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ABSTRACT 

The primary objectives of this dissertation research are to (1) improve the understanding 

of macro-scale hydrologic processes in cold climate regions, (2) improve macro-scale 

representation and modeling of depression-dominated areas, and (3) improve land use 

variations in macro-scale hydrologic models. To achieve the objectives, (1) a Macro-Scale 

Hydrologic Processes Simulator (Macro-HyProS) is developed and tested in the Red River of the 

North Basin (RRB), (2) the impacts of sub-daily temperature fluctuations around the freezing 

temperature on snowmelt simulations are evaluated by using a hybrid temperature index 

method (HTIM), and (3) the effects of two high-resolution gridded temperature datasets on 

magnitude and distribution of snowmelt are assessed in the Missouri River Basin (MRB). 

Macro-HyProS is a grid-based daily hydrologic model that uses a unique LEGO-fashion 

horizontal layout to account for the within-grid heterogeneity of land use. The model 

incorporates five vertical bands, each of which simulates different hydrologic processes. 

Eventually, a grid-to-grid routing method is used to estimate outlet discharge. The simulation 

results from the first study accentuated the significance of frozen ground condition on the 

generation of surface runoff in the RRB. It was found that the concurrent occurrence of frozen 

ground condition, snowmelt events, and early spring rainfalls in the RRB made the basin prone 

to frequent spring floods. In addition, it was demonstrated that the abundant surface 

depressions across the RRB regulate the release of surface runoff and streamflow discharge. 

Results from the second study revealed that the HTIM improved the representation of 

temperature variations in snow models. It was found that the daily snowmelt simulations were 

significantly affected by the sub-daily temperature fluctuations, while the monthly and annual 

snowmelt results were less prone to such changes. Lastly, results from the third study indicated 

that although different temperature datasets captured the spatial and temporal patterns of 

snowmelt in the MRB, the quantities of the simulated snowmelt were different on the western 

side of the basin with complex topographical features. 
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observed values 
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1. GENERAL INTRODUCTION: TOWARDS MACRO-SCALE MODELING 

The climate-driven impacts on temperature and precipitation, as well as increasing 

demands for freshwater, have intensified the stress on water resources, with varying effects on 

different regions across the world. The United Nations 2018 report on Sustainable Development 

Goals suggests that if the unsustainable pressures on global water resources keep growing with 

the current pace, 52% of the world’s population and 40% of global grain production will be at 

risk by the mid-21st century (UN-Water 2018). For example, climate projections predict warmer 

temperatures in the Northern Great Plains of the United States which lead to earlier snowmelt 

and directly impact agriculture in the Dakotas, Montana, Wyoming, and Nebraska (Conant et al. 

2018). Although climate models can provide variations of precipitation and temperature over 

time, understanding the regional water quantity and quality issues requires the use of 

hydrologic models. Hydrologic models are the simplification of the water-cycle systems and help 

to understand the past, present, and future state of water resources by facilitating the 

interpretation of different management decisions (Johnston and Smakhtin 2014).  

1.1. Evolution of Hydrologic Models 

Increasing demands for representing hydrologic processes at different scales have led 

researchers to classify hydrologic models into three categories of (1) micro-, (2) meso-, and (3) 

macro-scale models (Chu et al. 2019). The concept of hydrologic modeling at different scales is 

similar to using web mapping services. In an online map, zoomed-in views are used to find 

specific locations and features while zoomed-out maps give a holistic view of prominent 

geographical features of the area. Similarly, while micro-scale models are used to simulate the 

local hydrologic processes, macro-scale hydrologic models are associated with regional and 

continental hydrologic processes and provide simulations for areas larger than a few thousand 

square kilometers (Döll et al. 2008; Liebscher 1993). 

Macro-scale hydrologic modeling is a relatively new field of research, which has 

flourished over the 21st century (Sood and Smakhtin 2015). Figure 1.1 depicts a schematic 
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timeline of the significant milestones in the evolution of hydrologic models. The initial attempts 

to develop a hydrologic model are traced back to 1850s when Mulvany (1850) developed the 

rational method for estimating the time of concentration and peak discharge of a given basin 

(Beven 2012; Singh 2018). The development of the rational method was followed by many 

efforts to simulate other hydrologic processes through the 1960s when the computer revolution 

significantly improved the computation power (Borah and Bera 2003). Crawford and Linsley 

(1966) developed the Stanford Watershed Model, one of the first hydrologic models to simulate 

different hydrologic processes, and paved the way for the emergence of many other hydrologic 

models for decades to come (Figure 1.1).  

 

Figure 1.1. Milestones in the evolution of hydrologic models leading to macro-scale hydrologic 
modeling (GIS: geographic information system).  

As one of the initial efforts to substantiate macro-scale hydrologic models, Eagleson 

(1986) highlighted the necessity of the knowledge of the hydrologic cycle at macro-scale and 

portrayed a promising future for macro-scale hydrologic models. Specifically, Vörösmarty et al. 

(1989) developed one of the first macro-scale hydrologic models (Figure 1.1), in which a water 

balance model was linked to a water transport model to simulate soil moisture, 

evapotranspiration, and surface runoff in South America. The emergence of Geographic 

Information Systems (GISs), along with the increasing availability of satellite images and remote 

sensing data, facilitated pre- and post-processing of meteorological data and led to rapid 

developments and applications of macro-scale hydrologic models throughout the 21st century. 

Several studies have compared different macro-scale hydrologic models based on their 

capabilities, features, structures, and ability to capture the variations in hydrologic processes 
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(Gudmundsson et al. 2012; Kauffeldt et al. 2016; Sood and Smakhtin 2015). Sood and Smakhtin 

(2015) reviewed the capabilities of twelve macro-scale models and discussed general limitations 

of macro-scale modeling, including uncertainties in hydrologic modeling, incorporation of 

remotely sensed data, and scaling issues (Sood and Smakhtin 2015). Similarly, Kauffeldt et al. 

(2016) reviewed 24 macro-scale hydrologic models based on their suitability for flood 

forecasting in Europe and provided guidance on model selection based on a set of criteria.  

Macro-scale hydrologic models are commonly classified based on different aspects, 

including but not limited to their primary objective, integrated processes, the realm of 

application, structure, and temporal and spatial resolutions. The majority of the macro-scale 

hydrologic models are developed with the primary objective of simulating spatiotemporal 

variations of hydrologic processes. However, there are models that provide more specific 

features and functions. For example, Water-Global Analysis and Prognosis (WaterGap) (Alcamo 

et al. 2003) takes into account human interventions in forms of water abstractions and dams. In 

addition, the model-specific objectives directly affect integrated processes and applications. For 

instance, integration of reservoir management functions in Soil and Water Assessment Tool 

(SWAT) (Arnold et al. 1998) enables its application to a wide variety of agricultural water supply 

and demand problems. Other fields of application of macro-scale hydrologic models include but 

not limited to floods and droughts, water quality assessment, land-use change, and groundwater 

depletion (Abbaspour et al. 2015; Nijssen et al. 2001; Wada et al. 2010).  

To simulate hydrologic processes, different macro-scale models incorporate two spatial 

discretization approaches (i.e., grid-based and sub-basin-based), each of which has unique 

advantages and disadvantages (Chu et al. 2019). Grid-based models such as Spatial Processes in 

Hydrology (SPHY) (Terink et al. 2015) can easily incorporate available grid-based satellite image 

products such as Leaf Area Index (LAI). On the other hand, sub-basin-based models such as 

Hydrological Predictions for the Environment (HYPE) (Lindström et al. 2010) can use different 

station-based data (e.g., precipitation or temperature) into different sub-basins. In addition to 
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the model structure, the temporal and spatial resolutions of different models vary depending on 

the input data requirements and model-specific recommendations. The temporal resolution of 

the majority of macro-scale hydrologic models is daily or larger, depending on the 

recommendations of the model developers. For example, Arnell (1999) suggested that since 

monthly runoff shows lower sensitivity to the calibrated routing parameters, a monthly 

resolution for Macro-scale Probability-Distributed Moisture (Macro-PDM) (Arnell 1999) 

generates better outputs. The spatial resolution of different models depends on the availability 

of input data. However, there are some model-specific recommendations on spatial resolution. 

For example, Variable Infiltration Capacity (VIC) (Liang et al. 1994) simulates land surface 

processes for grid resolution larger than 1 km, and WaterGap performs its computations with 

the spatial resolution of 55 km.  

1.2. Research Gaps 

Due to the extent and magnitude of the climate-driven changes across the world, macro-

scale hydrologic models are becoming increasingly popular. However, there are only a few 

macro-scale models to simulate hydrologic processes in depression-dominated cold climate 

regions. Specifically, cold climate regions are distinguished by their cold and lingering winters, 

in which the land surface is covered by a thick snowpack layer for several months, leading to a 

frozen-ground condition and consequently spring floods. For example, the Red River of the 

North Basin (RRB) is a typical cold climate basin that encounters frequent spring floods as a 

result of its cold climate, spring snowmelt as well as its unique topography (Lin et al. 2015). 

Figure 1.2 portrays an illustrative example of how the RRB functions in early springs. Two 

snapshots of the Red River on 1st Avenue Bridge in Fargo during the 2019 spring flood and 

variations of soil temperature with depth on March 21st and April 8th are depicted in Figure 1.2a-

d. In the 20-day period from March 21st to April 8th, the hourly air temperatures were constantly 

fluctuating around the freezing temperature, creating a susceptible environment for the 

generation of snowmelt. However, the top layers of the soil (top 100 cm) were fully or partially 
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frozen (Figure 1.2b and Figure 1.2d), affecting infiltration and surface runoff generation. The 

frozen soil condition, together with other variables such as flat topography, snowmelt, ice jams, 

and precipitation over the basin, led to the Red River’s highest streamflow discharge peak on 

April 8th, 2019 (549 m3/s at Fargo, Station ID 05054000) (Figure 1.2c). The 2019 flood is just an 

example of recurring floods in late-March and early-April period and highlights the impacts of 

cold climate conditions in the hydrologic response of the RRB.  

 

Figure 1.2. Snapshots of the Red River (on 1st Avenue Bridge, Fargo, ND) during the 2019 spring 
flood and soil temperature variations with depth on (a and b) March 21, 2019 and (c and d) April 
8, 2019. Soil temperature data are obtained from North Dakota Agricultural Weather Network 
(NDAWN 2019) at Fargo Station (Latitude:46.897°, Longitude:-96.812°). 

Several studies indicated that models that do not account for cold climate characteristics 

(e.g., frozen ground and snowmelt) are not able to capture the recurring spring floods (Chu et al. 

2019; Tahmasebi Nasab et al. 2018). For example, the majority of macro-scale models take 

advantage of a simple temperature index method to simulate snowmelt over the basin (e.g., 

Bergström 1992; Terink et al. 2015). One of the critical simplifying assumptions behind 



 

6 

temperature index methods that restricts their application is that each timestep is represented 

by a single temperature (i.e., the daily average temperature). However, when sub-daily 

temperatures fluctuate above or below the freezing temperature, the single-temperature 

methods cannot provide realistic snowmelt simulations (Žaknić-Ćatović et al. 2018). 

In addition to the cold climate conditions, the filling-spilling process associated with 

depressions in depression-dominated areas is another important process that affects the timing 

and magnitude of generated surface runoff. Surface depressions are usually considered as 

“micro-scale” topographic features of a surface. However, depression-dominated areas are 

characterized by numerous surface depressions that collectively alter and manipulate the 

“macro-scale” hydrologic processes. The depression-dominated areas act as the “gatekeepers” 

and are controlled by a filling-spilling process (Tahmasebi Nasab et al. 2017a). Tahmasebi 

Nasab et al. (2018) investigated the significance of considering depressions in water quality and 

quantity modeling of RRB. It was found that neglecting the role of surface depressions in the 

modeling of depression-dominated basins may result in unrealistic surface runoff simulations 

(Tahmasebi Nasab et al. 2018).  

Several “micro-scale” methods and models have been developed to account for the 

complexities associated with identifying and modeling depressions (Chu et al. 2013; Tahmasebi 

Nasab et al. 2017b). For example, Chu et al. (2013) developed a micro-scale Puddle-to-Puddle 

(P2P) hydrologic modeling system which routes water from one depression to another and 

eventually to the outlet of a surface. P2P uses the Puddle Delineation (PD) algorithm (Chu et al. 

2010) that identifies depressions based on topographical features of the surface and provides a 

variety of characteristics associated with depressions such as maximum depression storage, 

maximum ponding area, and the hierarchical relationships of depressions. Although the 

imperative importance of depressions-dominated areas has been emphasized in many studies 

(e.g., Chu 2015; Chu et al. 2013), the majority of macro-scale models either ignore depressions 
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or employ lumped and simplistic approaches to simulate their effects on the outlet streamflow 

discharge. 

1.3. Objectives and Tasks 

Given the significance of macro-scale modeling in depression-dominated cold climate 

regions, the primary objectives of this dissertation research are threefold: 

• to improve the understanding of macro-scale hydrologic processes in cold climate 

regions, 

• to improve the macro-scale representation and modeling of depression-dominated 

regions, and 

• to improve the land use and land cover representation in macro-scale hydrologic 

models. 

Achieving these objectives requires three specific tasks: (1) to develop a Macro-Scale 

Hydrologic Processes Simulator (Macro-HyProS), tailored for cold-climate conditions and 

depression-dominated areas; (2) to test Macro-HyProS by coupling it with downscaled satellite-

based meteorological datasets to facilitate large-scale modeling; and (3) to investigate the 

impacts of micro-topography and spatiotemporal scales on the macro-scale modeling. The 

simulation results are presented in forms of maps and graphs to highlight the unique features of 

Macro-HyProS and provide insight into the future applications of the model. 

1.4. Organization of the Dissertation 

The contents of this dissertation are organized into five chapters. Chapter 1 provides a 

general introduction to the evolution of hydrologic models and developments towards macro-

scale hydrologic modeling. Notably, the limitations of macro-scale hydrologic models in 

depression-dominated cold climate regions are presented, which provide a basis for the specific 

objectives and tasks of the dissertation.  

Chapter 2 introduces a new Macro-scale Hydrologic Processes Simulator (Macro-

HyProS) which is tailored for cold climate regions and depression-dominated terrains. Macro-
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HyProS is a grid-based hydrologic model of a unique LEGO-fashion structure to deal with 

hydrologic complexities associated with depression-dominated cold climate regions. In addition 

to presenting the methodologies, the capabilities of Macro-HyProS in describing the 

spatiotemporal variations of hydrologic processes are tested in the Red River of the North Basin. 

Chapter 3 evaluates the impacts of sub-daily temperature fluctuations around the 

freezing temperature (i.e., 0oC) on the quantity and spatial distribution of snowmelt 

simulations. Unlike other existing macro-scale models that rely upon a single daily average 

temperature, the snow model in Macro-HyProS incorporates minimum and maximum 

temperatures and their occurrence timing within the day in a hybrid temperature index method. 

The model is applied to the Missouri River Basin to simulate grid-based snowmelt. Simulation 

results are compared with the snowmelt data from the SNOw Data Assimilation System 

(SNODAS). 

Chapter 4 assesses the influences of using two different high-resolution gridded 

temperature datasets on macro-scale snowmelt simulations in the Missouri River Basin. 

Specifically, temperature datasets from Parameter-elevation Relationships on Independent 

Slopes Model (PRISM) and Topography Weather (TopoWx) are utilized to simulate snowmelt 

for two representative flood and drought years. The impacts of the two datasets on the quantity 

and distribution of snowmelt are evaluated by applying the model in the Missouri River Basin, 

which possesses a unique complex topography. 

Lastly, Chapter 5 provides a summary of the conducted studies and highlights specific 

conclusions and implications. In addition, future research directions and potential 

improvements to Macro-HyProS are briefly discussed.  
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2. MACRO-HYPROS: A NEW MACRO-SCALE HYDROLOGIC PROCESSES 

SIMULATOR FOR DEPRESSION-DOMINATED COLD CLIMATE REGIONS1 

2.1. Abstract 

This study introduces a new Macro-scale Hydrologic Processes Simulator (Macro-

HyProS), tailored for cold climate regions and depression-dominated terrains. Macro-HyProS is 

a grid-based hydrologic model of a unique structure to deal with hydrologic complexities in 

depression-dominated cold climate regions. The model runs on a daily time step and 

incorporates a LEGO-fashion horizontal layout to account for sub-grid land use heterogeneity. 

On the vertical layout, each grid consists of different bands, each of which is responsible for 

simulating specific hydrologic processes. Macro-HyProS employs improved methodologies to 

account for snow accumulation and ablation, depressions, and frozen ground condition. The 

Red River of the North Basin (RRB) was selected to highlight the capabilities of Macro-HyProS 

in describing the spatiotemporal complexities associated with depression-dominated cold 

climate regions. Results indicated that the model provided a satisfactory performance, having 

the Nash–Sutcliffe efficiency coefficients of 0.56 and 0.72 in the calibration and validation 

periods, respectively. The modeling results accentuated the impacts of frozen ground, snowmelt, 

and depressions in the generation of surface runoff over the basin. On average, the RRB 

experienced 145 days of frozen or partially frozen ground conditions per year, which coincided 

with early spring rainfall and snowmelt events. Due to the widespread frozen ground conditions 

over the basin, up to 60% of the generated snowmelt on specific days contributed to surface 

runoff, whereas infiltration had a smaller portion. Also, the results revealed that the depression-

dominated areas acted as “regulators” of surface runoff, particularly in early springs. Macro-

 

 

1 The material in this chapter was co-authored by Mohsen Tahmasebi Nasab and Dr. Xuefeng Chu. 
Mohsen Tahmasebi Nasab had primary responsibility for developing the new analysis procedure and 
modeling of the system. Mohsen Tahmasebi Nasab was the primary developer of the conclusions that are 
advanced here. Mohsen Tahmasebi Nasab also drafted and revised all versions of this chapter. Dr. 
Xuefeng Chu served as proofreader and checked analysis conducted by Mohsen Tahmasebi Nasab. 
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HyProS provides spatiotemporal simulations of various hydrologic processes to facilitate a 

better understanding of macro-scale hydrologic trends. 

2.2. Introduction 

The idea of hydrologic modeling at different spatial scales (i.e., micro, meso, and macro) 

is comparable to using web mapping services. In an online map, zoomed-in views are used to 

find specific locations and features while zoomed-out maps give a holistic view of prominent 

geographical features of the area. Similarly, micro-scale hydrologic models are used to 

investigate the local hydrologic process, such as filling, spilling, and merging of surface 

depressions (Chu et al. 2013). On the other hand, macro-scale hydrologic models are associated 

with regional and continental hydrologic processes and provide large-scale simulations for areas 

larger than a few thousand square kilometers (Chu et al. 2019; Döll et al. 2008). 

Macro-scale hydrologic modeling is a relatively new field of research, which has 

flourished over the 21st century (Sood and Smakhtin 2015). As one of the initial efforts to 

substantiate macro-scale models, Eagleson (1986) highlighted the necessity of the knowledge of 

the hydrologic cycle at a macro scale and portrayed a promising future for macro-scale 

hydrologic models, suggesting that the future of hydrology is intertwined with macro-scale 

hydrologic models. Vörösmarty et al. (1989) developed one of the first macro-scale hydrologic 

models, in which a water balance model was linked to a water flow model to simulate soil 

moisture, evapotranspiration, and surface runoff in South America. Although before the 21st 

century, the macro-scale models were considered as “exotic” siblings of catchment models (Döll 

et al. 2008), large-scale climate-driven changes have led to rapid developments and applications 

of macro-scale hydrologic models throughout the 21st century. The emergence of the Geographic 

Information System (GIS), along with the increasing availability of satellite images and remote 

sensing data, facilitated pre- and post-processing of meteorological and hydrological data and 

applications of macro-scale hydrologic models in different study areas. The applications of 

macro-scale hydrologic models around the world have indicated that they are useful tools for a 
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variety of subjects such as impacts of climate-driven changes on water resources (Arnell and 

Gosling 2013), flood and drought return period analysis (Lehner et al. 2006), and hydrologic 

implications of human activities (Syvitski et al. 2005). 

There are several studies with the primary goal of evaluating different macro-scale 

hydrologic models based on their capabilities, features, structures, and abilities to capture the 

variations in hydrologic processes (Gudmundsson et al. 2012; Kauffeldt et al. 2016; Sood and 

Smakhtin 2015). For example, Sood and Smakhtin (2015) highlighted the capabilities and 

limitations of twelve macro-scale models and discussed general limitations of macro-scale 

modeling, including the uncertainties in hydrologic modeling, incorporation of remotely sensed 

data, and scaling issues. Similarly, Kauffeldt et al. (2016) reviewed 24 macro-scale hydrologic 

models based on their suitability for flood forecasting in Europe and provided guidance on 

model selection based on a set of criteria. The selected criteria such as input data requirement, 

flexibility to grid structure, flexibility in resolution, and possibility of calibration using suitable 

tools were chosen to accentuate the implementation of hydrologic models on a macro scale 

(Kauffeldt et al. 2016). It was concluded that although these criteria were subjective to the 

specific applications of hydrologic models, they could serve as an initial step in the model 

selection for operational flood forecasting schemes (Kauffeldt et al. 2016). 

Macro-scale hydrologic models can be classified from different aspects such as their (1) 

primary objective(s), (2) integrated processes, (3) area of application (e.g., impacts of land use 

change), (4) structure, and (5) temporal and spatial resolutions. Although the majority of the 

macro-scale hydrologic models have been developed with the primary objective of simulating 

spatial and temporal variations of hydrologic processes, some possess more specific features and 

functions. For example, the Water-Global Analysis and Prognosis (WaterGap) (Alcamo et al. 

2003) takes into account human interventions in forms of water abstractions and dams; and the 

Variable Infiltration Capacity (VIC) (Liang et al. 1994) considers sub-grid heterogeneity through 

statistical distributions. Also, the model-specific objectives directly affect the integrated 
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processes and applications of the models. For instance, the integration of reservoir management 

functions in the Soil and Water Assessment Tool (SWAT) (Arnold et al. 1998) enables its 

application to a wide range of agricultural water supply and demand problems.  

To simulate hydrologic processes, macro-scale models generally incorporate two spatial 

discretization structures: (1) grid-based and (2) subbasin-based, each of which has unique 

advantages and disadvantages (Chu et al. 2019). Grid-based models such as Spatial Processes in 

Hydrology (SPHY) (Terink et al. 2015) can easily take advantage of available gridded satellite 

image products such as Leaf Area Index (LAI). On the other hand, subbasin-based models such 

as Hydrological Predictions for the Environment (HYPE) (Lindström et al. 2010) can 

incorporate station-based observations (e.g., precipitation and temperature) into different 

subbasins. The spatial resolution of different models depends on the availability of input data. 

However, there are some model-specific recommendations on spatial resolution. For example, 

VIC simulates land surface processes for grids larger than 1 km, while WaterGap performs its 

simulations with a spatial resolution of 55 km. 

Although macro-scale hydrologic models are becoming increasingly popular, there are 

only a few macro-scale models for cold climate regions, such as Ecological Model for Applied 

Geophysics (ECOMAG) (Motovilov et al. 1999) developed for the northern hemisphere climate 

processes land-surface experiment (NOPEX). Motovilov (2016) used ECOMAG to simulate snow 

water equivalent for the macro-scale Volga basin over a period from 2001 to 2011. Results 

indicated a good agreement between the simulated and observed time series of total snow water 

equivalent over the basin (Motovilov 2016). The cold climate regions are characterized by their 

long and cold winters, in which snow covers the land surface for several months, leading to a 

frozen ground condition and consequently spring floods. The Red River of the North Basin 

(RRB) is a typical example of the cold climate regions, which experiences frequent spring floods 

as a result of its frozen ground condition, early spring snowmelt, as well as its unique flat 

topography (Lin et al. 2015). Several studies have suggested that hydrologic models that do not 
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account for cold climate characteristics (e.g., frozen soil and snowmelt) are not able to capture 

the recurring spring floods in the RRB (Chu et al. 2019; Tahmasebi Nasab et al. 2018). In 

addition to the cold climate condition, the filling-spilling mechanism of depressions in 

depression-dominated areas dominates the timing and magnitude of generated surface runoff. 

Depression-dominated areas are typified by numerous surface depressions that collectively alter 

the macro-scale hydrologic processes. Such depressions act as the “gatekeepers,” controlled by 

the filling-spilling process. Although some methods and models have been developed to identify 

and model the dynamics of depressions and their hierarchical relationships (e.g., Chu et al., 

2013; Tahmasebi Nasab et al., 2017b), the majority of these models are mainly applied to micro-

scale simulations (Tahmasebi Nasab et al. 2017a). To point out the correlation between spatial 

scales and the delineated characteristics of depressions, Tahmasebi Nasab et al. (2017a) 

performed scale analyses of 70 different digital elevation model (DEM) resolutions, ranging 

from 2 m to 105 m, for a depression-dominated site in the Prairie Pothole Region of North 

Dakota. They identified a “threshold resolution” and showed that hydrologic modeling results 

were highly influenced by using DEM resolutions coarser than the threshold resolution. 

In this study, a Macro-scale Hydrologic Processes Simulator (Macro-HyProS) is 

developed with the primary objective of modeling hydrologic processes in depression-

dominated cold climate regions. Macro-HyProS is a grid-based hydrologic model that runs on a 

daily time step and incorporates a novel LEGO-fashion layout to account for sub-grid 

heterogeneity and land use change. In addition to the novel horizontal layout, the model utilizes 

widely available meteorological datasets, delineated micro-topographic features, and improved 

methodologies to account for the influences of surface depressions and cold-climate conditions 

on different hydrologic processes such as snowmelt, surface runoff, and infiltration. Macro-

HyProS simulates hydrologic processes in five different bands and uses a simple flow routing 

procedure to estimate streamflow discharge. To deal with the complexities associated with 

depression-dominated cold climate regions, Macro-HyProS uses improved methodologies to 



 

18 

account for depressions, snow accumulation and ablation, and frozen conditions. The RRB, 

known for its depression-dominated topography and cold-climate features, is selected as a 

testing example to demonstrate the capabilities of the Macro-HyProS. The simulation results are 

presented in forms of maps and graphs, highlighting the unique features of Macro-HyProS and 

providing guidance for future applications of the model. 

2.3. Methodology 

2.3.1. Model Structure 

In Macro-HyProS, a surface is discretized into a user-defined number of square grids, 

and simulation is implemented in a grid-based fashion (Figure 2.1). Selecting a proper grid 

resolution is a function of available input datasets, spatial scales, and the incorporated 

methodologies (Chu et al. 2019; Oubeidillah et al. 2014). However, since Macro-HyProS is a 

macro-scale hydrologic model, the spatial resolution of larger than 1 km is recommended for 

simulating different hydrologic processes. The resolution greater than 1 km has also been 

suggested by other macro-scale hydrologic models such as VIC (Liang et al. 1994). Most macro-

scale hydrologic models neglect the within-grid heterogeneity of coarse resolution grids and 

regard each grid as a homogeneous unit; however, within-grid variations of land use and land 

cover can alter different hydrologic processes such as surface runoff generation. Macro-HyProS 

incorporates a LEGO-fashion layout for each grid to account for within-grid heterogeneity. 

Particularly, a set of RGB (Red, Green, and Blue) building blocks sit on top of a uniform LEGO 

plate, representing land use variations within a grid (Figure 2.1). The Red, Green, and Blue 

Blocks denote developed, vegetated, and wetted areas within a plate, respectively, and can be 

defined based on the available land use maps. 
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Figure 2.1. Horizontal structure of Macro-HyProS: a LEGO-fashion RGB (Red, Green, and Blue) 
block layout, in which Red Block represents the developed area, Green Block represents the 
vegetated area, and Blue Block represents the wetted area. 

In addition to the building blocks, different bricks can be placed on top of the RGB 

Blocks to further account for land use details (Figure 2.1). For example, multiple bricks sitting 

on top of the Green Block represent different crops and vegetation types (e.g., cereals or sugar 

crops). Macro-HyProS simulates 14 bricks, listed in Table 2.1, out of which eleven are on top of 

the Green Block, two are on top of the Blue Block, and one is on top of the Red Block. The crop 

classification presented in Table 2.1 is based on the Food and Agriculture Organization (FAO) 

Indicative Crop Classification version 1.1 (FAO Statistical Development Series-15 2017). 

Although the geographic locations and orientations of different brick types are not taken into 

account, the coverage percentage of each brick over a grid can be calculated using the zonal 

statistics tools in GISs. Different parameters are then assigned to each brick and hydrologic 

processes are calculated for each brick separately. It should be noted that depending on the 

specific characteristics of a study area, the user can modify and change brick parameters for 

different regions. The LEGO-fashion layout allows the model to simulate continuous land use 

changes at a sub-grid scale, which can affect different hydrologic processes such as interception 
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or surface runoff generation. When hydrologic processes are simulated for all bricks within a 

grid, a weighted average method is used to calculate hydrologic processes for the grid and 

consider the degrees of importance of bricks. As an example, Figure 2.2 depicts the land use 

variations in 2006 and 2007 over a sample grid of 4×4 km2 in the RRB (UTM coordinates: 

5,206,174 m, 737,859 m), based on the Cropland Data Layer (CDL) database (Boryan et al. 

2011). A visual comparison between Figures 2.2a and 2.2b indicates that the majority of the grid 

is covered by oilseed crops in 2006 and cereals in 2007. Although this is a subtle change for a 

4×4 km2 grid, the collective land use changes can impact different hydrologic processes at a 

macro scale, which are simulated in Macro-HyProS through the LEGO-fashion modeling 

structure. 

 

Figure 2.2. Agricultural land use change in a sample grid in the Red River of the North Basin 
(RRB) based on the Cropland Data Layer (CDL) database for 2006 and 2007 (UTM coordinates 
of the grid center: 5,206,174 m, 737,859 m). 

In addition to the LEGO-fashion horizontal structure, Macro-HyProS accounts for five 

stratified vertical bands (i.e., Atmosphere, Vegetation, Snow, Surface, and Sub-surface Bands) in 

the modeling. Figure 2.3 presents a simplified flow diagram of Macro-HyProS illustrating its 

workflow and the order of the bands in the program. The model was programmed by using the 

Intel® Fortran (Intel 2019) and Python 2.7 (Python 2010). Since Macro-HyProS reads inputs 

and prints outputs in a TXT format, the ArcGIS ArcPy package (Environmental Systems 
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Research Institute 2014) was used to facilitate pre- and post-processing of the GIS data. 

Specifically, processes such as data preparation, data analysis, conversion, and map automation 

for input and output files are performed using the ArcPy package within Python 2.7. The 

primary function of the pre-processing programs is to prepare input data in a TXT format for 

Macro-HyProS (Figure 2.3). For example, a pre-processing program calculates the coverage 

percentage of different bricks on top of each grid by analyzing land use maps using a zonal 

histogram function. The prepared input data are used by the model to simulate different 

hydrologic processes within three loops, including the brick, grid, and time loops (Figure 2.3). 

The relationships between different bands and descriptions of different hydrologic processes 

simulated by the model within each band are detailed in Section 2.2. Eventually, flow routing is 

implemented and a set of post-processing programs are used for visualization purposes. 

 

Figure 2.3. Simplified flow diagram of Macro-HyProS (W.B. denotes water balance). 
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2.3.2. Macro-HyProS Bands: How Are Hydrologic Processes Simulated? 

2.3.2.1. Atmosphere Band 

Three main functions of the Atmosphere Band in Macro-HyProS are to (1) separate 

rainfall from snowfall based on the precipitation input, (2) modify the average temperature for 

specific bricks (optional), and (3) estimate the daily reference evapotranspiration (RET) for each 

grid. 

2.3.2.1.1. Precipitation Separation 

The majority of macro-scale hydrologic models use a single threshold temperature to 

distinguish rainfall from snowfall. However, some models provide more refinements to the 

single threshold temperature approach. For example, users have an option to input rainfall and 

snowfall time series in HYPE (Lindström et al. 2010). In addition, in HYPE and HBV96 

(Lindström et al. 1997), the single threshold temperature approach is replaced by a temperature 

interval around the threshold temperature to allow the simultaneous occurrence of rainfall and 

snowfall (i.e., mixed rainfall and snowfall). Macro-HyProS employs a user-defined transitional 

temperature range (TTR) to determine rainfall, snowfall, and mixed rainfall and snowfall 

(Tahmasebi Nasab and Chu 2019a). Figure 2.4 shows a simplified illustration of the separation 

process: (1) rainfall for TAVE ≥ TTMAX, (2) snowfall for TAVE ≤ TTMIN, and (3) mixed rainfall and 

snowfall for TTMIN < TAVE < TTMAX. A linear relationship is assumed for the transition of snowfall 

and rainfall from TTMIN to TTMAX. 

 

Figure 2.4. Precipitation separation: (1) rainfall, (2) snowfall, and (3) mixed rainfall and 
snowfall (TTMIN and TTMAX are the minimum and maximum threshold temperatures). 

2.3.2.1.2. Average Temperature Adjustment 

TAVE in Macro-HyProS represents an average temperature over a grid; however, the 

temperature in different bricks can vary from the average grid temperature. For example, 
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developed areas may create urban heat islands, which lead to higher temperatures in towns, 

cities, or developed regions (Oke 1973). In addition to urban heat islands, it has been observed 

that forest canopies play a moderating role in the below canopy temperature by decreasing the 

daily maximum temperature and increasing the daily minimum temperature (Von Arx et al. 

2012). To account for the impacts of heat islands in the developed regions and temperature 

variations under forest canopies, Macro-HyProS provides an option to adjust TAVE for the 

Developed and Forest Bricks based on two coefficients in the following equation: 

𝑇𝐴𝑉𝐸(𝑡, 𝑔, 𝑘) = {
𝐶𝐻𝐼 × 𝑇𝐴𝑉𝐸(𝑡, 𝑔)
𝐶𝐹𝐶 × 𝑇𝐴𝑉𝐸(𝑡, 𝑔)

  
𝐷𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑 𝐵𝑟𝑖𝑐𝑘
𝐹𝑜𝑟𝑒𝑠𝑡 𝐵𝑟𝑖𝑐𝑘        

 (2.1) 

in which TAVE (t, g, k) is the average temperature for time t, grid g, and brick k; and the two 

coefficients CHI and CFC represent the heat island effect and the forest canopy effect, respectively. 

When CHI and CFC are equal to 1, TAVE is not changed and when CHI and CFC are less/more than 1, 

TAVE is adjusted. 

2.3.2.1.3. Reference Evapotranspiration (RET) 

Different macro-scale hydrologic models tend to employ (1) the Penman-Monteith 

method (and its variants), (2) simple temperature-based methods, (3) user-specified time series, 

or (4) other methods to estimate RET. For example, evapotranspiration in the VIC model (Liang 

et al. 1994) is estimated by using the Penman-Monteith equation (Monteith 1965), which 

requires the details on vapor pressure deficient, radiation, and many other variables. Another 

group of models do not limit users to a specific RET relationship and provide multiple options 

for calculating RET. HYPE (Lindström et al. 2010) can simulate reference evapotranspiration by 

using different methods with varying levels of complexities: (1) modified Jensen-

Haise/McGuiness (Oudin et al. 2005), (2) Hargreaves and Samani (Hargreaves and Samani 

1985), (3) Priestley and Taylor's (1972), and (4) FAO Penman-Monteith (Allen et al. 1998).  

In addition to allowing the users to prepare the RET time series as a model input, Macro-

HyProS also offers three different RET computation options: (1) a simplified form of the 
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standard FAO Penman-Monteith method (Valiantzas, 2013), (2) a two-factor model (Oudin et 

al., 2005), and (3) Hargreaves and Samani (1985) equation. These options facilitate the selection 

of a suitable RET scheme based on the study area characteristics and availability of input data. 

Different RET computation options have various levels of complexity and input data 

requirements. Oudin et al. (2005) suggested that the models relying on solar radiation and 

mean daily temperature are as efficient as more sophisticated and data-demanding models and 

can be used in hydrologic models. Oudin et al. (2005) also suggested a simple two-factor RET 

model, which has been incorporated in Macro-HyProS: 

𝑅𝐸𝑇 = {

𝑅𝑒
𝜆
×
𝑇𝐴𝑉𝐸(𝑡, 𝑔, 𝑘) + 𝐾2

𝐾1
 𝑖𝑓 𝑇𝐴𝑉𝐸 + 𝐾2 > 0 

0                           𝑖𝑓 𝑇𝐴𝑉𝐸 + 𝐾2 ≤ 0 

 (2.2) 

where λ is the latent heat flux (2.45 MJ m-2 day-1), Re corresponds to the extraterrestrial 

radiation (MJ m-2 day-1), and K1 and K2 respectively are a scaling factor and a temperature 

threshold ranging from 90-115 and 5-6. 

2.3.2.2. Vegetation Band 

The Vegetation Band is responsible for computing the interception losses by plants. The 

macro-scale hydrologic models commonly employ a simple bucket approach to simulate 

interception losses. For example, SPHY (Terink et al. 2015) incorporates a time series of 

normalized difference vegetation index (NDVI) in a dynamic vegetation module to provide 

estimates of leaf area index (LAI) and maximum canopy storage. Eventually, the interception is 

calculated as a function of the stored water on the canopy and the atmospheric evaporation 

demand (Terink et al. 2015). HBV-96 incorporates a simple storage model only for forested 

areas (Lindström et al. 1994, 1997). In the storage model used in HBV-96, the maximum canopy 

storage of the forest is assumed to be constant during the year (Lindström et al. 1994). However, 

the majority of hydrologic models account for variable LAI during the year (e.g., SPHY and VIC).  

Several studies have suggested that interception losses vary depending on the types of 

vegetation and precipitation characteristics (Kozak et al. 2007; Maidment 1993). Therefore, 
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Macro-HyProS accounts for rainfall and snowfall interception for (1) short vegetation (i.e., crops 

and residues) and (2) tall vegetation (i.e., forests). It should be noted that in each grid, all bricks 

within the Green Block except for the Forest Brick are considered as short vegetation bricks 

(Table 2.1). Particularly, rainfall interception is simulated for both short and tall vegetation 

bricks; however, snow interception is estimated only for high vegetation bricks, assuming 

negligible snow interception by short-vegetation areas. 

Table 2.1. Descriptions of different bricks considered in the LEGO-fashion layout of Macro-
HyProS based on the Food and Agriculture Organization (FAO) Indicative Crop Classification 
version 1.1. 

Block Brick # Brick Name 

Green 

1 Cereals 

2 Vegetables and melons 

3 Fruit and nuts 

4 Oilseed crops and oleaginous fruits 

5 Root/tuber crops with high starch or inulin content 

6 Stimulant, spice and aromatic crops 

7 Leguminous crops 

8 Sugar crops 

9 Other crops 

10 Forest 

11 Grass/Pasture 

Red 12 Developed 

Blue 
13 Lakes 

14 Depressions 

  

2.3.2.2.1. Rainfall Interception by Short Vegetation 

The significance of intercepted water by different crops has been highlighted in 

numerous studies (e.g., Baver, 1939; Kontorshchikov and Eremina, 1963; Lull, 1964). Lull 

(1964) showed that the interception losses accounted for 36%, 16%, and 15% of the total rainfall 

throughout the growing season for wheat, corn, and soybean, respectively. To account for the 

rainfall interception by short vegetation, Macro-HyProS uses a time-varying LAI-based method 

to compute the rainfall interception losses by crops during the growing season. In addition, the 
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rainfall interception losses by crop residues can be optionally simulated during the post-harvest 

period.  

The water balance equation for the short vegetation bricks can be expressed as: 

𝑆𝑇𝐺𝑆𝑉(𝑡, 𝑔, 𝑘) = 𝑆𝑇𝐺𝑆𝑉(𝑡 − 1, 𝑔, 𝑘) + 𝑅𝐴𝐼𝑁𝐶𝐴𝑁(𝑡, 𝑔, 𝑘) − 𝐼𝑁𝑇𝐶𝐶𝐴𝑁(𝑡, 𝑔, 𝑘) (2.3) 

where STGSV is the short vegetation canopy storage (mm), INTCCAN is the incremental canopy 

interception (mm), and RAINCAN is the incremental rainfall on the canopy (mm) that is 

estimated based on the time series of fractional vegetation cover (FVC): 

𝑅𝐴𝐼𝑁𝐶𝐴𝑁(𝑡, 𝑔, 𝑘) = 𝐹𝑉𝐶(𝑡, 𝑔, 𝑘) × 𝑅𝐴𝐼𝑁(𝑡, 𝑔, 𝑘) (2.4) 

where RAIN is the total incremental rainfall (mm),  and FVC is the ratio of the vertical 

projection area of vegetation (leaves, stems, and branches) on the ground to the total vegetation 

area and is estimated based on LAI using an exponential relationship (Liang and Li 2012):  

𝐹𝑉𝐶(𝑡, 𝑔, 𝑘) = 1 − 𝑒−0.5 𝐿𝐴𝐼(𝑡,𝑔,𝑘) (2.5) 

In Macro-HyProS, the growing season is divided into three periods, representing three 

different plant growth stages (Figure 2.5). The LAI values obtained from the literature (e.g., 

Mengel et al., 2001; Sellers et al., 1996) represent plants in their fully developed condition (i.e., 

maximum LAI). The LAI values for the two other stages are approximated based on two linear 

relationships (Figure 2.5). It is assumed that LAI increases linearly from the beginning of the 

growing season until reaching a plateau (maximum LAI) and then decreases linearly to the end 

of the growing season. 

A simple storage method is used to account for the maximum canopy storage, in which 

the dynamic maximum canopy storage is approximated based on the estimated LAI time series 

(Von Hoyningen-Huene 1981): 

𝑀𝑋𝑆𝑇𝐺𝐶𝐴𝑁(𝑡, 𝑔, 𝑘) = 0.935 + 0.498 × 𝐿𝐴𝐼 − 0.00575 × 𝐿𝐴𝐼
2 (2.6) 

where MXSTGCAN is the maximum canopy storage (mm). The amount of water beyond 

MXSTGCAN is defined as the excess storage (STGEX) and is expressed as: 
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𝑆𝑇𝐺𝐸𝑋(𝑡, 𝑔, 𝑘) = 𝑀𝑎𝑥[0, 𝑆𝑇𝐺𝑆𝑉 −𝑀𝑋𝑆𝑇𝐺𝐶𝐴𝑁] (2.7) 

When the excess storage is removed from STGSV, INTCCAN (mm) is then calculated by: 

𝐼𝑁𝑇𝐶𝐶𝐴𝑁(𝑡, 𝑔, 𝑘) = 𝑀𝑖𝑛[𝑆𝑇𝐺𝑆𝑉 , 𝐴𝑇𝐸𝐷] (2.8) 

where ATED is the atmospheric demand for open water evaporation and ATED = 1.5RET is 

suggested (Allen et al. 1998), assuming that INTCCAN is evaporated by the end of each day. 

 

Figure 2.5. Leaf area index (LAI) variations throughout the growing season (tg) in Macro-
HyProS. 

In addition to the interception by the canopy, different studies suggest that the rainfall 

interception losses by the crop residues are also a significant portion of the total rainfall (e.g., 

Mohamoud and Ewing, 1990; Savabi and Stott, 1994). As an option, a similar approach is used 

in Macro-HyProS to simulate the interception by crop residues for a user-defined period 

following the crop harvest. However, the maximum residue storage (MXSTGRES) is 

approximated as a function of the total residue mass (Kozak et al. 2007; Savabi and Stott 1994):  

𝑀𝑋𝑆𝑇𝐺𝑅𝐸𝑆(𝑡, 𝑔, 𝑘) = {

346 𝑅𝑀(𝑡, 𝑔, 𝑘) − 10.5 𝑅𝑀2(𝑡, 𝑔, 𝑘)

370 𝑅𝑀(𝑡, 𝑔, 𝑘) − 11 𝑅𝑀2(𝑡, 𝑔, 𝑘)

627 𝑅𝑀(𝑡, 𝑔, 𝑘) − 37.3 𝑅𝑀2(𝑡, 𝑔, 𝑘)

   

𝑖𝑓 𝑐𝑜𝑟𝑛
𝑖𝑓 𝑠𝑜𝑦𝑏𝑒𝑎𝑛 
𝑖𝑓 𝑤ℎ𝑒𝑎𝑡

 (2.9) 

where RM (kg ha-1) is the residue mass for corn, soybean, and wheat. Similarly, a generic 

empirical equation is employed to estimate MXSTGRES for other crops (Kozak et al. 2007). 

2.3.2.2.2. Rainfall and Snowfall Interception by Tall Vegetation 

The modified Gash model (Valente et al., 1997) was utilized in Macro-HyProS to estimate 

rainfall interception and evaporation for the forest canopy and trunks. The Gash model and its 
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variants are commonly used at a daily time step, assuming each day as a separate event 

(Miralles et al. 2010). In other words, the forest canopy is assumed to dry up completely 

between events (Carlyle-Moses and Gash 2011; Miralles et al. 2010; Valente et al. 1997). The 

rainfall interception losses from the forest canopy and tree trunks for each time step are 

estimated based on two critical rainfall values: the amount of rainfall to saturate the (1) forest 

canopy (CRC); and (2) trunks (CRT) (Valente et al. 1997): 

𝐼𝑁𝑇𝐶𝐹𝑅𝐶(𝑡, 𝑔, 𝑘) = {
𝐹𝑉𝐶 × 𝑅𝐴𝐼𝑁                                                           𝑅𝐴𝐼𝑁 < 𝐶𝑅𝐶
𝐹𝑉𝐶 × [𝐶𝑅𝐶 + 𝜌 × (1 − 𝜀) × (𝑅𝐴𝐼𝑁 − 𝐶𝑅𝐶)] 𝑅𝐴𝐼𝑁 ≥ 𝐶𝑅𝐶

 (2.10) 

where INTCFRC is the amount of rainfall interception by the forest canopy (mm), ρ is a ratio of 

the mean evaporation rate to the mean rainfall rate for the saturated canopy condition, and ε is 

the fraction of trunk evaporation (0.02) (Miralles et al. 2010; Valente et al. 1997). In addition to 

the rainfall interception by the forest canopy, a similar equation by Valente et al. (1997) is used 

to estimate the amount of rainfall interception by tree trunks. 

Moreover, Macro-HyProS uses a simple bucket approach to estimate snow interception 

and storage in forest canopies (Tahmasebi Nasab and Chu 2019a). Snow interception by tall 

vegetation is estimated by (Hedstrom and Pomeroy 1998; Pomeroy et al. 1998): 

𝐼𝑁𝑇𝐶𝑆𝑁𝑂(𝑡, 𝑔, 𝑘) = 𝐶𝐶𝑈 × [𝐹𝐶𝑆𝑀𝑋 − 𝑆𝑊𝐸𝐹(𝑡 − 1, 𝑔, 𝑘)] (1 − 𝑒
−
𝐹𝑉𝐶×𝑆𝑁𝑂𝑊(𝑡,𝑔,𝑘)

𝐹𝐶𝑆𝑀𝑋 ) (2.11) 

where INTCSNO is the amount of snow interception (mm), SNOW is the snowfall (mm of water 

equivalent), CCU is a canopy unloading coefficient (~0.7), SWEF is the snow storage water 

equivalent of the forest canopy (mm), and FCSMX is the maximum forest canopy snow storage 

(mm). FCSMX is usually estimated by using LAI and snow density (Pomeroy et al. 1998; Schmidt 

and Gluns 1991). Snowmelt from the forest canopy storage (MF) is then simulated by using a 

standard temperature index method (Liston et al. 2006) based on daily average temperature 

and a constant melting factor. 
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2.3.2.3. Snow Band 

Snowmelt is one of the significant elements of the annual streamflow in many cold 

climate regions around the world. In the western United States and Canada, for example, 50%-

80% of the total streamflow is fed by the snowmelt contributions (Stewart et al. 2004). 

Traditionally, the majority of the available hydrologic models take advantage of either (1) energy 

balance methods (EBMs) or (2) temperature index methods (TIMs) (Leavesley 1989). EBMs 

require a wide variety of either simulated or observed meteorological datasets such as solar 

radiation, temperature, and wind speed, while TIMs simulate snowmelt using a single average 

temperature. The simplicity of TIMs has led to their popularity in macro-scale hydrologic 

models. WaterGap, HBV, SWAT, and SPHY are among macro-scale hydrologic models using 

TIMs in different forms (Alcamo et al. 2003; Arnold et al. 1998; Bergström 1992; Terink et al. 

2015).  

The Snow Band in Macro-HyProS simulates (1) snowpack water equivalent storage, (2) 

snowmelt, (3) rain-on-snow melt, and (4) refrozen meltwater. The simulated processes in the 

Snow Band are elaborated in detail by Tahmasebi Nasab and Chu (2019a, 2019b) and are 

summarized here. The Snow Band water balance equation can be expressed as: 

𝑆𝑇𝐺𝑆𝑁(𝑡, 𝑔, 𝑘) = 𝑆𝑇𝐺𝑆𝑁(𝑡 − 1, 𝑔, 𝑘) + 𝐶𝑆𝑁 × 𝑆𝑁𝑂𝑊𝑆(𝑡, 𝑔, 𝑘) − 𝑀𝐴(𝑡, 𝑔, 𝑘) (2.12) 

where STGSN (mm) is the snowpack water equivalent storage, SNOWS is the snowfall (mm) after 

interception, MA is the actual snowmelt (mm), and CSN is a snowfall correction factor that varies 

within a range of 0.7-1.6 (Anderson 2002) and accounts for the losses from sublimation and 

redistribution (Anderson 2006). 

Macro-HyProS incorporates a hybrid TIM (HTIM) (Tahmasebi Nasab and Chu, 2019a) 

to simulate daily snowmelt and refreezing. Different studies have indicated that when sub-daily 

temperatures fluctuate above or below the freezing temperature, the single-temperature TIM 

may fail to provide realistic snowmelt simulations (Tahmasebi Nasab and Chu 2019a; Žaknić-

Ćatović et al. 2018). Therefore, Tahmasebi Nasab and Chu (2019a) proposed the modified 
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macro-scale HTIM to account for the effect of sub-daily temperature fluctuation around the 

freezing temperature. The proposed methodology employs daily maximum and minimum 

temperatures (TMAX and TMIN) and their occurrence timing to complement the original TIM, 

which is solely based on TAVE. The daily snowmelt and refreezing can be respectively expressed 

as (Tahmasebi Nasab and Chu 2019a): 

𝑀(𝑡, 𝑔, 𝑘) = {

𝐶𝑀 × 𝑇𝐴𝑉𝐸(𝑡, 𝑔, 𝑘) × ∆𝑡         𝑇𝑀𝐼𝑁 > 0 & 𝑇𝑀𝐴𝑋 > 0

𝐶𝑀 ×
𝑇𝑀𝐴𝑋(𝑡, 𝑔, 𝑘)

2
× ∆𝑡𝑀𝐿𝑇 𝑇𝑀𝐼𝑁 ≤ 0 & 𝑇𝑀𝐴𝑋 > 0 

 (2.13) 

𝑅(𝑡, 𝑔, 𝑘) = {

𝐶𝐹 × 𝑇𝐴𝑉𝐸(𝑡, 𝑔, 𝑘) × ∆𝑡        𝑇𝑀𝐼𝑁 ≤ 0 & 𝑇𝑀𝐴𝑋 ≤ 0

𝐶𝐹 ×
𝑇𝑀𝐼𝑁(𝑡, 𝑔, 𝑘)

2
× ∆𝑡𝑅𝐹𝑅 𝑇𝑀𝐼𝑁 ≤ 0 & 𝑇𝑀𝐴𝑋 > 0

 (2.14) 

where M and R are the snowmelt (mm) and refreezing (mm), respectively; CM and CF are the 

melting and freezing factors (mm oC-1 day-1); TAVE is the daily average temperature (oC) over time 

step Δt (day), TMAX and TMIN are the daily maximum and minimum temperatures (oC), and ΔtMLT 

and ΔtFRZ are the effective melt and refreezing times and represent the fraction of the day in 

which the temperature is higher or lower than zero, respectively. The seasonal variations of CM 

are also modeled by using a sinusoidal function (Fontaine et al. 2002; Neitsch et al. 2011) that 

considers the maximum and minimum melting factors (CMX and CMN) for different bricks. 

Specific values for bricks can be obtained from the existing literature (Anderson 2006; Neitsch 

et al. 2011).  

The meltwater resulting from a rain-on-snow event, MR (mm), is calculated only when 

there is a snowpack on the ground and precipitation is in the form of rainfall or mixed rainfall 

and snowfall. When precipitation occurs in the form of mixed rainfall and snowfall, the 

snowpack is first updated, followed by MR calculations. Assuming that the snowpack surface 

temperature is 0 oC and the rainfall temperature is equal to TAVE
 (Qi et al. 2017), MR can be 

estimated by: 

𝑀𝑅(𝑡, 𝑔, 𝑘) = 0.0126 × 𝑇𝐴𝑉𝐸(𝑡, 𝑔, 𝑘) × 𝑅𝑂𝑆(𝑡, 𝑔, 𝑘) (2.15) 

in which ROS is the amount of rainfall on snowpack (mm). 
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The amount of actual snowmelt (MA) is estimated based on the total available water for 

melt, AWM (mm), and the maximum snowpack water retention storage, MXSPR (mm), as 

follows: 

𝑀𝐴(𝑡, 𝑔, 𝑘) = 𝑀𝑎𝑥[0, (𝐴𝑊𝑀 −𝑀𝑋𝑆𝑃𝑅)] (2.16) 

in which AWM is the summation of meltwater from different sources (MF, MR, and M) minus the 

refrozen meltwater (R); MXSPR is a threshold for snowmelt generation. The snowpack water 

retention storage (SPR) retains meltwater until reaching MXSPR. In other words, MXSPR is a 

threshold to delay the generation of snowmelt. The water stored in SPR can refreeze when the 

temperature is below 0 oC, and MXSPR is computed as a fraction of snowpack water equivalent 

storage, STGSN (mm): 

𝑀𝑋𝑆𝑃𝑅(𝑡, 𝑔, 𝑘) = 𝐶𝑊𝑅 × 𝑆𝑇𝐺𝑆𝑁 (2.17) 

where CWR is the coefficient of water retention storage, having a suggested value of 0.1 

(Bergström 1992). 

2.3.2.4. Surface Band 

Macro-scale hydrologic models use different methodologies with varying levels of 

complexity to simulate surface runoff and infiltration. For example, SPHY uses a simple 

saturation excess surface runoff generation method in which surface runoff is a function of the 

water content and the saturated water content of the first layer of the soil (Terink et al. 2015). 

The VIC model employs the variable infiltration curve (VIC) scheme from the Xinanjiang model 

(Zhao et al. 1980) to simulate the generation of surface runoff. Although surface runoff is 

generated from the topmost soil layer in the Xinanjiang model, the VIC model assumes that 

surface runoff can be generated from the two upper soil layers when the soil storage exceeds the 

soil storage capacity (Liang et al. 1994).  

 The Surface Band water balance equation in Macro-HyProS can be expressed as: 
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𝑆𝑇𝐺𝐷𝑃(𝑡, 𝑔, 𝑘) = 𝑆𝑇𝐺𝐷𝑃(𝑡 − 1, 𝑔, 𝑘) + 𝑅𝐴𝐼𝑁𝑆(𝑡, 𝑔, 𝑘) + 𝑀𝐴(𝑡, 𝑔, 𝑘)

− 𝑅𝑈𝑁𝐹(𝑡, 𝑔, 𝑘) − 𝐼𝑁𝐹𝐿(𝑡, 𝑔, 𝑘) − 𝐸(𝑡, 𝑔, 𝑘) 
(2.18) 

where STGDP (mm) is the depression storage, RAINS is the rainfall (mm) after interception, MA 

is the actual melt (mm), RUNF is the generated surface runoff (mm), INFL is the infiltration 

(mm), and E is the evaporation (mm).   

Macro-HyProS uses the SCS-CN method (USDA 1986) to simulate surface runoff and 

infiltration. The simplicity of the CN method makes it popular (Verma et al. 2017). However, the 

original CN method has some limitations. For example, it is only suitable for event-based 

hydrologic modeling. Therefore, over the course of the last four decades, a wide variety of 

enhancements have been proposed to improve its applicability (e.g., Ajmal et al., 2015; Michel et 

al., 2005; Neitsch et al., 2011). It has been shown that different factors are responsible for the 

CN variations, among which the antecedent moisture condition (AMC), soil type, land use, and 

slope are more pronounced (Verma et al. 2017). 

 

Figure 2.6.  Simplified flow diagram of the Surface Band in Macro-HyProS. 

The original CN values for each brick are determined based on the soil type and land use. 

Figure 2.6 shows a simplified flow diagram of the Surface Band’s workflow. Before using the CN 

method for surface runoff simulation, the original CN values for different bricks are modified 

based on AMC, slope, and frozen ground condition (Figure 2.6). Macro-HyProS employs the 
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modification procedure by Neitsch et al. (2011) to adjust the CN values based on soil water 

content. To account for the grid-to-grid slope variations, Macro-HyProS offers three different 

CN adjustment options (Ajmal et al. 2016; Huang et al. 2006; Sharpley and Williams 1990) 

listed in Table 2.2. These three different equations provide the option of adjusting CN based on 

specific topographic features. In this study, the equation by Sharpley and Williams (1990) was 

used to adjust CN values. 

Table 2.2. Slope (α) (m/m) adjusted curve number (CNα) equations employed by Macro-HyProS 
(CN1 and CN3 are the CNs for antecedent moisture condition (AMC) I and III, respectively) (α 
represents the average slope of each grid). 

Adjusted CN (CNα) Reference 

𝐶𝑁𝛼 =
1

3
(𝐶𝑁3 − 𝐶𝑁1)(1 − 2𝑒

−13.86×𝛼) + 𝐶𝑁 

 
Sharpley and Williams (1990) 

𝐶𝑁𝛼 = 𝐶𝑁 (
322.79 + 15.63 × 𝛼

𝛼 + 323.52
) 

 
Huang et al. (2006) 

𝐶𝑁𝛼 = 𝐶𝑁 (
1.927 × 𝛼 + 2.1327

𝛼 + 2.1791
) 

 
Ajmal et al. (2016) 

 

The frozen ground condition is a common phenomenon in cold climate regions, which 

leads to the formation of the relatively impermeable soil surface and affects the generation of 

surface runoff. This condition is associated with the consecutive freezing temperature periods 

and high antecedent moisture condition (Chu et al. 2019). Macro-HyProS uses the continuous 

frozen ground index (CFGI) (Molnau and Bissell 1983) to calculate and locate the frozen ground 

condition. CFGI has a positive value, and as it increases, the likelihood of the frozen ground 

increases too. CFGI in Macro-HyProS is expressed as: 

𝐶𝐹𝐺𝐼(𝑡, 𝑔, 𝑘) = 𝐶𝐷𝐶 × 𝐶𝐹𝐺𝐼(𝑡 − 1, 𝑔, 𝑘) − 𝑇𝐴𝑉𝐸 × 𝑒
−0.4×𝐶𝑆𝑅×𝑆𝑁𝑂𝐷(𝑡,𝑔,𝑘) (2.19) 

where CDC is a daily decay coefficient that controls the degradation of CFGI over time and takes 

the value of 0.97 (Molnau and Bissell 1983), and CSR is a snow reduction coefficient (cm-1) to 

account for the insulation effects of the snowpack. CDC and CSR are calibrated parameters and 
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their ranges are suggested by Molnau and Bissell (1983). SNOD is the depth of snow on the 

ground (cm) and is given by: 

𝑆𝑁𝑂𝐷(𝑡, 𝑔, 𝑘) =
0.1 × 𝑆𝑇𝐺𝑆𝑁

𝜌𝑠
 (2.20) 

in which STGSN (mm) is the snow water equivalent and ρs (g cm-3) is the snow density. It is 

assumed that the impacts of snow compaction and destructive morphinism are negligible and ρs 

can be calculated solely by a function of average daily temperature (Anderson 2006). 

A user-defined CFGI transitional range determines the impacts of frozen ground on the 

generation of surface runoff (Figure 2.7). For example, Molnau and Bissell (1983) suggested that 

the CFGI transitional range varies from 56 to 83. If CFGI is smaller than the lower CFGI 

threshold (CFGILT), the ground is not frozen (Figure 2.7), and the amount of surface runoff 

simulated by the modified CN model does not change. In contrast, if CFGI is greater than the 

upper CFGI threshold (CFGIUT), the ground is completely frozen (Figure 2.7), and it is assumed 

that infiltration is minimal and CN is set to CNFrozen. Finally, if CFGI is within the transitional 

range, the ground is partially frozen and a linear relationship is established between CFGI and 

CN, in which the CN for CFGIUT is 98. 

 

Figure 2.7. Classification of the ground freezing conditions (CFGI is the continuous frozen 
ground index, CFGILT and CFGIUT are the lower and upper thresholds of the transitional range). 

When surface runoff is calculated for each brick in a grid, an area-weighted approach is 

used to determine the surface runoff over the grid. This approach is superior to the traditional 

composite CN approach for estimating surface runoff (Mishra and Singh 2003). Eventually, 

infiltration into the Sub-surface Band is calculated by subtracting the generated surface runoff 

from the total input water to the Surface Band (i.e., ground rainfall + actual snowmelt). 
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2.3.2.4.1. Blue Block: Depressions and Lakes 

Depression-dominated areas have a unique undulating topography, giving rise to many 

surface depressions that are periodically ponded and possess various functions such as flood 

mitigation, sediment retention, and habitat provision (Tahmasebi Nasab and Chu 2018). Macro-

HyProS uses the Depression-dominated Delineation (D-cubed) method (Tahmasebi Nasab et al. 

2017c) as a pre-processing tool to identify depressions and quantify their impacts. The D-cubed 

method provides a variety of features related to surface depressions such as depression storages, 

puddle levels, ponding areas, and contributing areas. These detailed features can potentially 

alter micro-scale hydrologic processes (Tahmasebi Nasab et al. 2016). In order to simulate 

depression-influenced hydrologic processes at a macro scale, Macro-HyProS incorporates the 

lumped contributing area to depressions and maximum depression storage for each grid. Figure 

2.8 depicts a schematic representation of how the D-cubed results are incorporated into each 

grid as the Depressions Brick. As an example, Figure 2.8a shows the satellite image of a sample 

grid of 4×4 km2 within the RRB (UTM coordinates of the grid center: 5,310,355 m, 501,855 m), 

in which depressions are mostly concentrated in the southeastern corner of the sample grid. 

Figure 2.8b indicates the spatial distribution of the contributing area to depressions, resulted 

from the D-cubed method. In other words, 100% of the generated surface runoff within the 

delineated contributing area contributes to the depressions. Eventually, the lumped contributing 

area of the depressions is incorporated into each grid as the Depressions Brick (Figure 2.8c). 

The depression storage is updated based on the generated surface runoff at every time 

step. The amount of water that spills out of depressions is estimated based on two threshold 

storages: (1) the maximum depression storage (MXSTGDP) and (2) the minimum spill threshold 

storage (MNSTGDP): 

𝑆𝑃𝐼𝐿(𝑡, 𝑔, 𝑘) = {
𝑆𝑇𝐺𝐷𝑃 −𝑀𝑋𝑆𝑇𝐺𝐷𝑃                
𝐶𝐷𝑃 × (𝑆𝑇𝐺𝐷𝑃 −𝑀𝑁𝑆𝑇𝐺𝐷𝑃)
0                                                   

    
𝑆𝑇𝐺𝐷𝑃 > 𝑀𝑋𝑆𝑇𝐺𝐷𝑃                       
𝑀𝑁𝑆𝑇𝐺𝐷𝑃 < 𝑆𝑇𝐺𝐷𝑃 ≤ 𝑀𝑋𝑆𝑇𝐺𝐷𝑃
𝑆𝑇𝐺𝐷𝑃 ≤ 𝑀𝑁𝑆𝑇𝐺𝐷𝑃                        

 (2.21) 
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where SPIL represents the water that spills out of depressions (mm) and contributes to the 

generated surface runoff, and CDP is a decay factor (0-1) that controls the flow of water out of 

depressions when they are partially filled. It should be noted that MXSTGDP values of the grids 

are obtained from the D-cubed surface delineation, and MNSTGDP values are defined as a 

fraction of MXSTGDP based on the study area.  

 

Figure 2.8. Schematic representation of the Depressions Brick in Macro-HyProS for a sample 
grid in the RRB (UTM coordinates of the grid center: 5,310,355 m, 501,855 m). 

The evaporation from the depression storage is estimated based on RET and is expressed 

as: 

𝐸(𝑡, 𝑔, 𝑘) = 𝐾𝑊 × 𝑅𝐸𝑇(𝑡, 𝑔, 𝑘) (2.22) 

in which KW is the open water evaporation coefficient (Allen et al. 1998). 

In addition, the amount of water that moves from the depression storage to the Sub-

surface Band, SEEP (mm), is estimated according to the fraction full of the depression storage 

and the fraction empty of the sub-surface layer: 

𝑆𝐸𝐸𝑃(𝑡, 𝑔, 𝑘) = 𝐾𝑆1 ×
𝑆𝑇𝐺𝐷𝑃(𝑡, 𝑔, 𝑘)

𝑀𝑋𝑆𝑇𝐺𝐷𝑃
× (1 −

𝜃𝑆1(𝑡 − 1, 𝑔, 𝑘)

𝑆𝐴𝑇𝑆1
) (2.23) 

where KS1 is the hydraulic conductivity of the sub-surface layer 1 (mm/day), θS1 is the soil water 

content (m3/m3) of sub-surface layer 1, and SATS1 is the soil saturated water content (m3/m3) of 

sub-surface layer 1. 
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It should be noted that the current version of Macro-HyProS does not account for lakes 

and their impacts on hydrologic processes. Therefore, the lake areas within each grid are 

obtained from different datasets (e.g., National Wetlands Inventory for the United States lakes) 

and are removed from the grid area. 

2.3.2.5. Sub-surface Band 

Macro-scale hydrologic models consider one or more layers to simulate different sub-

surface processes. For example, the soil profile is represented by only one layer in WaterGap3 

and HBV, whereas VIC, HYPE, and ECOMAG account for three layers of soil (Krysanova and 

Hattermann 2017). Depending on their physical representation of the soil layers, different 

models require the use of a varying number of soil parameters and characteristics. While some 

models require only a few soil parameters (e.g., five parameters in ECOMAG), others may 

demand more details (e.g., 19 parameters in VIC). 

 

Figure 2.9. Simplified representation of the Sub-surface Band in Macro-HyProS: its three layers 
and simulated processes.    
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Sub-surface processes in Macro-HyProS are simulated in three sub-surface layers. 

Specifically, they schematically embody the sub-surface profile in which an upper soil layer (S1) 

is responsible for surface-subsurface interactions and crop specifications, a lower soil layer (S2) 

represents deep vadose zone, and an aquifer layer (S3) controls the generated baseflow. Figure 

2.9 illustrates a simplified workflow representation of the Sub-surface Band, its three layers, and 

the simulated processes. The water balance for layer S1 can be expressed as: 

𝑆𝑇𝐺𝑆1(𝑡, 𝑔) = 𝑆𝑇𝐺𝑆1(𝑡 − 1, 𝑔) + 𝐼𝑁𝐹𝐿(𝑡, 𝑔) − 𝐸𝑇𝑆1(𝑡, 𝑔) − 𝑃𝐸𝑅𝐶𝑆1(𝑡, 𝑔) (2.24) 

where STGS1 is the storage of S1 (mm), ETS1 is the evapotranspiration (mm) from S1, and PERCS1 

is the percolation from S1 to S2 (mm).  

In order to compute the percolation from S1 to S2, the unsaturated hydraulic conductivity 

(KS1) is adjusted based on the frozen soil condition of a user-defined portion of layer S1 (FRD), 

which represents the topsoil. Similar to what was described for the determination of the frozen 

ground in Surface Band (Figure 2.7), a continuous frozen soil index (CFSI) is used to determine 

the frozen soil condition. Particularly, two CFSI thresholds regulate the topsoil freezing 

condition: the upper threshold CFSIUT, beyond which the topsoil is considered to be fully frozen 

and the lower threshold CFSILT, below which the topsoil is in a non-frozen condition. Also, the 

CFSI values between CFSILT and CFSIUT are considered to be partially frozen. The adjusted KS1 

for the frozen soil condition is then estimated by: 

𝐾𝑆1
∗ =

{
 

 
0                                                             

10−𝐶𝐼𝜃𝐹𝑅 × 𝐾𝑆𝐴𝑇1 × (
𝜃𝑁𝐹𝑅
𝑆𝐴𝑇𝑆1

)
3+2×𝑏

𝐾𝑆1                                                         

  
𝐶𝐹𝑆𝐼 ≥ 𝐶𝐹𝑆𝐼𝑈𝑃                   
𝐶𝐹𝑆𝐼𝐿𝑇 < 𝐶𝐹𝑆𝐼 < 𝐶𝐹𝑆𝐼𝑈𝑃
𝐶𝐹𝑆𝐼 ≤ 𝐶𝐹𝑆𝐼𝐿𝑇                  

 (2.25) 

in which K*
S1 is the adjusted hydraulic conductivity. If soil is partially frozen, an adjustment 

relationship (Jame and Norum, 1980) is employed, where KSAT1 is the saturated hydraulic 

conductivity (m/s), SATS1 is the saturated water content, θFR and θNFR are the soil frozen and 

non-frozen water contents, CI is an empirical factor that accounts for the impedance of ice 

(Shoop and Bigl 1997), and b is the Clapp-Hornberger constant (Jame and Norum 1980). The 
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frozen water content for partially frozen soils (i.e., θFR) is estimated by using a linear 

relationship that uses CFSILT and CFSIUT to determine the frozen fraction. 

The evapotranspiration is calculated based on the specific crop coefficients (KC) for 

different plants during their growth stages (Allen et al. 1998): 

𝐸𝑇𝑆1(𝑡, 𝑔, 𝑘) = 𝐾𝐶(𝑡, 𝑔, 𝑘) × 𝑅𝐸𝑇(𝑡, 𝑔, 𝑘) (2.26) 

where ETS1 is the evapotranspiration (mm). ETS1 is first removed from a user-defined effective 

evapotranspiration depth (ETD), defined as a fraction of the upper soil layer’s thickness. If ETS1 

is greater than the available water in ETD, ETS1 is then removed from the rest of layer S1. 

The potential amount of percolation from S1 to S2 is estimated by using a function of the 

soil hydraulic conductivity, the fraction full of layer S1, and fraction empty of layer S2 (Bennett 

1998): 

𝑀𝑋𝑃𝐸𝑅𝐶𝑆1(𝑡, 𝑔) = 𝐾𝑆1 ×
𝜃𝑆1(𝑡, 𝑔)

𝑆𝐴𝑇𝑆1
× (1 −

𝜃𝑆2(𝑡 − 1, 𝑔)

𝑆𝐴𝑇𝑆2
) (2.27) 

where MXPERCS1 is the potential percolation (mm) from S1 to S2, KS1 is the hydraulic 

conductivity (mm/day) of S1, θS1 and θS2 are water contents of S1 and S2, and SATS1 and SATS2 are 

the saturated water contents of S1 and S2. 

The actual percolation from S1 to S2 is then estimated based on the amount of available 

water for percolation and MXPERCS1: 

𝑃𝐸𝑅𝐶𝑆1(𝑡, 𝑔) = 𝑀𝑖𝑛[𝑀𝑋𝑃𝐸𝑅𝐶𝑆1, 𝐴𝑊𝑃𝑆1] (2.28) 

where AWPS1 is the available water for percolation (mm), which is calculated by the field 

capacity of S1 (FCS1): 

𝐴𝑊𝑃𝑆1(𝑡, 𝑔) = {
𝜃𝑆1 − 𝐹𝐶𝑆1
0                  

  
𝜃𝑆1 > 𝐹𝐶𝑆1
𝜃𝑆1 ≤ 𝐹𝐶𝑆1

 (2.29) 

The water balance equation used for layer S2 is similar to the one for layer S1. However, 

evapotranspiration from layer S2 is assumed negligible. In addition, the percolation from S2 to S3 

is estimated by using a similar set of equations used for determining the percolation from S1 to 

S2. When the percolation from S2 to S3 (i.e., PERCS2) is computed, the groundwater recharge is 
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estimated by using an exponential relationship developed by Venetis (1969). This simple 

relationship has also been successfully used in different models, such as SWAT and SPHY:  

𝐺𝑊𝑅𝑆3(𝑡, 𝑔) = (1 − 𝑒
−

1
𝐶𝐺𝑊) × 𝑃𝐸𝑅𝐶𝑆2(𝑡, 𝑔) + 𝑒

−
1

𝐶𝐺𝑊 × 𝐺𝑊𝑅𝑆3(𝑡 − 1, 𝑔) (2.30) 

where GWRS3 is the groundwater recharge (mm) and CGW is the delay factor (day). The water 

balance equation for S3 (i.e., groundwater layer) is then expressed as: 

𝑆𝑇𝐺𝑆3(𝑡, 𝑔) = 𝑆𝑇𝐺𝑆3(𝑡 − 1, 𝑔) + 𝐺𝑊𝑅𝑆3(𝑡, 𝑔) − 𝐵𝐹𝑆3(𝑡, 𝑔) (2.31) 

in which STGS3 is the storage of layer S3 (mm), and BFS3 is the baseflow (mm), which is 

estimated based on a baseflow threshold (BFTH) and a recession constant coefficient (CRC) 

(Neitsch et al. 2011): 

𝐵𝐹𝑆3(𝑡, 𝑔)

= {
0                                                                                                 

𝐵𝐹𝑆3(𝑡 − 1, 𝑔) × 𝑒
−𝐶𝑅𝐶 + 𝐺𝑊𝑅𝑆3(𝑡, 𝑔) × (1 − 𝑒

−𝐶𝑅𝐶)         
 
𝑆𝑇𝐺𝑆3 ≥ 𝐵𝐹𝑇𝐻
𝑆𝑇𝐺𝑆3 < 𝐵𝐹𝑇𝐻

 
(2.32) 

2.3.2.6. Flow Routing 

Flow routing involves simulating water movement through the entire drainage network 

to the outlet of a watershed. The St. Venant equations offer a theoretical basis for flow routing; 

however, they require a variety of input data that are not usually available, especially for macro-

scale modeling. Therefore, macro-scale hydrologic models typically employ simple routing 

methods that only account for flood wave delay and attenuation (Paiva et al. 2011). Similar to 

other macro-scale hydrologic models (e.g., VIC), Macro-HyProS performs a streamflow routing 

procedure after hydrologic processes are simulated for the entire simulation period. In other 

words, streamflow routing is performed separately from the simulation of hydrologic processes. 

When different processes are simulated, the contributing components to streamflow (i.e., 

surface runoff and baseflow) are summed up for each time step. This step generates a time series 

of matrices that account for the total contributing water from each grid:  

𝑄𝐶(𝑡, 𝑔) = 0.001 × [𝑅𝑈𝑁𝐹(𝑡, 𝑔) + 𝐵𝐹𝑆3(𝑡, 𝑔)] × 𝐴
∗ (2.33) 
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where QC is the grid-specific contributing flow (m3) and A* is the grid area after removing the 

lakes.  

Macro-HyProS uses a simple routing method to route the grid-specific contributing flow 

to a user-defined outlet. The user-defined outlet is employed to determine the boundaries of the 

basin based on the input DEM. Specifically, a flow direction matrix of the study area is first 

computed to determine the direction of flow in a given grid. Then, the flow accumulation matrix 

of the study area is calculated which is a cumulative count of the number of grids draining into 

the downstream grid. The drainage network and the basin boundaries are eventually determined 

by employing the computed flow direction and flow accumulation matrices. In Macro-HyProS, a 

set of post-processing programs and the ArcPy package are used to route QC, employing flow 

direction and flow accumulation matrixes of the surface. Eventually, a linear reservoir routing 

method is used to account for the delay of flow from different grids to the outlet. This method 

has been incorporated and tested in SPHY and is expressed as (Terink et al. 2015): 

𝑄(𝑡) = (1 − 𝐶𝐹𝑅) × 𝑄(𝑡) + 𝐶𝐹𝑅 × 𝑄(𝑡 − 1) (2.34) 

where Q is the discharge (m3/s) at the outlet, and CFR is a flow recession coefficient (0-1). It has 

been suggested that smaller CFR
 values correspond to the faster basin response, whereas larger 

values represent the slower basin response (Terink et al. 2015). 

2.3.3. Testing of Macro-HyProS in the RRB 

The Red River of the North drains parts of Minnesota and Dakotas in the United States 

and flows into Lake Winnipeg in Canada. The RRB covers an area of 116,500 km2, out of which 

103,600 km2 is within the United States (Figure 2.10a) (Red River Basin Board 2000). The 

annual average precipitation and temperature of the RRB are 500 mm and 4.3 oC, respectively 

(Jin et al. 2008), and the basin slope varies from 0.04 to 0.25 m/km. The majority of the RRB is 

within the Prairie Pothole Region that is featured with many depression-dominated areas and 

flat topography. The basin’s topography can be divided into three elevation classes: (1) low, (2) 

moderate, and (3) high (Figure 2.10b), where the low-elevation Class 1 corresponds to the Red 
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River Valley, a prolific agricultural region in the northern United States. The agricultural areas 

dominate the RRB. Specifically, nearly 60% of the basin is covered by cultivated croplands, 

whereas only 4.5% of the basin is covered by developed areas (Figure 2.10c) (Tahmasebi Nasab 

et al. 2018). 

 

Figure 2.10. (a) Geographical location of the RRB (U.S. portion); (b) topographical variations, 
(c) land use variations, and (d) selected record-breaking floods. 

The RRB possesses unique hydro-topographical features, which make it prone to the 

occurrence of frequent spring floods. In addition to its flat topography in the Red River Valley, 

RRB is categorized as a cold climate region having lingering cold winters. A combination of 

freezing temperatures and thick snowpack give rise to the frozen ground condition that lasts up 

to the spring when snow begins to melt. The concurring snowmelt and early spring rainfalls lead 
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to frequent floods in the RRB. Figure 2.10d highlights some of the record-breaking floods in the 

RRB at the United States Geological Survey (USGS) Grand Forks Station (station ID: 

05082500), including the recent 2019 flood. The high snowfall during the winter of 1996-97 (96 

inches of snow were recorded in Grand Forks) as well as the occurrence of a blizzard on April 5-

6, 1997, led to the worst flooding in the RRB in more than 100 years (USGS 2019a). This trend 

has been repeating for many years in which the months of March and April play a significant 

role in the spring flooding condition (Figure 2.10d). The reoccurrence of the spring floods 

pinpoints the significance of the cold climate processes in the basin. Therefore, the RRB was 

selected for this study to highlight the capabilities of Macro-HyProS for depression-dominated, 

cold climate regions. 

2.3.4. Model Setup and Input Data 

The RRB (the U.S. portion, as shown in Figure 2.10a) was discretized into 6,351 grids of 

4×4 km2, and different hydrologic processes were simulated for each grid. Table 2.3 lists the 

major input data obtained from different sources. A 30-m digital elevation model (DEM) was 

obtained from the National Elevation Dataset (USGS 2019b) and was used for the D-cubed 

surface delineation (Tahmasebi Nasab et al. 2017c). The daily streamflow dataset at the Grand 

Forks station was also obtained from the USGS (2019c) for a selected 5-year period. The 

Cropland Data Layer (CDL) database (Boryan et al. 2011) (~30-m resolution) was used for the 

land use distribution and brick specification within each grid. Different meteorological data such 

as daily precipitation and daily temperature were obtained from the Parameter-elevation 

Regressions on Independent Slopes Model (PRISM) (Daly et al. 2008), and the Climate Forecast 

System Reanalysis (CFSR) (Fuka et al. 2012). The soil type data were extracted from the United 

States Department of Agriculture STATSGO2 database (NRCS 2018) using Soil Data Viewer 6.2 

(Natural Resources Conservation Service 2015), which is a GIS extension to extract sub-surface 

information from STATSGO2 database. Also, different soil hydraulic parameters were obtained 

from the existing literature. Particularly, Chu et al. (2019) compiled different soil parameters for 
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use in a hydrologic model from different sources (e.g., Carsel et al. 1998; Maidment 1993; Rawls 

et al. 1982; Rawls and Brakensiek 1983). Other input data, such as LAI and crop-specific 

information, were also obtained from the existing literature as shown in Table 2.3. 

Table 2.3. Input data and their sources utilized in Macro-HyProS (CDL: Cropland Data Layer, 
PRISM: Parameter-elevation Regressions on Independent Slopes Model, and CSFR: Climate 
Forecast System Reanalysis). 

Dataset Source Reference 
Digital Elevation Model National Elevation Dataset USGS (2019b) 
Red River Discharge USGS Water Data USGS (2019c) 
Land Use Distribution CDL Boryan et al. (2011) 
Precipitation PRISM Daly et al. (2008) 
Temperature PRISM Daly et al. (2008) 
Solar Radiation CFSR Fuka et al. (2014) 
Soil Type Distribution USDA NRCS (2018) 
Soil Hydraulic Parameters Literature Chu et al. (2019) 
Leaf Area Index Literature Sellers et al. (1996) 
Crop Information Literature Allen et al. (1998) 

 

A 5-year simulation period from 2003 to 2007 (1826 days) was selected, out of which 

2003 was used as a warm-up period, 2004 and 2005 were used for model calibration, and 2006 

and 2007 were utilized for model validation. Since the main objective of this study is to present 

the structure, methodology, and development of Macro-HyProS, the model parameters are 

manually calibrated and automated optimization schemes are not employed. The methods for 

simulating hydrologic processes in each band were meticulously selected to ensure the existence 

of adequate guidelines for initializing the model parameters in different regions. The parameters 

employed in Macro-HyProS and their acceptable variations were explained in Section 2.2 based 

on the existing literature. Table 2.4 lists the Macro-HyProS parameters for different bands, 

including their descriptions, spatial scales, and the calibration values/ranges. The Project for 

Intercomparison of Land surface Parameterization Schemes (PILPS) suggested that the 

calibration of macro-scale models against observed discharges improved the performance of the 

models (Wood et al. 1998). Hence, the Macro-HyProS results were compared against the 

observed discharges at the Grand Forks station (Figure 2.10a).  
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Table 2.4. Parameters used in different bands of Macro-HyProS. 

Band Parameter Unit Description 
Spatial 
Scale 

Value 

A
tm

o
sp

h
e

re
 TTMAX oC Upper bound of TTR Grid 5 

TTMIN oC Lower bound of TTR Grid 1 
CHI - Heat island effect coefficient Brick 1 
CFC - Forest canopy effect coefficient Brick 1 
K1 - Scaling factor Grid 5 
K2 oC Temperature threshold Grid 100 

V
eg

et
a

ti
o

n
 ρ - The ratio of mean evaporation rate to 

mean rainfall rate for saturated canopy 
condition 

Basin 0.2 

ε - Fraction of trunk evaporation Basin 0.02 
CCU - Forest canopy unloading coefficient Basin 0.7 
NGS day Growing season length Basin 95 

S
n

o
w

 

CSN - Snowfall correction factor Grid 0.96 
CF mm oC-1 day-1 Freezing factor Grid 0.05 
CMX mm oC-1 day-1 Maximum melting factor Brick 0.5-8 
CMN mm oC-1 day-1 Minimum melting factor Brick 0.2-3 
CWR - Water retention storage coefficient Basin 0.1 

S
u

rf
a

ce
 

CN - Curve Number Brick 58-98 
λ - Initial abstraction coefficient Basin 0.15 

CDC - Daily frozen ground decay coefficient Basin 0.97 
CSR * cm-1 Snow reduction coefficient Grid 0.5, 

0.08 
CFGILT - Lower CFGI threshold Grid 56 
CFGIUT - Upper CFGI threshold Grid 83 
CNFrozen - Frozen ground CN Grid 98 
CDP - Decay factor depressions Grid 0.5 
Kw - Open water evaporation coefficient Basin 0.7 

S
u

b
-s

u
rf

a
ce

 

FRD mm Frozen ground depth Grid 40 
CFSILT - Lower CFSI threshold Grid 56 
CFSIUT - Upper CFSI threshold Grid 83 
b - Clapp-Hornberger constant Grid 4.05-

11.4 
KC  Crop-specific evapotranspiration 

coefficient 
Brick 0.3-1 

CGW day Groundwater delay factor Basin 10 
CRC day-1 Baseflow recession constant Basin 0.015 
ETD mm Effective evapotranspiration depth Grid 2000 

* Two values are used for temperatures higher and lower than the freezing temperature 

In addition to the graphical comparisons, the model performance was evaluated by using 

the Nash-Sutcliffe efficiency coefficient (NSE) and following the recommended criterion for 

satisfactory performance for daily time steps (NSE > 0.5) (Moriasi et al. 2007, 2015). In addition 

to NSE, the model performance was evaluated by using the Kling-Gupta efficiency (KGE) (Gupta 

et al. 2009), which has been widely used to evaluate the performance of macro-scale hydrologic 

models (e.g., Beck et al., 2016) and facilitate the assessment of different components of the 
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performance of hydrologic models such as timing, magnitude, and variability (Gupta et al. 

2009): 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2 (2.35) 

where r is the linear correlation coefficient between the simulated and observed values, α is a 

ratio between the standard deviation of the simulated and observed data to measure the relative 

variability of simulations, and β is a ratio between the mean simulated and observed values to 

represent the bias in simulations (Gupta et al. 2009). KGE ranges from –∞ to 1, in which KGE = 

1.0 represents the perfect match. Following Rogelis et al. (2016), the model performance can be 

classified into poor (KGE < 0), intermediate (0.5 < KGE < 0.75), and good (KGE > 0.75). 

2.4. Results and Discussion 

Figure 2.11 depicts the daily, monthly, and yearly graphical comparisons between the 

simulated and observed discharges (m3/s) at the Grand Forks gauging station. A visual 

assessment for the daily discharges (Figure 2.11a) indicates that Macro-HyProS provided a 

comparable estimation of the streamflow variations in both cold and warm months. The NSE 

coefficients for the calibration and validation periods were 0.56 and 0.72, respectively, 

indicating satisfactory model performance (Moriasi et al. 2007, 2015). In addition to NSE, KGE 

values for the calibration and validation periods were 0.59 and 0.57, respectively, falling into the 

intermediate model performance group. Further statistical analysis of the entire simulation 

period indicated that the model was able to estimate 65% of the variability of streamflow 

discharge (α) as well as a linear correlation coefficient (r) of 0.75, suggesting a positive strong 

linear relationship between the simulated and observed discharge values. Although the model 

was able to successfully simulate the variations in the discharge patterns during low- and high-

flow periods, it underestimated the peak discharge values. This can be attributed to the 

hydroclimatic nuances between different years throughout the simulation period and their 

impacts on the calibration process. For example, ~50% of the average precipitation over the 

basin in March 2006 occurred in the last five days of March and led to the highest observed peak 
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discharge, which was nearly two times higher than the peak discharge values in 2004 and 2005. 

Since the model was calibrated for 2004 and 2005, it might not capture the peak discharge in 

2006. In addition to the daily discharge, Figure 2.11b illustrates a graphical comparison between 

the monthly simulated and observed discharges, indicating that the model provided satisfactory 

monthly results (R2=0.81). However, it slightly underestimated low discharges and 

overestimated high discharges. For the annual average discharges, the average error percentage 

between the observed and simulated values is less than 15% (Figure 2.11c). 

 

Figure 2.11. Comparison of the observed and simulated discharges at the Grand Forks gauging 
station (station ID: 05082500): (a) daily discharge, (b) monthly discharge (the error bars are 
the absolute difference between simulated and observed values), and (c) mean annual discharge 
(R2 denotes the coefficient of determination). 

2.4.1. How Does the Cold Climate Condition Alter Hydrologic Processes? 

Figure 2.12a demonstrates the impacts of frozen ground on the generation of surface 

runoff in the RRB throughout the simulation period. The results from the CFGI method in 

Macro-HyProS can be used to determine the frozen ground condition (i.e., frozen, partially 

frozen, and non-frozen) and its spatial distribution. The results indicated that 2004, 2005, 

2006, and 2007 respectively experienced 65, 43, 0, and 82 days in which the entire basin’s 

ground (6,351 grids) was frozen. In addition to the 100% frozen ground condition, the RRB 

experienced partially frozen grounds in 105, 89, 135, and 63 days in 2004, 2005, 2006, and 

2007, respectively. The presence of the frozen and partially frozen ground conditions in the 

basin played a significant role in the early spring surface runoff generation. Figure 2.12a 
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indicates that the ending period of the frozen ground condition in each year coincided with the 

occurrence of a significant amount of surface runoff in the basin. Further analysis revealed that 

the period from the end of March to early April was crucial for the frozen-ground induced 

snowmelt runoff in the RRB, which also coincided with the early spring rainfalls. The red box in 

Figure 2.12a pinpoints a critical four-month period in 2006 (i.e., January to May 2006), in 

which the frozen ground condition led to the generation of high surface runoff. On January 1st 

2006, 77.1% of the basin was covered by the frozen and partially frozen ground; however, this 

number began to decline right after its peak in January (indicated by the red box in Figure 

2.12a). As a consequence of the decline, 26.5% and 14.35% of the basin experienced fully and 

partially frozen ground, respectively, on March 31st, 2006.  

 

Figure 2.12. Impacts of the frozen ground on the generation of surface runoff in the RRB: (a) 
simulated frozen ground and surface runoff, (b) rainfall distribution on 3/31/2006, and (c) 
surface runoff distribution on 3/31/2006 (FG: frozen ground, PFG: partially frozen ground, and 
NFG: non-frozen ground). 

On the same day, the RRB received a significant amount of rainfall (Figure 2.12b) mostly 

concentrated on the central and eastern parts of the basin, having an average of 15.97 mm. The 

combination of the frozen ground condition and heavy rainfall, together with the average 

snowmelt of 4.51 mm on March 31st, 2006 led to the generation of 11.1 mm of surface runoff over 

the basin (Figure 2.12c). The aforementioned process for 2006 is a typical example of early 

springs in the RRB, which leads to frequent spring floods with varying levels of severity. Figures 

2.12a-c highlight the capability of Macro-HyProS in simulating the spatially-distributed cold 

climate hydrologic processes that facilitate a better understanding of the basin’s dynamics in 
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early springs. In addition, the spatial distribution of the surface runoff on March 31st, 2006 

highlights the high amount of surface runoff generated in the Red River Valley (indicated by the 

dashed red box in Figure 2.12c). This pattern is in accordance with the soil type distribution of 

RRB, in which the central region (i.e., Red River Valley) is dominated by finer soil types, causing 

higher surface runoff and lower infiltration (Chu et al. 2019). 

 

Figure 2.13. Simulation results for 3/13/2007: (a) frozen ground, (b) snowmelt (mm), (c) 
surface runoff (mm), and (d) infiltration (mm) (FG: frozen ground, PFG: partially frozen 
ground, and NFG: non-frozen ground). 

In addition to early spring rainfall, snowmelt played a critical role in the generation of 

surface runoff in the RRB. To highlight the significance of snowmelt, Figure 2.13 depicts the 

simulated frozen ground condition, snowmelt, surface runoff, and infiltration on a sample day 

(i.e., March 13th, 2007), in which the average temperature across the basin was 3.1 oC with a 

standard deviation of 1.5 oC. Although the average basin temperature was above the freezing 

temperature (i.e., 0 oC), the results indicated that 98.4% of the basin (i.e., 6,248 grids out of 

6,351 grids) experienced either frozen ground or partially frozen ground conditions (Figure 

2.13a). The widespread extent of the frozen ground condition on March 13th, 2007 gave rise to 

susceptible circumstances for the generation of higher surface runoff. The frozen ground 

condition also coincided with an average snowmelt of 6.04 mm over the basin (Figure 2.13b), 

leading to higher surface runoff and lower infiltration (Figure 2.13c and Figure 2.13d). It was 

noticeable that due to the frozen ground condition over the basin, more than 60% of the 

generated snowmelt contributed to surface runoff, whereas infiltration had a smaller portion of 
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the generated snowmelt. The average surface runoff and infiltration simulated for March 13th, 

2007 were 3.68 mm and 2.19 mm, respectively, highlighting the importance of snowmelt in the 

RRB. The pattern of frozen-ground-induced surface runoff depicted in Figure 2.13 is also typical 

for the RRB, especially on the days when the average temperature is above the freezing 

temperature, but the frozen ground condition persists. 

2.4.2.  Impacts of Snow Accumulation and Ablation Processes on Red River Flow 

The distribution and magnitude of the snowmelt generated in the RRB have a direct 

relationship with the available snowpack. The snow accumulation process in the RRB generally 

begins around late November and early December. The gradual snow accumulation continues 

until late March and early April when higher than freezing temperatures initiate the snowmelt 

process throughout the basin. The simulation results showed that the model was able to capture 

the snow accumulation and ablation processes in different years. Figure 2.14a compares the 

magnitudes of the simulated snowpack water equivalent (hereafter called snowpack) and 

snowmelt in the RRB. Figure 2.14a suggests that the peak snowmelt values typically occurred 

right after the peak snowpack values. Although different years shared a similar snow 

accumulation and ablation trend, the magnitude of the simulated snowmelt varied from year to 

year, particularly in late March. These variations can be attributed to the hydroclimatic 

variations in different years. For example, 2006 accounted for the most amount of snowpack 

throughout the simulation period, having a maximum of 41.21 mm on March 6th, 2006 when 

95.9% of the basin was covered by snow. Figure 2.14b highlights the snowpack-snowmelt 

dynamics for a 4-month period in 2006 (i.e., January to May 2006), in which the snowpack 

decreased with the occurrence of snowmelt events. The average temperature in the last five days 

of March 2006 was ~3 oC, leading to the highest snowmelt peak. Specifically, the average 

snowmelt across the basin in a 12-day period from 3/25/2006 to 4/5/2006 was 32.26 mm 

(Figure 2.14b). The sudden ablation of snowpack and the resulting snowmelt, as well as the 
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frozen ground condition at the end of March, led to the highest peak discharge (2,033.14 m3/s) 

in the Red River at the Grand Forks station on 4/5/2006. 

Moreover, the spatially distributed snowpack results confirmed the roles of snow 

accumulation and ablation processes in the peak discharges in late March and early April. 

Figure 2.15 shows the comparison of the average simulated snowpack and snowmelt in March 

when the average temperature was -2.86 oC, -4.27  oC, -3.55 oC, and -2.11 oC in 2004, 2005, 

2006, and 2007, respectively. A visual comparison of the distributions of snowpack in March for 

different years reveals that the northern parts of the RRB experienced more snow than the 

southern parts (Figure 2.15a-d). In addition, Figure 2.15c clearly shows that 2006 had a higher 

snowpack in March than other years. This is partly attributed to the variations in snowfall in 

different years. For instance, 2006 received 7.5% more snowfall than 2007, which resulted in a 

discrepancy of 2.1 mm between the average simulated snowpack values over the basin in the two 

years. The average snowpack simulated for the RRB in March 2006 was 32.79 mm 

(corresponding to 3,331 Mm3 of water), which is 2.1, 3.5, and 1.9 times greater than those in 

2004, 2005, and 2007, respectively (Figure 2.15a-d). 

 

Figure 2.14. (a) Relationship between the simulated snowpack water equivalent (snowpack) and 
snowmelt in the RRB, (b) snowfall-snowpack-snowmelt dynamics for a 4-month period in 2006 
(January - May). 

 Reasonably, higher snowpack in 2006 affected other hydrologic processes such as 

snowmelt, surface runoff, and infiltration. Throughout the simulation period, March had the 

highest snowmelt for all years. Figure 2.15e-h depict the impacts of snowpack in March on the 
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simulated snowmelt for different years. As expected, March 2006 experienced more snowmelt 

than other years. High snowmelt values in 2004, 2006, and 2007 were most noticeable in the 

northern and northwestern sides of the basin (Figure 2.15e, f, and Figure 2.15h), whereas the 

eastern side of the basin was mainly responsible for the high snowmelt in 2006. The average 

snowmelt over the basin in March 2006 was 1.3 mm, which is 22%, 94%, and 3.17% higher than 

the snowmelt in March 2004, 2005, and 2007. 

 

Figure 2.15. Snowpack water equivalent (mm) (snowpack) distribution in March (a) 2004, (b) 
2005, (c) 2006, (d) 2007; and snowmelt (mm) distribution in March (e) 2004, (f) 2005, (g) 
2006, (h) 2007. 

2.4.3. How do Depressions Alter Hydrologic Processes? 

Studies have suggested that the abundance of surface depressions in the RRB altered the 

generation of surface runoff (Tahmasebi Nasab et al. 2018). The simulation results from Macro-

HyProS highlighted the critical role of depressions as “regulators,” specifically in the early spring 

period. Figure 2.16a depicts the relationship between the temporal distribution of the 

depression storage and the generated surface runoff. It can be observed that the highest 

depression storage in different years occurred in late March and early April. Particularly, the 

amount of depression storage in the basin peaked on March 28th 2004, March 25th 2005, March 

31th 2006, and April 1st 2007, when the basin experienced partially frozen ground, increased 
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snowmelt, and early spring rainfall (as shown in Figure 2.12). Figure 2.16a also indicates the 

connection between depression storage and evaporation from the stored water. As expected, the 

highest evaporation usually occurred in the period from June to August. The magnitude of the 

simulated evaporation showed a direct relationship to the depression storage. For example, 

since more water was stored in depressions in 2007, the total simulated evaporation from the 

ponded water in 2007 was 1.7 times higher than that in 2006. 

 

Figure 2.16.  Connections between the temporal distribution of depression storage and different 
hydrologic processes for (a) RRB and (b) sample grid shown in Figure 8.  

Figure 2.16b highlights the variations of depression storage over a 5-month period in 

2006 (i.e., March-August) for the sample grid in the RRB shown in Figure 2.8. As 

aforementioned, the majority of depressions in the sample grid are concentrated in the 

southeastern corner of the grid (Figure 2.8b). Surface delineation results indicated that the 

maximum depression storage of the grid was 8.7 Mm3 (corresponding to 5.4 cm of water over 

the grid) and ~24% of the grid area contributed runoff to the depressions. Since nearly one-
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fourth of the basin contributed to depressions, even small rainfall or snowmelt events led to 

noticeable variations in the depression storage of the grid (Figure 2.16b). The depression storage 

had an increasing trend up to the end of March when its peak coincided with the peak runoff on 

3/31/2006. Afterward, the depression storage followed a declining trend with intermittent 

fluctuations due to small rainfall events, and completely dried up on 5/19/2006. From this point 

forward, depressions were only periodically ponded and dried up, depending on the rainfall 

events (Figure 2.16b). 

 

Figure 2.17.  Spatial distributions of depression storage in the RRB: (a) March 2006, (b) March 
2007, and (c) a satellite imagery of a focused area in the RRB featured with surface depressions. 

In addition to the temporal distribution of the depression storage in the RRB, Marco-

HyProS also provided spatial variations of the depression storage. Figure 2.17 shows the 

variations of depression storage in March 2006 and 2007, which had the highest depression 

storage among other months in these two years. Figures 2.17a and 2.17b indicate that the basin 

had higher depression storage values in the eastern and western parts, in comparison to the 

central part. This pattern is in accordance with other studies in the RRB. For example, 

Tahmasebi Nasab et al. (2018) divided the RRB into 146 subbasins and performed surface 

delineation to determine the maximum depression storage of the basin. It was observed that the 

central part of the basin generally accounted for lower depression storage, and depression 

storage increased from the central part to the eastern and western sides of the basin (Tahmasebi 

Nasab et al. 2018). Figure 2.17c shows a focused area of the basin that accounted for higher 
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depression storage in both 2006 and 2007. The satellite image presented in Figure 2.17c 

confirms the abundance of surface depressions over this focused area. The average depression 

storage values in the RRB in March 2006 and 2007 were 0.92 mm and 1.84 mm, respectively. 

The higher depression storage in March 2007 can be directly attributed to 4.89 mm more 

precipitation than that in March 2006.  

2.4.4. Macro-HyProS in Perspective: Contributions, Limitations, and Potentials 

Hydrologic modeling at macro-scale basins around the world is becoming increasingly 

popular to quantify the critical impacts of climate-driven changes on ecological, agricultural, 

and human behavioral aspects of water resources (Byun et al. 2019). Flexibility to grid structure 

is one of the important elements of macro-scale hydrologic models (Kauffeldt et al. 2016), 

enabling the models to take advantage of widely available grid-based reanalysis and earth 

observation datasets (Rodríguez et al. 2019). In addition to incorporating a grid-based structure, 

Macro-HyProS uses a novel LEGO-fashion horizontal layout to account for sub-grid 

heterogeneity based on the land use and land cover maps. The response of macro-scale cold 

climate basins to the projected warming climate trends are poorly known (Musselman et al. 

2017). To provide a holistic understanding of cold-climate conditions through hydrologic 

simulations, Macro-HyProS incorporates a set of methodologies to simulate frozen ground and 

snow accumulation and ablation processes. Moreover, it has been shown that the collective 

effects of surface depressions can manipulate the response of macro-scale basins (Tahmasebi 

Nasab et al. 2017b, 2018). Therefore, Macro-HyProS utilizes a topography-based approach to 

account for the influences of surface depressions on macro-scale hydrologic processes such as 

surface runoff. The consideration of complexities associated with depression-dominated areas 

and cold climate regions makes the model a proper choice for applications in regions with 

similar hydro-topographical characteristics. 

 Although the current version of Macro-HyProS presents a novel structure and improved 

methodologies to simulate hydrologic processes for depression-dominated and cold climate 
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regions, improvements are foreseen in processes representation and calibration and evaluation 

processes. Particularly, the current version of Macro-HyProS incorporates a simple “leaky 

bucket” approach to simulate sub-surface processes. The merit of this simple approach is the 

low input data requirements, which makes it suitable for macro-scale models. However, since 

more spatially distributed datasets are becoming available, improvements in the Macro-HyProS 

Sub-surface Band can enhance its capabilities to simulate sub-surface processes. Since the major 

objective of this study was to present the theoretical foundation of the Macro-HyProS, a 

mechanistic approach was employed to provide a holistic understanding of the model’s structure 

and methodology. However, future long-term applications of Macro-HyProS will center on 

calibration and evaluation of the model using not only streamflow discharge but also other 

hydrologic processes such as snowmelt. This multi-process calibration/evaluation will result in a 

better indication of the model’s behavior within different bands.    

2.5. Summary and Conclusions 

This study presented the theoretical foundation of the Macro-scale Hydrologic Processes 

Simulator with the primary objective of simulating hydrologic processes in cold climate regions 

and depression-dominated terrains. Macro-HyProS is a grid-based daily hydrologic model that 

takes advantage of a unique LEGO-fashion horizontal layout to account for the within-grid 

variabilities of land use and land cover. Each grid in the model is conceptualized as a LEGO 

plate, on top of which three Blocks (Red, Green, and Blue - RGB) are placed, representing the 

developed, vegetated, and wetted areas. Macro-HyProS incorporates five vertical bands 

(Atmosphere, Vegetation, Snow, Surface, and Sub-surface Bands), each of which simulates 

different hydrologic processes. To accommodate the complexities associated with the 

depression-dominated terrains and cold climate regions, the model uses improved 

methodologies that are developed for macro-scale modeling of hydrologic processes. Eventually, 

a simple routing method is used to compute the outlet discharge. The model was applied to the 

Red River of the North Basin, which is characterized by its cold climate and depression-
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dominated topography, for a 4-year period (1,461 daily time steps) from January 1st 2004 to 

December 31st 2007. The simulated hydrograph was compared against the observed one and the 

model performance was evaluated. Moreover, the capabilities of the model in simulating the 

spatiotemporal variations and trends of different hydrologic processes were showcased in forms 

of temporally and spatially distributed results. 

The simulated discharges were in good agreement with the observed data, having the 

Nash–Sutcliffe efficiency coefficient of 0.56 and 0.72 for the calibration and validation periods, 

respectively. The modeling results indicated that the RRB experienced frozen or partially frozen 

ground conditions on an average of 145 days per year (i.e., 40% of the year). The frozen ground 

condition often coincided with the early spring rainfall and snowmelt events and altered the 

magnitude and distribution of the generated surface runoff and infiltration. It was demonstrated 

that the period between late March and early April was a critical one for the frozen-ground-

induced spring floods across the simulation period. Also, the results indicated that the snow 

accumulation and ablation, synchronized with the frozen or partially frozen ground condition, 

produced peak discharge in the Red River. The snowmelt analysis suggested that up to 60% of 

the generated snowmelt contributed to surface runoff due to the widespread frozen ground 

condition. Macro-HyProS employed macro-scale methodologies to account for the lumped 

impacts of depressions and their contributing areas within each grid. The results revealed that 

the depression-dominated areas within the RRB acted as surface runoff regulators, specifically 

in the periods when a high amount of surface runoff was generated (i.e., late March and early 

April). 

The modeling results from Macro-HyProS accentuated the significance of considering 

the unique cold-climate processes and the dominated role of surface depressions in hydrologic 

modeling. By using the improved methodologies and a unique LEGO-fashion layout, Macro-

HyProS provides a better understanding and representation of macro-scale hydrologic 

processes. Although the current version of Macro-HyProS resulted in satisfactory simulations in 
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the RRB, further model applications in other macro-scale basins are necessary to test different 

features of the model. Also, long-term model evaluation and sensitivity analysis of the model 

parameters are foreseen to provide a clear understanding of different bands, used to simulate 

hydrologic processes. 
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3. IMPACTS OF SUB-DAILY TEMPERATURE FLUCTUATIONS AROUND THE 

FREEZING TEMPERATURE ON MACRO-SCALE SNOWMELT SIMULATIONS1

3.1. Abstract 

Climate-driven temperature variations manipulate the snowmelt process and affect 

various aspects of aquatic and terrestrial life. The objective of this study is to evaluate the 

impacts of sub-daily temperature fluctuations around the freezing temperature on the quantity 

and spatial distribution of macro-scale snowmelt simulations (i.e., over macro-scale basins and 

monthly or annual temporal scales). A macro-scale snow accumulation and ablation model was 

developed to account for sub-daily temperature fluctuations. Unlike other existing macro-scale 

models that rely upon a single daily average temperature, the new model incorporates minimum 

and maximum temperatures and their occurrence timing within the day in a hybrid temperature 

index method (HTIM). The model was applied to the Missouri River Basin to simulate grid-

based snowmelt for water years 2011 and 2012 and compared with the monthly snowmelt data 

from the SNOw Data Assimilation System (SNODAS), which is a physically-based energy and 

mass balance snow model. Also, the HTIM was compared with a standard TIM, in which only a 

daily average temperature was used for snowmelt simulations. The HTIM provided comparable 

performance to the SNODAS snowmelt data (R2 = 0.9). The modeling results suggested that 

daily macro-scale snowmelt simulations were notably susceptible to sub-daily temperature 

fluctuations, and the HTIM can improve the physically-based representation of temperature 

variations in the snowmelt process. However, monthly and annual snowmelt results indicated 

less sensitivity to sub-daily temperature fluctuations around the freezing temperature. The 

difference between the annual simulations by the HTIM and TIM was less than 1%. Results from 

 

 

1 The material in this chapter was co-authored by Mohsen Tahmasebi Nasab and Dr. Xuefeng Chu. 
Mohsen Tahmasebi Nasab had primary responsibility for developing the new analysis procedure and 
modeling of the system. Mohsen Tahmasebi Nasab was the primary developer of the conclusions that are 
advanced here. Mohsen Tahmasebi Nasab also drafted and revised all versions of this chapter. Dr. 
Xuefeng Chu served as proofreader and checked analysis conducted by Mohsen Tahmasebi Nasab. 
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this study highlight the influence of sub-daily temperature fluctuations on macro-scale 

snowmelt simulations. The macro-scale snow model developed in this study can also be applied 

to other basins with similar hydroclimatic characteristics. 

3.2. Introduction 

 The Fourth National Climate Assessment report (NCA4) confirmed that the climate-

driven changes in the United States are already tangible in different aspects of aquatic and 

terrestrial life (USGCRP 2018). In the Northern Great Plains, for example, the fast springtime 

warming has led to earlier snowmelt events (USGCRP 2018). Among the numerous impacts of 

snowmelt on aquatic life and biodiversity, snowmelt can significantly disturb communities by 

contributing to spring floods. For example, parts of the Missouri River Basin (MRB) and Red 

River of the North Basin (RRB) in Dakotas and Minnesota underwent a record-breaking 

snowfall during water year 2009 followed by a historical flood in March and April of 2009, in 

which 48 record stages were logged at the U.S. Geological Survey streamflow gauging stations in 

both basins (Macek-Rowland and Gross 2011). Fortunately, no flooding-related death was 

reported. However, the costs of flooding-related damages and flood-fighting efforts solely in the 

RRB were estimated at 55 million U.S. dollars (NOAA Water Resource Services, 2009).  

The snow accumulation and ablation processes significantly affect the hydrologic 

response by storing and releasing water throughout the year (Jansson et al. 2003). In the cold 

climate basins in the western United States and Canada, for instance, snowmelt is a significant 

contributor to streamflow, feeding 50% to 80% of the total streamflow (Stewart et al. 2004). 

Throughout the past decades, different models have been developed to simulate snow 

accumulation and ablation processes. These models have been honed over time by the addition 

of cold-climate processes such as refreezing, sublimation, and snow-on-rain. Traditionally, 

snowmelt models are categorized based on the use of (1) energy balance methods (EBMs) or (2) 

temperature index methods (TIMs) (Leavesley 1989). EBMs solve the energy balance equation 

to estimate the available energy for snowmelt generation. An EBM in its original form requires a 
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variety of meteorological data such as solar radiation, temperature, vapor pressure, and wind 

speed, which might or might not be available depending on the locations of study areas. Due to 

the data-intensive nature of EBMs, a variety of modified/simplified methods have been 

developed, in which different energy balance terms are estimated based on certain simplifying 

assumptions and empirical relationships (e.g., Fuka et al. 2012). In contrast, TIMs simulate the 

amount of snowmelt on a given time step solely based on daily average temperature and a 

melting factor. In TIMs, different elements of the snowmelt process (i.e., components of the 

energy balance equation), except for temperature, are lumped together into the melting factor 

(Hock 2005; Leavesley 1989). Hock (2005) provided a comprehensive review of EBMs and 

TIMs and suggested that due to the availability of air temperature data, TIMs will remain the 

most widely used method to estimate snowmelt for different purposes. Simplicity and 

practicality of the TIMs are the main reasons for their frequent use in several macro-scale 

hydrologic models such as Spatial Processes in Hydrology (SPHY) (Terink et al. 2015), 

Hydrologiska Byråns Vattenbalansavdelning (HBV) (Bergström 1992), Hydrological Predictions 

for the Environment (HYPE) (Lindström et al. 2010), and Water Global Assessment and 

Prognosis (WaterGAP) (Alcamo et al. 2003).  

TIMs have been subject to various improvements to ensure reliable snowmelt 

simulations for regions with different hydroclimatic characteristics. The majority of these 

improvements have been achieved by employing two approaches: (1) modifying the melting 

factor to account for spatial and temporal variations and (2) adding the lumped effects of other 

energy balance terms to the original TIMs. Several studies employed the first approach to 

enhance snowmelt simulations. Hock (2003) reviewed the TIM snowmelt modeling and 

different attempts to account for the spatiotemporal variations of the melting factor and 

concluded that the majority of modifications to the TIM were mainly targeted to the seasonal 

variations of the melting factor. For example, Rango and Martinec (1995) developed the 

seasonally variable melting factor, which led to the development of snowmelt routines 
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accounting for the seasonal variability of the melting factor based on maximum and minimum 

melting factors (Fontaine et al. 2002). Singh et al. (2005) adjusted the melting factor to include 

the impacts of both near-surface soil temperature and air temperature on the snowmelt process. 

Many other studies employed the second approach. For example, Zuzel and Cox (1975) 

highlighted the importance of other energy balance terms. They evaluated the relative 

significance of different meteorological variables in the snowmelt process and found that 

addition of vapor pressure, net radiation, and wind in the TIMs improved snowmelt simulations 

by 13% in comparison with the single temperature index method. Also, Brubaker et al. (1996) 

and Hock (1999) included a radiation term in the original TIM to improve snowmelt 

simulations.  Specifically, Hock (1999) developed a grid-based spatially distributed model to 

capture the diurnal snowmelt cycles by including potential clear-sky direct solar radiation, 

which has the advantage of requiring the same input data as the original TIM (i.e., only 

temperature data) and a digital elevation model of the study area.  

Macro-scale hydrologic models are customarily associated with regional, continental, or 

even global scales (Chu et al. 2019) and are used to investigate the impacts of climate-driven 

changes on hydrologic processes. Reasonably, macro-scale hydrologic models cannot take 

advantage of the methods that are specific to point- or micro-scale modeling. Hence, before 

selecting a simulation method, different aspects of macro-scale modeling such as input data 

requirements and flexibility in resolution need to be considered. The fact that TIMs provide 

comparable results to EBMs at a macro scale (WMO 1986) allows macro-scale hydrologic 

models to incorporate different versions of TIMs without significant loss of information (Zuzel 

and Cox 1975). The temporal resolution adopted in TIMs is of equal importance in the snowmelt 

simulation.  Several studies have indicated that the performance of TIMs significantly decreases 

when finer temporal resolutions (smaller than a couple of days) are used (Hock 1999, 2005). For 

example, Rango and Martinec (1995) suggested that TIMs provide reliable simulations of 
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snowmelt when they are used for weekly to seasonal time steps; however, they also can be used 

for daily simulations when linked to hydrologic models (Rango and Martinec 1995).  

One of the critical simplifying assumptions behind TIMs that restricts their use for daily 

simulations is that each time step is represented by a single temperature (i.e., the daily average 

temperature). This assumption is reasonable when sub-daily temperatures are all either above 

or below the freezing temperature. However, when sub-daily temperatures fluctuate above or 

below the freezing temperature, the single-temperature TIM cannot provide realistic snowmelt 

simulations (Hock 1999; Žaknić-Ćatović et al. 2018). Different attempts have been made to 

capture the sub-daily snowmelt fluctuations at point-scale or subbasin-scale (e.g., Dunn and 

Colohan, 1999; Tobin et al., 2013; Žaknić-Ćatović et al., 2018). Tobin et al. (2013) developed a 

modified TIM that utilized the difference between the daily maximum and minimum 

temperatures (i.e., temperature range) to account for the diurnal snowmelt cycles at a subbasin 

scale. Specifically, they proposed a new method to compute a time-varying melting factor using 

a quasi-sinusoidal function, assuming that the daily cycle of incoming radiation can be 

represented by the temperature amplitude (Tobin et al. 2013). The simulations from the original 

and modified TIMs were evaluated for both point and subbasin scales, and the results indicated 

that the modified TIM significantly improved the sub-daily variability of snowmelt (Tobin et al. 

2013). Moreover, to account for the impacts of temperature fluctuations around the freezing 

temperature, Žaknić-Ćatović et al. (2018) proposed a modified TIM that shifted the reliance of 

snowmelt simulations away from one temperature towards maximum and minimum 

temperatures. The performance of the modified TIM was evaluated using the observed data 

from two weather stations in Alberta and Toronto, Canada (Žaknić-Ćatović et al. 2018). The 

evaluation results confirmed that considering temperature variations around the freezing 

temperature improved the physical representation of snowmelt at a point scale (i.e., at the 

weather stations) (Žaknić-Ćatović et al. 2018). Although different studies indicated better 

snowmelt results at a point scale and/or small basin scale when sub-daily temperatures were 



 

76 

incorporated into the TIM, few studies have addressed snowmelt simulation issues in macro-

scale basins. For example, Tobin et al. (2013) simulated snowmelt for the Cotton Creek 

Experimental Watershed (CCEW) in British Columbia, Canada, which had an area of only 17 

km2. Therefore, the impacts of sub-daily temperature variations around the freezing 

temperature on snowmelt simulations in macro-scale basins (> a few thousand km2) are still 

unknown. 

Given the importance of macro-scale hydrologic modeling and the significance of 

snowmelt in hydrologic modeling, the objective of this study is to evaluate the impacts of sub-

daily temperature fluctuations around the freezing temperature on macro-scale snowmelt 

simulations. Particularly, this study uses a macro-scale approach that incorporates sub-daily 

temperature variations in a standard TIM to investigate the influences of sub-daily temperature 

variations on the snowmelt simulations over large spatiotemporal scales (i.e., monthly or annual 

scales in macro-scale basins). To accomplish the objective of this study, a new macro-scale snow 

accumulation and ablation model (MSM) is developed, in which sub-daily temperature 

variations around the freezing temperature are included by incorporating maximum and 

minimum temperatures and their occurrence timing in a hybrid TIM (HTIM). HTIM has the 

advantage of retaining the simplicity of the standard TIM by using widely available temperature 

datasets. In addition, the developed MSM utilizes only eight parameters that are defined based 

on the specific characteristics of different study areas, and it can be easily incorporated into 

macro-scale hydrologic models for simulations in the areas with limited data. The model is 

applied to the MRB, and the simulation results are compared with the snowmelt data from the 

National Oceanic and Atmospheric Administration (NOAA) National Operational Hydrologic 

Remote Sensing Center (NOHRSC) SNOw Data Assimilation System (SNODAS). Moreover, the 

modeling results are also compared with those simulated by a standard TIM. This study 

identifies the impact of sub-daily temperature fluctuations above and below freezing 

temperatures and their occurrence timing on macro-scale snowmelt simulations.  
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3.3. Study Area 

Stretching from western Montana to St. Louis, MO, the MRB (Figure 3.1a) has a drainage 

area of 1.37 M km2, covering parts of 10 U.S. States (~98% of the MRB’s drainage area) and 2 

Canadian provinces. The MRB is an important global agricultural region and produces nearly 

half (46%) of the U.S wheat (Mehta et al. 2013). According to the Cropland Data Layer (CDL) 

classifications (Boryan et al. 2011), grassland/pasture and cropland are the dominant land-use 

types (Figure 3.1b), and corn and soybeans are the two leading crops in the MRB. Also, different 

types of forests (i.e., evergreen and deciduous) are mostly scattered on the western side of the 

basin (Figure 3.1b), accounting for ~10% of the basin’s land. The MRB encompasses a wide 

variety of hydroclimatic, geologic, and topographic conditions. For example, the basin has an 

elevation drop of more than 4 km from the western side to the eastern side of the basin (Figure 

3.1c). 

 

Figure 3.1. Missouri River Basin: (a) domain, (b) land use distribution, and (c) elevation 
variations. 

Several studies have highlighted the current and future hydroclimatic variations of the 

MRB caused by the climate-driven changes (Livneh et al. 2016; U.S. Bureau of Reclamation 

2016; Wise et al. 2018). The 2016 SECURE Water Act Report projected a 2.78oC to 3.34oC 
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increase in MRB’s temperature throughout the 21st century (U.S. Bureau of Reclamation 2016). 

By prompting earlier snowmelt and reducing streamflow during summer months, this warming 

trend impacts many aspects of the basin such as biodiversity, agriculture, and navigation (Wise 

et al. 2018). Since temperature is projected to continue its increasing trend throughout the 21st 

century (U.S. Bureau of Reclamation 2016), understanding the snowmelt process and improving 

its representation in hydrologic models can lead to more realistic modeling results for the MRB. 

The 2011 record-breaking flood in the MRB, which was immediately followed by the 

2012 drought, is a typical example of expected hydroclimatic variations in the basin. The extents 

of wetness and dryness of these representative years (i.e., 2011 and 2012) are more evident when 

they are compared to the long-term average precipitation. The average 30-year (1981-2010) 

precipitation in the basin is 538 mm. In contrast, the annual precipitation in 2011 was 623 mm, 

which is approximately 15% higher than the 30-year average. Particularly, the cold-season 

precipitation in the upper MRB increased by 36.7% relative to the basin’s normal climatic 

condition (Badger et al. 2018), which led to a historic flood across the basin. On the other hand, 

the annual precipitation in 2012 was only 403 mm, which is about 25% lower than the average. 

Therefore, immediately after the 2011 flood throughout the Plains and Midwest, the 2012 

drought occurred and highly stressed the food-producing regions of the MRB (Fuchs et al. 

2012).  

3.4. Methodology 

3.4.1. Design of the Study and Data Acquisition 

The MSM is used to simulate snow accumulation and ablation processes in the MRB for 

consecutive WYs 2011 and 2012 (731 days from October 1st, 2010, to September 30th, 2012). As 

previously mentioned, WYs 2011 and 2012 are characterized by their hydroclimatic conditions, 

where WY 2011 represents a wet year and WY 2012 represents a dry year. The study area is 

discretized into 54,144 grids of 5×5 km2
, and snow accumulation and ablation processes are 

simulated separately for each cell. Since the spatially distributed macro-scale measured 
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snowmelt data are not available, the simulated snowmelt results from the HTIM are compared 

with the snowmelt data from the NOAA’s National Operational Hydrologic Remote Sensing 

Center (NOHRSC) SNOw Data Assimilation System (SNODAS) (hereafter SNODAS data). 

SNODAS is a modeling system that provides estimates of snow-related variables for hydrologic 

modeling and analysis. SNODAS employs physically-based, spatially-distributed energy- and 

mass-balance methods to assimilate satellite-derived, airborne and ground-based observations 

of snow-covered areas and snow water equivalent (Barrett 2003). The simulation results from 

the HTIM are further compared with those from the TIM to underline the impacts of sub-daily 

temperature fluctuations around the freezing temperature on the macro-scale snowmelt 

modeling. The spatiotemporal results from HTIM and TIM are compared against the SNODAS 

data using different graphical and statistical methods to provide a holistic picture of snowmelt 

variations over MRB. For example, the coefficient of determination (R2) and percent bias 

(PBIAS) are two statistics that are used to determine the goodness of fit and the average 

tendency of the simulations to overestimate (PBIAS>0) or underestimate (PBIAS<0) snowmelt. 

The MSM uses eight pre-defined model parameters to simulate different snow accumulation 

and ablation processes. These modeling parameters and their values are listed in Table 3.1. 

Table 3.1. Parameters and their values in the macro-scale snow model (MSM) 

Parameter Unit Description Value Source 

CSN - Snowfall correction factor 0.96 Anderson (2002) 

TTMAX oC Upper bound of TTR 5 Calibrated 

TTMIN oC Lower bound of TTR 1 Calibrated 

CCU - Forest canopy unloading coefficient 0.7 Pomeroy et al. (1998) 

CWR - Water retention storage coefficient 0.1 Bergström (1992) 

CMX mm oC-1 day-1 Maximum melting factor Varies See Table 3 

CMN mm oC-1 day-1 Minimum melting factor Varies  See Table 3 

CF mm oC-1 day-1 Freezing factor 0.05 Terink et al. (2015) 
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Table 3.2 lists the sources of data used in the MSM. The SNODAS snowmelt data provide 

the estimates of snowmelt for hydrologic modeling and analysis (NOHRSC 2004). The SNODAS 

digital images were first clipped to the boundaries of the MRB and then resampled from the 

original 1-km resolution to 5-km resolution digital images to facilitate the comparison between 

the simulated snowmelt and the SNODAS snowmelt data. The land use and land cover dataset 

was downloaded from the CDL dataset (Boryan et al. 2011) and was clipped to the boundaries of 

the study area.  

Table 3.2. Input data and their sources utilized in the macro-scale snow model (MSM) 
(NOHRSC-SNODAS: NOAA's National Operational Hydrologic Remote Sensing Center SNOw 
Data Assimilation System, CDL: Cropland Data Layer, PRISM: Parameter-elevation Regressions 
on Independent Slopes Model, TopoWx: Topography Weather, and NCEI-LCD: National 
Climatic Data Center Local Climatological Data) 

Dataset Source Reference 
Spatial 

Resolution 
Temporal 

Resolution 

Snowmelt SNODAS NOHRSC (2004) 1 km Daily 

Land Use and Land Cover CDL Boryan et al. (2011) 30 m Yearly 

Precipitation PRISM PRISM Climate Group (2004) 4 km Daily 

Min. and max. temp. TopoWx Oyler et al. (2015a) 800 m Daily 

Hourly temperatures NCEI-LCD NCEI (2018) - Hourly 

 

The precipitation data for the study area were obtained from the Parameter-elevation 

Regressions on Independent Slopes Model (PRISM Climate Group 2004) that generates grid-

based estimates of annual, monthly, and daily climatic data such as precipitation by 

incorporating point-scale weather-station observations, the digital elevation model (DEM) of 

the basin, and other spatial datasets (Daly et al. 1994). Since there have been concerns about the 

potential biases in the PRISM temperature products (Oyler et al. 2015b; Wise et al. 2018), the 

grid-based maximum and minimum temperatures (TMIN and TMAX) data were retrieved from the 

Topography Weather (TopoWx) dataset (Oyler et al. 2015a). In addition to incorporating the 

weather-station observations and topographic variables, TopoWx uses atmospheric reanalysis 

data, and the Moderate Resolution Imaging Spectroradiometer (MODIS) land skin temperature 
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to provide 800-m resolution daily TMIN and TMAX data (Oyler et al. 2015a). Both the PRISM 

precipitation data and the TopoWx temperatures were resampled to 5-km resolution grids to be 

incorporated in the MSM.  

 

Figure 3.2. (a) Climate divisions of the Missouri River Basin (MRB); time of occurrence of 
minimum and maximum temperatures at (b) Stations 1, (c) station 2; and (d) average time of 
occurrence of minimum and maximum temperatures for all stations in MRB. 

To find the time of occurrence of TMIN and TMAX (i.e., tMIN and tMAX), the MRB was divided 

into 58 NOAA climate divisions (Figure 3.2a). Within each climate division, a weather station 

was selected, and hourly temperature variations were obtained from the National Climatic Data 
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Center (NCDC) Local Climatological Data (LCD) for all 58 selected stations (NCDC 2018). Based 

on the hourly temperature variations, tMIN and tMAX were extracted for each day and used to 

calculate the average monthly tMIN and tMAX from October 2010 to September 2012. All grids 

within each climate division share the same tMIN and tMAX, assuming similar monthly variations 

of tMIN and tMAX. The analysis of hourly temperature variations showed that tMIN and tMAX 

followed an expected general trend, indicating that TMIN occurred around sunrise and TMAX took 

place right after midday. Figure 3.2b and Figure 3.2c show the seasonal variations of tMIN and 

tMAX for two selected stations in southern and northern MRB (Station 1 and Station 2, 

respectively). Station 1 tends to show less variability in tMIN and tMAX (Figure 3.2b), whereas 

Station 2 shows significant variability between warm and cold months (Figure 3.2c). This 

general trend was observed for all other southern and northern stations. Figure 3.2d depicts the 

average tMIN and tMAX and their ranges for all 58 stations, in which the variability between cold 

and warm months is evident.  

3.4.2. Standard vs. Hybrid Temperature Index Method  

A standard TIM is commonly expressed as: 

𝑀 = {
𝐶𝑀𝑇𝐴𝑉𝐸∆𝑡 𝑇𝐴𝑉𝐸 > 0

0 𝑇𝐴𝑉𝐸 ≤ 0
 (3.1) 

where M is the snowmelt (mm), CM is the melting factor (mm oC-1 day-1), and TAVE is the average 

temperature (oC) during time step Δt (day).  

Despite its popularity, the standard TIM has the potential to underestimate or 

overestimate daily snowmelt noticeably. Figure 3.3a depicts hourly temperature variations for 

two hypothetical consecutive days, which reveal how the TIM can miscalculate snowmelt. The 

daily average temperatures for Day 1 and Day 2 in Figure 3.3a are -0.8 oC and 1.6 oC, 

respectively. According to the TIM, Day 1 does not generate any snowmelt since its average 

temperature is less than the assumed freezing temperature (i.e., 0oC). However, nearly half of 

Day 1 has greater than 0oC temperatures (Figure 3.3a). In other words, the TIM does not yield 
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any snowmelt, even though half of Day 1 can potentially generate snowmelt. The case illustrated 

in Figure 3.3a occurs only when sub-daily temperatures fluctuate around the freezing 

temperature, and it is not the case when temperatures are all above/below the freezing 

temperature (Day 2 in Figure 3.3a). To alleviate this issue, a hybrid TIM is used to take 

advantage of the standard TIM and meanwhile consider daily maximum and minimum 

temperatures at known occurrence times (Žaknić-Ćatović et al. 2018). This hybrid approach 

provides sub-daily simulations of snowmelt and refreezing and also is simple enough to be 

incorporated into macro-scale hydrologic models. 

 

Figure 3.3. Hourly temperature variations above and below 0 oC for (a) two sample days and (b) 
a conceptual representation of temperature variations around the freezing temperature based on 
the daily minimum and maximum temperatures. 

It is worth mentioning that although different studies have suggested a strong 

correlation between snowmelt and air temperature (e.g., Braithwaite and Olesen, 1989), 

snowmelt is also a function of other terms in the energy balance equation (Leavesley 1989; 

Ohmura 2001). For example, snowpack temperature can play an essential role in the generation 
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of snowmelt. However, different TIMs do not explicitly account for snowpack temperature. The 

amount of snowmelt depends on the contributions of different factors or energy balance terms 

that vary with geographic and hydroclimatic conditions (Hock 2005). Thus, the related studies 

suggest that the TIM results should be interpreted for “average conditions” (Hock 2005). 

The HTIM incorporates the daily minimum and maximum temperatures (i.e., TMIN and 

TMAX, respectively) for simulating snowmelt when TMIN is lower than 0oC and TMAX is higher than 

0oC (Figure 3.3b). Calculating snowmelt and refreezing using the HTIM requires sub-daily 

temperature variations. Either measured or synthetic sub-daily temperatures can be utilized to 

obtain these variations. For example, Žaknić-Ćatović et al. (2018) tested two approaches to 

estimate hourly temperature variations based on (1) a linear relationship and  (2) a double 

cosine trigonometric relationship between TMIN and TMAX. In this study, a simple geometric 

method was used to approximate the sub-daily defacto melting and freezing periods based on 

the area of two triangles (Figure 3.3b). The HTIM establishes a linear relationship between TMIN 

and TMAX at their known times of occurrence to simulate the sub-daily snowmelt and refreezing 

processes (Figure 3.3b). In this method, snowmelt and refreezing are calculated for a fraction of 

the day with temperatures higher and lower than 0oC, respectively. For the days, in which TMIN is 

lower than 0oC and TMAX is higher than 0oC, snowmelt and refreezing are approximated using 

the two triangles, representing melt and refreeze processes (Figure 3.3b). The linear relationship 

between TMIN and TMAX, for each day, is written as: 

𝑇 = 𝑎𝑡 + 𝑏, (3.2) 

where T is the temperature (oC) at time t (hour), and a and b are the slope and the intercept of 

the line, respectively. These two coefficients (i.e., a and b) are calculated for each day based on 

the following general forms: 

𝑎 =
𝑇𝑀𝐴𝑋 − 𝑇𝑀𝐼𝑁
𝑡𝑀𝐴𝑋 − 𝑡𝑀𝐼𝑁

 (3.3) 
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𝑏 =
𝑇𝑀𝐼𝑁𝑡𝑀𝐴𝑋 − 𝑇𝑀𝐴𝑋𝑡𝑀𝐼𝑁

𝑡𝑀𝐴𝑋 − 𝑡𝑀𝐼𝑁
 

(3.4) 

in which tMAX and tMIN are the occurrence times of TMAX and TMIN, respectively, that determine 

the location of the triangles in Figure 3.3b within each day. If TMAX occurs earlier than TMIN in a 

day, the order of the triangles in Figure 3.3b switches. In this case, the same set of equations are 

applicable, but the slope of the line in Equation 2 becomes negative. Although every day in a 

year may have different tMAX and tMIN, TMAX mostly occurs after midday and TMIN occurs shortly 

after sunrise (Guo et al. 2014; Izquierdo et al. 2002). The time series of average monthly tMAX 

and tMIN are utilized as the model input data to account for the monthly variations of tMAX and 

tMIN for all grids within a climate division. 

ΔtMLT and ΔtRFR are the bases of the two triangles in Figure 3.3b and are calculated based 

on the time-intercept of the line between TMIN and TMAX with 0oC (Equation 2). Eventually, 

snowmelt and refreezing for each day are computed using the areas of the two triangles. The 

HTIM also incorporates the standard TIM for days, in which both TMIN and TMAX are 

above/below 0oC. According to the HTIM, the snowmelt and refreezing for different TMIN and 

TMAX values are written as: 

𝑀 = {

𝐶𝑀𝑇𝐴𝑉𝐸∆𝑡 𝑇𝑀𝐼𝑁 > 0 & 𝑇𝑀𝐴𝑋 > 0

𝐶𝑀
𝑇𝑀𝐴𝑋
2

∆𝑡𝑀𝐿𝑇 𝑇𝑀𝐼𝑁 ≤ 0 & 𝑇𝑀𝐴𝑋 > 0
 (3.5) 

𝑅 = {

𝐶𝐹𝑇𝐴𝑉𝐸∆𝑡 𝑇𝑀𝐼𝑁 ≤ 0 & 𝑇𝑀𝐴𝑋 ≤ 0

𝐶𝐹
𝑇𝑀𝐼𝑁
2

∆𝑡𝑅𝐹𝑅 𝑇𝑀𝐼𝑁 ≤ 0 & 𝑇𝑀𝐴𝑋 > 0
 

(3.6) 

where R is the potential refrozen meltwater (mm), CF is a freezing factor (mm oC-1 day-1), and 

ΔtMLT and ΔtRFR represent the defacto melting and freezing periods (day). The ΔtMLT and ΔtRFR 

required to compute snowmelt for a sample day with fluctuations in TMIN and TMAX on either side 

of 0oC are depicted in Figure 3.3b.  
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3.4.3. Development of a Macro-scale Snow Accumulation and Ablation Model 

A macro-scale snow model (MSM) is developed to simulate the dynamics of snow 

accumulation and ablation. The MSM is a grid-based daily model that discretizes the land 

surface into user-defined square grids. The model utilizes a user-defined transitional 

temperature range (TTR) to distinguish three different precipitation forms (i.e., rainfall, 

snowfall, and mixed rainfall and snowfall). The TTR provides the flexibility of selecting a proper 

temperature range based on the characteristics of specific regions. When TAVE is lower than or 

equal to the lower bound of the TTR (TTMIN), precipitation is assumed to be snowfall. When TAVE 

is higher than or equal to the upper bound of the TTR (TTMAX), precipitation is considered in the 

form of rainfall. If TAVE falls within the TTR, a mixed form of rainfall and snowfall is considered; 

assuming that snowfall decreases linearly from TTMIN to TTMAX.  

 

Figure 3.4. Flowchart of the macro-scale snow model (MSM). 

Figure 3.4 shows the flowchart of the MSM and the three different precipitation forms. 

The MSM simulates dynamic snowpack storage, snowmelt, rain-on-snow, and refrozen 

meltwater. If precipitation is in the form of snowfall or a combination of rainfall and snowfall, 

the snowpack water equivalent is updated based on the forest canopy snow interception, 

snowfall accumulation, and melting/refreezing processes (Figure 3.4). If precipitation is solely 

in the form of rainfall, the simulated processes vary depending on the availability of snowpack 

on the ground (Figure 3.4). 
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Snowpack water equivalent is updated based on the amount of snow reaching the ground 

surface, SNOS (mm), actual snowmelt, and snowpack water equivalent of the previous time step: 

𝑆𝑊𝐸(𝑡, 𝑔) = 𝑆𝑊𝐸(𝑡 − 1, 𝑔) − 𝑀𝐴(𝑡 − 1, 𝑔) + 𝐶𝑆𝑁 × 𝑆𝑁𝑂𝑆(𝑡, 𝑔) (3.7) 

where SWE (mm) is the snowpack water equivalent, MA is the actual snowmelt (mm), and CSN is 

a snowfall correction factor and accounts for the losses from sublimation and redistribution 

(Anderson 2006). CSN can be ignored for cold-climate regions with a significant amount of snow 

and multiple snowfall events. However, it cannot be neglected for areas with a small number of 

snowfall events, since the losses for these regions are typically higher (Anderson 2006). CSN is 

suggested to vary between 0.7-1.6 (Anderson 2002). 

The actual snowmelt, MA (mm), is calculated based on the available water for melt, AWM 

(mm), and a maximum snowpack water retention storage (SPRMX): 

𝑀𝐴(𝑡, 𝑔) = 𝑀𝑎𝑥[0, (𝐴𝑊𝑀(𝑡, 𝑔) − 𝑆𝑃𝑅𝑀𝑋(𝑡, 𝑔))] (3.8) 

in which SPRMX acts as a threshold for the snowmelt generation process. The snowpack water 

retention storage (SPR) retains meltwater until reaching SPRMX. In other words, SPRMX is a 

threshold to delay the generation of snowmelt. The water stored in SPR can refreeze when the 

temperature is below 0oC, and the amount of SPRMX is simulated as a fraction of SWE: 

𝑆𝑃𝑅𝑀𝑋(𝑡, 𝑔) = 𝐶𝑊𝑅 × 𝑆𝑊𝐸(𝑡, 𝑔) (3.9) 

where CWR is the coefficient of water retention storage, generally equal to 0.1 suggested by 

Bergström (1992).  

In Equation 8, the available water for melt is the summation of meltwater from different 

sources minus the refrozen meltwater:  

𝐴𝑊𝑀(𝑡, 𝑔) = 𝑀𝐹 +𝑀𝑅 +𝑀 − 𝑅 (3.10) 

where MF is the snowmelt from forest canopy (mm), MR is the rain-on-snow melt (mm), and M 

and R are the surface snowmelt and refreezing (mm) described in Section 3.2. 
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To calculate the amount of snowmelt from the forest canopy, the MSM uses a simple 

bucket approach to estimate snow interception by the forest canopy. The amount of snow 

reaching the ground surface, SNOS (mm), for grid g and time step t is calculated by: 

𝑆𝑁𝑂𝑆(𝑡, 𝑔) = 𝑆𝑁𝑂(𝑡, 𝑔) − 𝐼𝑁𝑇𝑆𝑁(𝑡, 𝑔) (3.11) 

where SNO is the total snowfall (mm) and INTSN is the snow canopy interception (mm), which 

can be estimated by (Hedstrom and Pomeroy, 1998; Pomeroy et al., 1998): 

𝐼𝑁𝑇𝑆𝑁(𝑡, 𝑔) = 𝐶𝐶𝑈 × [𝐹𝐶𝑆𝑀𝑋(𝑔) − 𝑆𝑊𝐸𝐹(𝑡 − 1, 𝑔)] × (1 − 𝑒
−
𝐹𝑉𝐶×𝑆𝑁𝑂(𝑡,𝑔)
𝐹𝐶𝑆𝑀𝑋(𝑔) ) (3.12) 

in which CCU is a canopy unloading coefficient (~0.7), SWEF is the snow storage water equivalent 

of the forest canopy (mm), FCSMX is the maximum forest canopy snow storage (mm), and FVC is 

the fractional vegetation cover. FCSMX and FVC are estimated by using the leaf area index (LAI) 

and snow density (Pomeroy et al. 1998; Schmidt and Gluns 1991). 

Daily snowmelt from the forest canopy, MF (mm), is calculated by incorporating a simple 

TIM (Liston et al. 2006), assuming that the amount of refreezing is negligible:    

𝑀𝐹(𝑡, 𝑔) = {
𝐶𝐹𝑀𝑇𝐴𝑉𝐸(𝑡, 𝑔) 𝑇𝐴𝑉𝐸 > 0

0 𝑇𝐴𝑉𝐸 ≤ 0
 (3.13) 

where CFM is the forest melting factor (CFM). It should be noted that since the snowmelt from the 

forest canopy is much lower than the surface snowmelt, the original TIM was used for 

simulating snowmelt from the forest canopy. 

The amount of meltwater from a rain-on-snow event, MR (mm), is calculated when 

precipitation is in the form of rainfall and there is snowpack on the ground. Assuming that the 

rainfall temperature is equal to TAVE and the snow surface temperature is 0oC, the amount of MR 

is simulated by using the following equation (Qi et al. 2017), in which RNF is rainfall (mm): 

𝑀𝑅(𝑡, 𝑔) = 0.0126 × 𝑇𝐴𝑉𝐸(𝑡, 𝑔) × 𝑅𝑁𝐹(𝑡, 𝑔) (3.14) 

As discussed in the previous section, the MSM uses the HTIM to simulate the surface 

snowmelt and refreezing processes. Different studies suggested that CM varies over time and 

space (e.g., Fontaine et al. 2002; Rango and Martinec 1995). To calculate the seasonally variable 
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melting factor, MSM incorporates the approach proposed by Fontaine et al. (2002) and Neitsch 

et al. (2011): 

𝐶𝑀 =
𝐶𝑀𝑋 + 𝐶𝑀𝑁

2
+ sin [

2𝜋(𝐷𝑁 − 81)

365
] ×

𝐶𝑀𝑋 − 𝐶𝑀𝑁
2

 (3.15) 

where CMX is the maximum melting factor, CMN is the minimum melting factor, and DN is the 

number of days in the year. In cold climate regions where snow accumulation may continue 

until mid or late spring, CMX is of greater importance while CMX and CMN are both equally 

important in the areas with frequent snowmelt events during winter (Anderson 2006). In 

addition to the temporal variations of CM, the spatial distribution of CM for different grids is 

taken into account based on the land-use types. The values of the maximum and minimum 

melting factors for different land-use types are listed in Table 3.3. It is notable that forest covers 

typically have a small melting factor, whereas urban areas have larger melting factors (Table 

3.3). 

Table 3.3. Maximum and minimum melting factors (CMX and CMN) suggested for different land 
use types (Anderson 2006; Neitsch et al. 2011) 

Land use description CMX CMN 

Dense conifer forest 0.5-0.7 0.2-0.4 

Mostly deciduous 1.0-1.4 0.2-0.6 

Mostly open flat terrain 1.5-2.2 0.2-0.6 

Mostly open mountainous terrain 0.9-0.3 0.1-0.3 

Mixed cover 0.8-1.2 0.1-0.3 

Rural areas 6.9 1.4 

Urban areas 8.0 3.0 

 

3.5. Results 

3.5.1. Temporal Analysis of HTIM and TIM Simulations vs. SNODAS Snowmelt  

The snowmelt results simulated by the HTIM and TIM are compared with the SNODAS 

snowmelt data to ensure that both methods provide acceptable simulations. Figures 3.5a-c 

depict the monthly/annual snowmelt over the MRB as well as a monthly graphical comparison 
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between the HTIM and TIM simulations and the SNODAS snowmelt data. Figure 3.5a highlights 

an extreme hydroclimatic discrepancy between WYs 2011 and 2012. WY 2011, as a wet year, 

accounted for higher snowmelt peaks and a longer extended snowmelt period, whereas WY 

2012, as a dry year, had smaller peaks and a shorter snowmelt period. Reasonably, the 

magnitude of snowmelt peaks in both WYs highly depends on the amount of winter 

precipitation. Figure 3.5a indicates that the snowmelt peaks for both WYs occurred in March 

and April; however, as a direct result of higher winter precipitation in WY 2011, snowmelt peaks 

in WY 2011 were nearly two times larger than those in WY 2012. Comparing the simulation 

results by HTIM and TIM in Fig 5a reveals that both methods followed a similar simulation 

pattern.  

 

Figure 3.5. Snow Data Assimilation System (SNODAS) snowmelt data versus (a) monthly and 
(b) yearly snowmelt simulated by the hybrid temperature index method (HTIM) and the 
standard TIM for water years (WYs) 2011 and 2012; (c) graphical comparison between the 
HTIM and TIM simulations and the SNODAS snowmelt data.  

Although there were discrepancies between the HTIM and TIM simulations in different 

months, the largest discrepancies occurred in December 2010, April 2011, and March 2012. Due 

to their temperature fluctuations, these three months play an important role in the variations of 

snowmelt in the MRB. For example, the results showed that the average snowmelt over the 

basin simulated by HTIM in December 2010 (i.e., 7.2 mm, which is closer to the SNODAS 

estimate of 7.6 mm) was 1.9 times higher than the snowmelt simulated by TIM (i.e., 3.8 mm). A 

statistical analysis of the simulated results showed that the coefficient of determination (R2) for 

the monthly comparison was higher than 0.90 for both methods, indicating a good agreement 



 

91 

between the simulated snowmelt and the SNODAS data. The yearly comparison depicted in 

Figure 3.5b shows that the MRB in WY 2012 had an average snowmelt value of 87.69 mm, which 

is roughly half of the average snowmelt in WY 2011 (162.45 mm). The PBIAS analyses of the 

HTIM and TIM simulations against the SNODAS data revealed an average tendency that the 

simulated values were smaller than the corresponding SNODAS values. That is, both HTIM and 

TIM had negative PBIAS values (-9.77 and -9.78, respectively), indicating underestimation 

biases.  Although HTIM and TIM demonstrated certain discrepancies in the monthly results, the 

differences between their annual averages were 1.2 Mm3 and 23,011 m3 in WY 2011 and WY 

2012, respectively, corresponding to less than one millimeter of water over the basin area. 

Overall, Figures 3.5a and 5b indicate that HTIM and TIM snowmelt simulations are comparable 

to the SNODAS snowmelt estimates. The annual comparison also shows that the absolute errors 

between the simulated average snowmelt over the MRB and the SNODAS data in WYs 2011 and 

2012 are less than 12%. The graphical comparison between the SNODAS and simulated 

snowmelt (Figure 3.5c) indicates that when snowmelt was less than 10 mm, both methods 

slightly overestimated the snowmelt. On the other hand, when snowmelt was greater than 10 

mm, HTIM and TIM underestimated the snowmelt, which is in accordance with the PBIAS 

analyses for the simulated snowmelt results. 

The variations between the SNODAS snowmelt and the simulated snowmelt by using 

MSM can be attributed to the underlying methodologies in formulating snowmelt in the two 

snow models. Specifically, MSM is a simple daily bucket model that only requires eight pre-

defined parameters, while SNODAS is a multi-layered (three snow layers and two soil layers), 

spatially-distributed, energy and mass balance model which simulates snowmelt at hourly time 

steps based on the thermal dynamics of different layers (Barrett 2003). In addition to the 

differences in the methodologies, the variations between the SNODAS and simulated snowmelt 

values also stem from the inclusion of detailed meteorological datasets such as surface zonal 

wind, surface meridional wind, relative humidity, solar radiation, and many other variables in 
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SNODAS (Barrett 2003), whereas HTIM only utilizes widely available daily temperature 

datasets.  

3.5.2. Spatial Analysis of HTIM and TIM Simulations vs. SNODAS Snowmelt Data  

To understand the snowmelt variations over MRB, spatially distributed results are 

presented in three classes (i.e., low, moderate, and high) to facilitate the comparison between 

the simulated and SNODAS snowmelt results (Figures 3.6a-l). The classification was performed 

based on the Jenks natural breaks classification method (Jenks 1967) that finds the best 

arrangement of values in a given dataset. In order to pinpoint the differences between HTIM 

and TIM, three sample months were selected in which the largest discrepancy between the two 

methods occurred throughout the simulation period. Figures 3.6a-c indicate that the spatial 

distribution of snowmelt classes in HTIM resembled SNODAS better than TIM results. In 

comparison with TIM results, HTIM simulated larger Class 2 and Class 3 snowmelt in December 

2010, which was attributed to the sub-daily temperature fluctuations around the freezing 

temperature throughout December 2010 when on average 53.25% of the basin experienced 

TMIN<0 and TMAX>0. Figure 3.6d highlights the differences in the three snowmelt classes 

simulated by HTIM, TIM, and SNODAS. Specifically, the coverage percentage of Class 3 (i.e., 

high) snowmelt by HTIM was 3.5 times larger than the coverage percentage of the Class 3 

snowmelt by TIM which led to the generation of 3.38 mm more snowmelt over the basin, 

specifically in high elevation western parts of MRB.  

Although HTIM simulated more snowmelt in December 2010, TIM simulated 32.2% 

more snowmelt than the HTIM in March 2012. Particularly, HTIM resulted in an average of 

16.20 mm of snowmelt over the basin, whereas TIM simulated 21.42 mm of snowmelt. The 

spatial coverages of three classes of snowmelt in March 2012 (Figures 3.6e-h) show a general 

resemblance between the HTIM and TIM simulated distributed results. However, there are 

nuances in the spatial distributions of snowmelt which are due to the temperature variations. 

On average, 88.30% of the basin was covered by areas with TMIN<0 and TMAX>0 in March 2012. 
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The average TMIN over the basin was -2.83oC and the average TMAX was 15.98oC, which led to 

different class coverages between HTIM and TIM (Figure 3.6h). The discrepancy ratios between 

the two methods for Classes 1, 2, and 3 in March 2012 were 1.2, 0.72, and 0.76, respectively. 

Snowmelt results in March 2012 indicated that both magnitude and distribution of the 

simulated snowmelt by HTIM were closer to SNODAS snowmelt. While TIM overestimated 

snowmelt by 17.4%, HTIM underestimated snowmelt only by 11% in March 2012. 

 

Figure 3.6. Monthly comparisons of the snowmelt coverages simulated by using the hybrid 
temperature index method (HTIM), the standard temperature index method (TIM), and the 
Snow Data Assimilation System (SNODAS) based on three classes of snowmelt (Class 1: low, 
Class 2: moderate, and Class 3: high) in December 2010 (a, b, c, and d), March 2012 (e, f, g, and 
h), and April 2011 (I, j, k, and l).  

December 2010 and March 2012 were two months, in which the HTIM results were 

better than those from TIM and closer to the SNODAS snowmelt data. In some months, 

however, TIM provided better simulations than HTIM. For example, the difference between the 
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SNODAS and TIM snowmelt results in April 2011 was only 0.6 mm, which is much smaller than 

that of HTIM (4.46 mm). A closer look at the spatial distribution of the simulated snowmelt by 

SNODAS, HTM, and TIM reveals that TIM simulated more Class 3 snowmelt that was more 

comparable to the SNODAS data (Figures 3.6i-l). Specifically, 7.5%, 3.8%, and 8.6% of the basin 

was covered by Class 3 snowmelt simulated by SNODAS, HTIM, and TIM, respectively. The 

overall monthly results suggest that although there are some differences in both magnitude and 

spatial coverage of the snowmelt simulated by HTIM and TIM, these differences are only 

pronounced in the months when the majority of the basin experienced temperature fluctuations 

around the freezing temperature. 

 

Figure 3.7. Yearly comparisons of the snowmelt coverages simulated by using the hybrid 
temperature index method (HTIM) and the standard temperature index method (TIM) based on 
three classes of snowmelt (Class 1: low, Class 2: moderate, and Class 3: high) in WY 2011 (a, b, 
and c) and WY 2012 (d, e, and f). 

Figures 3.7a-h provide a comparison between the spatial distribution of snowmelt in 

WYs 211 and 2012 by SNODAS, HTIM, and TIM. Figures 3.7a-h highlight the relationship 

between the topography of the MRB and the snowmelt magnitude. Notably, the western side of 

the MRB, which is characterized by high altitudes (Figure 3.1c), accounts for a considerable 
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amount of snowmelt in both wet and dry years. WY 2011, as a wet year, accounted for more 

snowmelt mainly on the western and eastern sides of the basin (Figure 3.7a). Although the 

majority of the basin was covered by Class 2 snowmelt, Class 3 covered more than 33% of the 

basin and directly contributed to high snowmelt specifically in the upper MRB (Figure 3.7a). 

Both HTIM and TIM followed the general expected pattern of more snowmelt in the western 

and eastern parts in WY 2011, which is also in accordance with SNODAS (Figures 3.7a-c). 

However, spatial discrepancies are more pronounced specifically in Class 3 snowmelt, where the 

Class 3 in SNODAS results covered 11% more area than HTIM and TIM. Also, Figure 3.7b and 

Figure 3.7c suggest that there are only marginal differences in the class coverages of snowmelt 

between the HTIM and TIM which led to less than a millimeter difference in the annual 

snowmelt between the two methods (Figure 3.5b). Figure 3.7d depicts the difference percentage 

between the TIM and HTIM snowmelt simulations. From Figure 3.7d it can be observed that 

both methods resulted in very similar annual results, having the difference of less than 1% 

mostly concentrated in the western parts of the basin in WY 2011.  

On the other hand, WY 2012, as a dry year, experienced lower snowmelt than WY 2011 

(Figures 3.7e-g). Although Classes 1 and 2 covered more than 90% of the basin, the high-altitude 

western side of the basin was responsible for the majority of the snowmelt throughout the year 

(Figure 3.7e). Similar to WY 2011, a quantitative comparison of the three snowmelt coverage 

classes between the HTIM and TIM indicated that the discrepancy in the spatial distributions 

between the two methods was marginal (Figure 3.7f and Figure 3.7g). Similarly, the snowmelt 

values simulated over the basin by the two methods were close to each other, having an error of 

less than 1% (Figure 3.7h). Analyzing monthly, and yearly snowmelt simulations reveals that 

sub-daily temperature fluctuations around the freezing temperature play a role in monthly 

macro-scale snowmelt simulations, especially for the months in which a vast majority of the 

basin experiences TMAX > 0oC and TMIN < 0oC. However, the impacts of sub-daily temperature 

fluctuations around the freezing temperature are marginal for the annual timescale.  
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3.6. Discussion 

The differences between the monthly HTIM and TIM snowmelt results stemmed from 

the temperature variations in different months. In other words, TMAX and TMIN fluctuations 

around the freezing temperature led to higher/lower snowmelt simulated by HTIM than TIM in 

different months. Figure 3.8 depicts the variations of TMAX, TMIN, and TAVE throughout the 

simulation period and two selected months (i.e., December 2010 and April 2011), in which 

contrasting temperature attributes occurred. Specifically, HTIM provided simulations closer to 

the SNODAS data in December 2010, while TIM yielded simulations closer to the SNODAS data 

in April 2011. The results indicated that the average TMAX and TMIN were respectively greater and 

smaller than 0oC in the MRB in 241 days (out of 731 days). Reasonably, the majority of these 

days (74%) occurred in the 5-month period from December to April (Figure 3.8a).  

 

Figure 3.8. Variations of maximum, minimum, and average temperatures (TMAX, TMIN, and TAVE) 
in (a) the simulation period, (b) December 2010, and (c) April 2011. 

Figure 3.8b depicts the temperature variations in December 2010, in which the basin 

TAVE was consistently lower than the freezing temperature except for one day (i.e., December 9th, 

2010). The average TMAX over the basin, however, repeatedly fluctuated above and below 0oC (16 

days above and 15 days below 0oC). As a direct result of these fluctuations, the amount of 

snowmelt simulated by HTIM in December 2010 was 1.9 times greater than that from TIM 

(Figure 3.5a). In addition to the magnitude of the snowmelt generated in December 2010, the 

spatial distribution of the HTIM-simulated snowmelt in the MRB was closer to that of the 
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SNODAS snowmelt (Figures 3.6a-c). On the other hand, while TAVE in the MRB was higher than 

0oC in all days of April 2011, TMIN fluctuated around the freezing temperature (15 days above and 

15 days below 0oC) (Figure 3.8c). Reasonably, since HTIM incorporated TMIN in its simulations, 

it resulted in 13.52% lower snowmelt (corresponding to 3.9 mm snowmelt over the basin) in 

comparison with the snowmelt from TIM in April 2011 (Figure 3.5a). Therefore, the TIM results 

were closer to the SNODAS snowmelt data, in both magnitude and spatial distribution (Figures 

3.6i-k). 

 

Figure 3.9. Daily comparisons of the temperature variations and snowmelt simulations by the 
hybrid temperature index method (HTIM) and the standard temperature index method (TIM) 
on December 28, 2010 (a, b, c, d); and March 10, 2012 (e, f, g, h) (AV. Temp: average 
temperature, MX. Temp: maximum temperature, and MN Temp: minimum temperature). 

To better understand the differences between HTIM and TIM, two sample days 

(12/28/2010 and 3/10/2012) with contrasting temperature attributes were selected to showcase 

the impacts of sub-daily temperature fluctuations around the freezing temperature on daily 

snowmelt simulations. Figure 3.9 compares the temperature variations, quantity, and spatial 

distribution of the snowmelt simulated by the HTIM and TIM. The average temperature for 

89.12% of the basin on December 28, 2010 was lower than 0oC, whereas the remaining 10.88% 

of the basin had temperatures higher than 0oC (Figure 3.9a). Figure 3.9a also indicates that 
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80.41% of the basin went through temperature fluctuations around 0oC, where TMAX was higher 

and TMIN was lower than the freezing temperature. These fluctuations significantly influenced 

the quantity and distribution of the simulated snowmelt. A visual comparison between Figure 

3.9b and Figure 3.9c reveals that while snowmelt was solely limited to the areas with TAVE > 0oC 

in TIM, the HTIM generated snowmelt not only in the regions where TAVE was greater than 0oC 

but also in the regions where TAVE was lower than or equal to 0oC. In other words, the HTIM 

utilized the two extreme temperature variables (TMAX and TMIN) to recognize the days, in which 

snowmelt occurred only in a portion of the days. In such days, the HTIM had a higher potential 

to generate snowmelt in comparison to the TIM. Figure 3.9d confirms that the HTIM generated 

more snowmelt than the TIM. Specifically, the average amount of snowmelt simulated by the 

HTIM was 0.44 mm, whereas the TIM generated only 0.03 mm of snowmelt (93.18% lower than 

the HTIM value) on December 28, 2010. 

The results differ for March 10, 2012. The average temperature for the majority of the 

basin on March 10, 2012 was higher than 0oC, and only 1.04% of the basin experienced 

temperatures lower than 0oC. The spatial analysis of TMAX and TMIN showed that TMAX was higher 

than 0oC, and TMIN was lower than the freezing temperature in 84.72% of the basin (Figure 

3.9e). These temperature variations gave rise to a discrepancy in the snowmelt patterns between 

the two methods. A quantitative comparison of the spatial distributions of the snowmelt 

simulated by the HTIM and TIM shows that the HTIM generated snowmelt only over 16.33% of 

the basin (Figure 3.9f), while the TIM generated snowmelt over 24.48% of the basin (Figure 

3.9g). This spatial differences in the snowmelt results directly translate to a difference in the 

magnitudes of the snowmelt simulated by the two methods. The TIM generated 1.80 mm of 

snowmelt, whereas the HTIM generated 0.79 mm of snowmelt on March 10, 2012, which is 

43.89% lower than the TIM value (Figure 3.9h). Unlike December 28, 2010, the discrepancy 

between the snowmelt values simulated by the two methods for March 10, 2012, is due to the 

refreezing potential, which reduces the snowmelt generation potential over the basin in the 
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HTIM. Reasonably, the standard TIM cannot capture these variations in snowmelt and 

refreezing as the majority of the basin had temperatures higher than 0oC.  

 

Figure 3.10. Snowpack water equivalent (SWE) simulations on 2/10/2011 using (a) the hybrid 
temperature index method (HTIM) and (b) standard temperature index method (TIM); and (c) 
a 10-day period comparison of the simulated snowpack and SWE using the two methods 

The daily SWE was also affected by the temperature variations. Figure 3.10a and Figure 

3.10b depict the SWE distribution over the basin on February 10, 2011, which had the maximum 

SWE during the simulation period. The spatial distribution of SWE indicates that regardless of 

the use of the HTIM or TIM, the high- and low-SWE regions were similar. However, the 

differences are pronounced when the magnitude of SWE is considered. For example, when the 

TIM was used as the snowmelt method, the average SWE over the basin on February 10, 2011 

was 54.26 mm. On the other hand, the average SWE over MRB declined by 22.20% to 42.21 mm 

when the HTIM was used. Figure 3.10c depicts the snowmelt and SWE variations simulated by 

the HTIM and TIM for a 10-day period from 2/1/2011 to 2/10/2011. In this 10-day period, the 

HTIM simulated snowmelt was consistently higher than the TIM simulated snowmelt. The most 

substantial difference in the simulated snowmelt values by the two methods occurred on 

2/4/2011 when the HTIM yielded 1.06 mm of snowmelt over the basin and the TIM simulated 

snowmelt was 57.55% lower than this value. Also, on 2/10/2011 the average temperature in the 

entire basin was lower than 0oC, which translates to no snowmelt based on the TIM method. 

However, since 38.71% of the basin experienced TMAX>0, the HTIM resulted in 0.13 mm of 

snowmelt across the basin. The variations in the snowmelt patterns of the two methods during 
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the simulation period led to the variations of the SWE. Figure 3.10c indicates that because of the 

higher snowmelt simulated by the HTIM, SWE was consistently lower during the 10-day period 

when the HTIM was used.  

TIMs have been traditionally compared to EBMs to evaluate their performances in 

hydrologic applications. Results from different studies indicate that the proper use of a 

snowmelt model is more significant than the model complexity (Mutzner et al. 2015). Therefore, 

efforts have been made to modify TIMs to achieve more accurate simulations by incorporating 

diurnal temperature variations, including shortwave or net radiation term, and using statistical 

distributions (e.g., Cazorzi and Dalla Fontana, 1996; Hock, 1999; Jost et al., 2012; Kane et al., 

1997; Simoni et al., 2011; Tobin et al., 2013; Webb et al., 2017). For example, Simoni et al. (2011) 

modified the standard TIM taking into account both daily and hourly average temperatures in 

snowmelt simulations. The modified TIM was tested in a small (20 km2) snowmelt-dominated 

alpine basin of the Swiss Alps, indicating that while the volume of snowmelt was highly 

correlated to the daily average temperature, hourly average temperatures were responsible for 

the shape of the snowmelt waves (Simoni et al. 2011). In another effort to capture diurnal 

variations of snowmelt simulations, Webb et al. (2017) utilized a two-parameter beta 

distribution function to imitate the diurnal snowmelt variations. The model was tested by using 

eight Snow Telemetry (SNOTEL) stations and the results fitted the diurnal snowmelt pattern 

with a root mean square error of 0.008 (Webb et al. 2017). Although different studies have 

improved the simulations of diurnal snowmelt variations at a point scale and small-scale basins 

by incorporating sub-daily temperature variations (e.g., Simoni et al., 2011; Tobin et al., 2013; 

Webb et al., 2017; Zaknic-Catovic et al., 2018), the impacts of temperature fluctuations around 

the freezing temperature at macro scales have not been well assessed. 

Parallel to the results from small-scale studies, the results from this study also showed 

that daily macro-scale snowmelt and snowpack variations could be directly attributed to the 

sub-daily temperature variations. However, larger temporal resolutions (i.e., monthly or annual) 



 

101 

indicated less sensitivity to sub-daily temperature variations. Specifically, the comparisons of 

monthly simulated snowmelt by HTIM and TIM revealed that HTIM can generate either more 

or less snowmelt than the standard TIM, depending on the TMAX and TMIN distributions for 

certain months. The temperature variations in different months that led to the fluctuations in 

the snowmelt simulated by the two models can be observed in Figure 3.8a-c. The comparison 

between the annual HTIM and TIM simulations, however, revealed that both methods resulted 

in nearly identical snowmelt simulations. A question that remains unanswered is which method 

could provide more accurate macro-scale snowmelt results. The daily snowmelt analysis 

demonstrated that the HTIM is able to capture the temperature fluctuations and their impacts 

on the snowmelt and refreezing processes based on TMAX and TMIN, which can lead to a better 

understanding of other hydrologic processes. However, it should be noted that snowmelt is a 

complex process that, in addition to temperature, is subject to other terms of the energy balance 

equation and spatial variations (Hock 1999, 2003). Although the addition of TMAX and TMIN to 

the standard TIM can assist capturing the sub-daily temperature variations, it does not 

necessarily result in more realistic snowmelt simulations than the original TIM (e.g., April 

2011). Therefore, since there are no other factors involved in HTIM than temperature, it can 

potentially overestimate or underestimate snowmelt, depending on the temperature distribution 

(e.g., Figure 3.9). 

3.7. Summary and Conclusions 

The objective of this study was to assess the impacts of sub-daily temperature 

fluctuations around the freezing temperature on the quantity and spatial distribution of macro-

scale snowmelt simulations. A new daily macro-scale grid-based snow model was developed to 

simulate the dynamics of snow accumulation and ablation processes. Unlike other macro-scale 

models that rely upon a single daily average temperature, the developed model takes into 

account sub-daily temperature fluctuations by considering minimum and maximum 

temperatures and their occurrence timing. The model was applied to the Missouri River Basin 
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for water years 2011 and 2012, which represent two contrasting wet and dry years, respectively. 

The results were compared with those from the SNODAS snowmelt data to ensure that the 

HTIM provided comparable snowmelt results. Further, the HTIM snowmelt simulations were 

compared with those from a standard TIM to highlight the significance of the sub-daily 

temperature variations in macro-scale snowmelt simulations.  

The HTIM snowmelt results were in a good agreement with the SNODAS data, having 

the coefficient of determination (R2) and percent bias (PBIAS) of 0.90 and -9.7%, respectively. 

The absolute errors between the HTIM average snowmelt over the MRB and the SNODAS data 

in WYs 2011 and 2012 were less than 12%. The impacts of the sub-daily temperature fluctuations 

around the freezing temperature on snowmelt simulations were evaluated for two contrasting 

days to highlight the differences between HTIM and TIM. The daily results indicated that both 

magnitude and spatial distribution of the simulated snowmelt were significantly affected on the 

days in which the temperature fluctuates above and below the freezing temperature. The 

monthly comparisons between the HTIM and TIM showed that depending on the specific 

temperature variations in each month, the HTIM could yield either higher or lower snowmelt 

values. However, the discrepancy of the monthly results between the two methods was smaller 

than that of the daily simulation results. Analyzing the maximum, minimum, and average 

temperatures indicated that temperature fluctuated around the freezing temperature in almost 

two-thirds of the days in a five-month period from December to April. It was found that the 

average annual snowmelt results were not susceptible to the sub-daily temperature variations. 

The difference between the annual average snowmelt values in WYs 2011 and 2012 simulated by 

the HTIM and TIM was less than 1%, indicating the insensitivity of the annual results to sub-

daily temperature fluctuations around the freezing temperature. 

In summary, the modeling results from this study suggest that the daily snowmelt 

simulations were highly affected by the sub-daily temperature fluctuations, while the monthly 

and annual snowmelt results were less prone to such changes. The results from this study 
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indicate that although incorporating sub-daily temperature variations in a standard TIM can 

improve the physical-based representation of temperature in snow accumulation and ablation 

models, further investigation is required to thoroughly evaluate the performance of HTIM. Since 

snowmelt depends on different energy balance terms, in addition to temperature, HTIM has the 

potential to overestimate or underestimate snowmelt. Therefore, there is an opportunity for 

future efforts to incorporate widely available satellite datasets to improve the HTIM simulations. 
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4. IMPACTS OF HIGH-RESOLUTION GRIDDED TEMPERATURE DATASETS ON 

MACRO-SCALE SNOWMELT SIMULATIONS IN MISSOURI RIVER BASIN1

4.1. Abstract 

The objective of this study is to evaluate the impacts of two commonly used temperature 

databases, Parameter-elevation Relationships on Independent Slopes Model (PRISM) and 

Topography Weather (TopoWx), on the quantity and distribution of snowmelt in the Missouri 

River basin simulated by a new macro-scale grid-based model for two representative flood and 

drought years. The model incorporates a unique LEGO-fashion framework to account for 

within-grid heterogeneity. The snowmelt simulations were compared with the SNOw Data 

Assimilation System (SNODAS) estimates, indicating that both datasets provided comparable 

snowmelt to the SNODAS data (R2 > 0.91). Comparing the simulated snowmelt between the two 

datasets also revealed that the average snowmelt varied up to 16.9% and the snowmelt 

variations were more pronounced in the areas with complex topography. The simulations 

suggested that even nuances in the snowmelt coverage led to significant changes in the quantity 

of simulated snowmelt. 

4.2. Introduction 

Climate models have projected a rising-temperature trend in the United States towards 

the mid-twenty-first century, irrespective of the selected Representative Concentration Pathway 

(RCP) scenarios (USGCRP 2018). The rising temperatures significantly affect the Missouri River 

basin (MRB), which covers the majority of the Northern Great Plains and is the home to distinct 

cultural, topographical, and agricultural regions in Montana, Dakotas, Wyoming, and Nebraska. 

The projected rising-temperature trend alters the snow accumulation and ablation processes in 

 

 

1 The material in this chapter was co-authored by Mohsen Tahmasebi Nasab and Dr. Xuefeng Chu. 
Mohsen Tahmasebi Nasab had primary responsibility for developing the new analysis procedure and 
modeling of the system. Mohsen Tahmasebi Nasab was the primary developer of the conclusions that are 
advanced here. Mohsen Tahmasebi Nasab also drafted and revised all versions of this chapter. Dr. 
Xuefeng Chu served as proofreader and checked analysis conducted by Mohsen Tahmasebi Nasab. 



 

111 

the Northern Great Plains and leads to a high degree of variability in terms of extreme wet and 

dry years such as the flood event in 2011 and the drought in 2012 (USGCRP 2018).  

The 2011 water year experienced a near-record-breaking snowfall across the Rocky 

Mountains and eastward into the Northern Great Plains states (i.e., Montana, North Dakota, 

Wyoming, South Dakota, and Nebraska). A combination of cooler-than-normal temperatures 

persisting to the Spring and historic rainfalls in May and early June over Montana and North 

Dakota coinciding with rapid snowmelt in the region led to a devastating flood in the MRB 

(Badger et al. 2018; Livneh et al. 2016; U.S. Army Corps of Engineers 2012; van der Wiel et al. 

2018). The 2011 flood resulted in widespread damages in several cities in the Northern Great 

Plains states with an estimated cost of over $2 billion U.S. dollars and 5 fatalities (National 

Weather Service 2012). Solely in Minot, North Dakota, one-third of homes were directly 

impacted by the flood, and nearly 11,000 people were forced to evacuate their homes (National 

Weather Service 2012). The 2011 flood was followed by the historic 2012 flash drought, which 

occurred as a result of the above-normal-temperatures and reduced the corn yield by 26% 

(Rippey 2015; U.S. Government Accountability Office 2014). According to the 2016 SECURE 

Water Act Report, temperature and precipitation will remain highly variable in the MRB during 

the twenty-first century (U.S. Bureau of Reclamation 2016). Since the temperature and 

precipitation variability will persist throughout the twenty-first century, understanding the 

snowmelt-related processes and improving their representation in hydrologic models can 

provide realistic modeling results in the MRB, which are vital to the regional agriculture and 

food production.  

Quantity, distribution, and timing of snowmelt are intrinsically connected to climate 

variability and temperature variations (Stewart 2009). Different methods with varying levels of 

complexity are commonly used to simulate daily snowmelt as a result of temperature variations. 

Specifically, the temperature index methods (TIMs) deem the temperature variations as the 

most influential factor in snowmelt generation (Martinec 1960), whereas the energy balance 
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methods (EBMs) consider the impacts of other influential terms and account for the energy 

balance of a snowpack (Anderson 1968). Although EBMs improve the physical representation of 

the snowmelt processes and perform better than TIMs under specific conditions such as high 

humidity or for the areas with high wind speed (Debele et al. 2010), most macro-scale 

hydrologic models adopt a TIM to simulate snowmelt (Alcamo et al. 2003; Bergström 1992; Chu 

et al. 2019; Lindström et al. 2010; Terink et al. 2015). This is partly attributed to the intensive 

data requirements of EBMs, which require a wide range of data that must be either measured or 

estimated including air temperature, dew‐point temperature, solar radiation, atmospheric 

pressure, wind speed, snow density, and precipitation and its temperature. Since TIMs provide 

comparable results to EBMs by employing only temperature datasets (World Meteorological 

Organization (WMO) 1986), macro-scale hydrologic models incorporate different versions of 

TIMs without significant loss of information. 

Gridded temperature datasets provide spatially distributed temperature variations and 

are commonly used in macro-scale hydrologic models. These temperature variations are 

essential for simulating different hydrologic processes such as evapotranspiration and 

snowmelt. The gridded temperature datasets can be classified into (1) station-based datasets 

and (2) reanalysis datasets (Walton et al. 2018). The station-based datasets are created by 

interpolating the data obtained at individual stations and generating high-resolution gridded 

datasets that can be used as input data for hydrologic models. Although the station-based 

datasets are easy to implement, they are bound to the number of available stations. Moreover, 

the nuances in the type of instrumentation and the time of observations can impact the gridded 

results (Menne et al. 2009). The reanalysis datasets are generated by employing atmospheric 

models. Since the original resolution of the reanalysis datasets is too coarse (0.3o to 5.0o or 

approximately 33 km to 550 km, respectively) to be directly used for hydrologic applications, 

they are commonly downscaled to finer resolutions (Walton et al. 2018). For example, the North 

American Regional Reanalysis (NARR) temperature dataset (Mesinger et al. 2006) is 
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downscaled to 1/8o resolution grids, resulting in the North American Land Data Assimilation 

System (NLDAS-2) dataset (Xia et al. 2012). 

Several studies have used different approaches to compare various station-based and 

reanalysis datasets and assess their realism (Behnke et al. 2016; Daly et al. 2008; Newman et al. 

2015; Oyler et al. 2015; Walton et al. 2018). For example, Behnke et al. (Behnke et al. 2016) 

evaluated the accuracy of eight commonly used downscaled reanalysis datasets in terms of their 

regional differences and mean values. The gridded datasets were compared to the station data, 

and the results highlighted that the interpolation methods influenced the downscaled data, even 

for stations located inside a grid (Behnke et al. 2016). To evaluate both station-based and 

reanalysis datasets, Walton et al. (2018) compared five station-based, two reanalysis, and one 

hybrid datasets with the daily station data in California. They also measured the accuracy of the 

datasets away from the stations in complex terrains and near the coastal regions and concluded 

that although the station-based datasets were in accordance with the station data, some datasets 

were very likely biased especially in the coastal areas and the areas with complex topography 

(Walton et al. 2018). 

While there is a wealth of evidence from several studies on the differences among 

temperature datasets, there are limited details on the impacts and implications of different 

temperature datasets on macro-scale hydrologic modeling applications such as snowmelt 

simulations. The main objective of this study is to fill this gap by evaluating the impacts of two 

temperature datasets from the Parameter-elevation Relationships on Independent Slopes Model 

(PRISM) and Topography Weather (TopoWx) on the quantity and distribution of snowmelt over 

the MRB, which possesses a complex topography. Snow accumulation and ablation processes 

are simulated for two representative wet and dry years in the MRB (i.e., 2011 and 2012) by using 

a new macro-scale snow model that accounts for the effects of different land uses and employs a 

TIM for snowmelt modeling. 
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4.3. Methodology 

4.3.1. Missouri River Basin Characteristics 

The MRB is the largest United States Geological Survey (USGS) Water Resources Region 

covering about one-sixth of the total continental area of the United States (Figure 4.1a) and 

parts of two Canadian provinces. The basin plays a significant role in the agricultural economy 

of the Northern Great Plains and produces nearly 46% of wheat, 22% of grain corn, and 34% of 

cattle in the United States (Mehta et al. 2013). The Missouri River extends over 4,215 km 

(National Weather Service 2012) from its origins in the Rocky Mountains, Montana, and 

Wyoming and flows into the Mississippi River upstream in St. Louis, MO (Figure 4.1b). It is 

estimated that 25% to 34% of the basin’s flow is generated from the upper snow-driven portion 

of the basin (Norton et al. 2014; Qiao et al. 2014) and the lower portion of the basin is driven by 

rainfall mainly in late spring and summer.  

 

Figure 4.1. Missouri River Basin: (a) domain, (b) location with respect to the Northern Great 
Plains, (c) elevation variations within the basin, and (d) elevation drop from Great Falls, MT to 
Saint Louis, MO. 
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The MRB possesses unique hydro-topographical characteristics where the elevation drop 

from the highest points of the basin in the Rocky Mountains to its lowest points in the south-

eastern side of the basin is more than 4 km. This significant elevation drop leads to substantial 

temperature variations and affects different hydrologic processes such as snowfall and 

snowmelt. For example, the elevation drop from Great Falls, MT to St. Louis, MO is more than 

800 m (Figure 4.1d) and a decadal analysis of average temperatures (2009-2018) for two 

stations near Great Falls, MT and St. Louis, MO (Station IDs USC00248021 and USC00110137, 

respectively) indicates that the average temperature difference between the two stations is more 

than 5 oC (National Centers for Environmental Information, 2018). 
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Figure 4.2. (a) recorded peak discharges as well as the flood stage and (b) the discrepancy 
between the observed streamflow discharges of the Missouri River at the Sioux City Station in 
water years (WYs) 2011 and 2012 (data from the United States Geological Survey). 

Over the course of the last decades, the MRB has experienced several major floods and 

droughts with varying degrees of severity. Figure 4.2a depicts the five highest recorded peak 

discharges at the Sioux City Station (Figure 4.1b), in which the 2011 flood is the fourth largest 

flood. In March 2019, the flood stage (9.14 m) was overtopped again, which can be attributed to 

the high amount of snowfall received in the upper portion of the basin during the winter of 2018 

and the subsequent snowmelt in the spring of 2019. In addition to frequent floods, the MRB has 

also experienced significant droughts such as a near-decadal drought in the first decade of the 

twenty-first century (Mehta et al. 2013). Figure 4.2b highlights the substantial discrepancy 

between the monthly discharges of the Missouri River at the Sioux City Station in water years 
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(WYs) 2011 and 2012. The observed discrepancy in spring and summer months pinpoints the 

critical role of snowmelt in the basin (Figure 4.2b). 

4.3.2. Developing a Macro-scale Snow Accumulation and Ablation Model 

Snow accumulation and ablation models simulate different processes, including the 

losses due to snow redistribution and sublimation, refrozen water, and snowmelt. Macro-scale 

hydrologic models usually have (1) subbasin-based or (2) grid-based modeling structures, in 

which different hydrologic processes are simulated within individual subbasins/grids (Chu et al. 

2019). The grid-based structure has been adopted in several macro-scale models such as the 

variable infiltration capacity (VIC) model (Liang et al. 1994). One of the advantages of the grid-

based structure is that it facilitates the incorporation of spatially distributed meteorological and 

hydrologic datasets (e.g., temperature) into hydrologic models (Chu et al. 2019). 

 

Figure 4.3. Horizontal structure of the developed snow accumulation and ablation model by 
considering a LEGO-fashion RGB (Red, Green, and Blue) block layout, in which the Blue Block 
represents open water, the Green Block represents forests and woods, and the Red Block 
represents other land uses. 

In this study, a grid-based macro-scale snow accumulation and ablation model is 

developed in which a LEGO-fashion layout is employed to account for within-grid land use 

heterogeneities and variations (Figure 4.3). A land surface is discretized into a number of user-

defined square grids where the grid resolution is determined based on the availability and 

resolution of the input data. First, each grid is deemed as a uniform LEGO plate, and then the 
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land use and land cover distribution of the study area is used to extract within-grid 

heterogeneities for each LEGO plate. Eventually, an RGB (Red, Green, and Blue) block layout is 

adapted to consider the land use variations within a plate, where the Blue Block represents open 

water, the Green Block represents forests and woods, and the Red Block represents other land 

uses (Figure 4.3). Similar to the SNODAS snowmelt dataset, the developed model does not 

simulate snowmelt processes in the Blue Block (i.e., open water) and a TIM is incorporated to 

estimate snowmelt generated from Red and Green Blocks. In addition, the model accounts for 

the impacts of forest interception and snowmelt in its Green Block. The simulated snowmelt for 

each grid is calculated based on the weighted average of the simulated snowmelt for each block 

and its coverage percentage. 

The first step in the snow modeling is to separate precipitation into rainfall and snowfall. 

The majority of the hydrologic models use a single temperature threshold to separate rainfall 

and snowfall (e.g., Neitsch et al., 2011). In this study, a transitional temperature range (TTR) is 

utilized to distinguish three different precipitation forms (i.e., rainfall, snowfall, and mixed 

rainfall and snowfall). If the average temperature is lower than or equal to the lower threshold of 

the TTR (TTMIN), precipitation is in the form of snowfall. On the other hand, if the average 

temperature is higher than or equal to the upper threshold of the TTR (TTMAX), precipitation is 

considered in the form of rainfall. When the average temperature falls within the TTR, a mixed 

rainfall and snowfall is considered by assuming a linear relationship between the upper and the 

lower thresholds of the TTR.  

The snow interception from forest canopies is simulated solely for the Green Block, 

which represents forests and woods (Figure 4.3). The water equivalent depth of snow reaching 

the ground surface, SNOS (mm), for grid g at time step t is expressed as: 

𝑆𝑁𝑂𝑆(𝑡, 𝑔) = {
𝑆𝑁𝑂(𝑡, 𝑔) − 𝐼𝑁𝑇𝑆𝑁(𝑡, 𝑔)

𝑆𝑁𝑂(𝑡, 𝑔)
   𝐺𝑟𝑒𝑒𝑛 𝐵𝑙𝑜𝑐𝑘
𝑂𝑡ℎ𝑒𝑟 𝐵𝑙𝑜𝑐𝑘𝑠

 (4.1) 
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where SNO is snowfall (mm), and INTSN is the snow interception (mm). For the Green Block, 

INTSN is simulated by (Hedstrom and Pomeroy 1998; Pomeroy et al. 1998): 

𝐼𝑁𝑇𝑆𝑁(𝑡, 𝑔) = 𝐶𝐶𝑈[𝐹𝐶𝑆𝑀𝑋(𝑔) − 𝑆𝑊𝐸𝐹(𝑡 − 1, 𝑔)] (1 − 𝑒
−
𝐹𝑉𝐶×𝑆𝑁𝑂(𝑡,𝑔)
𝐹𝐶𝑆𝑀𝑋(𝑔) ) (4.2) 

in which CCU is a canopy unloading coefficient (~ 0.7), SWEF is the snow storage water 

equivalent of the forest canopy (mm), FCSMX is the maximum forest canopy snow storage (mm), 

and FVC is the fractional vegetation cover. FCSMX and FVC are usually estimated by using the 

leaf area index (LAI) and snow density (Pomeroy et al. 1998; Schmidt and Gluns 1991). 

Snowmelt from the canopy storage is then simulated by using a TIM (Liston et al. 2006), 

incorporating daily average temperature and a constant melting factor (CFM). 

The snowpack water equivalent is updated based on SNOS, and snowpack water 

equivalent of the previous time step as follows: 

𝑆𝑊𝐸(𝑡, 𝑔) = 𝑆𝑊𝐸(𝑡 − 1, 𝑔) + 𝐶𝑆𝑁 × 𝑆𝑁𝑂𝑆(𝑡, 𝑔) (4.3) 

where SWE (mm) is the snowpack water equivalent, MA is the actual snowmelt (mm), and CSN is 

a snowfall correction factor that accounts for the losses from sublimation and redistribution 

(Anderson 2006) and is suggested to vary between 0.7-1.6 (Anderson 2002). 

In addition to the canopy snowmelt, the model incorporates the TIM to simulate daily 

surface snowmelt and refreezing as follows: 

𝑀(𝑡, 𝑔) = {
𝐶𝑀(𝑡, 𝑔, 𝑘)𝑇𝐴𝑉𝐸(𝑡, 𝑔)∆𝑡 𝑇𝐴𝑉𝐸 > 0

0 𝑇𝐴𝑉𝐸 ≤ 0
 (4.4) 

𝑅(𝑡, 𝑔) = {
𝐶𝐹(𝑡, 𝑔)𝑇𝐴𝑉𝐸(𝑡, 𝑔)∆𝑡 𝑇𝐴𝑉𝐸 < 0

0 𝑇𝐴𝑉𝐸 ≥ 0
 

(4.5) 

where M and R are the snowmelt (mm) and refreezing (mm), respectively; CM and CF are the 

melting and freezing factors (mm oC-1 day-1); and TAVE is the daily average temperature (oC) over 

time step Δt (day).  



 

119 

The seasonal variability of CM is considered in the model by using a sinusoidal function 

as well as the maximum and minimum melt factors (CMX and CMN, respectively) for different 

land use types (Fontaine et al. 2002; Neitsch et al. 2011): 

𝐶𝑀 =
𝐶𝑀𝑋 + 𝐶𝑀𝑁

2
+ sin [

2𝜋(𝐷𝑁 − 81)

365
] ×

𝐶𝑀𝑋 − 𝐶𝑀𝑁
2

 (4.6) 

where DN is the number of days in the year. In addition to the seasonal variability, CMX and CMN 

vary for different blocks (i.e., land-use types). For example, CMX and CMN values for dense conifer 

forests vary between 0.5-0.7 and 0.2-0.4, respectively (Anderson 2006). 

Rain-on-snow is another source of meltwater that is considered in the developed model. 

The amount of meltwater from a rain-on-snow event, MR (mm), is only calculated when 

precipitation is in the form of rainfall and there is a snowpack on the ground. Assuming that the 

rainfall temperature is equal to TAVE and the snow surface temperature is 0 oC, MR is estimated 

by using the following equation (Qi et al. 2017), in which RNF is rainfall (mm): 

𝑀𝑅(𝑡, 𝑔) = 0.0126 × 𝑇𝐴𝑉𝐸(𝑡, 𝑔) × 𝑅𝑁𝐹(𝑡, 𝑔) (4.7) 

The actual snowmelt is calculated based on the available water for melt, AWM (mm), and 

the maximum snowpack water retention storage, SPRMX (mm), as follows: 

𝑀𝐴(𝑡, 𝑔) = 𝑀𝑎𝑥[0, (𝐴𝑊𝑀(𝑡, 𝑔) − 𝑆𝑃𝑅𝑀𝑋(𝑡, 𝑔))] (4.8) 

where AWM is the summation of meltwater from different sources (MF, MR, and M) minus the 

refrozen meltwater (R); SPRMX is a threshold for the snowmelt generation process. The 

snowpack water retention storage (SPR) retains meltwater until reaching SPRMX. In other 

words, SPRMX is a threshold to delay the generation of snowmelt. The water stored in SPR can 

refreeze when the temperature is below 0 oC, and SPRMX is computed as a fraction of snowpack 

water equivalent, SWE (mm): 

𝑆𝑃𝑅𝑀𝑋(𝑡, 𝑔) = 𝐶𝑊𝑅 × 𝑆𝑊𝐸(𝑡, 𝑔) (4.9) 
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where CWR is the coefficient of water retention storage, with the suggested value of 0.1 

(Bergström 1992). Eventually, SWE is updated at the end of each time step based on the 

estimated amount of actual meltwater (MA). 

4.3.3. Design of the Study 

The study area was divided into 54,144 grids of 5×5 km2, and the land use data from the 

Cropland Data Layer (CDL) (Boryan et al. 2011) were used to estimate the RGB blocks for all 

grids. Moreover, daily precipitation data were obtained from the PRISM dataset (Daly et al. 

2008) and were re-gridded to 5×5 km2 grids. Two representative WYs 2011 and 2012 (October 1, 

2010, to September 30, 2012) were selected to simulate the dynamic snowmelt processes in the 

MRB. WYs 2011 and 2012 were selected due to their unique hydroclimatic characteristics, 

representing two extreme conditions in the MRB: WY 2011 as a wet/flood year and WY 2012 as 

a dry/drought year. The PRISM and TopoWx temperature datasets (Daly et al. 2008; Oyler et al. 

2015) were separately incorporated into the snow accumulation and ablation model to simulate 

snowpack and snowmelt for WYs 2011 and 2012.  

Table 4.1. Parameters and their values in the snow accumulation and ablation model 

Parameter Unit Description Value 

CSN - Snowfall correction factor 0.96 

TTMAX oC Upper threshold of TTR 5 

TTMIN oC Lower threshold of TTR 1 

CCU - Forest canopy unloading coefficient 0.7 

CWR - Water retention storage coefficient 0.1 

CMX mm oC-1 day-1 Maximum melting factor Varies 

CMN mm oC-1 day-1 Minimum melting factor Varies 

CF mm oC-1 day-1 Freezing factor 0.05 

 

The parameters used in the model and their values are listed in Table 4.1. The temporal 

and spatial distributions of the simulated snowmelt from both temperature datasets were 

compared against each other to evaluate the impacts of incorporating the two temperature 

datasets on snowmelt generation in the MRB. Moreover, the snowmelt results were compared 
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with the snowmelt data from the National Oceanic and Atmospheric Administration (NOAA) 

National Operational Hydrologic Remote Sensing Center (NOHRSC) SNOw Data Assimilation 

System (SNODAS) (National Operational Hydrologic Remote Sensing Center 2004).  

4.3.4. PRISM vs. TopoWx 

PRISM (Daly et al. 1994, 2008) is a station-based modeling system that provides 

estimates of eight climate elements including precipitation, maximum temperature, minimum 

temperature, mean temperature, mean dew point temperature, maximum and minimum vapor 

pressure deficit, and vapor pressure. Out of these elements, mean temperature and vapor 

pressure are derived from the maximum and minimum temperatures and mean dew point 

temperature, respectively. PRISM offers multiple datasets for the conterminous U.S. with a 

spatial resolution of 30 sec (~4 km) and different temporal resolutions. For example, AN81d 

dataset provides daily time series of different elements, and AN81m dataset offers monthly and 

annual time series. In this study, daily mean temperature dataset from AN81d was utilized in the 

snow accumulation and the ablation model. The mean temperature dataset in PRISM is derived 

by taking the arithmetic mean of the maximum and minimum temperature datasets. PRISM 

incorporates more than twenty station networks such as National Weather Service Cooperative 

Observer Program (COOP) in a Climatologically-Aided Interpolation (CAI) method, in which 

long-term average datasets are the predictor grids. PRISM uses a climate-elevation regression 

model, in which weights are assigned to stations based on different physiographic features such 

as elevation, coastal proximity, and the vertical atmospheric layer that are most significant at 

scales from 1-50 km (Daly et al. 2008). However, there is no adjustment to ensure temporal 

homogeneity of the time series and the generated gridded datasets may possess non-climatic 

variations which are attributed to the changes in station equipment and location (Walton et al. 

2018).  

TopoWx (Oyler et al. 2015) is another station-based modeling system that only provides 

grid-based daily and monthly minimum and maximum temperature datasets with a spatial 
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resolution of 30 arcsec (~800 m) for the conterminous U.S. from 1948 to 2016. All stations 

included in three networks with more than five years of data for each month are used in the 

TopoWx interpolation method. The three station networks used by TopoWx are the daily Global 

Historical Climatology Network (GHCN‐D), the Remote Automatic Weather Stations (RAWS) 

network, and the Snowpack Telemetry (SNOTEL) network. Unlike PRISM, TopoWx takes into 

account the inhomogeneities of the input station data and applies a homogenization procedure 

by Menne and Williams (Menne et al. 2009). The interpolation process employs a moving 

window kriging and a geographically weighted regression. The grid-based temperatures are 

estimated based on the station observation data. In addition to several major topo-climatic 

factors, TopoWx incorporates remotely sensed observations of Land Skin Temperature (LST) 

obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS), 8‐day, 1‐km LST 

product (Wan 2008). Since LST spatiotemporal variability is correlated with air temperature, 

LST is used as an auxiliary predictor to assist temperature interpolations where station 

observations are not available or sparse (Oyler et al. 2015).  

Although both PRISM and TopoWx provide grid-based temperature datasets by using 

station networks, they may result in different spatiotemporal temperature variations. One of the 

key differences between the two datasets stems from the fact that TopoWx uses LST as an 

auxiliary predictor whereas PRISM incorporates a station weighting scheme based on several 

physiographical features such as coastal proximity. Oyler et al. (2015) found that LST has a 

strong relationship with minimum temperature and can explain the spatial variations between 

TopoWx and PRISM datasets. Their results for the northeastern climate division of Nevada 

suggested that PRISM generally showed a tendency towards warmer minimum temperatures for 

valleys and cooler minimum temperatures for mountains in comparison with TopoWx (Oyler et 

al. 2015). In this study, the downloaded PRISM and TopoWx datasets were re-gridded to 5×5 

km2 grids to evaluate the impacts of the two datasets on macro-scale snowmelt simulations. 
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4.4. Results and Discussion 

4.4.1. Understanding the Differences in Temperature Datasets 

Figure 4.4 depicts a comparison of the simulated snowmelt over the MRB by using the 

two different temperature datasets (i.e., PRISM and TopoWx) against SNODAS snowmelt 

estimates. The simulated snowmelt showed a comparable temporal variation to the SNODAS 

estimates (Figure 4.4a). The values of the coefficient of determination (i.e., R2) for PRISM and 

TopoWx were 0.92 and 0.93, respectively. Although the simulated snowmelt results from the 

two datasets were close for smaller snowmelt values (Figure 4.4b), larger snowmelt values 

indicated more significant discrepancies between the PRISM and TopoWx snowmelt results. 

These discrepancies were more pronounced in March and April 2011 and 2012, signifying the 

peak snowmelt period in the MRB (Figure 4.4a). For example, while the average snowmelt 

generated in April 2011 using the TopoWx dataset was 32.49 mm, snowmelt generated by using 

the PRISM dataset was 35.97 mm. This 3.48-mm difference (equivalent to 4713.23 M m3 in the 

MRB) in the simulated snowmelt can be directly attributed to the spatiotemporal variations in 

the two temperature datasets and the extent of these changes in critical months for snowmelt 

generation (i.e., March, April, and May) is higher than that in other months (Figure 4.4a). 
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Figure 4.4. Snow Data Assimilation System (SNODAS) snowmelt estimates versus (a) simulated 
snowmelt using PRISM and TopoWx datasets for water years (WYs) 2011 and 2012; (b) 
graphical comparison between the simulations and the SNODAS snowmelt data. 

Figure 4.5 shows the temperature variations across the MRB and the differences between 

the two temperature datasets in April 2011 and 2012. Both datasets indicated that the average 
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temperature variations in April 2011 followed a logical and expected trend where the northern 

and western parts of the basin were exposed to cooler temperatures, and warmer temperatures 

occurred in the southern parts of the basin (Figure 4.5a and Figure 4.5b). A visual comparison 

between TopoWx and PRISM temperature variations (i.e., Figure 4.5a and Figure 4.5b) reveals 

that TopoWx provided more spatial details, whereas PRISM variations were smoother and clear-

cut. The observed smoothing pattern can be attributed to the different spatial resolution of the 

two datasets. Since PRISM original resolution (~4 km) is coarser than the TopoWx resolution 

(~800 m), it did not provide the detailed variations in average temperatures caused by the 

micro-scale variations. The accumulation of these micro-variations led to noticeable changes in 

the distribution of the average temperatures, specifically in the northwestern parts of the basin. 

For example, according to the TopoWx dataset, only 22.2% of the MRB was covered by < 4 oC 

temperatures, whereas the PRISM datasets accounted for 23.6% of the basin covered by < 4 oC 

temperatures. A grid-by-grid comparison between the two datasets reveals that 77.43% of the 

MRB experienced marginal temperature differences between -0.5 oC and 0.5 oC, mostly in the 

central and southern parts of the basin (Figure 4.5c). The comparison in Figure 4.5c shows that 

PRISM accounted for higher temperatures in 5.8% of the basin, mostly concentrated in the 

western side of the basin, typified by high elevations and complex topography. On the other 

hand, the TopoWx temperatures were higher, mostly in the central part of the basin. Similar to 

the findings by Oyler et al. (2015), the results from this comparison also suggest that the PRISM 

temperatures are generally warmer in valleys but cooler in the mountains in comparison with 

those of TopoWx in the complex topography of the western MRB. 

Although 2011 and 2012 have different hydro-climatic characteristics, they share a 

similar temperature distribution with higher temperatures in the southern part and cooler 

temperatures in the northern and western parts of the basin (Figure 4.5d and Figure 4.5e). Both 

datasets provide a comparable average temperature distribution over the basin; however, the 

smoothing effect of the PRISM dataset is noticeable in the northern part of the basin (Figure 
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4.5e). The results from the spatial analysis of the TopoWx temperature dataset in April 2012 

indicated that 18.2% of the basin was covered by temperatures between 4 oC and 8 oC. On the 

other hand, the PRISM temperature dataset indicated that 21.85% of the basin was covered with 

temperatures between 4 oC and 8 oC. Similar to the results of April 2011, the grid-by-grid 

temperature analysis for April 2012 revealed that the PRISM dataset accounted for warmer 

temperatures in the western part of the basin whereas the TopoWx temperatures were warmer 

in the central part of the basin (Figure 4.5f). Specifically, although 72% of the basin experienced 

marginal temperature differences (i.e., between -0.5 oC and 0.5 oC), the difference between the 

PRISM and TopoWx temperatures was higher than 0.5 oC in 5.2% of the basin, mainly in the 

western part, a critical snowmelt-driven region of the basin. 

 

Figure 4.5. Average temperature distributions in the Missouri River Basin based on (a) TopoWx 
and (b) PRISM datasets; (c) average temperature differences between the two datasets in April 
2011; average temperature variations based on (d) TopoWx and (e) PRISM datasets; and (f) 
average temperature differences between the two datasets in April 2012. 
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4.4.2. Impacts of Temperature Datasets on Snowmelt Simulations 

The snowmelt analysis indicated that even subtle temperature variations between the 

two datasets could lead to notable snowmelt variations, particularly during spring months. For 

example, Figure 4.6 depicts the temperature and snowmelt variations for a sample day in March 

(i.e., 3/17/2011). Based on the PRISM temperatures, the majority of the basin had temperatures 

higher than 1 oC, and cooler temperatures were mostly concentrated on the high-elevation 

western side of the basin (Figure 4.6a). Specifically, the average temperatures in 43.98% of the 

basin varied between 1 oC and 8 oC, which played a crucial role in snowmelt generation on 

March 17, 2011. The simulated snowmelt was divided into three classes: low (Class 1), moderate 

(Class 2), and high (Class 3) snowmelt based on the Jenks natural breaks classification method 

(Jenks 1967) to facilitate the spatially distributed comparison of the generated snowmelt. The 

simulated snowmelt based on the PRISM temperature dataset suggested that the majority of 

snowmelt occurred in the eastern side of the basin (i.e., higher temperatures) and extended to 

the northern part (Figure 4.6b). The average snowmelt of the MRB on March 17, 2011 was 2.9 

mm, and 70.7%, 19.2%, and 10.1% of the basin were covered by snowmelt Classes 1, 2, and 3, 

respectively (Figure 4.6c). 

According to the TopoWx temperatures in the MRB on March 17, 46.30% of the basin 

was exposed to the average temperatures between 1 oC and 8 oC (Figure 4.6d), which was 2.32% 

(i.e., 31,403.5 km2) greater than the percent area of the PRISM temperatures (Figure 4.6a). In 

addition to the dissimilar spatial variations between the two datasets, the results also revealed 

that the TopoWx grids with the average temperatures between 1 oC and 8 oC were on average 0.5 

oC warmer than those of PRISM. A combination of the nuances in the spatial distribution and 

magnitude of the average temperatures led to a noticeable difference in the simulated snowmelt. 

A visual comparison between Figures 4.6e and 6b shows that when the TopoWx temperature 

dataset was used, Class 3 snowmelt (i.e., high snowmelt) covered more grids than those covered 

by the same class snowmelt simulated by using the PRISM dataset. Specifically, the simulated 
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Class 3 snowmelt covered 14.5% and 10.1% of the MRB when the TopoWx and PRISM datasets 

were used, respectively. These changes led to a 16.9% increase in the average snowmelt, which 

corresponds to 0.49 mm across the entire basin. 

 

Figure 4.6. Average temperature distributions and the simulated snowmelt variations in the 
Missouri River basin on March 17th, 2011 for three classes: low (Class 1), moderate (Class 2), and 
high (Class 3) snowmelt based on the Jenks natural breaks classification method by using 
PRISM (a, b, and c) and TopoWx (d, e, and f). 

Another noticeable trend in the simulated snowmelt using the two datasets was evident 

in complex topography. The snowmelt simulation results for the western side of the basin, which 

is characterized by complex topography, indicated that when TopoWx was used, more snowmelt 

was simulated (Figure 4.6b and Figure 4.6e). Figure 4.7 depicts the MRB’s elevation distribution 

(Figure 4.7a) with a specific focus on a sample topographical feature on the western side of the 

basin (Figure 4.7b). The simulated snowmelt results showed that TopoWx snowmelt results 

imitated the topographical feature of the basin. The peak region accounted for lower snowmelt, 

and the base region accounted for higher snowmelt (Figure 4.7c). Although the PRISM 

snowmelt results provide the gist of the snowmelt variations with the topographical feature, the 
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differences between the TopoWx and PRISM snowmelt for the selected topographical feature 

are noticeable (Figure 4.7d). These variations between the generated snowmelt can be attributed 

to (1) the differences in the original spatial resolutions of the two datasets and (2) consideration 

of the auxiliary LST parameter in TopoWx.  

 

Figure 4.7. The Missouri River Basin’s (a) elevation distribution, (b) a sample topographical 
feature on the western side of the basin, (c) TopoWx snowmelt classes, and (d) PRISM snowmelt 
classes. 

The spatial variations of snowmelt in the MRB for different months in 2011 are shown in 

Figure 4.8. The snowmelt process began in February stretching from southeastern part to the 

northwestern part of the basin, regardless of the employed temperature dataset (Figure 4.8a and 

Figure 4.8b). The simulated snowmelt indicated that high snowmelt values were concentrated in 

the southeastern edges of the basin, which were exposed to warmer temperatures. The PRISM 

and TopoWx snowmelt simulations provided comparable distributions of low, moderate, and 

high snowmelt classes (Figure 4.8c). The PRISM snowmelt indicated that more than 50.4% of 

the basin was covered by Class 1 (i.e., low) snowmelt, which was 2% more than that of the 

TopoWx snowmelt results. On the other hand, both moderate and high snowmelt classes (i.e., 

Classes 2 and 3) had a slightly higher coverage percentage in the TopoWx snowmelt results 

(1.2% and 0.8% higher, respectively). The average snowmelt values in the MRB using the PRISM 

and TopoWx datasets were 21.6 mm and 21.3 mm, respectively, indicating that both 
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temperature datasets provided similar magnitude and distribution of snowmelt in February 

2011.  

 

Figure 4.8. Monthly comparisons of the snowmelt coverage between the PRISM and TopoWx 
snowmelt results based on three classes of snowmelt (Class 1: low, Class 2: moderate, and Class 
3: high) in February (a, b, and c), March (d, e, and f), April (g, h, and i), and May (j, k, and l) 
2011. 
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A trend similar to that in February 2011 was observed for March 2011. Although high 

snowmelt values were slightly shifted towards the north, the overall distribution of the 

simulated snowmelt (Figure 4.8d and Figure 4.8e) resembled the snowmelt distribution in 

February 2011. The snowmelt class coverages had marginal nuances (less than 1%), which led to 

a marginal difference of 0.3 mm in the average snowmelt over the MRB (Figure 4.8f). Noticeable 

changes in the distribution and magnitude of the simulated snowmelt results appeared in April 

2011 when the high-elevation western edges of the basin began contributing to the generated 

snowmelt in the MRB. Figures 4.8g and 8h depict that the high snowmelt regions of the basin 

shifted from the eastern part to the northeastern and western parts of the basin. In April 2011, 

more than 14% of the MRB generated high values of snowmelt (Class 3) and played a key role in 

the high streamflow in the Missouri River. Based on the TopoWx snowmelt results, only 23.9% 

of the basin was covered by Class 2 or moderate snowmelt, whereas the PRISM snowmelt results 

indicated the coverage percentage of 28.1% for Class 2 snowmelt. This 4.2% difference in the 

distribution of the moderate snowmelt values gave rise to a significant 3.5-mm difference in the 

average snowmelt over the entire basin in April 2011 when the PRISM snowmelt values were 

higher than those of TopoWx.  

The snowmelt results in May 2011 highlighted the concentration of high snowmelt in the 

western part of the MRB (Figure 4.8j and Figure 4.8k). A visual comparison of the snowmelt 

distributions in February, March, April, and May 2011 shows that in the first three selected 

months (i.e., February, March, and April) snowmelt was mostly generated in the eastern and 

central parts of the basin. However, the snowmelt generated in May was mainly originated from 

the high-elevation western edges of the basin. Consequently, even subtle changes in Class 2 and 

Class 3 snowmelt coverages led to noticeable differences in the amount of generated snowmelt. 

The largest change in the distribution of snowmelt occurred in the Class 2 coverage where the 

PRISM snowmelt accounted for 7.7% of the basin, while the TopoWx snowmelt accounted for 

6.5% (Figure 4.8l). This variation in the Class 2 snowmelt coverages caused a 0.8-mm difference 
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(equivalent to 1,082 Mm3) in the average simulated snowmelt over the basin between the 

PRISM and TopoWx snowmelt results. 

 

Figure 4.9. Monthly comparisons of the snowmelt coverages between the PRISM and TopoWx 
snowmelt results based on three classes of snowmelt (Class 1: low, Class 2: moderate, and Class 
3: high) in February (a, b, and c), March (d, e, and f), April (g, h, and i), and May (j, k, and l) 
2012. 
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The results from both datasets indicated that the quantity of snowmelt in WY 2012 was 

lower than that in WY 2011 for all months. This pattern was expected due to the hydroclimatic 

differences between the 2011 wet/flood year and the 2012 dry/drought year. For example, the 

simulated snowmelt results in March 2012 using the TopoWx and PRISM datasets showed 

sharp decreases of 45% and 56%, respectively, in comparison with those in March 2011. Figure 

4.9 shows the comparisons of the snowmelt simulations and their class coverages in WY 2012. 

WY 2012 experienced higher temperatures than WY 2011, which directly led to an earlier 

generation of snowmelt in the central and southern parts of the basin in December and January 

2012. Consequently, the high snowmelt concentration region of the basin shifted to the western 

edges in March 2012, as opposed to April in WY 2011. In April and May 2012, when the western 

edges of the basin were the main source of snowmelt, the PRISM snowmelt values were higher 

than those of TopoWx (Figure 4.9). The average PRISM snowmelt values over the MRB in April 

and May 2012 were 12% and 5.5% higher than the average TopoWx snowmelt values. This trend 

is similar to that for WY 2011 where the PRISM snowmelt values were higher in the months 

when the western edges of the basin were the major contributor to the generated snowmelt. 

4.5. Summary and Conclusions 

Macro-scale hydrologic models have been widely used to provide a holistic 

understanding of different hydrologic processes over large basins. In this study, we evaluated 

and compared the impacts of two high-resolution gridded temperature datasets (PRISM and 

TopoWx) on macro-scale snowmelt simulations in the MRB. A grid-based snow model was 

developed to simulate snowmelt based on the obtained temperature datasets. The snow model 

used a unique LEGO-fashion layout to account for the within-grid land use heterogeneity. Each 

grid was discretized into three RGB (Red, Green, and Blue) blocks, in which the Blue, Green, 

and Red Blocks respectively represent open water, forests and woods, and other land uses. In 

addition to the snowmelt generated on the ground, the model simulated snow interception and 

melt by forest canopies and rain-on-snow snowmelt to portray a more accurate picture of 
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snowmelt-related processes. Snowmelt simulations were compared with the SNODAS snowmelt 

data, which provided the closest estimates of snowmelt to the observations. The quantity and 

spatial distributions of snowmelt simulations from the two datasets were also compared to 

evaluate the impacts of using the two datasets for two representative WYs (i.e., 2011 wet/flood 

year and 2012 dry/drought year). 

Comparing the simulated results with the SNODAS snowmelt data showed that both 

PRISM and TopoWx datasets resulted in comparable snowmelt simulations. The R2 values for 

the simulated snowmelt using PRISM and TopoWx were 0.92 and 0.93, respectively. The 

discrepancy between the simulated results from the two datasets was small for low snowmelt; 

however, higher snowmelt values indicated higher discrepancy. Although the temperature 

distributions from the two datasets were similar for the majority of the basin, PRISM accounted 

for relatively higher temperatures than TopoWx for the western side of the MRB, characterized 

by high elevations and complex topography. The snowmelt results suggested that even small 

nuances in the quantity and distribution of temperatures between the two datasets led to 

notable changes in the simulated snowmelt. On March 17th, 2011, for example, the variations in 

the distributions of temperatures caused a 16.9% difference in the average simulated snowmelt 

over the MRB. The results highlighted that the discrepancies between the simulated snowmelt 

values using the two datasets were more pronounced in the western side of the MRB with 

complex topographical features. The snowmelt analysis for four selected months (i.e., February, 

March, April, and May) indicated that although both datasets captured the spatial and temporal 

patterns of snowmelt in the MRB, the quantities of the simulated snowmelt were different in the 

months when high snowmelt values were concentrated on the western edges of the basin. 
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5. OVERALL SUMMARY AND CONCLUSIONS 

The objectives of this research were to (1) improve the understanding of macro-scale 

hydrologic processes in cold climate regions, (2) improve macro-scale representation and 

modeling of depression-dominated regions, and (3) improve land use and land cover 

representation in macro-scale hydrologic models. To accomplish these specific objectives, a 

Macro-Scale Hydrologic Processes Simulator (Macro-HyProS), tailored for the cold climate 

conditions and depression-dominated areas; was developed and tested by coupling it with 

downscaled satellite-based meteorological datasets. Moreover, the impacts of micro-topography 

and spatiotemporal scales was investigated to facilitate the modeling of macro-scale hydrologic 

processes. 

Chapter 1 reviewed the evolution of hydrologic modeling towards developments of the 

macro-scale hydrologic models and highlighted the current limitations of macro-scale 

hydrologic modeling. Specifically, it was outlined that neglecting the role of depressions and 

cold climate conditions in modeling can result in unrealistic hydrologic simulations. 

Chapter 2 introduced the Macro-scale Hydrologic Processes Simulator (Macro-HyProS) 

with the primary objective of simulating hydrologic processes in cold climate regions and 

depression-dominated terrains. Macro-HyProS utilizes a LEGO-fashion horizontal layout for 

each grid to account for within-grid land use heterogeneity. Particularly, a set of RGB (Red, 

Green, and Blue) building blocks sit on top of a uniform LEGO plate, representing land use 

variations within a grid. In addition to its unique horizontal structure, Macro-HyProS accounts 

for five stratified vertical bands (i.e., Atmosphere, Vegetation, Snow, Surface, and Sub-surface 

Bands), responsible for simulating different hydrologic processes. The model uses improved 

methodologies that are specifically developed for macro-scale modeling depression-dominated 

cold climate regions. Eventually, a simple grid-to-grid routing method is used to compute the 

outlet discharge. The capabilities of the model in simulating different hydrologic processes were 

tested in the Red River of the North Basin (RRB), which is distinguished by its cold climate and 
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depression-dominated topography. The simulation results stipulated that RRB encounters 

frozen or partially frozen ground on an average of 40% of the year. The occurrence of the frozen 

ground condition was often synchronized with the early spring rainfall and snowmelt events and 

affected the magnitude and distribution of the generated surface runoff and infiltration. It was 

also shown that how the coinciding frozen ground, snowmelt events, and rainfalls in the critical 

period between late March and early April leads to streamflow discharge peaks. In addition, the 

results revealed that the depression-dominated areas within the RRB acted as surface runoff 

regulators, specifically in the periods when a high amount of surface runoff was generated (i.e., 

early Spring). 

Chapter 3 assessed the impacts of sub-daily temperature fluctuations around the freezing 

temperature on the quantity and distribution of macro-scale snowmelt simulations. Specifically, 

the Macro-HyProS’ macro-scale grid-based snow model was used to simulate the dynamics of 

snow accumulation and ablation processes. Unlike other macro-scale models that take 

advantage of only a single daily average temperature, the developed model takes into account 

sub-daily temperature fluctuations by considering minimum and maximum temperatures and 

their occurrence timing in a hybrid temperature index method (HTIM). The model was applied 

to the Missouri River Basin (MRB), and the HTIM simulation results were compared with the 

standard TIM as well as the snowmelt data from the National Oceanic and Atmospheric 

Administration (NOAA) SNOw Data Assimilation System (SNODAS). Results suggested that the 

HTIM can improve the physically-based representation of temperature variations in the 

snowmelt process. Particularly, it was found that although the average annual snowmelt results 

were not susceptible to the sub-daily temperature variations, monthly snowmelt values depend 

on the specific temperature variations in each month and the HTIM could yield either higher or 

lower snowmelt values. 

Chapter 4 compared the impacts of two high-resolution gridded temperature datasets on 

macro-scale snowmelt simulations in the MRB. Temperature datasets from Parameter-elevation 
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Relationships on Independent Slopes Model (PRISM) and Topography Weather (TopoWx) were 

used to simulate snow accumulation and ablation processes for two representative wet and dry 

water years. The quantity and spatial distributions of snowmelt simulations were compared with 

the SNODAS snowmelt data.  The results highlighted that although both PRISM and TopoWx 

datasets resulted in comparable snowmelt simulations with SNODAS, the discrepancy between 

the simulated results from the two datasets was larger for high snowmelt values. The spatially 

distributed results suggested that the discrepancies between the simulated snowmelt values 

using the two datasets were more pronounced in areas with complex topographical features. 

Macro-HyProS paves the way for future research opportunities in depression-dominated 

cold climate regions. These opportunities lie within the current limitations of methods and 

availability of input data. The rapid developments in the availability of the satellite-based 

spatially distributed grid-based products, such as soil moisture maps and snow cover maps, lead 

the way for multi-variable calibration and validation of macro-scale hydrologic models. In other 

words, macro-scale hydrologic models can be calibrated and validated not only by using 

streamflow discharge but also by using other remotely sensed hydrologic processes and 

variables. In addition, advances in geographic information systems will allow faster and more 

efficient modeling of hydrologic processes at a macro scale. Therefore, the simplistic approaches 

in modeling can be replaced by processed-based approaches. 

Overall, results and conclusions from this research accentuate the significance of 

commonly ignored hydrologic processes in depression-dominated areas and cold climate 

regions in macro-scale hydrologic modeling. The developed macro-scale model in this study 

(Macro-HyProS) takes a new modular approach in simulating hydrologic processes in different 

horizontal blocks and vertical bands. This modular approach facilitates the incorporation of 

other hydrologic processes into the model and provides the opportunity to improve the 

understanding of different hydrologic processes. 

 


