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ABSTRACT 

Octahedral d6 iridium(III) complexes possess rich photophysical properties. The most 

distinct phtotphysical properties of the Ir(III) complexes are their high triplet excited-state 

formation quantum yields, long-lived triplet excited states, and feasile structural modifications. To 

better understand the impact of ligand -conjugation on the photophysics and reverse saturable 

absorption (RSA) or PDT of the Ir(III) complexes, six series of Ir(III) complexes bearing various 

bidentate or terdentate ligands were designed and synthesized in this dissertation.  

In Chapter 1, the photophysical principles, typical electronic transitions in Ir(III) 

complexes, the prototypes of the tris-bidentate and bis-terdentate Ir(III) complexes, the state-of-

art on exploring Ir(III) complexes for RSA and PDT, and the materials design criteria are reviewed. 

In Chapters 2 and 3, sixteen cyclometalated cationic Ir(III) complexes were synthesized 

and investigated to understand how the benzannulation site on diimine ligands influences the 

characteristics of the excited states of these complexes. The site−dependent benzannulation 

influenced the spectral feature and intensity of the triplet transient absorption (TA) and T1 

lifetimes, and their RSA strength. 

In Chapter 4, ten 2-phenylpyridine based Ir(III) complexes with varied degrees of π-

conjugation and sites of benzannulation were synthesized. Benzannulation at the different sites of 

2-phenylpyridine exerted a different effect on the energies of the S1 and T1 excited states, the TA 

spectral features, and the RSA performances of the complexes. 

In Chapter 5, the synthesis, photophysics, and RSA of three Ir(III) complexes with different 

degrees of -conjugation on the diimine ligands were discussed. The impact of this structural 

variation on the RSA at 532 nm was demonstrated. 
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In Chapter 6, five Ir(III) complexes bearing terpyridine-capped fluorenyl bridging ligands 

and different terminal terdentate ligands were investigated to reveal the effects of different terminal 

ligands on the S1 and T1 excited states. Their in vitro theranostic PDT effects toward the SKMEL28 

cells were evaluated. 

In Chapter 7, the photophysics and in vitro PDT studies of five neutral Ir(III) complexes 

incorporating BODIPY-substituted N-heterocyclic carbene (NHC) ligands were studied. The 

attachment position of the BODIPY substituent did not alter the photophysical properties 

significantly but changed the dark- and photo- cytotoxicity of these complexes toward SKMEL28 

cells. 
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1. INTRODUCTION 

Iridium, a third−row transition noble metal with oxidation states of −3 to +9, was firstly 

discovered in 1803. To date, investigations of the photochemical, photophysical, and 

electrochemical properties of organoiridium compounds have attracted intense and sustained 

interests. Owing to the commercially−available hydrated iridium trichloride and ammonium 

hexachloroiridate as the precursors, diverse octahedral d6 Ir(III) complexes were synthesized, 

which have potential applications in organic light emitting diodes (OLEDs),1–4 light−emitting 

electrochemical cells (LECs),5–7 luminescent biological labeling,8–10 photocatalysts,11–13 

photodynamic therapy (PDT),14–17 and nonlinear optics.18–22 These applications are based on their 

striking structural and spectroscopic characteristics, i.e. tunable triplet excited states, photo− and 

thermal−stability, and high quantum efficiency for triplet excited-state formation, etc..23–25 

Among the variety of potential applications reported for the Ir(III) complexes, reverse 

saturable absorption (RSA) and photodynamic therapy (PDT) are the two emerging areas. RSA 

refers to a nonlinear optical phenomenon in which the absorbance of the excited state is stronger 

than that of the ground state at the same wavelength.26,27 RSA has applications in optical limiting,67 

laser pulse shaping,68 optical switching,69 and spatial light modulation,70 etc. RSA can be achieved 

by materials that possess large ratios of the excited−state absorption (ESA) cross section (σex) to 

that of the ground state (σ0) at the same wavelength. Thus, weaker ground-state absorption 

accompanied with stronger excited-state absorption are the basic requirements for reverse 

saturable absorbers. For RSA of the nanoseconds and longer laser pulses, the longer-lived triplet 

excited states play the major role. In such a case, the quantum yield of the triplet-excited state 

formation and the triplet lifetime are also important parameters for improving the RSA. 
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PDT is an emerging therapeutic modality for cancers that combines three non−toxic 

components, i.e. a photosensitizer (PS) that is non-toxic in dark but becomes phototoxic upon light 

activation, a light source, and oxygen.28–30 Upon light irradiation, the non−toxic ground-state 

oxygen (3O2) becomes toxic singlet oxygen (1O2) and/or reactive oxygen species (ROS) through 

interacting with the excited PSs, which destroy the cancer cells directly, damage the vascular 

system in the surrounding tissues to avoid the recurrence of tumors, and may stimulate the immune 

system. To obtain a high PDT activity against cancers, PSs that are capable of efficient 1O2 and/or 

ROS generation in hypoxic cancerous environment remain to be the most desirable ones. 

The above discussion shows that the applications of the Ir(III) complexes are closely 

related to their photophysical properties. In order to improve the device performances, 

optimization of the photophysical properties of the individual complex plays a key role. To realize 

this goal, understanding the structure−property correlations holds the key. In this chapter, the basic 

concepts in photophysics will be reviewed first. Then, the synthesis, photophysics, and the current 

status of utilizing Ir(III) complexes in RSA and PDT will be reviewed. 

 

1.1. Basic photophysical concepts 

Various photophysical processes originate from the interactions between light and 

molecules. The basic principles on the photophysical processes are discussed in this chapter. 

 

1.1.1. Light 

Light, associated with our daily life, is a type of electromagnetic radiation with a speed of 

approximately 300,000 km/s in vacuum. The relationship between the light and energy is governed 

by the Planck’s equation: 
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                                                                    E = hν = hc/λ                                                            (1.1) 

Where E stands for the photon energy, h is Planck’s constant (6.63 × 10−34 joule-seconds), ν is the 

frequency of light, c is the speed of light, and λ is the wavelength of light. The nature of light has 

a wave–particle duality, due to both the wave−like and particle−like features. Since the wave–

particle duality character shared by both photons and electrons, an intimate connection between 

light and electrons has been developed as a foundation for modern photophysical research. In view 

of the two areas of applications of the Ir(III) complexes will be potentially applied to, the following 

discussion in this dissertation will be focused on a molecular level. 

 

1.1.2. The absorption of light in materials 

The absorption of light in molecules is always accompanied with electronic transitions. To 

further understand the natures of these transitions, Frank−Condon principle needs to be explained, 

which is a well−established theory in quantum chemistry and spectroscopy (Figure 1.1)31. In 

simple terms, this principle can be exploited to explain the intensity of vibronic transitions and 

absorption of photons.  
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Figure 1.1. Frank−Condon energy diagram. 

 

As depicted in Figure 1.1, electrons at the ground state (E0) are vertically excited to an 

excited state (E1) within a femtosecond timescale (~10−15 s) upon light irradiation. Compared to 

the electrons, atomic nuclei are much heavier. Thus, the atomic nuclei cannot be moved and 

readjusted in femtoseconds during the absorption. Each energy level is marked as a solid line. The 

electronic transitions are expressed as upward arrows. Among them, the energy of absorption is 

equivalent to the length of the arrow. Based on the above Planck’s equation, the frequency of an 

absorption peak is governed by the potential energy gap between the initial and final states.  

When a light beam enters a sample solution, attenuation of the light can be observed, which 

is associated with the ability of the material’s absorption. According to the Lambert–Beer law, a 

linear relationship between the absorbance and the intrinsic properties of the absorbing species is 

expressed in the following equations:32 

T = I/Io                                                                                                   (1.2) 

A = −log T = − log (I/Io) =   l  c                                           (1.3) 
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where T is the transmittance of the light, Io is the initial light intensity, I is the intensity of the 

transmitted light, A is the measured absorbance,   (M-1 . cm-1) is the molar extinction coefficient, 

l (cm) is the path length of the sample, and c (mol/L) is the concentration of the sample solution. 

Accordingly, modern ultraviolet–visible (UV-Vis) spectroscopy is usually utilized to measure the 

absorbance and subsequently deduce the  values of a tested sample with a known concentration. 

Jablonski diagram, as an energy diagram, illustrates the electronic states and possible 

excited state pathways in a molecule, which is shown in Figure 1.2.33 By absorbing a photon, a 

molecule can be populated to its lowest singlet excited state (S1). Note that electrons can be excited 

to higher energy singlet excited states (Sn) and then relax back to S1 via internal conversion (IC) 

(known as a thermal process), due to the overlapping vibrational and electronic energy states. The 

S1 state will release that energy to go back to the ground state (S0) via radiative (fluorescence) or 

non−radiative (heat) transitions (Figure 1.2). Radiative and nonradiative transitions are denoted as 

straight and sinuate arrows, respectively. In comparison to the Sn states, the corresponding triplet 

excited states (Tn) located at lower energy levels because of the electron−electron repulsion. Since 

electron spins are paired in Sn states, the unpaired excited electrons in the triplet states lead the 

excitation to a triplet state involving a spin−forbidden transition. Except for the spin−allowed 

possess (S1→S0), S1 can relax and populate to the lowest-energy triplet excited state (T1) via a 

spin−forbidden nonradiative transition known as intersystem crossing (ISC). After a spin flip of 

an electron, the T1 deactivate to S0 through a radiative decay or nonradiative decay pathways, 

which are known as phosphorescence or ISC. 
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Figure 1.2. Jablonski diagram of molecules. IC: internal conversion, ISC: intersystem crossing, 

ESA: excited state absorption. 

 

1.1.3. Fluorescence and phosphorescence 

Based on the aforementioned fdiscussion, fluorescence and phosphorescence are the 

radiative decay pathways from the S1 and T1 states respectively (Figure 1.2). The S1 state, which 

has a higher potential energy, gives a shorter wavelength of fluorescence in contrast to the 

phosphorescence from the T1 state. As a result of vibrational relaxation within the excited states, 

the energies of both the fluorescence and phosphorescence are typically lower than that of the 

excitation energy. The energy difference between an emitted photon and an absorbed photon 

appears as the Stokes shift between the excitation and emission spectra.34
  

Fluorescence, a spin−allowed possess, is a short−lived emission (the lifetime () typically 

ranged from 10 ns to 700 ns).71 Phosphorescence, however, is a spin−forbidden transition, which 

lifetime is much longer than that of fluorescence ( ≈ 1 ns - 1 ms). The lifetime of luminescence 

can be measured by time−resolved spectroscopy and fitting the obtained decay curves. Because of 
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the presence of ISC and IC, the shortened lifetime of radiative transition is observed. Therefore, 

the intrinsic lifetimes of S1 (𝜏𝑆1
) and T1 (𝜏𝑇1

) can be written as:35  

 𝜏𝑆1
=  

1

𝑘𝑟
𝑓

+𝑘𝑛𝑟
𝑆1

                                                                (1.4) 

𝜏𝑇1
=  

1

𝑘𝑟
𝑝

+𝑘𝑛𝑟
𝑇1

                                                                (1.5) 

where 𝑘𝑟
𝑓

,  𝑘𝑛𝑟
𝑆1 ,  𝑘𝑟

𝑝
, and 𝑘𝑛𝑟

𝑇1  are the rate constant of fluorescence, nonradiative decay from the S1 

state, phosphorescence, and non−radiative decay from the T1 state, respectively. 

The emission quantum yield can be expressed as the ratio between the number of emitted 

photons and the number of absorbed photons. For fluorescence, the relationship of the quantum 

yield (Φ𝑓), the rate constant of fluorescence (𝑘𝑓), and the rate constant of nonradiative decay (𝑘𝑛𝑟) 

from S1 can be written as:36 

Φ𝑓 =  
𝑘𝑓

𝑘𝑓+𝑘𝑛𝑟
                                                               (1.6) 

For phosphorescence, however, the quantum yield is susceptible to both ISC and quenching 

pathways. Thus, the phosphorescence quantum yield (Φ𝑝) can be expressed as:37 

Φ𝑝 =  
Φ𝐼𝑆𝐶𝑘𝑝

𝑘𝑝+𝑘𝑛𝑟
                                                               (1.7)  

where Φ𝐼𝑆𝐶, 𝑘𝑝, and 𝑘𝑛𝑟 stand for the quantum yield of ISC, the rate constant of phosphorescence, 

and rate constant of nonradiative decay from T1, respectively.  

The obtained phosphorescence quantum yields in this dissertation were calculated using 

the relative actinometry method.72 A degassed acetonitrile solution of [Ru(bpy)3]Cl2 (ΦR = 0.097) 

is used as the reference (R) for the quantum yield calculations of the samples (S) following the 

equation: 

Φ𝑠 = Φ𝑅 ∗
𝐴𝑆

𝐴𝑅
∗

𝐼𝑅

𝐼𝑆
∗

(𝑛𝑆)2

(𝑛𝑅)2
                                                  (1.8)  
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where Φ, A, I, and n are the phosphorescence quantum yield, the integrated area of the emission 

spectra, ground−state absorbance of the solution at the excitation wavelength, and the refractive 

index of the used solvent, respectively. The subscript S refers to the samples, and R refers to the 

reference. 

 

1.1.4. Heavy atom effect  

The property of T1 plays a vital role in the applications for both RSA and PDT. According 

to the above discussion, T1 state can be heavily populated through the nonradiative passway 

between the S1 and T1 states when the rate constant of ISC is high. However, the coupling and 

quantization of angular momentum and orbital angular momentum is separated, which results in a 

forbidden spin change of electron. For most organic compounds without heavy atoms, ISC yield 

is low. An increased overlap of spin angular momentum and orbital angular momentum of the 

electron can be obtained by the presence of a heavy atom. Consequently, the spin−orbit coupling 

enhances ISC yield, which is called the heavy atom effect.38 In the periodic table, the atoms beyond 

the third row are defined as heavy atoms.  

In this dissertation, strong spin−orbit coupling effect and high ISC rate are anticipated for 

all synthesized complexes due to the presence of Ir(III) ion. For example, , the rate constant of ISC 

is 6.9×1012 s−1 for complex fac−Ir(ppy)3; whereas, the rate constant of fluorescence is about 1×106 

s−1.39 As a result, a nearly unity population of the T1 state can occur.  

 

1.1.5. RSA  

With the development of laser technology, various laser sources have been employed in 

photonic and medical applications associated with our daily life. However, an urgent need for 
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optical limiters in order to protect human eyes or optical sensors from damaging laser beam is 

emerging. The performance of the optical limiters heavily depends on the optical limiting materials 

used in the devices. Such materials show excellent linear transmittance for low−intensity light. 

Under intense laser radiation, however, the transmitted laser pulses can be modulated to a safe 

intensity below the damaging threshold value. Since linear optical techniques, including 

absorption, reflection, and diffraction, cannot meet the aforementioned needs, a growing effort is 

focusing on the nonlinear absorbers.  

Among the variety of nonlinear optical phenomena that have been explored for optical 

limiting applications, multiple photon absorption (MPA) and RSA are two major methods for the 

protection of human eyes and delicate components under exposure to intense laser beams. With 

increasing intensity or fluence of the incident laser, the absorptivities of the MPA or RSA materials 

increase. MPA is a spontaneous process that depends on the intensity of the last beams and 

typically work better for ps or fs laser pulses. Whereas RSA is a fluence dependent process that 

dominates the optical limiting for ns or longer pulse width laser beams. As shown in Figure 1.2, 

an excited molecule populated to the S1 state can absorb additional photons to be populated to the 

higher energy Sn state (S1 → Sn absorption). Similarly, the excited molecules at the T1 state can 

also absorb photons to reach the Tn states with higher energies (T1 → Tn absorption). With the 

different lifetimes of S1 (fs-ns) and T1 (ns-ms), the S1 → Sn or T1 → Tn absorption will be the major 

player for the short or long laser pulse induced RSA, respectively. Since a distinct heavy−atom 

effect can be induced by Ir(III) ion, the ISC rate is greatly enhanced in Ir(III) complexes, which 

results in dominant T1 → Tn absorption in the RSA possess for Ir(III) complexes. 

In order for RSA to occur,  σex should be larger than σ0, which will induce an increased 

absorptivity with increased laser fluence. Several criteria need to be taken into account when 



 

10 

design an ideal reverse saturable absorbers, such as a large ratio of σex/σ0, long−lived 

excited−states, and high triplet excited−state quantum yield. 

 

1.1.6. PDT  

As an oxygen−dependent process, PDT is a noninvasive and precise spatiotemporal 

medical modality, in which PS is nontoxic without light activation but becomes highly phototoxic 

upon light activation. Therefore, in comparison with other cancer treatment modalities, the 

photoinitiated PDT has outstanding regioselectivity. 

A typical photosensitization diagram displaying the formation of ROS and 1O2 mediated 

by PSs is depicted in Figure 1.3.40,41 Upon photon absorption, a PS is excited from the ground state 

(S0) to its lowest singlet excited state (S1) and then relaxes to its lowest triplet excited state (T1). 

Then, the T1 of PS interacts with oxygen in its ground state (3O2) via two pathways: energy transfer 

to convert 3O2 to 1O2 (Type II) and electron transfer to generate ROS, such as O2
-., •OH, H2O2. etc 

(Type I).  

 
Figure 1.3. Typical pathway for a photosensitizer to generate 1O2 and ROS. 
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To date, the most clinically used PDT drugs are still based on hematoporphyrin derivatives 

(HPD), which suffers from several drawbacks, such as high dark toxicity, inability to be activated 

by near−IR (NIR) light, low 1O2/ROS generation efficiency in hypoxic solid tumors, low cancer 

selectivity, cutaneous photosensitivity, and water insolubility. To overcome these disadvantages, 

there is an urgent need for developing new PSs with good tumor−specific targeting, absorb 

strongly in the NIR region, and long−lived triplet excited state. 

Herein, PSs based on transition-metal complexes have prompted significant interest in 

recent years. In comparison to the organic PSs, transition-metal complex based PSs hold a series 

of unique merits, i.e., (i) tunable excited−state properties, (ii) high triplet excited−state quantum 

yields, and (iii) good photostability and cell permeability. Additionally, the phosphorescent heavy 

transition-metal complexes can be used as targeted bioimaging agents, providing novel theranostic 

platforms to help investigating the PDT mechanisms and thus optimizing the treatment efficacy 

by in situ monitoring of biodistribution in the tumor cell. Therefore, cationic iridium(III) 

complexes appear promising for the application of PDT, because their photophysical properties 

match the requirement of ideal bioimaging−based PSs quite well. 

 

1.2. Basic photophysics and representative examples for Ir(III) complexes  

1.2.1. Photophysics of Ir(III) complexes 

With an octahedral d6 electronic configuration, the coordinating ligands of iridium(III) 

complexes protect the metal center from the environment well. Accordingly, several metal−based 

nonradiative pathways for transition metal complexes, including ground−state aggregation and 

solvent binding, can be largely avoided.42 Due to the decreased deactivation pathways and the 
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strong spin−orbit coupling effect induced by iridium ion, population of the triplet states with a 

high quantum yield can be realized.  

Unlike pure organic chromophores, the Ir(III) ion plays a significant role in the 

photophysical processes of the Ir(III) complexes. The electronic transition diagram for typical 

biscyclometalated Ir(III) complexes is schematically illustrated in Figure 1.4. The vertical arrows 

indicate the electronic transitions from different orbitals of complexes. Among them, the 

fundamental types are listed as following: 

(1) Metal−centered (MC) or d,d transitions: the transition between the two metal-localized 

orbitals.  

(2) Ligand−centered (LC) or intraligand (IL) transitions: the →* transitions between the 

orbitals on the same ligand. 

(3) Ligand−to−ligand charge−transfer (LLCT) transitions: the →* transitions between 

the orbitals on two different ligands. 

(4) Metal−to−ligand charge−transfer (MLCT) transitions: the d→* transitions between 

the metal−centered d orbital and the ligand localized orbital. 
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Figure 1.4. Schematic energy−level diagram for a typical cationic heteroleptic Ir(III) complex. 

 

1.2.2. Three typical prototypes of Ir(III) complexes  

The rich photophysical properties of Ir(III) complexes attract  intense attention. As 

illustrated in Figure 1.4, ligands localized orbitals can be readily tuned by ligand structural 

modifications. Bathochromic or hypsochromic shifts may occur in the electronic absorption after 

adjusting the conjugation length of the ligands. Introducing electron−donating or −withdrawing 

substituents to the ligands also affects the electronic absorption. Therefore, the development of 

Ir(III) complexes with various ligands has drawn great interest. 

Three common prototypes of Ir(III) complexes, i.e. fac−Ir(ppy)3, [Ir(bpy)(ppy)2]
+, and 

[Ir(tpy)2]
3+, are illustrated in Chart 1.1. In these complexes, ppy, bpy, and tpy denote 

2−phenylpyridine, 2,2'−bipyridine, and 2,2':6',2''−terpyridine, respectively. The well−known 

neutral complex, fac−Ir(ppy)3, was first developed by Martin in 1958.43 The metal center is 

surrounded by three identical ppy ligands where each of the phenyl group carries one formal 

negative charge and each of the pyridine group is neutral. Based on the subsequent theoretical 

calculations, the highest occupied molecular orbital (HOMO) in fac−Ir(ppy)3 is delocalized on the 
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π orbitals of the phenyl rings and the metal d orbitals, while the lowest unoccupied molecular 

orbital (LUMO) is mainly delocalized on the pyridine rings. Obvious low-energy 1MLCT band 

(from 320 to 500 nm) were observed in the absorption spectra, which are assigned to transitions 

between the HOMO and LUMO orbitals.44 The emission spectrum of fac−Ir(ppy)3 resembles the 

shape of the ligand emission at 77 K, which is indicative of a ligand−localized (π,π*) lowest excited 

state. The measured phosphorescence lifetime was ca. 2 µs at room temperature, indicating the 

emitting state is a mixture of 3, and 3MLCT. 

 

 
Chart 1.1. Three common prototypes of Ir(III) complexes. 

 

In comparison to the neutral complex Ir(ppy)3, replacing one cyclometalating (C^N) ligand 

by a diimine (N^N) ligand results in the monocationic complex [Ir(bpy)(ppy)2]
+. As a prototype, 

the complex shows intense 1π,π* absorption bands in high-energy region ( < 300 nm), and 

moderate 1MLCT absorption in the UV to blue spectral region.45 Interestingly, spin−forbidden 

3MLCT/3LLCT transitions exhibit a long and weak absorption tail extending to 550 nm.46 With 

the emission lifetime being hundreds of nanoseconds, the phosphorescence of the complex was 

assigned predominantly to the low−lying 3MLCT state.  

The homoleptic bis−terpyridine complex, [Ir(tpy)2]
3+, features ligand−centered transitions 

with large extinction coefficients ranged from 200 to 350 nm. Besides, the absorption tail is 

attributed to 1MLCT and spin-forbidden (S0→T1) transitions.47 With the emission lifetime being 1 
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s and the similarity of the luminescence profiles to that of Zn(tpy)2
2+ at 77 K, the 

room−temperature vibronically resolved luminescence spectrum was ascribed to tpy−localized 

3π,π* excited state.  

 

1.2.3. Cyclometalated Ir(III) complexes with different -conjugation on ligands  

Cyclometalated complexes are defined as a type of complexes that contain at least one 

covalent metal–carbon bond. Thus, the Ir–carbon bond(s) exist(s) in the cyclometalated Ir(III) 

complexes when C^N ligands are applied. In the past two decades, numerous studies have been 

focusing on monocationic bis−cyclometalated Ir(III) complexes with a variety of C^N and N^N 

ligands. Modifications of these ligands via attaching different substituents or extending 

π−conjugation were then performed. Chart 1.2 illustrates some representative cyclometalated 

monocationic Ir(III) complexes bearing tris-bidentate ligands with different conjugation lengths. 

Huang and coworkers developed a series of monocationic Ir(III) complexes (Ir1–Ir6) 

bearing two identical cyclometalating ligands (1−phenylisoquinoline) but different N^N ligands 

with varied −conjugations.48 As shown in Figure 1.5, all complexes exhibit intense intraligand 

1π,π* absorption bands at <400 nm, moderately intense 1MLCT/1LLCT absorption bands at 400 - 

500 nm, and weak spin−forbidden 3MLCT absorption tails beyond 500 nm. Due to the different 

conjugation lengths on the N^N ligands, the emission energies were tuned from 586 nm for Ir1 

and Ir2 to 732 nm for Ir6. Considering the vibronically resolved photoluminescence spectra of 

Ir1 and Ir2, the emitting states for these two complexes were attributed to the ligand−centered 

3π,π* excited states. In contrast, the broad and structureless emission spectra for Ir3−Ir6 suggested 

mixed 3MLCT/3LLCT excited states for these complexes (Figure 1.6). 

 



 

16 

 
Chart 1.2. Representative biscyclometalated monocationic iridium(III) complexes with different 

conjugation lengths on the ligands. 
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Figure 1.5. Absorption spectra of complexes Ir1–Ir6 (Ir1 = 1, Ir2 = 2, Ir3 = 3, Ir4 = 4, Ir5 = 5, 

Ir6 = 6) in CH2Cl2 at room temperature. Reprinted with permission from Ref. 48. 

 

 

Figure 1.6. Photoluminescence spectra of complexes Ir1–Ir6 (Ir1 = 1, Ir2 = 2, Ir3 = 3, Ir4 = 4, 

Ir5 = 5, Ir6 = 6) in degassed CH2Cl2 at room temperature. Reprinted with permission from Ref. 

48. 

 

Qiao and coworkers reported three near−infrared (NIR) emitting monocationic Ir(III) 

(Ir7−Ir9 in Chart 1.2) with different ancillary ligands (Ir7: bipyridine; Ir8: 1,10−phenanthroline;: 

Ir9: 4,7−diphenyl−1,10−phenanthroline), in which large −conjugated 2-

phenylbenzo[g]quinoline was used as the cyclometalating ligand.49 All complexes hold 

ligand−centered 1π,π* transitions at < 350 nm and mixed 1MLCT/3MLCT/3LLCT transitions from 

350 to 600 nm. Complexes Ir7−Ir9 exhibited an emission maximum at 698 nm and a shoulder at 
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760 nm with a quantum yield of ca. 3%. Since the influence of the different diimine ligands on the 

emission is limited, the nature of the emitting states was assigned to the C^N ligands localized 

3π,π* mixed with 3CT characters. 

 

 
Figure 1.7. Room−temperature absorption (left) and photoluminescence (right) spectra of 

complexes Ir7−Ir9 (Ir7 = 1, Ir8 = 2, Ir9 = 3) in degassed CH2Cl2. The spectra were recorded on 

a Jobin Yvon fluorospectrophotometer (FluoroMax-3), by using the manufacturer’s procedure. 

Reprinted with permission from Ref. 49. 

 

Taking all the aforementioned examples into account, the photophysical properties of the 

heteroleptic cationic Ir(III) complexes could be easily tuned by changing the degree of π-

conjugation of the N^N and/or C^N ligands. Considering the difficulty of the benzannulation on 

the ligands, our group adopted another approach to extend the ligand π-conjugation via tethering 

the π-conjugated substituents to the N^N or C^N ligands. We reported a systematic study on the 

photophysics of four cyclometalated Ir(III) complexes (Ir10−Ir13) and explored their applications 

as reverse saturable absorbers.22 The benzothiazolylfluorene motifs were tethered on the bipyridine 

(Ir10 and Ir11) and  the phenylpyridine (Ir12 and Ir13) ligands. The effects of the extended π-

conjugation of the N^N and/or C^N ligands, and the attachment position of the substituents at the 

N^N ligand on the photophysics and RSA strength  were investigated . All complexes exhibit spin-

allowed intraligand 1π,π* transitions with large extinction coefficient below 475 nm, and very 
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weak 1,3MLCT and 1,3LLCT transitions above 475 nm (Figure 1.8). The emission bands of these 

complexes are attributed to 3MLCT/3LLCT for Ir1, 3π,π* for Ir2, and 3MLCT/3LLCT/3π,π* for 

Ir3 and Ir4. The variations of the different π-conjugation degrees in ligands alter both the 

parentage of T1 states and RSA strength. 

 

  
Figure 1.8. Absorption spectra of complexes Ir10−Ir13 (Ir10 = 1, Ir11 = 2, Ir12 = 3, Ir13 = 4) 

in CH2Cl2 at room temperature. Reprinted with permission from Ref. 22. 

 

 
Figure 1.9. Photoluminescence spectra of complexes Ir10−Ir13 (Ir10 = 1, Ir11 = 2, Ir12 = 3, 

Ir13 = 4) in degassed CH2Cl2 at room temperature. Reprinted with permission from Ref. 22. 

 

To further understand the influence of extended -conjugation of the N^N or/and C^N 

ligands via tethering -conjugated substituents on the photophysicsof the monocationic Ir(III) 

complexes, our group studied six other Ir(III) complexes (Ir14–Ir19),20 where fluoren-2-yl or 7- 
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benzothiazolylfluoren-2-yl motifs were attached on the N^N or/and C^N ligands. The obtained 

complexes hold N^N or C^N ligand-localized 1,*/1ILCT transitions below 450 nm and weak 

1,3MLCT/1,3LLCT bands above 450 nm. Modifications of the phenanthroline ligand by introducing 

fluoren-2-yl or 7-benzothiazolylfluoren-2-yl substituents led to the a red-shift of the main 

absorption band to 400 and 408 nm for Ir14 and Ir15, respectively. For complexes Ir16 and Ir17, 

the major absorption bands appear at 325 and 360 nm, respectively. When the 7- 

benzothiazolylfluoren-2-yl motifs were introduced to both the N^N and C^N ligands in complex 

Ir18, its absorption spectrum appeared to be a superimposition of the spectra of Ir15 and Ir17. 

The emission spectra of Ir14 and Ir15 were structured and the lifetimes were long (5.6 s for Ir4 

and 12.9 s for Ir5), indicating the substituted phenanthroline-localized 3π,π* state being the 

emitting states. The shorter-lived (0.37-1.38 s) and structureless emission spectra of Ir16, Ir17, 

and Ir18 were indicative of the 3CT emitting states. Complexes Ir14 and Ir15 with extended π-

conjugation at the N^N ligand exhibited longer-lived, red-shifted and stronger triplet excited-state 

absorption in comparison to their respective counterparts Ir16 and Ir17 with the -conjugated 

substituents at the C^N ligands. Therefore, Ir14 and Ir15 gave rise to stronger RSA in comparison 

to Ir16 and Ir17, respectively, at 532 nm. 

 
Figure 1.10. Experimental UV−vis absorption spectra of Ir14–Ir19 (Ir14 = 1, Ir15 = 2, Ir16 = 3, 

Ir17 = 4, Ir18 = 5, Ir19 = 6) in CH2Cl2. Reprinted with permission from Ref. 20. 
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Figure 1.11. Normalized emission spectra of Ir14–Ir19 (Ir14 = 1, Ir15 = 2, Ir16 = 3, Ir17 = 4, 

Ir18 = 5, Ir19 = 6) in deaerated CH2Cl2 solution, c =1 × 10−5 mol L−1. Reprinted with permission 

from Ref. 20. 

 

 

1.2.4. Bis−terdentate Ir(III) complexes  

Different from the bidentate ligands, terdentate ligands, such as tpy and 

2,6−diphenylpyridine, enable one to construct a linearly arranged system of complexes. This could 

avoid the formation of geometrical fac− or mer− stereoisomers that was found in the 

triscyclometalated Ir(III) complexes. These ligands can also be used as building blocks to form 

multinuclear complexes. Moreover, the photophysical properties of bis−terpyridine Ir(III) 

complexes (Ir(tpy)2
3+) are greatly influenced by the substituents at the 4-position of tpy. In 1999, 

the synthetic procedure of a series of Ir(tpy)2
3+ complexes were reported by Collin and 

coworkers.47 Different aryl  substituents was attached to the 4-position of tpy ligand. These 

complexes featured high-lying emitting states (>2.5 eV) with high efficiencies and long lifetimes 

(1-2 s). Based on the published synthetic procedures, several homoleptic and heteroleptic 

Ir(tpy)2
3+ complexes were designed for a range of applications in recent years. As shown in Chart 

1.3, tolyl, benzyl hydroxyphenyl, aniline, methoxyphenyl, or benzoic acid groups were introduced 

to the 4-position of tpy. 
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Chart 1.3. Selected examples of bis−terdentate iridium(III) complexes. 

 

For the bis−terpyridine Ir(III) complexes (Ir20−Ir24) possessing electron−donating or 

accepting groups, varied absorption and luminescence properties have been observed.57 In contrast 

to Ir20 and Ir21, the presence of aniline in Ir22−Ir24 induced strong 1ILCT absorption bands in 

the visible spectral region (See Figure 1.12). As presented in Figure 1.13, the electron-donating 

amino substituent on the phenyl ring increased the energy level of the aryl substituent (ph) to 

surpass that of the tpy (tpy), resulting in 1ILCT (ph→
tpy) transition. The homoleptic Ir(III) 

complex Ir23 that was incorporated with two amino substituents doubled the intensity of the 

1ILCT absorption band than those in the heteroleptic complexes Ir22 and Ir24. All complexes 

exhibited emission in both acetonitrile and aqueous solutions originating from the mixed 3π,π* 

(
tpy→tpy) / 3ILCT (

Ar→tpy) states (Figure 1.14). Following the energy−gap law, the 
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low−lying 3ILCT excited state induced by aniline in complexes Ir22−Ir24 resulted in a faster 

nonradiative decay and thus reduced the emission in these complexes. In addition, the emission 

lifetimes in degassed acetonitrile solutions (3.2−9.6 s) were shorter than those in degassed 

aqueous solutions (7.7−21 s), owing to increased nonradiative decay rates in acetonitrile.  

 

 
Figure 1.12. The ground−state absorption spectra for complexes Ir20−Ir24 (Ir20 = 1, Ir21 = 2, 

Ir22 = 3, Ir23 = 4, Ir24 = 5) in CH3CN at room temperature. Reprinted with permission from Ref. 

57. 

 

 
Figure 1.13. The proposed ILCT transition in Ir22. Reprinted with permission from Ref. 57. 

 

 
Figure 1.14. Emission spectra for complexes Ir20−Ir24 (Ir20 = 1, Ir21 = 2, Ir22 = 3, Ir23 = 4, 

Ir24 = 5) in degassed CH3CN (left) and aqueous (right) at room temperature. Reprinted with 

permission from Ref. 57. 
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Two bis−terdentate Ir(III) complexes (Ir25 and Ir26) bearing polypyridyl or 

cyclometalating ligands for DNA purine bases oxidation were reported by Elias’s group.58 

Electron-withdrawing carboxyl group was introduced to the 4′-position of phtpy and electron-

donating methoxy group was incorporated to the 4-phenyl substituent on the other terdentate 

ligand. In air-saturated solutions, a broad emission band was observed for Ir25 at 568 nm (τ = 470 

ns), whereas dual− emission was observed for Ir26 at 528 nm (τ = 1 μs) and 697 nm (τ = 260 ns), 

respectively (Figure 1.15). In the presence of a guanine unit (dGMP), the emission was quenched 

by a photo-induced electron−transfer process (Figure 1.16). A linear Stern−Volmer correlation 

between the dGMP’s concentration and the luminescence intensity was obtained, which is 

indicative of the pure dynamic quenching of the excited state for both complexes (see insets of 

Figure 1.16). The emission of Ir25 was oxidatively quenched, suggesting a high oxidizing ability 

of the excited state.  

 

 
Figure 1.15. The UV−vis absorption (solid line) and emission (dash line) spectra for complexes 

Ir25 and Ir26 (Ir25 = IrN6
3+, Ir26 = IrN4C2

+) in aerated CH3CN solutions at room temperature. 

Reprinted with permission from Ref. 58. 
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Figure 1.16. Luminescence spectra of (A) Ir25 and (B) Ir26 excited at 350 nm with increased 

concentration of dGMP. Inset: The obtained Stern−Volmer plots for complexes Ir25 and Ir26 

measured at wavelength of 560 and 514 nm, respectively. Reprinted with permission from Ref. 

58. 

 

Williams and coworkers reported a family of bis-terpyridine Ir(III) complexes 

(Ir27−Ir31), in which pyridyl or phenolic groups were attached to the para-position of the central 

pyridine ring in 2,2’:6’,2’’-terpyridine.73 The phenolic-substituted complexes (Ir28 and Ir29) 

showed a significant red-shift of the 1MLCT bands upon protonation (Figure 1.17). The appearance 

of the solution of Ir28 became deep orange by increasing the pH to 10, due to the appearance of 

the band at 468 nm in the absorption spectrum. The spectra of complexes Ir29 and Ir31 were 

similar to that of Ir27 (Figure 1.18). In addition, the weakly emissive complex Ir28 was found to 

be quenched by deprotonating of the phenol ring. 

 

 
Figure 1.17. The absorption spectra of Ir28 in aqueous solution at different pH values (5.3, 6.7, 

7.6, 8.3, 9.0, 10.1). 
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Figure 1.18. The luminescence spectra of the air-equilibrated aqueous solutions of Ir27−Ir31 

(Ir27 = 1, Ir28 = 2, Ir29 = 3, Ir30 = 4, Ir31 = 5) at pH 6.0 at room temperature (ex = 364 nm). 
 

Haga and coworkers developed two bis-terdentate Ir(III) complexes (Ir32 and Ir33), in 

which 2,6-bis(1-methyl-benzimidazol-2-yl)pyridine and 1,3-bis-(1-methyl-benzimidazol-2-

yl)benzene were used as the coordination ligands. As shown in Figure 1.19, Ir32 and Ir33 

possessed weak absorption bands in a low-energy region (>400 nm), which emanated from the 

1,3MLCT-based transitions. All Ir(III) complexes exhibited emissions at ca. 600 nm at room 

temperature (Figure 1.20). The emission spectra of Ir32 and Ir33 displayed vibrational 

progressions at 77 K. 

 
Figure 1.19. UV-vis spectra of Ir32 (solid line) and Ir33 (dashed line) in acetonitrile. 
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Figure 1.20. Emission spectra of Ir32 (a) and Ir33 (b). Solid lines are at room temperature (in 

MeCN), and dotted lines are at 77 K (in DMF-MeOH-EtOH [1:5:5(v/v)]. 

 

1.3. Cyclometalated Ir(III) complexes for RSA applications 

 As discussed in the previous section, the ground-state and excited-state properties of the 

cyclometalated Ir(III) complexes are readily tuned by structural modifications of the N^N and /or 

C^N ligands. Moreover, the broad and weaker charge transfer ground-state absorption but much 

stronger excited-state absorption in the visible spectral region, the high triplet excited-state 

formation quantum yield, and the long triplet lifetime associated with the cyclometalated Ir(III) 

complexes match the requirements for RSA quite well. Therefore, RSA of the cyclometalated 

Ir(III) complexes has been extensively investigated by our group and other groups in the past 15 

years. As shown in Chart 1.4, the RSA of several representative cyclometalated Ir(III) complexes 

will be discussed in the following part.  
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Chart 1.4. Selected examples of cyclometalated iridium(III) complexes for RSA study. 

 

The pioneering work of the RSA study on the cyclometalated Ir(III) complex (Ir34) with 

2-phenylpyridine and 4,4′-(2,2′-bipyridine-5,5′-diylbis(ethyne-2,1-diyl))bis(N,N-dihexylaniline) 

ligands was reported by Schanze’s group.21 Ir34 displayed strong transient absorption over the 

visible to the near-IR spectral regions (Figure 1.21(a)). A notable optical limiting was observed 
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for ns laser at 1064 nm, which was the result of two-photon absorption (TPA) initiated excited-

state absorption (ESA) (Figure 1.21(b)). 

 

 
Figure 1.21. (a) TA spectra of Ir34 in deoxygenated THF solution (b) transmittance of pulsed 

beam at 1064 nm of Ir34 in degassed THF solution at various concentrations. Reprinted with 

permission from Ref. 21. 

 

To understand the effect of extended -conjugation of the N^N ligand on the photophysics 

and RSA of Ir(III) complexes, our group studied complexes Ir35−Ir39 in which 

2−{3−[7−(benzothiazol−2−yl)fluoren−2−yl]phenyl}pyridine and various diimine ligands, i.e., 

2−(pyridin−2−yl)quinoline (Ir35), 1,10−phenanthroline (Ir36), 2,2'−biquinoline (Ir37), and 

1,1'−biisoquinoline (Ir38), were employed as the C^N and N^N ligand(s), respectively.51 

Additionally, complex Ir39 bearing 2−(pyridin−2−yl)quinoline and 2−phenylpyridine ligands was 

chosen as the reference complex. In the UV-vis absorption spectra, all complexes displayed 1π,π* 

transitions below 400 nm, 1MLCT/1LLCT transitions in the range from 400 to 450 nm, and spin-

forbidden 3MLCT/3LLCT transitions above 450 nm (see Figure 1.22). Owing to the extended 

π−conjugation in the N^N ligands, the 3MLCT/3LLCT absorption bands were gradually 

bathochromically shifted with enhanced extinction coefficients. The emission of these complexes 

was centered at the wavelengths from 584 to 672 nm in CH2Cl2 at room temperature, which was 

assigned to 3MLCT/3LLCT states (see Figure 1.23). Upon ns laser pulses excitation at 532 nm, all 
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complexes exhibited very strong RSA effect. The RSA strength followed the trend of Ir35 ≈ Ir36 

> Ir38 > Ir37 > Ir39, which paralleled the cross−section ratios between the excited−state and 

ground−state absorption at 532 nm (see Figure 1.24). 

 

 
Figure 1.22. Experimental (a) and calculated (b) ground−state absorption spectra of all complexes 

(Ir35 = 1, Ir36 = 2, Ir37 = 3, Ir38 = 4, Ir39 = 5) in CH2Cl2. Reprinted with permission from Ref. 

51. 

 

 
Figure 1.23. Normalized emission spectra of all complexes in degassed CH2Cl2. Reprinted with 

permission from Ref. 51. 
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Figure 1.24. Reverse saturable absorption for complexes (Ir35 = 1, Ir36 = 2, Ir37 = 3, Ir38 = 4, 

Ir39 = 5) in 2 mm thick toluene (80% linear transmission) for 532 nm 4.1 ns laser pulses at room 

temperature. Reprinted with permission from Ref. 51. 

 

Unlike extending the -conjugation on the N^N ligands, our group reported seven Ir(III) 

complexes (Ir40−Ir46) bearing 2,2'−bipyridine ligand but varying the π−conjugation of the 

cyclometalating C^N ligands.50 As depicted in Figure 1.25, all complexes displayed intense 

high−energy ligand−localized 1π,π* transitions and lower−energy 1MLCT /1LLCT transitions in 

the UV−vis absorption spectra. The emission bands of these complexes could be tuned from 500 

to 670 nm with the emitting states being 3π,π*/3MLCT for Ir40, 3π,π*/3MLCT/3LMCT for Ir41, 

Ir42, and Ir43, 3π,π* transitions for Ir44 and Ir45, and 3π,π*/3MLCT/3LMCT/3LLCT for Ir46. 

Besides, these complexes possessed broadband transient absorption, as illustrated in Figure 1.26. 

The long-lived transient species in complexes Ir41, Ir42, Ir44, and Ir45 with varied TA spectra 

were measured, suggesting the C^N ligand-centered 3π,π* nature of the lowest triplet excited 

states. The complexes Ir40, Ir41, and Ir46 hold short-lived transient absorption, which are 

indicative of more 3CT characters in their transient species. Except for Ir46, all complexes 

exhibited strong RSA effects. The obtained RSA strength followed the trend of Ir46 < Ir40 < Ir43 
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< Ir45 < Ir44 ≈ Ir42 ≈ Ir41, which was approximatively associated with the ΔOD values at 532 

nm (Figure 1.27).  

 

 
Figure 1.25. Experimental ground−state absorption spectra of (a) C^N ligands (1: 

benzo[H]quinoline; 2: 1−phenylisoquinoline, 3: 1−(2−pyridyl)naphthalene, 4: 2−(2−pyridyl)− 

naphthalene, 5: 1−(2−pyridyl)pyrene, 6: 1,2−diphenyl−pyreno[4,5−d]imidazole, 7: 

3−(2−pyridyl)perylene) and (b) complexes Ir40−Ir46 (Ir40 = 1, Ir41 = 2, Ir42 = 3, Ir43 = 4, Ir44 

= 5, Ir45 = 6, Ir46 = 7) in CH2Cl2 at room temperature and (c) calculated UV−vis spectra all 

complexes in CH2Cl2 at 0 K. Reprinted with permission from Ref. 50. 

 

 
Figure 1.26. Nanosecond triplet TA spectra of complexes Ir40−Ir46 (Ir40 = 1, Ir41 = 2, Ir42 = 

3, Ir43 = 4, Ir44 = 5, Ir45 = 6, Ir46 = 7) at zero−time decay in acetonitrile. Reprinted with 

permission from Ref. 50. 
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Figure 1.27. Nonlinear transmission plot of Ir40−Ir46 (Ir40 = 1, Ir41 = 2, Ir42 = 3, Ir43 = 4, 

Ir44 = 5, Ir45 = 6, Ir46 = 7) at the linear transmittance of 80% in CH2Cl2 solution in a 2 mm 

cuvette for 532 nm 4.1 ns laser. Reprinted with permission from Ref. 50. 

 

In contrast to the benzannulation, our group also reported the photophysics and RSA study 

of complexes Ir47−Ir50 with different -conjugation lengths on the C^N ligands via tethering 

large -conjugated motifs.18 As discussed in the previous section, all complexes exhibit positive 

TA absorption at 532 nm, indicating stronger excited-state absorption than that of the ground state. 

Compared to the para-substitution, the meta-substitution results in a higher phosphorescence 

intensity and longer-lived triplet excited state. The RSA strength followed the order of Ir50＞Ir49 

≈ Ir48＞Ir47 (Figure 1.28), suggesting the complex with para-substituted C^N ligands displayed 

a stronger RSA at 532 nm.  

 
Figure 1.28. Reverse saturable absorption for Ir47−Ir50 (Ir47= 1, Ir48 = 2, Ir49 = 3, Ir50 = 4) 

in CH2Cl2 in a 2 mm cuvette for 532 nm nanosecond laser pulses. Reprinted with permission from 

Ref. 18. 
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We also reported the TA and RSA studies of cationic heteroleptic Iridium(III) complexes 

(Ir14–Ir19) with a tethered fluoren-2-yl or 7-benzothiazolylfluoren-2-yl substituent on the 2-

phenylpyridine and/or phenanthroline ligands.20 As shown in the TA spectra (Figure 1.29), 

complexes Ir14–Ir19 possessed positive absorption signals at 532 nm, indicating that RSA could 

occur at this wavelength. The transient absorption absorption of Ir14 and Ir15 are attributed to the 

substituted phenanthroline ligand-localized 3π,π* states, while the observed TA of Ir16–Ir19 was 

attributed to predominantly the 3MLCT/3LLCT states. The RSA strength decreased as Ir18 ≈ Ir15 

> Ir17 ≈ Ir14 > Ir16, which coincided with the σex/σ0 ratios for most of the complexes (Figure 

1.30). In comparison to Ir16 and Ir17 bearing -conjugated substituents at the C^N ligands, 

tethering the -conjugated substituents to the N^N ligand (Ir14, Ir15, and Ir18) not only caused 

the red-shifted major ground-state and triplet excited-state absorption bands, but also enhanced the 

RSA strength. 
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Figure 1.29. Time-resolved triplet TA spectra of Ir14–Ir19 (Ir14 = 1, Ir15 = 2, Ir16 = 3, Ir17 = 

4, Ir18 = 5, Ir19 = 6) in toluene solution in a 1-cm cuvette (λex = 355 nm, A355 = 0.4). Reprinted 

with permission from Ref. 20. 

 

 
Figure 1.30. Reverse saturable absorption for complexes Ir14–Ir18 (Ir14 = 1, Ir15 = 2, Ir16 = 3, 

Ir17 = 4, Ir18 = 5) for 4.1 ns laser pulses at 532 nm in 2-mm thick toluene solution. Reprinted 

with permission from Ref. 20. 
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1.4. Applications of heteroleptic Ir(III) complexes in PDT 

To date, high quantum yields for triplet excited state formation and long-lived triplet 

excited states for efficient ROS generation even if under hypoxia have been reported for some 

Ir(III) complexes. Meanwhile, Ir(III) complexes were found to be specifically localized in 

mitochondria, lysosomes, endoplasmic reticulum, or nuclei in a variety of the cancer cell lines. 

More interestingly, due to their luminescence properties, these Ir(III) complexes can also be 

utilized as biomolecular probes and cellular imaging reagents. 

Because of these fascinating photophysical properties, Ir(III) complexes were explored as 

photosensitizers for PDT. To date, a variety of cyclometalated Ir(III) complexes were reported to 

exhibit high singlet oxygen generation efficiency and organelle-targeting ability.62–65  For the 

examples of cyclometalated Ir(III) complexes shown in Chart 1.5, their photophysical and 

biological properties can be substantially tuned by the peripheral ligands, which will be discussed 

below. 
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Chart 1.5. Selected examples of cyclometalated iridium(III) complexes for phototherapeutic 

studies. 
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Lo et al. developed several phosphorescent water-soluble Ir(III) complexes (Ir51 – Ir55), 

in which photophysical and photochemical characteristics were adjusted through altering the 

cyclometalating ligands.62 The attachment of PEG chains could help to minimize the cytotoxicity 

in the dark due to the decreased unfavorable interactions between PSs and biomolecules. The 

observed emission wavelengths ranged from green to orange-red due to the varied energy levels 

of the emitting states. The short-lived 3CT state and long-lived 3IL state were found to be the lowest 

triplet excited states for Ir51 – Ir53 and Ir54 – Ir55, respectively. Therefore, the quantum yield 

of 1O2 generation increased following Ir51 < Ir52 < Ir53 < Ir55 < Ir54, which is dependent on 

the triplet excited-state lifetimes of these complexes. All regents showed very low dark toxicity 

toward HeLa cells, indicating these PEG-based PSs were noncytotoxic in the dark. Their IC50 

values upon 365 nm light irradiation were in the range of 3.4 to 23.2 M. 

To red-shift the ground-state absorption and meanwhile keep a long-lived triplet excited 

state, our group reported six Ir(III) complexes (Ir56 – Ir61) with different -conjugation lengths 

on both the N^N and the C^N ligands as PSs for PDT.63 Red-shifted ground-state absorption and 

prolonged triplet excited states were observed in Ir59 – Ir61 via extending the -conjugation on 

the C^N ligands. In complexes Ir56 – Ir58, benzannulation at the N^N ligands did not alter the 

lowest ground-state absortion bands but significantly prolonded the lowest triplet excited state. 

Without light activation, Ir56 – Ir58 were accumulated on the membrane, whereas Ir59 – Ir61 

localized on the whole cancer cell. Among them, Ir61 presented the largest phototherapeutic 

indices (PI) toward SK-MEL-28 (Dark IC50: 144 ± 56.9 M, Vis IC50: 0.354 ± 0.066 M, PI = 

407) and HL60 (Dark IC50: 83.9 ± 1.40M , Vis IC50: 0.588 ± 0.052 M, PI = 143) cell lines upon 

broadband visible light (400-700 nm) activation. Such a high photosensitization efficiency of Ir57 
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can be attributed to its broad absorption from the visible to the NIR region and its extremely long-

lived 3,*-based lowest triplet excited states. 

To further red-shift the ground-state absorption to the far-red or NIR regions, Zhao and 

coworkers64 designed four cyclometalated Ir(III) complexes (Ir62 – Ir65) with a 

monostyryl/distyryl-substituted BODIPY motif attached to the 2,2′-bipyridine ligand. All 

complexes showed strong absorption in the regions of 644–729 nm. Owing to a stronger electron-

donating ability of the dimethylamino group at the BODIPY (Ir64 and Ir65) motif, NIR absorption 

bands were observed in Ir64 and Ir65. These complexes were found to possess very long-lived 

BODIPY-based 3,* states,i.e. 106.6 s for Ir62, 156.5 s for Ir63, 92.5 s for Ir64, and 31.4 

s for Ir65, which parrelleled their singlet oxygen generation efficiencies, i.e. 0.53 for Ir62, 0.81 

for Ir63, 0.06 for Ir64, and 0.02 for Ir65.  However, their in vitro PDT effects were marginal due 

to the high dark toxicity (IC50 = 8.16 - 16.70 M toward 1121 or LLC cell lines) and small PI 

values (1.3-3.8). 

Recently, our group developed a family of tricationic heteroleptic Ir(III) complexes (Ir66 

– Ir71) incorporating tris-diimine ligands.65 All complexes possessed two phenanthroline (phen) 

ligands and one R-phen ligand (R = H, phenyl, pyrenyl, phenylethynyl). With the increased π-

conjugation of the R substituent, the triplet lifeitmes of Ir68 and Ir70 became much longer (>30 

s). The singlet oxygen generation quantum yields for Ir68 and Ir70 were 81% and 72%, 

respectively. Their PIs toward SK-MEL-28 cells were 248 (Dark IC50: 67.0 ± 0.9 M, Vis IC50: 

0.27 ± 0.01 M) for Ir68 and >435 (Dark IC50: >300 M, Vis IC50: 0.69 ± 0.01 M) for Ir70. 

Three cyclometalated Ir(III) complexes (Ir72 – Ir74) containing N-heterocyclic carbene 

(NHC) ligands were reported by Mao and coworkers, which were used as mitochondria-targeting 

PSs for PDT study.66 Different alkyl substituents were attached on the N1 position of the NHC 
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ligand (methyl for Ir72, ethyl for Ir73, and propyl for Ir74). All complexes exhibited weak charge-

transfer absorption bands at >360 nm, which are attributed to the 1,3MLCT transitions. The 1O2 

generation capability of these complexes decreased in the following order: Ir74 ( = 0.62) > Ir73 

( = 0.59) > Ir72 ( = 0.58). In view of the anticancer activities, these Ir(III) complexes 

exhibited much higher cytotoxicity upon irradiation at 365 nm toward different cell lines, including 

HeLa, MCF-7, A549, A549R, HepG2, and LO2, which are better than cisplatin. The mitochondrial 

damage in HeLa cells was confirmed for Ir72 – Ir74 upon irradiation. Notably, PI value of Ir74 

against A549R cells is up to 3488 (Dark IC50: 3.0 ± 0.2 M, Vis IC50: 0.00086 ± 0.00002 M). 

However, these complexes can only be activated by the UV light, which prevents their potential 

applications as PDT reagents. 

 

1.5. Synthesis of Ir(III) complexes 

Generally, it is relatively challenging to carry out a coordination reaction on Ir(III) because 

of its inertness. Compared to the Ru(II) complexes, harsher reaction conditions are required for 

formation of Ir(III) complexes. To activate the metal center, a variety of methods have been 

explored for coordination of the Ir(III) ion. One feasible method is adding silver salts, such as 

AgOTf, AgNO3, and Ag2O, to remove the chloride and enhance the coordination activity of the 

center metal. Another commonly used method is increasing the reaction temperature for the 

coordination reaction. In this dissertation, the employed synthetic procedures for the tris−bidentate 

cyclometalated Ir(III) complexes and the bis−terdentate Ir(III) complexes are presented in Chart 

1.6 and Chart 1.7, respectively.50,38 
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Chart 1.6. General synthesis route for tris−bidentate cyclometalated Ir(III) complexes. 

 

For the synthesis of tris−bidentate cyclometalated Ir(III) complexes bearing N^N or 

N−heterocyclic carbene (NHC) ligands, the dinuclear [Ir(ppy)2(µ−Cl)]2 intermediates were first 

prepared by using Ir(III) chloride hydrate and two equivalents of cyclometalating ligands in the 

mixture of 2−ethoxyethanol and water (v/v = 3/1) under reflux for 24 hours. Then, the obtained 

dinuclear complex precursor was treated with two equivalence of N^N (or NHC) ligand in a mixed 

solvent of CH2Cl2 and methanol (v/v = 3/1) for the N^N ligand or 1,2−dichlrorethane for the NHC 

ligand to afford the target cyclometalated cationic (or neutral) Ir(III) complexes. To reduce the 

formation of by−products, these two−step reactions should be protected from light and oxygen. 
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Chart 1.7. General synthesis route for bis−tridentate Ir(III) complexes. 

 

The synthesis of bis−terdentate Ir(III) complexes is illustrated in Chart 1.7.47,59,60,61 In this 

procedure, tpy was treated with Ir(III) chloride hydrate in ethylene glycol for 30 min at 160 oC in 

dark to afford tpy−IrCl3 as the intermediate. To obtain the Ir(tpy)2
3+ based complexes, tpy−IrCl3 

reacts with another tpy ligands in ethylene glycol under reflux for 1 hour under N2 atmosphere and 

avoid light. In contrast, synthesis of the other two types of bis−terdentate Ir(III) complexes, i.e. 

(C^N^N)Irtpy2+ and (C^N^C)Irtpy+ needs harsher reaction conditions, which involves Ag+ 

catalyst and longer reaction times, due to the poorer coordination ability of carbon. For the ( 

N^C^N)Irtpy2+ complexes, however, 1,3−di(pyrid-2-yl)benzene should first react with iridium 

trichloride hydrate in mixed solvent of 2−ethoxyethanol and water (v/v = 3/1) to form a 
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[Ir(dpyb)Cl(µ−Cl)]2 as the reactive dimer. The subsequent reaction involved the dimer and tpy 

ligand in refluxed ethylene glycol for 1 h, which was similar to the synthesis of Ir(tpy)2
3+. Similar 

to the synthesis of tris−bidentate complexes, these two−step reactions need to be carried out under 

noble gas atmosphere without direct light exposure.  

 

1.6. Designing criteria for reverse saturable absorbers 

In the past two decades, our group has been focusing on develop Ir(III) complexes for RSA 

based optical limiting applications. To effectively decrease the transmittance of lasers at high 

intensity, complexes with suitable photophysical properties are required. Generally, to optimize 

the RSA strength, these complexes need a large ratio of ESA cross section (σex) relative to that of 

the ground state (σ0). To augment the σex/σ0 values, a low intensity of ground−state absorption (not 

zero) but strong ESA at the interested wavelengths is desired. Meanwhile, long−lived 

excited−states capable of undergoing a long−time light absorption before decay to its ground state, 

is another desired preliminary property. Based on the discussion in the previous sections, Ir(III) 

complexes hold spin−allowed ligand−centered 1π,π* transitions with high intensity in the UV 

spectral region and 1MLCT/1LLCT transitions with low intensity in the visible spectral region. To 

increase the RSA strength over a broad spectral region, expanding the weakly absorptive 1CT 

bands is our ultimate interest. 

In view of the metal center, the ligand field strength of transition metal partially dominates 

its excited−state properties, which increases from the first−row to the third−row metals. Generally, 

the first−row transition metal complexes commonly possess a short−lived triplet excited state due 

to the readily accessible non−radiative d,d state. As a third−row transition metal, a long−lived 
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excited state was obtained for most of the Ir(III) complexes, in which d,d state is elevated to a 

higher energy. Herein, RSA are expected for Ir(III) complexes incorporating appropriate ligands. 

 

1.7. Designing criteria for photosensitizer in PDT research 

The application of PDT to cancers mainly depends on the development of more effective 

PSs. To date, developing new PSs with tumor−specific targeting, strong absorption in the NIR 

region, long−lived triplet excited state, and high ROS production efficiency in hypoxia still 

remains to be a challenge. In general, several clinically relevant criteria need to be considered for 

designing new PSs.42  

(1) Toxicity. An appropriate PS should be capable of efficient 1O2 and/or ROS generation 

upon light irradiation at an appropriate wavelength, namely it should be highly phototoxic. 

Meanwhile, it should be non−toxic or have low toxicity without light activation. The photo− and 

dark−toxicities are closely related to the structures of PSs. 

(2) Amphiphilicity. PSs with good water−solubility travel human body easily. To meet this 

requirement, compounds with multiple charges and/or hydrophilic moieties are desired. On the 

other hand, a PS needs to pass the cell membrane to enter the cell, which requires some 

lipophilicity. Therefore, an suitable PS should be amphiphilic.  

(3) Penetration depths. In biological tissues, penetration of the light is proportional to its 

wavelength. For instance, the penetration depth for light at a wavelength of 400 nm is 1 mm; 

whereas, light at a wavelength of 630 nm results in about 10 mm depth. To utilize PDT for the 

treatment of deep−seated tumors, red− (or NIR−) light activatable PSs are desired. By using 

dyes−tethered molecules, the absorption wavelength of PSs can be tuned to the desired spectral 

region. 
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(4) T1 state. Long−lived T1 state with an appropriate energy level and a high quantum yield 

of formation is the most important feature for an PS to effectively convert photon energy into 1O2 

and/or ROS. For the development of Ir(III) complex PSs, * nature for the T1 state yields long 

T1 lifetime, which can be realized by tethering -conjugated organic chromophores to the Ir(III) 

complex or extending the −conjugation for the ligands.  

(5) Targetability. Accumulation of PSs on tumors rather than normal tissues, and specific 

targeting of certain organelles inside of cancer cells, such as mitochondria, lysosomes, and nuclei, 

are beneficial to improve the PDT efficiency and reduce the side effects.  

(6) Cost. An effective PS at a reasonable cost will help the treatment of cancer patients. 

With all of the aforementioned criteria in mind, new PS design should fulfill as many of 

them as possible with the understanding that  some compromises need to be made at times. 

 

1.8. Objectives of my dissertation 

By design and synthesis of Ir(III) complexes with different types of ligands , three major 

goals are anticipated to be realized in this dissertation: (1) To establish a structure-property 

correlation via modification of the ligand -conjugation and/or attaching -conjugated organic 

chromophores to the core ligands. To realize this goal, spectroscopic measurement, such as the 

UV−vis absorption, emission, and transient absorption studies, and computational simulation of 

the optical spectra for the synthesized complexes were carried out; (2) Optimizing the RSA 

strength of the Ir(III) complexes at 532 nm and developing some broadband reverse saturable 

absorbers; (3) Developing red or NIR absorbing PSs with optimized triplet excited-state properties 

for theranostic PDT applications. To fulfill these objectives, six series of Ir(III) complexes bearing 

a variety of N^N or C^N ligands were synthesized and investigated: 
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(1) Tuning the Ground State and Excited State Properties of Monocationic Iridium(III) 

Complexes by Varying the Site of Benzannulation on Diimine Ligand. 

(2) Impact of Benzannulation Site at the Diimine (N^N) Ligand on the Photophysics and 

Reverse Saturable Absorption of Cyclometalated Monocationic Iridium(III) Complexes. 

(3) Effects of Varying the Benzannulation Site and π−Conjugation of Cyclometalating 

Ligand on Photophysics and Reverse Saturable Absorption of Monocationic Iridium(III) 

Complexes. 

(4) Monocationic Iridium(III) Complexes with Far−Red Charge Transfer Absorption and 

Near−IR Emission: Synthesis, Photophysics, and Reverse Saturable Absorption. 

(5) Photophysical and Photobiological Properties of Dinuclear Iridium(III) Bis−tridentate 

Complexes. 

(6) Neutral Iridium(III) Complexes Bearing BODIPY−Substituted N−Heterocyclic 

Carbene (NHC) Ligands: Synthesis, Photophysics, and Photobiological Activities. 
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2. TUNING THE GROUND STATE AND EXCITED STATE PROPERTIES OF MONO–

CATIONIC IRIDIUM(III) COMPLEXES BY VARYING THE SITE OF 

BENZANNULATON ON DIIMINE LIGAND 

 

2.1. Introduction 

In the last two decades, octahedral d6 Ir(III) complexes have attracted extensive interest 

due to the strong spin–orbit coupling induced by the Ir(III) ion, which increases the triplet excited–

state quantum yield and induces strong phosphorescence in fluid solutions at room temperature.1-

3 Many of the research has focused on monocationic iridium(III) complexes because of the facile 

synthesis of these complexes under mild reaction condition and the vast amount of choices for the 

diimine (N^N) and the cyclometalating (C^N) ligands.4-6 The interesting electronic absorption and 

emission properties of the Ir(III) complexes make them attractive candidates for applications in 

organic light emitting diodes (OLEDs), solar energy conversion, luminescent biological labeling, 

etc.7-9 

It has been well understood that the absorption and emission characteristics of the 

monocationic iridium complexes can be readily tuned by modification of the N^N and/or C^N 

ligands.10-12 Extensive electrochemical and/or computational studies show that the lowest 

unoccupied molecular orbital (LUMO) of these Ir(III) complexes is typically located on the N^N 

ligand; while the highest occupied molecular orbital (HOMO) is delocalized on the C^N ligands 

and the d–orbital of the Ir(III) center.13-15 Thus electron–donating or withdrawing substituents on 

the N^N ligand could lead to hypsochromic or bathochromic shifts of the lowest–energy charge 

transfer transition by destabilization or stabilization of LUMO.16 On the other hand, introducing 

π–conjugated substituents on the N^N ligand could alter the nature of the lowest triplet excited 
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state (T1 state).17-20 Bryce’s group,17 Schanze’s group,18 and our group19,20 had discovered that 

extending the π–conjugation of the N^N ligand via incorporating π–conjugated substituents 

admixed the N^N ligand localized 3π,π* character with the 3CT (charge transfer) characters in the 

T1 state of the Ir(III) complexes, or even switched the T1 state from the 3CT state to the 3π,π* state. 

This change increased the T1 lifetime and enhanced the triplet excited–state absorption drastically. 

Another commonly used approach to extend the π–conjugation of the ligand is 

benzannulation. It has been found, however, that benzannulation could cause either blue or red 

shifts of the absorption and / or emission bands depending on the site of benzannulation.21-30 

Although this phenomenon was mostly observed in various small organic molecules,21–24 it has 

been rarely reported in organometallic complexes.25–30 Thompson and Gordon groups discovered 

this phenomenon in a series of (N^N^N)PtCl complexes (N^N^N = 2,5–bis(2–

pyridylimino)pyrrolate and its benzannulated analogs) and explained this unusual behavior via 

molecular orbital theory.25 Balzani’s group and Turro’s group revealed the blue shifted absorption 

or emission bands of Ru(II) complexes when benzannulation occurred at the 4,5–position of the 

bipyridine ligand27 or fusion aromatic ring(s) at the 5,6–position of the phenanthroline ligand.28 In 

contrast, benzannulation at either the 3,4– or 5,6–position of the bipyridine ligand in Ir(III) 

complexes caused red shifts of the lowest energy absorption band and the emission band in 

comparison to the nonbenzannulated complex.29,30 

To understand whether the site–selective blue or red–shifts upon benzannulation of the 

N^N ligand is a general feature that could occur in other transition–metal complexes, we designed 

and synthesized a series of monocationic Ir(III) complexes (Chart 2.1). These complexes all feature 

1,2–diphenyl–9H–pyreno[4,5–d]imidazole (dppi) as the C^N ligands, but the N^N ligands contain 

varied degrees of π–conjugation via benzannulation at different positions of 2–(pyridin–2–
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yl)quinoline. Dppi was chosen as the C^N ligand because previous work demonstrated that Ir(III) 

complexes bearing this ligand had dramatically long triplet excited–state lifetimes31,32 and broad 

excited–state absorption,31 which is a desirable feature for reverse saturable absorbers19,20,31 and 

triplet photosensitizers for triplet–triplet annihilation upconversion.32 

 
Chart 2.1.  Structures of complexes 2-1 – 2-6. 

 

2.2. Experimental section 

2.2.1. Materials and synthesis 

All solvents and reagents were obtained from Aldrich or Alfa-Aesar and used as received 

without further purification unless otherwise stated. Silica gels (230−400 mesh) and Al2O3 gels 

(activated, neutral, Brockmann I) for column chromatography were obtained from Sorbent 

Technology and Aldrich, respectively. The diimine ligand 2,2'-bisquinoline (L2-3) was obtained 

from Alfa-Aesar. Ligands 2-(pyridin-2-yl)quinoline (L2-1) and 2-(pyridin-2-

yl)[7,8]benzoquinoline (L2-2) were synthesized according to the reported procedures.33,35 The 

other diimine ligands 2-(quinolin-2-yl)[7,8]benzoquinoline (L2-4), 2-(pyridin-2-

yl)[6,7]benzoquinoline (L2-5), and 2-(quinolin-2-yl)[6,7]benzoquinoline (L2-6) were prepared by 

Friedlӓnder Reaction. The C^N ligand dppi and its Ir(III) dimer [Ir(dppi)2Cl]2 were synthesized 

following the literature procedures.32 Complexes 2-1 – 2-6 were synthesized by reaction of the 

[Ir(dppi)2Cl]2 dimer and the corresponding N^N ligand in refluxed CH2Cl2/CH3OH in the presence 

of AgSO3CF3 to abstract chloride from the [Ir(dppi)2Cl]2 dimer to move the reaction forward.32 
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The Ir(III) complexes 2-1 – 2-6 were characterized by 1H NMR, ESI-HRMS and elemental 

analyses. A Varian Oxford-400 or Oxford-500 VNMR spectrometer was used to record the 1H 

NMR spectra. ESI−HRMS analyses were conducted on a Bruker BioTOF III mass spectrometer. 

NuMega Resonance Laboratories, Inc. in San Diego, California carried out the elemental analyses. 

 
Scheme 2.1. Synthetic routes for ligands L2-4 – L2-6 and complexes 2-1 – 2-6. 

 

Ligand L2-4. To a solution of 2-acetylquinoline (500 mg, 4.0 mmol) and 1-

aminonaphthalene-2-carboxaldehyde (500 mg, 4.0 mmol) in absolute EtOH (50 mL) was added 

saturated ethanolic KOH (2 mL). The solution was refluxed under Ar for 24 h. After removal of 

the solvent, the residue was purified by column chromatography on silica gel, eluted with 

CH2Cl2/hexanes (1:5, v/v), to provide L2-4 (580 mg, 65%) as yellow solid. 1H NMR (400 MHz, 

CDCl3) δ 9.58 (d, J = 8.1 Hz, 1H), 9.11 (d, J = 8.6 Hz, 1H), 9.01 (d, J = 8.4 Hz, 1H), 8.40 (t, J = 

8.2 Hz, 2H), 8.27 (d, J = 8.5 Hz, 1H), 8.06 – 7.68 (m, 7H), 7.66 – 7.57 (m, 1H). 

Ligand L2-5. To a solution of 2-acetylpyridine (70 mg, 0.58 mmol) and 3-

aminonaphthalene- 2-carboxaldehyde (100 mg, 0.58 mmol) in absolute EtOH (50 mL) was added 
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saturated ethanolic KOH (2 mL). The solution was refluxed under Ar for 24h. After the solvent 

was removed, the residue was purified by column chromatography on alumina gel, eluted with 

CH2Cl2/hexanes (1:9, v/v), to provide L2-5 (57 mg, 38%) as yellow powder. 1H NMR (400 MHz, 

CDCl3) δ 8.74 (dd, J = 11.9, 7.1 Hz, 3H), 8.55 (d, J = 8.9 Hz, 1H), 8.47 – 8.37 (m, 2H), 8.09 (d, J 

= 9.7 Hz, 1H), 8.03 (d, J = 9.6 Hz, 1H), 7.89 (t, J = 6.8 Hz, 1H), 7.57 – 7.46 (m, 2H), 7.40 – 7.34 

(m, 1H). 

Ligand L2-6. To a solution of 2-acetylquinoline (60 mg, 0.35 mmol) and 3-

aminonaphthalene- 2-carboxaldehyde (60 mg, 0.35 mmol) in absolute EtOH (50 mL) was added 

saturated ethanolic KOH (2 mL). The solution was refluxed under Ar for 24h. After removal of 

the solvent, the residue was purified by column chromatography on alumina gel, eluted with 

CH2Cl2/hexanes (1:3, v/v), to provide L2-6 (58 mg, 54%) as yellow powder. 1H NMR (400 MHz, 

CDCl3) δ 8.91 (d, J = 8.6 Hz, 1H), 8.87 – 8.79 (m, 2H), 8.47 (d, J = 8.6 Hz, 1H), 8.44 (s, 1H), 8.34 

(d, J = 8.7 Hz, 1H), 8.23 (d, J = 8.3 Hz, 1H), 8.14 – 8.08 (m, 1H), 8.04 (ddd, J = 7.0, 2.6, 0.9 Hz, 

1H), 7.91 – 7.85 (m, 1H), 7.75 (ddd, J = 8.4, 6.8, 1.4 Hz, 1H), 7.62 – 7.55 (m, 1H), 7.55 – 7.48 

(m, 2H). 

General Procedure for the Synthesis of 2-1 – 2-6.  The [Ir(dppi)2Cl]2 dimer (0.03 mmol), 

diimine ligand (0.06 mmol) and AgSO3CF3 (0.06 mmol) were added into the mixed solvent 

(CH2Cl2:MeOH = 2:1 (v/v), 45 mL) and the reaction mixture was degassed and heated to reflux 

for 24 h. The solution was cooled to room temperature and NH4PF6 (0.3 mmol) was added to stir 

at r.t. for 2 h. After removal of the solvent, the residue was purified by column chromatography 

on neutral alumina gel, eluted with CH2Cl2/hexane (3:1 - 1:0, v/v), followed by recrystallization 

from dichloromethane and hexanes. 
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Complex 2-1. A red powder (51 mg) was obtained as the product (yield: 74%). 1H NMR 

(CDCl3, 400 MHz): δ 8.84 (d, J = 7.1 Hz, 1H), 8.42 (d, J = 4.8 Hz, 1H), 8.15 – 7.64 (m, 22H), 7.63 

– 7.52 (m, 3H), 7.38 (d, J = 7.7 Hz, 2H), 7.25 (s, 1H), 7.14 – 7.00 (m, 4H), 6.88 – 6.76 (m, 3H), 

6.74 – 6.66 (m, 2H), 6.57 (dd, J = 12.7, 7.0 Hz, 3H), 6.34 (d, J = 7.9 Hz, 1H), 6.22 (t, J = 7.9 Hz, 

1H). ESI-HRMS (m/z): calcd. for [C72H44N6Ir]
+, 1185.3263; found, 1185.3329. Anal. Calcd. for 

C72H44N6IrPF6
.0.6CH2Cl2.1.7C6H14: C, 65.09; H, 4.55; N, 5.50. Found: C, 64.93; H, 4.69; N, 5.82. 

Complex 2-2. An orange powder (46 mg) was obtained as the product (yield: 66%).  1H 

NMR (CDCl3, 400 MHz): δ 9.52 (d, J = 7.4 Hz, 1H), 9.05 (d, J = 8.9 Hz, 1H), 8.59 (d, J = 4.2 Hz, 

1H), 8.26 – 7.88 (m, 13H), 7.87 – 7.78 (m, 1H), 7.78 – 7.51 (m, 8H), 7.37 (d, J = 8.7 Hz, 1H), 7.24 

(d, J = 12.9 Hz, 2H), 7.15 (t, J = 7.7 Hz, 1H), 7.07 – 7.00 (m, 2H), 6.97 (d, J = 8.1 Hz, 1H), 6.88 

(dd, J = 16.8, 8.1 Hz, 2H), 6.78 (d, J = 7.8 Hz, 2H), 6.73 – 6.54 (m, 4H), 6.47 (d, J = 8.0 Hz, 1H), 

6.19 – 6.09 (m, 2H), 6.04 (d, J = 7.6 Hz, 2H), 5.35 (d, J = 6.7 Hz, 1H). ESI-HRMS (m/z): calcd. 

for [C76H46N6Ir]
+, 1235.3420; found, 1235.3466. Anal. Calcd. for C76H46N6IrPF6

.H2O: C, 65.27; 

H, 3.46; N, 6.01. Found: C, 64.93; H, 3.23; N, 6.18. 

Complex 2-3. A red powder (42 mg) was obtained as the product (yield: 60%). 1H NMR 

(CDCl3, 400 MHz): δ 8.44 (d, J = 8.5 Hz, 2H), 8.19 (d, J = 7.7 Hz, 2H), 8.04 (d, J = 7.8 Hz, 4H), 

7.94 (dd, J = 17.0, 8.5 Hz, 4H), 7.88 – 7.66 (m, 12H), 7.64 – 7.55 (m, 4H), 7.45 (t, J = 7.4 Hz, 

2H), 7.16 (d, J = 7.9 Hz, 2H), 7.03 – 6.85 (m, 6H), 6.72 (td, J = 7.6, 1.1 Hz, 2H), 6.62 – 6.52 (m, 

2H), 6.25 (t, J = 7.8 Hz, 2H), 6.17 – 6.08 (m, 2H). ESI-HRMS (m/z): calcd. for [C76H46N6Ir]
+, 

1235.3420; found, 1235.3453. Anal. Calcd. for C76H46N6IrPF6: C, 66.13; H, 3.36; N, 6.09. Found: 

C, 65.76; H, 3.69; N, 5.96. 

Complex 2-4. A red powder (44 mg) was obtained as the product (yield: 60%). 1H NMR 

(CDCl3, 400 MHz): δ 9.16 (d, J = 7.2 Hz, 1H), 9.05 (d, J = 8.1 Hz, 1H), 8.46-8.43 (m, 2H), 8.27-
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8.23 (m, 1H), 8.17 (dd, J = 7.6, 4.4 Hz, 2H), 8.12-8.00 (m, 4H), 7.98-7.77 (m, 9H), 7.71 (t, J = 8.0 

Hz, 2H), 7.64-7.54 (m, 4H), 7.40 (d, J = 7.6 Hz, 1H), 7.29-7.20 (m, 3H), 7.19-7.16 (m, 5H), 7.11 

(d, J = 7.6 Hz, 1H), 6.98-7.91 (m, 3H), 6.72-6.71 (m, 2H), 6.62 (td, J = 8.0, 1.2 Hz, 1H) , 6.47 (d, 

J = 7.8 Hz, 1H), 6.27 (t, J = 7.6 Hz, 1H), 6.15 (t, J = 7.7 Hz, 1H), 6.05 (t, J = 7.6 Hz, 1H), 5.94 (t, 

J = 7.6 Hz, 1H), 5.33 (dd, J = 7.9, 1.0 Hz, 1H). ESI-HRMS (m/z): calcd. for [C80H48N6Ir]
+ , 

1285.3578; found, 1285.3622. Anal. Calcd. for C80H48N6IrPF6: C,67.17; H, 3.38; N, 5.88. Found: 

C, 66.95; H, 3.20; N, 5.83. 

Complex 2-5. A dark red powder (43 mg) was obtained as the product (yield: 50%). 1H 

NMR (CDCl3, 400 MHz): δ 9.18 (d, J = 7.9 Hz, 1H), 8.69 (s, 1H), 8.53 (d, J = 4.7 Hz, 1H), 8.37 

(s, 1H), 8.14 – 7.85 (m, 14H), 7.82 (d, J = 8.8 Hz, 1H), 7.78 – 7.72 (m, 1H), 7.72 – 7.59 (m, 5H), 

7.49 (ddd, J = 19.6, 16.1, 6.9 Hz, 4H), 7.37 (dd, J = 10.7, 8.7 Hz, 2H), 7.21 (d, J = 7.1 Hz, 1H), 

7.18 – 7.13 (m, 1H), 7.09 – 6.84 (m, 6H), 6.84 – 6.74 (m, 3H), 6.65 – 6.59 (m, 1H), 6.23 (d, J = 

6.8 Hz, 1H), 6.02 (t, J = 7.8 Hz, 1H), 5.37 (d, J = 7.5 Hz, 1H). ESI-HRMS (m/z): calcd. for 

[C76H46N6Ir]
+, 1235.3420; found, 1235.3389. Anal. Calcd. for C76H46N6IrPF6

.0.7CH2Cl2
.0.2C6H14: 

C, 64.21; H, 3.47; N, 5.77. Found: C, 63.88; H, 3.84; N, 6.20. 

Complex 2-6. A brown powder (51 mg) was obtained as the product (yield: 61%). 1H NMR 

(CDCl3, 400 MHz): δ 8.93 (s, 1H), 8.55 (s, 1H), 8.41 (dd, J = 13.3, 7.9 Hz, 2H), 8.32 (d, J = 7.0 

Hz, 1H), 8.26 (d, J = 8.6 Hz, 1H), 8.14 – 8.04 (m, 3H), 7.97 (dt, J = 18.2, 8.8 Hz, 6H), 7.88 – 7.68 

(m, 6H), 7.68 – 7.58 (m, 6H), 7.56 (d, J = 9.0 Hz, 2H), 7.52 – 7.40 (m, 2H), 7.34 (d, J = 7.2 Hz, 

1H), 7.30 (d, J = 8.2 Hz, 2H), 7.18 (d, J = 7.4 Hz, 1H), 7.11 (d, J = 7.3 Hz, 1H), 6.81 (ddd, J = 

13.7, 8.9, 5.2 Hz, 5H), 6.63 – 6.49 (m, 3H), 6.41 (t, J = 7.9 Hz, 1H), 6.06 (t, J = 7.8 Hz, 2H), 5.98 

(d, J = 8.9 Hz, 1H). ESI-HRMS (m/z): calcd. for [C80H48N6Ir]
+, 1285.3578; found, 1285.3577. 
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Anal. Calcd. for C80H48N6IrPF6
.0.8CH2Cl2

.0.1C6H14: C, 64.87; H, 3.41; N, 5.58. Found: C, 64.60; 

H, 3.76; N, 5.68. 

 

2.2.2. Photophysical studies 

The UV−vis absorption spectra of complexes 2-1 – 2-6 were recorded using a Cary 50 

spectrophotometer in a 1-cm quartz cuvette. The emission spectra of 2-1 – 2-4 were measured on 

a HORIBA FluoroMax 4 fluorometer/phosphorometer. The spectra of 2-5 and 2-6 were detected 

with an InGaAs detector from 670 nm to 1225 nm (λex = 473 nm) with a 500 nm long pass filter. 

The emission quantum yields were obtained using the relative actinometry method in degassed 

solutions.56 The reference used for complexes 2-1 – 2-4 was a degassed acetonitrile solution of 

[Ru(bpy)3]Cl2 (Φem = 0.097, λex = 436 nm).57 For complexes 2-5 and 2-6, IR26 (Φem = 0.0005)58 

was used as the reference. The quantum yield reported for 2-5 and 2-6 are only for the emission in 

the region of 700-850 nm detected by the Hamamatsu Photomultiplier tube (PMT) R928. 

Acetonitrile solution of [Ru(bpy)3]Cl2 was used as the reference in this case. 

The ns transient absorption (TA) measurements (TA spectra, triplet lifetimes and quantum 

yields) were conducted on a laser flash photolysis spectrometer (Edinburgh LP920) excited by the 

third-harmonic output (355 nm) of a Quantel Brilliant Nd:YAG laser with a pulse duration of 4.1 

ns and a repetition rate of 1 Hz. Before measurement, all sample solutions were purged with Ar 

for 30 min. The triplet excited-state molar extinction coefficients (εT) were determined by the 

singlet depletion method.55 After the εT value was obtained, the triplet excited-state quantum yield 

was calculated via the relative actinometry,54 using SiNc in benzene as the reference (ε590 = 70,000 

M−1 cm−1, ΦT = 0.20).59 
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2.2.3. Computational methods  

Gaussian 09 quantum computing software package60 was implemented for all calculations, 

i.e. geometry optimization and the electronic structure for ground and excited states. Density 

functional theory (DFT) and time-dependent DFT (TDDFT) was implemented using the functional 

PBE1PBE61 with mixed basis set LANL2DZ for Ir ion62 and 6-31G* for light elements (H, C and 

N).63-64 Similar methodologies have been proven to successfully describe structural and optical 

properties of various Ir(III) complexes.17,20,30,31,39,65-67 Additionally, the solvent effect was 

implicitly included by Conductor Polarized Continuum Model (CPCM)68,69 for both 

dichloromethane and acetonitrile. Absorption spectrums were obtained using the TDDFT with the 

same functional and basis set specified above. The lowest 100 transitions were calculated and then 

broadened using the Gaussian function with line-width of σ = 0.1 eV in order to reproduce the 

thermal broadening correlated with the experimental absorption spectra.  

To theoretically investigate the nature of the emitting state for each complex, two 

approaches were used. The first method is the SCF,70,71 where the phosphorescence energies are 

found by taking the differences between the total energies at the triplet and singlet spin 

configurations of the complexes. The second method used is a modification of the SCF, where 

the energies are found from TDDFT using the ground state geometry at the triplet spin 

configuration. Both methods provide qualitative agreement in phosphorescence energies. 

Additionally, TDDFT-based SCF provides natural transition orbitals38 (NTOs) used for analysis 

of the excited state character. To characterize the electronic transitions contributing to absorption 

and emission, NTOs were calculated using Gaussian 09 and visualized using GaussView 5.09 

graphical software72 with isovaule of 0.02. 
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2.2.4. Electrochemical measurements 

The redox potentials of 2-1 − 2-6 were measured by cyclic voltammetry on a Pine 

WaveDriver potentiostat/galvanostat voltammetric analyzer in 110-3 M anhydrous acetonitrile 

solutions with a scan rate of 50 mV/s. The electrolytic cell used a platinum plate as the working 

electrode, Ag/AgCl as the reference electrode, and a platinum wire as the counter electrode. The 

supporting electrolyte was a 0.1 M solution of tetrabutylammonium hexafluorophosphate 

(TBAPF6). The electrochemical potentials were recorded in volts against the Ag/AgCl reference 

electrode with the ferrocenium/ferrocene (Fc+/Fc) couple as the internal standard. The reported 

redox potentials were calculated against the Fc+/Fc couple. The solution was deaerated with 

prepurified argon gas for 15 min before each measurement. 

 

2.3. Results and discussion 

2.3.1. Electronic absorption 

The UV−vis absorption spectra of complexes 2-1 – 2-6 were recorded in CH2Cl2 and are 

shown in Figure 2.1. The absorption band maxima and molar extinction coefficients are compiled 

in Table 2.1. The strong absorption bands with large extinction coefficients at wavelengths shorter 

than 430 nm are assigned to dppi and N^N ligands spin–allowed intraligand (IL) 1π,π* transitions. 

The tails in the region of 430 – 700 nm are attributed to 1,3MLCT (metal–to–ligand charge transfer) 

/ 1,3LLCT (ligand–to–ligand charge transfer) transitions based on the small extinction coefficients 

and the DFT calculation results (see the natural transition orbitals (NTOs)38 in Tables 2.2 and 2.3, 

and discussions in the following paragraphs), which is in line with the reported Ir(III) complexes 

with extended π–conjugated N^N ligand.29,30,39,40 
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Figure 2.1. UV−vis absorption spectra of 2-1 – 2-6 in CH2Cl2. 

 

Table 2.1. Electronic absorption, emission, and triplet excited–state absorption parameters for 

complexes 2-1 − 2-6. 

 λabs /nm (log ε)a λem/nm (τem/μs); em
b λT1‑Tn/nm (τTA/μs; log T1‑Tn ; T)c 

2-1 290 (5.12), 340 (4.96), 

406 (4.66), 498 (3.00) 

625 (0.94); 0.13 775 (0.67; 4.85; 0.091) 

2-2 292 (5.20), 339 (4.98), 

401 (4.64), 445 (3.60) 

593 (0.15); 0.017 545 (16.1; 5.24; 0.075) 

2-3 290 (5.15), 344 (5.04), 

405 (4.69), 496 (3.37), 

580 (3.13) 

657 (0.93); 0.12 390 (0.56; 5.01; 0.23) 

2-4 291 (5.25), 328 (5.12), 

384 (4.86), 485 (3.39) 

645 (1.34); 0.085 425 (14.9; 5.17; 0.10) 

2-5 292 (5.20), 309 (5.13), 

357 (4.90), 405 (4.68), 

444 (3.89), 469 (3.48), 

550 (2.89) 

755 (2.21), 845 (–), 

938 (–), 1054 (–); 

0.0017 

665 (2.82; 5.37; 0.027) 

2-6 292 (5.27), 336 (5.07), 

386 (4.81), 402 (4.74), 

480 (3.62), 599 (3.31) 

780 (0.86), 904 (–), 

967 (–), 1087 (–); 

0.0019 

785 (0.87; 5.13; 0.018) 

a Absorption band maxima and molar extinction coefficients of the UV−vis absorption in CH2Cl2 

at room temperature. b Emission band maxima and decay lifetimes in CH2Cl2 at room temperature, 

c = 1 × 10−5 mol/L. The emission characteristics of 2-1 – 2-4 were measured using Hamamatsu 

R928 PMT as the detector, while an InGaAs array was used to measure the emission of 2-5 and 2-

6. The reference used was a degassed CH3CN solution of [Ru(bpy)3]Cl2 (Φem = 0.097, λex = 436 

nm) for 2-1 – 2-4, and IR26 (Φem = 0.0005) for 2-5 and 2-6. c Nanosecond TA band maxima, triplet 

extinction coefficients, triplet excited–state lifetimes, and quantum yields measured in CH3CN at 

room temperature. SiNc in C6H6 was used as the reference. (ε590 = 70,000 L mol−1 cm−1, ΦT = 

0.20). 
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Table 2.2. Natural transition orbitals (NTOs) representing singlet transitions contributing to the 

low-energy absorption bands of complexes 2-1 – 2-6 in CH2Cl2. 
 Sn       Hole   Electron   Hole Electron 

2-1 S1 

527 nm 

f = 0.001 
  

2-4 S1 

545 nm 

f = 0.006 
  

S2 

494 nm 

f = 0.002 
  

S2 

513 nm 

f = 0.017 
  

S3 

440 nm 

f = 0.002 
  

S3 

454 nm 

f = 0.015 
  

2-2 S1 

501 nm 

f = 0.005 
  

2-5 S1 

583 nm 

f = 0.001 
  

S2 

466 nm 

f = 0.007 
  

S2 

542 nm 

f = 0.002 
  

S3 

420 nm 

f = 0.010 
  

S3 

476 nm 

f = 0.004 
  

S4 

401 nm 

f = 0.104 
  

S4 

453 nm 

f = 0.060 
  

2-3 S1 

570 nm 

f = 0.010 
  

2-6 S1 

612 nm 

f = 0.012 
  

S2 

540 nm 

f = 0.019 
  

S2 

581 nm 

f = 0.145 
  

S3 

468 nm 

f = 0.011 
  

S3 

498 nm 

f = 0.267 
  

S4 

425 nm 

f = 0.031 
  

S4 

484 nm 

f = 0.024 
  

 

S5 

420 nm 

f = 0.034   

S5 

444 nm 

f = 0.010 
  

    S6 

439 nm 

f = 0.015 
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Table 2.3. Characterization of molecular orbitals for the first five HOMOs and LUMOs of 

complexes 2-1 – 2-6 in CH2Cl2. 
 2-1 2-2 2-3 2-4 

LUMO+4 π*(C^N) π*(C^N)/d(Ir) π*† π*† 

LUMO+3 π*(C^N-N^N) π*(C^N) π*(C^N) π*(N) 

LUMO+2 π*(C^N) π*(pyr) π*(C^N) π*† 

LUMO+1 π*(C^N) π*† π*(N^N) π*(N^N)/π*(Ph) 

LUMO π*(N^N) π*(N^N) π*(N^N)/ d(Ir) π*(N^N) 

HOMO d(Ir)/ π(C^N) d(Ir)/ π(C^N) d(Ir)/ π(C^N) d(Ir)/ π(C^N) 

HOMO-1 π(C^N)/d(Ir) π(C^N) π(C^N) π(C^N) 

HOMO-2 d(Ir)/ π(C^N) π† d(Ir)/ π(C^N) d(Ir)/ π(C^N) 

HOMO-3 d(Ir)/ π(C^N) π† d(Ir)/ π(C^N) π† 

HOMO-4 d(Ir) / π(C^N) π† d(Ir)/ π(C^N) d(Ir)/ π(C^N) 

 2-5 2-6  

LUMO+4 π*(C^N) π*(N^N) / d(Ir) 

LUMO+3 π*(C^N) π*(C^N) 

LUMO+2 π*(C^N) π*(C^N) 

LUMO+1 π*(C^N-N^N) π*(N^N) 

LUMO π*(N^N) / d(Ir) π*(N^N) / d(Ir) 

HOMO d(Ir)/ π(C^N) π(C^N)/ d(Ir) 

HOMO-1 π(C^N) / d(Ir) π(C^N) 

HOMO-2 d(Ir)/ π(C^N) π(N)/d(Ir)/π(C^N) 

HOMO-3 π(C^N) / d(Ir) d(Ir)/π(C^N)/π(N) 

HOMO-4 π(C^N) / d(Ir) d(Ir)/π(C^N)/π(N) 

 

Examination of the tails at 450–700 nm for complexes 2-1 – 2-6 revealed that 

benzannulation at either the 5’,6’–position of pyridine or the 6,7–position of quinoline of the N^N 

ligand caused red–shifts of the 1,3MLCT / 1,3LLCT transitions and increased the molar extinction 

coefficients (2-3, 2-5, and 2-6 vs. 2-1). In contrast, benzannulation at the 7,8–position of quinoline 

of the N^N ligand induced blue–shifts of the 1,3MLCT / 1,3LLCT transitions in complexes 2-2 and 

2-4 with respect to their corresponding complexes 2-1 and 2-3 (i.e. 2-2 vs. 2-1 and 2-4 vs. 2-3). 

This phenomenon is contrary to the previous findings that expansion of the aromatic π–system led 
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to red–shifts of the absorption band.29,30,41 However, benzannulation at the 5’,6’–position of 

pyridine in complex 2-2 still red–shifted the 1,3MLCT / 1,3LLCT transitions in 2-4. 

To understand the site selective benzannulation effect, DFT calculations were performed 

for 2-1 – 2-6 in CH2Cl2 using Gaussian09 software package and PBE1 functional. The resultant 

ground–state energy diagram for 2-1 – 2-6 is shown in Figure 2.2. The calculated electron density 

distributions of HOMO and LUMO are the same for all six complexes (see the representative 

frontier molecular orbital (FMO) plots for 2-1 in Figure 2.1, and the FMOs for the other complexes 

in Table 2.4), with the HOMO being delocalized on the dppi ligands and the d–orbital of the Ir(III) 

ion and the LUMO being exclusively on the diimine ligand. The optimized geometries of these 

complexes showed that although all complexes adopted similar octahedral geometry around the 

Ir(III) center, the dihedral angles within the N^N ligand are 8–11 degrees larger in 2-2 and 2-4 

compared to the other complexes (Table 2.4) due to the increased steric hindrance from the 

additional phenyl ring fused at the 7,8–position of quinoline upon coordination. The larger 

distortion of the N^N ligand in 2-2 and 2-4 could destabilize the N^N ligand localized LUMO, 

while the HOMO energies remain unchanged. Consequently, the HOMO–LUMO gaps increased 

in 2-2 and 2-4, and thus blue–shifts occurred. On the other hand, benzannualation at the 5’,6’–

position of pyridine or the 6,7–position of quinoline of the N^N ligand stabilized the LUMO in 2-

3, 2-5, and 2-6, resulting in decreased HOMO–LUMO gap and red–shifted charge transfer 

transitions. 
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Table 2.4. HOMO and LUMO of 2-1 – 2-6 in CH2Cl2. 
 HOMO LUMO  HOMO LUMO  

2-1 

  

2-2 

  

H-L 

2-1 

  

2-3 

  

L-L 

2-1 

  

2-5 

  

L-L 

2-5 

  

2-6 

  

L-L 

2-3 

  

2-6 

  

L-L 

2-2 

  

2-4 

  

L-L 

2-3 

  

2-4 

  

H-L 
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Figure 2.2. The ground–state molecular orbital diagram for 2-1 – 2-6 in CH2Cl2, and HOMO and 

LUMO plots for 2-1. 

 

Although the increased distortion of the N^N ligands seems reasonably explain the blue–

shifts in 2-2 and 2-4, this does not appear to be able to explain the blue–shifts in the Ru(II) 

complexes with benzannulation at the 4,5–position of the bipyridine ligand27 or fusion aromatic 

ring(s) at the 5,6–position of the phenanthroline ligand.28 In both cases, benzannulation did not 

cause distortion of the N^N ligand upon coordination. Therefore, the orbital symmetry analysis 

method reported by Thompson and Gordon for rationalizing the blue–shifts in (N^N^N)PtCl 

complexes25 was applied to complexes 2-1 – 2-6. In this method, benzannulation was considered 

occurring through interactions of the FMOs of the parent compound with those of 1,3–butadiene 

or ethene. Depending on the electron density distributions on the FMOs of the parent compound 

and 1,3–butadiene or ethene and the orbital symmetry at the site of benzannulation, either the 

HOMO or LUMO of 1,3–butadiene or ethene interacted with the LUMO of the parent compound. 

These interactions destabilized (when the HOMO of 1,3–butadiene interacted) or stabilized (when 

the LUMO of 1,3–butadiene interacted) the LUMO of the parent compound while the HOMO was 

intact, resulting in blue– or red–shifts in absorption.25 Our DFT calculations showed that the 
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HOMO–LUMO transitions of 2-1 – 2-6 contributed 64–68% (Table 2.5) to the lowest singlet 

transition (S1 state), thus the FMO analysis can be used to explain the blue– or red–shifts of 2-1 – 

2-6 upon benzannulation. The qualitative orbital diagram of the valence orbitals for 2-1, 2-2, 2-3 

and 2-5 is provided in Figure 2.3, which represents the cases when benzannulation occurs at the 

7,8–position of quinoline (2-2) or the 5’,6’–position of pyridine (2-3) or the 6,7–position of 

quinoline (2-5). 

 

Table 2.5. Percentage of HOMO-LUMO transition contributing to S1 of complexes 2-1 – 2-6 

calculated in CH2Cl2 solvent. 

 Percent HOMO-LUMO 

2-1 67% 

2-2 68% 

2-3 64% 

2-4 68% 

2-5 67% 

2-6 64% 

 

Because the HOMOs for all complexes are delocalized on one of the dppi ligands and the 

d–orbital of the Ir(III) ion while the LUMOs being exclusively on the diimine ligands, 

benzannulation at the N^N ligand did not impact the HOMO energy but only altered the energy of 

LUMO. Depending on the symmetry of MOs at the site of benzannulation, either the HOMO or 

LUMO of 1,3–butadiene interacts with the LUMO of the N^N ligand. As shown in Figure 2.3, 

when benzannulation occurs at the 7,8–position of quinoline in complex 2-2, the LUMO symmetry 

of 2-1 at the annulation site matches the HOMO symmetry of 1,3–butadiene. The LUMO–HOMO 

interactions raise the LUMO energy in 2-2 and thus cause the blue–shifted CT absorption band. 

The similar phenomenon occurs from 2-3 to 2-4 (Figure 2.4). In contrast, when benzannulation 

takes place at the 5’,6’–position of pyridine or the 6,7–position of quinoline, the LUMO symmetry 

at the respective interacting site matches the LUMO symmetry of 1,3–butadiene. The LUMO–
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LUMO interactions result in the stabilized LUMOs in 2-3 and 2-5 compared to 2-1, which 

consequently induces the red–shifts of the CT transitions in 2-3 and 2-5. This is the same case for 

complex 2-6 (Figure 2.4). 

It should be pointed out that when considering the degree of orbital mixing between the 

parent complex and 1,3–butanediene, both the orbital symmetry and orbital energy difference have 

to be taken into account. In fact, the larger the difference in orbital energies, the smaller their 

coupling (mixing), despite similarities in orbital symmetry. Our calculations show the energy 

splitting of > 2 eV between HOMO (–6.66 eV) and HOMO+1 (–8.79 eV), as well as between 

LUMO (–0.55 eV) and LUMO+1 (+2.30 eV) in 1,3–butanediene. Therefore, much larger 

difference between the LUMO energy of the parent complex and the HOMO–1/LUMO+1 energies 

of 1,3–butanediene, as compared to the HOMO/LUMO energies of 1,3–butanediene. This larger 

energy difference leads to negligible contributions of HOMO–1/LUMO+1 to the orbital mixing. 

As such, only the HOMO and LUMO of 1,3–butanediene were considered in analyzing the 

stabiliza–tion/destabilization of the LUMO of the parent complex. 

 

 

Figure 2.3. Frontier molecular orbital mixing between 2-1 and 1,3–butadiene to give rise to 2-2, 

2-3 and 2-5. 
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Figure 2.4. Frontier molecular orbital mixing between 2-2, 2-3, 2-5 and 1,3-butadiene. 

 

2.3.2. Electrochemical properties  

To confirm the impact of site–dependent benzannulation on the HOMO–LUMO gaps in 2-

1 − 2-6, electrochemical properties of 2-1 − 2-6 were investigated in degassed anhydrous CH3CN 

solutions by cyclic voltammetry (CV) using ferrocenium/ferrocene (Fc+/Fc) couple as the internal 

standard. The cyclic voltammograms of 2-1 and 2-3 are presented in Figure 2.4. The obtained 

redox potentials vs Fc+/Fc are listed in Table 2.6. While all of the other complexes exhibited 

irreversible oxidation processes with the cathodic peaks of the first oxidation waves occurring at 

approximately 0.8 V, complex 2-3 showed a reversible oxidation process with a half–wave 

potential of 0.83 V. It appears that the oxidation potentials of 2-1 – 2-6 are essentially the same, 

which is consistent with the same nature of their HOMOs obtained from the DFT calculations, i.e. 

C^N ligands and d–orbital based HOMOs. These values are also in line with the half–wave 
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oxidation potential of 0.83 V for [Ir(ppy)2(dtb–bpy)]PF6 reported in the literature15 and can be 

attributed to the oxidation of Ir(III) to Ir(IV), with some contributions from the C^N ligand 

oxidation. For complexes 2-1 – 2-5, there were additional oxidation peak(s) around 1 V or at > 1 

V, which could be ascribed to further oxidation of the cyclometalating ligands. 

In contrast, the first reduction waves for all complexes except 2-2 and 2-4 were reversible, 

and the reduction potentials varied significantly among these complexes. The half–wave reduction 

potentials decreased from 2-1, 2-3, 2-5 to 2-6; while the anodic reduction potentials for the first 

reduction waves of 2-2 and 2-4 increased compared to those of 2-1 and 2-3, respectively. However, 

the Ered
pa value of 2-4 decreased from that of 2-2. These trends match the trends obtained from the 

DFT calculation for the LUMOs in these complexes, confirming that the LUMOs of these 

complexes are indeed localized on the corresponding N^N ligands. Benzannualation at the 5’,6’–

position of pyridine or the 6,7–position of quinoline of the N^N ligand stabilized the LUMOs in 

2-3, 2-5, and 2-6; while benzannulation at the 7,8–position of quinoline of the N^N ligand 

destabilized the LUMOs in 2-2 and 2-4 with respect to those in 2-1 and 2-3. The second reduction 

wave around –2.0 V can be assigned to the reduction of the cyclometalating ligands. The trend of 

the electrochemical energy gaps (Egap) of these complexes matches well with the trend of the 

calculated HOMO–LUMO gaps although there appears to be some discrepancy in the absolute 

values of the calculated HOMO–LUMO gaps with the experimental electrochemical band gaps. 

Therefore, the DFT calculations clearly confirm and explain the trend in energy level shifts upon 

benzannulation at different sites. A similar discrepancy between the calculated HOMO–LUMO 

gaps and the electrochemical energy gaps was reported in [Ir(ppy)2(dtb–bpy)]PF6 and other 

fluorinated cationic iridium complex.14,43 In addition, the electrochemical measurements were 
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carried out in CH3CN, while the DFT calculations used CH2Cl2 as the solvent. The different 

solvents may make minor contribution to the discrepancy as well. 

 

Table 2.6. Electrochemical properties of Ir(III) complexes 2-1 – 2-6. 

 Eox
1/2 (V)a 

[ΔEp (mV)] 

Eox
pc (V) Ered

1/2 (V) 

[ΔEp(mV)] 

Ered
pa (V) Egap (V)b 

2-1 irr 0.81; 1.02 –1.57 [37] –1.59, –2.32 2.40 

2-2 irr 0.76; 0.92; 

1.22; 1.34 

irr –1.72; –2.21; –2.34 2.48 

2-3 0.83 [69] 0.81; 1.00 –1.41 [75];  –2.06 [77] –1.43; –2.05 2.24 

2-4 irr 0.77; 1.11 irr –1.68; –2.25 2.45 

2-5 irr 0.81; 1.02 –1.41 [67] –1.39; –2.07 2.20 

2-6 irr 0.88 –1.27 [85] –1.26; –1.91 2.14 

aE1/2 = (Epa+Epc)/2, where Epa and Epc are the anodic and cathodic peak potentials vs 

ferrocinium/ferrocene (Fc) couple measured in CH3CN and ΔEp=|Epa−Epc|. 
bEgap  = (first wave) 

Eox
pa – (first wave) Ered

pc. 

 

-2.0 -1.5 -1.0 1.0 1.5 2.0

 Potential vs NHE (V)

2-1

2-3

 
Figure 2.4. Cyclic voltammograms of 2-1 and 2-3 in degassed anhydrous CH3CN solutions 

(110−3 M) in the presence of 0.1 M tetrabutylammonium hexafluorophosphate as the supporting 

electrolyte and ferrocenium/ferrocene (Fc+/Fc) couple as the internal standard.  The potentials were 

recorded against an Ag/AgCl reference electrode. 

 

2.3.3. Photoluminescence  

To understand the effects of site–selective benzannulation on the triplet excited states, the 

emission characteristics of 2-1 – 2-6 at room temperature were investigated. Figure 2.5 displays 



 

73 

the normalized emission spectra of 2-1 – 2-6 in CH2Cl2. The emission band maxima and lifetimes 

are summarized in Table 2.1. The emission of 2-1 – 2-6 is relatively long–lived (~100 ns – 2.2 s), 

quite sensitive to oxygen quenching, and exhibit obvious red–shifts in comparison to their 

corresponding excitation wavelengths. Thus, they are phosphorescence from the triplet excited 

states, which is in line with the other reported Ir(III) complexes.1–20,29-32,37,39,44,45 However, the 

spectral features of 2-1 – 2-4 are distinctively different from those of 2-5 and 2-6. The spectra of 

2-1 – 2-4 are broad and featureless, while the spectra of 2-5 and 2-6 exhibit clear vibronic 

progressions. According to that reported for other Ir(III) complexes44,45 and the triplet NTOs shown 

in Table 2.7, the emission of 2-1 – 2-4 is attributed to 3MLCT / 3LLCT phosphorescence in nature, 

mixed with minor N^N ligand–centered 3π,π* character. In contrary, with the extended π–

conjugation along the 5’,6’–position of pyridine or 6,7–position of quinoline, the N^N ligand–

centered 3π,π* states became the lowest triplet excited states in 2-5 and 2-6. Thus, the emission of 

2-5 and 2-6 emanates from the ligand–center 3π,π* state. The emission was clearly blue–shifted 

upon benzannulation at the 7,8–position of quinoline (2-2 vs 2-1, and 2-4 vs 2-3). Opposed to this 

trend, benzannulation at the 5’,6’–position of pyridine or the 6,7–position of quinoline caused 

salient red–shifts going from 2-1 to 2-3 to 2-5 and 2-6 although the natures of the emitting states 

of 2-5 and 2-6 are distinct from those of 2-1 – 2-4. This trend is consistent with that observed for 

the low–energy electronic absorption bands. Thus, the site–dependent benzannulation effect 

applies not only to the lowest singlet excited states, but also to the lowest triplet excited states. 
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Figure 2.5. Normalized emission spectra of 2-1 – 2-6 at room temperature in CH2Cl2. The spectra 

of 2-1 – 2-4 were measured on a HORIBA FluoroMax 4 fluorometer/phosphorometer with a 

Hamamatsu PMT R928 as the detector, while the spectra of 2-5 and 2-6 were detected with an 

InGaAs sensor from 670 nm to 1225 nm (λex = 473 nm) with a 500 nm long pass filter. The vertical 

lines represent the triplet emission wavelengths calculated by TDDFT based SCF method. 

 

Table 2.7. NTOs representing transitions corresponding to the triplet emission of 2-1 to 2-6 in 

CH2Cl2 calculated by TDDFT–based SCF. 

Complexes T1 / nm Hole Electron 

2-1 671 (656) 

  
2-2 645 (638) 

  
2-3 733 (714) 

  
2-4 735 (702) 

  
2-5 1356 (765) 

  
2-6 1398 (804) 
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2.3.4. Transient absorption (TA)  

The nanosecond TA spectra of 2-1 – 2-6 were studied in acetonitrile to further understand 

the triplet excited state characteristics. The triplet excited–state lifetimes, extinction coefficients, 

and quantum yields are deduced or calculated, and the results are summarized in Table 2.1. The 

nanosecond TA spectra of 2-1 – 2-6 in acetonitrile immediately after 355 nm laser pulse excitation 

are presented in Figure 2.6, and the time–resolved spectra for each complex are provided in Figure 

2.7. For comparison purpose, the time–resolved TA spectra of the corresponding N^N ligand for 

each complex (L2-1 – L2-6) were measured in acetonitrile as well and the spectra are shown in 

Figure 2.8. 

Complexes 2-1 – 2-6 all possessed broad positive absorption bands in the region of 

400−800 nm, except that 2-1 – 2-3 exhibited a sharp bleaching band at 403–416 nm. The spectral 

features of 2-1 and 2-3, and 2-2 and 2-4 resembled each other. However, the spectral of 2-5 and 2-

6 differred from each other and from those of 2-1 – 2-4. For complexes 2-1, 2-3, 2-5, and 2-6 that 

have benzannulation at the 5’,6’–position of pyridine or the 6,7–position of quinoline of the 

diimine ligand, the triplet lifetimes deduced from the decay of TA are consistent with those 

obtained from the decay of emission in CH3CN (Table 2.1). Thus, the excited states giving rise to 

the observed TA in these four complexes should be their emitting states, i.e. predominantly 3MLCT 

/ 3LLCT state for 2-1 and 2-3, and 3π,π* localized on the N^N ligand for 2-5 and 2-6. This 

conclusion is further supported by the fact that the TA spectra of 2-5 and 2-6 resembled those of 

their respective N^N ligands shown in Figure 2.8. The intensity difference in the 350–450 nm 

region in these two complexes compared to those of their ligands should arise from the stronger 

ground–state absorption in this region that is much weaker or absent in their corresponding ligand. 
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For 2-2 and 2-4 that have benzannulation occurred at 7,8–position of quinoline, the major 

absorption band at 400–480 nm was blue–shifted compared to those of 2-1 and 2-3, respectively. 

However, a broad and strong absorption band appeared at 480–700 nm in 2-2 and 2-4. The TA 

spectral features of 2-2 and2- 4 resemble those of their corresponding N^N ligands (Figure 2.8). 

More strikingly, the transient species in 2-2 and 2-4 exhibited one order of magnitude longer 

lifetimes than those of 2-1 and 2-3, and the TA lifetimes were 1–2 orders of magnitude longer than 

their emission lifetimes. These features suggest that the transient absorbing excited states in 2-2 

and 2-4 differ from their emitting states. As discussed in the photoluminescence section, the 

emitting states in 2-2 and 2-4 predominantly have the 3MLCT / 3LLCT character. However, the 

much longer TA lifetimes and the drastically different TA spectral features at 480–800 nm in 2-2 

and 2-4 with respect to those of 2-1 and 2-3 suggest that the transient absorbing states in these two 

complexes are likely to be the N^N ligand based 3π,π* state. Although such a phenomenon is rare, 

it has been reported for other Ir(III),46 Pt(II),47,48 and Ru(II)49-52 complexes, in which those 

complexes possessed a short–lived 3CT emitting state and a long–lived nonemissive ligand–

localized 3π,π* transient absorbing state. Our TDDFT calculations for the triplet excited states of 

2-1 – 2-6 revealed that the T2 states in 2-2 and 2-4 predominantly had the N^N ligand localized 

3π,π* character in nature (Figure 2.8). Due to the increased energy of the T1 states in 2-2 and 2-4 

upon benzannulation at the 7,8–position of quinoline, as reflected by the blue–shifted emission in 

these two complexes, the T1 states became more closer to the 3π,π* dominated T2 state (Figure 

2.9). This could facilitate the mixing of the T1 and T2 states in these two complexes and led to the 

transient absorbing species in 2-2 and 2-4 having more N^N ligand–centered 3π,π* character. 

Alternatively, for reasons that are not clearly understood at this time, the nonemissive T2 states in 

2-2 and 2-4 gave rise to the observed TA. 
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It is interesting to note that the triplet quantum yields for these complexes all appeared to 

be quite low, which is inconsistent to that expected for heavy–metal containing transition–metal 

complexes, in which heavy–metal induced strong spin–orbit coupling should result in almost unity 

intersystem crossing. This phenomenon can be rationalized by the following factors: (1) When the 

–conjugation of the ligand increases, the contribution of the d–orbital to the FMOs of the 

complexes decreases, which reduces the spin–orbit coupling as reported by Schanze and co–

workers for phenylene vinylene platinum(II) acetylides;53 (2) When intersystem cross occurs in 

transition–metal complexes, it is possible to populate two triplet excited states simultaneously.46–

52 However, the triplet quantum yields were measured from the TA measurements, which did not 

take into account the population of the other triplet excited state that does not contribute to the 

observed TA; (3) The triplet quantum yields were obtained using the relative actinometry,54 in 

which the triplet excited–state absorption coefficient had to be known. In our studies, we used the 

singlet depletion method55 to estimate the triplet excited–state absorption coefficients, which 

assumed that the compound had no excited–state absorption at the valley of the bleaching band 

and no ground–state absorption at the peak of the TA band. If these conditions can’t be fully met, 

the errors in the obtained triplet excited state absorption coefficient could be large. This may 

influence the calculated triplet quantum yield as well. 
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Figure 2.6. Nanosecond transient difference absorption spectra of complexes 2-1 – 2-6 in 

acetonitrile immediately after 355 nm laser pulse excitation. A355 = 0.4 in a 1-cm cuvette. 
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Figure 2.7. Nanosecond time-resolved transient differential absorption spectra of 2-1 – 2-6 in 

acetonitrile.  λex = 355 nm, A355 = 0.4 in a 1-cm cuvette. 
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Figure 2.8. Nanosecond time-resolved transient differential absorption spectra of L2-1 − L2-6 in 

acetonitrile. λex = 355 nm, A355 = 0.4 in a 1-cm cuvette. 
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Figure 2.9. Calculated triplet excited state energy diagram for complexes 2-1 – 2-6 in CH3CN. 

 

2.4. Conclusion 

We demonstrated the first time that extending the π–conjugation of that N^N ligand could 

cause either blue– or red–shifts of the lowest–energy absorption and emission bands depending on 

the site of benzannulation in Ir(III) complexes. Molecular orbital symmetry analysis was applied 

to rationalize this unusual phenomenon. The site–dependent destabilization or stabilization of the 

LUMO (or LUTO in cases of excited state) upon benzannulation appears to be a general feature 

for small organic molecules and transition–metal complexes. The site–dependent benzannulation 

also influences the triplet excited–state absorption drastically. This discovery would enable a 

rational design of organic or organometallic compounds that require a pre–determined absorption 

and/or emission energies and could potentially advance the photonic fields such as OLED, solar 

energy conversion, luminescent biological labeling, etc. In addition, the complexes reported in this 

paper exhibited weak ground–state absorption at 430 – 700 nm, but stronger triplet excited–state 

absorption in this spectral region. Therefore, they have the potential to be developed into 

broadband reverse saturable absorbers. This study is currently undergoing and will be reported in 

the near future. 
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3. IMPACT OF BENZANNULATION SITE AT THE DIIMINE (N^N) LIGAND ON THE 

PHOTOPHYSICS AND REVERSE SATURABLE ABSORPTION OF 

CYCLOMETALATED MONOCATIONIC IRIDIUM(III) COMPLEXES 

 

3.1. Introduction  

Among the diverse transition−metal complexes, pseudo−octahedral d6 iridium(III) 

complexes have attracted growing interest in both academia and industry during the past two 

decades.1−4 The strong spin−orbit coupling induced by the Ir(III) ion enhances the intersystem 

crossing (ISC) rate and promotes triplet excited−state formation. These characteristics spark 

research interest in exploring potential binding geometries with novel ancillary ligands. After the 

seminal work by Watts et. al. on triply ortho−metalated iridium(III) complexes in the 1980s,5 

diverse mono−, bis− and triscyclometallated complexes with different polypyridine ligands or 

cyclometallating ligands have been reported.6,7 Among these complexes, cyclometalated 

monocationic Ir(III) complexes have been reported to play a crucial role in various applications, 

such as sensitized photo−upconversion,3 organic light emitting diodes (OLEDs),8−11 light−emitting 

electrochemical cells (LEECs),12,13 photodynamic therapy,14−16 nonlinear optics,17−19 

photocatalysis,20−22 and bioimaging and biosensing.23 

In view of the structures of the monocationic Ir(III) complexes [(N^N)Ir(C^N)2]
+ (where 

N^N refers to the diimine ligand and C^N refers to the cyclometalating ligand), the combination 

of one N^N ligand and two identical C^N ligands provides the opportunity to tune the 

photophysical properties of these complexes via a diverse selection and combination of ligands. 

Generally, the electron−deficient N^N ligand is the major contributor to the lowest unoccupied 

molecular orbital (LUMO) in these Ir(III) complexes, while the C^N ligands and the d−orbital of 
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the Ir(III) ion hold the majority of the highest occupied molecular orbital (HOMO).24−26 

Consequently, extending −conjugation or introducing electron−donating/withdrawing 

substituents on the N^N ligand would alter the LUMO exclusively. It has been reported that 

incorporation of electron−donating substituents, such as an amino or methoxy group, to the N^N 

ligand raised the LUMO and blue−shifted the low−energy absorption bands of Ir(III) complexes. 

In contrast, Ir(III) complexes bearing electron−withdrawing substituents at the N^N ligand, such 

as fluoro or cyano, displayed red−shifted low−energy absorption bands due to the stabilized 

LUMOs.26,27 Another approach to tune the LUMO energy is to bring π−conjugated units to the 

N^N ligand by benzannulation. It was reported that the energy of the LUMO decreased from −3.15 

eV to −3.38 eV for the Ir(III) complex bearing 2−(pyridin−2−yl)quinoline ligand upon 

benzannulation at the 2,2′−bipyridine ligand.26 Additionally, extending the π−conjugation of the 

N^N ligand via benzannulation or incorporation of −conjugated substituents simultaneously 

induces more 3π,π* character into the lowest triplet excited state (T1).
17,28−33 In contrast to the 

charge−transfer based T1 state (3CT), the 3π,π* based T1 state typically exhibits a longer lifetime, 

structured emission bands, and a higher emission quantum yield. Therefore, extending 

π−conjugation on the N^N ligand can serve as an adjuster for both the lowest singlet excited state 

and the lowest triplet excited state. 

In the reported work on benzannulation on organic compounds, either hypsochromic or 

bathochromic shifts of the absorption and emission bands have been observed depending on the 

site of benzannulation.34−37 Despite finding this unusual phenomenon in small organic molecules, 

examples featuring the impacts of varied site of benzannulation on the ligands on organometallic 

complexes are still rare.32,38 In seeking a better understanding of the effects of benzannulation site 

at the ligands on the photophysics of these complexes, the seminal report by Thompson and 
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Gordon38 on the (N^N^N)PtCl derivatives has intrigued our interest in other heavy 

transition−metal complexes, such as the Ir(III) complexes. In our previous work, we explored a 

series of cyclometalated monocationic Ir(III) complexes employing 

1,2−diphenyl−9H−pyreno[4,5−d]imidazole as the C^N ligands, and 2−(pyridin−2−yl)quinoline 

and its derivatives as the N^N ligand.32 Compared to the parent complex bearing the 

2−(pyridin−2−yl)quinoline ligand, pronounced red− or blue−shift of the absorption and emission 

bands was observed via benzannulation at the different sites of the N^N ligand. This effect was 

rationalized by symmetry analysis of the frontier molecular orbitals at the benzannulation site of 

the parent complex via theoretical calculations. While this phenomenon has been well explained 

for our previously studied complexes, validation of the prediction from our aforementioned work 

on tuning the photophysical properties of the Ir(III) complexes through benzannulation at the 

previously undeveloped sites of N^N ligand is still needed. Moreover, because of their readily 

adjustable ground−state and triplet excited−state absorption, these Ir(III) complexes have the 

potential for use as reverse saturable absorbers, which is worthy of in−depth study.17−19,29−31,33,39−42 

Targeting these goals, we have synthesized ten cyclometalated monocationic Ir(III) 

complexes (Chart 3.1). These complexes utilized 2−phenylquinoline as the cyclometalating 

ligands and 2,2′−bipyridine (bpy) derivatives with a varied degree of −conjugation as the diimine 

ligand. Extending −conjugation of the bpy ligand was realized via benzannulation at one pyridine 

ring (3-1 − 3-4), at the bridge of the two pyridine rings (3-5 – 3-7), or at the different sites (i.e. 

5,6−/5′,6′−, 4,5−/4′,5′−, or 3,4−/3′,4′−) of both pyridine rings (3-8 – 3-10). Complexes 3-2 – 3-4, 

3-6, 3-7, 3-9 and 3-10 are new complexes that are first reported herein. Although complexes 3-1,43 

3-544 and 3-845 are known in the literature, previous work has focused on their 

biological/biomedical activities, and no systematic photophysical or reverse saturable absorption 
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(RSA) studies have been reported for these complexes. More importantly, these complexes fall 

naturally into our focus on a comprehensive understanding of the impact of benzannulation site at 

the N^N ligand on the photophysics and RSA of the cyclometalated monocationic Ir(III) 

complexes. 

 

Chart 3.1.  Structures of complexes 3-1 – 3-10. 

 

3.2. Experimental section  

3.2.1. Materials and synthesis  

All reagents and solvents were purchased from Alfa Aesar or VWR International and used 

as received unless otherwise stated. Al2O3 gels (activated, neutral) and silica gels (230−400 mesh) 

for column chromatography were purchased from Sorbent Technology. The N^N ligands 

2,2′−bipyridine (L3-1), phenanthroline (L3-5), and 2,2′−bisquinoline (L3-8) were obtained from 

Alfa Aesar. The synthesis of 2−(pyridin−2−yl)quinoline (L3-2),46 2−(pyridin−2−yl)[6,7] 

benzoquinoline (L3-3),47 and 2−(pyridin−2−yl)−[7,8]benzoquinoline (L3-4)48 was carried out 
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using the reported methods. The synthesis of benzo[f][1,10]phenanthroline (L3-6),49 

naphtho[2,3−f][1,10]phenanthroline (L3-7)50, 3,3′−biisoquinoline (L3-9)51, and 1,1′−biiso- 

quinoline (L3-10)51,52 followed published procedures. 2−Phenylquinoline (C^N ligand) and its 

Ir(III) µ−chloro−bridged dimers [Ir(C^N)2Cl]2 were synthesized following reported procedures.53  

1H NMR spectroscopy, high−resolution mass spectrometry (HRMS), and elemental analyses were 

used to characterize these complexes. 1H NMR spectra were obtained on a Varian Oxford 400 or 

Bruker 400 spectrometer in CDCl3 or d6−DMSO using tetramethylsilane (TMS) as the internal 

standard. A Bruker BioTOF III mass spectrometer was used for ESI−HRMS analyses. Elemental 

analyses were carried out by NuMega Resonance Laboratories, Inc. in San Diego, California.  

General procedure for the synthesis of 3-1 – 3-10. The Ir(III) dimer [Ir(C^N)2Cl]2 (0.03 

mmol), N^N ligand (0.06 mmol), and AgSO3CF3 (0.06 mmol) were added in the mixed solvent of 

CH2Cl2 and MeOH (v/v = 2:1, 30 mL). The reaction mixture was degassed and heated to reflux 

under a nitrogen atmosphere for 24 h without light illumination. After cooling to room 

temperature, NH4PF6 (0.3 mmol) was added to the reaction mixture and stirred at r.t. for 2 h. Then, 

the solvent was removed under vacuum, and the crude product was purified by column 

chromatography (neutral alumina gel, dichloromethane/hexane (3:1 − 1:0, v/v)) to obtain the target 

Ir(III) complexes. 

Complex 3-1. An orange solid was obtained as the product (36 mg, yield: 66%). 1H NMR 

(400 MHz, CDCl3): δ 8.27 (d, J = 8.3 Hz, 2H), 8.23−8.07 (m, 6H), 8.05−7.91 (m, 4H), 7.71 (dd, J 

= 8.1, 1.4 Hz, 2H), 7.43−7.32 (m, 4H), 7.25 (d, 2H), 7.20−7.13 (m, 2H), 6.99 (ddd, J = 8.7, 6.1, 

1.5 Hz, 2H), 6.86−6.79 (m, 2H), 6.55 (dd, J = 7.7, 0.7 Hz, 2H). ESI−HRMS (m/z): calcd. for 

[C40H28N4Ir]
+, 757.1943; found, 757.1955.Anal. Calcd. (%) for C40H28F6IrN4P: C, 53.27; H, 3.13; 

N, 6.21. Found: C, 53.59; H, 3.48; N, 5.99. 
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Complex 3-2. An orange solid was obtained as the product (31 mg, yield: 54%). 1H NMR 

(400 MHz, CDCl3) δ 8.46−8.37 (m, 2H), 8.37−8.21 (m, 3H), 8.18−8.10 (m, 1H), 8.09−8.00 (m, 

2H), 7.84 (dd, J = 7.8, 4.2 Hz, 2H), 7.79 (d, J = 7.2 Hz, 1H), 7.61 (dd, J = 15.7, 7.9 Hz, 3H), 7.51 

(dd, J = 14.7, 8.3 Hz, 2H), 7.45−7.35 (m, 3H), 7.25 (s, 1H), 7.16 (ddd, J = 15.8, 12.3, 4.7 Hz, 3H), 

7.08 (t, J = 7.1 Hz, 1H), 7.02−6.80 (m, 4H), 6.54 (d, J = 7.2 Hz, 1H), 6.34 (d, J = 7.4 Hz, 1H). 

ESI−HRMS (m/z): calcd. for [C44H30N4Ir]
+, 807.2100; found, 807.2136. Anal. Calcd. (%) for 

C44H30F6IrN4P.0.3C6H14 (C6H14: hexane): C, 56.50; H, 3.64; N, 5.68. Found: C, 56.63; H, 3.26; N, 

5.46. 

Complex 3-3. An orange solid was obtained as the product (34 mg, yield: 57%). 1H NMR 

(400 MHz, d6−DMSO): δ 8.72 (dt, J = 9.0, 6.9 Hz, 3H), 8.67 (s, 1H), 8.38 (d, J = 7.0 Hz, 1H), 8.28 

(t, J = 8.0 Hz, 2H), 8.21–8.09 (m, 4H), 8.06 (ddd, J = 9.3, 7.1, 1.2 Hz, 2H), 7.86 (dd, J = 7.7, 0.8 

Hz, 1H), 7.82−7.70 (m, 3H), 7.66−7.62 (m, 1H), 7.58−7.52 (m, 1H), 7.45−7.35 (m, 2H), 7.24−7.15 

(m, 2H), 7.08−6.95 (m, 3H), 6.87 (ddd, J = 15.5, 12.7, 5.3 Hz, 4H), 6.38 (dd, J = 10.8, 7.7 Hz, 

2H). ESI−HRMS (m/z): calcd. for [C48H32N4Ir]
+, 857.2256; found, 857.2241. Anal. Calcd. for 

C48H32F6IrN4P.0.9CH2Cl2: C, 54.46; H, 3.16; N, 5.20. Found: C, 54.20; H, 3.15; N, 5.39. 

Complex 3-4. An orange solid was obtained as the product (52 mg, yield: 87%). 1H NMR 

(400 MHz, CDCl3): δ 9.22 (d, J = 8.8 Hz, 1H), 8.63 (d, J = 8.2 Hz, 1H), 8.52 (d, J = 8.6 Hz, 1H), 

8.43 (d, J = 8.9 Hz, 1H), 8.31 (d, J = 8.2 Hz, 1H), 8.13 (t, J = 7.8 Hz, 1H), 8.05 (d, J = 6.8 Hz, 

1H), 7.93 (dd, J = 10.4, 8.1 Hz, 3H), 7.84 (d, J = 8.7 Hz, 1H), 7.69−7.58 (m, 3H), 7.48 (dt, J = 9.5, 

6.9 Hz, 3H), 7.34−7.21 (m, 4H), 7.14−6.99 (m, 3H), 6.77 (d, J = 8.7 Hz, 1H), 6.68 (t, J = 7.5 Hz, 

1H), 6.64−6.54 (m, 2H), 6.50 (t, J = 7.2 Hz, 2H), 6.32 (t, J = 7.6 Hz, 1H), 6.12 (d, J = 8.1 Hz, 1H). 

ESI−HRMS (m/z): calcd. for [C48H32N4Ir]
+, 857.2256; found, 857.2289. Anal. Calcd. for 

C48H32F6IrN4P.0.5CH2Cl2: C, 55.77; H, 3.18; N, 5.36. Found: C, 55.37; H, 3.32; N, 5.36. 
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Complex 3-5. An orange solid was obtained as the product (32 mg, yield: 58%). 1H NMR 

(400 MHz, d6−DMSO) δ 8.74 (dd, J = 8.2, 1.4 Hz, 2H), 8.60 (d, J = 9.0 Hz, 2H), 8.51−8.45 (m, 

4H), 8.36 (d, J = 7.3 Hz, 2H), 8.09 (s, 2H), 8.05 (dd, J = 8.2, 5.2 Hz, 2H), 7.81 (dd, J = 8.1, 1.3 

Hz, 2H), 7.23 (ddd, J = 15.0, 8.0, 1.0 Hz, 4H), 7.11 (d, J = 9.0 Hz, 2H), 6.91−6.78 (m, 4H), 6.54 

(dd, J = 7.7, 0.8 Hz, 2H). ESI−HRMS (m/z): calcd. for [C42H28N4Ir]
+, 781.1943; found, 781.1966. 

Anal. Calcd. for C42H28F6IrN4P: C, 54.48; H, 3.05; N, 6.05. Found: C, 54.25; H, 2.98; N, 6.02. 

Complex 3-6. An orange solid was obtained as the product (41 mg, yield: 70%). 1H NMR 

(400 MHz, CDCl3) δ 9.04 (d, J = 8.1 Hz, 2H), 8.51−8.43 (m, 4H), 8.20 (d, J = 8.9 Hz, 2H), 8.16 

(d, J = 8.6 Hz, 2H), 8.06 (d, J = 8.0 Hz, 2H), 7.88 (dd, J = 8.4, 5.2 Hz, 2H), 7.59−7.51 (m, 4H), 

7.23−7.05 (m, 6H), 6.83 (td, J = 7.5, 1.3 Hz, 2H), 6.76 (ddd, J = 8.6, 6.9, 1.4 Hz, 2H), 6.66−6.55 

(m, 2H). ESI−HRMS (m/z): calcd. for [C46H30N4Ir]
+, 831.2100; found, 831.2123. Anal. Calcd. for 

C46H30F6IrN4P.0.5C6H14
.2H2O (C6H14: hexane): C, 55.78; H, 3.92; N, 5.31. Found: C, 55.70; H, 

4.20; N, 5.64. 

Complex 3-7. An orange solid was obtained as the product (51 mg, yield: 83%). 1H NMR 

(400 MHz, d6−DMSO) δ 9.57−9.46 (m, 4H), 8.63 (d, J = 9.0 Hz, 2H), 8.53 (d, J = 8.7 Hz, 2H), 

8.42−8.32 (m, 4H), 8.20 (dd, J = 6.3, 3.3 Hz, 2H), 8.10 (dd, J = 8.4, 5.2 Hz, 2H), 7.83 (dd, J = 8.1, 

1.2 Hz, 2H), 7.76 (dd, J = 6.4, 3.2 Hz, 2H), 7.22 (ddd, J = 8.8, 7.4, 6.3 Hz, 6H), 6.96−6.85 (m, 

4H), 6.54−6.48 (m, 2H). ESI−HRMS (m/z): calcd. for [C50H32N4Ir]
+, 881.2256; found, 881.2291. 

Anal. Calcd. for C50H32F6IrN4P.0.3CH2Cl2: C, 57.46; H, 3.13; N, 5.33. Found: C, 57.37; H, 3.07; 

N, 5.37. 

Complex 3-8. A red solid was obtained as the product (38 mg, yield: 63%). 1H NMR (400 

MHz, d6−DMSO) δ 8.72 (d, J = 8.6 Hz, 2H), 8.50 (d, J = 8.7 Hz, 2H), 8.32 (d, J = 8.8 Hz, 2H), 

8.22 (d, J = 9.0 Hz, 2H), 8.11−8.03 (m, 2H), 8.01−7.88 (m, 4H), 7.60−7.49 (m, 4H), 7.47−7.35 
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(m, 4H), 7.10 (ddd, J = 8.6, 6.9, 1.4 Hz, 2H), 7.06−6.98 (m, 2H), 6.89−6.79 (m, 4H), 6.36−6.28 

(m, 2H). ESI−HRMS (m/z): calcd. for [C48H32N4Ir]
+, 857.2256; found, 857.2233. Anal. Calcd. for 

C48H32F6IrN4P.1.1CH2Cl2: C, 53.84; H, 3.15; N, 5.11. Found: C, 53.94; H, 2.95; N, 5.13. 

Complex 3-9. An orange solid was obtained as the product (20 mg, yield: 33%). 1H NMR 

(400 MHz, d6−DMSO) δ 9.49 (s, 2H), 9.13 (d, J = 8.9 Hz, 2H), 8.68 (d, J = 8.7 Hz, 2H), 8.54 (s, 

2H), 8.46 (d, J = 9.0 Hz, 2H), 8.30 (s, 2H), 8.16 (d, J = 8.2 Hz, 2H), 7.96 (d, J = 7.9 Hz, 2H), 7.86 

(d, J = 7.3 Hz, 2H), 7.78−7.66 (m, 6H), 7.27 (s, 2H), 6.87 (s, 2H), 6.58−6.52 (m, 2H), 6.03 (d, J = 

7.8 Hz, 2H). ESI−HRMS (m/z): calcd. for [C48H32N4Ir]
+, 857.2256; found, 857.2241. Anal. Calcd. 

for C48H32F6IrN4P.0.2C6H14 (C6H14: hexane): C, 57.98; H, 3.44; N, 5.50. Found: C, 58.00; H, 3.58; 

N, 5.20. 

Complex 3-10. A red solid was obtained as the product (34 mg, yield: 56%). 1H NMR (500 

MHz, d6−DMSO) δ 8.52 (d, J = 9.0 Hz, 2H), 8.44 (d, J = 8.8 Hz, 2H), 8.26 (d, J = 8.2 Hz, 2H), 

8.03 (dt, J = 14.1, 5.9 Hz, 8H), 7.82−7.76 (m, 2H), 7.72 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 6.3 Hz, 

4H), 7.24 (t, J = 7.5 Hz, 2H), 7.15 (t, J = 9.9 Hz, 4H), 6.83 (t, J = 7.4 Hz, 2H), 6.29 (d, J = 7.4 Hz, 

2H). ESI−HRMS (m/z): calcd. for [C48H32N4Ir]
+, 857.2256; found, 857.2283. Anal. Calcd. for 

C48H32F6IrN4P.0.9CH2Cl2: C, 54.46; H, 3.16; N, 5.20. Found: C, 54.59; H, 2.99; N, 5.31. 

 

3.2.2. Photophysical studies 

Spectroscopic−grade solvents were used for the photophysical studies and were purchased 

from VWR International and used as received. A Varian Cary 50 spectrophotometer was used to 

record UV−vis absorption spectra. The emission spectra of 3-1 − 3-10 were measured on a 

HORIBA FluoroMax 4 fluorometer/phosphorometer. The absolute emission quantum yields (QY) 

were measured using a fiber coupled Ocean Optics integrating sphere. On the excitation side, the 
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sphere was fiber coupled to a set of Delta linear−variable filters (LVFs) and then fiber coupled to 

a broad white light LED. The set of LVFs were aligned with an in−house modified Ocean Optics 

LVF mount and positioned to give a narrow excitation band peaked at 450 nm. On the detection 

side, the integrating sphere was coupled to a bifurcated fiber cable that was coupled to an Ocean 

Optics UV VIS QE65000 spectrometer and an Ocean Optics NIRQ512 spectrometer yielding an 

effective detection range of 350 nm to 1700 nm. The samples were degassed and maintained in an 

oxygen free environment prior to and during each QY measurement. 

The nanosecond transient difference absorption (TA) spectra and lifetimes of complexes 

3-1 − 3-10 were measured on a laser flash photolysis spectrometer (Edinburgh LP920) in degassed 

CH3CN solutions. The excitation source for the measurements was a third−harmonic output (355 

nm) of a Nd:YAG laser (Quantel Brilliant; pulse duration: 4.1 ns; repetition rate: 1 Hz). Each 

sample solution was purged with N2 for 40 min before measurement. The singlet depletion 

method54 was applied to determine the triplet excited−state molar extinction coefficients (εT) at the 

TA band maximum. A benzene solution of SiNc (ε590 = 70,000 M−1 cm−1, ΦT = 0.20)55 was used 

as a reference to determine the triplet excited−state quantum yield through the relative actinometry 

method.56 

 

3.2.3. Nonlinear transmission measurement 

The nonlinear transmission experiments for all complexes at 532 nm were carried out in 

CH3CN solutions in a cuvette (length: 2 mm), which linear transmission of was set to 80%.  The 

4.1 ns laser (Quantel Brilliant) with a repetition rate of 10 Hz was used as the light source. The As 

described in previous work, the same experimental setup was used in this paper.70 The beam radius 

at the focal point was approximately 96 μm, focused by an f = 40 cm plano-convex lens. 



 

96 

 

3.2.4. Computational methods   

Complexes 3-1 − 3-10 were computationally investigated using density functional theory 

(DFT) and linear response time−dependent DFT (TDDFT) calculations implemented in 

Gaussian09 quantum software package.57 The ground state optimization and excited state 

calculations of 3-1 − 3-10 were performed using the B3LYP58 functional with mixed basis sets 

(LANL2DZ for Ir,59 and 6−31g* for H, C, and N).60 Solvent effects were included via Conductor 

Polarized Continuum Model (CPCM)61,62 for dichloromethane. 

The theoretical absorption spectra were generated by computing the lowest 125 singlet 

excitations from the ground state singlet equilibrium geometry, and the resulting transition 

energies and oscillator strengths were broadened via Equation 2 in Ref. 63 with a line width of 

0.12 eV to model the thermal broadening of optical bands to be comparable to experimental 

spectra. The emission of complexes 3-1 − 3-10 was simulated using TDDFT SCF approach, 

which computed the phosphorescence energy by calculating the triplet excited state transitions 

using TDDFT based on the triplet equilibrium geometry.38,64 The nature of the triplet and singlet 

transitions were characterized by computing the natural transition orbitals (NTOs)65 via 

Gaussian09 and visualized using VMD with 0.02 isovalue.66 

 

3.3. Results and discussion 

3.3.1. Electronic absorption 

The absorption spectra of complexes 3-1 − 3-10 were measured in different solvents at 

room temperature. The spectra in dichloromethane are displayed in Figure 3.1 and the absorption 

band maxima and molar extinction coefficients are tabulated in Table 3.1. The normalized 

absorption spectra in other solvents are provided in Figure 3.2. These spectra generally can be 
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divided into four regions: the high−energy, strong absorbing band(s) below 310 nm; the structured 

medium−energy bands at ca. 310−400 nm; the lower−energy featureless band at ca. 400−500 nm; 

and the very weakly absorbing band(s) between 500 and 600 nm. According to the shape of these 

absorption bands and the corresponding molar extinction coefficients, these bands can be attributed 

to the ligand−localized 1π,π* transitions, the dominant 1π,π* transitions mixed with charge transfer 

(1CT, i.e. metal−to−ligand charge transfer (1MLCT)/ligand−to−ligand charge transfer (1LLCT)) 

transitions, the 1MLCT/1LLCT/1ILCT (intraligand charge transfer) transitions, and the mixed 

1,3MLCT/1,3LLCT transitions, respectively. These assignments are supported by the TDDFT 

calculation results (see NTOs in Table 3.2 – 3-4) and are in accordance with the other reported 

cyclometalated monocationic Ir(III) complexes.18,19,27,67 

Examination of the lowest−energy absorption bands (500−600 nm) of complexes 3-1 − 3-

10 revealed that benzannulation at the 5,6−position of pyridine (3-2 vs. 3-1), 6,7−position of 

quinoline (3-3 vs. 3-2), 5,6− and 5′,6′−position of 2,2′−bipyridine (3-8 vs. 3-1), and 3,4− and 

3′,4′−position of 2,2′−bipyridine (3-10 vs. 3-1) resulted in a red−shift of the 1,3MLCT/1,3LLCT 

absorption bands with an increased molar extinction coefficient compared to their corresponding 

parent complexes. In contrast, benzannulation at the 7,8−position of quinoline (3-4 vs. 3-2), 4,5− 

and 4′,5′−position of 2,2′−bipyridine (3-9 vs. 3-1), or 2,2′,3,3′−position of 2,2′−bipyridine (3-5 vs. 

3-1) essentially did not impact the energy of the 1,3MLCT/1,3LLCT absorption band compared to 

their corresponding parent complex. In addition, fusing a phenyl or a naphthyl ring to the 

5,6−position of 1,10−phenanthroline did not affect the energies of the 1,3MLCT/1,3LLCT 

transitions in complexes 3-6 and 3-7 with respect to their corresponding parent compound 3-5. 

The site−dependent benzannulation effect was more clearly evidenced in the calculated S1 

state energies for these complexes. As listed in Table 3.2, benzannulation at the 5,6−/5′,6′−position 
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or 3,4−/3′,4′−position of 2,2′−bipyridine stabilized the S1 states in complexes 3-2, 3-8, and 3-10, 

respectively, compared to the S1 state of their parent complex 3-1; while benzannulation at the 

4,5−/4′,5′−positions of 2,2′−bipyridine destabilized the S1 state in 3-9 in comparison to that of 3-

1. In contrast, benzannulation at the 2,2′,3,3′−position 2,2′−bipyridine and further benzannulation 

at phenanthroline essentially had no impact on the S1 state energies of 3-5 – 3-7 compared to that 

of 3-1. While benzannulation at the 6,7−position of quinoline lowered the S1 state in 3-3, 

benzannulation at the 7,8−position of quinoline raised the S1 state in 3-4. This trend matched well 

with experimental observations and was in accordance with that reported by our group earlier for 

another series of cyclometalated monocationic Ir(III) complexes with different C^N ligands.32 
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Figure 3.1. UV−vis absorption spectra of 3-1−3-10 in CH2Cl2 at room temperature. The insets 

are the expanded spectra in the region of 450−625 nm. 
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Figure 3.2. Normalized experimental absorption spectra of 3-1 – 3-10 in different solvents. 
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Table 3.1. Electronic absorption, emission, and triplet excited−state absorption parameters for 

complexes 3-1−3-10. 
 abs/nm (log ) a em/nm (em/μs); 

em
b 

kr / s-1 c knr / s-1 d T1‑Tn/nm (TA/μs; log  T1‑Tn); 

T 
e 

3-1 281 (4.68), 307 (4.35), 339 

(4.34), 440 (3.73), 519 (2.79) 

553 (2.16); 0.41 1.90105 2.73105 407 (2.14; −), 573 (2.13, −), 

783 (−; −); − g 

3-2 280 (4.79), 337 (4.52), 433 

(3.84), 518 (3.02) 

613 (0.52); 0.081 1.56105 1.77106 380 (0.30; −), 782 (0.33; −); 

− g 

3-3 280 (4.85), 307 (4.65), 351 

(4.51), 436 (3.76), 523 (3.20) 

738 (2.62); 

0.0031 
1.18103 3.80105 339 (−,−), 390 (3.42; −), 555 

(3.32; −), 660 (3.47; −); − g 

3-4 283 (4.87), 312 (4.82), 347 

(4.46), 438 (3.99), 500 (3.18) 

583 (− f); 0.0022 − − 398 (4.52; −), 555 (4.44; −), 

795 (4.46; −); − g 

3-5 280 (4.75), 333 (4.38), 350 

(4.31), 438 (3.77), 518 (2,73) 

554 (2.77); 0.71 2.56105 1.05105 363 (−; −), 407 (2.82; −), 578 

(2.93; −), 797 (2.87; −); − g 

3-6 281 (4.79), 333 (4.49), 439 

(3.78), 518 (2.79) 

553 (2.71); 0.78 2.88105 8.12104 360 (−; −), 407 (2.79; −), 575 

(2.81; −), 797 (2.79; −); − g 

3-7 284 (4.94), 331 (4.57), 348 

(4.51), 439 (3.79), 518 (2.85) 

554 (31.0); 0.27 8.71103 2.35104 412 (sh., 19.6; −), 475 (19.6; 

−); − g 

3-8 280 (4.91), 352 (4.63), 365 

(4.56), 430 (3.96), 527 (3.19) 

645 (1.00); 0.084 1.56105 1.70106 390 (0.61; −), 449 (0.63; −), 

641 (0.63; 4.35), 782 (0.63; 

4.64); 0.54 

3-9 280 (4.82), 334 (4.55), 350 

(4.47), 437 (3.75), 517 (2.96) 

582 (− f); 0.0013 − − 741 (0.04; − ); − g 

3-10 280 (4.85), 339 (4.65), 350 

(4.65), 431 (3.99), 529 (3.10) 

651 (0.49); 0.075 5.47105 6.74106 533 (0.25; 4.42), 695 (0.25; 

4.40); 0.28 
a Absorption band maxima (abs) and molar extinction coefficients (log ) of the UV−vis absorption in CH2Cl2 at room 

temperature. b The emission band maxima (em) and lifetimes (em) for 3-1 − 3-10 in CH2Cl2 (c = 1 × 10−5 mol/L) at 

room temperature. A degassed acetonitrile solution of [Ru(bpy)3]Cl2 (Φem = 0.097, λex = 436 nm) was used as reference 

for the emission quantum yield measurement. The quantum yields were measured using a fiber coupled Ocean Optics 

integrating sphere. ex = 450 nm, the emission signals in the wavelength range of 380 – 820 nm were integrated for 

all of the complexes except for 3-3. The integration range for 3-3 was 380-900 nm.  c,d Radiative decay rates (kr) and 

nonradiative decay rates (knr) calculated by kr = em/(Tem) and knr = (1-em)/(Tem), respectively. For 3-8 and 3-

10, the estimated triplet quantum yields (T) from the TA measurement were used. For the other complexes, T was 

assumed to be 1.  e Nanosecond TA band maxima (T1‑Tn), triplet excited state lifetimes (TA), triplet extinction 

coefficients (log T1‑Tn), and triplet quantum yields (T) measured in CH3CN at room temperature. f Too weak to be 

measured. g Due to lack of bleaching band, the T1‑Tn values cannot be estimated using the singlet depletion method, 

the T values cannot be determined, either. 

 

Table 3.2. NTOs of the low−energy transitions contributing to the 400−500 nm absorption band 

of complexes 3-1 − 3-10 in CH2Cl2. 
Excited state 

and properties 

Hole Electron Excited   state 

and properties 

Hole Electron 

3-1 S1 

485 nm 

f = 0.002 

  

3-7 

 

 

S1 

482 nm 

f = 0.000 

  
S2 

454 nm 

f = 0.047 

  

S2 

458 nm 

f = 0.001 
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Table 3.2. NTOs of the low−energy transitions contributing to the 400−500 nm absorption band 

of complexes 3-1 − 3-10 in CH2Cl2. (continued) 
Excited state 

and properties 

Hole Electron Excited   state 

and properties 

Hole Electron 

 S3 

454 nm 

f = 0.024 

  

 S3 

455 nm 

f = 0.069 

  

3-2 S1 

517 nm 

f = 0.004 

  

3-8 S1 

537 nm 

f = 0.010 

  
S2 

449 nm 

f = 0.063 

  

S2 

450 nm 

f = 0.045 

  
S4 

412 nm 

f = 0.019 

  

S3 

439 nm 

f = 0.016 

 
 

69% 
 

69% 

S5 

399 nm 

f = 0.003 

  

 

 
29% 

 
29% 

3-3 S1 

560 nm 

f = 0.002 

  

S4 

433 nm 

f = 0.015 

 
 

68% 
 

68% 

S2 

477 nm 

f = 0.051 

  

 

 
31% 

 
31% 

S3 

450 nm 

f = 0.063 

  

S5 

425 nm 

f = 0.006 

  
S5 

436 nm 

f = 0.008 

  

S6 

402 nm 

f = 0.038 
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Table 3.2. NTOs of the low−energy transitions contributing to the 400−500 nm absorption band 

of complexes 3-1 − 3-10 in CH2Cl2. (continued) 
 

Excited state 

and properties 

Hole Electron Excited   state 

and properties 

Hole Electron 

3-4 S1 

487 nm 

f = 0.025 

  

3-9 S1 

461 nm 

f = 0.004 

 

56% 56% 

S2 

449 nm 

f = 0.005 

  

 

20% 20% 

S3 

445 nm 

f = 0.031 

  

S2 

458 nm 

f = 0.055 

  
3-5 S1 

483 nm 

f = 0.001 

  

 S3 

444 nm 

f = 0.012 

  
S2 

470 nm 

f = 0.000 

  

S4 

414 nm 

f = 0.003 

  
S3 

455 nm 

f = 0.070 

  

S5 

397 nm 

f = 0.016 

  
S4 

427 nm 

f = 0.007 

  

3-10 S1 

556 nm 

f = 0.002 

  
3-6 S1 

483 nm 

f = 0.000 

  

S3 

454 nm 

f = 0.067 

  
S2 

460 nm 

f = 0.001 

  

S4 

430 nm 

f = 0.035 

  
S3 

455 nm 

f = 0.070 

  

S5 

412 nm 

f = 0.003 

  
S4 

408 nm 

f = 0.006 
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Table 3.3. NTOs for the optical transitions at 300 – 400 nm for 3-1 – 3-10 in CH2Cl2. The isovalue 

is set to 0.03. 
 State Hole Electron  State Hole Electron 

3-1 S4 

383 nm 

f = 0.026 

  

3-6 S5 

382 nm 

f = 0.058 

  
 S6 

365 nm 

f = 0.042 

  

 S10 

354 nm 

f = 0.055 

  

 S10 

347 nm 

f = 0.081 

  

 S12 

347 nm 

f = 0.059 

  
 S12 

339 nm 

f = 0.213 

  

 S13 

344 nm 

f = 0.191 

  
 S19 

320 nm 

f = 0.229 

 
 

54% 
 

54% 

 S23 

321 nm 

f = 0.129 

 
 

56% 
 

56% 

  

 
39% 

 
39% 

  

 
27% 

 
27% 

3-2 S6 

379 nm 

f = 0.055 

  

 S24 

321 nm 

f = 0.164 

 
 

54% 
 

54% 

 S10 

351 nm 

f = 0.077 

  

  

 
32% 

 
32% 

 S15 

341 nm 

f = 0.124 

  

 S29 

310 nm 

f = 0.188 

 
 

58% 
 

58% 

 S16 

341 nm 

f = 0.083 

  

  

 
27% 

 
27% 
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Table 3.3. NTOs for the optical transitions at 300 – 400 nm for 3-1 – 3-10 in CH2Cl2. The 

isovalue is set to 0.03. (continued) 
 State Hole Electron  State Hole Electron 

 S23 

318 nm 

f = 0.130 

  

3-7 S5 

400 nm 

f = 0.034 

  
 S24 

317 nm 

f = 0.204 

 
 

53% 
 

53% 

 S7 

383 nm 

f = 0.066 

  

  

 
28% 

 
28% 

 S9 

369 nm 

f = 0.101 

  

3-3 S7 

395 nm 

f = 0.014 

  

 S10 

368 nm 

f = 0.043 

 

 
75% 

 
75% 

 S8 

391 nm 

f = 0.010 

  

  

 
22% 

 
22% 

 S9 

383 nm 

f = 0.013 

  

 S14 

354 nm 

f = 0.073 

  
 S12 

362 nm 

f = 0.030 

  

 S15 

349 nm 

f = 0.073 

  
 S13 

361 nm 

f = 0.026 

  

 S16 

348 nm 

f = 0.075 

  
 S15 

355 nm 

f = 0.077 

 
 

69% 
 

69% 

 S18 

343 nm 

f = 0.194 
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Table 3.3. NTOs for the optical transitions at 300 – 400 nm for 3-1 – 3-10 in CH2Cl2. The 

isovalue is set to 0.03. (continued) 

 State Hole Electron  State Hole Electron 

  

 
21% 

 
21% 

 S24 

328 nm 

f = 0.123 

 
 

57% 
 

57% 

 S16 

351 nm 

f = 0.109 

  

  

 
32% 

 
32% 

 S21 

335 nm 

f = 0.105 

  

 S28 

321 nm 

f = 0.297 

 
 

54% 
 

54% 

 S22 

335 nm 

f = 0.142 

  

  

 
27% 

 
27% 

 S25 

319 nm 

f = 0.515 

  

3-8 S8 

374 nm 

f = 0.034 

  
 S30 

308 nm 

f = 0.291 

 
 

52% 
 

52% 

 S14 

352 nm 

f = 0.097 

 
 

59% 
 

59% 

  

 
31% 

 
31% 

  

 
37% 

 
37% 

3-4 S4 

391 nm 

f = 0.009 

  

 S17 

344 nm 

f = 0.115 

  
 S5 

381 nm 

f = 0.036 

  

 S18 

336 nm 

f = 0.241 

  
 S8 

365 nm 

f = 0.106 

  

 S23 

326 nm 

f = 0.111 
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Table 3.3. NTOs for the optical transitions at 300 – 400 nm for 3-1 – 3-10 in CH2Cl2. The 

isovalue is set to 0.03. (continued) 

 State Hole Electron  State Hole Electron 

 S11 

355 nm 

f = 0.107 

 
 

38% 
 

38% 

 S28 

314 nm 

f = 0.126 

 
 

43% 
 

43% 

  

 
29% 

 
29% 

  

 
29% 

 
29% 

  

 
21% 

 
21% 

 S32 

304 nm 

f = 0.108 

  

 S17 

341 nm 

f = 0.119 

  

3-9 S6 

373 nm 

f = 0.040 

  
 S20 

328 nm 

f = 0.098 

 
 

54% 
 

54% 

 S9 

352 nm 

f = 0.064 

  

  

 
34% 

 
34% 

 S13 

344 nm 

f = 0.114 

  

 S26 

315 nm 

f = 0.191 

 
 

48% 
 

48% 

 S14 

343 nm 

f = 0.174 

  

  

 
23% 

 
23% 

 S23 

328 nm 

f = 0.116 

 
 

50% 
 

50% 

3-5 S5 

382 nm 

f = 0.046 

  

  

 
25% 

 
25% 

 S6 

376 nm 

f = 0.045 

  

 S24 

323 nm 

f = 0.374 
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Table 3.3. NTOs for the optical transitions at 300 – 400 nm for 3-1 – 3-10 in CH2Cl2. The 

isovalue is set to 0.03. (continued) 

 State Hole Electron  State Hole Electron 

 S9 

356 nm 

f = 0.043 

 
 

46% 
 

46% 

 S28 

319 nm 

f = 0.143 

  

  

 
33% 

 
33% 

 S38 

299 nm 

f = 0.210 

  

 S12 

348 nm 

f = 0.114 

  

3-10 S6 

389 nm 

f = 0.015 

  
 S13 

346 nm 

f = 0.099 

  

 S7 

377 nm 

f = 0.119 

  
 S22 

322 nm 

f = 0.274 

  

 S10 

368 nm 

f = 0.117 

 
 

57% 
 

57% 

      

 
40% 

 
40% 

     S14 

349 nm 

f = 0.098 

  
     S18 

339 nm 

f = 0.131 
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Table 3.4. NTOs for the high energy optical transitions (<300 nm) of 3-1 – 3-10 in CH2Cl2. The 

isovalue is set to 0.03. 
 State Hole Electron  State Hole Electron 

3-1 S33 

282 nm 

f = 0.194 

 
 

45% 
 

45% 

3-6 S53 

269 nm 

f = 0.458 

 
 

37% 
 

37% 

  

 
30% 

 
30% 

  

 
29% 

 
29% 

 S37 

276 nm 

f = 0.170 

  

 S72 

252 nm 

f = 0.346 

 
 

40% 
 

40% 

 S43 

267 nm 

f = 0.283 

  

  

 
22% 

 
22% 

3-2 S58 

271 nm 

f = 0.330 

 
 

39% 
 

39% 

3-7 S42 

296 nm 

f = 0.279 

  

  

 
31% 

 
31% 

 S44 

293 nm 

f = 0.295 

 
 

73% 
 

73% 

3-3 S47 

272 nm 

f = 0.341 

  

  

 
23% 

 
23% 

3-4 S49 

275 nm 

f = 0.178 

 
 

37% 
 

37% 

 S54 

278 nm 

f = 0.264 

 

 
58% 

 
58% 

  

 
33% 

 
33% 

  

 
26% 

 
26% 
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Table 3.4. NTOs for the high energy optical transitions (<300 nm) of 3-1 – 3-10 in CH2Cl2. The 

isovalue is set to 0.03. (continued) 
 State Hole Electron  State Hole Electron 

 S53 

271 nm 

f = 0.219 

 
 

49% 
 

49% 

 S63 

266 nm 

f = 0.318 

  

  

 
33% 

 
33% 

3-8 S53 

275 nm 

f = 0.318 

  

3-5 S40 

279 nm 

f = 0.136 

 
 

42% 
 

42% 

 S56 

272 nm 

f = 0.232 

  

  

 
38% 

 
38% 

 S69 

258 nm 

f = 0.266 

 
 

52% 
 

52% 

 S44 

270 nm 

f = 0.332 

 
 

37% 
 

37% 

  

 
34% 

 
34% 

  

 
23% 

 
23% 

3-9 S56 

270 nm 

f = 0.395 

 
 

45% 
 

45% 

  

 
21% 

 
21% 

  

 
23% 

 
23% 

 S45 

270 nm 

f = 0.298 

  

 S66 

256 nm 

f = 0.384 

 
 

57% 
 

57% 

 S50 

263 nm 

f = 0.383 

 
 

 
 

 

  

 
21% 

 
21% 
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Table 3.4. NTOs for the high energy optical transitions (<300 nm) of 3-1 – 3-10 in CH2Cl2. The 

isovalue is set to 0.03. (continued) 

     State Hole Electron 

    3-10 S56 

272 nm 

f = 0.317 

  
     S59 

269 nm 

f = 0.143 

  
     S70 

256 nm 

f = 0.152 

  

 

Table 3.5.  HOMOs and LUMOs of 3-1 – 3-10 in CH2Cl2 and the contribution of HOMO→LUMO 

transition to the S1 state. 

 HOMO LUMO 
Percentage Contribution of H/L 

Transition to S1 State 

3-1 

  

70% 

3-2 

  

70% 

3-3 

  

70% 

3-4 

  

68% 

3-5 

  

70% 

3-6 

  

70% 
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Table 3.5.  HOMOs and LUMOs of 3-1 – 3-10 in CH2Cl2 and the contribution of 

HOMO→LUMO transition to the S1 state. (continued) 

 HOMO LUMO 
Percentage Contribution of H/L 

Transition to S1 State 

3-7 

  

69% 

3-8 

  

70% 

3-9 

  

S1 H/L 0%; H/L+1 69% 

S2 H/L 43% 

S3 H/L 56% 

S4 H/L 70% 

3-10 

  

70% 

 

The DFT calculation showed that the HOMO→LUMO transition was the dominant 

contributor (~70%) to the S1 states of all of the complexes except for 3-9 (see Table 3.5). Electron 

density distribution plots of the HOMOs and LUMOs in 3-1 – 3-10 (Table 3.5) clearly 

demonstrated that the HOMOs of these complexes were predominantly distributed on the phenyl 

rings of the 2−phenylquinoline ligands and the d−orbital of the Ir(III) center, while the LUMOs 

were exclusively localized on the diimine ligand. Thus, benzannulation at the diimine ligand would 

mainly impact the LUMO energies. As depicted in Figure 3.3, the ground−state MO energy 

diagram for 3-1 – 3-10 manifested that benzannulation drastically changed the LUMO energies 

but had a minor effect on the HOMO energies. Benzannulation at the 5,6−/5′,6′−position or 

3,4−/3′,4′−position of 2,2′−bipyridine or at the 6,7−position of quinoline significantly stabilized 

the LUMOs in complexes 3-2, 3-3, 3-8, and 3-10; whereas benzannulation at the other sites of 
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2,2′−bipyridine or the 7,8−position of quinoline either did not affect or slightly raised the LUMOs 

in 3-4 – 3-7 and 3-9 compared to that of 3-1. 
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Figure 3.3. Ground−state molecular orbital diagram for 3-1 − 3-10 in CH2Cl2 (HOMO and LUMO 

of 3-1 are plotted as representative). 

 

 

 
Figure 3.4. Frontier molecular orbital mixing between cis-1,3−butadiene or ethene and parent 

molecules. 

 



 

113 

According to Thompson / Gordon’s work38 and our previous work,32 benzannulation on 

the diimine ligand can be viewed as the interaction between the LUMO of the parent compound 

and the HOMO or LUMO of cis−1,3−butadiene or ethene, depending on the MO symmetry at the 

site of benzannulation. As exemplified in Figure 3.4, when benzannulation occurred at the 

5,6−position of one of the pyridine rings, the symmetry of the 3-1 LUMO at this site matched the 

symmetry of the LUMO of cis−1,3−butadiene and led to a LUMO−LUMO interaction. The 

LUMO−LUMO interactions resulted in a stabilized LUMO in 3-2 and thus the red−shifted CT 

absorption band in its UV−vis absorption spectrum compared to that of 3-1. Similarly, the 

symmetry of the LUMO of 3-1 at the 5′,6′−position and the 3,4−/3′,4′−position matched the 

symmetry of LUMO of cis−1,3−butadiene, resulting in stabilized LUMOs and red−shifted CT 

absorption bands in complexes 3-8 and 3-10 (Figure 3.4). In contrast, when benzannulation 

occurred at the 4,5−/4′,5′−position of 2,2′−bipyridine in 3-1, the symmetry of the LUMO of 3-1 at 

these positions matched the symmetry of the HOMO of cis−1,3−butadiene. The HOMO−LUMO 

interactions gave rise to a destabilized LUMO in complex 3-9 and thus an enlarged 

HOMO−LUMO energy gap and a blue−shifted CT absorption band. From complex 3-1 to 3-5, 

benzannulation at the 2,2′,3,3′−position of 2,2′−bipyridine in 3-1 can be considered as the 

interaction between the LUMO of 3-1 and the HOMO of ethene due to symmetry matching 

requirement. Such an interaction showed a negligible impact on the LUMO of 3-5 and essentially 

did not affect the CT transition in 3-5 compared to that of 3-1. A similar MO symmetry analysis 

was applied to the other complexes and the results are provided in Figure 3.4. 
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3.3.2. Photoluminescence 

To evaluate the site−dependent benzannulation effect on the triplet excited states of 

complexes 3-1−3-10, the emission characteristics of these complexes were investigated in different 

solvents at room temperature. The emission spectra in CH2Cl2 are displayed in Figure 3.5 and the 

emission parameters (lifetime and quantum yield) in CH2Cl2 are tabulated in Table 3.1. The 

normalized emission spectra in other solvents are presented in Figure 3.6 and the emission 

parameters are compiled in Table 3.6. The emission of these complexes was sensitive to oxygen 

quenching and was moderately long−lived (0.52−31.0 s) (except for 3-4 and 3-9, in which the 

emission signals were too weak to be measured), indicating the phosphorescent nature of the 

emission. These features are consistent with the other reported Ir(III) complexes.17-19,24-33,39-42 

Except for 3-3 that exhibited emission in the near−IR region with clear vibronic structures, the 

emission of all of the other complexes were broad and almost featureless. 
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Figure 3.5. Normalized emission spectra of 3-1 − 3-10 in CH2Cl2 at room temperature. (λex = 438 

nm for 3-1, 430 nm for 3-2, 439 nm for 3-3, 436 nm for 3-4, 438 nm for 3-5, 437 nm for 3-6, 440 

nm for 3-7, 428 nm for 3-8, 436 nm for 3-9, and 437 nm for 3-10. 
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Table 3.6. Emission characteristics of complexes 3-1 − 3-10 in different solvents at room 

temperature. 

λem/nm (τem/μs)a; em
b 

 Acetonitrile THF Toluene/5% CH2Cl2 

3-1 557 (2.48); 0.47 555 (2.22); 0.75 557 (2.15); 0.34 

3-2 608 (0.30); 0.035 618 (0.36); 0.050 616 (0.18); 0.045 

3-3 733 (0.63); 0.0044 735 (2.06); 0.0098 733 (-)c; 0.0061 

3-4 572 (-)c; - c 587 (1.10); 0.0032 562 (-)c; - c 

3-5 558 (2.91); 0.59 556 (2.47); 0.62 560 (2.09); 0.56 

3-6 557 (2.69); 0.56 556 (2.37); 0.65 562 (2.11); 0.61 

3-7 559 (19.2); 0.22 558 (16.2); 0.17 562 (11.9); 0.24 

3-8 649 (0.64); 0.037 644 (0.69); 0.042 653 (0.41); 0.032 

3-9 560 (-)c; 0.0026 596 (-)c; 0.0013 560 (-)c; 0.0038 

3-10 653 (0.25); 0.035 656 (0.28); 0.076 596 (0.03); 0.025 
a The emission band maxima (em) and lifetimes (em) for 3-1 − 3-10 at room temperature. b 

Absolute QY measurements were performed using a fiber coupled Ocean Optics integrating 

sphere. ex = 450 nm, detection wavelength range was 350 – 1700 nm. The integration range was 

380-820 nm for 3-1 − 3-10 except for 3-3, for which the integration was done in the range of 380-

900 nm. c Too weak to be measured. 

 

In comparison to the parent complex 3-1, benzannulation at the 3,4−/3′,4′−position, 

4,5−/4′,5′−position, or 5,6−/5′,6′−position of 2,2′−bipyridine all caused a red−shift of the emission 

spectra for 3-2, 3-8, 3-9, and 3-10, accompanied by a shortened lifetime and a reduced emission 

quantum yield; while benzannulation at the 2,2′,3,3′−position of 2,2′−bipyridine essentially had no 

impact on the emission energy of 3-5, but with a slightly longer lifetime and an increased emission 

quantum yield. A drastically red−shifted emission into the NIR region was observed for 3-3 after 

fusion of an additional phenyl ring at the 6,7−position of quinoline in 3-2. In contrast, 

benzannulation at the 7,8−position of quinoline in 3-2 induced a salient blue−shift of the emission 

of 3-4 and a lower quantum yield compared to those of 3-2 and 3-3. Going from 3-5 to 3-7, further 

extending the −conjugation along the 5,6−position of 1,10−phenanthroline did not alter the 

emission energies of complexes 3-6 and 3-7. However, the emission lifetime of 3-7 was more than 

one order of magnitude longer than those of 3-5 and 3-6, but its emission quantum yield is less 

than half of those for 3-5 and 3-6. Similar to the trend discovered for the S1 states in these 
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complexes based on the electronic absorption, the site−dependent benzannulation influenced the 

energies of the lowest triplet excited states (T1) in a similar manner, but the impact is more 

pronounced on the T1 state than on the S1 state. 

Table 3.7. NTOs representing the lowest triplet transitions (T1) of 3-1 − 3-10 in CH2Cl2. 

 T1/nm Hole Electron  T1/nm Hole Electron 

3-1 625 

  

3-6 606 

  
3-2 659 

  

3-7 610 

  
3-3 1146 

  

3-8 733 

  
3-4 647 

  

3-9 647 

  
3-5 600 

  

3-10 744 

  

 

To understand the electronic configurations of the emitting states for 3-1 – 3-10, TDDFT 

calculations were performed and the NTOs representing the emitting T1 states are displayed in 

Table 3.7. The trend of the calculated emission energies matched the trend of the experimental 

energies very well Figure 3.6. For complexes 3-1, 3-2, 3-5 − 3-7, their holes are almost exclusively 

distributed on the phenyl rings of the C^N ligands and on the metal d−orbital; while the electrons 

are localized on the diimine ligands and the d−orbital. Therefore, the emitting states in these 

complexes are assigned to predominantly the 3MLCT/3LLCT states, mixed with some 3LMCT/3d,d 
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configurations. For complex 3-3, both the hole and electron are almost exclusively on the 

benzoquinoline part of the N^N ligand, with minor contribution from the metal d orbitals. This 

indicates the dominant 3,* nature with minor 3d,d character for the emitting state in 3-3. The 

NTOs show that the emitting state of 3-9 also has predominant 3,* configuration with minor 

3d,d contribution. However, both the hole and electron are mainly distributed on one of the C^N 

ligands. The remaining complexes 3-4, 3-8 and 3-10 all have holes on the phenyl rings of the C^N 

ligands and the d−orbitals, with some contributions from the N^N ligands; while their electrons 

are distributed on the N^N ligands and the d−orbitals. Therefore, the emitting states in these 

complexes have mixed 3MLCT/3LLCT/3,* configurations with minor contribution from the 

3LMCT/3d,d configurations. It is noted that the electrons in 3-5 – 3-7 are only localized on the 

phenanthroline motif, they did not extend to the additional phenyl ring(s). Therefore, the emission 

energies in these three complexes are essentially the same. 

For complexes 3-1, 3-2, 3-8 and 3-10 that have dominant charge transfer configurations in 

their emitting states, benzannulation reduced the energies of their emitting states, which 

significantly increased the nonradiative decay rate constants (see knr in Table 3.1) in 3-2, 3-8, and 

3-10 compared to that in 3-1 without pronouncedly altering their radiative decay rate constants 

(kr). This trend is in accordance with the energy gap law.68,69 For complexes 3-5 and 3-6, they have 

the similar krs to that of 3-1, but their knrs are smaller than that of 3-1. The reduced knrs in 3-5 and 

3-6 can be attributed to the rigidity of phenanthroline and its derivatives compared to bipyridine. 

Consequently, their emission quantum yields are higher than that of 3-1. Interestingly, the emission 

energy and the T1 state configuration of 3-7 resemble those of 3-5 and 3-6, but its lifetime is one 

order of magnitude longer than those of 3-5 and 3-6 and its emission quantum yield is less than 

half of those for 3-5 and 3-6. Examination of the triplet energy diagram obtained from the TDDFT 
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calculation (Figure 3.7) reveals that unlike the other complexes, the second triplet excited state 

(T2) in 3-7 lies closely to its T1 state, which makes it possible to be configurationally mixed with 

T1 state and reaches an equilibrium. Because the T2 state of 3-7 has a 3,* configuration (Table 

3.8), admixing T2 with T1 drastically reduces the kr and knr in 3-7 compared to those in 3-5 and 3-

6, which dramatically prolongs the emission lifetime of 3-7. 
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Figure 3.6. Comparing experimental emission spectra to TDDFT SCF energy for 3-1 – 3-10 in 

dichloromethane. 
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Figure 3.7. Triplet excited state energy diagram for 3-1 – 3-10 in CH2Cl2. 
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Table 3.8. NTOs for the second triplet excited states (T2) of 3-1 – 3-10 in CH2Cl2. 

    HOTO    LUTO    HOTO    LUTO 

3-1 

  

3-6 

  
3-2 

  

3-7 

  
3-3 

  

3-8 

  
3-4 

  

3-9 

  
3-5 

  

3-10 

  
 

3.3.3. Transient absorption (TA) 

The nanosecond TA of complexes 3-1 – 3-10 in acetonitrile was investigated to further 

understand their triplet excited state characteristics. The TA spectra of 3-1 – 3-10 immediately 

after laser excitation are shown in Figure 3.8, and the time–resolved TA spectra are presented in 

Figure 3.9. The TA band maxima, triplet excited−state lifetimes, triplet extinction coefficients and 

quantum yields (when applicable), are listed in Table 3.1. The triplet excited−state lifetimes 

deduced from the decay profiles of the TA signals resembled the lifetimes obtained from the decay 

of emission in acetonitrile. Accordingly, we can tentatively assign the transient absorbing excited 

states to the emitting excited states except for 3-7. 

The TA spectra in Figure 3.8 and the data in Table 3.1 manifested that 3-1, 3-5 and 3-6 

possessed identical TA spectra, and their triplet lifetimes were on the same order. The TA spectral 

feature of 3-4 appeared to resemble those of 3-1, 3-5 and 3-6, but was somewhat blue-shifted 
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accompanied by a longer lifetime. The TA spectra of 3-2 and 3-8 were similar in shape but the TA 

band maximum was red−shifted for 3-8 compared to 3-2, and the lifetime of 3-8 is longer than that 

of 3-2. The TA spectra of 3-3 and 3-10 were similar in the region of 450−800 nm with very broad 

and moderately strong absorption. However, the triplet lifetime of 3-3 is one order of magnitude 

longer than that of 3-10, reflecting the different natures of the T1 states in these two complexes. In 

addition, the spectra of 3-2, 3-3, 3-4, and 3-8 all resembled those of their corresponding Ir(III) 

complexes bearing the same N^N ligand but with different C^N ligands.32 Considering the natures 

of the T1 states in these complexes (discussed in the photoluminescence section) and comparing 

these spectra to those of their corresponding N^N ligands and those of their Zn2+ perturbed ligands 

(Figure 3.10), we attribute the observed TA to 3MLCT/3LLCT for 3-1, 3-2, 3-5, and 3-6, to N^N 

localized 3,* to 3-3 and 3-7, to 3,*/3MLCT/3LLCT to 3-4, and to 3MLCT/3LLCT/3,* for 3-

8 and 3-10. No TA signals were observed from 3-9, which is consistent with the C^N ligand 

localized 3,* nature for its T1 state because we reported earlier that neither 2−phenylquinoline 

(pq) nor its chloro−bridged dinuclear Ir(III) precursor [(Ir(pq)2Cl]2 produced any TA signals.31 The 

drastically different TA spectra and lifetimes of 3-8, 3-9 and 3-10 clearly manifested the distinct 

effects that variations of the benzannulation site at the N^N ligand exerted on the triplet excited-

state absorption. 

Complex 3-7 exhibited a quite distinct TA spectrum from the other complexes, with a very 

strong absorption band at 475 nm and a quite long triplet lifetime. This TA spectral feature was 

identical to that of its N^N ligand (Figure 3.10). Therefore, the observed TA for 3-7 is ascribed to 

the 3,* state localized on the N^N ligand. As discussed in the previous section, the T2 state in 3-

7 has the N^N ligand localized 3,* configuration and is energetically closed to its T1 state. Thus, 

it can configurationally mix with the T1 state and predominantly contribute to the TA of 3-7. 
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Figure 3.8. Nanosecond transient differential absorption spectra of complexes 3-1 − 3-10 in 

acetonitrile solution immediately after laser pulse excitation (A355 = 0.4 in a 1−cm cuvette, λex = 

355 nm). 
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Figure 3.9. Nanosecond time-resolved transient differential absorption spectra of 3-1 – 3-10 at 

zero-time decay in acetonitrile. λex = 355 nm, A355 = 0.4 in a 1-cm cuvette. 



 

122 

400 500 600 700 800
-0.02

-0.01

0.00

0.01

0.02

0.03


 O

D

Wavelength / nm

 0 s

 4 s

 8 s

 12 s

 16 s

L3-2

400 500 600 700 800
-0.2

-0.1

0.0

0.1

0.2

 0 s

 2 s

 4 s

 6 s

 8 s


 O

D

Wavelength / nm

L3-2+ZnCl
2

400 500 600 700 800
-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

 0 s

 4 s

 8 s

 12 s

 16 s


 O

D

Wavelength / nm

L3-3

400 500 600 700 800

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

 0 s

 2 s

 4 s

 6 s

 8 s


 O

D

Wavelength / nm

L3-3+ZnCl
2

400 500 600 700 800
-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06


 O

D

Wavelength / nm

 0 s

 4 s

 8 s

 12 s

 16 s

L3-4

400 500 600 700 800
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

 0 s

 4 s

 8 s

 12 s

 16 s


 O

D

Wavelength / nm

L3-4+ZnCl
2

 

400 500 600 700 800

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012


 O

D

Wavelength / nm

 0 s

 2 s

 4 s

 6 s

 8 s

L3-6

400 500 600 700 800
-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0.025

 0 s

 2 s

 4 s

 6 s

 8 s


 O

D

Wavelength / nm

L3-6+ZnCl
2

400 500 600 700 800
-0.005

0.000

0.005

0.010

0.015

0.020

0.025

 0 s

 1 s

 2 s

 3 s

 4 s


 O

D

Wavelength / nm

L3-7

400 500 600 700 800
-0.005

0.000

0.005

0.010

0.015

0.020

 0 s

 12 s

 24 s

 36 s

 48 s


 O

D

Wavelength / nm

L3-7+ZnCl
2

400 500 600 700 800

-0.05

0.00

0.05

0.10  0 s

 8 s

 16 s

 24 s

 32 s


 O

D

Wavelength / nm

L3-8

400 500 600 700 800
-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

 0 s

 2 s

 4 s

 6 s

 8 s


 O

D

Wavelength / nm

L3-8+ZnCl
2

 

400 500 600 700 800
-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020


 O

D

Wavelength / nm

 0 ns

 800 ns

 1600 ns

 2400 ns

 3200 ns

L3-10

 
400 500 600 700 800

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

 

 


O

D

Wavelength / nm

 0 s

 1 s

 2 s

 3 s

 4 s

 6 s

 10 s

 20 s

 40 s

L3-10+ZnCl
2

 
Figure 3.10. Nanosecond time-resolved transient absorption (TA) spectra of the diimine ligands 

used in complexes 3-2 − 3-4, 3-6 − 3-8 and 3-10 and their corresponding ZnCl2 complexes in 

CH3CN. The diimine ligands used in 3-1, 3-5 and 3-9 and their corresponding ZnCl2 complexes 

did not show any TA signals. ex = 355 nm, and A355 = 0.4 in a 1-cm cuvette. 
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3.3.4. Reverse saturable absorption 

The results and discussions in the previous sections revealed that the ground−state and 

excited−state absorption and the triplet lifetimes were affected remarkably by the site of 

benzannulation at the N^N ligand in complexes 3-1 − 3-10. In addition, the TA signals for all 

complexes except for 3-9 were positive at 532 nm, implying a stronger excited−state absorption 

than the ground−state absorption at this wavelength. This phenomenon set up the condition for 

reverse saturable absorption (RSA, a nonlinear optical phenomenon in which the absorptivity of a 

compound increases with increased incident fluence) to occur. To demonstrate the RSA, nonlinear 

transmission measurement for all complexes was performed in acetonitrile solutions in a 2−mm 

cuvette using the 532 nm 4.1 ns laser pulses as the light source. For convenient comparison, the 

linear transmission of each sample solution was adjusted to 80% at 532 nm in the 2−mm cuvette. 

The resultant transmission vs. incident energy curves are presented in Figure 3.11. With increased 

incident energy, the transmission of all complexes decreased pronouncedly, indicating the 

occurrence of RSA. The strength of the RSA decreased following the sequence of 3-7 > 3-5 ≈ 3-6 

> 3-1 > 3-3 > 3-2 > 3-4 > 3-10 > 3-8 > 3-9, with 3-7 exhibiting the strongest RSA by reducing the 

transmission from 80% to 25% at the incident energy of 709 J. The RSA trend matched well with 

their OD values at 532 nm (see Table 3.9). It is well known that the strength of RSA is mainly 

determined by the ratio of the excited−state absorption cross section vs. the ground−state 

absorption cross section (ex/0) at the interested wavelength. A decreased ground−state 

absorption and/or increased excited−state absorption would induce a strong RSA. The 0 values 

can be obtained by converting the molar extinction coefficients at 532 nm using the equation  = 

2303/NA (where NA is the Avogadro’s constant). Unfortunately, the ex values for most of the 

complexes could not be obtained due to the lack of obvious bleaching bands in the TA 
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measurement so that the singlet depletion method could not be applied to estimate the ex values. 

Nevertheless, the OD values that measure the absorptivity difference between the excited state 

and the ground state can serve as a good indicator for the strength of the excited−state absorption. 

A general trend is that the complexes with increased ground−state absorption at 532 nm due to 

benzannulation, i.e. 3-2, 3-4, 3-8, 3-9 and 3-10, exhibited weaker excited−state absorption at 

532nm. The combination of these changes reduced the RSA strength for these complexes. 

Although 3-3 had an increased 0 value at 532 nm, its much stronger excited−state absorption at 

this wavelength counteracted the increased ground−state absorption and consequently gave rise to 

a stronger RSA than 3-2, 3-4, 3-8, 3-9 and 3-10. 

Table 3.9. Ground−state absorption cross sections (σ0) and OD values of 3-1 − 3-10 at 532 nm. 

 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 

σ0/10−18 cm2 1.39 3.06 5.65 2.47 1.28 1.37 1.52 5.80 2.42 4.61 

ODb 0.018 0.011 0.020 0.014 0.020 0.020 0.024 0.007 −c 0.015 
a Measured in CH2Cl2. 

b Measured in CH3CN. c Too weak to be measured. 
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Figure 3.11. Transmission vs incident energy curves for 3-1 − 3-10 at the linear transmittance of 

80% in 2 mm cuvette (in acetonitrile solution) using the 532 nm 4.1 ns laser pulses. The radius of 

the beam at the focal point was approximately 96 m. 
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3.4. Conclusions 

Ten moncationic iridium(III) complexes featuring various N^N ligands were synthesized 

and their photophysical properties were systematically investigated. Extending −conjugation of 

the N^N ligand via benzannulation caused either a red− or blue−shift in their absorption and 

emission spectra compared to their corresponding parent complex. This phenomenon was 

rationalized by analyzing the molecular orbital symmetry at the site of benzannulation via DFT 

calculations. Depending on the site of benzannulation, destabilization (when benzannulation 

occurred at the 3,4−/3′,4′−position or 5,6−/5′,6′−position of 2,2′−bipyridine ligand or at the 

6,7−position of the quinoline ring on the N^N ligand) or stabilization (when benzannulation 

occurred at the 4,5−/4′,5′−position of 2,2′−bipyridine ligand or at the 7,8−position of the quinoline 

ring on the N^N ligand) or no change (when benzannulation occurred at the 2,2′,3,3′−position of 

2,2′−bipyridine or 5,6−position of phenanthroline ligand) of the LUMO was found upon 

interaction with cis−1,3−butanediene. Consequently, an enlarged or narrowed or identical 

HOMO−LUMO gap was produced compared to the parent complex and a blue− or red−shifted or 

no−changed charge transfer absorption band was observed. The similar trend was observed in the 

emission spectra of these complexes. The site of benzannulation also impacted the ns TA of these 

complexes drastically. Due to the site−dependent benzannulation effects on the ground− and 

excited−state absorption, RSA strength of these complexes at 532 nm also varied, which followed 

the trend of 3-7 > 3-5 ≈ 3-6 > 3-1 > 3-3 > 3-2 > 3-4 > 3-10 > 3-8 > 3-9. This trend correlated well 

with their OD values at 532 nm and their ground−state absorption cross sections at 532 nm. 

Benzannulation that increased ground−state absorption but reduced the excited−state absorption 

resulted in reduced RSA, while benzannulation that had minor impact on the ground−state 

absorption but increased the excited−state absorption gave rise to enhanced RSA. A detailed 
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understanding of the benzannulation site−dependent red− or blue− shift of the absorption and 

emission spectra is vital for designing organometallic complexes with predetermined 

photophysical properties for applications in OLEDs, dye−sensitized solar cells, phosphorescent 

probes, and photosensitizers for upconversion or photodynamic therapy. 
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4. EFFECTS OF VARYING THE BENZANNULATION SITE AND π CONJUGATION OF 

THE CYCLOMETALATING LIGAND ON THE PHOTOPHYSICS AND REVERSE 

SATURABLE ABSORPTION OF MONOCATIONIC IRIDIUM(III) COMPLEXES 

 

4.1. Introduction  

In the past two decades, heavy-transition-metal complexes, especially octahedral d6 

iridium(III) complexes, have attracted extensive interest because of the strong spin−orbit coupling 

of the iridium(III) ion, which enhances the intersystem crossing rate and thus facilitates the 

formation of a triplet excited state and increases the phosphorescence quantum yield.1,2 This feature 

holds great potential for a variety of applications, such as organic light-emitting devices,3,4 light-

emitting electro- chemical cells,5−8 low-power upconversion,9,10 luminescent biological labeling,11 

and nonlinear optics.12−15 In addition, iridium(III) complexes exhibit excellent chemical and 

thermal stabilities, facilitating the practical applications of these complexes in photonic and 

biophotonic areas. More importantly, the excited-state properties of the iridium(III) complexes can 

be readily tuned via ligand structural modifications for tailing a specific application.16−33  

The facile tunability of monocationic cyclometalated iridium(III) complexes, 

[(N^N)Ir(C^N)2]
+, distinguishes them from their bicationic ruthenium(II) analogues, [Ru- 

(N^N)3]
2+, because the cyclometalating (C^N) and diimine (N^N) ligands can be altered 

independently to tune the photophysical properties of the iridium(III) complexes.16−33 One of the 

commonly applied strategies is to incorporate electron-donating or -withdrawing substituents on 

the ligand(s).16−22 Another efficient strategy is to extend the π conjugation of the N^N and/or C^N 

ligand(s).23−33 In comparison to the former approach, extending the ligand π conjugation can alter 

the nature of the lowest singlet or triplet excited state independently. In 2006, Huang’s group 
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reported that the emission wavelength of the heteroleptic iridium(III) complexes with N^N ligands 

bearing different degrees of π conjugation can be adjusted drastically from 586 to 732 nm.23 

Bryce’s group,26 Schanze’s group,27 and our group12,13,21,24,28,30−33 reported that incorporating π-

conjugated substituents or benzannulation to extend the π-conjugation of the N^N ligand 

dramatically changed the triplet lifetime and enhanced the triplet excited-state absorption. This 

was achieved by admixing the N^N-ligand-localized 3π,π* character with the charge-transfer (3CT) 

character in the T1 state or even completely switching the T1 state to the 3π,π* state in the 

[(N^N)Ir(C^N)2]
+ complexes. Interestingly, we have previously discovered that different sites of 

benzannulation on the N^N ligand caused either a red or blue shift of the absorption and emission 

spectra in the [(N^N)Ir(C^N)2]
+ complexes.28 This unusual phenomenon was rationalized by 

analyzing the symmetry of the frontier molecular orbitals (FMOs) at the site of benzannulation on 

the N^N ligand.  

Alongside the studies on the impact of the π conjugation of the N^N ligand, variation of 

the π-conjugation of the C^N ligands also influences the singlet and triplet excited-state 

characteristics significantly.12,13,25,29,31−33 Particularly, benzannulation at the C^N ligand resulted 

in a strong red shift of the lowest-energy ground-state absorption band and a drastically increased 

contribution of the C^N-ligand-localized 3π,π*/ intraligand CT (3ILCT) configuration(s) to the 

lowest triplet excited state of iridium(III) complexes.25,29,33 However, it is not clear whether the 

impact of benzannulation at the C^N ligands is also site-dependent, similar to benzannulation at 

the N^N ligand.  

To thoroughly understand the impact of benzannulation at the C^N ligand on the excited-

state properties of the iridium(III) complexes for a rational design of iridium(III) complexes for 

photonic applications, a series of monocationic iridium(III) complexes bearing C^N ligands 
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derived from 2-phenylpyridine (ppy; structures shown in Chart 4-1), i.e., 2- phenylquinoline (L4-

1), 3-phenylisoquinoline (L4-2), 1-phenyl-isoquinoline (L4-3), benzo[h]quinoline (L4-4), 2-

(pyridin-2-yl)naphthalene (L4-5), 1-(pyridin-2-yl)naphthalene (L4-6), 2-(phenanthren-9-

yl)pyridine (L4-7), 2-phenylbenzo[g]quinoline (L4-8), 2-(naphthalen-2-yl)quinoline (L4-9), and 

2-(naphthalen-2-yl)benzo[g]quinoline (L4-10), were synthesized. These C^N ligands were 

obtained by varying the site of benzannulation either on the pyridine ring (ligands L4-1 − L4-4) 

or on the benzene ring (ligands L4-4 − L4-6) of the ppy ligand or through expansion of the π-

conjugation of L4-1 (ligands L4-8 − L4-10) or L4-5/L4-6 (ligand L4-7). Complex 4-0 with the 

ppy ligand was used as a reference complex for comparison purposes. To demonstrate how this 

change influences the potential applications of the [(N^N)Ir-(C^N)2]+ complexes, reverse 

saturable absorption (RSA, a nonlinear absorption phenomenon in which the absorptivity of a 

material increases with an increase of the incident light fluence due to stronger excited-state 

absorption than the ground-state absorption) of the synthesized complexes was studied using a 

nanosecond laser pulse at 532 nm. 

  

 
Chart 4.1.  Structures of heteroleptic cationic Ir(III) complexes 4-0 − 4-10. 
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4.2. Experimental section  

4.2.1. Materials and synthesis  

All chemicals and solvents were purchased from Aldrich Chemical Co. or Alfa Aesar and 

used as received unless otherwise noted. Silica gel (60 Å, 230−400 mesh) and Al2O3 gel (neutral) 

used for column chromatography were purchased from Sorbent Technology. The diimine ligand 

2-(pyridin-2-yl)-quinoline (N^N ligand) and C^N ligands L4-1 and L4-8 − L4-10 were 

synthesized by a Friedlan̈der condensation reaction according to or by modification of the literature 

procedure.34−36 3-Aminonaphthalene-2-carboxaldehyde was prepared according to the reported 

method.37 Ligand L4-2 was synthesized by a copper(I)-mediated cyclization reaction from 2-

bromobenzaldehyde and ethynylbenzene.38 Ligands L4-3 and L4-4 were purchased from Alfa 

Aesar and used as received. Ligands L5−L7 were synthesized by Stille coupling reactions from 1- 

bromonaphthalene, 2-bromonaphthalene, and 9-bromophenanthrene, respectively.39,40 The 

synthesized ligands were characterized by 1H NMR spectroscopy, while the synthesized 

complexes 4-1 − 4-10 were confirmed by 1H NMR spectroscopy, electrospray ionization high- 

resolution mass spectrometry (ESI-MS), and elemental analysis. 1H NMR was obtained on Varian 

Oxford VNMR spectrometers (400 or 500 MHz). ESI-MS analyses were conducted on a Bruker 

BioTOF III mass spectrometer. Elemental analyses were carried out by NuMega Resonance 

Laboratories, Inc. (San Diego, CA).  

Ligand L4-7. The mixture of 9-bromophenanthrene (0.64 g, 2.5 mmol), 2-(tributylstannyl) 

pyridine (1.1 g, 3 mmol), Pd(PPh3)4 (40 mg, 0.035 mmol), and toluene (50 mL) was heated to 

reflux under nitrogen for 24 h. After reaction, toluene was removed by distillation, and the resultant 

dark oil was purified by a silica gel column eluted with hexane/ethyl acetate (v/v = 20/1).  A 

colorless oil was obtained as the product (290 mg, 45%).  1H NMR (CDCl3, 400 MHz): δ 8.74-
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8.86 (m, 3H), 8.10 (dd, J = 8.0, 1.2 Hz, 1H), 8.22 (dd, J = 8.0, 1.2 Hz, 1H), 7.86-8.11 (m, 2H), 

7.59-7.72 (m, 5H), 7.40 (ddd, J = 7.6, 3.2, 1.2 Hz, 1H). 

Ligand L4-10. To a solution of 2-acetylnaphthalene (40 mg, 0.23 mmol) and 3-

aminonaphthalene-2-carboxaldehyde (40 mg, 0.23 mmol) in absolute EtOH (20 mL), saturated 

ethanolic KOH (2 mL) was added.  The solution was refluxed under Ar for 24 h.  After evaporation 

of the solvent, the residue was purified by chromatography on alumina gel column, eluting with 

CH2Cl2/hexanes (1:3), to obtain the title compound as a yellow powder (51 mg, 72%).  1H NMR 

(CDCl3, 400 MHz): δ 8.79 (s, 1H), 8.65 (s, 1H), 8.46-8.41 (m, 3H), 8.12-8.07 (m, 1H), 8.05-7.98 

(m, 4H), 7.92-7.88 (m, 1H), 7.54-7.48 (m, 4H). 

 

Scheme 4-1.  Synthetic routes for Ir(III) complexes. 

 

General synthetic procedure for Ir(III) complexes 4-1 − 4-10. The synthetic scheme for 

complexes 4-1 − 4-10 is illustrated in Scheme 4-1. The synthesis required two steps. First, the 

corresponding cyclometalating ligand (L4-1 − L4-10; 0.5 mmol) and IrCl3·3H2O (46.5 mg, 0.25 

mmol) were added to a mixed solvent of 2-methoxyethanol (15 mL) and water (5 mL). The mixture 

was degassed and then heated to 100 °C for 24 h to allow for complexation to occur under a 

nitrogen atmosphere. After the reaction, the mixture was cooled to room temperature, and the 

precipitate was filtered and washed with water and alcohol to give the crude cyclometalated chloro-

bridged iridium(III) dimer. The crude iridium(III) dimer was directly used for the following step 

reaction without further purification. Then, the mixture of obtained iridium(III) dimer (1 equiv), 
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N^N ligand (2 equiv), AgSO3CF3 (2 equiv), and CH2Cl2/methanol (2:1, v/v; 30 mL) was degassed 

and heated to reflux for 24 h. After cooling to room temperature, NH4PF6 (10 equiv) was added 

and the mixture was stirred for 2 h at room temperature. The resulting precipitate was filtered and 

purified by column chromatography on alumina gel eluted with CH2Cl2. The crude product was 

further purified by recrystallization in CH2Cl2 and hexane (or toluene) to obtain the pure complex. 

The reported yield for each complex is for the two-step reactions based on the starting C^N ligand.  

4-1.  An orange powder was obtained as the product (69 mg, yield: 29%). 1H NMR (400 

MHz, CDCl3) δ 8.46-8.37 (m, 2H), 8.37-8.21 (m, 3H), 8.18-8.10 (m, 1H), 8.09-8.00 (m, 2H), 7.84 

(dd, J = 7.8, 4.2 Hz, 2H), 7.79 (d, J = 7.2 Hz, 1H), 7.61 (dd, J = 15.7, 7.9 Hz, 3H), 7.51 (dd, J = 

14.7, 8.3 Hz, 2H), 7.45-7.35 (m, 3H), 7.25 (s, 1H), 7.16 (ddd, J = 15.8, 12.3, 4.7 Hz, 3H), 7.08 (t, 

J = 7.1 Hz, 1H), 7.02-6.80 (m, 4H), 6.54 (d, J = 7.2 Hz, 1H), 6.34 (d, J = 7.4 Hz, 1H). ESI-HRMS 

(m/z): calcd. for [C44H30N4Ir]
+, 807.2103; found, 807.2136. Anal. calcd. (%) for 

C44H30F6IrN4P.0.3C6H14 (C6H14: Hexane): C, 56.50; H, 3.64; N, 5.68. Found: C, 56.63; H, 3.26; 

N, 5.46. 

4-2.  An orange powder was obtained as the product (112 mg, yield: 47%). 1H NMR (400 

MHz, CDCl3): δ 8.99 (d, J = 7.6 Hz, 1H), 8.86 (d, J = 8.8 Hz, 1H), 8.67 (d, J = 8.4 Hz, 1H), 8.52 

(s, 1H), 8.42 (d, J = 8.8 Hz, 1H), 8.31-8.28 (m, 2H), 8.14 (s, 1H), 8.09 (s, 1H), 8.05 (dd, J = 6.4, 

1.2 Hz, 1H), 7.95-7.90 (m, 2H), 7.83 (d, J = 8.8 Hz, 2H), 7.77-7.68 (m, 4H), 7.56-7.44 (m, 5H), 

7.24 (td, J = 7.2, 1.2 Hz, 1H), 7.13-7.03 (m, 2H), 6.91 (td, J = 7.2, 1.2 Hz, 1H), 6.89 (td, J = 7.2, 

1.2 Hz, 1H), 6.32 (d, J = 7.6 Hz, 1H), 6.05 (d, J = 7.6 Hz, 1H). ESI-HRMS (m/z): calcd. for 

[C44H30N4Ir]
+, 807.2103; found, 807.2106. Anal. calcd. (%) for C44H30F6IrN4P.0.7CH2Cl2: C, 

53.08; H, 3.13; N, 5.54. Found: C, 52.89; H, 3.48; N, 5.87. 
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4-3. A red powder was obtained as the product (135 mg, yield: 57%). 1H NMR (400 MHz, 

DMSO -d6) δ 9.18-9.05 (m, 2H), 8.99 (d, J = 8.9 Hz, 1H), 8.88 (dd, J = 15.9, 8.3 Hz, 2H), 8.44 (d, 

J = 7.5 Hz, 1H), 8.34 (dd, J = 12.4, 8.5 Hz, 2H), 8.09 (dd, J = 8.3, 5.0 Hz, 2H), 8.00 (d, J = 9.4 

Hz, 2H), 7.97-7.89 (m, 2H), 7.88-7.78 (m, 2H), 7.73-7.63 (m, 2H), 7.58 (dd, J = 16.3, 7.4 Hz, 2H), 

7.51 (d, J = 6.3 Hz, 1H), 7.42 (d, J = 6.5 Hz, 1H), 7.16 (dt, J = 14.1, 8.0 Hz, 3H), 7.01-6.89 (m, 

2H), 6.28 (d, J = 7.8 Hz, 1H), 6.14 (d, J = 6.5 Hz, 1H), 5.76 (s, 1H). ESI–HRMS (m/z): calcd. for 

[C44H30N4Ir]
+, 807.2103; found, 807.2121. Anal. calcd. (%) for C44H30F6IrN4P.0.8CH2Cl2

.0.3H2O: 

C, 52.48; H, 3.17; N, 5.46. Found: C, 52.47; H, 3.57; N, 5.35. 

4-4. A brown powder was obtained as the product (108 mg, yield: 48%). 1H NMR (400 

MHz, CDCl3) δ 8.94 (d, J = 8.2 Hz, 1H), 8.83 (d, J = 8.9 Hz, 1H), 8.66 (d, J = 8.7 Hz, 1H), 8.43 

(d, J = 9.0 Hz, 1H), 8.31 (dd, J = 8.1, 1.2 Hz, 1H), 8.27-8.17 (m, 2H), 8.14 (dd, J = 5.4, 1.2 Hz, 

1H), 7.92 (d, J = 8.8 Hz, 1H), 7.89-7.78 (m, 3H), 7.79-7.71 (m, 2H), 7.61 (d, J = 8.8 Hz, 1H), 7.56-

7.49 (m, 1H), 7.49-7.41 (m, 3H), 7.37 (dd, J = 8.1, 5.4 Hz, 1H), 7.32 (ddd, J = 7.6, 5.5, 1.1 Hz, 

1H), 7.22-7.16 (m, 1H), 7.16-7.10 (m, 1H), 7.04 (ddd, J = 8.2, 4.8, 1.4 Hz, 1H), 6.35 (d, J = 6.6 

Hz, 1H), 6.04 (d, J = 6.6 Hz, 1H). ESI-HRMS (m/z): calcd. for [C40H26N4Ir]
+, 755.1789; found, 

755.1821. Anal. calcd. (%) for C40H26F6IrN4P.1.4H2O: C, 51.93; H, 3.14; N, 6.06. Found: C, 51.74; 

H, 3.48; N, 5.99. 

4-5. An orange powder was obtained as the product (109 mg, yield: 46%). 1H NMR 

(DMSO-d6, 400 MHz): δ 9.06 (d, J = 7.9 Hz, 1H), 8.96 (d, J = 7.8 Hz, 1H), 8.88 (d, J = 7.9 Hz, 

1H), 8.55 (d, J = 8.2, 3.1 Hz, 2H), 8.50 (s, 1H), 8.38 (d, J = 8.1 Hz, 1H), 8.30-8.26 (m, 2H), 8.07-

8.05 (m, 2H), 7.96-7.93 (m, 2H), 7.86 (d, J = 8.4 Hz, 1H), 7.81-7.76 (m, 2H), 7.62 (t, J = 7.6 Hz, 

2H), 7.48 (t, J = 7.6 Hz, 1H), 7.26-7.15 (m, 8H), 6.89 (t, J = 8.0 Hz, 1H), 6.57 (s, 1H), 6.33 (s, 
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1H). ESI-HRMS (m/z): calcd. for [C44H30N4Ir]
+, 807.2103; found, 807.2090. Anal. calcd. (%) for 

C40H30F6IrN4P: C, 55.52; H, 3.18; N, 5.89. Found: C, 55.14; H, 3.58; N, 5.73. 

4-6. A red powder was obtained as the product (119 mg, yield: 50%). 1H NMR (CDCl3, 

400 MHz): δ 8.89 (d, J = 7.8 Hz, 1H), 8.77 (d, J = 8.2 Hz, 1H), 8.62 (dd, J = 8.2, 3.1 Hz, 2H), 8.55 

(d, J = 8.1 Hz, 1H), 8.33-8.38 (m, 2H), 8.36 (td, J = 8.1, 1.2 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 

7.83-7.90 (m, 3H), 7.68-7.73 (m, 3H), 7.57 (t, J = 7.8 Hz, 2H), 7.24-7.46 (m, 7H), 7.22 (d, J = 8.0 

Hz, 1H), 6.88-6.98 (m, 3H), 6.37 (d, J = 8.1 Hz, 1H), 6.23 (d, J = 8.1 Hz, 1H). ESI-HRMS (m/z): 

calcd. for [C44H30N4Ir]
+, 807.2103; found, 807.2123. Anal. calcd. (%) for 

C44H30F6IrN4P.0.8CH2Cl2. 0.5H2O: C, 52.30; H, 3.19; N, 5.45. Found: C, 52.31; H, 3.55; N, 5.58. 

4-7. A red powder was obtained as the product (110 mg, yield: 40%). 1H NMR (400 MHz, 

CDCl3) δ 8.90 (d, J = 8.1 Hz, 1H), 8.69 (dd, J = 27.7, 8.7 Hz, 2H), 8.62-8.58 (m, 1H), 8.55 (d, J = 

8.0 Hz, 1H), 8.53-8.41 (m, 3H), 8.39 (dd, J = 6.1, 3.5 Hz, 1H), 8.24 (td, J = 8.0, 1.6 Hz, 1H), 8.15 

(dd, J = 5.8, 1.0 Hz, 1H), 8.13-7.99 (m, 2H), 7.88-7.76 (m, 2H), 7.65-7.56 (m, 3H), 7.49-7.43 (m, 

1H), 7.41 (ddd, J = 8.2, 6.9, 1.4 Hz, 1H), 7.37-7.26 (m, 5H), 7.21 (ddd, J = 8.0, 7.0, 0.8 Hz, 1H), 

7.06 (d, J = 5.0 Hz, 1H), 6.93 (dd, J = 8.3, 1.1 Hz, 1H), 6.88-6.78 (m, 2H), 6.77-6.65 (m, 2H), 6.50 

(dd, J = 8.5, 1.1 Hz, 1H), 6.42 (ddd, J = 8.6, 6.9, 1.5 Hz, 1H). ESI-HRMS (m/z): calcd. for 

[C52H34N4Ir]
+, 907.2416; found, 907.2442. Anal. calcd. (%) for C52H34F6IrN4P.C6H14

.3H2O: C, 

58.43; H, 4.57; N, 4.70. Found: C, 58.70; H, 4.92; N, 4.72. 

4-8. A brown powder was obtained as the product (118 mg, yield: 43%). 1H NMR (400 

MHz, CDCl3) δ 8.82 (s, 1H), 8.52 (d, J = 8.6 Hz, 1H), 8.41 (s, 1H), 8.32-8.24 (m, 2H), 8.24-8.14 

(m, 2H), 8.14-8.05 (m, 2H), 7.92 (t, J = 8.9 Hz, 3H), 7.82 (dd, J = 17.5, 8.7 Hz, 2H), 7.74-7.44 (m, 

6H), 7.40 (d, J = 8.3 Hz, 2H), 7.28-7.18 (m, 4H), 7.12 (dd, J = 13.9, 6.8 Hz, 2H), 6.90-6.81 (m, 

2H), 6.73 (d, J = 8.9 Hz, 1H), 6.60 (d, J = 7.7 Hz, 1H), 6.54 (d, J = 6.8 Hz, 1H), 6.09 (d, J = 8.5 
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Hz, 1H). ESI-HRMS (m/z): calcd. for [C52H34N4Ir]
+, 907.2416; found, 907.2460. Anal. calcd. (%) 

for C52H34F6IrN4P.0.5C6H14
.3H2O: C, 57.48; H, 4.12; N, 4.88. Found: C, 57.39; H, 4.26; N, 5.25. 

4-9. A red powder was obtained as the product (94 mg, yield: 34%). 1H NMR (400 MHz, 

CDCl3) δ 8.66-8.52 (m, 2H), 8.51-8.40 (m, 2H), 8.37 (d, J = 8.9 Hz, 1H), 8.31 (d, J = 8.5 Hz, 1H), 

8.20 (s, 1H), 8.17-8.01 (m, 3H), 7.96 (d, J = 8.6 Hz, 1H), 7.90 (d, J = 8.1 Hz, 2H), 7.84-7.73 (m, 

3H), 7.68 (d, J = 7.3 Hz, 1H), 7.53-7.38 (m, 3H), 7.33 (dd, J = 13.3, 6.8 Hz, 2H), 7.25 (t, J = 4.6 

Hz, 3H), 7.23-7.15 (m, 3H), 7.10 (d, J = 8.9 Hz, 1H), 6.96 (dt, J = 8.6, 7.1 Hz, 3H), 6.88 (s, 1H), 

6.69 (s, 1H). ESI-HRMS (m/z): calcd. for [C52H34N4Ir]
+, 907.2416; found, 907.2454. Anal. calcd. 

(%) for C52H34F6IrN4P.1.8H2O: C, 57.59; H, 3.49; N, 5.17. Found: C, 57.21; H, 3.79; N, 5.55. 

4-10. A red powder was obtained as the product (149 mg, yield: 52%). 1H NMR (400 MHz, 

CDCl3) δ 8.93 (s, 1H), 8.67-8.58 (m, 2H), 8.53-8.44 (m, 2H), 8.39 (s, 1H), 8.28 (d, J = 7.0 Hz, 

3H), 8.25-8.08 (m, 4H), 8.03-7.87 (m, 5H), 7.83 (d, J = 8.8 Hz, 2H), 7.64 (s, 1H), 7.57 (ddd, J = 

8.0, 7.0, 0.9 Hz, 1H), 7.48 (dd, J = 14.2, 6.9 Hz, 2H), 7.44-7.33 (m, 3H), 7.32 (dd, J = 4.8, 3.4 Hz, 

1H), 7.27-7.21 (m, 2H), 7.19-7.12 (m, 2H), 7.12-7.03 (m, 2H), 6.94 (s, 1H), 6.89 (s, 1H), 6.69 (d, 

J = 8.1 Hz, 1H), 6.06 (d, J = 8.4 Hz, 1H). ESI-HRMS (m/z): calcd. for [C60H38N4Ir]
+, 1007.2731; 

found, 1007.2746. Anal. Calcd. (%) for C60H38F6IrN4P.1.4H2O: C, 61.21; H, 3.49; N, 4.76. Found: 

C, 60.94; H, 3.86; N, 4.77. 

 

4.2.2. Photophysical and nonlinear transmission measurements 

All spectroscopic-grade solvents used for photophysical measurement were purchased 

from Alfa Aesar and used as received. The ultraviolet−visible (UV−vis) absorption spectra of 

complexes 4-1 – 4-10 were recorded on a Varian Cary 50 spectrophotometer. The steady-state 

emission spectra in different solvents [acetonitrile (CH3CN), acetone, CH2Cl2, and toluene] were 
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collected on a Horiba FluoroMax 4 fluorometer/phosphorometer. The full spectra of 4-8 and 4-10 

in CH2Cl2 were detected with an InGaAs detector from 670 to 1225 nm (λex = 473 nm) with a 

500-nm-long pass filter. [Ru(bpy)3]Cl2 (Φem = 0.097 in CH3CN; λex = 436 nm)41 was used as the 

reference for determination of the emission quantum yields for complexes 4-1 – 4-10 using relative 

actinometry.42 In degassed CH3CN solutions, the time- resolved nanosecond transient absorption 

(TA) spectra and the triplet lifetimes were measured on an Edinburgh LP920 laser flash photolysis 

spectrometer. The third harmonic output (355 nm) from a Nd:YAG laser (Quantel Brilliant; pulse 

width = 4.1 ns; repetition rate = 1 Hz) was used as the excitation source for the TA measurements. 

Before each measurement, the sample solutions were purged with argon for 40 min.  

The nonlinear transmission of complexes 4-1 – 4-10 at 532 nm was studied using a Quantel 

Brilliant 4.1 ns laser with a repetition rate of 10 Hz as the light source. The linear transmission of 

complexes 4-1 – 4-10 in CH3CN solution was set to 80% at 532 nm in the 2 mm cuvette. The 

experimental setup and details were described previously.43 The beam radius at the focal point was 

approximately 96 μm, focused by an f = 40 cm plano-convex lens.  

 

4.2.3. Quantum chemistry calculations 

Theoretical investigations of all iridium(III) complexes were performed using density 

functional theory (DFT) and time-dependent DFT (TDDFT), implemented in a Gaussian09 

quantum software package.44 These calculations include ground-state geometry optimization using 

DFT and absorption spectral calculations using TDDFT. DFT and TDDFT calculations were 

carried out using the hybrid functional PBE1PBE45 with a mixed basis set (LANL2DZ for 

iridium46 and 6-31g* for hydrogen, carbon, and nitrogen47). The solvent effects were implicitly 

included via a conductor polarized continuum model48,49 for CH2Cl2. This method- ology has been 
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proven to provide reasonable agreement to experimental results for the structural and electronic 

absorption of iridium(III) complexes.22,24,30,31,50 Ground-state optimization at the singlet and triplet 

states was performed and used as a structural input for TDDFT calculations of the emission 

energies.  

UV−vis absorption spectra were obtained by computing the lowest 60 singlet transitions 

using TDDFT, which were then broadened by a Gaussian function with a line width of 0.1 eV to 

reproduce homogeneous broadening caused by thermal vibrations to coincide with the 

experimental spectra of these complexes. To investigate the nature of the emissive states of the 

iridium(III) complexes, a TDDFT self-consistent-field (SCF) approach was applied using the 

triplet ground-state geometry optimized using unrestricted DFT as the input for the TDDFT 

calculations of the spin-flip transition from T1 to S0.
22,28,30,50 Characterization of relevant optical 

transitions was performed by computing the natural transition orbitals (NTOs),51 as implemented 

in Gaussian09, and visualized using VMD52 and GaussView 5.0953 with the default isovalue of 

0.02. In addition, the spin-density was calculated as the difference between the SCF density for 

the lowest singlet and triplet states for each complex.  

 

4.3. Results and discussion 

4.3.1. Effect of benzannulation on the ground-state equilibrium geometry 

The main geometrical parameters characterizing the structural changes upon 

benzannulation were obtained from our DFT calculations and are shown in Table 4.1. The bond 

lengths between the coordinated atoms on the C^N ligands and the iridium(III) center showed that 

the C−Ir bonds were insignificantly affected by benzannulation, varying from 1.98 to 2.02 Å for 

all complexes. In contrast, the effect of benzannulation at the C^N ligands was more pronounced 

on the coordination bonds between nitrogen atoms and iridium(III), with the N−Ir bonds in 
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complexes 4-1 and 4-8 − 4-10 being 0.05−0.07 Å longer compared to those in complexes 4-2 − 4-

7. This trend aligns with the fact that complexes 4-1 and 4-8 − 4-10 have benzannulation at the 5 

and 6 positions of the pyridine ring of the C^N ligands, resulting in a slight elongation of the N−Ir 

coordination bond. It was noted that the C2−Ir and N2−Ir bond lengths from the C2^N2 ligand were 

slightly longer than those from the C1^N1 ligand. Moreover, the bond lengths between the two 

nitrogen atoms on the N^N ligand and the iridium(III) ion were quite distinct, with the N4−Ir bonds 

being not only obviously longer that those of the N3−Ir bonds but also more affected by 

benzannulation at the 5 and 6 positions of the C^N ligands (i.e., the N4−Ir bonds in complexes 4-

1 and 4-8 − 4-10 were 0.05−0.06 Å longer than those in complexes 4-2 − 4-7).  

The dihedral angles between the two pyridine rings (N3^N4) in the N^N ligand also pointed 

out that benzannulation at the 5 and 6 positions of the C^N ligands caused significant 

conformational changes, with the two pyridine rings being twisted to ∼20° in complexes 4-1 and 

4-8 − 4-10 compared to the ∼10° angles in complexes 4-2 − 4-7 (Table 4.1). It is interesting to 

note that the dihedral angles between the phenyl and pyridine rings in the two C^N ligands were 

both impacted pronouncedly by benzannulation at the 3 and 4 or 5′ and 6′ positions of the C^N 

ligands as well. This effect was clearly reflected by the much larger C1^N1 and C2^N2 angles in 

complexes 4-3, 4-6, and 4-7 compared to those in the other complexes.  

The benzannulation sites at the C^N ligands influenced the bond angles around the 

iridium(III) ion distinctively. Benzannulation at the 5 and 6 positions of the C^N ligands reduced 

both the N1−Ir−N3 and N1−Ir−N2 angles while increasing the N2−Ir−N3 angles in complexes 4-1 

and 4-8 − 4-10 compared to those in the other complexes. In contrast, benzannulation at either the 

5 and 6 or 5′ and 6′ positions of the C^N ligands increased the C1−Ir−C2 angles in complexes 1 

and 4-6 − 4-10 compared to those in 4-2 − 4-5. Benzannulation at the 3 and 4 positions of the C^N 
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ligands also slightly increased the C1−Ir−C2 angle in 4-3 with respect to those in 4-2, 4-4, and 4-

5. These trends indicate that benzannulation at the 5 and 6 positions of the C^N ligands in 4-1 and 

4-8 − 4-10 rotate both C^N ligands away from the quinoline rings of the N^N ligand to reduce 

steric hindrance. Additionally, benzannulation at the 5′ and 6′ positions of the C^N ligands 

expanded the C1−Ir−C2 angles in 4-6 and 4-7, especially in 4-7, as a result of avoiding steric 

hindrance.  

 

Table 4.1. Geometrical characteristics of complexes 4-1 − 4-10: bond length (B), dihedral angle 

(D) and bond angle (A) between atoms numbered in the Chart 4-1. 
 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 

B(Ir-C1) / Å 1.98 2.00 1.99 2.01 2.00 1.99 2.01 1.98 1.99 1.98 

B(Ir-C2) / Å 2.00 2.01 2.01 2.02 2.02 2.01 2.02 2.00 2.00 2.00 

B(Ir-N1) / Å   2.10 2.05 2.05 2.06 2.05 2.04 2.05 2.10 2.10 2.10 

B(Ir-N2) / Å 2.11 2.06 2.06 2.06 2.06 2.05 2.05 2.11 2.11 2.11 

B(Ir-N3) / Å 2.18 2.16 2.16 2.15 2.16 2.16 2.18 2.18 2.18 2.18 

B(Ir-N4) / Å 2.32 2.27 2.26 2.26 2.27 2.26 2.26 2.32 2.32 2.32 

D(C1^N1) (o) 0.2 0.7 11.4 0.3 1.0 11.1 11.6 0.3 0.6 0.6 

D(C2^N2) (o) 6.2 1.1 12.5 0.7 1.1 10.3 10.7 5.7 6.7 6.3 

D(N3^N4) (o) 19.5   10.0   9.9   9.1   10.8   11.1   9.2   20.0   20.4   20.2  
A(N1-Ir-N3) (o) 83.3   87.9   88.6   89.1   88.1   88.5   86.5   83.6   84.1   84.0  
A(N2-Ir-N3) (o) 103.8   96.5   96.9   95.6   96.8   96.8   91.5   103.9   103.3   103.5 

A(N1-Ir-N2) (o) 171.5   174.6   174.1   174.2   174.2   173.5   178.0   171.2   171.5   171.2  
A(C1-Ir-C2) (o) 86.6    84.5    85.3    83.9    84.3    86.4    94.7    86.8   86.9   86.9  

 

4.3.2. Electronic absorption  

The UV−vis absorptions of complexes 4-1 − 4-10 were studied in solvents with different 

polarities, such as CH3CN, tetrahydrofuran (THF), CH2Cl2, and toluene. The spectra in CH2Cl2 

are displayed in Figure 4.1, and the absorption parameters, i.e., absorption band maxima and molar 

extinction coefficients, are tabulated in Table 4.2. The absorption follows Beer’s law in the 

concentration range of 1×10-6 to 1×10-4 mol/L, suggesting the absence of ground-state aggregation 

in this tested concentration range. The spectra of all complexes were generally divided into three 

regions: (a) the major absorption bands at wavelengths of 270−400 nm in complexes 4-1 – 4-7, 

270−475 nm in 4-8 and 4-10, and 270−425 nm in 4-9 being predominantly attributed to the C^N 
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or N^N ligand-centered spin-allowed 1π,π* transitions, likely mixed with some CT character, in 

view of the large molar extinction coefficients and the NTOs from the TDDFT calculations (Tables 

4-5 and 4-6); (b) a weaker featureless low- energy band at 400−500 nm in 4-1 – 4-7, 475−550 nm 

in 4-8 and 4-10, and 425−550 nm in 4-9 originating mainly from the CT transitions [i.e., metal-to-

ligand CT (1MLCT), ligand-to-ligand CT (1LLCT), and also 1LLCT in 4-1 − 4-3 and 4-8 − 4-10] 

with minor 1π,π* character (Table 4.4); (c) a very weak tail beyond 500/ 550 nm attributing to 

spin-forbidden 3CT/1π,π* transitions according to literature reports for other iridium(III) 

complexes.23,24,28,29,31−33,54,55  

 

Table 4.2. Electronic absorption, emission, and excited-state absorption parameters for complexes 

4-1 – 4-10. 

 abs /nm (log ε)a em/nm (em/μs); em
b T1‑Tn/nm (TA/μs)c 

4-1 280 (4.79), 337 (4.52), 

433 (3.84) 

613 (0.52); 0.075 380 (0.30), 759 (0.31), 782 (0.33) 

4-2 292 (4.85), 329 (4.48), 

345 (4.40), 381 (4.13) 

642 (0.16); 0.033 371 (0.10), 432 (0.11), 773 (0.11) 

4-3 290 (4.74), 337 (4.54), 

377 (4.25), 432 (3.98) 

618 (0.31); 0.11 363 (0.33), 393 (0.34), 511 (0.34) 

4-4 280 (4.73), 329 (4.55), 

415 (3.95) 

615 (0.27); 0.070 377 (0.15), 437 (0.12), 749 (0.13) 

4-5 280 (4.79), 330 (4.58), 

423 (3.58) 

650 (0.07); 0.020 377 (0.03), 438 (0.02), 773 (0.02) 

4-6 280 (4.80), 338 (4.53), 

416 (3.91), 440 (3.88) 

649 (0.08); 0.024 382 (0.04), 501 (0.04), 758 (0.03) 

4-7 280 (4.86), 325 (4.66), 

343 (4.52), 442 (4.10) 

663 (0.06); 0.002 390 (0.01), 502 (0.01), 792 (0.01) 

4-8 280 (4.85), 311 (4.91), 

383 (4.30), 498 (3.76) 

894 (3.11); 0.015 371 (2.93), 462 (2.92), 657 (2.89) 

4-9 280 (4.92), 352 (4.68), 

473 (3.52) 

649 (0.13); 0.019 385 (0.06), 439 (0.06), 735 (0.05) 

4-

10 

280 (5.03), 333 (5.02), 

408 (4.65), 445 (4.13) 

898 (4.33); 0.009 458 (4.11), 683 (4.15) 

a Absorption band maxima and molar extinction coefficients of the UV-vis absorption in CH2Cl2 

at room temperature. b Emission band maxima and decay lifetimes in CH2Cl2 at room temperature, 

c = 1×10-5 mol/L. The reference used was a degassed CH3CN solution of [Ru(bpy)3]Cl2 (Φem = 

0.097, λex = 436 nm). c Nanosecond TA band maxima and triplet excited-state lifetimes measured 

in CH3CN at room temperature. 
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Figure 4.1. Experimental UV-vis absorption spectra of (a) 4-0 − 4-4, (b) 4-5 − 4-7 and (c) 4-0, 4-

1, and 4-8 − 4-10 at room temperature in dichloromethane. The inset shows the expanded spectra 

at 500-800 nm. 

 

Examination of the low-energy CT bands of 4-1 − 4-10 (i.e., 400 / 425 / 475−500 / 550 nm) 

and their comparison to that of the parent complex 4-0 revealed that benzannulation at the C^N 

ligands induced a red shift of these bands and increased molar extinction coefficients except for 

those in 4-2 and 4-5. Such changes became more distinct when benzannulation occurred at the 

phenyl ring of the ppy ligand or upon fusion of the naphthyl ring to the 5 and 6 positions of the 

pyridyl ring. This observation was partially validated by the TDDFT calculation results. According 

to our calculations, the lowest-energy transition (S1 state; Table 4.3) appeared to be more site- 

dependent when benzannulation occurred at the phenyl ring. Extending π-conjugation at the phenyl 

ring of the ppy ligand drastically decreased the energies of the S1 states in complexes 4-5 − 4-7, 4-

9, and 4-10, while benzannulation at the pyridyl ring of the ppy ligand showed a minor impact on 

the S1 state energies in complexes 4-1 − 4-4 and 4-8. This trend can be rationalized by the electron-

density distribution of the holes in these complexes. As indicated by the NTOs in Table  4-3, the 
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holes in these complexes were primarily localized on the phenyl rings of the C^N ligands and the 

d orbital of the iridium(III) ion. Benzannulation at the phenyl rings of the C^N ligands thus 

drastically altered the energy of the holes, while benzannulation at the pyridyl rings had a minor 

impact on the hole energy.  

 

Table 4.3. NTOs contributing to the lowest-energy singlet transitions (S1) of complexes 4-1 − 4-

10 in CH2Cl2. 
 S1 Hole Electron  S1 Hole Electron 

4-1 486 nm 

f = 0.006  

100%  
  

4-6 530 nm  

f = 0.008  

100% 
  

4-2 511 nm 

f = 0.002  

100% 
  

4-7 606 nm  

f = 0.010  

100% 
  

4-3 497 nm  

f = 0.005  

100% 
  

4-8 496 nm  

f = 0.013  

100% 
  

4-4 499 nm  

f = 0.002  

100% 
  

4-9 516 nm  

f = 0.003  

100% 
  

4-5 517 nm  

f = 0.001  

100% 
  

4-

10 

528 nm  

f = 0.004  

100% 
  

 

Table 4.4. NTOs representing singlet transitions responsible for the low-energy absorption bands 

of complexes 4-1 − 4-10  in CH2Cl2. 

 So→Sn Hole Electron  So→Sn Hole Electron 

4-1 S2  

424 nm  

f = 0.072  

99%    

4-6 S2  

445 nm  

f = 0.001  

100%    

S3  

421 nm  

f = 0.003  

98%   

 S3  

408 nm  

f = 0.115  

98%    
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Table 4.4. NTOs representing singlet transitions responsible for the low-energy absorption bands 

of complexes 4-1 − 4-10  in CH2Cl2. (continued) 
 So→Sn Hole Electron  So→Sn Hole Electron 

 S4  

391 nm  

f = 0.028  

97%    

 S7  

370 nm  

f = 0.122  

97%    
4-2 S2  

417 nm  

f = 0.005  

100%    

 S8  

357 nm  

f = 0.074  

97%    
S3  

404 nm  

f = 0.001  

99%   

 S9  

352 nm  

f = 0.096  

95%    
S4  

390 nm  

f = 0.011  

98%    

4-7 S2  

474 nm  

f = 0.002  

99%    
4-3 S2  

427 nm  

f = 0.100  

99%    

S3  

446 nm  

f = 0.024  

99%    
S3  

415 nm  

f = 0.013  

91%    

S4  

431 nm  

f = 0.190  

99%    
S4  

409 nm  

f = 0.020  

89%    

4-8 S2  

462 nm  

f = 0.051  

98%    
4-4 S2  

413 nm  

f = 0.002  

100%    

 S3  

456 nm  

f = 0.020  

96%    
S3  

400 nm  

f = 0.000  

99%  
 

 S4  

445 nm  

f = 0.028  

95%    

S4  

388 nm  

f = 0.066  

97%    

 S6  

419 nm  

f = 0.101  

94%    
4-5 S2  

433 nm  

f = 0.002  

100%    

 S7  

415 nm  

f = 0.038  

96%    
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Table 4.4. NTOs representing singlet transitions responsible for the low-energy absorption bands 

of complexes 4-1 − 4-10  in CH2Cl2. (continued) 
 So→Sn Hole Electron  So→Sn Hole Electron 

 S3  

415 nm  

f = 0.002  

99%    

 S8  

402 nm  

f = 0.044  

92%    
 S4  

401 nm  

f = 0.036  

98%    

4-9 S2  

459 nm  

f = 0.011  

100%    
 S5  

386 nm  

f = 0.013  

95%    

S3  

456 nm  

f = 0.013  

99%    
 S6  

378 nm  

f = 0.005  

99%    

S4  

423 nm  

f = 0.006  

99%    
    S5  

404 nm  

f = 0.013  

99%    
    S7  

388 nm  

f = 0.066  

98%    
    4-10 S2  

503 nm  

f = 0.008  

100%    
    S3  

488 nm  

f = 0.005  

100%    
    S4  

453 nm  

f = 0.035  

98%    
    S6  

429 nm  

f = 0.117  

91%    
    S7  

425 nm  

f = 0.074  
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Table 4.5. NTOs representing singlet transitions responsible for the medium energy absorption 

bands of complexes 4-1 − 4-10 in CH2Cl2. 

 So→Sn Hole Electron  So→Sn Hole Electron 

4-1 S10  

335 nm  

f = 0.080  

95%    

4-6 S15  

322 nm  

f = 0.158  

90%    

S13  

329 nm  

f = 0.111  

58%    

S20  

311 nm  

f = 0.208  

43%    

25% 

  

33% 

  
S20  

311 nm  

f = 0.144  

59%    

21% 

  

23% 

  

S21  

309 nm  

f = 0.149  

58%    

S21  

307 nm  

f = 0.191  

77%    

29% 

  

4-2 S6  

376 nm  

f = 0.028  

98%    

S22  

308 nm  

f = 0.124  

73%    

S7  

374 nm  

f = 0.048  

98%    

21% 

  

S8  

357 nm  

f = 0.212  

95%    

4-7 S9  

371 nm  

f = 0.153  

93%    

4-3 S6  

374 nm  

f = 0.084  

97%    

S12  

359 nm  

f = 0.100  

83%    

 S9  

351 nm  

f = 0.088  

65%    

4-8 S13  

355 nm  

f = 0.200  

90%   
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Table 4.5. NTOs representing singlet transitions responsible for the medium energy absorption 

bands of complexes 4-1 − 4-10 in CH2Cl2. (continued) 

 So→Sn Hole Electron  So→Sn Hole Electron 

 

34% 

  

 S14  

352 nm  

f = 0.140  

80%   

 S10  

349 nm  

f = 0.101  

59%    

4-9 S9  

367 nm  

f = 0.124  

87%    

 

40% 

  

S10  

363 nm  

f = 0.201  

92%    

 S15  

325 nm  

f = 0.128  

62%    

S11  

362 nm  

f = 0.154  

85%    

 

31% 

  

S17  

334 nm  

f = 0.276  

79%    

 S18  

320 nm  

f = 0.150  

80%    

S18  

331 nm  

f = 0.122  

74%    

 S20  

311 nm  

f = 0.329  

84%    

4-

10 

S13  

390 nm  

f = 0.247  

94%    

4-4 S9  

332 nm  

f = 0.046  

81%    

S14  

379 nm  

f = 0.407  

96%    

 S14  

322 nm  

f = 0.072  

54%    

S15  

373 nm  

f = 0.172  

84%    

 

41% 

  

    

 S15  

316 nm  

f = 0.073  

55%    
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Table 4.5. NTOs representing singlet transitions responsible for the medium energy absorption 

bands of complexes 4-1 − 4-10 in CH2Cl2. (continued) 

 So→Sn Hole Electron     

 

23% 

  

    

 S18  

310 nm  

f = 0.124  

80%    

    

 S19  

309 nm  

f = 0.118  

93%    

    

4-5 S8  

360 nm  

f = 0.125  

96%    

    

S12  

336 nm  

f = 0.112  

55%    

    

42% 

  

    

S13  

334 nm  

f = 0.099  

65%    

    

32% 

  

    

S14  

325 nm  

f = 0.123  

73%    

    

S19  

311 nm  

f = 0.168  

55%    

    

36% 
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Table 4.6. NTOs representing singlet transitions responsible for the main absorption bands of 

complexes 4-1 − 4-10 in CH2Cl2. 

 So→Sn Hole Electron  So→Sn Hole Electron 

4-1 S38  

269 nm  

f = 0.208  

45%   

4-6 S38  

270 nm  

f = 0.353  

43%    

S46  

260 nm  

f = 0.249  

44%   

22% 

  

36% 

  

S50  

257 nm  

f = 0.161  

82%    

4-2 S20  

311 nm  

f = 0.297  

80%   

4-7 S25  

312 nm  

f = 0.507  

62%    

S24  

298 nm  

f = 0.227  

64%   

S43  

276 nm  

f = 0.154  

41%    

30% 

  

30% 

  
S27  

293 nm  

f = 0.460  

70%   

4-8 S29  

309 nm  

f = 0.199  

41%    

S32  

284 nm  

f = 0.213  

72%   

27% 

  

4-3 S37  

272 nm  

f = 0.418  

62%   

S34  

301 nm  

f = 0.195  

88%    

20% 

  

S37  

292 nm  

f = 0.393  

73%    

4-4 S34  

272 nm  

f = 0.110  

81%   

4-9 S26  

308 nm  

f = 0.148  

81%    
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Table 4.6. NTOs representing singlet transitions responsible for the main absorption bands of 

complexes 4-1 − 4-10 in CH2Cl2. (continued) 

 So→Sn Hole Electron  So→Sn Hole Electron 

 S42  

259 nm  

f = 0.194  

65%   

 S36  

288 nm  

f = 0.257  

63%    

4-5 S35  

276 nm  

f = 0.185  

69%   

 S43  

279 nm  

f = 0.175  

36%    

 S36  

275 nm  

f = 0.192  

59%   

 

23% 

  

 

22% 

  

 

21% 

  
 S37  

273 nm  

f = 0.173  

50%   

4-

10 

S29  

325 nm  

f = 0.123  

55%    

 

28% 

  

 

37% 

  
 S39  

272 nm  

f = 0.242  

40%   

 S31  

318 nm  

f = 0.478  

74%    

 22% 

  

 S43  

295 nm  

f = 0.510  

69%    

 

The DFT calculations indicated that the highest occupied molecular orbital (HOMO) → 

lowest unoccupied molecular orbital (LUMO) transition played the major role (68−70%; Table 

4.7) in generating the S1 excited state. Therefore, analyzing how structural modifications 

influenced the HOMO and LUMO energies became important. As the ground-state energy diagram 

(Figure 4.2) displayed, extending π-conjugation of the C^N ligand mainly influenced the HOMO, 
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especially when benzannulation occurred at the phenyl ring. The HOMO energy was also affected 

by the benzannulation site at the phenyl ring. When benzannulation occurred at the 3′ and 4′ 

positions, the HOMO of complex 4-7 was significantly raised, while destabilization of the HOMOs 

in complexes 4-5, 4-6, 4-9, and 4-10 with benzannulation at the 4′ and 5′ or 5′ and 6′ positions was 

less pronounced. 
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Figure 4.2.  HOMO and LUMO plots for 4-0 and ground-state molecular orbital diagram for 4-0 

− 4-10 in CH2Cl2. 

 

Table 4.7. Electron density distribution plots for HOMOs and LUMOs of complexes 4-1 − 4-10 

in CH2Cl2 and the percentage contribution of the HOMO-LUMO transition to the S1 excited state. 

 HOMO LUMO  HOMO LUMO 

4-1 

 

70%   

4-6 

 

70%   
4-2 

 

70%   

4-7 

 

70%   
4-3 

 

70%   

4-8 

 

68%   
4-4 

 

70% 
  

4-9 

 

70% 
  

4-5 

 

70%   

4-10 

 

69%   
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In order to rationalize the effect of site-dependent benzannulation at the C^N ligands on 

the HOMO and LUMO energies, orbital symmetry analysis was applied. This method had been 

applied to benzannulation of the N^N^N ligand for platinum(II) complexes by 

Thompson/Gordon56 and to benzannulation of the N^N ligand for iridium(III) complexes by our 

group28 to successfully explain the observed site-dependent blue or red shift of the absorption and 

emission spectra. Here, it was applied to benzannulation at the C^N ligand of the iridium(III) 

complexes. In this method, benzannulation is viewed as the interactions between the FMOs of the 

parent compound and the FMOs of cis-1,3-butadiene or ethene. Because the HOMOs of the 

iridium(III) complexes studied are essentially localized on the C^N ligand and d orbital of the 

iridium(III) ion, benzannulation at the C^N ligand should mainly consider the interactions between 

the HOMO of the parent compound and the HOMO (and/or LUMO+1) or LUMO (and/or 

HOMO−1) of cis-1,3-butadiene (or ethene) depending on the orbital symmetry at the site of 

benzannulation.  

As exemplified in Figure 4.3a, when benzannulation occurred at the 5 and 6 positions of 

the pyridyl ring of the parent complex 4-0, the symmetry of HOMO at this position matched the 

symmetry of LUMO and HOMO−1 of cis-1,3-butadiene. However, because the HOMO−1 of cis-

1,3-butadiene is more energetically close to the HOMO of 4-0 than the LUMO of cis-1,3-butadiene 

is, the HOMO−1 played the major role in interacting with the HOMO of 4-0. Such an interaction 

gave rise to a slightly raised (0.02 eV) HOMO in complex 4-1 compared to that in the parent 

complex 4-0. Meanwhile, the LUMO of 4-1 was destabilized by 0.05 eV, giving rise to a slightly 

enlarged HOMO−LUMO gap and consequently a minor hypsochromic shift of the S1 state. In 

contrast, when benzannulation took place at the 4 and 5 positions of the pyridyl ring of complex 

4-0, the HOMO symmetry at this position matched the symmetry of the HOMO and LUMO+1 of 
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cis-1,3-butadiene (Figure 4.3b). Because of the much larger energy gap between the HOMO of 

complex 4-0 and the LUMO+1 of cis-1,3-butadiene, the HOMO of complex 4-0 predominantly 

interacted with the HOMO of 1,3-butadiene. This interaction raised the HOMO of complex 4-2 by 

0.13 eV, while the LUMO energy of 4-2 essentially remained the same (only an 0.01 eV increase). 

This narrowed the HOMO−LUMO gap and caused a slight bathochromic shift of the S1 state in 

complex 4-2 compared to that in complex 4-0.  

The similar molecular orbital symmetry analysis on complexes 4-5 and 4-6 revealed that 

benzannulation at the 4′ and 5′ positions of the phenyl ring of the ppy ligand in complex 4-0 raised 

the HOMO energy of complex 4-5 by 0.22 eV as a result of the HOMO−HOMO−1 interaction 

(Figure 4.3c), while the HOMO−HOMO−1 interaction gave rise to a 0.26 eV increase of the 

HOMO in complex 4-6 (Figure 4.3d). However, the LUMO of 4-6 was 0.02 eV more stabilized 

than that of  4-5, resulting in a more red-shifted S1 state in 4-6 compared to that of  4-5. The 

molecular orbital symmetry analyses for the other complexes were carried out, and the results are 

provided in Figures 4-4 − 4-7.  
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Figure 4.3. FMO mixing between the HOMO of the parent complex 4-0 and the HOMO−1 or 

HOMO of cis-1,3-butadiene to generate the FMOs of 4-1 (a), 4-2 (b), 4-5 (c), or 4-6 (d), 

respectively. 
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Figure 4.4. FMO mixing between the HOMO of the parent complex 4-0 and HOMO-1/LUMO 

of cis-1,3-butadiene or HOMO of ethane to generate the FMOs of 4-3 and 4-4, respectively. 
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Figure 4.5. FMO mixing between the HOMO of the parent complex 4-5 or 4-6 and HOMO-

1/LUMO or HOMO of cis-1,3-butadiene to generate the FMOs of 4-7. 
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Figure 4.6. FMO mixing between the HOMO of the parent complex 4-1 and HOMO-1/LUMO 

of cis-1,3-butadiene to generate the FMOs of 4-8 and 4-9. 
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Figure 4.7. FMO mixing between the HOMO of the parent complex 4-8 or 4-9 and HOMO or 

HOMO-1/LUMO of cis-1,3-butadiene to generate the FMOs of 4-10. 

 

4.3.3. Photoluminescence 

To understand the impacts of benzannulation at the different sites of the C^N ligand on the 

triplet excited states, the emission characteristics of 4-1 − 4-10 at room temperature in different 

solvents [CH3CN, THF, CH2Cl2, and toluene (with 10% CH2Cl2)] were investigated because the 

emission of iridium(III) complexes typically originates from the triplet excited state. The emission 

spectra of 4-1 − 4-10 in CH2Cl2 are shown in Figure 4.8 and displayed in Figure 4.9 for the spectra 

in other solvents. The emission lifetimes and quantum yields are tabulated in Tables 4-2 and 4-8. 

A quick survey of these data revealed that the emissions band maxima of these complexes spanned 

from ca. 610 to 900 nm, which are drastically red-shifted with respect to their UV−vis absorption 

spectra. The emission was prone to quenching by oxygen, and the lifetimes varied from tens of 

nanoseconds to several microseconds. All of these features confirmed the phosphorescence nature 

of the emission from these complexes.  
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Figure 4.8. Experimental emission spectra of 4-1 − 4-10 at room temperature in dichloromethane. 

The spectra of 4-1 − 4-7 and 4-9 were measured on a HORIBA FluoroMax 4 fluorometer 

/phosphorometer with a Hamamatsu PMT R928 as the detector, while the spectra of 4-8 and 4-10 

were detected with an InGaAs sensor from 670 to 1225 nm (λex = 473 nm) with a 500 nm long 

pass filter. 

 

The emission spectra of 4-1 − 4-7 and 4-9 were structureless, and their lifetimes were tens 

to hundreds of nanoseconds, which are the characteristics of CT emission. With reference to the 

emission of other iridium(III) complexes,23−33,54,55,57 the emitting states of these complexes are 

tentatively assigned to the 3CT states (3MLCT/3LLCT). In contrast, the emission spectra of 4-8 

and 4-10 were remarkably red-shifted compared to the other complexes and exhibited clear 

vibronic structures. Their lifetimes were 3−4 μs, which were almost 1−2 orders of magnitude 

longer than the other complexes. All of these features suggest that the emission of these two 

complexes emanates from the ligand-centered 3π,π* state.28,57 This assignment is supported by the 

solvent-dependent study and by the TDDFT calculation results being discussed vide infra. 

The emission characteristics of complexes 4-1 − 4-10 in different solvents are depicted in 

Figure 4.9 and Table 4.8. Complexes 4-1 − 4-7 and 4-9 generally exhibited somewhat more solvent 

dependence than complexes 4-8 and 4-10 did, which is in line with the predominant 3CT attribution 

for the emission of 4-1 − 4-7 and 4-9 and 3π,π* emission for 4-8 and 4-10. The TDDFT calculation 
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results further supports these assignments. As the NTOs in Table 4.8 displayed, the holes in 4-1 − 

4-7 and 4-9 were primarily localized on the C^N ligands and one of the d orbitals of the iridium(III) 

ion, while the electrons were on the N^N ligand and a different d-orbital of the iridium(III) ion. 

Thus, the emitting states of 4-1 − 4-7 and 4-9 possess predominantly 3MLCT/3LLCT transitions. 

In contrast, for complexes 4-8 and 4-10, both the electrons and holes were exclusively distributed 

on the benzo[g]quinoline (bq) moiety of one of the C^N ligands and on the d orbital. This indicates 

a predominant 3π,π* character in the emitting states of  4-8 and 4-10. The spin-density distributions 

shown in Table 4.9 for these complexes agree well with the NTOs representing the excitation from 

S0 to T1.  

     

  

 

 
Figure 4.9. Normalized emission spectra of 4-1 − 4-10 (1–10) in different solvents (λex = 436 nm). 
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Table 4.8. Emission characteristic of complexes 4-1 − 4-10 in different solvents at room 

temperature.a 

λem/nm (τem/μs); Φem 

 Acetonitrile THF Dichloromethane Tolueneb 

4-1 618 (0.30); 0.033 618 (0.36); 0.047 613 (0.52); 0.075 622 (0.18); 0.042 

4-2 623 (0.12); 0.019 646 (0.11); 0.019 642 (0.16); 0.033 620 (0.15); 0.016 

4-3 608 (0.34); 0.045 615 (0.31); 0.042 618 (0.31); 0.110 593 (1.07); 0.150 

4-4 610 (0.14); 0.025 623 (0.15); 0.032 615 (0.27); 0.070 606 (0.16); 0.041 

4-5 610 (0.04); 0.011 655 (0.04); 0.012 650 (0.07); 0.020 661 (0.02); 0.010 

4-6 620 (0.04); 0.011 637 (0.04); 0.017 649 (0.08); 0.024 604 (0.03); 0.012 

4-7 613 (0.03); 0.001 673 (0.03); 0.001 663 (0.06); 0.002 658 (0.03); 0.002 

4-8 693 (2.66); 0.011 691 (3.28); 0.015 693 (3.11); 0.015 700 (1.86); 0.012 

4-9 655 (0.06); 0.009 655 (0.09); 0.013 649 (0.13); 0.019 656 (0.05); 0.011 

4-

10 

700 (3.70); 0.005 697 (4.35); 0.007 699 (4.33); 0.009 706 (0.20); 0.005 

a Ru(bpy)3Cl2 in acetonitrile was used as the reference (ex = 436 nm, em = 0.097) for the emission 

quantum yield measurements. The quantum yield for 4-8 and 4-10 are for the emission in the 

region of 700-850 nm detected by the Hamamatsu photomultiplier tube (PMT) R928. b With 10% 

CH2Cl2. 

 

Table 4.9. Spin-density for the single and triplet SCF calculations for 4-1 − 4-10. The red 

translucent isosurface represents the electron distribution, whereas the blue translucent isosurface 

represents the hole for the transition from T1 to S0. 

 Spin-Density  Spin-Density  Spin-Density 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 
7 

 

8 

 

9 

 
10 

 

 

 

 

 

 

Examination of the emission energies, lifetimes, and quantum yields of 4-1 − 4-10 found 

that benzannulation at the phenyl ring of the ppy or L4-1 ligand caused a red shift of the emission 

spectra in 4-5 − 4-7 and 4-9, with shorter emission lifetimes and lower emission quantum yields 
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compared to complexes 4-1 − 4-4 with benzannulation at the pyridyl ring of the ppy ligand. The 

reduced emission lifetime and quantum yield are the results of increased nonradiative decay when 

the emitting state is lowered, which follows the energy gap law.58,59 In contrast, although the 

emission energies of complexes 4-8 and 4-10 were dramatically red-shifted compared to the other 

complexes, their lifetimes were much longer than those of the other complexes. This is attributed 

to the parentage change of the emission in these two complexes compared to the others. The trend 

of the emission energy variation of 4-1 − 4-10 is also in accordance with that observed for the S1 

state transitions despite the fact that the nature of the emitting states of 4-8 and 4-10 changed to 

3π,π states. In addition to the aforementioned site-dependent effects of benzannulation at the phenyl 

versus pyridyl ring, the emission energy was also found to depend on the benzannulation position 

at the phenyl or pyridyl ring. Among the four complexes 4-1 − 4-4 with benzannulation at the 

pyridyl ring, complex 4-2, which has benzannulation at the 4 and 5 positions of the pyridyl ring of 

the ppy ligand, showed a ∼20 nm red shift of the emission maximum compared to the parent 

complex 4-0 and the other three complexes 4-1, 4-3, and 4-4. For the three complexes 4-5 − 4-7 

with benzannulation at the phenyl ring of the ppy ligand, benzannulation at either the 4′ and 5′ or 

5′ and 6′ positions of the phenyl ring caused red shifts (∼37 nm) of the emission in 4-5 and 4-6 

compared to that in complex 4-0. Benzannulation at both the 3′ and 4′ and 5′ and 6′ positions of 

the phenyl ring of the ppy ligand induced a further 14 nm red shift in 4-7 with respect to those in 

4-5 and 4-6. However, fusion of the naphthyl motif to the 5 and 6 positions of the pyridyl ring of 

the ppy ligand completely changed the emitting states in 4-8 and 4-10 to the bq-localized 3π,π* 

state (see the NTOs in Table 4.10, in which both the holes and electrons for 4-8 and 4-10 were 

exclusively on the bq motif). When the bq-localized 3π,π* state became the emitting triplet excited 

state in 4-8 and 4-10, benzannulation at the phenyl ring of the C^N ligand did not impact the 
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emission energy. It is worth noting that, even though complexes 4-7 − 4-9 had the same number 

of aromatic rings in their C^N ligands, their emission characteristics were drastically different. 

This provided another piece of evidence manifesting the significant impact of the benzannulation 

site at the C^N ligand on the photophysics of the iridium(III) complexes.  

 

Table 4.10. NTOs representing the triplet transitions contributing to the emission of complexes 4-

1 − 4-10 in CH2Cl2
a. The NTOs were calculated by TDDFT using the triplet minimum-energy 

geometry optimized by unrestricted DFT as described in the quantum chemistry calculations 

section. 

 T1 / nm Hole Electron  T1 / nm Hole Electron 

4-1 619 

99% 

  

4-6 724 

98% 

  
4-2 688 

99% 

  

4-7 841 

98% 

  
4-3 642 

99% 

  

4-8 1176 

100% 

  
4-4 658 

99% 

  

4-9 745 

98% 

  
4-5 693 

100% 

  

4-

10 

1196 

97% 

  
 

4.3.4. TA 

 Nanosecond TA spectroscopy is a powerful technique to investigate the triplet excited-

state properties, such as the triplet excited-state absorption, triplet lifetime, and quantum yield. In 
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this work, the TA measurements of complexes 4-1 − 4-10 were carried out in CH3CN to further 

understand their triplet excited-state characteristics. CH3CN was chosen as the solvent for the TA 

study rather than CH2Cl2 because of the better stability of the complexes in CH3CN than in CH2Cl2 

upon 355 nm laser excitation. The TA spectra of 4-1 − 4-10 at zero delay after excitation and the 

time-resolved spectra for complexes 4-1 − 4-3, 4-5, 4-8, and 4-10 are shown in Figure 4.10, and 

the time-resolved TA spectra for complexes 4-4, 4-6, 4-7, and 4-9 are provided in Figure 4.11. The 

triplet excited-state lifetimes (τTA) are tabulated in Table 4.2. The τTA values of these complexes 

were similar to their emission lifetimes in CH3CN (Table 4.8), implying that the observed TA 

originated from the emitting excited states.  
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Figure 4.10. Comparison of the nanosecond TA difference spectra of complexes 4-1 − 4-10 in a 

CH3CN solution immediately after laser excitation (the top figure) and the time-resolved TA 

spectra of complexes 4-1 – 4-3, 4-5, 4-8, and 4-10 in CH3CN (λex = 355 nm; A355 = 0.4 in a 1 cm 

cuvette).  
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Figure 4.11. Nanosecond time-resolved transient difference absorption spectra of 4-4, 4-6, 4-7, 

and 4-9 in acetonitrile. λex = 355 nm, A355 = 0.4 in a 1-cm cuvette. 

 

The TA spectra of 4-1 − 4-10 essentially possessed positive absorption bands in the entire 

360−800 nm region, except for very narrow and weak ground-state bleaching band being observed 

for 4-2 in 386−392 nm, 4-7 in 440−448 nm, and 4-10 in 386−417 nm. For the four complexes 4-1 

− 4-4 with benzannulation at the pyridyl ring of the ppy ligand, the TA band maxima of 1−3 

gradually bathochromically shifted. While the TA spectrum of 4-4 resembled that of 4-2, the 

relative intensities of the two bands were diferent. The maximum TA band of 4-2 was at 432 nm, 

while the maximum intensity band appeared at 377 nm in 4-4 (Figure 4.10). For complex 4-3, its 

TA spectrum resembled that of its corresponding iridium(III) dimeric precursor [Ir(piq)2Cl]2.
29 In 

view of the structural difference among 4-1 − 4-4 and the different shapes of their TA spectra, it 

is reasonable to speculate that the observed TA of these complexes could be related to the 

difference in the heteroatom-containing motif. The similarity between the TA spectra of 4-3 and 
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its precursor [Ir(piq)2Cl]2 complex also implies that the TA spectra of these complexes are indeed 

associated with the complexed C^N ligand.  

The three complexes 4-5 − 4-7 with benzannulation at the phenyl ring of the ppy ligand 

exhibited similar TA spectral features with very short lifetimes. Their TA spectra all consisted of 

a strong but narrow band below 400 nm, a broader but weaker band at 450nm for 4-5 and ca. 

500nm for 4-6 and 4-7, and an emerging near-IR (NIR) band around 800 nm (Figure 4.10). A 

comparison of the TA spectrum of 4-9 to that of 4-1 (Figure 4.10) revealed similar spectral features, 

but 4-9 had a much shorter lifetime. The similar spectral features seemed to be related to the 

identical quinoline motifs in the C^N ligand, while the shorter lifetime appeared to be a common 

feature when benzannulation occurred at the phenyl ring of the ppy ligand (similar to the shorter 

lifetimes observed in complexes 4-5 − 4-7). Additional evidence to support the association of the 

TA spectrum with the heteroatom-containing aromatic motif came from the TA spectra of 4-8 and 

4-10. The TA spectra of these two complexes were similar to each other and consistent with that 

of their dimeric iridium(III) precursor complex [Ir(pbq)2Cl]2 (pbq refers to the 2-

phenylbenzo[g]quinoline ligand) and the other iridium(III) complex bearing the same pbq ligand.29
 
 

Combining the TA and emission studies on complexes 4-1 − 4-10, we discovered that 

benzannulation at the phenyl ring of ppy mainly affected the lowest triplet excited-state energy 

and lifetime, whereas benzannulation at the pyridyl ring mainly impacted the spectral feature of 

TA. Especially, fusion of the naphthyl group to the pyridyl ring switched the lowest-energy triplet 

excited state to the bq motif of the C^N ligand, which gave rise to much stronger TA in the red 

spectral regions.  
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4.3.5. RSA 

To demonstrate that benzannulation at the C^N ligand influences not only the photophysics 

of the Ir(III) complexes, but also their potential applications, the reverse saturable absorptions 

(RSA) of complexes 4-1 − 4-10 in CH3CN solutions were investigated.  RSA is a nonlinear optical 

phenomenon in which the absorptivity of the material increases with increased incident fluence.  

RSA is closely related to the ground and excited state absorptions.  The inherent reason for RSA 

is that the excited-state absorption is stronger than the ground-state absorption of the absorber.60-

63 In the past one decade, our group and other groups chose Ir(III) complexes as candidate materials 

for RSA because the rapid intersystem crossing induced by the heavy Ir(III) ion helps populating 

the triplet excited state.  This property along with many closely-spaced triplet excited state present 

in Ir(III) complexes induce considerably wide and strong excited-state absorption.12,13,20-

22,24,25,27,29,30,31,33,50  For lasers with pulse width longer than the intersystem crossing time, the triplet 

excited state is populated primarily instead of the singlet excited state.  In such a case, compounds 

with a higher triplet quantum yield, a strong excited-state absorption with respect to ground-state 

absorption, and a longer triplet excited-state lifetime are ideal candidates for RSA. 

The positive TA spectra of complexes 4-1 − 4-10 (Figure 4.10) imply that all complexes 

possess stronger excited-state absorption than the ground-state absorption in the visible and NIR 

spectral region. They also have longer triplet excited- state lifetimes (Table 4.2) than the 

nanosecond laser pulse width (4.1 ns). Therefore, RSA of 4-1 − 4-10 is expected to occur at 532 

nm for the 4.1-ns laser pulses. RSA was demonstrated for complexes 4-1 – 4-10 in a CH3CN 

solution with an identical linear transmittance of 80% in a 2 mm cuvette at 532 nm for an easy 

comparison of the RSA strength. With the same linear transmission at 532 nm, the same number 

of molecules would be excited to the singlet excited state. Then the degree of RSA would be 
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determined by the degree of triplet excited- state absorption, which is a composite of the triplet 

excited- state quantum yield and the excited-state absorption cross section. As shown in Figure 

4.12, complexes 4-1 − 4-10 all exhibited strong RSA. The strength of RSA decreased in the order 

of 4-3 > 4-7 ≈ 4-4 ≈ 4-9 ≈ 4-6 > 4-8 ≈ 4-1 ≈ 4-2 ≈ 4-5 > 4-10, which are related to their ground-

state absorption cross sections (σ0 values; Table 4.11) and ΔOD values at 532 nm (Table 4.11).  
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Figure 4.12. Nonlinear transmission plots of 4-1 − 4-10 at 80% linear transmittance in a 2-mm 

cuvette in CH3CN solutions for 532 nm 4.1 ns laser pulses. 

 

Table 4.11. Ground-state absorption cross sections (σ0) and OD values of 4-1 − 4-10 in CH3CN 

at 532 nm 

 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 4-10 

σ0/10-18 cm2 3.0 1.8 2.5 2.3 2.5 4.6 4.4 5.0 3.5 7.4 

OD/10-2 1.0 1.4 2.8 1.1 1.2 1.5 1.3 2.4 0.6 1.9 

 

A key parameter for assessing the strength of RSA is the ratio of the excited-state 

absorption cross section to that of the ground state (σex/σ0). The σ values can be obtained by 

converting the ε values at 532 nm according to the equation σ = 2303ε/NA (NA = Avogadro’s 

constant). The ground-state molar extinction coefficient (ε0) was readily deduced from the UV−vis 

absorption spectra. However, the εex values at 532 nm were unable to be obtained because of the 

lack of obvious bleaching bands in most of the complexes. Consequently, a singlet depletion 
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method64 was unable to be used to deduce the εex values. Nonetheless, the ΔOD values obtained 

from the TA measurement reflected the absorbance difference between the excited- and ground-

state absorptions at a given wave- length. Complex 4-3 possessed one of the smallest ground-state 

absorption cross sections but the largest ΔOD value at 532 nm, implying the strongest excited-

state absorption among this series of complexes. As a result, 4-3 gave rise to the strongest RSA at 

532 nm. For complex 4-10, although the ΔOD value was the third largest, its largest σ0 value 

among this series of complexes counterplayed its excited-state absorption and decreased its RSA. 

Although the RSA strengths of these complexes were affected by the ligand structural variations, 

overall this series of complexes all exhibited quite strong RSA for nanosecond laser pulses at 532 

nm.  

 

4.4. Conclusion 

We have synthesized 10 cationic iridium(III) 2-(pyridin-2- yl)quinoline complexes bearing 

cyclometalating C^N ligands with different degrees of π-conjugation via benzannulation at 

different positions of the phenyl and/or pyridyl ring. Their site-dependent electronic absorption 

and emission characteristics were systematically investigated. Benzannulation on the phenyl ring 

of the C^N ligand raised the HOMO energies in complexes 4-5 − 4-7, 4-9, and 4-10 pronouncedly 

and thus lowered the energies of the S1 states in these complexes. In contrast, benzannulation on 

the pyridyl ring of the C^N ligand showed minor effects on the HOMOs of 4-1, 4-3, 4-4, and 4-8, 

except for the fact that the HOMO of 4-2 was destabilized. This trend was followed by the triplet 

emission in all complexes other than 4-8, with the emission spectra of complexes 4-2 and 4-5 − 4-

10 being red- shifted and those of 4-1, 4-3, and 4-4 − 4-4 remaining similar to that of the parent 

complex 4-0. Accompanying the decreased emission energies in 4-2, 4-5 − 4-7, and 4-9, the 

emission lifetimes and quantum yields of these complexes were significantly shortened or 
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decreased, which was consistent with the energy gap law. However, further extending the π 

conjugation at the pyridyl ring of the C^N ligand in 4-8 and 4-10 changed the parentage of the 

lowest triplet excited state from the 3MLCT/3LLCT states in the other complexes to the bq-

originated 3π,π* states, which prolonged the emission lifetimes in these two complexes. It appeared 

that benzannulation at the phenyl ring of the C^N ligand mainly influenced the lowest singlet and 

triplet excited- state energies and the triplet lifetimes but did not affect the triplet excited-state 

absorption spectral feature pronouncedly.  

On the contrary, fusion of only one phenyl ring on the pyridyl group of the C^N ligand, in 

most cases, did not influence the singlet and triplet excited-state energies noticeably but 

significantly impacted the triplet excited-state absorption spectral feature. Fusion of the naphthyl 

group to the pyridyl ring completely changed the nature of the lowest triplet excited state, causing 

drastic changes in the emission and triplet excited-state absorption characteristics. The changes in 

the ground-state and triplet excited-state absorptions consequently affected the RSA in these 

complexes, although all of the studied complexes exhibited strong RSA for nanosecond laser 

pulses at 532 nm. The conclusion drawn from this work could shed light on the rational design of 

monocationic iridium(III) complexes with predetermined photophysical properties. 
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5. MONOCATIONIC IRIDIUM(III) COMPLEXES WITH FAR−RED CHARGE 

TRANSFER ABSORPTION AND NEAR−IR EMISSION: SYNTHESIS, 

PHOTOPHYSICS, AND REVERSE SATURABLE ABSORPTION 

 

5.1. Introduction 

In the past two decades, octahedral d6 Ir(III) complexes have attracted a particular attention 

among chemists and materials scientists due to their high triplet excited–state quantum yield, 

synthetic versatility, and chemical stability.1–4 The rich photophysical properties present in the 

Ir(III) complexes prompt their potential applications in phosphorescence–based organic light–

emitting diodes (OLEDs),5,6 low–power upconversion,7,8 biomolecular labeling and imaging,9,10 

photochemical water oxidation,11,12 photodynamic therapy (PDT)13–15, and nonlinear optics 

(NLO).16,17  

Among the different types of Ir(III) complexes, monocationic Ir(III) complexes featuring 

diimine (N^N) and cyclometalating (C^N) ligands are particular interesting because of the facile 

synthesis under a mild condition. In addition, the absorption and emission characteristics of this 

type of complexes can be efficiently tuned via exploiting novel N^N and C^N ligands.18–20 Based 

on the reported electrochemical and computational studies, electrons of the lowest unoccupied 

molecular orbitals (LUMO) of this type of complexes are typically distributed on the N^N ligand, 

whereas the electrons of the highest occupied molecular orbital (HOMO) are mainly delocalized 

on the C^N ligands and d–orbital of the metal center.21 Therefore, different N^N ligands mainly 

impact the energy of the LUMO, but have negligible effect on the energy of the HOMO.22 This 

effect makes it possible to readily tune the lowest–energy charge transfer absorption band 

corresponding to the HOMO→LUMO transition via alternation of the N^N ligand. Meanwhile, 
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the lowest triplet excited states (T1 states) of the complexes can be altered simultaneously.23 For 

this reason, tremendous efforts have been put on extending the synthetic scope of the N^N ligands, 

with 2,2′–bipyridine (bpy) and its analogs being the most commonly explored one to date.24–26  

Reverse saturable absorption (RSA) is a nonlinear optical phenomenon in which the 

reverse saturable absorbers exhibit a linear absorption at low incident laser fluence, while their 

absorptivity increases when the incident fluence increase. RSA occurs when the absorbance of the 

excited state of an absorber is stronger than that of the ground state at the corresponding 

wavelength. In order to facilitate RSA of nanosecond laser pulses, an absorber should have a weak 

ground state absorption to populate the excited states, but long–lived triplet excited states, large 

triplet–triplet excited−state absorption coefficients, and a high quantum yield for triplet 

excited−state formation. In recent years, the RSA of heavy transition–metal complexes, such as 

octahedral Ir(III) complexes, have been extensively explored by our group14,16,17,24,27–36 and other 

groups23,37−39 because these complexes displayed the aforementioned characteristics that well 

match the requirements for RSA. In addition, by structural modifications, both the ground−state 

and the excited−state properties can be readily tuned in these complexes for optimization of the 

RSA. 

Although extensive work has been reported on Ir(III) complexes for RSA, challenges still 

exist in developing the Ir(III) complexes into broadband reverse saturable absorbers. Among which 

the lack of considerable ground−state absorption in the red to the NIR region remains to be one of 

the obstacles. In seeking solutions to red−shift the ground−state absorption, immense effects on 

exploring N^N or C^N ligands suitable for reverse saturable absorbers have been made by our 

group.14,16,17,24,27−36 We discovered that incorporation of quinoxaline or benzo[g]quinoxaline unit 

into either the N^N or C^N ligand red−shifted the spin−forbidden 1,3IL (intraligand) / 1,3CT (charge 
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transfer) absorption bands into longer wavelengths.14,30,35 However, the triplet excited−state 

lifetimes of these complexes were reduced to tens to hundreds of ns. On the other hand, we have 

reported that Ir(III) bipyridine complex bearing 1,2–diphenyl–9H–pyreno[4,5–d]imidazole (dppi) 

cyclometalating ligands displayed a long−lived strong triplet excited−state absorption in the 

spectral regions of 410 − 700 nm.24 

Inspired by these exploration, we combine these two approaches in one system, attempting 

to red−shift the ground−state absorption to the far−red / NIR regions and meanwhile keep a 

relatively long−lived and broadly absorbing triplet excited state. In this work, we synthesized and 

investigated three cationic Ir(III) complexes featuring dppi C^N ligands and pyrazine–based N^N 

ligands (structures shown in Scheme 1) as reverse saturable absorbers. The –conjugation of the 

N^N ligands are gradually extended from 5-1 to 5-3 via benzannulation at the pyrazine unit to 

red−shift the 1,3IL / 1,3CT absorption bands. The diphyridylpyrazine (dpp) moiety would not only 

cause the red–shift of the 1,3IL/1,3CT absorption bands but also serve as a bridge to construct a 

supramolecular system that will be studied in the future. In addition to the spectroscopic studies 

on the photophysical properties of these complexes, density functional theory (DFT) calculation 

were performed to provide insight into the natures of the singlet and triplet states of these Ir(III) 

complexes. RSA of these complexes at 532 nm for ns laser pulses was demonstrated. 

 

5.2. Experimental section 

5.2.1. Materials and synthesis.  

All chemicals and solvents were purchased from commercial sources and used as received 

without further purification. The ligands dpp (L5-1),40 2,3–di(2–pyridinyl)quinoxaline (L5-2),41 

2,3–di(2–pyridinyl)benzo[g]quinoxaline (L5-3),42 dppi,25 and the Ir(III) dimer [Ir(dppi)2Cl]2,
21 
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were prepared following the reported procedures. Column chromatography was carried out using 

silica gel (60 Å, 230–400 mesh) or Al2O3 (activated, neutral). The obtained complexes 5-1 – 5-3 

were analyzed by 1H NMR, high–resolution electrospray ionization mass spectrometry (ESI–MS), 

and elemental analysis. The 1H NMR spectra were measured on Bruker–400 spectrometer in 

CDCl3 using tetramethylsilane [Si(CH3)4] as the internal reference. High–resolution mass (HRMS) 

analyses were carried out on a Waters Synapt G2–Si mass spectrometer. Elemental analyses were 

performed by NuMega Resonance Laboratories, Inc. in San Diego, California. 

 

 

Scheme 5-1. Synthetic route for Ir(III) complexes 5-1 − 5-3. 

 

5.2.2. General procedure for the synthesis of 5-1 − 5-3 

The [Ir(dppi)2Cl]2 dimer (61 mg, 0.03 mmol), corresponding N^N ligand (0.06 mmol), and 

AgSO3CF3 (15 mg, 0.06 mmol) were added in the solvent (CH2Cl2:MeOH= 2:1 (v/v), 30 mL). The 

obtained mixture was degassed with N2 for 30 minutes and then heated to reflux for 24 h. After 

cooling to room temperature, NH4PF6 (49 mg, 0.3 mmol) was added and stirred for another 2 

hours. Solvent was then removed in vacuum. The residue was separated by column 
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chromatography on alumina gel, eluting with CH2Cl2/hexanes (3:1 to 1:0 (v/v)) to afford the target 

complex. 

5-1. A red powder was obtained as the product (46 mg, 52%).  1H NMR (400 MHz, CDCl3) 

δ 8.86 (d, J = 2.9 Hz, 1H), 8.69 (d, J = 4.9 Hz, 1H), 8.59 (d, J = 2.9 Hz, 1H), 8.45 – 8.38 (m, 2H), 

8.12 (q, J = 7.8 Hz, 1H), 8.09 – 7.85 (m, 18H), 7.85 – 7.78 (m, 1H), 7.73 – 7.63 (m, 2H), 7.59 (t, 

J = 7.9 Hz, 1H), 7.45 – 7.36 (m, 2H), 7.34 (d, J = 8.1 Hz, 1H), 7.32 – 7.27 (m, 2H), 7.21 (dd, J = 

10.5, 3.2 Hz, 1H), 7.10 (td, J = 7.7, 1.7 Hz, 1H), 7.06 – 6.99 (m, 1H), 6.93 – 6.81 (m, 4H), 6.74 – 

6.67 (m, 1H), 6.63 (dt, J = 5.0, 3.1 Hz, 1H), 6.47 (d, J = 8.1 Hz, 1H), 5.58 (d, J = 7.7 Hz, 1H). 

ESI–HRMS (m/z): calcd. for [C72H44N8Ir]
+, 1213.3325; found, 1213.3322. Anal. Calcd for 

C72H44F6IrN8P•6H2O: C, 58.97; H, 3.85; N, 7.64. Found: C, 59.25; H, 3.97; N, 7.70. 

5-2. A brownish powder was obtained as the product (47 mg, 54%). 1H NMR (400 MHz, 

CDCl3) δ 8.69 (d, J = 6.7 Hz, 2H), 8.41 (d, J = 7.1 Hz, 1H), 8.24 (d, J = 7.2 Hz, 1H), 8.20 – 8.08 

(m, 4H), 8.08 – 7.78 (m, 12H), 7.79 – 7.64 (m, 4H), 7.64 – 7.58 (m, 1H), 7.55 (t, J = 7.9 Hz, 1H), 

7.45 (d, J = 7.4 Hz, 1H), 7.39 – 7.29 (m, 4H), 7.25 – 7.15 (m, 2H), 7.09 (dd, J = 6.5, 4.9 Hz, 1H), 

7.02 (td, J = 7.7, 0.5 Hz, 2H), 6.83 (ddd, J = 11.1, 9.0, 4.4 Hz, 4H), 6.78 – 6.72 (m, 1H), 6.71 – 

6.66 (m, 1H), 6.34 (t, J = 7.8 Hz, 2H), 6.29 (d, J = 7.1 Hz, 1H), 5.67 (d, J = 7.8 Hz, 1H). ESI–

HRMS (m/z): calcd. for [C76H46N8Ir]
+, 1263.3481; found, 1263.3477. Anal. Calcd for 

C76H46F6IrN8P•3H2O: C, 63.19; H, 3.49; N, 7.76. Found: C, 62.99; H, 3.72; N, 7.40. 

5-3. A brownish powder was obtained as the product (34 mg, 39%). 1H NMR (CDCl3, 400 

MHz): δ 9.15–9.04 (m, 1H), 8.80–8.67 (m, 2H), 8.59 (s, 1H), 8.50–8.35 (m, 1H), 8.22 (d, J = 8.5 

Hz, 1H), 8.17–7.88 (m, 12H), 7.89–7.61 (m, 7H), 7.60–7.51 (m, 3H), 7.49–7.38 (m, 2H), 7.33 (t, 

J = 7.8 Hz, 1H), 7.25–7.16 (m, 3H), 7.16–7.07 (m, 2H), 7.05–6.92 (m, 2H), 6.92–6.74 (m, 5H), 

6.70 (dd, J = 8.0, 1.3 Hz, 1H), 6.20 (dd, J = 7.9, 0.9 Hz, 1H), 6.11 (t, J = 7.8 Hz, 1H), 5.39 (d, J = 
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7.7 Hz, 1H), 5.24 (d, J = 8.0 Hz, 1H). ESI–HRMS (m/z): calcd. for [C80H48N8Ir]
+, 1313.3639; 

found, 1313.3652. Anal. Calcd for C80H48F6IrN8P•0.7CH2Cl2: C, 62.50; H, 3.26; N, 7.18. Found: 

C, 62.37; H, 3.41; N, 7.19. 

 

5.2.3. Photophysical and nonlinear transmission measurements 

The UV−vis absorption spectra of 5-1 – 5-3 were recorded on a Varian Cary 50 

spectrophotometer. The emission spectra of 5-1 and 5-2 were recorded on a HORIBA 

FluoroMax-4 fluorometer/phosphorometer. A PTI Quantamaster equipped with a 

Hamamatsu R5509-42 near-infrared PMT was used to record the NIR emission spectrum 

of 5-3 in CH2Cl2. The emission quantum yields were obtained in deaerated solutions using 

relative actinometry method,43 with [Ru(bpy)3]Cl2 (em = 0.097 in degassed acetonitrile 

solution, ex = 436 nm)44 being used as the reference for 5-1 and 5-2, and IRF140 (Φem = 

0.167 in degassed ethanol solution, λex = 804 nm)45 for 5-3. The nanosecond transient 

difference absorption (TA) spectra of 5-1 – 5-3 were measured on an Edinburgh LP920 

laser flash photolysis spectrometer in acetonitrile solutions. The third−harmonic output 

(355 nm) of a Nd:YAG laser (Quantel Brilliant, 4.1 ns, the repetition rate was set to 1 Hz) 

was used as the excitation source. Each sample solution was degassed with nitrogen for 40 

min. before the measurement. By using the singlet depletion method,46 the triplet 

excited−state molar extinction coefficients (εT) of 5-1 – 5-3 at the TA band maxima were 

determined. The triplet excited−state quantum yields were then obtained using the relative 

actinometry method,47 with the benzene solution of SiNc (ε590 = 70,000 M−1 cm−1, ΦT = 

0.20)48 being used as the reference. The setup and details of the nonlinear transmission 

measurement were the same as those reported earlier by our group.28,49 
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5.2.4. Computational methodology 

The ground and excited−state properties of complexes 5-1 − 5-3 were simulated via density 

functional theory (DFT) and linear response time−dependent DFT (TDDFT) calculations. 

Gaussian 0950 was used to compute the ground and excited state properties at the B3LYP51 

functional with mixed basis set (LANL2DZ for Ir,52 and 6−31g* for H, C, and N53). The effect of 

dichloromethane solvent was implicitly included through the Conductor Polarized Continuum 

Model (CPCM).54,55 

The oscillator strengths and excitation energies from the singlet ground state (S0) to singlet 

excited states (Sn, n is the excited state) were computed via TDDFT. The simulated absorption 

spectra for 5-1 − 5-3 were then generated following the equation 2 in Ref. 56 by using a line−width 

of 0.05 eV to broaden the computed transitions. The emission energies of 5-1 − 5-3 were 

investigated by TDDFT SCF. TDDFT SCF computed the phosphorescence energy at the triplet 

equilibrium geometry via the spin−flip TDDFT between the singlet ground state (S0) and first 

triplet excited state (T1).
21 The nature of the singlet absorption (S0 → Sn) and emission (T1 → S0) 

was demonstrated by computing the natural transition orbitals (NTOs)56 for relevant transitions. 

The NTOs were visualized using VMD58 with an isosurface of 0.02. 

 

5.3. Results and discussion 

5.3.1. Electronic absorption 

The ground–state absorption spectra of complexes 5-1 − 5-3 were measured in CH2Cl2 

(Figure 5.1), and the corresponding data are compiled in Table 5.1. Since the observed absorption 

obeyed the Beer’s law in the concentration range of 5×10–6 to 1×10–4 mol•L−1, we consider that no 

ground–state aggregation occurs in this concentration range. 
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Figure 5.1. Experimental (a) and theoretical (b) UV/Vis absorption spectra of 5-1 – 5-3 at room 

temperature in CH2Cl2. The inset in panel (a) shows the expanded spectra in the regions of 450 − 

800 nm. The B3LYP functional was used in the TDDFT calculations and the calculated transitions 

were broadened by a Gaussian distribution with a linewidth of 0.05 eV. 

 

Table 5.1. Photophysical properties of complexes 5-1 – 5-3. 

 abs/nm (log ) a em/nm (em/ns); em 
b T1‑Tn/nm (TA/ns; log εT1−Tn), T 

c 

5-1 290 (5.06), 338 (4.86), 

356 (4.81), 384 (4.58), 

402 (4.57), 507 (2.98) 

651 (185); 0.036 390 (119; –), 437 (110; 4.41), 

779 (108; –); 0.33 

5-2 290 (5.12), 340 (4.91), 

355 (4.90), 381 (4.66), 

402 (4.63), 544 (3.03) 

710 (70); 0.0046 390 (55; –), 444 (56; 5.08), 733 

(75; –); 0.032 

5-3 290 (5.17), 325 (5.07), 

356 (4.90), 384 (4.67), 

404 (4.72), 605 (3.04) 

825 (380), 919 (-), 1035 

(-), 1180 (-); 0.007 

423 (392; –), 549 (405; –), 696 

(377; –); – 

a Electronic absorption band maxima (abs) and molar extinction coefficients (log ) in CH2Cl2 at room 
temperature. b Room temperature emission band maxima (em) and lifetimes (em) in CH2Cl2 (c = 1 × 10−5 
mol/L). For emission quantum yields determination, [Ru(bpy)3]Cl2 (Φem = 0.097, λex = 436 nm) in a 
degassed acetonitrile solution was used as the reference for 5-1 and 5-2., while IRF140 (Φem = 0.167, λex = 
804 nm) in a degassed ethanol solution was used as the reference for 5-3 c Nanosecond TA band maxima 
(T1‑Tn), triplet excited state lifetimes (TA) and quantum yields (T) measured in CH3CN at room 
temperature. 

 

The UV−vis absorption spectra of 5-1 − 5-3 resemble each other, being all composed of 

structured, intense absorption bands in the regions of 280 − 420 nm. The molar extinction 

coefficients of these bands gradually increased from 5-1 to 5-3, and a new band appearing at 325 
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nm in 5-3. Considering the spectral features and the molar extinction coefficients, we tentatively 

attribute these absorption bands predominantly to the ligand−localized 1,* transitions. The 

gradually increased molar extinction coefficients are likely caused by the extended π–conjugation 

of the N^N ligand. All spectra also exhibited weak and broad tails above 420 nm, i.e. 420−600 nm 

for 5-1, 420−700 nm for 5-2, and 420−750 nm for 5-3 (see inset in panel (a) of Figure 5.1). Because 

of the structureless feature and small molar extinction coefficients, these band(s) likely arose from 

charge transfer (CT) transitions. The gradual red−shift of these bands with increased molar 

extinction coefficients suggested that the CT transitions likely involved the N^N ligands, which 

could be metal−to−ligand charge transfer (MLCT) and ligand−to−ligand charge transfer (LLCT). 

To unambiguously understand the natures of the ground–state absorption, time–dependent 

density functional theory (TDDFT) calculations were carried out to obtain the natural transition 

orbitals (NTOs) for each complex. As the NTOs in Table 5.2 shows, the low−energy absorption 

band(s) at >420 nm exclusively emanate from the ligand−to−ligand charge transfer (1LLCT) / 

1MLCT transitions. In view of the dark or extremely small oscillator strength of the Table 5.3 and 

5-4 transitions in these complexes, the very weak absorption bands beyond 500 nm for 5-1 and 5-

2, and beyond 575 nm for 5-3 could have contributions from the spin−forbidden 3,*/3CT 

transitions that have been reported in many other Ir(III) complexes.14,26,28-30,35,59,60  The intense 

absorption bands at 320−420 nm (Table 5.3) are dominated by the dppi ligand−localized 1,* 

transitions, mixed with some 1MLCT/1LLCT transitions. The NTOs in Table 5.4 indicate that the 

short wavelength absorption bands at 280−320 nm predominantly arise from the dppi and N^N 

ligand localized spin–allowed 1,* transitions, admixing with minor 1MLCT/1LLCT and 

intraligand charge transfer (1ILCT) characters. 
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Table 5.2. Natural transition orbitals (NTOs) corresponding to the transitions contributing to the 

low−energy absorption bands of 5-1 – 5-3 in CH2Cl2.  
State Hole Electron State Hole Electron 

5-1 S1  

601 nm  

f = 0.003  

 

   

S2  

564 nm  

f = 0.000  

 
  

 

 S3  

502 nm  

f = 0.003  

 

   

S4  

438 nm  

f = 0.016  

 

    

 S6  

421 nm  

f = 0.014  

 

    

S7  

420 nm  

f = 0.025  

 

    

5-2 S1  

640 nm  

f = 0.000  

 

    

S2  

601 nm  

f = 0.002  

 

    

 

 S3  

525 nm  

f = 0.002  

 

   

S5  

445 nm  

f = 0.011  

 

    

 S6  

442 nm  

f = 0.014  

 

   

S7  

434 nm  

f = 0.009  

 

   

5-3 S1  

707 nm  

f = 0.000  

 

   

S2  

661 nm  

f = 0.002  

 

   

 

 S3  

568 nm  

f = 0.003  

  
  

S4  

503 nm  

f = 0.031  

 

   

 S6  

471 nm  

f = 0.010  

 

    

S8  

428 nm  

f = 0.008  

 

  
79% 

 
79% 

      

 
20% 

 
20% 
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Table 5.3. Natural transition orbitals (NTOs) representing singlet transitions contributing to the 

medium energy transitions of 5-1 – 5-3 in CH2Cl2. 
 State Hole Electron State Hole Electron 

5-1 S8  

387 nm  

f = 0.216  

  

S21  

355 nm  

f = 0.103  

 
51% 

 
51% 

S11  

377 nm  

f = 0.191  

 
54% 

 
54% 

 
31% 

 
31% 

 
41% 

 
41% 

S23  

346 nm  

f = 0.048  

 

 

 

 
46% 

 
46% 

S13  

373 nm  

f = 0.152  

 
54% 

 
54% 

 
44% 

 
44% 

 
31% 

 
31% 

S29  

329 nm  

f = 0.078 

  

S16  

366 nm  

f = 0.098  

 

 
  

S30  

326 nm  

f = 0.038  

  
35% 

 
35% 

S18  

359 nm  

f = 0.161  

 

 
  

 

 
24% 

 
24% 

 S19  

357 nm  

f = 0.097  

 

 
 

47% 
 

47% 

   

 

 
40% 

 
40% 

   

5-2 S12  

385 nm  

f = 0.432  

 

 
  

S26  

342 nm  

f = 0.052  

 

 
 

62% 
 

62% 
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Table 5.3. Natural transition orbitals (NTOs) representing singlet transitions contributing to 

the medium energy transitions of 5-1 – 5-3 in CH2Cl2. (continued) 
 State Hole Electron State Hole Electron 

 S15  

371 nm  

f = 0.111  

 

 
  

 

 
28% 

 
28% 

 S19  

365 nm  

f = 0.209  

 

 
 

67% 
 

67% 

S32  

327 nm  

f = 0.081  

 

 
  

 

 
25% 

 
25% 

S33  

324 nm  

f = 0.052  

 

 
  

 S22  

354 nm  

f = 0.134  

  

S34  

323 nm  

f = 0.100  

  
 S25  

346 nm  

f = 0.066 

  

   

5-3 S13  

394 nm  

f = 0.073  

   

S24  

354 nm  

f = 0.114  

   
S15  

386 nm  

f = 0.365  

  

S27  

344 nm  

f = 0.499  

 
53% 

 
53% 

S16  

383 nm  

f = 0.132  

 
69% 

 
69% 

 
33% 

 
33% 

 
26% 

 
26% 

S36  

327 nm  

f = 0.070  

 

 
  

S18  

370 nm  

f = 0.131 

  

S39  

323 nm  

f = 0.110  

   
 S20  

365 nm  

f = 0.171  
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Table 5.4. Natural transition orbitals (NTOs) representing singlet transitions contributing to the 

high energy transitions of 5-1 – 5-3 in CH2Cl2. 
 State Hole Electron State Hole Electron 

5-1 S31  

322 nm  

f = 0.037  

 

 

  

 
44% 

 
44% 

S53  

296 nm  

f = 0.098  

 

 

  28% 
 

28% 

 

 
27% 

 
27% 

 
25% 

 
25% 

 S33  

321 nm  

f = 0.190  

 

 

  

 
41% 

 
41% 

S65  

288 nm  

f = 0.066  

 

 

  

 
44% 

 
44% 

 

 
33% 

 
33% 

 
26% 

 
26% 

 S43  

303 nm  

f = 0.088  

 

   

S67  

286 nm  

f = 0.084  

 

 

  

 
36% 

 
36% 

 S46  

301 nm  

f = 0.074   

 
42% 

 
42% 

 
25% 

 
25% 

 

 
31% 

 
31% 

S70  

285 nm  

f = 0.055  

 

   

 S47  

299 nm  

f = 0.134  

 
38% 

 
38% 

   

  

 
34% 

 
34% 
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Table 5.4. Natural transition orbitals (NTOs) representing singlet transitions contributing to 

the high energy transitions of 5-1 – 5-3 in CH2Cl2. (continued) 
 State Hole Electron State Hole Electron 

5-2 S50  

302 nm  

f = 0.108  

 

 

  

 
43% 

 
43% 

S71  

288 nm  

f = 0.068  

 

  
29% 

 
29% 

 
24% 

 
24% 

 
26% 

 
26% 

S53  

301 nm  

f = 0.137  

 
44% 

 
44% 

S74  

286 nm  

f = 0.053  

  

 
31% 

 
31% 

5-3 S41  

317 nm  

f = 0.084  

 

   

S61  

302 nm  

f = 0.277  

 

 

  

 
43% 

 
43% 

S42  

317 nm  

f = 0.087  

  
   

25% 
 

25% 

 

5.3.2. Photoluminescence 

To explore the triplet excited states properties of 5-1 − 5-3, the emission of these complexes 

was studied in different solvents at room temperature. The emission spectra and parameters in 

CH2Cl2 are provided in Figure 5.2 and Table 5.1, and the spectra and parameters in other solvents 

are given in Figure 5.3 and Table 5.5, respectively. The observed luminescence was sensitive to 

oxygen quenching, and the lifetimes were tens to hundreds of nanoseconds, indicating the 
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phosphorescence nature of the emission. Going from 5-1 to 5-3, the emission energy gradually 

decreased; however, the spectral feature changed from featureless to structured, accompanied by 

a shortened lifetime from 5-1 to 5-2, but increased for 5-3. The lack of monotonic trend for the 

spectral feature and the emission lifetime are indicative of a different emitting state for 5-3 from 

those for 5-1 and 5-2. This notion was supported by the NTOs calculated by TDDFT SCF. 
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Figure 5.2. Normalized emission spectra of 5-1 − 5-3 in CH2Cl2 at room temperature. 
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Figure 5.3. Normalized experimental emission spectra of 5-1 − 5-3 at room temperature in 

different solvents. 

 

As shown in Table 5.6, the electrons in the T1 states were all localized on the N^N ligands 

and the d orbitals of Ir(III), while the holes were on the dppi ligands and a different d orbital of 

Ir(III) in 5-1 and 5-2, and on the N^N and d orbital in 5-3. Therefore, the emitting states of 5-1 and 

5-2 have the 3LLCT/3MLCT/3LMCT (ligand−to−metal charge transfer) configurations in nature; 

whereas the emitting state of 5-3 is the N^N ligand−localized 3,* state. Because the electrons in 

all three complexes involved the N^N ligands, and the extended −conjugation could stabilize the 
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electrons, the reduced electron−hole gap decreased the emission energies going from 5-1 to 5-3. 

Moreover, the same charge transfer nature of the emitting states in 5-1 and 5-2 resulted in the 

shorter emission lifetime and lower emission quantum yield when the emission energy decreased 

from 5-1 to 5-2. This trend is consistent with the energy gap law.61,62 

 

Table 5.5. Emission characteristics of 5-1 − 5-3 in different solvents at room temperature.a 

λem/nm (em/us); Φem 

 CH3CN THF CH2Cl2 Toluene  

(with 10% CH2Cl2) 

5-1 655 (0.12);0.014 649 (0.17); 0.026 651 (0.18); 0.036 654 (0.12); 0.019 

5-2 714 (0.03); 0.0014 705 (0.04); 0.0033 710 (0.07); 0.0046 712 (0.05); 0.0029 

5-3 803 (0.32); - b 808 (0.24); - b 810 (0.38); - b 791 (0.28); - b 

a Ru(bpy)3Cl2 in CH3CN was used as the reference (λex = 436 nm, Φem = 0.097) for the emission 

quantum yield measurements. b Signal was too weak to be measured. 
 

Table 5.6. NTOs representing the transitions contributing to the T1 states of 5-1 − 5-3 in CH2Cl2 

calculated by TDDFT SCF method. 

 T1 / nm Hole Electron 

5-1 794 

  
5-2 860 

  
5-3 1358 

  
 

5.3.3. Transient absorption (TA) 

The RSA performance of a reverse saturable absorber is closely related to its excited–state 

absorption, triplet quantum yield, and its triplet lifetime. Thus, the nanosecond transient difference 
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absorption spectra of 5-1 − 5-3 were investigated in deoxygenated acetonitrile to further 

understand their triplet excited−state characteristics. The time–resolved TA spectra are presented 

in Figure 5.4 (a, b, c), and the comparison of the TA spectra immediately after laser excitation are 

provided in Figure 5.4d. The excited–state absorption parameters, i.e. the triplet excited–state 

lifetimes, extinction coefficients, and quantum yields, are compiled in Table 5.1. Because the TA 

lifetimes in CH3CN are similar to the emission lifetimes measured in the same solution for 5-1 − 

5-3, the triplet excited states leading to the observed TA can be attributed to the excited states state 

that emit, i.e. 3LLCT/3MLCT/3LMCT states for 5-1 and 5-2, and 3,* state for 5-3. 

The TA spectra of 5-1 and 5-2 resembled each other, both with bleaching at ca. 360 nm 

and 405 nm, which are consistent with the UV−vis absorption band maxima in the same spectral 

regions; and positive absorption bands at 371–397 and 414–800 nm. The similar spectral feature 

reflected the similar configuration of their T1 states. The positive absorption bands are similar to 

those observed in other Ir(III) complexes bearing the dppi ligands.21,24 Taking into account the fact 

that the T1 state contains the 3LLCT/3LMCT characters, the observed positive absorption bands 

could be ascribed to the absorption from the dppi cation radical. In contrast, the TA spectrum of 

5-3 featured a broad positive absorption band in the 363–800 nm regions except for the very narrow 

and shallow bleaching bands centered at 370 and 405 nm. The TA spectrum of 5-3 is similar to 

those observed from the other Ir(III) complex bearing the benzoquinoxaline motif in the C^N 

ligand.35,60 This feature along with the predominantly benzoquinoxaline−localized 3,* nature of 

the T1 state support the assignment that the observed TA of 5-3 was originated from the 

benzoquinoxaline−localized 3,* state. 
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Figure 5.4. Time−resolved nanosecond TA spectra of complexes 5-1 − 5-3 in deoxygenated 

acetonitrile solution (a–c), and comparison of the TA spectra of 5-1 − 5-3 immediately after laser 

excitation. A355 = 0.4 in a 1 cm cuvette, λex = 355 nm. 

 

5.3.4. Reverse saturable absorption 

As the TA spectra in Figure 3 displayed, complexes 5-1 − 5-3 all exhibited positive TA 

signals at 532 nm, implying a stronger triplet excited–state absorption at this wavelength than that 

of the ground state. Thus, RSA is anticipated to occur upon laser excitation at 532 nm. To ensure 

that identical number of complexes are excited to the singlet excited state, the concentration of 

each sample solution was adjusted to reach an 80% linear transmission in a 2 mm cuvette at 532 

nm. At this condition, the observed difference in RSA should arise from the different 
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characteristics of the triplet excited state. Using the 4.1 ns laser pulses, the nonlinear transmission 

experiment of 5-1 − 5-3 in acetonitrile was carried out and the results are provided in Figure 5.5.  

 

1E-5 1E-4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 5-1

 5-2

 5-3

T
ra

n
s
m

it
ta

n
c
e

Incident Energy (J)  
Figure 5.5. Nonlinear transmission plot of 5-1 − 5-3 at the linear transmittance of 80% in 2 mm 

cuvette in acetonitrile solution using the 4.1 ns laser pulses duration at 532 nm.  

 

It is apparent that all complexes exhibited strong RSA, with the strength of RSA decreasing 

in the order of 5-3 > 5-1  5-2. The RSA strength of 5-1 − 5-3 approximatively paralleled the 

intensity of the TA signals immediately after laser pulse excitation at 532 nm (i.e. 0.005 for 5-1 

and 5-2, and 0.017 for 5-3). Although the OD values are the same for 5-1 and 5-2, a slightly 

stronger RSA was observed for 5-1 because of its slightly weaker ground–state absorption than 

that of 5-2 (see the inset in Figure 5.1). This is because the strength of RSA is mainly determined 

by the ratio of the excited−state absorption cross section (ex) vs. that of the ground state (0) at 

the same wavelength, a weaker ground−state absorption could increase the ex/0 ratio and thus 

enhance the RSA. For 5-3, the much stronger excited−state absorption at 532 nm compared to 5-

1 and 5-2 accounted for its strongest RSA among these three complexes. Moreover, 5-3 possesses 

the much broader ground−state absorption extending to 750 nm, a broader and stronger 
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excited−state absorption in the visible spectral regions, and the longer triplet lifetime. These 

features could make it an attractive candidate as a broadband reverse saturable absorber.  

 

5.4. Conclusions 

We have reported the synthesis, photophysics, and RSA of three cationic Ir(III) complexes 

with dppi as the C^N ligand and different dipyridylpyrazine derivatives as the N^N ligand. 

Spectroscopic methods and TDDFT calculations were used to understand the influence of 

−conjugation of the N^N ligand on the UV−vis absorption and emission of the complexes. We 

found that increasing the π–conjugation of the N^N ligand caused a red−shift of the 

charge−transfer absorption bands in these complexes and increased the molar extinction 

coefficients of all of the absorption bands. Meanwhile, this structural variation switched the T1 

states from 3LLCT/3MLCT in 5-1 and 5-2 to the N^N ligand−localized 3,* state in 5-3, which 

not only red−shifted the emission spectrum of 5-3, but also prolonged the T1 lifetime and 

drastically changed the transient absorption spectral features. The impact of the −conjugation on 

the ground−state and excited−state absorption consequently influenced the RSA of these 

complexes for ns laser pulses at 532 nm. The trend of the RSA strength, i.e. 5-3 > 5-1  5-2, is the 

result of the increased excited−state absorption and decreased ground−state absorption when the 

−conjugation of the N^N ligand varied. The extended weak charge−transfer absorption band at 

420−750 nm, along with the stronger triplet excited−state absorption in this spectral region 

promoted 5-3 as a potential reverse saturable absorber. 
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6. PHOTOPHYSICAL AND PHOTOBIOLOGICAL PROPERTIES OF DINUCLEAR 

IRIDIUM(III) BIS-TRIDENTATE COMPLEXES 

 

6.1. Introduction 

In recent decades transition-metal complexes have come to the forefront in the search for 

new chemical entities in drug discovery and biological chemistry.1 Platinum (Pt)-based metal 

complexes have been investigated extensively for cancer therapy,2 with cisplatin being arguably 

the most successful anticancer drug to date. Nevertheless, there is continued focus on developing 

alternatives to cisplatin3,4 and other nonselective cytotoxic agents in an effort to reduce the 

systemic side effects associated with conventional chemotherapy approaches. Ruthenium (Ru)-

containing compounds have been widely studied as alternatives to the Pt-derived drugs, with a few 

(e.g., NAMI-A, KP1019, and IT-139) entering clinical trials5–7 but none in the clinic to date. With 

selectivity being a key consideration for any new drug, Ru(II) coordination complexes and other 

transition-metal complexes are also being considered for targeted modalities such as photodynamic 

therapy (PDT).8–11 

 PDT has been known for over a hundred years12 yet remains underexploited in mainstream 

cancer therapy despite its precise spatiotemporal selectivity. In its narrowest definition, PDT 

involves activation of an otherwise nontoxic photosensitizer with photons of appropriate energy 

to produce a triplet excited state that can relax through singlet oxygen (1O2) sensitization or the 

production of other reactive oxygen species (ROS).13 Collectively, cytotoxic ROS destroy tumors 

and tumor vasculature, and can even invoke an antitumor immune response under the right 

conditions. Porphyrin-based organic compounds (and the related chlorins, bacteriochlorins, and 

phthalocyanines) have traditionally served as ROS-generating photosensitizers for PDT.14,15 
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However, transition-metal complex photosensitizers have the potential to both (i) expand the scope 

of PDT to include oxygen-independent mechanisms of action, and thus improve PDT efficacy in 

hypoxic tissue, and (ii) broaden the wavelength range that can be used to include deeper tissue-

penetrating near-infrared (NIR) light. One recent example is our Ru(II) complex TLD1433,16 

currently in clinical trials for treating bladder cancer with PDT (ClinicalTrials.gov Identifier: 

NCT03053635), and its transferrin conjugate Rutherrin™.17 

 TLD1433 incorporates a special -expansive ligand derived from imidazo[4,5-

f][1,10]phenanthroline appended to an -terthienyl unit, which imparts a long-lived triplet 

intraligand excited state (3IL) of significant ,* character that is lower in energy than the triplet 

metal-to-ligand charge transfer (3MLCT) state that typically dominates the photophysical 

dynamics of Ru(II) polypyridyl complexes. The reduced intersystem crossing (ISC) rates 

characteristic of spin-forbidden 3,* transitions centered on the organic moiety are responsible 

for the much longer intrinsic triplet lifetimes in these constructs that are known as metal-organic 

dyads.18,19 The implication is that slow ISC back to the ground state from 3IL states provides ample 

opportunity for requisite bimolecular processes that constitute the phototoxic effects of PDT. We 

have demonstrated very potent in vitro PDT effects from a variety of Ru(II) dyads with low-lying, 

long-lived 3IL states, including both contiguously-fused -extended azaaromatic ligands20 as well 

as ligands tethered to -extended aromatic chromophores.16,21–23 More recently, we have 

incorporated -expansive ligands into Ir(III) metal complexes to extend intrinsic excited state 

lifetimes for both reverse saturable absorption (RSA) and PDT applications.24,25 

 Compared to the large number of Ru(II) systems that have been explored, investigations 

on Ir(III) complexes for in vitro PDT have been emerged in recent years.24–44 While Ir(III) 

complexes derived from diimine ligands (N^N) may fall short of the optimal absorption window 
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for PDT, we have demonstrated that incorporation of two cyclometalating ligands (C^N) to form 

biscyclometalated Ir(III) complexes extends the ground-state absorption spectrum significantly, 

and that installation of a -extended N^N ligand alongside the two C^N ligands extends the 

lifetime through population of 3IL states. The result is nanomolar PDT potency with 

phototherapeutic indices (PIs) greater than 400.25 We also showed that it was possible to use -

extended C^N ligands without compromising the potent in vitro PDT effects in Ir(III)-based 

systems that act as near-infrared-emitting theranostic agents.24 

The large luminescence quantum yields for certain Ir(III) complexes combined with their 

high yields for triplet state formation and good photostability make these metal complexes very 

attractive for photobiological applications such as PDT. In addition, their excitation and emission 

energies, as well as other photophysical and biological/chemical properties, can be systematically 

tuned via minor structural changes to a highly versatile and modular architecture. Despite these 

attributes, Ir(III) complexes studied to date30 still fall short of some of the best Ru(II)-based in 

vitro PDT agents. The purpose of the present study is to use rational design principles to improve 

the water-solubility and in vitro PDT effects within the Ir(III) class of photosensitizers. 

Specifically, installing two Ir(III) centers in a single complex might simultaneously amplify 

photocytotoxicity and increase water solubility. 

The solubility of organometallic complexes in aqueous solution can be improved by 

increasing the number of charges in the complex, which should be applicable to multinuclear 

iridium(III) complexes with C^N and/or N^N ligands.45 Since the photophysical and biological 

properties of metal complexes bearing tridentate ligand(s) can be readily tuned by modification of 

the 4′-position of the tridentate ligand(s), and because the bis-tridentate ligand coordination 

prevents the formation of stereoisomers upon complexation with transition metals, tridentate 
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ligands are chosen for this Ir(III) study.46,47 Our previous work with bis-terpyridyl dinuclear Pt(II) 

complexes showed that the fluorenyl bridging group imparted these systems with intense 

absorption in the visible region (400-500 nm) and reasonably long-lived triplet excited states.48 

These desirable properties led us to investigate fluorenyl-linked Ir(III) systems as in vitro PDT 

agents. 

Herein, we report the synthesis, characterization, and photophysical/photobiological 

properties of stable dinuclear Ir(III) complexes (Chart 6-1) of +2, +4, or +6 charges, with the 

charge determined by the identities of the metal coordinating atoms of different terminal tridentate 

ligands. Fluorene was chosen as the central bridging group for the two Ir-tpy components because 

it is a rigid π-conjugated linker expected to enhance molar extinction coefficients in the visible 

spectral region. Complexes 6-1 and 6-3 – 6-5 incorporate 9,9-dioctyl-2,7-di(terpyridyl)-9H-

fluorene (L6-1) as the bridging ligand, with variation at the terminal tridentate ligands: 4'-phenyl-

2,2':6',2''-terpyridine (N^N^N), 1,3-dipyridyl-4,6-dimethylbenzene (N^C^N), 4,6-diphenyl-2,2'-

bipyridine (C^N^N), or 2,4,6-triphenyl-pyridine (C^N^C). Complex 6-2 uses 9,9-dioctyl-2,7-

bis(2-phenylethynyl)-9H-fluorene (L6-2) as the bridging ligand to extend the -conjugation 

length, which is anticipated to facilitate intraligand charge transfer (ILCT) transitions that fall in 

the PDT window and to also increase visible wavelength absorption.  

 
Chart 6-1. The molecule structure of target dinuclear Ir(III) complexes. 

 



 

204 

6.2. Experimental section 

6.2.1. Synthesis and characterizations 

All the chemicals and solvents were purchased from Aldrich Chemical Co. or Alfa Aesar 

and used as received unless otherwise mentioned. The bridging ligands (L6-1 and L6-2) were 

synthesized following the procedures reported by our group before.48 4'-Phenyl-2,2':6',2''-

terpyridine (N^N^N),49 1,3-dipyridyl-4,6-dimethylbenzene (N^C^N),50 4,6-diphenyl-2,2'-

bipyridine (C^N^N),51 2,4,6-triphenylpyridine (C^N^C),52 4'-phenyl-2,2':6',2''-terpyridine-IrCl3 

(N^N^N-IrCl3),
53 and {[1,3-dipyridyl-4,6-dimethylbenzene]IrCl2}2 (N^C^N Ir-dimer)54 were 

synthesized following literature procedures. The silica gel (60 Å, 230−400 mesh) and Al2O3 gel 

(activated, neutral) used for column chromatography were purchased from Sorbent Technology. 

Complexes 6-1 – 6-5 were characterized by 1H NMR, high resolution electrospray ionization mass 

spectrometry (ESI–MS), and elemental analysis. 1H NMR spectra were obtained on Bruker-400 

spectrometer or Varian Oxford–500 spectrometer. ESI–MS analyses were conducted on Waters 

Synapt G2-Si Mass Spectrometer. Elemental analyses were carried out by NuMega Resonance 

Laboratories, Inc. in San Diego, California. 

The synthetic schemes for complexes 6-1 – 6-5 are illustrated in Scheme 6-1. 

L6-1-(IrCl3)2. A suspension of L6-1 (170.5 mg, 0.2 mmol) and IrCl3
.3H2O (141 mg, 0.4 

mmol) in degassed ethylene glycol (15 mL) was heated to 160 °C without direct light for 30 

minutes. After the mixture was cooled to room temperature, the precipitate was filtered out and 

washed with ethanol, water, and diethyl ether to give L6-1-Ir(Cl3)2 as red solid (254 mg, 88%).  

1H NMR (500 MHz, d6-DMSO) δ 9.27 (d, J = 5.0 Hz, 4H), 9.18 (t, J = 8.8 Hz, 4H), 9.06 (dd, J = 

11.3, 3.0 Hz, 2H), 8.98 – 8.94 (m, 2H), 8.70 (t, J = 9.8 Hz, 2H), 8.52 (dd, J = 8.2, 4.1 Hz, 2H), 
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8.38 (t, J = 7.8 Hz, 4H), 8.32 (d, J = 8.5 Hz, 2H), 8.06 – 8.01 (m, 4H), 2.43 (m, 4H), 0.95 – 0.69 

(m, 20H), 0.48 (m, 10H). 

 
Scheme 6.1. Synthetic routes for complexes 6-1 – 6-5. 

 

6-1.  A suspension of 4'-phenylterpyridine-IrCl3 (60.7 mg, 0.1 mmol) and L6-1 (42.6 mg, 

0.05 mmol) in degassed ethylene glycol (10 mL) was heated to 196 °C without direct light for 2 

hours. After the mixture was cooled to room temperature, saturated NH4PF6 solution (20 mL) was 

added to precipitate out the crude product. The crude product was purified by column 

chromatography (Alumina, eluted with CH2Cl2 first to remove unreacted ligand, then using 

acetone/water gradient elution from 100:0 to 95:5 (v/v)) to give a yellow solid (60 mg, 65%) as 

the desired product. 1H NMR (400 MHz, d6-DMSO) δ 9.76 (s, 4H), 9.67 (s, 4H), 9.50 – 9.34 (m, 

4H), 9.29 (d, J = 8.2 Hz, 4H), 9.05 (s, 2H), 8.88 – 8.78 (m, 2H), 8.53-8.39 (m, 14H), 8.17 – 7.93 
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(m, 8H), 7.87 (t, J = 7.6 Hz, 4H), 7.78 (t, J = 7.4 Hz, 2H), 7.62 (dd, J = 12.2, 5.8 Hz, 8H), 2.61 (m, 

4H), 0.89 (m, 20H), 0.62 (m, 10H). ESI-HRMS (m/z, in acetone): calcd. for [C101H90Ir2N12]
6+, 

309.4445; found, 309.4446. Calcd. for [C101H90Ir2N12PF6]
5+, 400.3262; found, 400.3270. Calcd. 

for [C101H90Ir2N12P2F12]
4+, 536.6489; found, 536.6503. Anal. Calcd. (%) for 

C101H90F36Ir2N12P6
.6H2O: C, 42.80; H, 3.63; N, 5.93. Found: C, 42.61; H, 3.74; N, 5.98. 

6-2.  A suspension of 4'-phenylterpyridine-IrCl3 (60.7 mg, 0.1 mmol), L6-2 (45 mg, 0.05 

mmol), and AgOTf (77 mg, 0.3 mmol) in degassed ethylene glycol (10 mL) was heated to 196 °C 

without direct light for 24 hours. After the mixture was cooled to room temperature, saturated 

NH4PF6 solution (20 mL) was added to precipitate out the crude product. The crude product was 

purified by column chromatography (Alumina, eluted with CH2Cl2 first to remove unreacted 

ligand, then using acetone/water gradient elution from 100:0 to 95:5 (v/v)) to give a dark red 

powder (37 mg, 24%) as the desired product. 1H NMR (400 MHz, d6-DMSO) δ 9.62 (t, J = 7.0 

Hz, 6H), 9.22 (m, 8H), 8.48 (m, 6H), 8.32 (m, 8H), 7.92 (m, 8H), 7.77 (m, 6H), 7.71 (m, 4H), 7.51 

(m, 10H), 2.51 (m, 4H), 1.02 (m, 20H), 0.67 (m, 10H). ESI-HRMS (m/z, in acetone): calcd. for 

[C105H90Ir2N12]
6+, 317.4445; found, 317.4442. Anal. Calcd. (%) for 

C105H90F36Ir2N12P6
.13H2O

.CH2Cl2: C, 41.16; H, 3.85; N, 5.43. Found: C, 40.83; H, 3.47; N, 5.44. 

6-3.  A suspension of {[2,2'-(4,6-dimethyl-1,3-phenylene)bis-pyridine]IrCl2}2 (72 mg, 

0.069 mmol) and L6-1 (59 mg, 0.069 mmol) in ethylene glycol (10 mL) was heated to 196 °C in 

degassed ethylene glycol without direct light for 1 hour. After cooling to room temperature, the 

reaction mixture was added to water (10 mL) and filtered. Saturated NH4PF6 solution (20 mL) was 

added to the filtrate, and the resulting yellow precipitate was collected by centrifugation, washed 

with water (310 mL), and dried under vacuum. The crude product was purified by column 

chromatography (Alumina, eluted with CH2Cl2 first to remove unreacted ligand, then using 
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acetone/water gradient elution from 100:0 to 95:5 (v/v)) to yield a yellow solid (94 mg, 58%) as 

the desired product. 1H NMR (400 MHz, d6-DMSO) δ 9.65 (td, J = 5.0, 2.5 Hz, 4H), 9.18 (t, J = 

9.9 Hz, 4H), 8.90 (m, 2H), 8.71 (m, 2H), 8.47 (dd, J = 9.6, 2.6 Hz, 2H), 8.37 (d, J = 8.4 Hz, 4H), 

8.30 (dd, J = 8.8, 4.6 Hz, 4H), 7.99 (ddd, J = 7.5, 5.9, 2.7 Hz, 4H), 7.77 (m, 2H), 7.68 (ddd, J = 

9.7, 4.8, 2.7 Hz, 4H), 7.52 (ddd, J = 6.7, 4.1, 1.2 Hz, 4H), 7.45 (dd, J = 5.7, 1.8 Hz, 2H), 7.40 (s, 

2H), 7.12 (ddd, J = 8.4, 6.5, 1.7 Hz, 4H), 2.93 (s, 12H), 2.52 (m, 4H), 0.90 (m, 20H), 0.62 (m, 

10H). ESI-HRMS (m/z, in acetone): calcd. for [C95H90Ir2N10]
4+, 439.1652; found, 439.1668. 

Calcd. for [C95H90Ir2N10PF6]
3+, 633.8750; found, 633.8768. Anal. Calcd. (%) for 

C95H90F24Ir2N10P4
.5H2O: C, 47.03; H, 4.15; N, 5.77. Found: C, 46.97; H, 4.32; N, 5.98. 

6-4.  A suspension of L6-1-(IrCl3)2 (72.4 mg, 0.05 mmol), 4,6-diphenyl-2,2'-bipyridine 

(30.8 mg, 0.1 mmol), and AgOTf (77 mg, 0.3 mmol) in degassed ethylene glycol (10 mL) was 

heated to 196 °C without direct light overnight. After the mixture was cooled to room temperature, 

saturated NH4PF6 solution (20 mL) was added to precipitate out the crude product. The crude 

product was purified by column chromatography (Alumina, eluted with CH2Cl2 first to remove 

unreacted ligand, then using acetone/water gradient elution from 100:0 to 95:5 (v/v)) to yield a 

yellow solid (38 mg, 41%) as the desired product. 1H NMR (400 MHz, d6-acetone) δ 10.05 (d, J = 

7.2 Hz, 2H), 9.49 (d, J = 8.4 Hz, 2H), 9.30 (s, 2H), 9.00 (d, J = 15.3 Hz, 4H), 8.95 – 8.77 (m, 6H), 

8.71 (s, 2H), 8.48 (dd, J = 18.4, 9.5 Hz, 8H), 8.36 (s, 2H), 8.28 (d, J = 6.3 Hz, 2H), 8.13 – 7.97 (m, 

4H), 7.86 (dd, J = 10.8, 6.6 Hz, 4H), 7.75 (s, 2H), 7.61 (s, 6H), 7.48 – 7.33 (m, 2H), 7.19 (dd, J = 

13.3, 4.5 Hz, 4H), 6.91 – 6.69 (m, 4H) 2.41 (m, 4H), 0.86 (m, 20H), 0.55 (m, 10H). ESI-HRMS 

(m/z, in acetone): calcd. for [C103H90Ir2N10PF6]
3+, 655.8756; found, 655.8798. Anal. Calcd. (%) 

for C103H90F24Ir2N10P4
.9H2O: C, 47.69; H, 4.20; N, 5.40. Found: C, 47.56; H, 4.46; N, 5.25. 
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6-5.  A suspension of L6-1-(IrCl3)2 (72.4 mg, 0.05 mmol), 2,4,6-triphenylpyridine (30.7 

mg, 0.1 mmol), and AgOTf (77 mg, 0.3 mmol) in degassed ethylene glycol (10 mL) was heated to 

196 °C without direct light for 24 hours. After the mixture was cooled to room temperature, 

saturated NH4PF6 solution (20 mL) was added to precipitate out the crude product. The crude 

product was purified by column chromatography (Alumina, eluted with CH2Cl2 first to remove 

unreacted ligand, then using acetone/water gradient elution from 100:0 to 95:5 (v/v)) to yield a red 

solid (16 mg, 8%) as the desired product. 1H NMR (400 MHz, d6-DMSO) δ 9.56 (s, 4H), 9.19 – 

9.09 (m, 4H), 8.95 – 8.85 (m, 4H), 8.60 (s, 4H), 8.33 (d, J = 6.6 Hz, 8H), 8.22 (s, 6H), 7.89 (s, 

4H), 7.73 (s, 4H), 7.64 (s, 2H), 7.45 (s, 4H), 6.99 (s, 4H), 6.74 (s, 4H), 6.21 (s, 4H), 2.52 (m, 4H), 

0.85 (m, 20H), 0.55 (m, 10H). ESI-HRMS (m/z, in acetone): calcd. for [C105H90Ir2N8]
2+, 924.3283; 

found, 924.3291. Anal. Calcd. (%) for C105H90F12Ir2N8P2
.0.6CH2Cl2: C, 57.94; H, 4.20; N, 5.12. 

Found: C, 57.92; H, 3.96; N, 5.27. 

 

6.2.2. Photophysical studies 

Spectrophotometric grade solvents purchased from Alfa Aesar were used for the 

photophysical measurements in this work. The Ultraviolet−visible (UV−vis) absorption spectra of 

complexes 6-1 – 6-5 were measured on a Varian Cary 50 spectrophotometer. Steady-state emission 

spectral measurements in different solvents (acetonitrile, acetone, and dichloromethane) were 

conducted using a HORIBA FluoroMax 4 fluorometer/phosphorometer. The relative actinometry 

method55 was used to determine the emission quantum yields for complexes 6-1 – 6-5 in degassed 

CH3CN solution using [Ru(bpy)3]Cl2 (Φem = 0.097, λex = 436 nm)56 as the reference. The 

nanosecond transient absorption (TA) spectra and decays, triplet excited-state quantum yields, and 

triplet lifetimes were recorded in degassed acetonitrile solutions on an Edinburgh LP920 laser flash 

photolysis spectrometer. The third harmonic output (355 nm) of a Nd:YAG laser (Quantel 
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Brilliant, pulsewidth ∼4.1 ns, repetition rate was set to 1 Hz) was used as the excitation light 

source. Each sample solution was degassed using Ar for 40 minutes before each measurement. 

The triplet excited-state molar extinction coefficients (εT1-Tn) were determined by the singlet 

depletion method57 at the TA band maxima. The triplet excited-state quantum yields were 

measured by the relative actinometry method58 after obtaining the εT1–Tn values, with SiNc in 

benzene being used as the reference (ε590 = 70,000 M−1cm−1, ΦT = 0.20).59 

 

6.2.3. Singlet oxygen quantum yields   

Quantum yields for singlet oxygen formation were determined according to the direct 

method by measuring sensitized singlet oxygen emission centered at 1268 nm using a PTI 

Quantamaster equipped with a Hamamatsu R5509-42 near-infrared PMT.  The PF6− salts of the 

metal complexes were prepared at 5 μM in spectroscopic-grade CH3CN under an ambient 

atmosphere (21% O2). Quantum yields for singlet oxygen emission () were calculated relative 

to the standard [Ru(bpy)3](PF6)2 ( = 0.56 in aerated CH3CN)60 according to Eq 1, where I, A, 

and η are integrated emission intensity, absorbance at the excitation wavelength, and refractive 

index of the solvent, respectively. The calculated  values were reproducible to within <5%. 

                                                   (6.1.) 

 

6.2.4. DFT calculations 

Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations on Ir(III) 

complexes were performed using Gaussian09 quantum software package.61 The basis sets used in 

all calculations are LANL2DZ62-64 for Ir(III) and 6-31G*65-69 for other non- metal atoms. Unlike 

the previous Ir(III) complexes studied,25,70,71 complexes 6-1 – 6-5 have two metal centers 



 

210 

connected by fluorenylbisterpyridyl ligand, which makes long-range  interactions critical for the 

description of both geometry and excited state properties. Therefore, here we used the long-range 

corrected hybrid function, ωB97XD, which was designed to capture long-range atom-atom 

dispersion.72 Implicit solvent effects were incorporated by the conductor-like polarizable 

continuous model (CPCM)73,74 simulating the effects of acetonitrile. The long aliphatic side chains 

on fluorene were replaced with butyl groups to reduce the computational cost. This reduction does 

not affect the optical properties of the complexes in the visible spectral region, since octyl groups 

do not contribute any electronic transitions in this energy range. 

The absorption spectra for the Ir(III) complexes were generated by broadening the lowest 

100 singlet vertical excitations computed by TDDFT75,76 using the functional and basis sets 

described above. To broaden the vertical excitation to generate spectra in terms of molar 

absorptivity units (L·mol-1·cm-1) the method described by Bjorgaard and co-workers was 

followed.77 The shape of the spectra generated by broadening the vertical excitation computed by 

TDDFT quantitatively agreed well, except for about ~0.6 eV blue-shift, which is expected for the 

ωB97XD functional applied to conjugated systems.78 To align the theoretical spectra with the 

experimental spectra, all transitions energy were red-shifted by -0.55 eV. To characterize the type 

of excitation for the Ir(III) complexes, natural transition orbitals (NTOs)79 were generated using 

Gaussian09 software. NTOs allow for representing an excitation as the electron and hole pair, 

while preserving the many-body nature of the excited states. Due to the high symmetry of these 

dinuclear complexes, multiple transition densities that only differ on which metal center electronic 

density is localized contribute to some excitations. Therefore, only uniquely representative NTOs 

are shown for those excitations and those states are indicated by “*” in Tables 6-2 and 6-3. The 
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visualization of the NTOs were done utilizing Visual Molecular Dynamics (VMD)80 with 

isosurface of 0.02. 

 

6.2.5. Photobiological activity studies 

The experimental details for cell culture, cytotoxicity and photocytotoxicity studies, 

confocal microscopy, and DNA mobility-shift assays are the same as those described in our 

previous published work.24,25 

 

6.3. Results and discussion 

6.3.1. Electronic absorption 

The experimental UV−vis absorption spectra of complexes 6-1 – 6-5 were recorded in 

acetonitrile (Figure 6.1a), and the absorption band maxima and molar extinction coefficients are 

compiled in Table 6.1. The absorption obeys Beer’s law in the concentration range of 5×10−6 to 

1×10−4 mol·L-1, suggesting the absence of ground–state aggregation in the concentration range 

tested. The strong absorption bands in the range of 250-350 nm and 350-500 nm are predominantly 

assigned to 1π,π* transitions localized on the terminal tridentate ligands, and the bridging ligand, 

respectively. These assignments are supported by the NTOs corresponding to the major transitions 

contributing to these bands (Table 6.2 and Table 6.3). Attribution of the absorption bands of 350-

500 nm to the bridging ligand localized 1π,π* transition is in line with that revealed in the dinuclear 

Ir(III) complexes with trisbidentate ligands and diethynylaryl substituted diketopyrrolopyrrole 

bridging ligand.81,82 However, NTOs of 6-1 – 6-4 in Table 6.2 show that some charge transfer 

transitions, i.e. 1MLCT, 1LLCT (ligand-to-ligand charge transfer) or 1ILCT (intraligand charge 

transfer) contributed to the 350-500 nm bands as well. Contributions of the charge transfer 
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configurations to the 350-500 nm absorption bands are partially reflected by the insignificant but 

noticeable negative solvatochromic effects (Figure 6.2), especially in 6-2 that has more 1ILCT 

character (see NTOs in Table 6.2). In contrast, the charge transfer transitions in 6-5 became more 

distinguishable and energetically separated from the bridging ligand localized 1π,π* transition. 

This is clearly evidenced by the appearance of the new absorption band at 520 nm in 6-5. 

 
Figure 6.1. Experimental (a) and theoretical (b) UV−vis absorption spectra of 6-1 – 6-5 at room 

temperature in acetonitrile. The inset in panel (a) is the expansion of the spectra in the region of 

450−800 nm. The theoretical spectra were computed using ωB97XD with mixed basis set. A 

redshift of 0.55 eV for the theoretical spectra in panel (b) was applied for better comparison with 

the experimental spectra. 
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Figure 6.2. Normalized experimental absorption spectra of 6-1 − 6-5 in different solvents. 
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Table 6.1. Electronic absorption, emission, and triplet excited-state absorption parameters, as 

well as singlet oxygen quantum yields for complexes 6-1 – 6-5. 
 λabs/nm (log ε 

/L·mol−1·cm−1))a 

λem/nm (τem/μs); 

Φem
b 

T1-Tn/nm (TA/μs; log T1-Tn / 

L·mol−1·cm−1); T
c 

Φ
d (λex/nm) 

6-1 251 (5.01), 297 (5.06), 

427 (4.85) 

583 (3.57); 0.024 498 (3.09; -), 765 (3.05; 4.62); 0.44 0.28 (430) 

6-2 251 (5.03), 285 (5.03), 

364 (4.65), 420 (4.68) 

576 (1.99); 0.003 385 (1.72; -), 640 (1.75; 5.04); 0.03 0.26 (468) 

6-3 260 (4.92), 289 (4.97), 

386 (4.80), 405 (4.80) 

608 (1.47); 0.025 513 (0.03 (17%), 1.72 (83%); -), 770 

(0.03 (15%), 1.75 (85%)); 4.70); 0.14 

0.04 (411) 

6-4 294 (5.00), 321 (4.88), 

413 (4.75) 

578 (53.3); 0.22 498 (48.6; -), 800 (48.3; 4.64); 0.28 0.38 (418) 

6-5 283 (4.97), 312 (4.89), 

368 (4.72), 416 (4.65), 

520 (4.13) 

619 (1.92); 0.045 681 (2.68; 4.80), 787 (2.68; -); 0.07 0.22 (418) 

aAbsorption band maxima (λabs) and molar extinction coefficients (log ε) of the UV-vis absorption 

in acetonitrile at room temperature. bEmission band maxima (λem), lifetimes (τem), and quantum 

yields (Φem) measured in acetonitrile (c = 1 × 10−5 mol·L-1) at room temperature with Ru(bpy)3Cl2 

(in degassed acetonitrile; Φem = 0.097, λex = 436 nm) as the reference. cNanosecond TA band 

maxima (T1-Tn), triplet excited-state lifetimes (TA), triplet extinction coefficients (T1-Tn), and 

quantum yields (T) measured in acetonitrile at room temperature with SiNc (in degassed benzene; 

ε590 = 70,000 L·mol−1·cm−1, ΦT = 0.20) as the reference. λex= 355 nm. dSinglet oxygen quantum 

yields in acetonitrile. Values are correct to within 5%. 

 

Table 6.2. NTOs for low energy transitions of 6-1 – 6-5. For transitions with quasi-degenerate 

transition orbitals, only one pair of transition densities are shown and are indicated by *. 

 Sn Hole Electron  Sn Hole Electron 

6
-1

 

S1 

340 nm 
f = 2.637   

6
-4

 

S1 

351 nm 
f = 0.003   

S5 

303 nm 
f = 0.109   

S2 

350 nm 
f = 0.004   

6
-2

 

S1 

381nm 
f = 3.730   

S3* 

340 nm 
f = 2.002   

S2* 

336 nm 

f = 0.079   

6
-5

 

S1* 

395 nm 

f = 0.933   

6
-3

 

S1 

333 nm 

f = 0.010   

S6* 

372 nm 

f = 0.050   

S3 

328 nm 

f = 2.189   

 
   

S7 

311 nm 

f = 0.368   
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Table 6.3. Natural transition orbitals (NTOs) for high energy transitions for 6-1 – 6-5. Transition 

with quasi-degenerate transition orbitals only one pair of transition densities are shown and are 

indicated by *. 

 State Hole Elec.  State Hole Elec. 

6
-1

 

S7*  

291 nm   
f = 0.717    

6
-4

 

S8*   

302 nm   
f = 0.650     

S27*   

264 nm   
f = 1.256     

S19   

281 nm   
f = 0.449   

S35*   

249 nm   
f = 0.674     

S23*   

270 nm   
f = 0.620     

6
-2

 

S7*   

292 nm   
f = 0.707     

S33*   

255 nm  
f = 1.139     

S24*   

270 nm   

f = 0.723     

6
-5

 

S9*   

328 nm   

f = 0.395     
S29*   

264 nm   

f = 1.121     

S15   

305nm   

f = 1.775   
S39*   

249 nm   
f = 0.547     

S38*   

260 nm   
f = 0.889     

6
-3

 

S23   

275 nm   

f = 0.494   

S53*   

247 nm   

f = 0.718     
S32*   

260nm   

f = 0.437     

  
  

S35 *  

249nm   

f = 0.571     

  
  

 

Comparison of the absorption spectra of 6-1 and 6-2 revealed that incorporation of the CC 

bonds to the bridging ligand caused a broadening and a red-shift of the bridging ligand localized 

1π,π* absorption band due to the extended π-conjugation. Replacing the terminal terpyridyl ligands 

in 6-1 by N^C^N (1,3-dipyridyl-4,6-dimethylbenzene) ligands in 6-3 induced a blue-shift of the 

350-500 nm absorption band and incorporated more terminal ligands based 1π,π* transition and 

1LLCT/1MLCT character to this band (see NTOs for 6-3 in Table 6.2); while changing the terminal 

ligands to C^N^N (4,6-diphenyl-2,2'-bipyridine) ligands in 6-4 only caused a slight blue-shift of 

this band with respect to that in 6-1. In contrast, when the terminal ligands were changed to C^N^C 

(2,4,6-triphenylpyridine) ligands in 6-5, the transition energies, intensities, and the shape of the 

low-energy absorption bands changed pronouncedly from those of 6-1. This can be attributed to 
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the distinct nature of the lowest energy optical transition in these two complexes. As the NTOs in 

Table 6.2 indicated, the stronger -donating ability of the phenyl rings on the C^N^C ligand 

delocalized the hole of the S1 transition mainly to the 2,6-diphenyl rings and to the metal d orbitals, 

while the electron was predominantly on the terpyridyl ligands. Thus, the lowest-energy optical 

transition in 6-5 is predominantly the 1LLCT/1MLCT transition, which is in contrary to the 

bridging ligand localized 1π,π* transition in 6-1. The drastic change of the dominant optical 

transitions accounts for the different features of the low-energy absorption bands in 6-5 with 

respect to that in 6-1. 

 

6.3.2. Photoluminescence 

The emission of 6-1 – 6-5 was investigated in different solvents at room temperature.  The 

observed emission all exhibited large Stokes shifts with respect to the corresponding excitation 

wavelength, they were all long-lived (several to tens of s), and sensitive to the presence of 

oxygen.  Thus, the emission was attributed to phosphorescence.  The normalized emission spectra 

of 6-1 – 6-5 in acetonitrile are presented in Figure 6.3, and the spectra in other solvents are provided 

in Figure 6.4. The emission parameters are listed in Table 6.1 and Table 6.4.  The emission of 6-1 

and 6-4 resembled each other, both showing some vibronic structures, with much longer lifetimes 

and higher emission quantum yields compared to the other three complexes, and exhibiting minor 

solvatochromic effects.  The vibronic spacing between the 580 nm and 620 nm bands is 

approximately 1150 cm-1 and 1090 cm-1 in 6-1 and 6-4, respectively, which is in accordance with 

the aromatic vibrational mode of the terpyridyl ligands.  Thus, the emission of these two complexes 

can be assigned predominantly to the ligand localized 3,* state.  However, the lifetime of 6-1 is 

one order of magnitude shorter than that of 6-4.  This could be attributed to the weaker ligand field 
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of the terpyridyl ligand with respect to that of the C^N^N ligand that contains the stronger -

donating 6-phenyl ring.  The nonradiative metal-centered 3d,d state is thus situated more closely 

to the low-lying emissive 3,* state and becomes thermally accessible in 6-1 compared to that in 

6-4.  This adds an additional decay path for the emitting 3,* state in 6-1 and consequently reduces 

its lifetime.  For 6-2, 6-3, and 6-5, the emission spectra are featureless and broader, the lifetimes 

are less than 2 s and the emission quantum yields are quite low, and the solvatochromic effect is 

more pronounced.  All these characters imply charge transfer nature of the emitting states in these 

three complexes.  Referring to the NTOs corresponding to the low-energy singlet charge transfer 

transitions shown in Table 6.2, it is reasonable to speculate that the emitting state of 6-2 could be 

the 3ILCT state and they are the 3LLCT/3MLCT states in 6-3 and 6-5.  It appeared that either 

extending the -conjugation of the bridging ligand in 6-2, or varying the terminal tridentate ligands 

in 6-3 and 6-5 changed the nature of the emitting state from the 3,* state in 6-1 to 3CT states.  In 

addition, variation of the terminal tridentate ligands impacted the emission energies in 6-3 – 6-5 

compared to that in 6-1, with a slight blue-shift of the emission in 6-4 while a salient red-shift in 

6-3 and 6-5.  The red-shifted emission in 6-3 and 6-5 with respect to that in 6-1 could possibly be 

rationalized by the stronger -donating ability of the phenyl rings on the terminal tridentate N^C^N 

and C^N^C ligands, which raised the energies of the terminal ligand and the metal d orbital based 

holes and thus reduced the energy gaps between the holes and electrons (likely localized on the 

terpyridyl motifs).  Consequently, the 3LLCT/3MLCT emission energies of 6-3 and 6-5 are 

reduced.  
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Figure 6.3. Experimental emission spectra of 6-1 (ex = 426 nm), 6-2 (ex = 420 nm), 6-3 (ex = 

405 nm), 6-4 (ex = 413 nm), and 6-5 (ex = 415 nm) at room temperature in deoxygenated 

acetonitrile (c = 1×10−5 mol·L−1). 
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Figure 6.4. Normalized emission spectra of 6-1 – 6-5 in different solvents (λex = 436 nm). 

 

Table 6.4. Emission characteristics of complexes 6-1 – 6-5 in different solvents at room 

temperature. 

λem (nm) (τem /μs); Φem 

  THF DCM Toluene (5%DCM) 

6-1  586 (4.27); 6.82% 590 (2.71); 24.5% 584 (0.06); 1.99% 

6-2  579 (1.56); 0.44% 584 (1.78); 0.63% 555 (0.06); 0.35% 

6-3  620 (1.64); 3.25% 614 (1.54); 3.65% 659 (0.06); 0.65% 

6-4  581 (37.4); 31.8% 583 (69.7); 54.9% 581 (0.04); 3.36% 

6-5  651 (1.28); 3.87% 623 (1.61); 5.18% 672 (0.99); 1.15% 
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6.3.3. Transient absorption 

To further understand the triplet excited–state characteristics, the nanosecond transient 

absorption (TA) studies of complexes 6-1 – 6-5 were carried out in acetonitrile solutions.  The TA 

spectra of 6-1 – 6-5 at zero delay after excitation are presented in Figure 6.5 and the TA parameters 

are compiled in Table 6.1.  The time–resolved TA spectra of 6-1 – 6-5 are provided in Supporting 

Information Figure 6.6. The triplet lifetimes deduced from the decay of TA for 6-1 – 6-4 are similar 

to their emission lifetimes in acetonitrile.  Therefore, we consider that the observed TA of these 

complexes was from the excited states that emit.  In contrast, 6-3 exhibited a biexponential decay 

in its TA signals, with the longer lifetime being consistent with the emission lifetime.  This implies 

that the long-lived TA signal in 6-3 could from the emitting excited state as well. 

The TA spectra of 6-1 – 6-5 all possessed very broad positive absorption band(s) from the 

visible to the near-IR region, i.e. 463-800 nm for 6-1, 495-800 nm for 6-2, 459-800 nm for 6-3, 

455-800 nm for 6-4, and 538-800 nm for 6-5. Bleaching occurred in the region corresponding to 

the low-energy absorption bands. Considering the similar shape of the TA spectra of 6-1 and 6-4 

to that of the dinuclear platinum(II) complex with the same bridging ligand reported by our group 

previously,48 and the similar lifetimes to those of emission, we tentatively assign the excited state 

giving rise to the observed TA predominantly to the bridging ligand localized 3π,π* states. While 

for 6-2 and 6-5, the transient absorbing states are likely to be the 3CT state(s), i.e. predominantly 

3ILCT for 6-2 and 3LLCT/3MLCT states for 6-5. In contrast to 6-1, 6-2, 6-4 and 6-5 that exhibited 

monoexponential decays in their TA signals, the TA signal of 6-3 followed a biexponential decay. 

The short-lived transient species had a lifetime of ~30 ns and gave rise to a spectrum reminiscent 

to those of 6-1 and 6-4; while the long-lived species had a lifetime of ~1.7 s, which is in line with 

the lifetime obtained from the decay of emission, and the TA was much weaker and featureless. In 
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view of the different spectral features at the shorter and longer decay time and the reminiscence of 

the spectra to those of 6-1/6-4 and 6-2/6-5, respectively, we tentatively assign the short-lived 

species to the high-lying bridging ligand localized 3π,π* state; while the long-lived species to the 

emitting 3LLCT/3MLCT state. The formation of a rapidly decaying higher excited state that 

subsequently leads to the lower-lying, long-lived emitting state has been reported for a 

mononuclear Ir(III) complex [(dpb)-Ir(tpy-ph(tBu)2]
2+ that bears the same N^C^N ligand.83 

 
Figure 6.5. Nanosecond transient absorption (TA) spectra of complexes 6-1 – 6-5 in deoxygenated 

acetonitrile at zero delay after 355 nm excitation. The inset shows the TA spectra of 6-3 at different 

delay time after excitation. A355 nm = 0.4 in a 1-cm cuvette. 

 

 It is noted that the measured triplet quantum yields of these complexes are not quite high, 

especially for 6-2, 6-3 and 6-5.  This could be due to the following reasons: (i) The increased -

conjugation of the ligand would decrease the contribution of the transition metal d orbital to the 

frontier molecular orbitals of the complexes, which would reduce the spin-orbital coupling in the 

complexes and decrease the triplet quantum yield.  Such a phenomenon has been reported in many 

Pt(II) and Ir(III) complexes.25,70,84  (ii) When a transition-metal complex is excited, especially 

when high-energy excitation is utilized, population of more than one triplet excited states is 

possible.70,85-91  However, not all of the populated triplet excited states contribute to excited-state 
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absorption.  In such a case, the calculated triplet quantum yield based on the observed TA signal 

could be significantly lower than the actual intersystem crossing quantum yield. 
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Figure 6.6. Nanosecond time-resolved transient differential absorption spectra of 6-1 – 6-5 at zero-

time decay in acetonitrile. λex = 355 nm, A355 = 0.4 in a 1-cm cuvette. 

 

6.3.4. Singlet oxygen generation 

Production of 1O2 is known to have cytotoxic effects on cells, and thus compounds that 

generate 1O2 under cell-free conditions might be expected to act as in vitro PDT agents. The Ir(III) 

complexes 6-1 – 6-5 were assessed for singlet oxygen (1O2) sensitization in cell-free conditions 

through direct measurement of 1O2 emission at 1270 nm. [Ru(bpy)3](PF6)2 was used as the 

standard, with a reported 1O2 quantum yield () of 0.56 in air-saturated CH3CN.60 The calculated 

 values for all of the complexes were less than 40%. The efficiencies for 1O2 production ranged 

from 4% for 6-3 to 38% for 6-4, with 6-1, 6-2 and 6-5 yielding similar values (22-28%). Despite 

having some absorption at wavelengths longer than 500 nm, 1O2 yields were maximal with blue 

excitation. For N^N^N terminal tridentate ligands, the presence of the ethynyl groups for extending 

-conjugation did not alter the singlet oxygen quantum yield as 6-1 and 6-2 gave very similar 
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values for . When each terminal tridentate ligand of 6-1 had two of its nitrogens replaced with 

cyclometalating carbons (C^N^C) as in 6-5, the 1O2 yield decreased only slightly. These limited 

comparisons appear to indicate that substantial structural changes have little to no effect on . 

However, when only one nitrogen of each terminal tridentate ligand of 6-1 was replaced by carbon 

(C^N^N) as in 6-4, the 1O2 yield increased to almost 40%. Clearly, there are structural 

combinations in this family of complexes that do influence . The most dramatic impact on  

occurred for 6-3, where the terminal tridentate ligands were N^C^N with methyl substitution at R1 

but no phenyl group at R. In this case, the 1O2 yield decreased by almost tenfold. 

 It is also worthy of noting that the  values for 6-2, 6-4 and 6-5 are higher than the 

measured triplet quantum yields (T, Table 6.1). This is not very surprising because population of 

excited states is wavelength dependent, which could result in different decay pathways.91 In the 

T measurement, 355 nm excitation was used; while low-energy excitation (i.e. 411 – 468 nm) 

was used in the  measurement. A 355-nm excitation in the TA measurement could populate 

more than one triplet excited states,70,85-91 which might not only impact the T value measurement 

as discussed in the TA section, but could also reduce the population of the excited state that 

generates singlet oxygen because of the competing population of the other non-1O2-generating 

triplet excited states. In our previous study on the monocationic tris-bidentate Ir(N^N)(C^N)2 

complexes, we have demonstrated that the singlet oxygen generation efficiency is wavelength 

dependent, with lower-energy excitation resulting in higher  values in those Ir(III) complexes.24 

We speculate the same case for the complexes studied in this work. 
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6.3.5. Cytotoxicity and photocytotoxicity 

To understand whether the photophysical properties of these Ir(III) complexes could lead 

to photobiological effects, the cytotoxicity profiles of 6-1 – 6-5 were assessed in SK-MEL-28 

malignant melanoma cells under three conditions: (i) dark, (ii) illumination with broadband visible 

light, and (iii) illumination with red LEDs emitting at 625 nm. Cytotoxic and photocytotoxic 

activities were quantified as the effective concentration required to reduce the cell viability to 50% 

(EC50) under a given condition. Briefly, cells growing in log phase were dosed with nine 

concentrations of the complex between 1 nM and 300 µM, incubated for 16 h, and were then 

subjected to a sham (dark) or light treatment. The light treatments were delivered at a fluence of 

100 J·cm-2 with an irradiance of 35.7 mW·cm-2 or 32.3 mW·cm-2 for visible and red light, 

respectively. After a 48 h incubation period, cell viability was quantified based on the ability of 

viable cells to reduce resazurin to resorufin. EC50 values were determined from sigmoidal fits of 

the dose–response curves (Figure 6.7, Table 6.5). The phototherapeutic index (PI), a measure of 

the therapeutic margin for in vitro PDT, was calculated as the ratio of dark to light EC50 values 

and determined for each complex and irradiation condition.  The dark toxicities of 6-1 – 6-5 toward 

normal human skin fibroblasts (CCD-1064Sk) were also measured to determine any selectivity for 

cancer cells over normal cells. The ratio of the dark CCD-1064Sk EC50 value for a given complex 

and its dark SK-MEL-28 EC50 value yielded the selectivity factor (SF), where SF > 1 indicates 

selectivity toward the cancerous cell line. Selective activity toward the cancer cell line is not a 

requirement for the PDT agent as long as the dark toxicity of the photosensitizer is low, and the PI 

is relatively large. Rather, the spatiotemporal control of the light treatment provides the selectivity 

known for PDT. Nevertheless, for in vivo applications, selective activity toward cancer cells over 

normal, healthy cells is an added benefit.  
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Table 6.5. Comparison of EC50 values (M) for SK-MEL-28 cancer cells and CCD-1064Sk 

normal skin fibroblasts dosed with complexes 6-1 – 6-5. 

SK-MEL-28 cells CCD-1064Sk cells 

 Dark Visa PIb Redc PId Dark SFe 

6-1 82.6 ± 1.5 0.75 ± 0.01 111 59.7 ± 0.4 1.4 102 ± 2 1.2 

6-2 16.9 ± 0.8 0.83 ± 0.05 20 16.2 ± 0.5 1.0 32.0 ± 2.0 1.9 

6-3 49.9 ± 0.1 0.17 ± 0.01 288 49.5 ± 0.1 1.0 49.1 ± 0.1 1.0 

6-4 17.0 ± 0.7 0.17 ± 0.01 102 14.3 ± 0.3 1.2 31.8 ± 1.8 1.9 

6-5 69.5 ± 1.0 1.05 ± 0.01 66 85.1 ± 1.0 0.82 142 ± 3 2.0 
aVis-PDT: 16 hours drug-to-light interval followed by 100 J·cm-2 broadband visible light 

irradiation, bPI = phototherapeutic index (ratio of dark EC50 to visible-light EC50), 
cRed-PDT: 16 

hours drug-to-light interval followed by 100 J·cm-2 light irradiation with 625-nm LEDs, dPI = 

phototherapeutic index (ratio of dark EC50 to red-light EC50), 
eSF SK-MEL-28: selectivity factor 

(ratio of dark CCD-1064Sk EC50 to dark SK-MEL-28 EC50). 

 

The dark cytotoxicities of complexes 6-1 – 6-5 toward SK-MEL-28 melanoma cells ranged 

from 16.9 to 82.6 M, with 6-1 being the least cytotoxic in the absence of a light trigger and 6-2 

and 6-4 being the most cytotoxic (Table 6.5, Figures 6–7, and Figures 6–8). With the exception of 

6-3 (SF = 1), the other dinuclear Ir(III) complexes exhibited some selective cytotoxicity toward 

the melanoma cancer cells relative to the normal human skin fibroblast cells. SF values followed 

the order 6-5 > 6-2  6-4 > 6-1 > 6-3, with 6-5 exhibiting two-fold greater dark toxicity toward 

SK-MEL-28 cells and 6-3 showing no selectivity. The selective cytotoxicity observed for 6-2 and 

6-4 was almost as great as that for 6-5 (SF = 1.9 versus SF = 2.0). 6-1 and 6-5 had dark EC50 values 

greater than 100 M in the CCD-1064Sk cell line, and were thus considered to be completely 

nontoxic to the normal skin fibroblasts. In both cell lines, the dark toxicity was greatest for 6-2 and 

6-4 and least for 6-1 and 6-5. 



 

224 

 
Figure 6.7. In-vitro dose-response curves for complexes 6-1 (a), 6-2 (b), 6-3 (c), 6-4 (d), and 6-5 

(e) in SK-MEL-28 cells treated in the dark (black) and with visible (blue) or red (red) light 

activation. 

 

 
Figure 6.8. Activity plot for complexes 6-1 – 6-5 in SK-MEL-28 and CCD-1064Sk cells treated 

in the dark (black) and with visible (blue) or red (red) light activation. 

 

 All of the complexes in the series could be activated with visible light to become powerful 

phototoxins, with EC50 values ranging from 170 nM to 1 M and PIs ranging from 20 to 288. 6-3 

and 6-4 were the most phototoxic at 170 nM, while 6-1, 6-2, and 6-5 were similar (visible EC50 = 

0.75–1.0 M). Photoactivation of the complexes with red light (625 nm) did not enhance the 
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cytotoxicity over what was observed in the dark treatment, yielding PIs close to 1.0 in all cases. 

The photobiological activities of 6-1 – 6-5 were tested with red light, despite their very low molar 

extinction coefficients in this region, because other metal complex systems with -expansive 

ligands have been shown to yield potent in vitro red PDT effects even with molar extinction 

coefficients less than 100 M-1·cm-1.20 

The presence of visible PDT effects (presumably due to the shorter wavelengths) but lack 

of red PDT effects suggests that direct population of the highly photosensitizing triplet states is 

not efficient in this class of complexes and that access to these states must be gained through 

1MLCT states. The photocytotoxicity profiles in SK-MEL-28 under two irradiation conditions 

along with the dark cytotoxicity profiles in two cell lines are summarized in the activity plot in 

Figure 6.8. 

The visible PDT effect followed the order 6-3 > 6-1 > 6-4 > 6-5 > 6-2, with 6-3 being the 

most promising photosensitizer based on its PI of 288 and nanomolar photocytotoxicity. 6-1 and 

6-4 both had PIs greater than 100, but the dark toxicity associated with 6-4 in both cell lines limits 

its potential for in vivo applications. The source of the PDT effect for this series has not been 

established. The 1O2 quantum yields measured under cell-free conditions followed the order 6-4 > 

6-1 > 6-2 > 6-5 > 6-3, with 6-1 and 6-2 being very similar. 6-3 was the poorest 1O2 generator, yet 

it was one of the most phototoxic complexes of the series. On the other hand, 6-4 was the best 

sensitizer of 1O2 and was as phototoxic as 6-3. Therefore, 1O2 may play a role in the PDT 

mechanism for some complexes but not others in this series, or the intracellular 1O2 quantum yields 

may differ from those measured under cell-free conditions. Regardless, certain members of this 

new series of dinuclear Ir(III) complexes have been identified as promising PDT agents for further 

investigation. 
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While the structural diversity in such a small library is somewhat limited, it was possible 

to identify some trends regarding structural features that affect cytotoxicity. For example, 

incorporation of ethynyl linkers as in 6-2 turned the relatively nontoxic complex 6-1 into one of 

the most potent dark cytotoxic complexes of the series (Table 6.5). Likewise, replacement of the 

terminal tridentate N^N^N ligands of 6-1 with C^N^N as in 6-4 increased the dark cytotoxicity 

substantially, while replacement with C^N^C as in 6-5 had only a very minor effect that differed 

between the two cell lines. In SK-MEL-28, the dark toxicity increased slightly, and in CCD-106Sk, 

the dark toxicity decreased slightly. The complex that departed the most structurally from the other 

complexes in the series and was identified as being the most promising PDT lead, 6-3, was 

intermediate in terms of dark cytotoxicity (EC50  50 M) with almost no difference between the 

two cell lines.  

In terms of structural features affecting photocytotoxicity, the nature of the terminal 

tridentate ligand played some role as 6-4 (C^N^N) was more than six-fold more phototoxic than 

6-5 (C^N^C). While the presence of an ethynyl linker increased the dark cytotoxicity substantially 

in both cell lines, its presence did not impact the photocytotoxicity toward SK-MEL-28 in any 

significant way. The differences in dark and light-triggered cytotoxicity toward SK-MEL-28 cells 

alongside differences in dark cytotoxicity between normal and cancerous cells for certain members 

of this series indicate that even minor structural modifications can have a major impact on 

biological activity. 

 

6.3.6. Cellular imaging  

The phosphorescence from complexes 6-1 – 6-5 was used to probe cellular uptake by SK-

MEL-28 melanoma cells with or without a light treatment (Figure 6.9). The excitation from a 
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458/488 nm argon-krypton laser matched the excitation maxima of the complexes and was used 

in conjunction with a 475-nm long pass filter to collect the emission from the complexes. The 

images were collected after a brief 1-h incubation period to ensure that some viable cells remained. 

Light-treated cells were illuminated with a broadband visible light (50 J·cm-2) that was 50% of the 

fluence used in the cellular assays in order to capture a fraction of viable cells. 

Untreated SK-MEL-28 cells have a dendritic morphology. Treatment with the dinuclear 

Ir(III) complexes with or without illumination caused a conversion from dendritic to spherical 

morphology. The complexes showed detectable phosphorescence when associated with or in 

dead/dying and compromised cells with or without a light treatment. Only 6-1 appeared to be 

readily taken up into SK-MEL-28 cells in the dark at the observation time point. However, 

phosphorescence from the Ir(III) complexes in all cells was apparent after a light treatment, 

suggesting photoactivated uptake. For light-treated cells incubated with 6-1, it was not possible to 

discern subcellular localization because only cellular debris was present at the observation time 

point. However, 6-2 and 6-4 localized to the cytoplasm and multiple nucleoli whereas 6-3 and 6-

5 were distributed throughout the cell and phosphoresced with a very intense signal by comparison. 
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Figure 6.9.  Confocal luminescence images of SK-MEL-28 cells dosed with 6-1 – 6-5 (a-e, 50 

M) in the dark (left) and with visible light (50 J·cm-2) (right). 

 

Qualitatively, SK-MEL-28 cells treated with 6-4 with or without visible illumination 

appeared the most viable with healthy morphology in the imaging experiments but were the most 

susceptible in the cellular assays, highlighting the need to exercise caution when reconciling the 

cellular assay results with confocal imaging performed at different time points post-complex-

delivery and post-irradiation and a different light fluence. When the conditions were similar, the 

imaging experiments did reflect the trends observed in the cellular assays with SK-MEL-28 but 

did not provide any information regarding uptake and localization since all cells were dead/dying 

but at slightly different stages. A quantitative comparison of the cellular uptake and induced 

morphological changes for the five complexes and correlations to cellular cytotoxicity or 

photocytotoxicity were not attempted given the need to alter incubation and illumination times to 

preserve some viable cells. Rather, the purpose of the imaging was to highlight the potential of 
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these new Ir(III) complexes as theranostic agents based on their abilities to yield visible PDT 

effects and to be simultaneously imaged by their inherent phosphorescence. 

 

6.3.7. DNA interactions 

The ability of the Ir(III) complexes to act as DNA photocleaving agents was investigated 

to establish whether light-mediated DNA damage could contribute to the observed in vitro PDT 

effects for this class of photosensitizers. Supercoiled plasmid DNA (20 M bases) was treated with 

increasing concentrations of 6-1 – 6-5 and then exposed to a visible light treatment of 14 J·cm-2 

(Figure 6.10, lanes 3–8). The fluence is less that what was used in the cellular assays because the 

DNA is more susceptible to damage by the light treatment alone when not protected by the cellular 

environment. The photolyzed samples were then electrophoresed and compared to DNA alone 

with or without a light treatment (Figure 6.10, lanes 1 and 2) and DNA exposed to the highest 

concentration of the complex without a light treatment (Figure 6.10, lane 15). The gels were cast 

either with the DNA stain ethidium bromide (EB) incorporated or without EB and stained after 

electrophoresis (non-EB). EB gels allow detection of photocleavage not compounded by DNA 

unwinding; the non-EB gels allow detection of DNA unwinding in addition to photocleavage. 

Under the conditions employed for this gel electrophoretic mobility shift assay, undamaged 

supercoiled DNA (Form I) migrates the farthest in the gel, while aggregated/condensed DNA 

(Form IV) migrates very little from the loading well. Plasmid DNA that has undergone single-

strand breaks (Form II) will relax and migrate between Forms I and IV, and plasmid DNA with 

frank double-strand breaks or double-strand breaks that arise from the build-up of single-strand 

breaks on opposing strands within about 16 base pairs (Form III) will migrate slightly faster than 

Form II. Forms I, II, and IV were detectable in both EB and non-EB gels. None of the complexes 
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acted as DNA unwinders on the non-EB gel, indicating that they most likely do not act as DNA 

intercalators. 

 
Figure 6.10. DNA photocleavage of pUC19 DNA (20 μM) dosed with metal complex (MC) 6-1 

(a), 6-2 (b), 6-3 (c), 6-4 (d), 6-5 (e) and visible light (14 J·cm-2). Gel mobility shift assays employed 

1% agarose gels (0.75 μg·mL-1 ethidium bromide) electrophoresed in 1 TAE at 8 V·cm-1 for 30 

min. Lane 1, DNA only (-hv); lane 2, DNA only (+hv); lane 3, 0.5 μM MC (+hv); lane 4, 1 μM 

MC (+hv); lane 5, 2 μM MC (+hv); lane 6, 3 μM MC (+hv); lane 7, 5 μM MC (+hv); lane 8, 8 μM 

MC (+hv); lane 9, 10 μM MC (+hv); lane 10, 12 μM MC (+hv); lane 11, 15 μM MC (+hv); lane 

12, 20 μM MC (+hv); lane 13, 50 μM MC (+hv); lane 14, 100 μM MC (+hv); lane 15, 100 μM MC 

(-hv). Forms I, II and IV DNA refer to supercoiled plasmid, nicked circular plasmid, and 

aggregated plasmid, respectively. 

 

 All of the complexes showed some ability to photocleave DNA (Figure 6.10) in a cell-free 

environment. Qualitatively, DNA photocleaving ability appeared to increase in the order 6-5 < 6-
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2 ≈ 6-3 < 6-4 < 6-1. The formation of Form IV DNA and the disappearance of gel bands precluded 

a more quantitative comparison, but some general trends could still be discerned.  

 Despite its 1O2 quantum yield of 22%, 6-5 appeared to show the weakest interactions with 

DNA (although some strand breaks to yield detectable Form II92 were observed toward the highest 

concentrations). On the other hand, 6-1, with a similar , acted as a much more potent DNA 

photocleaving agent, converting a significant amount of supercoiled Form I DNA to Form II DNA 

at a metal complex (MC) concentration of only 1 M and 20 M DNA bases (Table 6.10a, lane 

4).  At similarly low [MC]:[bases] ratios of 0.05, 6-2 – 6-5 caused no detectable strand breaks, 

which can be seen by comparing lane 4 for all of the complexes. 6-4, with the largest value for ∆, 

photocleaved DNA in a concentration-dependent manner to yield Form II DNA as expected. 

All of the complexes caused DNA aggregation/condensation, although 6-5 produced trace 

amounts of Form IV DNA only at the highest complex concentrations investigated. Interestingly, 

6-5 was the only complex that did not cause the DNA gel bands to disappear. The lack of DNA 

staining by EB for the other complexes could be due to fluorescence quenching of the EB dye by 

the complex, their competition for EB intercalation sites, or their distortion of the DNA helix that 

prevents EB binding. 

 Clearly, the structural differences between the Ir(III) complexes of this small library 

resulted in markedly different interactions with DNA, and possibly different photophysical 

interactions with the EB dye. The observation that 6-5 shows marginal DNA interactions in the 

gel electrophoretic analysis yet acts as an in vitro PDT agent suggests that DNA may not be the 

intracellular target, at least for this particular complex. In fact, DNA photodamage did not correlate 

clearly with 1O2 quantum yields across the series, which also supports the notion that another 

biological target is likely involved. However, the cell-free experiment does not accurately mimic 
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the complexity of the cellular environment and dynamic processes (e.g., uptake, efflux, 

metabolism, and localization), and in vitro DNA damage and 1O2 damage cannot be ruled out 

completely. What can be gleaned from the DNA photocleavage study is that minor structural 

changes in this series have profound effects on the complex interactions with biological 

macromolecules such as DNA, which is in agreement with their different profiles in the cellular 

assays and imaging studies. 

 

6.4. Conclusions 

The synthesis, photophysical and photobiological properties of a family of water-soluble 

cationic dinuclear iridium(III) complexes (6-1 – 6-5) were explored. The influence of the bridging 

and terminal ligands on the photophysical properties of the complexes was investigated. Compared 

to 6-1 that had the single bond connection between the fluorenyl motif and the terpyridyl ligands 

on the bridging ligand, the extended π-conjugation afforded by the ethynyl connectors of the 

bridging ligand in 6-2 red-shifted the UV-vis absorption markedly, but the low-lying 3CT state of 

6-2 accelerated nonradiative decay and resulted in weak phosphorescence. A considerable 

bathochromic shift also occurred in the absorption and emission of 6-5, owing to the stronger σ-

donating ability of the negatively charged coordinating carbon relative to nitrogen and thus more 

charge transfer from the C^N^C ligands to the terpyridyl ligands. Complexes 6-1 – 6-5 all featured 

with broad positive absorption bands spanning the visible region and NIR regions in their 

nanosecond TA spectra. However, the triplet state TA lifetimes of 6-1 and 6-4 were much longer  

(3.1 s and 48 s, respectively) than those of 6-2, 6-3 and 6-5, implying the dominant bridging 

ligand-localized 3π,π* nature for the lowest triplet states in 6-1 and 6-4 rather than the 3CT states 
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for the other three complexes. Based on photophysical properties alone, 6-4 was predicted to be 

the best in vitro PDT agent. 

All of the Ir(III) complexes of this study exhibited photobiological effects when activated 

with visible light, but were inactive with single-wavelength red light (625 nm). Thus, the in vitro 

PDT effects with broadband visible light were attributed to the shorter wavelengths. Some of the 

complexes showed selective cytotoxicity toward cancerous human melanoma cells over normal 

human skin fibroblasts. The photobiological trends could not be readily correlated to any 

differences in photophysical properties despite accessible long-lived 3π,π* states often resulting in 

red PDT activity. But the long-lived 6-4 did not yield a red PDT effect, nor did any of the other 

complexes due to the lack of ground-state absorption in the red. Rather, 6-3 emerged as a promising 

photosensitizer for further investigation owing to its nanomolar photocytotoxicity and visible PI > 

280, with 6-1 and 6-5 also having suitable profiles. This small library of just five complexes proved 

to be a rich source of photophysical and photobiological diversity with only minor structural 

modifications. They gave 1O2 quantum yields that ranged from 4 to 38%, light EC50 values from 

nanomolar to micromolar, dark toxicities that ranged from 32 to >140 M, and DNA interactions 

that were characteristic for a particular cationic complex. For in vitro PDT applications in 

particular, there was a clear indication that the terminal tridentate N^C^N ligand performed best 

when combined with methyl substituents on the central cyclometalating ring and no ethynyl linkers 

between terminal ligands and the central fluorene unit. Thus, 6-3 will serve as the lead complex 

for future studies and as the parent complex of a second-generation library. 
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7. SYNTHESIS, NEUTRAL IRIDIUM(III) COMPLEXES BEARING 

BODIPY−SUBSTITUTED N−HETEROCYCLIC CARBENE (NHC) LIGANDS: 

SYNTHESIS, PHOTOPHYSICS, AND PHOTOBIOLOGICAL ACTIVITIES 

 

7.1. Introduction 

Photodynamic therapy (PDT) is an emerging cancer treatment modality that combines a 

photosensitizer (PS), oxygen, and light to destroy tumors and tumor vasculature and induce an 

immune response.1-5 During PDT, reactive oxygen species (ROS) are formed through energy (type 

II) or electron transfer (type I) reactions that take place between ground state molecular oxygen 

and the excited triplet state of the PS. The most important mediator of the PDT effect is thought to 

be singlet oxygen (1O2) produced through the type II PDT mechanism, but superoxide (O2
-•) or 

hydroxyl radical (•OH), generated by the type I PDT mechanism may also play a role. 

PDT is inherently selective because toxicity is confined to regions where the PS, oxygen, 

and light overlap spatiotemporally.3,6,7 Therefore, PDT has the potential to be a safe, noninvasive 

alternative to conventional cancer therapies,8 but is not currently the standard of care for any type 

of cancer. The absence of PDT from mainline therapy stems, in part, from certain drawbacks 

associated with the porphyrin-based PS Photofrin, which is the only FDA-approved PS for cancer 

therapy in the USA. There has been significant effort in recent years to develop new PSs and 

treatment regimens that overcome some of the limitations of Photofrin and its derivatives. 

Certain transition metal complexes are among the numerous PSs that have been explored 

due to their (1) interesting photophysical properties, (2) reduced photobleaching, and (3) improved 

kinetic stabilities (compared to organic PSs).9  Among the metal complexes, Ru(II) systems are 

probably the most widely studied for PDT.11,12 Our Ru(II) complex TLD1433,12,13 which 



 

242 

incorporates a -expansive ligand derived from imidazo[4,5-f][1,10]phenanthroline appended to 

an -terthienyl unit, just successfully completed a Phase 1b clinical trial for treating bladder cancer 

with PDT (ClinicalTrials.gov Identifier: NCT03053635). This example demonstrates the utility of 

lowest-energy ,* triplet states, in this case centered on the oligothienyl unit, with extremely long 

lifetimes for highly efficient photosensitization. 

Some transition-metal complexes possess the distinct advantage of having singlet and 

triplet excited states that can be tuned independently for optimization of their respective 

characteristics when appropriate -conjugated ligands are chosen.  We have reported that it is 

possible to shift the singlet charge-transfer absorption to longer wavelengths (for activation by red 

wavelengths of light) by extending the -conjugation of the organic ligands, while allowing the 

lowest triplet excited state (T1) to be localized on the -expansive organic ligands.10 The ,* 

nature of the lowest triplet excited state results in very long triplet excited state lifetimes, which 

have the potential to facilitate ROS production even at low oxygen tension.  Unlike organic PSs, 

metal complexes possess high quantum yields for triplet state formation due to the heavy atom 

effect (metal-induced rapid ISC), and their triplet excited states are typically long-lived.  All of 

these properties are desirable features for next-generation PSs. 

Ir(III) complexes are also of interest because some have exhibited high efficiency for ROS 

production via electron or energy transfer.14 Many Ir(III) complexes possess high quantum yields 

for triplet excited state formation and long-lived triplet excited states for efficient ROS generation 

even under hypoxia.14  It has been reported that cationic Ir(III) complexes can target 

mitochondria,15-19 lysosomes,20,21 the endoplasmic reticulum,22,23 or nuclei24,25 in a variety of 

cancer cell lines. A mitochondria-targeted Ir(III) complex PS was reported to show improved PDT 

effects under hypoxia.15 These complexes can also display bright intracellular luminesce, 
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imparting theranostic capacity.14-21,24-26  Therefore, Ir(III) complexes have emerged as a new 

platform for theranostic PDT applications.  However, most of the currently studied Ir(III) 

complexes absorb light maximally in the UV to blue spectral regions, wavelengths of lesser interest 

for PDT because of their shallow tissue penetration due to tissue scattering and absorption.27 

Although it is possible to red-shift the charge transfer ground-state absorption bands of the 

cyclometalating monocationic Ir(III) complexes [Ir(C^N)2(N^N)]+ (where N^N refers to the 

diimine ligand and C^N refers to the cyclometalating ligand) to longer wavelength by introducing 

electron-withdrawing substituents on the diimine ligands28 or through benzannulation at the 

diimine ligands, the molar extinction coefficients of the charge transfer absorption bands are quite 

low and the lowest triplet excited state (T1) lifetimes become much shorter (tens of ns).29-33  In 

contrast, it has been shown that bichromophoric transition-metal complexes with -conjugated 

organic chromophores result in long-lived 3,* T1 states localized at the organic chromophore 

with simultaneous red-shifting of the ground-state absorption to the longer wavelengths.  Metal 

coordination improves -conjugation across the organic ligands through planarization, facilitating 

the interactions between ligands.  It also increases the quantum yield of triplet excited-state 

formation via heavy atom induced ISC.  Such a strategy has been applied in TLD143312 and other 

Ru(II) complexes for PDT applications,13,34-40 but is relatively rare for Ir(III) systems.41-44 

Borondipyrromethene (BODIPY) and its derivatives, a class of strong light−harvesting 

fluorophores with facile wavelength tunability, have been extensively explored as potential PSs 

for PDT applications in recently years.45-48 In addition, BODIPY appears as a promising moiety to 

be attached to a monodentate or polydentate ligand to tune the absorption wavelength of the 

transition-metal PSs to the desired spectral region.40-42,49 However, BODIPY-Ir(III) dyads for PDT 

applications are not well-studied.41,42,49 One of the few examples used BODIPY tethered cationic 
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cyclometalated Ir(III) dyads as PSs for PDT and bioimaging applications, and their in vitro PDT 

effects were marginal due to high dark toxicity (IC50 = 8.16 - 16.70 M toward 1121 or LLC cell 

lines). Phototherapeutic index (PI) values (1.3-3.8) were very small.41,42 

Recently, N−heterocyclic carbene (NHC) based iridium(III) complexes have emerged.50-54  

Unlike the numerous well−studied monocationic cyclometalated Ir(III) complexes 

[Ir(C^N)2(N^N)]+ (where N^N refers to the diimine ligand and C^N refers to the cyclometalating 

ligand), monoanionic NHC ligands, such as 1-phenyl-3-alkylbenzimidazole, as the N^N ligand 

gives rise to neutral complexes.54,55 To date, NHC-Ir(III) complexes have largely been studied for 

their catalytic50 and optoelectronic applications.51-54 Biological activities were only reported on 

monocationic Ir(III) complexes with bis(alkylated-NHC) ligands,16,50 which possessed high dark 

toxicity and could only be activated by UV light (365 nm).  To date, the biological activities of the 

neutral Ir(C^N)2(NHC) complexes remain unexplored. 

Herein, a series of neutral iridium(III) complexes bearing BODIPY−NHC ligands (Chart 

7-1) were designed and synthesized to explore their photophysical properties and in vitro PDT 

effects.  These complexes all contain benzo[h]quinoline (bhq) as the cyclometalating ligands, but 

the NHC ligand varies from 1−(4−BODIPY−ethynylphenyl)-3−methyl−1H−benzo[d]imidazol− 

3−iumiodide (L7-1), 1−(4−BODIPY−phenyl)−3−methyl−1H−benzo[d]imidazole−3−iumiodide 

(L7-2), 1−(4−BODIPY−ethynylphenyl)−3−(2−(2−(2−methoxyethoxy)ethoxy)ethyl−1H−benzo 

[d]imidazol−3−iumiodide (L7-3), 5−(4−BODIPY−ethynylphenyl)−3−methyl−1H−benzo[d]imi-

dazole−3−iumiodide (L7-4), to 5−(4−BODIPY−ethynylphenyl)−3−(2−(2−(2−methoxyethoxy) 

ethoxy)ethyl−1H−benzo[d]imidazol−3−iumiodide (L7-5).  BODIPY was incorporated into the 

NHC ligand scaffold at different sites through a single bond (7-2) or a triple bond (7-1 and 7-3−7-

5) in order to red-shift the absorption of the complexes to longer wavelengths.  An oligoether 
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chain, 2−(2−(2−methoxyethoxy)ethoxy)ethyl, was appended to 7-3 and 7-5 to increase the 

hydrophilicity of the neutral complexes.  The photophysical properties of these five complexes 

were systematically investigated by various spectroscopic methods and simulated by density 

functional theory (DFT) calculations.  The in vitro theranostic PDT effects of the two water-soluble 

complexes 7-3 and 7-5 were investigated.  The impact of the BODIPY attachment site on the 

photophysics and PDT effects of these dyads was explored. 

 
Chart 7.1. Molecular structures of BODIPY-NHC-Ir(III) complexes 7-1 – 7-5. 

 

7.2. Experimental  

7.2.1. Materials and synthesis 

All reagents and solvents were purchased from Alfa Aesar and VWR International and 

used as received.  Al2O3 gels (activated, neutral) and silica gels (230−400 mesh) for column 

chromatography were purchased from Sorbent Technology.  Benzo[h]quinoline (C^N ligand) was 

obtained from Alfa−Aesar and its Ir(III) µ−chloro−bridged dimers [Ir(C^N)2Cl]2 was synthesized 

according to the literature procedure.56 Compounds 1-(4-bromophenyl)-1H-benzimidazole 

(compound 1 in Scheme 7-1),57 4-bromo-2-nitro-N-phenylaminobenzene (compound 6 in Scheme 

7-1),58 4-bromo-N1-phenyl-1,2-benzenediamine (compound 7 in Scheme 7-1),59 and 

2−iodo−BODIPY60 were synthesized following the reported procedures.  The synthetic route for 
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the synthesis of ligands L7-1 – L7-5 and complexes 7-1 − 7-5 are provided in Scheme 7-1.  1H 

NMR, high−resolution mass spectrometry (HRMS), and elemental analyses were used to 

characterize these complexes.  1H NMR spectra were obtained on a Varian Oxford−400 or 

Bruker−400 spectrometer in CDCl3 using tetramethylsilane (TMS) as the internal standard.  Bruker 

BioTOF III mass spectrometer was used for ESI−HRMS analyses.  NuMega Resonance 

Laboratories, Inc. in San Diego, California conducted elemental analyses. 

 

Scheme 7-1.  Synthetic route for ligands L7-1−L7-5 and complexes 7-1 − 7-5a. 

 

aReagents and conditions: (i) 1−bromo−4−iodobenzene, CuI, Cs2CO3, 1,10-phenanthroline, DMF, 

110°C, 40 hrs.; (ii) CuI, PdCl2(PPh3)2, ethynyltrimethylsilane, TEA/dioxane, 100 °C, 1 hr.; (iii) 

TBAF, THF, 0°C, 1 hr.; (iv) 2−Iodo−BODIPY, CuI, Pd(PPh3)4, TEA, THF, 50 °C, 16 hrs.; (v) 

triisopropyl borate, nBuLi, anhydrous THF, −78 °C, 1 hr., then r.t. overnight, followed by HCl, 

100 °C, 1 hr.; (vi) 2−iodo−BODIPY, K2CO3, Pd(PPh3)4, toluene, THF, water, 70 °C, overnight; 

(vii) NaOAc, aniline, 160 oC, 7 hrs.; (viii) Na2S, S, water, reflux, 6 hrs.; (ix) formic acid, 100 °C, 

overnight; (x) MeI, THF, 100 oC, 24 hrs.; (xi) 1−iodo−3,6,9−trioxadecane, toluene, 100 oC, 96 

hrs.; (xii) [Ir(benzo[h]quinoline)2(μ−Cl)]2, Ag2O, 1,2−dichloroethane, reflux, 24 hrs. 
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7.2.2. Synthesis of precursor compounds 2 − 5 and 8 − 10 

Compound 2.  A solution of 1 (544 mg, 2 mmol), CuI (19 mg, 0.1 mmol), PdCl2(PPh3)2 

(70 mg, 0.1 mmol) in trimethylamine (TEA)/dioxane (2:1, v/v) was degassed with N2 at room 

temperature for 20 minutes.  Then, ethynyltrimethylsilane (0.86 mL, 6 mmol) was added and the 

resulting reaction mixture was heated at 100 °C for 1 hour under N2.  After cooling to room 

temperature, the mixture was concentrated and purified by column chromatography over silica gel 

using hexane:ethyl acetate = 1:2 (v/v) as the eluent to give product as pale yellow solid.  This pale 

yellow solid (500 mg, 1.8 mmol) was dissolved in THF (10 ml), and THF solution of 

tetrabutylammonium fluoride (TBAF) (10 mL, 1 M in THF) was added at 0 °C.  The reaction 

mixture was stirred at room temperature for 1 hour.  Then the solution was diluted with ethyl 

acetate (EA) and washed with water and brine consequently.  The organic layer was dried over 

Na2SO4 and concentrated.  The residue was purified by column chromatography over silica gel 

using hexane:ethyl acetate= 1:2 (v/v) as the eluent to give compound 2 as pale yellow solid (360 

mg, 81%).  1H NMR (400 MHz, CDCl3) δ 8.14 (s, 1H), 7.91 (dd, J = 6.4, 2.7 Hz, 1H), 7.73 (d, J 

= 8.4 Hz, 2H), 7.57 (dd, J = 6.6, 2.7 Hz, 1H), 7.53 (d, J = 8.4 Hz, 2H), 7.43−7.34 (m, 2H), 3.22 (s, 

1H). 

Compound 3.  The solution of 2-iodo−BODIPY (200 mg, 0.44 mmol), compound 2 (97 

mg, 0.44 mmol), CuI (17 mg, 0.09 mmol), and Pd(PPh3)4 (57 mg, 0.049 mmol) in 10 mL degassed 

mixed solvent (THF/TEA = 4/1) was heated to 50 oC and stirred for 16 hours in dark.  After cooling 

to room temperature, the solvent was removed under reduced pressure and the residue was 

extracted with CH2Cl2 and washed with brine.  After removal of the solvent from the organic layer, 

the crude product was purified by flash column chromatography with CH2Cl2/acetone (v/v = 50/1) 

being used as the eluent to obtain a dark red solid (200 mg, 83%).  1H NMR (400 MHz, with 
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CDCl3) δ 8.14 (s, 1H), 7.94−7.86 (m, 1H), 7.67 (d, J = 8.4 Hz, 2H), 7.62−7.44 (m, 6H), 7.43−7.30 

(m, 4H), 6.08 (s, 1H), 2.75 (s, 3H), 2.62 (s, 3H), 1.55 (s, 3H), 1.44 (s, 3H). 

Compound 4.  Under -78 oC, nBuLi (0.5 mL, 2.5 M in hexane) was added dropwise to the 

solution of compound 1 (151 mg, 0.56 mmol) and B(OiPr)3 (157 mg, 0.83 mmol) in THF (10 mL).  

The mixture was stirred at -78oC for 1 h, and then allowed to warm up to room temperature, and 

continued stirring for overnight.  The reaction was quenched by addition of concentrated aqueous 

NH4Cl (10 mL), and the volatiles were evaporated in vacuum.  Then, HCl (10 mL, 37% aq.) was 

added to the solution and the resultant mixture was heated to reflux for 1 h.  After cooling to room 

temperature, the mixture was carefully adjusted to pH = 7 with NaOH.  The white suspension was 

extracted with CH2Cl2.  After removal of the solvent, the residue was dried under vacuum.  The 

crude product was purified by column chromatography on silica gel and eluted with acetone to 

obtain white solid as the product (47 mg, 36%).  1H NMR (400 MHz, DMSO) δ 8.60 (s, 1H), 8.24 

(s, 1H), 8.04 (d, J = 8.0 Hz, 2H), 7.79 (d, J = 7.4 Hz, 1H), 7.67 (d, J = 7.9 Hz, 2H), 7.34 (dt, J = 

13.6, 6.8 Hz, 2H). 

Compound 5.  A solution of compound 4 (44 mg, 0.18 mmol), 2-iodo-BODIPY (56 mg, 

0.12 mmol), and K2CO3 (166 mg, 1.2 mmol) in toluene (8 mL), THF (8 mL), and water (2 mL) 

was degassed with N2 at room temperature for 20 minutes.  After that, Pd(PPh3)4 (3 mg, 0.0025 

mmol) was added, and the mixture was heated to 70 oC for overnight.  After evaporation of the 

volatiles under reduced pressure, water (10 mL) was added, and the mixture was extracted with 

CH2Cl2 (310 mL).  The combined organic layers were washed with brine (100 mL), and dried 

over anhydrous MgSO4.  The solvent was then removed, and the crude product was purified by 

column chromatography on silica gel using hexane/ethyl acetate (v/v = 1:1) as the eluent to obtain 

orange solid as the target compound (79 mg, 78%).  1H NMR (400 MHz, CDCl3) δ 8.13 (d, J = 
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7.5 Hz, 1H), 7.92−7.84 (m, 1H), 7.62−7.45 (m, 7H), 7.40−7.29 (m, 5H), 6.04 (s, 1H), 2.61 (s, 3H), 

2.59 (s, 3H), 1.41 (s, 3H), 1.36 (s, 3H). 

Compound 8.  The mixture of compound 7 (880 mg, 3.36 mmol) and formic acid (20 mL) 

was stirred at 100 °C for overnight.  The reaction mixture was cooled to room temperature and 

concentrated under reduced pressure to afford a crude solid.  The crude solid was partitioned 

between ethyl acetate (250 mL) and NH3/H2O (25 mL).  The ethyl acetate layer was combined, 

dried with Na2SO4, and then concentrated under reduced pressure.  The residue was purified by 

column chromatography (silica gel, eluted with CH2Cl2) to get the target compound as off−white 

solid (860 mg, 98%).  1H NMR (400 MHz, CDCl3) δ 8.10 (s, 1H), 8.02 (d, J = 1.5 Hz, 1H), 7.59 

(dd, J = 8.2, 7.4 Hz, 2H), 7.52−7.47 (m, 3H), 7.46−7.36 (m, 2H). 

Compound 9.  Following the similar synthetic procedure for compound 2, compound 9 

was obtained with 87% yield using compound 8 as the starting material.  1H NMR (400 MHz, 

CDCl3) δ 8.13 (s, 1H), 8.06−7.96 (m, 1H), 7.59 (dd, J = 10.0, 5.5 Hz, 2H), 7.49 (dd, J = 11.7, 5.7 

Hz, 4H), 7.42 (dt, J = 13.5, 5.1 Hz, 1H), 3.07 (s, 1H). 

Compound 10.  Following the similar synthetic procedure for compound 3, compound 10 

was obtained with 41% yield using compound 9 as the starting material.  1H NMR (500 MHz, 

CDCl3) δ 8.14 (s, 1H), 7.97 (s, 1H), 7.59 (t, J = 7.7 Hz, 2H), 7.54−7.45 (m, 7H), 7.42 (d, J = 8.4 

Hz, 1H), 7.33−7.28 (m, 2H), 6.03 (s, 1H), 2.74 (s, 3H), 2.59 (s, 3H), 1.54 (s, 3H), 1.41 (s, 3H). 

 

7.2.3. General synthetic procedure for ligands L7-1 – L7-5 

In a round−bottom flask equipped with a gastight Teflon cap, the precursor NHCs 

compound 3, 5, or 10 (1 mmol) was dissolved in 10 mL of THF (for synthesizing L7-1, L7-2, or 

L7-4) or in 1 mL of toluene (for synthesizing L7-3 and L7-5).  Then 1.5 mmol CH3I (for 
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synthesizing L7-1, L7-2, or L7-4) or 1−iodo−3,6,9−trioxadecane (for synthesizing L7-3 and L7-

5) was added.  The mixture was heated to 100 oC for 24 h.  After the reaction, the solution was 

allowed to cool to room temperature.  The formed precipitate was collected by filtration and 

washed with THF, dichloroethane, and Et2O (10 mL  2) to obtain the corresponding target 

compound. 

L7-1.  A dark red powder was obtained as the product (yield: 73%).  1H NMR (400 MHz, 

DMSO) δ 10.16 (s, 1H), 8.18 (d, J = 8.4 Hz, 1H), 8.05−7.71 (m, 8H), 7.65 (d, J = 3.7 Hz, 2H), 

7.46−7.40 (m, 2H), 6.39 (s, 1H), 4.20 (s, 3H), 2.66 (s, 3H), 2.56 (s, 3H), 1.53 (s, 3H), 1.43 (s, 3H). 

L7-2.  A red powder was obtained as the product (yield: 67%).  1H NMR (400 MHz, 

DMSO) δ 10.15 (s, 1H), 8.16 (d, J = 8.2 Hz, 1H), 7.94−7.69 (m, 6H), 7.63 (dd, J = 12.4, 7.5 Hz, 

4H), 7.46 (d, J = 7.6 Hz, 2H), 6.29 (s, 1H), 4.17 (s, 3H), 2.52 (s, 3H), 2.50 (s, 3H), 1.38 (s, 3H), 

1.36 (s, 3H). 

L7-3.  A dark red powder was obtained as the product (yield: 53%).  1H NMR (500 MHz, 

CDCl3) δ 10.72 (s, 1H), 7.97 (d, J = 7.6 Hz, 1H), 7.88 (d, J = 8.7 Hz, 2H), 7.74−7.66 (m, 4H), 7.53 

(dd, J = 5.0, 1.9 Hz, 2H), 7.33−7.27 (m, 4H), 6.07 (s, 1H), 5.09−5.03 (m, 2H), 4.22−4.14 (m, 2H), 

3.74 (dd, J = 5.5, 3.4 Hz, 2H), 3.60 (dd, J = 5.4, 3.5 Hz, 2H), 3.54 (dd, J = 5.6, 3.7 Hz, 2H), 3.41 

(dd, J = 5.6, 3.7 Hz, 2H), 3.28 (s, 3H), 2.73 (s, 3H), 2.60 (s, 3H), 1.53 (s, 3H), 1.42 (s, 3H). 

L7-4.  A dark red powder was obtained as the product (yield: 58%).  1H NMR (400 MHz, 

DMSO) δ 10.17 (s, 1H), 8.36 (s, 1H), 7.82−7.73 (m, 7H), 7.62 (d, J = 3.6 Hz, 3H), 7.53−7.34 (m, 

2H), 6.37 (s, 1H), 4.17 (s, 3H), 2.66 (s, 3H), 2.54 (s, 3H), 1.52 (s, 3H), 1.41 (s, 3H). 

L7-5.  A dark red powder was obtained as the product (yield: 65%).  1H NMR (400 MHz, 

CDCl3) δ 10.61 (s, 1H), 8.19 (s, 1H), 7.97−7.88 (m, 3H), 7.79−7.68 (m, 4H), 7.64−7.54 (m, 4H), 

7.35−7.30 (m, 1H), 6.10 (s, 1H), 5.08−4.98 (m, 2H), 4.24−4.14 (m, 2H), 3.81−3.72 (m, 2H), 
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3.67−3.61 (m, 2H), 3.54 (dd, J = 5.4, 3.6 Hz, 2H), 3.45 (dd, J = 5.7, 3.7 Hz, 2H), 3.30 (s, 3H), 2.75 

(s, 3H), 2.63 (s, 3H), 1.56 (s, 3H), 1.45 (s, 3H). 

 

7.2.4. General synthetic procedure for iridium complexes 7-1 − 7-5   

The mixture of the NHC ligand (L7-1 − L7-5, 0.12 mmol), [Ir(benzo[h]quinoline)2(μ-Cl)]2 

(76 mg, 0.06 mmol), Ag2O (56 mg, 0.24 mmol), and 1,2-dichloroethane (15 mL) was heated to 

reflux in the dark for 24 h.  After the mixture was cooled to room temperature, the solvent was 

removed under reduced pressure to afford the crude product.  Purification of the crude product was 

carried out on silica gel column chromatography eluted with CH2Cl2.  The obtained product was 

further recrystallized in CH2Cl2 / hexane to give the desired pure complex.  

7-1.  A dark purple powder was obtained as the product (yield: 32%).  1H NMR (400 MHz, 

CDCl3) δ 8.39 (d, J = 5.2 Hz, 1H), 8.27 (d, J = 5.2 Hz, 1H), 8.17 (d, J = 8.2 Hz, 1H), 8.03 (dd, J = 

12.1, 7.6 Hz, 2H), 7.85−7.66 (m, 3H), 7.57−7.46 (m, 4H), 7.39−7.21 (m, 9H), 7.18−6.99 (m, 4H), 

6.87 (s, 1H), 6.74 (d, J = 6.9 Hz, 1H), 6.33 (d, J = 7.0 Hz, 1H), 5.98 (s, 1H), 3.26 (s, 3H), 2.55 (s, 

3H), 2.53 (s, 3H), 1.36 (s, 3H), 1.33 (s, 3H).  ESI-HRMS (m/z): calcd. for [C61H44BF2IrN6+H]+, 

1103.3396; found, 1103.3384.  Anal. Calcd for C61H44BF2IrN6·5CH2Cl2·2.4C6H14 (C6H14: 

hexane): C, 55.71; H, 5.09; N, 4.85. Found: C, 55.37; H, 5.42; N, 5.15. 

7-2.  A red powder was obtained as the product (yield: 30%).  1H NMR (400 MHz, CDCl3) 

δ 8.40 (d, J = 5.2 Hz, 1H), 8.30 (d, J = 5.5 Hz, 1H), 8.18 (d, J = 8.1 Hz, 1H), 8.04 (d, J = 8.0 Hz, 

1H), 7.97 (d, J = 7.8 Hz, 1H), 7.83 (d, J = 7.9 Hz, 1H), 7.78 (d, J = 8.7 Hz, 1H), 7.69 (d, J = 8.7 

Hz, 1H), 7.60−7.40 (m, 4H), 7.35 (t, J = 8.1 Hz, 2H), 7.22 (d, J = 6.6 Hz, 6H), 7.10 (ddd, J = 22.5, 

14.7, 6.6 Hz, 4H), 6.89 (d, J = 6.9 Hz, 1H), 6.79 (d, J = 8.3 Hz, 1H), 6.43 (s, 1H), 6.26 (d, J = 7.3 

Hz, 1H), 5.91 (s, 1H), 3.28 (s, 3H), 2.52 (s, 3H), 2.15 (s, 3H), 1.33 (s, 3H), 1.26 (s, 3H).  ESI-
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HRMS (m/z): calcd. for [C59H44BF2IrN6+H]+, 1079.3396; found, 1079.3389.  Anal. Calcd for 

C59H44BF2IrN6·0.4CH2Cl2·0.6C6H14: C, 65.02; H, 4.61; N, 7.22. Found: C, 64.62; H, 4.92; N, 7.19. 

7-3.  A dark purple powder was obtained as the product (yield: 56%).  1H NMR (400 MHz, 

CDCl3) δ 9.36 (d, J = 5.4 Hz, 1H), 8.39 (d, J = 5.9 Hz, 1H), 8.27 (dd, J = 12.3, 7.0 Hz, 2H), 8.16 

(d, J = 8.5 Hz, 1H), 8.03 (dd, J = 16.6, 8.0 Hz, 2H), 7.83 (d, J = 8.3 Hz, 1H), 7.74 (t, J = 8.2 Hz, 

2H), 7.68 (d, J = 8.8 Hz, 1H), 7.56−7.47 (m, 3H), 7.39−7.26 (m, 4H), 7.25−7.00 (m, 6H), 6.87 (d, 

J = 1.8 Hz, 1H), 6.81 (t, J = 7.6 Hz, 1H), 6.68 (d, J = 7.0 Hz, 1H), 6.28 (d, J = 7.0 Hz, 1H), 5.98 

(d, J = 7.1 Hz, 1H), 4.37−4.17 (m, 2H), 3.75 (dd, J = 10.5, 5.7 Hz, 2H), 3.39−3.32 (m, 2H), 3.29 

(s, 3H), 3.02−2.83 (m, 2H), 2.75−2.59 (m, 2H), 2.59 (s, 3H), 2.52 (s, 3H), 2.40 (dd, J = 4.1, 2.8 

Hz, 2H), 1.36 (s, 3H), 1.32 (s, 3H).  ESI-HRMS (m/z): calcd. for [C67H56BF2IrN6O3+H]+, 

1235.4183; found, 1235.4164.  Anal. Calcd for C67H56BF2IrN6O3·1.6CH2Cl2·0.3C6H14: C, 60.57; 

H, 4.58; N, 6.02. Found: C, 60.74; H, 4.55; N, 5.75. 

7-4.  A dark purple powder was obtained as the product (yield: 57%).  1H NMR (400 MHz, 

CDCl3) δ 8.27 (d, J = 4.6 Hz, 1H), 8.20 (d, J = 5.5 Hz, 1H), 8.06 (d, J = 8.7 Hz, 1H), 8.02−7.93 

(m, 2H), 7.79−7.68 (m, 3H), 7.54−7.42 (m, 5H), 7.38 (t, J = 8.4 Hz, 1H), 7.30 (dd, J = 11.9, 7.4 

Hz, 2H), 7.22 (dd, J = 6.5, 3.1 Hz, 3H), 7.11−6.95 (m, 5H), 6.75 (d, J = 5.7 Hz, 1H), 6.68 (dd, J = 

11.5, 7.1 Hz, 2H), 6.28 (d, J = 7.1 Hz, 1H), 5.98 (s, 1H), 3.19 (s, 3H), 2.64 (s, 3H), 2.52 (s, 3H), 

1.43 (s, 3H), 1.34 (s, 3H).  ESI-HRMS (m/z): calcd. for [C61H44BF2IrN6+H]+, 1103.3396; found, 

1103.3385.  Anal. Calcd for C61H44BF2IrN6·4.8CH2Cl2·2C6H14: C, 55.55; H, 4.89; N, 5.00. Found: 

C, 55.46; H, 5.14; N, 5.26. 

7-5.  A dark purple powder was obtained as the product (yield: 65%).  1H NMR (400 MHz, 

CDCl3) δ 8.34 (d, J = 5.5 Hz, 1H), 8.25 (d, J = 5.4 Hz, 1H), 8.11 (d, J = 8.5 Hz, 1H), 8.07−8.03 

(m, 1H), 8.02−7.98 (m, 1H), 7.83 (dd, J = 14.7, 8.1 Hz, 1H), 7.75 (dd, J = 8.9, 2.0 Hz, 2H), 7.67 
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(d, J = 1.9 Hz, 1H), 7.59−7.46 (m, 5H), 7.46−7.27 (m, 5H), 7.17−7.00 (m, 5H), 6.80 (dd, J = 5.1, 

3.6 Hz, 1H), 6.74 (t, J = 7.6 Hz, 1H), 6.67 (dd, J = 6.2, 2.5 Hz, 1H), 6.29 (dd, J = 6.3, 3.3 Hz, 1H), 

6.04 (s, 1H), 4.31−4.24 (m, 2H), 3.77−3.71 (m, 2H), 3.42−3.37 (m, 2H), 3.33−3.29 (m, 2H), 3.27 

(s, 3H), 3.25−3.22 (m, 2H), 2.96−2.85 (m, 2H), 2.70 (s, 3H), 2.58 (s, 3H), 1.50 (s, 3H), 1.40 (s, 

3H).  ESI-HRMS (m/z): calcd. for [C67H56BF2N6O3Ir+H]+, 1235.4183; found, 1235.4169.  Anal. 

Calcd for C67H56BF2IrN6O3.0.3H2O: C, 64.92; H, 4.60; N, 6.78. Found: C, 64.97; H, 4.77; N, 6.49. 

 

7.2.5. Photophysical studies 

The spectroscopic grade solvents used for photophysical studies were purchased from 

VWR International and used as received without further purification.  The ultraviolet−visible 

(UV−vis) absorption spectra of complexes 7-1 − 7-5 were measured on a Varian Cary 50 

spectrophotometer.  Steady−state emission spectra of complexes 7-1 − 7-5 were recorded using a 

HORIBA FluoroMax 4 fluorometer/phosphorometer.  The relative actinometry method was used 

for measuring the emission quantum yields of 7-1 − 7-5.  [Ru(bpy)3]Cl2 in degassed acetonitrile 

(λmax = 436 nm, Φem = 0.097)61 was used as the reference.  The nanosecond transient absorption 

(TA) measurements, i.e. the TA spectra, triplet lifetimes, and quantum yields, were carried out on 

a laser flash photolysis spectrometer (Edinburgh LP920).  The excitation source was the 

third−harmonic output (355 nm) of a Quantel Brilliant Nd:YAG laser (pulse duration, 4.1 ns; 

repetition rate was 1 Hz).  Before measurement, each sample solution was purged with nitrogen 

for 40 min.  The singlet depletion method was followed to calculate the triplet excited−state molar 

extinction coefficients (εT),62 and the relative actinometry method63 was used to estimate the triplet 

excited−state quantum yields using SiNc in benzene as the reference (ε590 = 70,000 M−1cm−1, ΦT 

= 0.20).64 
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7.2.6. Computational methodology  

The ground state geometries were optimized using the Density Functional Theory (DFT)65 

employing PBE1 functional66 and the mixed basis set, where LANL2DZ67 was used for Ir(III) to 

incorporate the effective core potential for a heavy element and 6-31G* 68 basis set was used for 

all remaining atoms. The solvent effects were modeled by the Conductor-like Polarizable 

Continuum Model (CPCM) reaction field method69 for toluene.  

Linear response time dependent DFT (TDDFT)70 was employed to calculate excited state 

properties of the complexes by using the same functional and basis set that were used for the 

ground state calculations. It was previously reported for other Ir(III) complexes that both the 

ground and excited state calculations using this methodology show good agreement with the 

experimental results,71 which defined our choice of the methodology. To meet the same energy 

range of the experimental absorption spectra, the lowest 80 states were calculated by TDDFT. The 

thermal linewidths of spectra were obtained using Gaussian function with the broadening 

parameter of 0.08 eV, which well fits to the line shape of experimental absorption spectra.  

To calculate the emission energies, we have optimized the triplet excited state using the 

analytical gradient method based on TDDFT, within PBE1 functional and the mixed LANL2DZ/6-

31G* basis set. To get a better understanding of the nature of the transitions, natural transition 

orbitals (NTOs)72 were calculated, which is the compact representation of the excited electron-

hole pair obtained from the transition density matrices calculated by TDDFT. NTOs were 

visualized by VMD73 software using 0.02 iso resolution. All quantum chemical calculations were 

performed using the Gaussian09® software package.74 
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7.2.7. Cellular assays 

Metal complex solutions. Stock solutions (5 mM) of the chloride salts of 7-3 and 7-5 were 

prepared by first dissolving the solids in DMSO (10% of total aqueous solution), using sonication 

and slight heat, then deionized water (dI) water was added to the appropriate volume. The solutions 

were vortexed to mixed well and stored in the dark at -20C when not in use. Working solutions 

were made by diluting the 5 mM stock solutions in pH 7.4 Dulbecco’s phosphate buffered saline 

(DPBS, no Ca2+ or Mg2+), where DMSO in the final assay wells were kept under 0.1% at the 

highest complex concentration. 

 

7.2.8. Cell culture 

SKMEL28 cells. Adherent SKMEL28 human malignant melanoma cells (HTB-72, ATCC) 

were cultured in complete growth media EMEM plus 10% FBS and were kept incubated at 37C 

under 5% CO2. The complete growth media was prepared in 500 mL portions by combining 50 

mL Seradigm FB Essence (VWR Life Science) and 450 mL Eagle’s Minimum Essential Medium 

(MEM, Corning® 10-009-CV) then filtered in a Nalgene™ rapid-flow sterile disposable bottle top 

filter with PES 0.2 m membrane (Thermo Scientific 09-741-07). SK-MEL-28 cells were initiated 

at about 300,000 cells mL-1 in 75 cm2 tissue culture flasks and were subcultured 2-3 times per 

week under standard aseptic conditions when growth reached approximately 500,000 cells mL-1. 

Subculturing was done by discarding the spent media, rinsing the cell layer once with cold DPBS, 

followed with the dissociation of the cell monolayer with cold 1X Trypsin-EDTA solution (VWR 

Life Science Trypsin, 0.25% EDTA 1X).  Complete growth media was added to the cell suspension 

to dilute and distributed to new cell flasks. Cell assays were performed with cells at no higher than 

ten cell passages (subcultures). 
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7.2.9. Cytotoxicity and photocytoxicity cell assays 

Cell viability assays were completed in triplicate in 96-well polystyrene flat bottom TC-

treated microplates (Corning Costar 3595). The outer periphery wells were filled with 200 L 

DPBS in order to minimize evaporation from inner sample wells. SKMEL28 cells, growing in log 

phase (~500,000 cells mL-1) with at least 95% viability were transferred in 50 L aliquots to inner 

wells containing warm complete growth media (25 L) and placed in a 37C, 5% CO2 water-

jacketed incubator (Thermo Electron Corp., FormaSeries II, Model 3110, HEPA Class 100) for 3 

h to allow for cell attachment. Serial dilutions of 7-3 and 7-5 metal complexes (prepared in DPBS 

and prewarmed in 37C incubator) were added in 25 L volumes to the appropriate microplate 

wells containing cells. Control wells, with no metal complexes, were included in each microplate 

with either cells only (25 L growth media, 50 L cells, 25 L DPBS) or no cells (75 L growth 

media, 25 L DPBS). All microplates were kept incubated in the dark at 37C under 5% CO2 for 

a pre-treatment time of 16 h. Control microplates not receiving light treatments were kept in the 

dark while PS-treated microplates were irradiated under one of the following conditions: visible 

light (400-700 nm, 33 mW cm-2) from a 190 W BenQ MS 510 overhead projector, or red light 

(625 nm, 43 mW cm-2) from an LED array (Photodynamic Inc., Halifax, NS). Irradiation times 

using these two light sources were 51 and 39 min respectively to yield total light doses of 100 J 

cm-2. After PS treatments, all microplates were returned to the incubator for another 48 h. Cell 

viability was evaluated using a resazurin fluorescent dye assay according to a standard protocol 

(reference Hanson 2013 patent and O’Brien 2000 EJB). Briefly, 10 L aliquots of prewarmed, 

sterile filtered 0.6 mM resazurin reagent (Sigma Aldrich Canada) were added to all sample wells 

and subsequently incubated another 3-4 h. Viability was determined based on the ability of the 

blue resazurin dye to be metabolically reduced (by live cells) to the fluorescent red resorufin. 
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Fluorescence was recorded with a Cytofluor 4000 fluorescence microplate reader (excitation 530 

± 25 nm, emission 620 ± 40 nm). The concentrations of the metal complexes where cell viability 

was reduced by 50% (EC50 values) for cytotoxicity (dark) and photocytoxicity (light) were 

calculated from sigmoidal fits of the dose-response curves using GraphPad Prism 6.0 according to 

Eq. 1, where yi and yf are the intial and final fluorescence signal intensities. Generally, cells 

growing in log phase and of the same passage number have EC50 values reproducible to within ± 

25% in the submicromolar range, ± 10% below 10 M, and ± 5% above 10 M. Phototherapeutic 

indices (PIs), a measure of the therapeutic window, were represented by the ratio of dark to light 

EC50 values from the dose-response curves. 

𝑦 =  𝑦𝑖 + 
𝑦𝑖− 𝑦𝑓

1+ 10(log 𝐸𝐶50−𝑥)×(𝐻𝑖𝑙𝑙 𝑠𝑙𝑜𝑝𝑒)                                             (1) 

 

7.2.10. Confocal microscopy 

The influence of the metal complexes 7-3 and 7-5 on SKMEL28 cells, in dark or light 

conditions, was monitored using confocal fluorescence microscopy. Live cells were imaged in 

DPBS using poly-L-lysine coated sterile glass-bottom Petri dishes (MatTek) with several 

treatments: (i) cells with no complex in dark, (ii) cells with no complex with light, (iii) cells with 

complex in dark, and (iv) cells with complex with light. SK-MEL-28 cells (approximately 

100,000) were transferred in 1 mL volumes to the dishes and placed in a 37C, 5% CO2 water-

jacketed incubator for approximately 3 hr to equilibrate. The cells were then washed with warm 

PBS followed by the addition of 50 M 7-3 or 7-5 (1 mL, prepared in DPBS and warmed in 

incubator) to the sample dishes containing cells. The dishes were returned to the incubator for 15 

min prior to further treatment. Light treated samples were irradiated with visible light for 26 min 

from a 190 W BenQ MS 510 projector (400–700 nm, power density 33 mW cm-2 for a total light 
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dose 50 J cm-2), where dark samples were covered with foil and placed in a dark drawer for the 

same amount of time. Dishes containing both dark and light samples were imaged 15 min post-

treatment using a Carl Zeiss LSM 510 laser scanning confocal microscope with a 60X oil objective 

lens. Excitation was delivered at 458/488 nm from an argon-krypton laser, and signals were 

acquired through a 505 nm long-pass filter. Pinhole diameters for all the treatments were at 1 AU 

(airy unit) equaling 98 m. The images were collected and analyzed using the Zeiss LSM Image 

Browser Version 4.2.0.121 software (Carl Zeiss Inc.). 

 

7.2.11. Bacterial survival assays 

Photodynamic inactivation (PDI) of Streptococcus aureus (ATCC 25923, Cedarlane) 

growing as planktonic culture, by 7-3 and 7-5, was probed using a standard broth microdilution 

method.28 In order to standardize the starting bacterial concentration for all experiments, a standard 

curve of McFarland barium sulfate turbidity standards was generated, representing approximate 

bacterial concentrations. McFarland barium sulfate standards 0.5, 1, 2, 3, 4, and 5, were prepared, 

representing approximately 1.5, 3, 6, 9, 12, 15  108 bacteria mL-1 respectively.  The absorbance 

at 562 nm was measured for all McFarland standards, using a BioTek EL800 microplate reader, 

and a standard curve was generated.  An inoculum of S. aureus was then prepared by transferring 

colonies from a room temperature secondary growth plate to a sterile 15 mL conical tube 

containing 2 mL sterile distilled water, and the contents were mixed well by vortexing. The 

absorbance at 562 nm was read and the approximate concentration was calculated according to the 

McFarland barium sulfate standard curve. The solution was further diluted in fresh TSB in order 

to match a starting bacterial cell concentration of approximately 1  106 CFU mL-1 and was used 

within 1 hr of preparation. Dark and light experiments were performed in duplicate in 96-well 
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microplates (Corning Costar, Acton, MA), where outer wells along the top and bottom contained 

200 L of sterile distilled water to prevent evaporation.  Dilutions of 7-3 and 7-5 were prepared in 

TSB media at 200 M (twice the desired top concentration of 100 M) and added to triplicate 

wells of the microplate and 1:2 serial dilutions were performed in wells containing 50 L TSB 

using an electronic multichannel pipettor. (final concentrations were 100, 50, 25, 12.5, 6.3, 3.1, 

1.6, 0.8, 0.4, 0.2, 0.1 µM). To sample wells, 50 µL bacterial inoculum was added (final 

concentration in wells were ~5 x 105 CFU mL-1). Final assay volumes in the wells were 100 µL. 

Both plates were incubated for 30 min prior to treatments. Dark treatment microplates were 

wrapped in foil and placed in a dark drawer, while PDI-treated microplates were irradiated with 

visible light (400 – 700 nm, 28 ± 0.9 mW cm-2) using a Solla 30W Cree LED light panel.  The 

irradiation time was 60 min to yield a light dose of approximately 100 J cm-2 to the microplate 

wells (lid on).  Both dark and PDT-treated microplates were incubated overnight.  Sample turbidity 

was measured as absorbance at 562 nm for all microplates and EC50 values (effective concentration 

at which ≥ 50% of bacterial growth is inhibited) for antibiotic (dark) and antimicrobial PDI (light) 

activity were calculated from sigmoidal fits of the dose response curves using Graph Pad Prism 

6.0 according to Eq 1 (as shown above in cell culture section), where yi and yf are the initial and 

final absorbance intensities. Data was normalized using triplicate control wells containing 50 L 

TSB and 50 L bacterial inoculum and were deemed as 100% growth. Bacteria-free control wells 

received 100 L TSB only.  Highly colored concentrations of PS were given duplicate control 

wells containing 50 L water containing PS and 50 L TSB (no bacteria). PS controls were 

prepared due to the color content of high concentration skewing the absorbance values of treated 

wells. PS control absorbance values were subtracted from the corresponding treated PS absorbance 

values to show true comparative growth rates. 
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7.2.12. Measurement of ROS in SKMEL-28 cells 

The generation of intracellular ROS was measured using the fluorescent stain 2,7′-

Dichlorofluorescin diacetate (DCFDA, Sigma D6883), following a simple microplate assay.29 

DCFDA is a cell-permeable probe that measures hydroxyl, peroxyl, and other ROS activity within 

the cell or the cellular environment. SKMEL28 cells were seeded at approximately 25,000 cells 

per well on two 96-well ultra-low attachment flat bottom microtiter plates (Corning 3595) and 

incubated overnight.  The spent media was carefully removed and the cells were washed with 1X 

buffer (Hank’s 1X Balanced Balanced Salt Solutions, HBSS, HyClone SH30268.01), followed by 

the addition of 100 L of 25 M DCFDA prepared in 1X buffer.  The two microplates were 

incubated for 45 min (37C under 5% CO2). Compound serial dilutions of 7-3 and 7-5 were 

prepared in 1X supplemented buffer (HBSS + 10% FBS).  The supernatant was carefully removed, 

the cells were washed once with 1X buffer, then 75 L 1X supplemented buffer was added to each 

sample well followed by 25 L aliquots of either 7-3 or 7-5 (final 9 concentrations in wells ranged 

from 4 pM - 120 M). Control wells in both microplates included: 1) Ir(III) complexes with 

DCFDA, no cells, 2) cells only, no DCFH-DA, 3) cells only with DCFDA, 4) Ir(III) complexes 

with cells, no DCFDA.  The microplates were incubated (pre-treatment) for 30 min.  The dark-

treatment microplate was kept in the dark (foiled and kept in dark place), while the light-treatment 

microplate was irradiated with visible light (400-700 nm, 33 mW cm-2) from a 190 W BenQ MS 

510 overhead projector for 26 min, yielding a light dose of 50 J cm-2. Fluorescence signals were 

measured at several time periods after irradiation (15 min, 30 min, 60 min, 90 min, 120 min) with 

a Cytofluor 4000 fluorescence microplate reader (excitation 485 ± 20 nm, emission 580 ± 50 nm).  

Relative ROS production is represented by plotting arbitrary fluorescence units versus the log 

concentration of test samples in both dark and light treatments. 
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7.3. Results and discussion 

7.3.1. Electronic absorption 

The UV−vis absorption spectra of 7-1 − 7-5 were measured in toluene, CH3CN, THF, and 

CH2Cl2 at room temperature.  The spectra in toluene (the preferred solvent due to the high 

solubility of the neutral complexes in it) are displayed in Figure 7.1, and the normalized spectra in 

the other solvents are provided in Figure 7.2.  The absorption band maxima and molar extinction 

coefficients are summarized in Table 7.1. 7-1 − 7-5 exhibited strong absorption bands with 

vibronic structure in the region of 280−460 nm, and broad, intense absorption bands centered 

between 500-600 nm.  The energies and spectral features of these low-energy absorption bands 

resemble those of the 1,3,5,7-tetramethyl-8-phenyl-BODIPY.75  However, the band maxima of 7-

1 − 7-5 are approximately 30-40 nm red-shifted compared to the 1,* absorption band of the 

1,3,5,7-tetramethyl-8-phenyl-BODIPY, and these bands are broader than that of 1,3,5,7-

tetramethyl-8-phenyl-BODIPY.  These characteristics imply that the NHC ligand interacts with 

the BODIPY motif and there could be some charge transfer character in this band (see discussion 

vide infra). 

Inserting a CC bond between the BODIPY motif and the phenyl ring in complex 7-1 led 

to a red-shift of approximately 13-nm compared to that of complex 7-2. This difference was 

attributed to the extended -conjugation within the NHC-BODIPY ligand of 7-1.  Varying the 

point of attachment of BODIPY on the NHC ligand also showed a noticeable effect on the energy 

of the low-energy absorption band.  Complex 7-4, with BODIPY attached at C5 of the 

benzimidazole ring blue shifted the low-energy absorption band by approximately 8 nm compared 

to the corresponding band in 7-1, where BODIPY is appended at C4 of the phenyl ring.  

Replacement the methyl substituents on C3 of benzimidazole in complexes 7-1 and 7-4 by 
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oligoether substituents as in 7-3 and 7-5 did not impact the energy of the low-energy absorption 

band but slightly attenuated the molar extinction coefficients for this transition. 
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Figure 7.1. UV−vis absorption spectra of 7-1 − 7-5 in toluene at room temperature. 
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Figure 7.2. Normalized UV-vis absorption spectra of 7-1 − 7-5 in different solvents. 
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Table 7.1. Photophysical parameters for complexes 7-1 − 7-5. 

 abs/nm (log ε 

/L·mol−1·cm−1) a 

em/nm 

(τem/s); Φem b 

T1−Tn/nm (τTA/s; log εT1−Tn/ 

L·mol−1·cm−1); ΦT 
c 

∆ d (λex/nm) 

7-1 294 (4.86), 335 (4.68), 

352 (4.56), 398 (4.40), 

430 (4.33), 543 (4.90) 

610 (4.96); 

0.041 

457 (42.1; -e), 679 (48.0; 

4.13); 0.51 

n.d.f 

7-2 286 (4.78), 347 (4.46), 

398 (4.29), 530 (4.87) 

583 (3.12); 

0.063 

458 (24.0; -e), 681 (28.7; 

3.83); 0.86 

n.d.f 

7-3 290 (4.86), 335 (4.69), 

352 (4.57), 397 (4.42), 

430 (4.33), 543 (4.88) 

610 (5.26); 

0.047 

455 (26.1; -e), 690 (32.1; 

4.11); 0.51 

0.38 (450); 

0.37 (534) 

7-4 322 (4.74), 350 (4.64), 

396 (4.40), 535 (4.88) 

587 (4.77); 

0.034 

449 (28.0; -e), 699 (30.9; 

4.09); 0.39 

n.d.f 

7-5 309 (4.87), 350 (4.73), 

395 (4.50), 535 (4.86) 

587 (4.89); 

0.010 

452 (52.9; -e), 690 (55.2; 

4.06); 0.40 

0.11 (352); 

0.22 (450); 

0.08 (534) 
aAbsorption band maxima (abs) and molar extinction coefficients (log ε) in toluene at room temperature. 
bEmission band maxima (em), lifetimes (τem), and quantum yields (Φem) in toluene at room temperature, c 

= 1×10−5 mol/L. The reference used was a degassed acetonitrile solution of [Ru(bpy)3]Cl2 (Φem = 0.097, λex 

= 436 nm)61  The emission lifetimes reported are the longer-lived 3ILCT/3MLCT phosphorescence lifetimes.  

The short-lived 1IL fluorescence lifetimes were unable to be reliably measured due to the resolution of our 

instrument. cNanosecond TA band maxima (T1−Tn), triplet excited−state lifetimes (τTA), triplet extinction 

coefficients (log εT1−Tn), and quantum yields (ΦT) measured in toluene at room temperature. SiNc in benzene 

(ε590 = 7×104 L mol−1cm−1, ΦT = 0.20)64 was used as the reference for calculating ΦT. dSinglet oxygen 

quantum yields (∆) were measured in acetonitrile and are corrected to within ±5%. eNot determined due 

to strong ground-state absorption, which does not satisfy the condition to apply singlet depletion method 

for estimation of εT1−Tn. fNot determined. 

 

To better understand the nature of the different absorption bands, time-dependent density 

functional theory (TDDFT) calculations were carried out for complexes 7-1 − 7-5 in toluene.  As 

shown in Figure 7.2, the calculated spectra matched well with the experimental spectra.  The 

natural transition orbitals (NTOs) corresponding to the major transitions contributing to the major 

absorption bands of 7-1 − 7-5 are presented from Table 7.2 to Table 7.4.  As the NTOs in Table 

7.2 indicated, the electrons of the S1 states were almost exclusively localized on the BODIPY 

moiety, while the holes were delocalized on the entire BODIPY−substituted NHC ligands and on 

the metal d orbitals.  Therefore, the S1 states in 7-1 − 7-5 have the mixed 1π,π* / 1ILCT (intraligand 

charge transfer, (NHC)→*(BODIPY)) / 1MLCT (metal-to-ligand charge transfer, 
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d(Ir)→*(BODIPY)) configurations, which contributed to the intense low-energy absorption 

bands.  For the absorption band(s) in the 370-450 nm region, the NTOs in Table 7.3 suggest major 

ligand-to-ligand charge transfer (1LLCT, (bhq)→*(BODIPY)) / 1MLCT transitions, admixing 

with some BODIPY-NHC localized 1IL (intraligand transition, i.e. 1π,π* / 1ILCT) characters.  In 

contrast, according to the NTOs shown in Table 7.4, the high energy, strong absorption bands at 

280-370 can be predominantly assigned to the spin-allowed bhq or BODIPY-NHC ligand-centered 

1π,π* transitions, mixed with 1LLCT, 1MLCT, and minor 1ILCT configurations. 

 
Figure 7.3. Normalized experimental and calculated absorption spectra with the respective 

oscillation strength. All absorption spectra are calculated by using the linear response time 

dependent DFT (TD-DFT) with the PBE1 functional and LAN2DZ/6-31G* basis set. Toluene are 

used as a solvent. Vertical bar indicates the oscillation strength of the transitions. 
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Table 7.2. NTOs for lowest-energy transitions of complexes 7-1 − 7-5 in toluene.  

 Sn Hole Electron 

7-1 S1  

533 nm 

f = 0.633 
  

7-2 S1 

480 nm 

f = 0.507 
  

7-3 S1 

531 nm 

f = 0.647 
  

7-4 S1 

515 nm 

f = 0.655 
  

7-5 S1  

513 nm 

f = 0.641 
  

 

Table 7.3. NTOs of the hole and electron of the moderate energy absorption band transitions of 

complexes 7-1 − 7-5, calculated by the TD-DFT method with PBE1PBE functional, LANL2DZ/6-

31G* basis and toluene as a solvent. 

 Sn Hole Electron 

7-1 

S2  

477 nm  

f = 0.0017 
  

S3  

429 nm 

f = 0.1557 
  

S4  

412 nm 

f = 0.1551 
  

S5  

411 nm 

f = 0.0442 
  

S7  

396 nm 

f = 0.3499 
  

7-2 

S2  

473 nm 

f = 0.0001 
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Table 7.3. NTOs of the hole and electron of the moderate energy absorption band 

transitions of complexes 7-1 − 7-5, calculated by the TD-DFT method with PBE1PBE 

functional, LANL2DZ/6-31G* basis and toluene as a solvent. (continued) 

 Sn Hole Electron 

 

S3  

424 nm 

f = 0.3307 
  

 

S7  

387 nm 

f = 0.1558 
  

7-3 

S2 

482 nm 

f = 0.0055 
  

S3  

424 nm 

f = 0.1796 
  

S4  

413 nm 

f = 0.1221 
  

S7  

395 nm 

f = 0.3579 
  

7-4 

S2  

500 nm 

f = 0.0396   

S3  

452 nm 

f = 0.1633   

S7  

401 nm 

f = 0.3959   

7-5 

S2  

496 nm 

f = 0.0862 
  

S3  

447 nm 

f = 0.1648 

  
S7  

399 nm 

f = 0.3930 
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Table 7.4. NTOs of the hole and electron of the high energy absorption band transitions of 

complexes 7-1 − 7-5, calculated by the TD-DFT method with PBE1PBE functional, LANL2DZ/6-

31G* basis using toluene as the solvent. 

 Sn Hole Electron 

7-1 

S13  

350 nm 

f = 0.1222 
  

S18  

340 nm 

f = 0.0389 
  

S21  

332 nm 

f = 0.2753 
  

S23  

322 nm 

f = 0.0901 
  

S30  

309 nm 

f = 0.3708 
  

7-2 

S18  

334 nm 

f = 0.1076 

(60%)   

Homo-1/Lumo+1 

(33%) 

  
S22  

325 nm 

f = 0.1125 
  

7-3 

S20  

333 nm 

f = 0.1144 
  

S21  

332 nm 

f = 0.2474 
  

S30  

309 nm 

f = 0.3345 
  

7-4 

S21  

334 nm 

f = 0.3787 

(50%) 
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Table 7.4. NTOs of the hole and electron of the high energy absorption band transitions 

of complexes 7-1 − 7-5, calculated by the TD-DFT method with PBE1PBE functional, 

LANL2DZ/6-31G* basis using toluene as the solvent. (continued) 

 Sn Hole Electron 

 
Homo-1/Lumo+1 

(28%) 

  

 

S27  

315 nm 

f = 0.4822   

7-5 

S21  

334 nm 

f = 0.2816 

  
S27  

316 nm 

f = 0.3603 

  

 
   

7.3.2. Photoluminescence 

The steady−state emission spectra for complexes 7-1 − 7-5 were measured in degassed 

toluene, CH3CN, THF, and dichloromethane at room temperature.  The normalized emission 

spectra in toluene are presented in Figure 7.3, and the emission maxima and lifetimes are compiled 

in Table 7.1.  The normalized emission spectra and the emission data in other solvents are provided 

in Figure 7.4 and Table 7.5.  As shown in Figure 7.3, all of the complexes exhibited broad and 

structureless luminescence in toluene ranging from 582 to 610 nm, which were mirror images to 

their corresponding 1IL absorption bands.  The emission signals showed bi-exponential decays, 

with a short lifetimes of several nanoseconds and a longer lifetimes of several microseconds.  The 

emission was only partially quenched by air.  These characteristics imply that the emission of these 

complexes could be mixed with 1IL fluorescence and charge transfer phosphorescence (3CT).  This 

fluorescence/phosphorescence mixing has been reported for a cationic dinuclear Ir(III) complex 

linked by BODIPY.42 
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Table 7.5. Emission characteristics of complexes 7-1 − 7-5 in different solvents at r.t. 

λem / nm)(τem / μs); Φem 

 CH3CN THF CH2Cl2 Toluene  

7-1 575 (0.21); 0.31% 608 (0.07); 0.89% 603 (0.05); 0.97% 610 (4.96); 4.11% 

7-2 559 (2.46); 3.01% 561 (4.19); 2.09% 547 (2.83); 5.46% 538 (3.12); 6.32% 

7-3 575 (0.61); 0.74% 560 (3.57); 0.91% 563 (0.06); 0.86% 610 (5.26); 4.69% 

7-4 578 (2.81); 6.61% 560 (3.57); 6.65% 571 (2.71); 5.27% 579 (4.77); 3.36% 

7-5 573 (0.41); 1.27% 561 (3.63); 5.45% 570 (3.61);11.7% 579 (4.89); 10.1% 

 

Similar to the trend observed from the UV-vis absorption experiments, the emission 

maxima for 7-1 and 7-3 were identical as were those for 7-4 and 7-5.  This indicates that the 

oligoether chain did not impact the energies of the emitting states in these complexes.  In contrast, 

the emission of 7-2 with BODIPY singly-bonded to NHC showed a pronounced blue-shift (27 nm) 

compared to that of 7-1, with the CC linker, due to the shorter π-conjugation and the reduced co-

planarity between BODIPY and NHC ligand in 7-2.  The attachment position of BODIPY on the 

NHC ligand also affected the emission energy as it did for the UV-vis absorption, namely, the 

emission maxima of 7-4 and 7-5 displayed a blue-shift of 23 nm with respect to those of 7-1 and 

7-3. 

To assign the nature of the emitting states for these complexes, TDDFT calculations were 

performed based on the optimized singlet triplet excited state geometries.  The singlet and triplet 

excited-state NTOs obtained for 7-1 − 7-5 are compiled in Table 7.6 for S1 and T2 states, and in 

Table 7.7 for T1 states.  Because neither the calculated T1 energies nor the energy trend matched 

the experimental results, and the emission lifetimes were much shorter than the lifetimes obtained 

from the ns transient absorption measurement (which will be discussed in the next section), we 

believe that the phosphorescence components of the observed emission from these complexes are 
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from the T2 states.  Based on the NTOs provided in Table 7.6, the fluorescent S1 states have mixed 

1ILCT/1,*/1MLCT configurations, while the T2 states are predominantly 3ILCT/3MLCT 

configurations mixed with minor 3,* character.  The S1 states and the T2 states are in energetic 

proximity, therefore, they both contribute to the observed emission.  However, these two states are 

not in thermal equilibrium because the emission decay was bi-exponential, with a short component 

of less than 10 ns and a longer lifetime of several microseconds. 

 
Figure 7.4. Normalized experimental emission spectra of 7-1 − 7-5 in deaerated toluene at room 

temperature.  The excitation wavelength was 543 nm for 7-1 and 7-3, 530 nm for 7-2, and 535 nm 

for 7-4 and 7-5.  The open-headed lines represent the calculated S1 fluorescence and the solid-

headed lines represent the calculated T2 phosphorescence. The inset shows the comparison of 

emission intensity in air-saturated and deaerated toluene solutions for 7-1. 
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Figure 7.5. Normalized emission spectra of complexes 7-1 − 7-5 in different solvents at r.t. (λex = 

436 nm). 
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Table 7.6. NTOs corresponding to the optimized S1 and T2 states of complexes 7-1 − 7-5 in 

toluene. 
S1 T2 

 Energy Hole Electron Energy Hole Electron 

7-1 647 nm 

  

623 nm 

  

7-2 598 nm 

  

538 nm 

  

7-3 644 nm 

  

621 nm 

  

7-4 609 nm 

  

586 nm 

  

7-5 605 nm 

  

584 nm 

  
 

Table 7.7. NTOs of the optimized 1st triplet state. All excited state calculations were done with 

the PBE1 functionals with LAN2DZ/6-31G* basis set and toluene as a solvent. 

T1 
Hole Electron 

7-1 

1121 nm 

  
7-2 

1192 nm 

  
7-3 

1122 nm 

  
7-4 

1143 nm 

  
7-5 

1143 nm 
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7.3.3. Transient absorption (TA)   

To further understand the triplet excited state characteristics of 7-1 − 7-5, especially the 

non-emitting T1 states in these complexes, nanosecond TA were collected in deaerated toluene at 

room temperature.  The TA spectra of 7-1 − 7-5 at zero-time delay upon 355-nm excitation are 

presented in Figure 7.5.  The TA parameters, such as the TA band maxima, triplet excited−state 

lifetimes and quantum yields, and triplet extinction coefficients, are compiled in Table 7.1.  Fitting 

of the TA signals revealed a long-lived species (ca. 28-55 s).  In addition, the TA spectral features 

of 7-1 − 7-5 were similar, with ground-state bleaching arising from the BODIPY-NHC localized 

1IL absorption. These spectra are also similar to that of the iodo-BODIPY reported in the 

literature.75 Therefore, the triplet excited states that produced the observed TA should have the 

same nature for all of the complexes, likely from the BODIPY localized 3,* state.  The lifetimes 

of 7-1 − 7-5 obtained from the decay of the TA signals are distinctively different from their 

emission lifetimes, indicating that the excited states observed by TA in these complexes are 

different from their emitting excited states.  The long TA lifetimes were assigned to excited states 

with 3,* characters. The NTOs for T1 states in Table 7.5 confirmed that the T1 states for these 

complexes are of 3,* configuration and localized exclusively on the BODIPY motif. 
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Figure 7.6. Nanosecond transient difference absorption spectra of complexes 7-1 − 7-5 in toluene 

at room temperature immediately after 355 nm laser pulse excitation. A355 = 0.4 in a 1-cm cuvette. 
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7.3.4. Singlet oxygen generation 

7-3 and 7-5 were designed with oligoether substituents as R3 (Chart 7-1) to increase the 

hydrophilicities of these neutral Ir(III) NHC complexes for improved aqueous solubility (which is 

a desirable property for in vitro biological testing). Our detailed photophysical and computational 

analyses of 7-3 and 7-5 (compared to their corresponding methyl-substituted 7-2 and 7-4 relatives) 

indicated that the addition of the oligoether groups did not alter the general excited state dynamics 

observed for these systems. Therefore, the more water-soluble 7-3 and 7-5 were further 

investigated for their photobiological activities.  

The abilities of 7-3 and 7-5 to generate singlet oxygen (1O2) were assessed as quantum 

yields for 1O2 production (∆) in MeCN relative to [Ru(bpy)3](PF6)2 as the standard (∆ = 56%). 

The direct method was employed, whereby sensitized 1O2 was detected by its phosphorescence 

centered at 1268 nm. MeCN was used as the solvent since 1O2 phosphorescence is quenched in 

aqueous solution.76 The value of ∆ for 7-3 was near 37% and largely independent of excitation 

wavelength, whereas that for 7-5 ranged from 8-22% as a function of excitation wavelength. 

Excitation at 352, 450, and 534 nm yielded values for ∆ of 11, 22, and 8%, respectively. 

7-3 was the more efficient 1O2 generator at all wavelengths investigated, which could be 

attributed, in part, to the fact that its quantum yield for triplet state formation is larger (51 versus 

40%). Clearly, the substitution position of the BODIPY chromophore, either on the meso-phenyl 

versus the benzimidazole portion of the NHC ligand, impacts the excited state dynamics and 

photophysical properties of the complexes. These structural differences may, therefore, be 

expected to also alter their photobiological properties. 
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7.3.5. Cytotoxicity and photocytotoxicity toward cancer cells  

Based on their abilities to generate 1O2 under cell-free conditions, albeit with modest 

efficiency, it was anticipated that both 7-3 and 7-5 would give rise to in vitro photobiological 

effects. The human melanoma cell line SKMEL28 was used to probe the cytotoxicities and 

photocytotoxicities of 7-3 and 7-5. Briefly, cells were dosed 1 nM-300 µM of 7-3 or 7-5 (dissolved 

in water supplemented with 10% DMSO (v/v) and serially diluted with phosphate buffered saline 

(PBS)) and incubated for 16 h before receiving a dark treatment or a light treatment. The 

illumination condition was 100 J cm-2 of either broadband visible or monochromatic red (625 nm) 

light. After a dark or light treatment, the cells were incubated for 48 h, treated with the resazurin 

cell viability indicator,77 and incubated an additional 2–4 h. The relative cell viabilities for the dark 

and light treatments of cells dosed with compound were quantified by the metabolic reduction of 

resazurin to its fluorescent product resorufin (Figure 7.6, Table 7.8). 

Table 7.8. Comparison of EC50 values (M) for SKMEL28 cancer cells dosed with complexes 7-

3 and 7-5. 

SKMEL28 cells 

 Dark Visa PIb Redc PIb 

7-3 > 300 9.66 ± 0.28 >31 53.7 ± 2.1 >6 

7-5 20.2 ± 1.3 0.15 ± 0.01 135 13.0 ± 0.1 2 
aVis−PDT: 16 h drug-to-light interval followed by 100 J cm−2 broadband visible light irradiation, 
bPI = phototherapeutic index (ratio of dark EC50 to visible-light EC50), 

cRed-PDT: 16 h drug-to-

light interval followed by 100 J cm−2 light irradiation with 625 nm LEDs. 

 

 
Figure 7.7. In vitro dose-response curves for complexes 7-3 (left) and 7-5 (right) in SKMEL28 

cells treated in the dark (black) and with visible (blue) or red (red) light activation. 
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7-3 was nontoxic toward SKMEL28 cells (EC50 >300 µM), while 7-5 was substantially 

more cytotoxic (EC50 = 20 µM). With broadband visible light activation, both compounds were 

photocytotoxic. The photocytotoxicy of 7-5 was submicromolar, with an EC50 value of 150 nM 

and PI of 135, while the visible-light EC50 value for 7-3 was approximately 10 µM and its PI was 

31. The photocytotoxicities of both compounds with red light were substantially attenuated (5-fold 

for 7-3 and over 85-fold for 7-5), giving rise to much smaller PI values (6 for 7-3 and 2 for 7-5). 

Despite having much higher cytotoxicity in the dark, 7-5 was the better in vitro 

photosensitizing agent according to both the magnitude of its photocytotoxicity and its 

phototherapeutic margin. This was initially surprising since the value of ∆ for 7-3 was 

significantly larger than that for 7-5. This discrepancy could be due to differences in 1O2 production 

under cell-free conditions versus the in vitro experiment, or that reactive oxygen species (ROS) 

other than 1O2 may be involved in the phototoxic mechanism.   

To probe for the involvement of ROS, more broadly defined, as a possible source of the 

photocytotoxic activity for 7-3 and 7-5, SKMEL28 cells were preincubated with the cell-

permeable and highly sensitive 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorogenic 

dye before performing (photo)cytotoxicity assays (Figure 7.7). The compounds were tested in the 

range of 4 pM to 126 µM, and a sub-lethal light dose of 50 J cm-2 broadband visible light was used 

for the light condition with a reduced incubation time of 30 min between compound addition and 

light treatment. DCFDA is deacetylated by cellular esterases to a nonfluorescent compound, which 

is subsequently oxidized by ROS to the highly fluorescent DCF product that can be detected by its 

characteristic emission.78  ROS that can be detected by this method include superoxide anion (O2
•-

), hydrogen peroxide (H2O2), hydroxyl radical (HO•), and singlet oxygen (1O2), which react 

directly or indirectly with the deacetylated probe.79 
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Figure 7.8. Reactive oxygen species assay results for SKMEL28 cells treated with 7-3 (a), 7-5 (b), 

or the positive control tert-butyl hydrogen peroxide TBHP (c) using DCFH-DA as a ROS probe.  

Cells were treated in the dark (black bars) or with 50 J cm-1 visible light (blue bars). ROS 

production was measured at 120 min post-treatment. 

 

Dark treatments were included to quantify baseline ROS levels under the assay conditions 

for comparison, and tert-butyl hydrogen peroxide (TBHP) was used as a positive control (Figure 

7.7c). The signal produced by TBHP was relatively weak, but sufficient, owing to the short 

incubation that was necessary to ensure a sub-lethal treatment with photoactivated 7-3 and 7-5. 

ROS generation with 7-3 in the dark was minimal at all concentrations tested, while cells treated 

with 7-5 in the dark showed elevated ROS levels at concentrations greater than 1 µM. This 

observation may account for the cytotoxicity induced by 7-5 in the absence of a light trigger, 

whereby 7-5 was at least 15 more cytotoxic (in the dark) than 7-3. 

Light-treated complexes 7-3 and 7-5 increased the detected fluorescence from the DCF 

product in a dose-dependent manner over the dark controls and also in comparison to the positive 

control THBP (Figure 7.7). The highest concentration of light-treated 7-5 (126 µM) showed a 

slight decrease in the DCF fluorescence relative to the second highest concentration (39 µM). This 

attenuation is typical when the cells begin to lose viability, which is why it is important to choose 

a sub-lethal dose for ROS quantification. 7-5 produced significantly more DCF fluorescence than 

7-3 at the highest concentrations tested. Therefore, the much larger PI measured for 7-5 (compared 

to 7-3) may stem from its more efficient light-mediated ROS production. Which ROS is most 

important for the photocytotoxicity invoked by 7-5 is not known at this time, although we 
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hypothesize that ROS other than 1O2 may be involved based on the lower value of  ∆ measured 

for 6-5 under the cell-free condition. 

Confocal microscopy was used to observe the qualitative effects of 7-3 and 7-5 on 

SKMEL28 cells with a dark or visible light treatment of 50 J cm-2 (Figure 7.8). A concentration of 

50 µM was chosen because a marked difference in the dark cytotoxicity of 7-3 and 7-5 at this 

concentration was anticipated (since 50 µM is greater than the dark EC50 value of 7-3, but not of 

7-5). The light treatment was chosen to be 50 J cm-2 (half the dose of the cell cytotoxicity assays) 

and imaging was done at 15 min post-treatment to ensure that cells were imaged under sub-lethal 

conditions, where a comparison of cellular morphologies and uptake might be made. 

The differences in the 3MLCT emission quantum yields for 7-3 and 7-5 were apparent in 

the dark confocal images, where cellular uptake by 7-3 was detectable as a very weak signal but 

no signal was detected for 7-5. Qualitatively, there appeared to be more cellular debris from dead 

and dying cells treated with 7-5 in the dark (Figure 7.8a, bottom row) but emission was not 

detected. Both compounds caused a general change in the morphology of a large fraction of the 

cells treated in the dark, from the typical elongated and spindle shape to spherical.  

With light activation, intracellular emission from 7-3 was much more pronounced (Figure 

7.8b, top row). If the signal intensity is proportional to concentration, then photoactivated uptake 

of 7-3 results in accumulation in the cytoplasm and mitochondria but not in the nuclei. 

Interestingly, 7-5 produced luminescence in the cellular debris from dead and dying cells that were 

treated with visible light and very faint luminescence from the intact cells. Images of cells treated 

with 7-3 and light did not exhibit the dark clumps of cellular debris that were observed in the 

images of 7-5, possibly reflecting the differences in photocytotoxicities of these two compounds. 
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Photoactivated uptake also led to a larger concentration of 7-5 in cells (assuming that signal 

intensity is proportional to concentration), making its detection possible. Given that luminescence 

from 7-3 is almost five-fold more efficient than that from 7-5 (and this difference could be 

magnified in cells), the confocal imaging experiment cannot definitively establish that cellular 

uptake of 7-3 higher than 7-5. It would be expected that the higher dark toxicity of 7-5 would be 

correlated with better cellular uptake, but additional intracellular compound quantification 

methods were not carried out as part of this study. 

 
Figure 7.9. Laser scanning confocal microscopy images of SKMEL28 cells dosed with 50 M 7-

3 (top row) or 7-5 (bottom row) in the dark (a) or with 50 J cm−2 visible light (b). 

 

7.3.6. Cytotoxicity and photocytotoxicity toward bacteria  

The antimicrobial photobiological activities of 7-3 and 7-5 were also assessed using 

Streptococcus aureus (S. aureus) growing as planktonic cultures (Table 7.9, Figure 7.9). The 

compounds were tested at concentrations between 0.4 and 100 µM, and the light treatments were 

approximately 35 J cm-2 of visible light. Despite showing photobiological activity against 

SKMEL28 melanoma cells, 7-3 was inactive active against S. aureus both in the dark and with a 

light treatment. On the other hand, 7-5 was nontoxic to S. aureus in the dark but phototoxic with 

a visible light EC50 of approximately 7 µM (PI > 15). The observation that 7-3 was less 

photobiologically active (inactive) than 7-5 against S. aureus agreed with the trend in cancer cells, 
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further highlighting the discrepancy between the 1O2 quantum yields and phototoxicities for these 

two compounds. It appears that ROS other than 1O2 are also important for the phototoxic 

mechanism against S. aureus. Why 7-5 might be a better ROS generator than 7-3 is not known at 

this time, but the substitution position of the BODIPY unit on the NHC ligand plays a major role 

in determining the biological and photobiological activities against the cell lines investigated in 

this study. 

 

Table 7.9. Comparison of EC50 values (M) for streptococcus aureus dosed with 7-3 or 7-5. 

streptococcus aureus 

 Dark Visa PIb 

7-3 >100 >100 - 

7-5 >100 6.67 ± 0.07 >15 
aVis−PDT: 35 J cm−2 broadband visible light irradiation; bPI = phototherapeutic index (ratio of 

dark EC50 to visible-light EC50). 

 

 
Figure 7.10. Bacterial cell survival dose-response bar graphs for complexes 7-3 (a) and 7-5 (b) 

in Streptococcus aureus, treated in the dark (black) or with 35 J cm-1 visible (blue) light. 

 

7.4. Conclusions 

New neutral iridium(III) complexes bearing BODIPY-substituted NHC ligands are 

reported.  Their photophysical characteristics were systematically investigated via spectroscopic 

methods and DFT calculations.  All complexes exhibited BODIPY-localized intense 1IL/1MLCT 

absorption at 530-543 nm and 1IL/3CT emission at 582-610 nm.  However, the lowest triplet 
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excited state of these complexes are the BODIPY−localized 3,* states.  It was demonstrated that 

the position of the BODIPY pendant on the NHC ligand impacted both the 1IL/1MLCT absorption 

and 1IL/3CT emission bands.  Complexes 7-1 and 7-3, with the BODIPY-ethynyl motif attached 

at C4 of the phenyl ring of the NHC ligand, caused a red-shift of the 1IL/1MLCT absorption and 

1IL/3CT emission bands compared to those in 7-4 and 7-5 that have BODIPY-ethynyl at C5 of the 

benzimidazole unit of the NHC ligand.  Meanwhile, both the lowest singlet excited state and the 

emitting states of 7-1 were lowered compared to those in 7-2, due to the extended π−conjugation 

induced by the ethynyl linker in 7-1.  In contrast, replacing the methyl substituents on C3 of 

benzimidazole in complexes 7-1 and 7-4 by oligoether substituents in 7-3 and 7-5, respectively, 

did not impact the energies of the lowest singlet and emitting excited states in the corresponding 

complexes. 

7-3 and 7-5 were photobiologically active toward SKMEL28 melanoma cells with visible 

light activation, with 7-5 possessing a much larger PI and higher photocytotoxicity. The 

photobiological trends in cancer cells did not correlate with cell-free 1O2 quantum yields. The 

DCFDA assay for intracellular ROS detection showed that 7-5 was much more effective at ROS 

production. 7-5 was also photobiologically active toward S. aureus, while 7-3 was not. Therefore, 

ROS other than 1O2 may play a role in the phototoxic mechanism toward both cancer cells and 

bacterial cells. These studies indicate that the substitution position of BODIPY on the NHC ligand 

plays a profound role in the cytotoxicity and photocytotoxicity of this new class of complexes. C4-

phenyl substitution of BODIPY compared to substitution at C5 of benzimidazole leads to lower 

1O2 quantum yields but more effective production of other ROS. Obviously, the impact of 

BODIPY substitution position at the NHC ligand is more pronounced on the photobiological 

activities than on the photophysical properties. Future studies are aimed at expanding this 



 

281 

structure-activity relationship in this new class of neutral Ir(III) NHC complexes, identifying the 

ROS mediator for phototoxic effects, and probing the photobiological activities against a larger 

number of cancer cell lines. 
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