo for implementing advanced

research in many fields [18]. A classroom participatory-simulation tool, HubNet, is also

14

powered by NetLogo. By using networked computers or handheld gadgets, such as Texas

Instruments graphing calculators, a student can access and control an agent in a simulation.

One of the next-generation multi-agent modeling languages that started with

StarLogo is NetLogo. The functionality of our product, StarLogoT, is built, adding

important new features, a redesigned language and user interface. NetLogo has been

implemented on the Java virtual machine, so it is supported on all major operating systems

(Mac, Windows, Linux, etc.). It can be executed as a standalone application or from a

command line. Models and HubNet functions can be executed in the form of Java applets

in a web browser [19].

2.8.2.1. Types of agents

Observer Agent: The observer does not have a location. You can imagine it as

looking at the world of turtles, links, and patches.

Turtles: Turtles are agents that move around in the world.

Patches: The world is two dimensional and is divided into a grid of patches. Each

patch is a square piece of "ground" over which turtles can move.

Links: Links are agents that connect two turtles. Links can be directed (from one

turtle to another turtle) or undirected (one turtle with another turtle) [19].

2.8.3. Simulation Interface

The simulation interface of NetLogo is very user friendly with provisions to drag

and drop controls as shown in Figure 2.5. The speed slider enables us to visualize the

simulation at multiple speeds, either continuously or in ticks. The information tab contains

the documented information about the model, and the procedures tab contains the code for

the model.

15

. ' ~~-x-·--~- ~~

:;- Note

Figure 2.5: NetLogo Interface

2.8.3.1. Applications

NetLogo is apt for developing and modeling complex systems that evolve over time

[5]. The developed applications can be deployed on the internet for the public to view.

NetLogo defines models with mobile agents exhibiting parallel on a mesh with attributes

presided by local interactions over a short period of time.

2.8.3.2. Advantages

NetLogo is considered the extensive professional platform for its documentation as

well as its good look and feel. It is supported by various operating systems, such as

Windows, Mac, Linux, etc., hence it is considered to be a cross-platform entity. For

modeling multi-agent systems, one requires a full programmable interface, and NetLogo

serves its full purpose accomplishing its features. The NetLogo platform ensures a robust

16

and flexible plotting system. Using NetLogo, both the two-dimensional and three

dimensional views can be simulated, and it is one of the few interfaces supporting both the

views [5].

2.8.3.3. Example models

NetLogo has been explored for its concepts with the help of thorough

documentation and tutorials. A supplement known as Models Library is made from a

collection of already-defined simulations that can be altered. NetLogo applications can be

seen extensively used in fields like social sciences, biology, medicine, physics, chemistry,

mathematics, economics, social psychology, and computer science. NetLogo is used for

many model-based inquiry curricula [5].

17

CHAPTER 3 - METHODOLOGY

This chapter explains the analysis of the system, the algorithm, and some additional

details of the interface. It also explains software flow of the system in detail.

3.1. Analysis

This section gives a brief description about the type of agents involved, the

environment parameters, the input parameters, and the approach used for the simulation.

3.1.1. Agent Description

NetLogo is considered to be a two-dimensional agent world, consisting of different

types of agents. Agents are the world entities that can follow instructions. In NetLogo, we

can define four different types of agents: turtles, patches, links, and observers [5].

3.1.1.1. Turtles

Turtles are the moving agents of the NetLogo world. These agents move around the

world based on their set instructions.

The moving agents of the UAV simulation will be the UAV's flying agents in the

system. These agents use the reference of flying Boids which has to interact with each

other to cover the NetLogo world.

3.1.1.1.1. Flying agents: UA V

These groups of turtles are defined in the NetLogo world for the UA V simulation.

These agents form the flock and move across the world using the movements specified in

Boid's Flocking algorithm.

18

3.1.1.1.2. Separation

Separation is steering the UA V away from each of the crowding local flock mates

[5]. In the context of the UAV simulation, this movement will help the UAVs avoid

colliding with each other. Figure 3.1 demonstrates the separation the birds implement

during flight.

Figure 3.1: Separation [5]

3.1.1.1.3. Alignment

Alignment is steering towards the average heading of local flock mates. This

movement will help a UAV to align towards a group of the other flying UAVs. Figure 3.2

shows the birds alignment during bird's flight.

Figure 3.2: Alignment

19

3.1.1.1.4. Cohesion

Cohesion is steering to move towards the average position of local flock mates.

This movement will help a UAV to maintain a consistent distance from other UAVs within

a particular group of flights. Figure 3.3 shows the group formation by birds during usual

flight.

Figure 3.3: Cohesion [5]

3.1.1.1.5. Obstacle Avoidance

Obstacle avoidance is a specialized behavior of birds to steer away from static

obstacles and to realign themselves to a flock. This movement finds a greater point of

interest in flight simulations because there are greater possibilities of facing obstacles with

flights when they fly at lower altitudes. Hence, this movement helps the UAVs to avoid the

obstacles placed in the NetLogo world space.

The obstacle avoidance performed by the Boid's uses a 360-degree turn when an

obstacle is found exactly in the center of the path for a particular boid [5]. An aircraft

cannot do a 360-degree turn and follow the same path. Hence, the simulation is tailored to

make a smooth turn. However, this movement will not find its place at higher altitudes, so

this simulation will let the user set the altitude higher and lower. When a higher altitude is

selected, the obstacles will not be taken into account during the flight [5].

20

3.1.1.2. Patches

The NetLogo world is a two-dimensional space which is divided into a grid of

patches. Each patch is a square piece of "ground" over which turtles can move. In other

words, we can refer to patches as the stationary agents of the NetLogo world. This class of

agents will help us to define the environment where the UA Vs maneuver [18].

3.1.1.2.1. Obstacles

The obstacles are defined in the NetLogo world as colored patches that are at lower

altitudes. When a lower altitude is selected, a flying agent has to maneuver to avoid the

obstacles in the world. The UA V simulation described in this project allows users to place

the obstacles randomly or as defined by the user.

1. Random obstacles

Obstacles are placed randomly across the NetLogo world by coloring

patches at different places in the world. These obstacles are placed based on the

number of obstacles specified by the observer agent.

2. Defined obstacles

Observer agents are able to place obstacles at different places in the world

by coloring the patches themselves. This obstacle will also enable the observer

agent to draw a line of obstacles.

3.1.2. Input Description

This section will discuss interactions between the observer agent and the NetLogo

interface. The NetLogo world is simulated based on the set parameters. These parameters

are set through the NetLogo interface elements by using sliders and combo boxes. Once the

21

agent setup and parameter setup are completed, the event handler buttons, setup and go,

will allow observer agents to initiate the simulations. Input parameters for the UAV

simulation consist of setting up the following parameters:

Number ofUAVs (turtles): Slider that sets the number of moving flights across the world.

Number of Obstacles: Slider that sets the number of obstacles. At lower heights, obstacles

illustrate entities like buildings, towers, and other objects that obstruct the normal flight

path.

Height of Flight: Chooser that will have options to set lower altitudes and higher altitudes.

Lower altitudes will set the behavior of avoidance to the UA Vs and higher altitudes will

allow UAVs to pass over an obstacle.

Placement of obstacles: Obstacles can be set to visualize the maneuverability of UAVs

across the world. Clicking on the NetLogo space will create a square obstacle.

3.1.3. Approach

We identified the main problems that the system has to address:

1. The amount of time taken to cover a set environment

2. The ability of UAVs to maneuver through the set environment without colliding

with each other and with obstacles set in the environment.

The ability of birds to fly without colliding while aligning towards the flock will

ensure the ability of UAVs to maneuver in order to avoid collisions with each other. When

obstacles are introduced into the environment, the UAVs have to maneuver without

colliding with each other and also have to avoid obstacles. To avoid obstacles, UAVs have

to make corresponding turns when they are in the vicinity of an obstacle. Another

important parameter to consider is the UAVs' tum capability. They have to make a turn as

22

an arc at a particular distance from the obstacle. To perform this arc, UAVs have to do a

separation by an arc within some distance. Then, they would have to align and cohere to

the flockmates of the nearest flock. At a higher level of flight, UAVs can be allowed to

pass over obstacles because we assume the height of flight will be higher than the highest

building or obstacle in the environment.

3.2. Design

The design of this model is aimed at building an autonomous or semi-autonomous

model for UA V simulation with consideration of the constraints reviewed in the Approach

section. Hence, the design focuses on dissipation of work from the observer agent to other

agents.

The sequence diagram (Figure 3.4) and the use case diagram (Figure 3.5)

emphasize the dissipation in the first three steps where the observer agent sets up the other

agents and the environment. After this phase, the algorithm does the search and reports the

results to the observer agent.

3.2.1. Sequence Diagram

Figure 3.4 illustrates the sequence of actions that are performed across the UAV

simulation model. This sequence diagram shows the agent interactions arranged in time

sequence. The observer agent performs the setup for the turtles, patches, and environment.

The turtles (UAVs) then flock across the set environment and color the patches in the

environment as they fly over each patch. The reporter agent gives the coverage percentage

and plots the graph using the attained values.

3.2.2. Use Case Diagram

Figure 3.5 illustrates the use cases for each agent in the UAV simulation model.

23

...&------~

This use case diagram presents a graphical overview of the functionality provided by the

UA V simulation model in terms of each agent in the system.

The user or the observer agent performs the setup and initiates the simulation. The

UAVs flock around the NetLogo world and make changes to the world as they cover of

each of the patches. The NetLogo world and the reporting agent give results to the observer

agent.

~~EJ
' ' '

2 : Set number:of obstadesO ' ' .. '

D
' 3 : Set the Envi"onmentO :

4 : Initiate AlgorithmO

' ' '
Boid's AlgorithmO :

7

8 : Reports ch~s in worldO
' ' ' I

9 : Plots (SraphO

I Ne~oa~ ww~ I
' '

' ' ' ' ' ' .. '

' ' ' '

Figure 3.4: Sequence Diagram

24

I RCDQl'ti Agent I
'

This use case diagram presents a graphical overview of the functionality provided by the

UAV simulation model in terms of each agent in the system.

The user or the observer agent performs the setup and initiates the simulation. The

UAVs flock around the NetLogo world and make changes to the world as they cover of

each of the patches. The NetLogo world and the reporting agent give results to the observer

agent.

I~ MCOtl c::J I Pa~ I I Ne\oo~ ~ I I Repqt,AQcnt I
' '

o~

I

' ' ' 2 : Set nuroer: of obstaclesO .. '

0
' ' J : Set the Envi'onmentO :

: 4 : Initiate AJgonthmO

· Boid's AlgorithmO

7

8 : Reports ch~ in worldO

9 : Plots ($raph0

Figure 3.4: Sequence Diagram

24

UAV's

« cove-s the avoidng obstacles>>

~ ...
·---~

Figure 3.5: Use case Diagram

3.3. Algorithm

This section defines the algorithm using the pseudo code to program the system's

agents. The algorithm used for this simulation contains the main method (go method in

NetLogo) which initiates the implementation of the UAVs as a flock. The output of this

algorithm is the coverage percentage calculated as the ratio between the number of pixels

covered and the total number of pixels covered across the setup NetLogo world.

25

3.3.1. Main Method

For each ticking of the simulation time set, the turtles flock in the area. If a patch

(pixel) has been visited, then the respective patch can be marked as visited. The entire

procedure continues till the ticking either reaches the count of 2000 or the number of

patches visited is 1681; when either or both conditions are satisfied, the algorithm comes to

a halt.

Step 1. Setup: environment and parameters (observer agent)

Number of buildings: Patches (Either placed or randomly generated obstacles) [Bl, B2,.,.

Bn], Number ofUAVs: Turtles [Ul, U2, , Un], and Height of flights (H)

Step 2. Go: Flock UAVs across the set NetLogo world (separate, align, and cohere), and

mark covered pixels as visited, until the ticks reach 2000 or the patches visited reach 1681.

If a lower level is selected, then

If there exists a building (Bs) in the path, then

A void building (Bs)

Else then

Perform Go

Else if higher level is selected, then

Perform Go

Step 3. Report: Number of pixels covered (NP) and the number of ticks (simulation time -

NT) taken and coverage percentage (CP = NP / NT * 100)

26

Step 4. End

3.3.2. Flock Method

There are two modes of the selection for placing the obstacles, and they are either

the random placing or the user-defined placement. With each selection, there are two

categories of consideration: either lower altitudes of the objects or higher altitudes of the

UAVs. We should discuss the scenario in both the categories.

When the mode is in random placement and the category is in the lower altitude, the

chance of the collision between UAVs and obstacles is more. The UAVs can be turned

away from the obstacles, and also, the chance of colliding with other UAVs must be taken

into account. The algorithm finds other UA Vs in the path and selects the nearest neighbor

from the others. If the distance between the UAV and the neighbor UAVs is less than 2.00

units, then the UAVs follow any of the selection procedures, i.e., separation, alignment,

and cohesion [18].

3.3.3. Procedure to A void Obstacles

If there is any obstacle present in the path, then UAVs follow the cone of the patch,

and also, the patch is not black. The UAVs separate from the obstacle and align with the

nearest neighbor. Later, they cohere as a group to form a flock. This procedure also

includes the flockmates effort to avoid hitting a particular UAV. Here, all the flockmates

that approaches a particular UA V with a heading angle more than 90 degrees will be

avoided.

3.3.4. Procedure to Find Flockmates

The flockmate of a particular UA V is found using the Visibility parameter set by

27

l
the observer agent. The formation of flock varies based on this parameter. The flockmates

of a particular UA V are set as the other UA Vs flying in the Visibility radius.

3.3.5. Procedure to Find Nearest Neighbor

To find the nearest neighbor of a UA V, we find the UA V with the minimum

distance from the particular UA V. This procedure will return us the distance in terms of the

number of patches [18].

3.3.6. Procedure to Separate

In order to separate the UAVs, the turtle procedure can be accessed. Turn away the

UA V heading towards the nearest neighbor by minimum separation, set by the observer

agent[18].

3.3.7. Procedure to Align

This procedure helps a particular UA V to fom1 a flock by aligning themselves with

other UA Vs. The flockmates can be turned by assessing the average heading of the other

flockmates [18].

3.3.8. Procedure to Cohere

This procedure will help the UAVs align towards the average heading of the

flockmates. The turtles align towards an average heading with each other. After the average

heading is calculated, each turtle is 180 degrees aligned to the average heading. Hence, the

UA Vs form a flock [18]. This algorithm has adaptations of the flocking algorithm defined

by Craig Reynolds [5].

28

1
CHAPTER 4 - EXPERIMENTATION AND RESULTS

This chapter discusses how the model proposed for the UAV simulation works and

carries out experiments which show the efficiency of the new research method to

maneuver the UAVs. The total area of the NetLogo world, or the geographical area over

which the UAVs are flown, is 1681 patches. This simulation requires us to set four

parameters to perform an experiment. The experiment is performed by setting different

values for the four parameters.

4.1. Methods Used

We consider the placement of obstacles in two different methods. The first method

will help us simulate the static obstacles of an environment, and the second method would

let the user to dynamically place obstacles in an environment.

4.1.1. Random Placement Method

This method involves random placement of obstacles in the simulation world and is

performed by coloring the patches randomly across the NetLogo world. The observer agent

chooses the number of obstacles from the Graphical User Interface (GUI); based on this

number, the random colors are choosen from among all the colors excluding black, the

world's default color.

4.1.2. Observer Placement Method

This method involves user placement of obstacles across the world by clicking over

the NetLogo world. This method enables us to draw lines, walls, and other shapes to make

the testing environment dynamic.

29

,
I

I

4.1.3. Altitude

Altitude defines the height of flight for the UAVs. The altitude setting is classified

as higher and lower. Higher altitude is assumed to be higher than the highest obstacle in the

world. Hence, the UAVs will cover the building when they pass over the obstacle.

When a lower altitude is selected, UAVs have to maneuver to make a successful

coverage. Hence, UA Vs will avoid the building by turning away from the obstacle.

4.1.4. Reporter Agent

The agents that report the results of a simulation run dynamically are reporter

agents. This simulation includes the following reporters:

Number of Ticks: The total number of simulation time (tick) taken. This unit helps to

analyze the time used for a simulation run.

Covered Area: The number of patches covered by the UA Vs deployed in the NetLogo

world is referred as the covered area.

Total Area: The total number of patches that are present in the NetLogo world

Building Area: The area covered by the buildings that are placed across the NetLogo world

Coverage Percentage: The percentage of patches (pixels) covered by the UAVs in the

world is termed the coverage percentage.

As the UAVs move over the NetLogo world the reporters will detail the changes

that occur in the environment. Based on these changes, the results can be analyzed.

30

4.1.5. Plot

A two-dimensional graph that lets us analyze the performance of each simulation

run conducted across various inputs. The number of ticks taken is plotted across the x-axis,

and the coverage percentage is plotted in the y-axis.

4.2. Results

This section includes the results of the simulation with different input values and

input settings. The UAV simulation stops either when the entire NetLogo world is covered

or when the number of ticks reaches 2000.

Here, all the results are obtained having an optimum visibility (6.0) and minimum

separation (3.0) so that the UA V flocks as larger groups. The results are analyzed using

four different settings.

4.2.1. Setting 1

In this setting, the environment is set as random, and the altitude is set as lower.

This setting is a constrained setting because the UAVs have to maneuver to avoid obstacles

and simultaneously coordinate with other UAVs. Because this environment 1s very

constrained, the variation in the coverage percentage is at a higher rate.

Table 4.1 shows the results of this setting for different input values. These results

show us variations that happen as we increase the constraints of the flight with more

obstacles and fewer flights. Here, the variation is high because it is a more constrained

setting.

4.2.2. Setting 2

In this setting, the environment is set as random, and the altitude is set as higher.

31

Here, the UAVs attempt to cover the entire world, including the obstacle-laden area

because the altitude is higher.

Table 4.1: Results of Setting 1

Number of Percentage

Number of Number of
Altitude Environment ticks

obstacles UAVs

0 10 Lower Random 1271 100%

1 10 Lower Random 2000 97.501%

5 10 Lower Random 2000 86.318%

5 5 Lower Random 2000 85.121%

10 5 Lower Random
2000 71.327%

IO 1 Lower Random 2000 10.648%

The coverage percentages do not vary a large extent, and the percentage always

stays near 100. The last reading suggests that, even when only one UAV is set up, the

environment is almost covered at this setting.

Table 4.2 shows the results of this setting for different input values. Since we have

assumed that, at higher levels, the UAVs can pass over an obstacle; results remain closer to

100% coverage. The coverage percentage gradually decreases as we increase the

constraints over the environment.

32

Table 4.2: Results of Setting 2

Number of Number of Number of Percentage

Altitude Environment
Obstacles UAVs ticks

0 10 Higher Random 1245 100%

1 10 Higher Random 1544 100%

5 10 Higher Random 1958 100%

5 5 Higher Random 2000 99.286%

10 5 Higher Random 2000 98.334%

10 1 Higher Random 2000 93.813%

4.2.3. Setting 3

In this setting, the environment is placed by the observer agent (user), and the

altitude is set as lower. This setting is a heavily constrained environment similar to Setting

1, but in this setting, the observer agent can place the obstacle at runtime or dynamically.

During the observation of this setting, obstacles were prep laced because this setting

demanded a stable observation. Table 4.3 shows the results of this setting for different

input values.

In this setting, the variation in results remains high because obstacles are avoided

by the UAVs with the lower level of flight selected. The percentage varies from 100% to

5% as we increase the constraints. Figure 4.1 shows us the screen shot of the result shown

when we place one obstacle and 10 UA V's.

33

Number of

Obstacles

0

1

5

5

10

10

Table 4.3: Results of Setting 3

Number of

UAVs

10

10

10

5

5

1

I Cmced P,cc,..,g,
98.394

Altitude Environment

Lower Placed

Lower Placed

Lower Placed

Lower Placed

Lower Placed

Lower Placed

Number of Percentage

ticks

1520 100%

2000 98.632%

2000 81.083%

2000 76.443%

2000 70.613%

2000 5.532%

Figure 4.1: Screenshot Showing the Result for the Second Test of Setting 3.

Figure 4.2 shows the screen shot of the NetLogo world with 10 UAVs flown over

an environment where 5 obstacles are placed as shown. The obstacles are placed here with

different shapes to replicate a real world situation (Buildings).

On careful examination, one can see that the flocking patterns are simulated in this

experiment and the coverage percentage was observed to be 86.68 in 2000 ticks (simulation

time) as shown in the figure.

Figure 4.2 also shows the variation in the angle of turns of the fights when an

obstacles is on its path. This angle variation is due to the adjustments a flock mate makes

to preserve the formation.

34

4.2.4. Setting 4

I eo .. ,ed ,,.,.,.,....
86.675

Figure 4.2: Simulation Result (n=lO)

In this setting, the environment is observer placed, and the altitude is set as higher.

This setting is less constrained. Table 4.4 shows the results of this setting for different input

values.

The results remain closer to 100% coverage because this setting is not constrained

with obstacles as the UAVs can pass over. The coverage percentage gradually decreases as

we increase the constraints over the environment.

35

Table 4.4: Results of Setting 4

Number of Number of Altitud Environme Number of Percentag

Obstacles UAVs e nt ticks e

0 10 Higher Placed 1498 100%

1 10 Higher Placed 1544 100%

5 10 Higher Placed 1958 100%

5 5 Higher Placed 2000 99.286%

10 5 Higher Placed 2000 98.334%

10 1 Higher Placed 2000 93.813%

4.2.5. Wall Test

In this setting, the obstacles are formed as a wall. This setting is a constrained, and

the UA Vs have to maneuver themselves within the wall. Figure 4.3 shows the results of the

wall test.

Figure 4.3 shows us the resulting NetLogo world after the wall test is performed.

In this result, the coverage percentage was 64.604%, and the obstacle area was 208/1681,

which formed approximately 13% of the entire area. If the obstacles are placed as a wall,

the UAVs did not cover 22% approximately out of the designated area.

Figure 4.4 shows the plot generated during the wall test. The variation at the end is

because of an increase in coverage towards the end of the simulation as the UAVs find

paths that are not covered from the visited (Boolean) parameter.

36

I Covered Percentaoe
64.604

Figure 4.3: Simulation Result: Wall Test.

TotalAreaCovered

1240

Ticl<s 2190

Figure 4.4: Plot Generated: Wall Test.

37

4.3. Plot Analysis

A graph showing the number of ticks and the area covered is plotted. This plot

provides a logarithmic-type graph. Figure 4.5 shows the screenshot of plot from the

simulation results.

Logarithmic type: Y= C log(x)

Y: Variation in Y axis

X: Variation in X axis

C: Constant.

0
0

TotalAreaCovered

Ticks 2190

Figure 4.5: Example of Logarithmic Plot, Generated by the Simulation

This graph grows exponentially in the beginning of the process and gradually

decreases to a stable, linear growth. In other words, as the UA Vs start to move around the

world, they would cover the world rapidly, and when the space gets limited, the UAVs start

moving in the covered area.

38

-

4.3. Plot Analysis

A graph showing the number of ticks and the area covered is plotted. This plot

provides a logarithmic-type graph. Figure 4.5 shows the screenshot of plot from the

simulation results.

Logarithmic type: Y= C log(x)

Y: Variation in Y axis

X: Variation in X axis

C: Constant.

1240

]
>
0

l

OJ
0

TotalAreaCovered

Ticks 2190

Figure 4.5: Example of Lc,garithmic Plot, Generated by the Simulation

This graph grows exponentially in the beginning of the process and gradually

decreases to a stable, linear growth. In other words, as the UAVs start to move around the

world, they would cover the world rapidly, and when the space gets limited, the UA Vs start

moving in the covered area.

38

CHAPTER 5 - CONCLUSION

A simulation framework for UAVs usmg multi-agent systems was designed,

developed, and implemented. Now, the framework can enable users to analyze the UAVs'

deployment in a dynamic environment utilizing the various settings provided by the model.

This paper discussed the problems associated with the UA V simulation design and

provided a solution based on the flocking algorithm to overcome these problems. The

simulation also provided results that were generated based on four different settings.

5.1. Observations

Based on the results we obtained from various experiments while considering the

goal of this paper, maneuvering UAVs as a flock across a simulated virtual environment,

we have formulated UA V simulation which enables users to dynamically set an

environment and flock the UAVs across the environment, avoiding collisions with other

flights and set obstacles. We can also come to the conclusion that the Flocking algorithm

serves better in maneuvering UAVs within a stipulated time to search an environment

based on the experiments and their results.

Settings 1 and 3 can be applied across unknown environments; for example, a

space-based UA V can maneuver across land forms on a different planet to explore the

possibility of life. Settings 2 and 4 can be applied when spying across a known place to

locate enemies because, in such an environment, flying at a lower altitude could be

disastrous. The amount of time taken can be minimized by analyzing the results across a

real-time environment in various settings.

39

CHAPTER 6 - FUTURE RECOMMENDATIONS

This simulation can be extended to use in some real-world environments,

introducing birds and other flying entities to the environment. A geographical position

system can be used for setting up the obstacles in the environment. Because the real world

has lot more complexities, this simulation can be extended as real-world experiments such

as experiments conducted by NASA.

There can be a reduction in simulation time by not using the same route that has

already been taken. This time reduction can be done by storing the coordinates of paths

taken in a database and then adding code to avoid the already-taken routes. This will

improve the search methodology as well.

Further, there can be an added feature to analyze the communication between

UAVs [14]. This feature can be implemented similarly to the information exchanged while

sending packets through a network. The information can be routed using the nearest

neighbor in the network. Thus, we can get a cumulative result generated by the agents

themselves.

40

REFERENCES

[l] Department of Defense. "Unmanned Aircraft Systems Roadmap 2005-2030."

http://www.fas.org/irp/program/collect/uav roadmap2005.pdf, 2005.

[2] Roland E. Weibull, and John R. Hansman. "Safety Considerations for Operation of

Unmanned Aerial Vehicles in the National Airspace System" ICAT-2005-1. MIT

International Center for Air Transportation, Massachusetts Institute of Technology

Cambridge, MA, USA 2005.

[3] James T. Hing, and Paul.Y. Oh, "A Motion Platform Integrated UAV Pilot Training and

Evaluation System for Future Civilian Applications." Drexel Autonomous Systems Laboratory

(DASL), Philadelphia, PA, USA 2008.

[4] Prithwish Basu, Jason Redi, and Vladimir Shurbanov. "Coordinated Flocking ofUAVs

for Improved Connectivity of Mobile Ground Nodes." Military Communications

Conference, Monterey, CA, USA 2004.

[5] Craig W. Reynolds. "Flocks, Herds, and Schools: A Distributed Behavioral Model"

SIGGRAPH Conference Proceedings. http://www.red3d.com/cwr/boids/. New York, NY,

USA 1987.

[6] Zak Sarris. "Survey of UAV applications in civil markets". The 9th IEEE

Mediterranean Conference on Control and Automation, MED 'O 1, Croatia 2001.

[7] Samin Karim, and Clint Heinze. "Experiences with the Design and Implementation of

an Agent based Autonomous UA V Controller". ACM AAMAS, Utrecht University,

Nether lands, 2005.

41

[8] Patrick Vincent, and Izhak Rubin. "A Framework and Analysis for Cooperative Search

Using UA V Swarms." ACM SAC, New York, NY, USA 2004.

[9] Hugo Santana, Vincent Corruble, and Bohdana Ratitch. "Multi-Agent Patrolling with

Reinforcement Leaming." ACM AAMAS. New York, NY, USA 2004.

[10] Jimmy Perron, Jimmy Hogan, Bernard Moulin, Jean Berger, and Micheline Belanger.

"A Hybrid Approach Based on Multi-Agent Geosimulation and Reinforcement Leaming to

Solve a UA V Patrolling Problem." Winter Simulation Conference, Miami, FL, USA 2008.

[11] Paul De Jong. "Coalition Formation in Multi-Agent UAV Systems." B.A.Calvin

College, Grand Rapids, MI, USA 1999.

[12] Gary B. Lamont. "UAV Swann Mission Planning Development Using Evolutionary

Algorithms - Part I". Air Force Institute of technology wright- Patterson AFB OH

Department of Electrical and Computer Engineering. May 2008.

[13] Jacques Ferber. "Multi-Agent System: An Introduction to Distributed Artificial

Intelligence." Addison Wesley Longman, 1999.

[14] Kendall E. Nygard, Dianxiang Xu, Jonathan Piklalek, and Martin Lundell. "Multi

Agent Designs for Ambient Systems." Ambi-Sys '08, ICST (Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering. Quebec City, Quebec,

Canada 2008.

[15] Rob Allen. "Survey of Agent Based Modeling and Simulation Tools.". Version 1.1,

October 2009.

[16] "The UAV." http://www.theuav.com/ N.D. August 2011.

42

[17] "Networked UAV Teaming Experiment."

http://www.nasa.gov/centers/dryden/history/pastprojects/ APV -3 NUA VT/index.html,

N.D. August 2011.

[18] Uri Wilensky. ''NetLogo 4.1.3 User Manual." http://ccl.northwestem.edu/netlogo/,

Center for Connected Leaming and Computer-Based Modeling, Northwestern University,

Evanston, IL. 1999.

[19] Luis R. Izquierdo. "Quick guide NetLogo 4.0." http://luis.izquierdo.name. ND. August

2011.

[20] Stuart J.Russell, and Peter Norvig. "Artificial Intelligence: A Modem Approach" (2nd

ed.), Upper Saddle River, New Jersey: Prentice Hall. 2003.

43

	BCS2_4500
	BCS2_4501
	BCS2_4502
	BCS2_4503
	BCS2_4504
	BCS2_4505
	BCS2_4506
	BCS2_4507
	BCS2_4508
	BCS2_4509
	BCS2_4510
	BCS2_4511
	BCS2_4512
	BCS2_4513
	BCS2_4514
	BCS2_4515
	BCS2_4516
	BCS2_4517
	BCS2_4518
	BCS2_4519
	BCS2_4520
	BCS2_4521
	BCS2_4522
	BCS2_4523
	BCS2_4524
	BCS2_4525
	BCS2_4526
	BCS2_4527
	BCS2_4528
	BCS2_4529
	BCS2_4530
	BCS2_4531
	BCS2_4532
	BCS2_4533
	BCS2_4534
	BCS2_4535
	BCS2_4536
	BCS2_4537
	BCS2_4538
	BCS2_4539
	BCS2_4540
	BCS2_4541
	BCS2_4542
	BCS2_4543
	BCS2_4544
	BCS2_4545
	BCS2_4546
	BCS2_4547
	BCS2_4548
	BCS2_5286
	BCS2_5287
	BCS2_5288
	BCS2_5289
	BCS2_5290
	BCS2_5291

