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ABSTRACT 

Pre-Charge Half Buffers (PCHB) and NULL convention Logic (NCL) are two major 

commercially successful Quasi-Delay Insensitive (QDI) asynchronous paradigms, which are 

known for their low-power performance and inherent robustness. In industry, QDI circuits are 

synthesized from their synchronous counterparts using custom synthesis tools. Validation of the 

synthesized QDI implementation is a critical design prerequisite before fabrication. At present, 

validation schemes are mostly extensive simulation based that are good enough to detect shallow 

bugs, but may fail to detect corner-case bugs. Hence, development of formal verification 

methods for QDI circuits have been long desired. The very few formal verification methods that 

exist in the related field have major limiting factors. This dissertation presents different formal 

verification methodologies applicable to PCHB and NCL circuits, and aims at addressing the 

limitations of previous verification approaches. The developed methodologies can guarantee 

both safety (full functional correctness) and liveness (absence of deadlock), and are 

demonstrated using several increasingly larger sequential and combinational PCHB and NCL 

circuits, along with various ISCAS benchmarks.  
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1. INTRODUCTION 

1.1. Background 

Over the last few decades, the synchronous domain has evolved enormously with the 

industry demands in terms of technology scaling, high frequency operations, and attaining multi-

functionality. Extensive research works over a period of time have resulted in the development 

of advanced support tools and automated design processes to significantly improve the 

productivity of designers in the related field. As a result, today’s digital design industry is 

dominated by the clocked approach. Although the synchronous design has led to dramatic 

progress, it has hit major limitations. As the operating frequency gets into Giga-Hertz (GHz) 

region, clock management becomes a fundamental design challenge, and surfaces several clock 

related issues, such as, clock skew, clock jitter, timing closure, clock distribution, etc. The 

foundation of synchronous design is based on the clock as reference, where all subcomponents 

observe the clock propagation almost at the same time with certain reasonable approximations. 

Previously, concepts, like wire delays, were not taken into design consideration for mid-

frequency operations, as wire delays were significantly smaller as compared to clock period. 

However, at GHz level the wire delays add to the clock period significantly to an extent that 

certain component(s) may get out of ‘sync’ because of reiteration, resulting in a malfunction [1]. 

Therefore, in recent synchronous design trends, addressing the timing violations have turned out 

to be designers’ nightmare, even for a single chip design. An additional circuitry, called the clock 

driver, is used to manage the clock skew in high performance digital designs, which is 

responsible for attaining acceptable skew during circuit operation. The clock driver is a complex 

design and results in significant area overhead. However, there is a limit on how much area 



 

2 

overhead is acceptable, as a larger chip area further increases the interconnect delays, and with 

faster clocks the skew may even get worse if not designed with precision. 

Power dissipation is another paramount design challenge in the synchronous domain. 

High speed clocks result in increased switching activities in gates, deteriorating the power 

performance. For example, the largest arrangement of gates is the clock driver unit, which is 

always on and constantly switching even if no other parts have any task to perform. Moreover, 

higher level of integration in nanoscale devices adds significantly to the power dissipation. The 

leakage power consumption that was previously ignored for being too negligible, turns out to be 

a huge source of power loss in nanoscale designs. Process variability becomes another 

contributor to design challenges for designs with small feature size, resulting in design 

compromises, such as, stretching of timing margins in static timing analysis [2]. 

Asynchronous design, on the other hand, is a clockless approach. The absence of clock 

results in significantly less power consumption, noise, and Electro-magnetic Interference (EMI). 

Additionally, it also eradicates the clock skew, clock jitter, glitches, and wire delay issues. The 

synchronization and communication between the components are established using a 

handshaking mechanism. Unlike synchronous design, the system only switches when some tasks 

are to be performed, providing significantly improved power performance. Asynchronous 

structures are robust against process, voltage and temperature (PVT) variations, which enables 

desired tradeoff between power performance, voltage supply, and speed of operation depending 

on the design requirement. Furthermore, the tolerance against PVT variations make this domain 

an excellent choice for operations in extreme environmental conditions. 

Because of the inherent advantages over synchronous domain, asynchronous design has 

gained popularity in the industry over the last two decades as evidenced by the International 
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Technology Roadmap for Semiconductors (ITRS). According to the ITRS, asynchronous circuits 

currently comprise around 32% of Integrated Circuit (IC) logic, compared to 20% in 2013, and 

estimates that they will account for over 50% of the multi-billion dollar semiconductor industry 

by 2027 [3].  

Asynchronous circuits are very complex designs. Dual rail encoding, hysteresis, 

registration, and handshaking circuits add to the design complexity and increase the area 

overhead. However, the area overhead may be overlooked considering the increased robustness 

and ultra-low power applications. In addition, asynchronous paradigm is relatively new to the 

mainstream semiconductor industry, and therefore lacks advanced support and verification tools. 

Although there have been several tools that can automate the synthesis of asynchronous circuits 

form synchronous specification [4, 5, 6, 7, 8], developing verification methodology for different 

asynchronous models still remains an open challenge.  

1.2. Motivation 

Formal modeling and verification for design validation is a critical component of any 

commercial ASIC design flow. In formal methods, the correctness of operation is established 

using mathematical proofs. This allows formal methods to detect and flag corner-case bugs, as 

proof can correspond to a large set of possible test cases. Extensive simulation based testing 

schemes have been predominantly what has been used in the semiconductor industry before the 

infamous Intel FDIV bug incident. In 1994, Intel had to incur a loss of about $500 million, when 

a bug in the floating point unit of their premium processor went unnoticed through extensive 

testing, and only got detected after deployment. Since then, the semiconductor industry has 

aggressively incorporated formal verification into its design cycle for validation. Presently, 
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testing and formal verification are implemented independently and complement each other to 

ensure complete functional correctness. 

Although asynchronous design has managed to establish a growing interest in the 

industry and found numerous applications, the domain is still relatively new. The scopes of 

formal verification in asynchronous designs are not widely explored. Design validation is mostly 

simulation-based, which cannot guarantee full functional correctness. Therefore, formal 

verification methods applicable to different asynchronous models have been long desired in the 

industry. The work presented in this dissertation is an effort to address this issue to aid the 

widespread implementation of the clockless approach. 

The verification methods developed and illustrated in this dissertation are applicable to 

Quasi-Delay Insensitive (QDI) asynchronous circuits, which is one of the two commercially 

successful asynchronous design paradigms. There exists very few verification methods for QDI 

circuits; and existing methods have several drawbacks. The goal of the work is to develop 

unified, fast, and scalable verification methods for QDI circuits by addressing the issues and 

overcoming the limitations of already existing schemes. 

1.3. Research Challenges 

In industry, QDI circuits are often synthesized from their synchronous counterparts 

utilizing Computer Automated Design (CAD) tools that cause the specification to undergo 

numerous transformations and optimizations, resulting in an asynchronous implementation. Any 

error in the synthesis tools will eventually result in an implementation error and is required to be 

detected. However, this task is not easy because of the huge structural dissimilarities between 

synchronous specification and asynchronous implementation. Traditional synchronous designs 

are deterministic in nature. Because of a reference clock, all the states in a design change 
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concurrently. Hence, the verification turns out to be a relatively straightforward process of 

inspecting the delays of combinational units in between registers. Whereas, QDI asynchronous 

paradigms are more non-deterministic (e.g., inputs can start propagating through the circuit at 

any time and in any order, unlike synchronous circuits where all inputs start propagating through 

the circuit at the same time at a predetermined clock edge), which makes them very difficult to 

verify. Multi rail logic, arbitrary availability of data, hysteresis in combinational units, and 

intricate handshaking control mechanism add further to the verification complexity.  

1.4. Dissertation Overview 

This dissertation is divided into five main chapters. A detailed overview of QDI 

background, major QDI paradigms: Pre-Charge Half Buffers (PCHB) and NULL Convention 

Logic (NCL), and review of related verification works are presented in Chapter 2. Developed 

formal modeling and verification methodologies based on model checking and equivalence 

checking for QDI PCHB circuits are discussed in Chapter 3. Chapter 4 presents the developed 

verification methodology for QDI NCL circuits, followed by conclusions and directions for 

future work in Chapter 5. 
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2. OVERVIEW OF ASYNCHRONOUS DESIGN METHODS 

Asynchronous circuits can be grouped into two major categories: bounded-delay model 

and delay-insensitive model. The key difference between the two categories are on their 

assumption on delays in gates and wires. Bounded-delay models are based on the assumption 

that the delay in gates and wires are bounded. Therefore, delays are added to avoid hazard 

conditions based on the worst-case scenarios, which results in an extensive timing analysis to 

guarantee correct functional operation of the circuit. Micropipelines [9], Huffman circuits [10], 

and burst-mode circuits [11] are some of the popular circuits based on bounded-delay model of 

asynchronous design. On the other hand, Delay-Insensitive (DI) circuits do not assume the 

delays on interconnects and gates. However, no practical circuits are possible due to lack of 

expressible conditionals in DI circuits [12]. Hence, Quasi-Delay Insensitive (QDI) circuits are 

used for practical use, which is based on an assumption that the wire forks within basic 

components, such as full adder and half adder, are isochronic; i.e., the wire delays within 

components are less than the logic element delays within the components. Interconnects between 

components are not required to follow the isochronic fork assumption. All the practical Delay-

Insensitive circuits are essentially Quasi-Delay Insensitive. QDI model has two major advantages 

over bounded-delay model: 1) it requires very little timing analysis to ensure correct 

functionality, and 2) yields average case performance; whereas, bounded-delay model as well as 

synchronous paradigms yield worse case performance. As this research focuses on QDI 

asynchronous model, bounded-delay models are not addressed further. 

2.1. QDI Paradigms: An Overview 

Seitz’s [13], Anantharaman’s [14], Singh’s [15], Delay Insensitive Min-term Synthesis 

(DIMS) [16], and David’s [17] methods are popular designs based on gate-level delay 
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insensitivity. All these methods utilize C-elements [18] along with Boolean gates to attain delay 

insensitivity. For an n-input C element, when all of the n-inputs assume a particular value then 

the output assumes the same value, otherwise the output remains unchanged. Fig. 1 shows the 

structure and behavior of a 2-input C-element. The output, C, becomes ‘1’/ ‘0’ when A=B= ‘1’/ 

A= B= ‘0’, otherwise it holds the previous value.  

C
A

B

C

A

B

C

1

1

1

0

0

0

1

1

1

0

00

 

Figure 1. C-element Functionality. 

In Seitz’s method, both rails of individual inputs go through an OR gate. The function is 

implemented by generating all the minterms in sum-of-product (SOP) form; which is further 

combined with the OR network using a C-element, to generate the final outputs. Anantharaman’s 

and DIMS methods also require the generation of all minterms; whereas, Singh’s and David’s 

methods do not require the generation of all minterms. Delay insensitive functionality is attained 

by combining smaller self-timed logic components in Singh’s method. In David’s method, four 

subnets, ORN, CEN, DRN, and OUTN, are utilized to construct self-timed logics. ORN is an OR 

network, outputs of which are inputs to n-input C element, CEN. OUTN is the network that 

produces the circuit outputs. OUTN consists of 2m 2-input C-elements, where ‘m’ is the number 

of outputs. One of the 2 inputs of the C-elements is the output of CEN, while the other input is 

the output of DRN, which is an implementation of individual rail of dual-rail outputs.  

NULL Convention Logic (NCL) [19] circuits do not rely on C-elements only, instead this 

paradigm has a library of 27 threshold gates with state-holding capacity, which can implement 
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any function with maximum four variables. This results in more design flexibility and scopes of 

optimization in NCL design flow. Phased Logic [20] is another delay-insensitive method that 

does not require the generation of full minterms set. The method transforms synchronous circuits 

to delay-insensitive versions, and was developed to ease the timing constraints. Pre-Charge Half 

Buffers (PCHB) [21] circuits are based on dynamic logic, and are synthesized at transistor level, 

unlike the above mentioned methods that are synthesized at the gate level. Common PCHB gates 

include typical Boolean functions and components (e.g., AND, NAND, OR, NOR, XOR, FA, 

HA, etc.) that are utilized in combination with C-elements to attain circuit functionality. Like 

NCL, PCHB also provides design flexibility to certain extent. 

2.2. QDI Background 

QDI circuits have three distinguishing features that sets them apart from their 

synchronous counterparts, which are discussed below: 

1. Utilization of Multi-rail Logic:  In synchronous circuits, data is encoded using binary 

with each bit represented by a single wire, while QDI uses multi-rail logic to represent a bit of 

data. This is because QDI uses symbolic completeness of expression [19] to achieve self-timed 

behavior, unlike traditional Boolean logic that are symbolic incomplete. A symbolic complete 

expression does not take the time of evaluation into consideration, rather depends on the 

relationships of the symbols present in the expression. In order to attain the symbolic 

completeness, QDI uses dual-rail or quad-rail logic. In case of dual-rail logic, a dual-rail signal 

D, is represented by two wires, D0 and D1. D can be either DATA0, DATA1 or NULL, as can be 

seen from Table 1. DATA0 and DATA1 corresponds to Boolean logic ‘0’ and ‘1’, respectively. 

Both rails being de-asserted corresponds to a NULL state, which represents the unavailability of 

DATA. D0 and D1 are mutually exclusive, i.e., D0 and D1 cannot be asserted simultaneously. 
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Table 1. Dual-Rail Signal Representation. 

Value D1 D0 Boolean Equivalent 

NULL 0 0 __ 

DATA0 0 1 Logic 0 

DATA1 1 0 Logic 1 

Illegal 1 1 XX 

 

 In case of quad-rail representation, a quad rail signal, Q, is represented using four wires, 

Q0, Q1, Q2, and Q3. Q can be either DATA0, DATA1, DATA2, DATA 3, or NULL, as can be seen 

from Table 2. Each DATA signal corresponds to two Boolean logic signals, X and Y. DATA0, 

DATA1, DATA2, and DATA3 state correspond to (X = 0 and Y = 0), (X = 0 and Y = 1), (X = 1 and 

Y = 0), and (X = 1 and Y = 1), respectively. All four rails being de-asserted corresponds to a 

NULL state, which represents the unavailability of DATA. Q0, Q1, Q2, and Q3 are mutually 

exclusive, i.e., any 2 wires cannot be asserted simultaneously. 

Table 2. Quad-Rail Signal Representation. 

Value Q3 Q2 Q1 Q0 Boolean Equivalent 

NULL 0 0 0 0 ____ 

DATA0 0 0 0 1 Logic 00 

DATA1 0 0 1 0 Logic 01 

DATA2 0 1 0 0 Logic 10 

DATA3 1 0 0 0 Logic 11 

 

2. Incorporates registration: QDI circuits have functional units/ combinational units as 

well as registration units. The registration and computation units are either separated (in case of 

NCL) or integrated together (in case of PCHB). The registration units for both NCL and PCHB 

are discussed in details in the later subsections. 
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3. Handshaking Protocol: QDI circuits do not have any clock as a reference. Hence, to 

synchronize and communicate between components, QDI circuits incorporate a very well-

defined four-phased handshaking protocol utilizing the previously mentioned multi-rail data 

along with a handshaking signal. Completion detection units are used to detect whether the 

multi-rail signals are DATA or NULL. Fig. 2 shows the high level representation of the four-

phase handshaking protocol. In Phase 1, the data channel is in the NULL state, and the receiver 

requests data by asserting the handshaking signal. In Phase 2, data is sent by the sender after 

receiving the handshaking request by setting the data channel to DATA. In Phase 3, the receiver 

gets the data and acknowledges this by deasserting the handshaking signal. In Phase 4, the sender 

resets the data channel back to NULL after receiving the handshaking acknowledgement. After 

the receiver sees NULL on the data channel, it can request the next data by asserting the 

handshaking signal, which is Phase 1 again. The implementation of the handshaking mechanism 

for different QDI paradigms is discussed in details afterwards. 

 

 

 

 

Figure 2. Four-phase Handshaking Protocol. 

2.3. QDI Paradigms 

NCL and PCHB are two major QDI design paradigms. Both paradigms are commercially 

successful and have been utilized in a number of applications by several semiconductor 

industries, including Intel, Achronix, Phillips, Eta-compute, Camgian/Theseus Logic, etc. Intel 

uses PCHB technology to produce fast Ethernet switch chips, whereas Achronix develops high-

speed-low-power asynchronous Field Programmable Gate Arrays (FPGAs) based on 

Sender ReceiverData Channel (DC)

Handshaking 

Signal (HS)

DC
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NULL DATA DATA NULL NULL

Phase 1 Phase 2 Phase 4 Phase 1Phase 3
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synchronous interface with PCHB asynchronous core [22]. Camgian/Theseus Logic develops 

highly integrated mixed signal systems-on-chip (SOC) for wireless sensor nodes (WSNs), based 

on NCL [22].    

2.3.1. Pre-Charge Half Buffers (PCHB) 

As a QDI paradigm, PCHB circuits utilize multi-rail logic (most commonly dual-rail 

logic), incorporates registration units that are integrated with the functional unit, and includes a 

very well-defined handshaking scheme based on the four-phased mechanism, as discussed in 

section 2.2. Because of the integrated registration units PCHB circuits have state-holding 

functionality, known as hysteresis. Dynamic, semi-static, and static representation of PCHB 

circuits can be used to attain hysteresis. The dynamic approach is fastest, but not delay-

insensitive, because this approach relies on output capacitance to hold the previous state. It does 

not utilize a feedback, which results in loss of charge in the capacitor (i.e., the previous state) 

after a period of time. Therefore, the dynamic representation is not popular. Semi-static approach 

utilizes a weak-feedback inverter arrangement to hold previous state. Although the transistors 

need to be carefully sized to balance current, semi-static approach is the most popular PCHB 

design method. Static approach incorporates additional pull-up and pull-down network at the 

output for state-holding, making it more robust and impervious to process variation and supply 

voltage, but with an area overhead. The semi-static and static representation of PCHB circuits are 

discussed in this chapter. Dynamic approach is not discussed further because of its limited 

applications. 

2.3.1.1. Semi-static representation of PCHB circuits 

PCHB circuits are synthesized at the transistor level utilizing pre-charge domino style 

CMOS logic. Fig. 3 shows a semi-static template for a two-input PCHB gate. Inputs (X0, X1), (Y0, 
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Y1), and (Z0, Z1) are the two rails of dual-rail inputs, X and Y, and dual-rail output, Z, 

respectively. Every PCHB gates incorporate registration, i.e., the gate in addition to performing a 

logic function such as NAND, also stores the dual-rail output value, and therefore acts like a 

latch. The F block implements the specific logic function of the gate and the weak feedback 

inverters provide for latching. Control is accomplished using a handshaking protocol using 

Request (Rack) and Acknowledge (Lack) signals. LCD and RCD are the left and right 

completion detection units used to detect when the inputs and outputs respectively are DATA or 

NULL. The outputs of LCD and RCD go through a C-element to produce the Lack signal. When 

both inputs are NULL and the output is also NULL, then Lack will be asserted, requesting-for-

data (rfd). Similarly, when both inputs are DATA and the output is also DATA, Lack will be 

deasserted, requesting-for-NULL (rfn). The function evaluates and the output becomes DATA 

whenever both Lack and Rack are rfd and the X and Y inputs are DATA. Note that the output can 

become DATA before both inputs are DATA, depending on F. An example is the NAND gate 

function, where the output is logic 1 when either input is logic 0.  

F

C

LCD RCD

Lack

Rack

X
0

X
1

Y
0

Y
1

Z
0

Z
1

 

Figure 3. Semi-static PCHB Function Template [21]. 
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 Based on the template in Fig. 3, Fig. 4 shows a 2 input PCHB NAND gate with dual-rail 

inputs and outputs, X and Y, and F, respectively. The Set functions are implemented to achieve 

NAND2 functionality (Set F0 = X1 AND Y1; Set F1 = X0 OR Y0). The two 2-input NORs 

connected to the rails of dual rail inputs correspond to the LCD, while the 2-input NOR 

connected to the output signal rails correspond to the RCD in Fig. 3. The TH33 threshold gate 

structure used as a C-element will be discussed in Section 2.3.2.1. The weak inverter 

arrangement is used to hold the output DATA until pre-charged back to NULL to attain delay-

insensitivity.  

3

F
0

F
1

Rack

Lack

Y
0

Y
1

X
0

X
1

Pre-charge to NULL

Evaluate 

Function

Set F
1

Set F
0

 

Figure 4. Semi-static Implementation of PCHB NAND2 Circuit [23].  

The mechanism of DATA and NULL transitions for the NAND2 gate with the help of 

Lack and Rack signals is discussed below: 

When Lack is logic 1 (rfd), the inputs will eventually become DATA; and when Lack is 

logic 0 (rfn), the inputs will eventually become NULL. The NAND function evaluates, and the 

output becomes DATA whenever both Lack and Rack are rfd and the X and Y inputs are DATA. 

If Rack is rfd and Lack is rfn, or vice versa, the state is held by the weak inverters. When Lack 
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and Rack are both rfn, the output is pre-charged back to NULL. Whenever the inputs and outputs 

are all DATA, Lack changes to rfn; and when the inputs and output are all NULL, Lack changes 

to rfd. 

PCHB gates can also include a reset input to initialize the gate’s data output to NULL, 

DATA0, or DATA1, and the gate’s Lack output to the appropriate value based on the data 

output’s reset value (i.e., logic 1 if reset to NULL, or logic 0 if reset to DATA). A reset-to-

NULL version of the NAND 2 gate (Fig. 4) is shown in Fig. 5. 

F0

F1

Rack

Lack

Y0

Y1

X0

X1

Pre-charge to NULL

Evaluate 
Function

Set F1Set F0

Cr1

Reset

Disable Evaluate 
during Reset

Reset-to-
NULL

Reset-to-
NULL

 

Figure 5. A Reset-to-NULL PCHB NAND2 Circuit. 

Resettable version of PCHB gates can be used to utilize the gate as register/latch as well, 

resulting in design optimization. For example, sequential PCHB circuits require at least 2N+1 

registers/latches in any feedback loop with N DATA tokens to avoid deadlock [24]. As PCHB 

gates themselves behave as latches, additional registers are not necessary if a feedback loop 

already contains enough PCHB gates. For example, if there are 3 or more PCHB gates in a 

feedback loop with 1 DATA token, then no additional registers are required. Additionally, a 
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feedback loop can never be all NULL (N) or all DATA (D). For example, in a feedback loop 

with 3 registers and 1 DATA token, (NNN) and (DDD) are illegal states, whereas any other of 

the 6 combinations are valid. PCHB registers operate the same as regular PCHB gates, described 

above, where the function is output = input. 

Handshaking logic between PCHB gates can be implemented using either full-word or 

bit-wise completion [25], or some combination of the two. Full-word completion requires that 

the Lack signal of each PCHB gate in leveli be conjoined by one or more C-elements to produce 

a single Lack signal, whose output is connected to the Rack signal of each PCHB gate in leveli-1, 

where a gate’s level is the longest path (in terms of number of PCHB gates) from the circuit’s 

primary inputs to that gate’s output. On the other hand, bit-wise completion only sends the 

completion signal from PCHB gate b back to each PCHB gate whose output is an input to gate b. 

2.3.1.2. Static representation of PCHB circuits 

The static representation template of any PCHB component is shown in Fig. 6. The 

circuit is comprised of set blocks and hold0 blocks for each rail of dual-rail outputs, and a sleep 

signal. Set block computes the function of each output rail, while the hold0 block is the 

complement of the set block. Sleep is generated by combining Rack and Lack through a C-

element and an inverter. Sleep gets asserted when Lack and Rack are both rfn, and the outputs 

become NULL. Sleep is deasserted when Lack and Rack are both rfd. Under this scenario, the 

output evaluates whenever the inputs become available. The output will again go back to NULL 

only when sleep is re-asserted. The output should hold its DATA value if sleep remains 

deasserted. 
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Figure 6. Static Implementation of PCHB Circuits [23]. 

To construct a static implementation of any PCHB component, e.g. a PCHB full adder, 

the set and hold0 blocks must be determined. From Fig. 7, we can observe that the set block 

functions for sum, S, are: S1 = X1Y1Cin1 + X1Y0Cin0 + X0Y1Cin0 + X0Y0Cin1, and S0= X0Y0Cin0 

+ X0Y1Cin1 + X1Y0Cin1 + X1Y1Cin0; set block function for carry, Co, are: Co1 = X1Y1 + X1Cin1 

+ Y1Cin1, and Co0 = X0Y0 + X0Cin0 + Y0Cin0. The hold0 blocks for sum and carry are: S1’ = 

X1’Y1’Cin1’ + X1’Y0’Cin0’ + X0’Y1’Cin0’ + X0’Y0’Cin1’; S0’ = X0’Y0’Cin0’ + X0’Y1’Cin1’ + 

X1’Y0’Cin1’ + X1’Y1’Cin0’; Co1’ = X1’Y1’ + X1’Cin1’ + Y1’Cin1’; Co0’ = X0’Y0’ + X0’Cin0’ + 

Y0’Cin0’. 
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Figure 7. Set Functions for Each Rail of Sum and Carry of a PCHB Full Adder. 
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Fig. 8 and Fig. 9 shows the static PCHB full adder sum and carry implementations, 

respectively. Some transistors are shared for area optimization. Generation of the sleep signal is 

shown in Fig. 10, which has a reset input that initializes the sleep signal to logic 0.  

 

Figure 8. Static Implementation of PCHB Full Adder Sum Circuit [23]. 

 

Figure 9. Static Implementation of PCHB Full Adder Carry Circuit [23]. 
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Figure 10. Generation of Sleep Signal for the PCHB Full Adder. 

2.3.2. NULL Convention Logic (NCL) 

Although NCL and PCHB are both QDI paradigms, both are structurally quite different 

from each other. The major distinguishing features are discussed below: 

1. In PCHB, registration and functional units are integrated together, as discussed in 

previous subsection. However, in NCL, the registration and functional units are 

separated and independent. 

2. NCL circuits are synthesized at the gate level; whereas, PCHB circuits are 

synthesized at transistor level. 

3. NCL circuits have a library of 27 threshold gates (discussed later in this section) to 

attain delay-insensitivity, while PCHB gates do not utilize threshold gates. Instead, 

there are PCHB versions of individual Boolean gates, which are used to construct the 

circuit functionality. 
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4. NCL only utilizes registration outputs to generate the acknowledge signal. PCHB, on 

the other hand, uses both the inputs and outputs of registration stage to generate the 

acknowledge signal. 

 Fig. 11 shows the NCL architecture framework, which is quite similar to the synchronous 

systems. Each NCL combinational unit exists between two NCL registers. The NCL registers 

control the flow of DATA/NULL with the help of request signal (Ki), acknowledge signal (Ko), 

and completion detection unit.  

NCL 
Combinational 

Unit

Completion 
Detection Unit

NCL Register NCL Register

N-BitsN-Bits

Ko Ki KiKo

Current 
Stage, CS

Next
 Stage, NS

CS-1
Stgae

NS+1
Stage

NN 11

 

Figure 11. NCL Architecture Framework. 

Adapted from [24]. 

The registration unit ensures that two different sets of DATA are always separated by a 

NULL wavefront through the Ki and Ko signals, establishing an alternating DATA, NULL, 

DATA, NULL… pattern. NCL combinational unit is comprised of threshold gates that construct 

a specific function. The completion detection unit detects whenever the NCL registration output 

is all DATA or all NULL. The complete flow of NULL and DATA in an NCL system is 

illustrated with the help of Fig. 12, 13, 14, and 15. One complete cycle corresponds to DATA 

flowing through the combinational logic (Fig. 12), followed by rfn flowing through the 

completion logic (Fig. 13), followed by NULL flowing through the combinational logic (Fig. 
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14), and then rfd flowing through the completion logic (Fig. 15). The flow of DATA/NULL and 

changes in Ki and Ko signals in each stage are highlighted in respective figures. The time 

required for a complete DATA/NULL propagation is similar to one synchronous clock cycle. 
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Figure 12.  DATA Flow through Combinational Logic. 

Adapted from [24]. 
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Figure 13.  rfn Flow through Completion Logic. 

Adapted from [24]. 
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Figure 14. NULL Flow through Combinational Logic. 

Adapted from [24]. 
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Figure 15. rfd Flow through Completion Logic. 

Adapted from [24]. 

2.3.2.1. NCL combinational unit 

The combinational unit is comprised of a combination of threshold gates from a library of 

27 fundamental gates with state-holding capacity [26]. There are two types of threshold gates: 

non-weighted and weighted. The non-weighted threshold gates are represented as THmn, where 

n is the number of inputs and m ([1, n]) is the threshold; i.e., at least m inputs are required to be 

asserted to assert the output of the gate. Fig. 16 shows a TH23 gate as an example with 3 inputs 

and a threshold value of 2. The threshold value is written inside the gate structure. As m=2, at 

least two inputs from A, B, and C need to be asserted to generate the output. Hence, the equation 

of a TH23 gate is AB+AC+BC. 

2
A

B
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Z

 

Figure 16. TH23 Gate as an Example of Non-weighted Threshold Gate. 

The weighted threshold gates are denoted as THmnWw1, w2… wR, where, wR (m  wR > 1) 

is the weight corresponding to input R. m and n are the threshold value and number of inputs 
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respectively. Fig. 17 shows the TH24w22 gate as an example. As the threshold value, m=2; 

therefore, at least 2 inputs need to be asserted to assert the output. However, input 1 and 2 (A and 

B) are weighted with (w1, w2) = 2; hence, even if only A (or B) is asserted then the output Z will 

be asserted. Similarly, C and D both need to be asserted to meet the threshold of 2, as C and D 

have weights of 1. Hence, the equation of a TH24W22 gate is A+B+CD. 
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Figure 17. TH24W22 Gate as an Example of Weighted Threshold Gate. 

 All the 27 fundamental threshold gates ensure that once the output is asserted, all the 

inputs must be deasserted to de-assert the output, which is imperative to attain delay-

insensitivity. Based on this behavior, a THnn gate is equivalent to an n-input C element, as 

output becomes logic 1/0 when all inputs are logic 1/0, otherwise, the output remains unchanged. 

In Fig. 4, the TH33 gate is used as a 3-input C element. NCL gates can also be designed with an 

additional reset input to initialize the output to either logic 0 or logic 1. A reset-to-1/reset-to-0 

threshold gate is denoted with a d/n following the gate threshold in the gate symbol.   

2.3.2.2. NCL registration unit 

A single bit dual-rail NCL register structure is depicted in Fig. 18. A single bit NCL 

register uses two TH22 gates. A register can be resettable to either NULL, DATA0, or DATA1 

by using resettable versions of the TH22 gates. For example, the register in Fig. 18 is reset-to-

NULL register as both the TH22 gates are reset-to-0 type (TH22n). Similarly, the register can be 

designed as reset-to-DATA0/ reset-to-DATA1 by replacing one of the TH22n gates with a 

TH22d gate, which produces output rail0/rail1 output of the register, as shown in Fig. 19.  
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Figure 18. NCL Single Bit Reset-to-NULL Register. 

Adapted from [24]. 
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(a)                                                          (b) 

Figure 19. (a) Reset-to-DATA0 NCL Register. (b) Reset-to-DATA1 NCL Register. 

 The TH22 gates allows the input DATA to pass to the output only when the request 

signal, Ki, is rfd (logic 1). When the output is DATA, the acknowledge signal, Ko, becomes rfn 

(logic 0), requesting NULL at the inputs. The output returns to NULL only when both the 
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register input is NULL and Ki is rfn. A N-bit NCL register is a combination of N single rail NCL 

registers with N dual-rail inputs, one reset, N Ki inputs, N dual-rail outputs, and N Ko outputs.  

2.3.2.3. NCL completion unit 

N Ko lines of N-bit NCL registers in a particular stage go through a completion unit, 

which is a tree structure comprising of C-elements (THnn gates). N Ko bits are converted to one 

bit with the help of the completion unit. The maximum number of inputs for a THnn gate is 4; 

hence, the number of logic levels in NCL completion unit for N-bit register is log4N. For 

example, for 16-bit registers in a stage, the completion unit will have 2 levels of THnn gate 

arrangement, as shown in Fig. 20. For full-word completion, the single bit output from the 

completion component is fed into the Ki inputs of all the previous stage registers.  
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Figure 20. 16-bit NCL Completion Unit. 

2.4. Related Verification Works 

Several formal verification techniques have been implemented to verify the two major 

asynchronous design paradigms: bounded-delay and QDI. As discussed earlier in this section, the 

bounded-delay model is based on the assumption that the delay in all circuit components and 
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wires is bounded, i.e., worse case delay can be calculated. Because of these timing constraints, 

most of the verification schemes for timed asynchronous models involve trace theory, Signal 

Transition Graph (STG) [27], and timed petri-nets. A Trace Theory based method [28] was 

proposed to verify various asynchronous circuits at the gate level, such as Huffman circuits and 

Muller circuits, where the circuit behavior is represented as sets of traces, and the correctness 

properties are modeled as petri-nets. An approach based on time-driven-unfolding of petri-nets is 

used to verify freedom from hazards in asynchronous circuits consisting of logic gates and 

Micropipelines [29]. However, timed-model based verification methods are not applicable for 

QDI circuits, which are based on exactly the opposite assumption, that circuit delays are 

unbounded and therefore indeterminate. 

There exist several verification schemes specific to QDI circuits as well. Verbeek and 

Schmaltz [30] illustrate a deadlock-verification scheme for QDI circuits based on the Click 

Library [31]. Circuits based on this primitive library are structurally different from other QDI 

paradigms, such as NCL and PCHB. Moreover, this method does not verify the functional 

correctness (safety) of the circuit. Refinement based formal methods have been successful in 

verifying both bounded-delay and QDI asynchronous models. Desynchronized circuits, which 

are based on a bounded-delay structure, can be verified by a refinement based approach, as 

discussed in [32]. [33] presents a method to check the functional equivalence of NCL circuits 

against their synchronous counterparts using WEB refinement [34]. However, this technique 

suffers from state space explosion, since they model the QDI circuits as TSs, which become very 

complex for large circuits due to the non-deterministic behavior of QDI paradigms.  

Input-completeness and observability are two critical properties of NCL circuits, which 

must be verified in order to ensure delay-insensitivity, since a circuit may function correctly 
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under normal operating conditions while not being input-complete or observable, but may then 

malfunction under extreme timing scenarios, such as those caused by process, voltage, or 

temperature (PVT) variations. Input-completeness is a condition that mandates the outputs to 

transition from NULL to DATA only after all the inputs have transitioned from NULL to DATA. 

Similarly, the outputs may transition from DATA to NULL only after all the inputs have 

transitioned from DATA to NULL. Observability is a condition ensures that every gate that 

transitions is necessary to transition at least one of the outputs. A manual approach to checking 

input-completeness is outlined in [24], which requires an analysis of each output term. For 

example, in order for output Z to be input-complete with respect to input A, every product term 

in all rails of Z (in SOP format) must contain any rail of A. This ensures that Z cannot be DATA 

until A is DATA, and if Z is constructed solely out of NCL gates with hysteresis, the gate 

hysteresis ensures that Z cannot transition from DATA to NULL until A transitions from DATA 

to NULL. Hence, Z is input-complete with respect to A. However, this method cannot ensure 

input-completeness of relaxed NCL circuits [35], where not all gates contain hysteresis. Also, 

scalability is a problem with this approach, as the number of product terms that need to be 

verified grows exponentially as the number of inputs increase. Kondratyev et. al. [36] provide a 

formal verification approach for observability verification, which entails determining all input 

combinations that assert gatei, then forcing gatei to remain de-asserted while checking that none 

of those input combinations result in all circuit outputs becoming DATA. This check is 

performed for all gates to ensure circuit observability; and if also applied to each circuit input 

(i.e., replace gatei with inputi in the observability check explanation), will guarantee input-

completeness. [37] illustrates an input-completeness verification method, which is not manual 
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and can ensure the input-completeness of relaxed circuits; also, proposes an observability 

checking approach that is very similar to [36]. 

There also exist some methods directly applicable to QDI PCHB circuits, as described 

below, but these also have major limiting factors. In [38], a reverse synthesis-based approach 

that creates a high-level specification from a PCHB circuit is presented; however, in case of a 

bug, the methodology does not address the issue of finding the error. For example, if the QDI 

circuit is buggy (e.g., a completion signal is missing in a completion network, such that under 

some extreme timing scenarios the QDI circuit will malfunction), it is not clear if/how this will 

be preserved in the reverse synthesized output. Also, [38] is only applicable to control circuits, 

not datapath circuits. In [39], Shih et. al. developed a deadlock verification scheme for sequential 

PCHB circuits that detects deadlocks by transforming the asynchronous pipeline into a Time 

Marked Graph, removing all edges containing initial tokens, and then detecting any remaining 

cycles (i.e., a deadlock free circuit should be acyclic after removal of all initial token edges). The 

method effectively identifies deadlocks in any sequential PCHB circuit; however, it does not 

address verification of the combinational logic (C/L), neither functionality nor handshaking 

connections. [39] assumes that their optimized synthesis method for generating a combinational 

PCHB circuit from its Boolean specification, presented in [40], is correct. For example, inversion 

in a handshaking signal within the C/L would cause deadlock, and swapped rails of a dual-rail 

signal would produce incorrect results, but not deadlock the system, neither of which would be 

detected by [39]. In [41], a testing method is proposed for template based asynchronous circuits. 

Testing can detect shallow bugs, whereas formal verification effectively finds corner case bugs, 

which is why testing and formal verification are implemented independently in industry. 
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Therefore, the goal of the research work presented in this dissertation is to develop 

formal methods and verification methods for QDI PCHB and QDI NCL circuits, which 

guarantee safety (functional correctness) as well as liveness (absence of deadlock) of the circuits. 

The developed verification methods are discussed in details in the next sections. 
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3. FORMAL MODELING AND VERIFICATION METHODS FOR QDI PCHB 

ASYNCHRONOUS CIRCUITS 

This chapter outlines the formal modeling and verification of QDI PCHB gates and 

circuits. The chapter provides a detailed description of the developed verification methodologies 

based on model checking and equivalence verification.  

3.1. Model Checking Based Verification Method 

 The methodology is implemented in two folds: 1) modeling the gates as Transition 

Systems (TSs), unlike Boolean gates that are modeled as Boolean functions, while circuit models 

are obtained by composing the gate TS; 2) developing formal property templates that can be used 

to capture the correctness of any PCHB circuit that corresponds to a combinational Boolean 

circuit. The property templates account for both safety (circuit outputs are functionally correct) 

and liveness (circuit is never deadlocked). 

3.1.1. PCHB Formal Gate Model 

Since PCHB gates have memory and implement a handshaking protocol, we have 

developed a TS to model the behavior of a gate. This TS is shown in Fig. 21 and is one of the 

key contributions. The state variables of the model are Lack, Rack, Din (represents all dual-rail 

data inputs), and Do (represents the dual-rail data output). Lack and Rack are Boolean variables. 

Din can have three values: D (valid DATA on all inputs); N (NULL value on all inputs); and PD 

(Partial DATA, meaning at least one of the inputs is not available, i.e., has a NULL value). 

Below are the rules to compute the initial state and state transitions. Do can be either D (DATA) 

or N (NULL). 
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Generic Rules to Compute PCHB Gate Transition Systems. 

1: Initialize: Lack =1, Rack=0, Din= N, Do =N  

2: (Rack=0 ˄ Do= N) → Rack= 1  

3: (Rack=1 ˄ Do = D) → Rack= 0  

4: (Lack=1 ˄ Din = N) → Din = PD  

5: (Lack=1 ˄ Din = PD) → Din = D  

6: (Lack=1 ˄ Rack=1 ˄ Din =D ˄ Do =N) → (Do =D)  

7: (Din = D ˄ Do = D) → Lack=0  

8: (Lack=0 ˄ Rack=0) → (Do =N)  

9: (Lack=0 ˄ Din = D) → Din = PD  

10: (Lack=0 ˄ Din = PD) → Din = N  

11: (Din = N ˄ Do = N) → Lack=1  

12: (Lack=1 ˄ Rack =1 ˄ Din = PD ˄ Do =N) → (Do =D) ** 

 

The data value attained by Do depends on the gate function. Otherwise, the TS shown in 

Fig. 21 can be used to model any n-input PCHB gate. Rule 12 corresponds to the case when 

Partial DATA is sufficient to compute the output of the gate function, (e.g., if one of the inputs 

has a value of 0 for a NAND gate, then the output will be 1 regardless of the other inputs). In 

such cases, the PCHB gate will compute the output even before the other input data values are 

available. ‘*’ represents intermediate states and the numbers in the TS correspond to the rules 

applied. The TSs of different PCHB gates were verified by performing Cadence transistor level 

simulation, changing one input in each step. 
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Figure 21. State Diagram of a PCHB n-input NAND Function. 

3.1.2. Proposed Methodology for Verification 

In model checking, the circuit to be verified is modeled as a TS and correctness 

properties are specified using a temporal logic. In the proposed approach, Computational Tree 

Logic (CTL) [42] is used to specify the correctness properties. A set of property templates is 

developed for PCHB circuits, which is the second contribution. The property templates can be 

used to verify any PCHB circuit that corresponds to a combinational Boolean circuit. Note that 

PCHB circuits themselves are not combinational as each gate incorporates registration and 

control in addition to logic function. The templates can be classified as a set of local templates 
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and one global template. The local templates are applicable locally to each PCHB gate, and 

check for liveness of the circuit, which is the absence of deadlock. The global template checks 

for safety, i.e., that under all circumstances, the circuit output is always correct. NuSMV model 

checker [43] is utilized to check the CTL properties of PCHB circuits, modelled as TSs, which 

does not require any modifications to NuSMV. As used in the properties below, AG stands for 

Always Global, which means that it is always true; A f1 U f2 means that f1 is always true until f2 

is true. 

3.1.2.1. Input properties 

P1: AG ((Din = D) ˄ Lack = 1 →A [(Din = D) U Lack = 0]).  

P2: AG ((Din = N) ˄ Lack = 0 →A [(Din = N) U Lack = 1]).  

P1 states that if all inputs are DATA and the acknowledge signal (Lack) is rfd, then the 

inputs will not change until Lack becomes rfn. Similarly, P2 states that if all inputs are NULL 

and Lack is rfn, the inputs will remain NULL until Lack becomes rfd.  

P3: AG ((Din = D) ˄ Lack = 0 →A [(Din = D) U ((Din = PD) ˅ Din = N))]).  

P4: AG ((Din = N) ˄ Lack = 1 →A [(Din= N) U ((Din = PD) ˅ Din = D))]).  

P3 states that if all inputs are DATA, they will eventually change to Partial DATA or 

NULL if Lack is rfn. Similarly, P4 states that if all inputs are NULL and Lack is rfd, they will 

eventually change to Partial DATA or DATA.  

P5: AG ((Din = PD) ˄ Lack = 1 → A [(Din = PD ˄ Lack = 1) U (Din = D)]).  

P6: AG ((Din = PD) ˄ Lack = 0 →A [(Din = PD ˄ Lack = 0) U (Din = N)]).  

P5 states that if the inputs are Partial DATA and Lack is rfd, the inputs will eventually 

become DATA; and P6 states that if the inputs are Partial DATA and Lack is rfn, the inputs will 

eventually become NULL. 
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3.1.2.2. Rack and Lack properties 

P7: AG ((Rack = 1) ˄ (Do = D) → A [(Rack = 1) ˄ (Do = D)) U Rack = 0]).  

P8: AG ((Rack = 0) ˄ (Do = N) → A [(Rack = 0) ˄ (Do = N)) U Rack = 1]). 

P7 states that whenever the output is DATA and the Request signal (Rack) is rfd (logic 

1), then Rack will eventually change to rfn (logic 0) to request NULL at the output. P8 states that 

if Rack is rfn and there’s a NULL at the output, Rack will eventually become rfd to request 

DATA at the output. 

P9: AG (Lack = 0 → A [(Lack = 0) U ((Din = N) ˄ (Do = N))]).  

P10: AG (Lack = 1 → A [(Lack = 1) U ((Din = D) ˄ (Do = D))]). 

P9 states that if Lack is rfn, then it will remain rfn until all inputs and outputs become 

NULL. Similarly, P10 states that if Lack is rfd, it will only change to rfn when all inputs and 

outputs become DATA. 

3.1.2.3. Output properties 

P11: AG (Rack = 1 ˄ Lack =1 ˄ (Din = PD) ˄ (Do = N) → A [(Rack = 1 ˄ Lack = 1 ˄ 

(Din = PD) ˄ (Do = N)) U (Rack = 1 ˄ Lack = 1 ˄ (Din = D) ˄ (Do = N)) ˅ (Rack = 1 ˄ Lack =1 

˄ (Din = PD) ˄ (Do = D))]). 

P11 states that if Rack and Lack are both rfd, the inputs are Partial DATA, and the output 

is NULL, then in the next state either the inputs will become DATA, or the output may evaluate 

with the Partial DATA input if the logic allows. (e.g., for a NAND function, where at least one 

input is DATA0).  

P12: AG (Rack = 1 ˄ Lack = 1 ˄ (Din = D) ˄ (Do = N) → A [(Rack = 1 ˄ Lack = 1 ˄ 

(Din = D) ˄ (Do = N)) U (Rack = 1 ˄ Lack = 1 ˄ (Din = D) ˄ (Do = D))]). 
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P12 states that the output will evaluate when Lack = Rack = rfd and the inputs are 

DATA, as mentioned in Section 2.3.1.  

P13: AG (Rack = 0 ˄ Lack = 0 ˄ (Din = D) ˄ (Do = D) →A [(Rack = 0 ˄ Lack = 0 ˄ (Do 

= D)) U (Rack = 0 ˄ Lack = 0 ˄ (Do = N))]). 

P14: AG (Rack = 0 ˄ Lack = 0 ˄ (Din = N) ˄ (Do = D) → A [(Rack = 0 ˄ Lack = 0 ˄ 

(Din = N) ˄ (Do = D)) U (Rack = 0 ˄ Lack =0 ˄ (Din=N) ˄ (Do= N))]).  

P15: AG (Rack = 0 ˄ Lack = 0 ˄ (Din = PD) ˄ (Do = D) →A [(Rack = 0 ˄ Lack = 0 ˄ 

(Do = D)) U (Rack = 0 ˄ Lack = 0 ˄ Do = N))]).  

Properties P13-P15 indicate that whenever Lack and Rack both become rfn, they cause 

the output to become NULL.  

P16: AG  (Do [0] =1 ˄ Do [1] =1).  

P16 verifies that the output rails of the gate are never asserted simultaneously. 

3.1.2.4. N-stage pipeline architecture and the global property 

 One of the major contributions of this work is modelling a global property template for 

N-stage PCHB circuits that checks the functional correctness of the circuit. The key problem 

here is that the input values corresponding to a certain output become available at different times. 

Therefore, we require a mechanism that keeps track of all input values corresponding to a 

particular output value. A pipeline structure is utilized to do this, which is included as part of the 

circuit model. The length of the pipeline is the number of stages in the circuit. Each stage in the 

pipeline includes variables that correspond to each of the inputs. Each output also has a variable 

in every pipeline stage. The pipeline keeps track of the DATA values for each input and 

preserves their order. When a complete set of inputs reach the end of the pipeline and all output 

values are DATA, the global property checks that for all such states, the output value is equal to 
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the evaluation of the Boolean function fc when applied on the corresponding set of inputs. fc 

corresponds to the Boolean function implemented by the PCHB circuit (e.g., X  Y  Ci for the 

sum output of a full adder). The logic for constructing the pipeline is given next followed by the 

global property. 

Generic Model for N-stage Pipeline Structure Used for Global Property. 

1: (Xm1, Xm2, Xm3…...XmN) ← NULL; for each value of m.  

2: (XIN ≠ X1) ˄ (X1=X2=X3=……. = XN = NULL) → (X1 =X2 =X3 =……. = XN = XIN).  

3: (XIN ≠ X1) ˄ (X1 = X2) → (Xi = XIN) until (Xi ≠ Xi+1); ‘i’ ranges from 1 to (N-1).  

4: (X1N = X2N =X3N =…..= XmN = DATA) | (X1N = X2N =X3N =…..= XmN = NULL) → (Xmj = Xm 

(j-1)); for each value of m, where ‘j’ ranges from N downto 2. 

 

 The variables of the pipeline are history variables in that they do not impact the 

functionality of the circuit but are used only for verification purposes. In the model above, Xs are 

the variables in the pipeline stages and there are ‘m’ variables in each stage. Step 1 initializes all 

pipeline stages to NULL. Step 2 flows the first DATA value through the entire pipeline when the 

pipeline is all NULL, such that all stages become DATA. Step 3 flows either a DATA or NULL 

through all initial stages of the pipeline until it is blocked by a NULL or DATA, respectively, 

such that there is always a NULL between every two DATA values. Step 4 shifts the entire 

pipeline for all inputs and outputs one stage to the right when the last stage of the pipeline for all 

inputs and outputs are either all DATA or all NULL. In this case when all DATA, we are 

required to check if the model satisfies the global property below, which ensures that the 

combinational PCHB function is equivalent to the corresponding Boolean function. 
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GP: AG (X1N= X2N =X3N =…..= XmN = DATA →A [(Xk+1, Xk+2… Xm) = fc (X1, X2… Xk)]), 

where there are k inputs and m-k outputs. 

3.1.3. Results 

From basic PCHB functions to more complex multifunction circuits, the presented formal 

verification method was used to verify 11 PCHB circuits. NuSMV model checker v2.6 was used. 

The verified circuits are listed below in Table 3, along with their respective verification time. 

Note that in addition to connecting different PCHB gates together to form these circuits, 

completion logic, composed of C-elements, was also added, which were also modelled as TSs 

for NuSMV.  

Several bugs were injected to test the methodology, including interchanging the rails of 

dual-rail signals, incorrect connections between Lack and Rack, malfunctioning completion 

detection circuitry, and incorrect logical function. Our proposed methodology flagged all bugs 

and also produced counter-examples to trace their paths. Verification was performed on an 

Intel® Core™ i7-4790 CPU @ 3.6 GHz with 32 GB of RAM and 64-bit operating system. 

Table 3.  Test Circuit Verification Times for Model Checking Approach. 

Circuit Time (sec.) Circuit Time (sec.) 

Full Adder 21.54 16- bit MUX 204.4 

ISCAS’85 C-17 [45] 138.62 32- bit MUX 413.23 

1- bit MUX 11.33 2- to- 4 decoder 44.37 

2- bit MUX 21.49 3- to- 8 decoder 163.37 

4- bit MUX 50.65 4- to- 16 decoder 222.6 

8- bit MUX 99.78 --- --- 

 

3.1.4. Discussions 

PCHB circuits are very complex because each gate incorporates registration and control. 

Thus, a sequence of gates operates similar to a synchronous pipeline. Our model checking 
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approach guarantees that under all circumstances, the PCHB circuit functions correctly. This is 

the first approach that we are aware of that verifies both safety and liveness for PCHB circuits. 

The verification engineer only has to fill-out the property templates to use this approach. 

However, scalability is the major limiting factor of this verification approach. Since PCHB gates 

each incorporate hysteresis state holding capability with a complex handshaking scheme, the 

corresponding transition system for a PCHB circuit is very complex, even for relatively simple 

circuits. For example, a simple PCHB n-input NAND gate contains 22 states in its TS, as shown 

in Fig. 21. When multiple gates are connected together to form a circuit, the state space increases 

exponentially. This causes state space explosion, which in turn results in an infeasible 

verification time.  

Therefore, an alternate verification methodology is presented to circumvent having to 

deal with the complex transition system. This alternate method is a unified verification approach 

based on equivalence verification that also guarantees safety as well as liveness for any PCHB 

circuit; it is fast and highly scalable, and discussed in details in the next section. 

3.2. An Equivalence Verification Methodology for Combinational and Sequential QDI 

PCHB Asynchronous Circuits 

This section provides an enumeration of all possible faults that can occur during PCHB 

synthesis, illustrates the proposed verification approach for combination as well as sequential 

PCHB circuits, followed by a demonstration on how the method detects every possible faults.  

3.2.1. Enumeration of All Possible PCHB Faults 

The development of our verification method for PCHB circuits is based on the 

assumption that individual PCHB gates are fault-free, which is consistent with standard gate-

level verification methodologies. The developed method ensures that no interconnections 
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between gates are erroneous, and that the implemented PCHB function is equivalent to its 

Boolean/synchronous specification. Below is an enumeration of all possible faults that could 

occur in a PCHB circuit. 

Case 1. Faulty data connection: Each PCHB gate receives its data inputs from the 

circuit’s primary data inputs and/or other PCHB gate data outputs. A PCHB gate’s data input or 

circuit output could be the wrong dual-rail signal. For example, the F output of PCHB gatei 

should be connected to the X input of PCHB gatej; however, X is instead connected to the output 

of PCHB gatek, which would result in a logical error, such that the specification and 

implementation circuits would not be functionally equivalent. 

Case 2. Swapped dual-rail connection: In PCHB circuits, all data signals are dual-rail 

logic, where two wires together represent one bit of data, as detailed in Chapter 2. The rails of a 

dual-rail data input or circuit output could be unintentionally swapped. For example, if PCHB 

gatei output F is supposed to connect to PCHB gatej input X, this implies that Fi
0 and Fi

1 should 

connect to Xj
0 and Xj

1, respectively. However, swapping the dual-rail connections would result in 

Fi
0 and Fi

1 connected to Xj
1 and Xj

0, respectively, which would correspond to inversion of that 

signal, resulting in a logical error, such that the specification and implementation circuits would 

not be functionally equivalent.  

Case 3. Rails from different signals: A PCHB gate’s data input or circuit output could be 

incorrectly comprised of two different dual-rail signals’ rails. For example, the X1 input of PCHB 

gatei is connected to the F1 output of PCHB gatej and the X0 input of PCHB gatei is connected to 

the G0 output of PCHB gatek. This will result in the circuit deadlocking when F = DATA0 and G 

= DATA1, since X will never transition to DATA, and will result in X being an illegal value (i.e., 

X 0= 1 and X1 = 1) when F = DATA1 and G = DATA0.  
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Case 4. Rail Duplication: A PCHB gate’s data input or circuit output could be incorrectly 

comprised of the same rail of a dual-rail signal. For example, both rails of the X input of PCHB 

gatei are connected to the F1 output of PCHB gatej. This will result in the circuit deadlocking 

when F = DATA0, since X will never transition to DATA, and will result in X being an illegal 

value when F = DATA1. 

Case 5. Handshaking signal connected to data signal: A PCHB gate’s data input or 

circuit output could be either partially or fully comprised of one or two handshaking network 

signals (i.e., PCHB gate Rack/Lack signal or C-element output), which would result in the 

affected dual-rail signal being stuck at NULL for some cases, causing circuit deadlock, and being 

an illegal value for other cases.  

Case 6. Incorrect logic implementation: The functionality of the PCHB circuit is not 

equivalent to its specification. For example, the specification F = AB+C is implemented as a 

PCHB circuit utilizing a 2-input AND gate, followed by a 2-input XOR gate, instead of a correct 

implementation that utilizes a 2-input AND gate followed by a 2-input OR gate. 

Case 7. Non-PCHB gate in datapath: The datapath of PCHB circuits consists entirely of 

PCHB gates, which all have 1 or more data inputs, 1 or more data outputs, a Rack input and a 

Lack output. Any type of gate other than a PCHB gate in the datapath is an error, which may 

cause the circuit to deadlock or result in a logical error, such that the specification and 

implementation circuits would not be functionally equivalent. 

Case 8. Incorrect reset: Every PCHB gate includes a reset input to initialize the gate’s 

data output to either NULL, DATA0, or DATA1, all of which must be connected to the circuit’s 

external reset input, which itself must not be connected to any other gate input. A PCHB gate 

with incorrect reset value will either result in the circuit deadlocking or not being functionally 
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equivalent to its specification. Take for example a Multiply and Accumulate unit (MAC), where 

all outputs should be reset to DATA0, according to its specification. If instead one or more of the 

PCHB implementation’s outputs are reset to DATA1, the results of the first MAC operation will 

differ from its specification (i.e., A1 = A0 + X1×Y1, where A0 ≠ 0, vs. the correct implementation: 

A1 = 0 + X1×Y1). If instead an output is reset to NULL, and all other PCHB gates in its 

respective feedback loop are also reset to NULL (this would be the typical reset state of these 

other gates), this would result in a feedback path with no DATA tokens, which would cause the 

circuit to deadlock. 

Case 9. Insufficient registers in a feedback loop: The 4-phase QDI handshaking protocol 

utilized for PCHB circuits requires at least 2N+1 PCHB registers/latches in a feedback loop that 

contains N DATA tokens, in order to avoid deadlock [24]. For example, a feedback loop with a 

single DATA token, such as a MAC (i.e., Ai = Ai-1 + Xi×Yi), requires at least 3 PCHB registers in 

every feedback path, otherwise the circuit will deadlock. Note that every PCHB gate includes an 

internal latch; so, for the MAC example, a feedback path that includes at least 3 PCHB gates is 

sufficient. 

Case 10. Missing handshaking signal: Each PCHB gatej (j ϵ [1, N]) whose data input is a 

data output of PCHB gatei, must acknowledge PCHB gatei, resulting in the Lack output of each 

PCHB gatej being conjoined via an N-input C-element structure, whose output is the Rack input 

of PCHB gatei. For example, if a data output of PCHB gatex is a data input of PCHB gatey and 

the Lack output of PCHB gatey is not an input to the C-element structure that generates the Rack 

input to PCHB gatex, the circuit will deadlock under some timing scenarios. 

Case 11. Additional handshaking signal: If the C-element structure that generates the 

Rack input for PCHB gatei contains a Lack input from PCHB gatej, and a data output of PCHB 
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gatei is not a data input of PCHB gatej, the circuit may deadlock or slowdown, but could also 

operate correctly. This isn’t necessarily an error; however, the additional handshaking signal 

requires further inspection.  

Case 12. External Lack error: The external Lack output synchronizes all circuit primary 

data inputs. Hence, the Lack outputs of all PCHB gates that have a circuit primary data input as a 

data input must be combined through a C-element structure to produce the external Lack output. 

Like Case 10, any missing Lack input to this C-element structure will cause the circuit to 

deadlock under some timing scenarios. Similar, but different to Case 11, any additional Lack 

input to this C-element structure is an error, which may cause the circuit to slowdown or 

deadlock. 

Case 13. External Rack error: The external Rack input synchronizes all circuit primary 

data outputs. Hence, for each PCHB gatei whose data output is a circuit primary data output, the 

external Rack input must either be the Rack input to gatei or an input to the C-element structure 

that generates the Rack input for gatei (as would be the case when an external data output is fed 

back to another PCHB gate). Like Case 10, if the external Rack input is missing from the C-

element structure that generates the Rack input for a PCHB gate whose data output is a circuit 

primary data output, the circuit will deadlock under some timing scenarios.  

Case 14. Non-C-element in handshaking circuitry: PCHB handshaking circuitry is 

composed entirely of C-element structures, which consist of 0 or more C-elements that combine 

N Lack signals into a single Rack signal or the external Lack. Hence, any gate other than a C-

element in the PCHB handshaking circuitry is an error, which will cause the circuit to deadlock 

under some timing scenarios. 
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Case 15. Data signal input to C-element: As mentioned in Case 14, C-elements only 

occur in the handshaking circuitry to combine Lack signals; they are not utilized in the datapath. 

Hence, either rail of a data signal being an input to a C-element is an error, which will cause the 

circuit to deadlock under some timing scenarios. 

Case 16. Data signal input to PCHB gate Rack input: As mentioned in Cases 10 and 13, 

a PCHB gate’s Rack input may only be the output of a C-element, another PCHB gate’s Lack 

output, or the external Rack input. Hence, either rail of a data signal being a PCHB gate’s Rack 

input is an error, which will cause the circuit to deadlock. 

Case 17. C-element structure feedback: As mentioned in Cases 10 through 13, a C-

element structure combines multiple PCHB gate Lack outputs, and possibly the external Rack 

input, to generate PCHB gate Rack inputs or the external Lack output; hence, C-element 

structures are feedforward only, such that any feedback loop within a C-element structure is an 

error, which will cause the circuit to deadlock. 

Case 18. Shorted output: An output of a C-element or any output of a PCHB gate cannot 

be directly connected to any other PCHB gate or C-element output, or any external input. This 

would result in a wire short, causing the affected signal to be undefined when the logical values 

of the shorted wires differed. 

These 18 cases comprise all possible faults that could occur in a PCHB circuit 

synthesized from a Boolean/synchronous specification, comprised solely of PCHB gates and C-

elements (i.e., no special asynchronous control elements, such as F-element, D-element, 

Tangram S-element, etc.). PCHB gates have n dual-rail inputs, 1 Rack input, m dual-rail outputs, 

and 1 Lack output. C-elements have k Boolean inputs and 1 Boolean output. In order to establish 

our claim that the abovementioned 18 cases comprise all possible faults, we analyze an 
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exhaustive conjunction of PCHB gates, C-elements, and PCHB circuit inputs and outputs, from 

which only a small set of connections are legal, and a large set of connections are illegal/faulty. 

We then illustrate how every faulty connection can be categorized by at least one of the above 18 

fault case scenarios.  

Let us consider a PCHB circuit with N PCHB gates, M C-elements, X external data 

inputs, Y external data outputs, a single Rack input, a single Lack output, and a single reset input. 

Considering all possibilities, the dual-rail output of PCHB gatei has the following twelve 

interconnection scenarios: it could be connected to: i) dual-rail input(s) of other PCHB gatesj, 

where j ≠ i, ii) external data output, iii) dual-rail input(s) of other PCHB gates, including gatei, 

iv) Rack input of a PCHB gate, v) C-element input, vi) another PCHB gate data output, vii) a 

PCHB gate Lack output, viii) a C-element output, ix) external data input, x) external Rack input, 

xi) external reset input, or xii) external Lack output. Of these, only i) and ii) are possibly correct, 

and will be expanded upon later; all other interconnection scenarios, iii) through xii) are faulty. 

iii) corresponds to Case 9; iv) to Case 16, v) to Case 7 or 15, vi) through xi) to Case 18, and xii) 

to Case 12 or 18. For i), the dual-rail output of PCHB gatei could be correctly connected to the 

data inputs of PCHB gatesj, or could be incorrectly connected via a swapped rail connection 

(Case 2), being an input to a wrong PCHB gate (Case 1 or 6), or only being a partial input to a 

PCHB gate (Case 3 or 4). For ii), the dual-rail output of PCHB gatei could be correctly 

connected to an external data output, or could be incorrectly connected via a swapped rail 

connection (Case 2), being connected to the wrong external data output (Case 1), or only being 

partially connected to the external data output (Case 3 or 4).  

Considering all possibilities, the Lack output of PCHB gatei has the following twelve 

interconnection scenarios: it could be connected to: i) Rack input of other PCHB gatesj, where j 
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≠ i, ii) input of one or more C-elements, iii) external Lack output, iv) Rack input of other PCHB 

gates, including gatei, v) dual-rail input of a PCHB gate, vi) external data output, vii) PCHB gate 

data output, viii) another PCHB gate Lack output, ix) a C-element output, x) external data input, 

xi) external Rack input, or xii) external reset input. Of these, only i), ii), and iii) are possibly 

correct, and will be expanded upon later; all other interconnection scenarios, iv) through xii) are 

faulty. iv) corresponds to Case 9; v) and vi) to Case 5, and vii) through xii) to Case 18. For i), the 

Lack output of PCHB gatei could be correctly connected to the Rack input of other PCHB gates, 

or could be incorrectly connected by being the Rack input to a PCHB gate whose data output was 

not an input to gatei (Case 10). For ii), the Lack output of PCHB gatei could be correctly 

connected to C-element input(s), or could be incorrectly connected by being an input to a C-

element structure that outputs the Rack input for a PCHB gate whose data output was not an 

input to gatei (Case 11). For iii), the Lack output of PCHB gatei could be correctly connected to 

the external Lack output, or could be incorrectly connected if the external data inputs are 

connected to PCHB gates other than gatei (Case 12). 

Considering all possibilities, the output of C-elementi has the following twelve 

interconnection scenarios: it could be connected to: i) input(s) of other C-elementsj, where j ≠ i, 

ii) external Lack output, iii) Rack input of a PCHB gate, iv) input(s) of C-elements, including C-

elementi, v) dual-rail input of a PCHB gate, vi) external data output, vii) PCHB gate data output, 

viii) PCHB gate Lack output, ix) another C-element output, x) external data input, xi) external 

Rack input, or xii) external reset input. Of these, only i), ii), and iii) are possibly correct, and will 

be expanded upon later; all other interconnection scenarios, iv) through xii) are faulty. iv) 

corresponds to Case 17; v) to Case 5 or 14, vi) to Case 5, and vii) through xii) to Case 18. For i), 

the output of C-elementi could be correctly connected to other C-element inputs, or could be 
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incorrectly connected by being part of the C-element structure that produces the Rack input for 

PCHB gatek, where PCHB gatek’s data output was not an input to all PCHB gates whose Lack 

outputs are inputs to the C-element structure containing C-elementi (Case 11), or by being 

connected to a C-element input within the same C-element structure, forming a feedback loop 

within the C-element structure (Case 17). For ii), the output of C-elementi could be correctly 

connected to the external Lack output, or could be incorrectly connected if the external data 

inputs are connected to PCHB gates other than those whose Lack outputs are the inputs to the C-

element structure containing C-elementi (Case 12). For iii), the output of C-elementi could be 

correctly connected to the Rack input of a PCHB gate, or could be incorrectly connected by 

being the Rack input to a PCHB gate whose data output was not an input to all PCHB gates 

whose Lack outputs are inputs to the C-element structure containing C-elementi (Case 11). 

Each external data input is treated similarly to a PCHB gate data output. Considering all 

possibilities, an external data input has the following eleven interconnection scenarios: it could 

be connected to: i) the dual-rail input of one or more PCHB gates, ii) external data output, iii) 

Rack input of a PCHB gate, iv) C-element input, v) another external data input, vi) PCHB gate 

data output, vii) a PCHB gate Lack output, viii) a C-element output, ix) external Rack input, x) 

external reset input, or xi) external Lack output. Of these, only i) and ii) are possibly correct, and 

will be expanded upon later; all other interconnection scenarios, iii) through xi) are faulty. iii) 

corresponds to Case 16, iv) to Case 7 or 15, v) through x) to Case 18, and xi) to Case 12 or 18. 

For i), the external data input could be correctly connected to the data inputs of PCHB gates, or 

could be incorrectly connected via a swapped rail connection (Case 2), being an input to a wrong 

PCHB gate (Case 1 or 6), or only being a partial input to a PCHB gate (Case 3 or 4). For ii), the 

external data input could be correctly connected to an external data output, or could be 
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incorrectly connected via a swapped rail connection (Case 2), being connected to the wrong 

external data output (Case 1), or only being partially connected to the external data output (Case 

3 or 4).  

The external Rack input is treated similarly to a PCHB gate Lack output. Considering all 

possibilities, the external Rack input has the following ten interconnection scenarios: it could be 

connected to: i) Rack input of one or more PCHB gates, ii) input of one or more C-elements, iii) 

external Lack output, iv) dual-rail input of a PCHB gate, v) external data output, vi) PCHB gate 

data output, vii) PCHB gate Lack output, viii) a C-element output, ix) external data input, or x) 

external reset input. Of these, only i) and ii) are possibly correct, and will be expanded upon 

later; all other interconnection scenarios, iii) through x) are faulty. iii) corresponds to Case 12 or 

18; iv) and v) to Case 5, and vi) through x) to Case 18. For i), the external Rack input could be 

correctly connected to the Rack input of PCHB gates, or could be incorrectly connected by being 

the Rack input to a PCHB gate whose data output was not an external data output (Case 11), or 

by not being connected to the Rack input of a PCHB gate whose output is an external data output 

(Case 13). For ii), the external Rack input could be correctly connected to one or more C-element 

inputs, or could be incorrectly connected by being an input to a C-element structure that outputs 

the Rack input for a PCHB gate whose data output is not an external output (Case 11), or by not 

being connected to a C-element input that is part of a C-element structure that generates the Rack 

input of a PCHB gate whose output is an external data output (Case 13). 

Considering all possibilities, the external reset input has the following eleven 

interconnection scenarios: it could be connected to: i) the reset input of one or more PCHB gates, 

ii) the data input of a PCHB gate, iii) external data output, iv) Rack input of a PCHB gate, v) C-

element input, vi) external data input, vii) PCHB gate data output, viii) PCHB gate Lack output, 
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ix) C-element output, x) external Rack input, or xi) external Lack output. Of these, only i) is 

possibly correct, and will be expanded upon later; all other interconnection scenarios, ii) through 

xi) are faulty. ii) through v) correspond to Case 8, and vi) through xi) to Case 18. For i), the 

external reset input is correctly connected only if connected to every PCHB gate’s reset input. 

Additionally, the external reset input is used to initialize the PCHB circuit, which must be reset 

to a live state and match the reset state of its corresponding Boolean/synchronous specification 

circuit, both covered by Case 8. 

 In summary, the above exhaustive intersection of all possible interconnection 

combinations of PCHB gates, C-elements, and circuit inputs and outputs, proves that every 

possible faulty connection maps to at least one of the 18 cases presented in this section, thereby 

proving that these 18 cases do indeed comprise all possible faults that could occur in a PCHB 

circuit. 

3.2.2. Equivalence Verification of Combinational PCHB Circuits 

The developed methodology includes an equivalence verification scheme that verifies the 

functionality of a combinational PCHB circuit against its respective Boolean specification to 

ensure safety, and a graph-based approach to ensure liveness and handshaking correctness, both 

described below. The ability of the proposed methodology to detect all possible faults is 

addressed in Section 3.2.4. 

3.2.2.1. Safety check of combinational PCHB circuits 

The safety check requires two steps. First, a conversion algorithm takes the netlist of a 

combinational PCHB circuit as input and transforms that into a corresponding Boolean netlist. 

The generated Boolean circuit is then checked against the Boolean specification using an 

equivalence checker. To describe the methodology, the 2×2 PCHB multiplier, shown in Fig. 22, 
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is used as an example. Note that although the PCHB multiplier is similar to a Boolean multiplier 

at the gate level, PCHB gate structures are far more complex. For example, a 2-input Boolean 

NAND gate only requires 4 transistors; whereas the 2-input reset-to-NULL PCHB NAND gate, 

shown in Fig. 5, requires 51 transistors to account for dual-rail signaling, registration, and 

handshaking control. In general, PCHB circuits require approximately 6-14 times more 

transistors than corresponding Boolean circuits due to their complex features, as can be seen in 

Table 4. 

Fig. 23 shows the netlist format of the 2×2 PCHB multiplier. The first two lines 

correspond to all primary data inputs and outputs of the circuit, respectively. A dual-rail signal, 

a0 is represented as "a0_1a0_0", where a0_1 and a0_0 are rail1 and rail0 of a0, respectively.  
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Figure 22. PCHB 2x2 Multiplier Circuit. 
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1. a0_1a0_0, a1_1a1_0, b0_1b0_0, b1_1b1_0

2. p0_1p0_0, p1_1p1_0, p2_1p2_0, p3_1p3_0

3. and2-N  1  a0_1a0_0,b0_1b0_0  rst   rack  lack1   p0_1p0_0

4. and2-N  1  a1_1a1_0,b0_1b0_0  rst   rack1  lack2  t0_1t0_0

5. and2-N  1  a0_1a0_0,b1_1b1_0  rst   rack1  lack3  t1_1t1_0

6. and2-N  1  a1_1a1_0,b1_1b1_0  rst   rack2  lack4  t3_1t3_0

7. xor2-N  2  t0_1t0_0,t1_1t1_0   rst    rack    lack5   p1_1p1_0

8. and2-N  2  t0_1t0_0,t1_1t1_0   rst    rack2  lack6   t2_1t2_0

9. xor2-N   3  t2_1t2_0,t3_1t3_0  rst    rack    lack7   p2_1p2_0

10. and2-N 3  t2_1t2_0,t3_1t3_0  rst    rack   lack8   p3_1p3_0

11. C2     lack5, lack6    rack1

12. C2     lack7, lack8    rack2

13. C4     lack1 ,lack2, lack3, lack4   lack  

Figure 23. Netlist Structure of PCHB 2x2 Multiplier Circuit. 

Lines 3 to 10 represent the individual PCHB gates used in the circuit. The first column of 

each of these lines represent the type of the gate in “gate-reset_type” format. As discussed 

previously, PCHB gates have state holding capability, and therefore must be initialized upon 

reset; reset_type denotes the reset value of the gate: NULL (N), DATA0 (D0), or DATA1 (D1). 

The number associated with the gate implies the number of gate inputs; e.g., and2-N represents a 

2-input AND gate reset to NULL. The second column indicates the level of the gate, which is the 

longest path (in terms of number of PCHB gates) from the circuit’s primary inputs to that gate’s 

output. The remaining columns list the gate’s data input(s), reset input, Rack input, Lack output, 

and data output(s), respectively. Type Cn in lines 11-13 represent an n-input C-element used to 

connect the PCHB handshake signals. Following Cn are its n inputs, and then its output. 

The PCHB netlist is automatically converted into its corresponding Boolean netlist, 

shown in Fig. 24, using a developed algorithm. Each dual-rail signal, including the primary 

inputs/outputs, are replaced with a corresponding Boolean signal. A PCHB gate structure 

containing all information related to individual gates is created by traversing the netlist. A 
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Boolean gate structure is created by replacing each PCHB gate with its corresponding Boolean 

gate. Swapped rails of a dual-rail signal result in the introduction of an inverter. For example, if 

line 3 of Fig. 23 was instead “and2-N 1 a0_0a0_1 …” this would result in the following 

additional line in Fig. 24: “not 1 a0 a0_bar”, and line 3 of Fig. 24 to be changed to “and2  2 

a0_bar,b0  p0”. Therefore, any bug causing unintended rail swap in the implementation will be 

detected, as the added inverter will result in functional inequivalence between the specification 

and PCHB implementation. If a PCHB gate input’s rail1 and rail0 are not part of the same dual-

rail signal, an error message is generated noting the misconnection between rails and where this 

occurs. Similarly, an error message is generated if any gate’s data rails contain any handshaking 

signal(s) from other gates. A further check flags any bug that causes only one rail of a dual-rail 

signal to be connected to both rails of another dual-rail signal. And another check ensures that 

the circuit’s external reset input is connected to all PCHB gates’ reset input, and not connected 

to anything else, flagging any gate or connection that violates this.  

1.   a0, a1, b0, b1

2.   p0, p1, p2, p3

3.   and2   1   a0,b0    p0

4.   and2   1   a1,b0    t0

5.   and2   1   a0,b1    t1

6.   and2   1   a1,b1    t3

7.   xor2   2   t0, t1     p1

8.   and2   2   t0, t1     t2

9.   xor2   3    t2, t3     p2

10. and2   3   t2, t3     p3
 

Figure 24. Converted Boolean Netlist Structure. 
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 The converted Boolean netlist is then automatically encoded in the Satisfiability Modulo 

Theory Library (SMT-LIB) language, using Python, and is then input to an SMT solver to check 

for functional equivalence between the transformed Boolean version of the original PCHB circuit 

and its corresponding Boolean specification. For the 2×2 multiplier example, the SMT solver 

checks for the following safety property: FPCHB_Bool_Equivalent (a0, a1, b0, b1) = MUL (a, b), where 

(a1, a0) and (b1, b0) are the (Most Significant Bit, Least Significant Bit) of a and b, respectively. 

We use the Z3 SMT solver [44] to check for equivalence verification, but any combinational 

equivalence checker could be used. 

3.2.2.2. Liveness and handshaking correctness check 

Liveness means absence of deadlock in a circuit. For combinational PCHB circuits, 

proper connections between handshaking signals ensures liveness and proper synchronization. 

The same PCHB netlist shown in Fig. 23, used as input for the safety check method, is also 

utilized as input for the liveness check to trace back the handshaking paths and C-element 

connections to verify proper handshaking, ensuring that every output generated by a particular 

input, acknowledges that input. Procedure 1 illustrates the algorithm that checks the handshaking 

connections. 

 A C-element structure and PCHB gate structure containing all information related to C-

elements (i.e., C-element type, inputs, and outputs) and individual gates (i.e., gate type, level, 

data inputs, rack, lack, and outputs), respectively, is created by traversing the netlist (lines 1 and 

2 in Procedure 1). For each PCHB gate, i, its output is compared with every other PCHB gate j’s 

inputs, i ≠ j, to generate a fanout list, fanout(i), for PCHB gate i (line 3 in Procedure 1). For 

example, referring to Fig. 23, fanout for the and2 gate on line 4 would contain the xor2 gate on 

line 7 and the and2 gate on line 8. For each PCHB gate, i, its Rack input is compared with every 
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other PCHB gate j’s Lack output, i ≠ j, and every C-element’s output, to generate a completion 

fanin list, comp_fanin(i), for PCHB gate i (line 4 in Procedure 1). For example, referring to Fig. 

23, comp_fanin for the and2 gate on line 4 would contain the xor2 gate on line 7 and the and2 

gate on line 8, since both of their Lack outputs are inputs to the C-element on line 11, whose 

output is the Rack input of the and2 gate on line 4. Similarly, a fanout and comp_fanin list is 

generated for each external data input. 

Procedure 1. Procedure to check handshaking connections 

1: Create C_element_structure (PCHB_Netlist) 

2: Create PCHB_gate_structure (PCHB_Netlist) 

3: Create fanout (PCHB_gate_structure) 

4: Create Comp_fanin (PCHB_gate_structure, C_element_structure) 

5: for i←1 to num_pchb_gates do  

6: if fanout(i) = = Comp_fanin(i) then 

7:  // no error  

8: else if fanout(i)  Comp_fanin(i) then 

9:  for each variable v: v Comp_fanin(i) and v fanout(i) do 

10:    if v.level  gate(i).level then 

11:     report level error message 

12:   else 

13:     report warning message 

14:   end if 

15:  end for 

16: else  

17:  report error message 

18: end if 

19: end for 

 

 After fanout and comp_fanin for each PCHB gate and external data input is calculated, as 

shown in Fig. 25 for the 2×2 multiplier example, fanout(k) is checked to ensure that it is a subset 

of comp_fanin(k), for all PCHB gates and external data inputs (lines 5-19 in Procedure 1). Bit-

wise completion results in fanout(k) being equal to comp_fanin(k), while full-word completion 

results in fanout(k) being a proper subset of comp_fanin(k), with the restriction that each gate 
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that is in comp_fanin(k) and not in fanout(k) must be from the immediate subsequent level of 

gate/input k. fanout(k) not being a subset of comp_fanin(k) could result in deadlock, while 

fanout(k) being a proper subset of comp_fanin(k) but violating the level restriction described 

above, could either result in deadlock or may just decrease circuit performance. Hence, if 

fanout(k) is a proper subset of comp_fanin(k), then each gate that is in comp_fanin(k) and not in 

fanout(k) is automatically inspected to ensure that it meets this level restriction. Even if the level 

restriction is met, a warning message is still generated to note the extra gate in the particular 

PCHB gate’s comp_fanin list, to allow for easy manual inspection. 

a0:   fanout: [1  3]          comp_fanin: [1  2  3  4] 

a1:   fanout: [2  4]          comp_fanin: [1  2  3  4] 

b0:   fanout: [1  2]    comp_fanin: [1  2  3  4] 

b1:   fanout: [3  4]    comp_fanin: [1  2  3  4] 

1:     fanout: 0                comp_fanin: 0

2:     fanout: [5   6]         comp_fanin: [5   6]    

3:     fanout: [5   6]         comp_fanin: [5   6] 

4:     fanout: [7   8]         comp_fanin: [7   8] 

5:     fanout: 0                comp_fanin: 0 

6:     fanout: [7   8]         comp_fanin: [7   8]

 

7:     fanout: 0                comp_fanin:0

8:     fanout: 0                comp_fanin:0
 

Figure 25. Fan_out and Comp_fanin Structure. 

 Additional checks ensure correct connection of the external Rack input, and proper 

generation of the external Lack output. The external Rack signal should be connected to the rack 

inputs of all gates that produce the circuit’s external data outputs. Similarly, the lack outputs of 

all gates that take primary data inputs as their inputs should be conjoined via a C-element 

structure to generate the external Lack output. The developed algorithm generates an appropriate 
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descriptive error message in case the PCHB circuit fails to satisfy any of these checks.   

Furthermore, it checks to ensure that no data signal is part of the handshaking connections, and 

that no handshaking signal is part of a data signal. All these checks are performed during the 

process of creating the PCHB gate and C-element structures (lines 1 and 2 in Procedure 1). Note 

that fanout 0 indicates an external output, while comp_fanin 0 denotes an external Rack input. 

The running time for this liveness check algorithm is O (I+P)*(P+C), where I, P, and C are the 

number of external inputs, PCHB gates, and C-elements in the circuit, respectively. 

3.2.2.3. Results 

This equivalence verification methodology for combinational PCHB circuits has been 

demonstrated on several multipliers and ISCAS-85 [45] combinational circuit benchmarks; and 

the verification times are compared with the previous model checking based PCHB formal 

verification methodology, as discussed in Section 3.1. As shown in Table 4, the equivalence 

verification methodology presented herein is significantly faster than the model checking based 

approach for every circuit. Furthermore, this methodology was able to verify complex circuits 

with hundreds of gates, such as a 12×12 multiplier; whereas the model checking approach Timed 

Out (TO) for much smaller circuits, demonstrating the scalability of this approach. Note that 

DNS in Table 4 stands for “Did Not Simulate”; since the model checking approach Timed Out 

for a 4×4 multiplier, we can safely assume that it would time out for more complex circuits, such 

as ISCAS c432 and other higher order multipliers. 10x10Mul-B1, 10x10Mul-B2, 10x10Mul-B3, 

and 10x10Mul-B4 are some of the buggy circuits tested. In 10x10Mul-B1, a bug was introduced 

in the data signals by incorrectly connecting one gate’s dual-rail input to another dual-rail signal. 

10x10Mul-B2 represents a logic element bug, where a PCHB AND gate was replaced with a 

PCHB NAND gate. 10x10Mul-B3 represents a handshaking connection bug, where the Lack 
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output from PCHB gate i was not included in the C-element structure that generated the Rack 

input to PCHB gate j, even though PCHB gate j’s data output was an input to PCHB gate i. 

10x10Mul-B4 swaps the rails of one PCHB gate’s input. In these, and every other buggy case 

tested, the proposed methodology detected and identified each bug very fast. Verification was 

performed using Z3 SMT solver [44] on an Intel® Core™ i7-4790 CPU with 32GB of RAM, 

running at 3.60 GHz. The verification times in Table 4 only include the Z3 runtime, as the netlist 

conversion times and time required to verify the handshaking signals were negligible in 

comparison. 

Table 4. Verification Results for Various Combinational PCHB Circuits Based on Equivalence 

Checking. 

PCHB Circuits # Transistors in 

Boolean 

Circuit 

# Transistors in 

PCHB 

Implementation 

Proposed 

Method 

Time (sec) 

Model Checking 

Time (sec) 

Full Adder 36 266 <0.01 21.54 

ISCAS C-17 24 320 0.01 138.62 

4-to-16 decoder 136 1,284 0.01 222.6 

32- bit MUX 386 4,836 0.23 413.20 

4x4 Multiplier 456 3,324 0.06 TO 

8x8 Multiplier 2,256 16,620 12.18 DNS 

10x10 Multiplier 3,660 26,960 741.84 DNS 

11x11 Multiplier 4,488 33,070 7323.07 DNS 

12x12 Multiplier 5,400 39,812 62,823.67 DNS 

10x10Mul-B1 3,660 26,960 1.01 DNS 

10x10Mul-B2 3,660 26,960 0.06 DNS 

10x10Mul-B3 3,660 26,960 0.84 DNS 

10x10Mul-B4 3,660 26,960 0.79 DNS 

ISCAS c432 816 7,362 1.31 DNS 
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3.2.3. Equivalence Verification of Sequential PCHB Circuits 

As described in the section above, the equivalence verification methodology proved to be 

a much faster and more scalable approach for combinational PCHB circuits, compared to the 

previous model checking method. Hence, in this section the approach is extended to the 

verification of sequential PCHB circuits, which is far more complex due to datapath feedback.  

The verification procedure requires three steps. In the first step, a sequential PCHB 

circuit is converted to an equivalent synchronous circuit. We utilize the theory of WEB-

refinement [34] to compare the synchronous netlist generated from the PCHB circuit with the 

original synchronous specification, as the notion of correctness. The major advantage of applying 

WEB-refinement to the generated equivalent synchronous circuit instead of the actual PCHB 

circuit is that a synchronous circuit is much more deterministic compared to its PCHB 

equivalent, which makes the verification time much faster. The generated synchronous circuit, 

specification synchronous circuit, and the WEB-refinement property are automatically encoded 

in the SMT-LIB language. The resulting equivalence property is then checked using an SMT 

solver. In the second step, we check the handshaking connections between components, which is 

similar to the combinational PCHB handshaking check, discussed in Section 3.2.2.2. The third 

step consists of applying the method developed by Shih et. al. for deadlock verification of 

sequential PCHB circuits. Since this third step is fully detailed in [39], it is not discussed further 

herein, besides its brief overview in Section 2.4.  

To describe the methodology, a Multiply and Accumulate (MAC) unit is used as an 

example circuit. Fig. 26 shows a synchronous MAC, where A’ = A + X×Y; and Fig. 27 shows 

the equivalent PCHB version. Two registers are shown in the PCHB version such that all 

feedback loops contain at least 3 registers to avoid deadlock, since PCHB gates themselves act as 
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latches and the PCHB C/L contains at least one gate in every feedback path. However, some of 

the feedback paths only require one register, as shown in Fig. 28, to be discussed later. Although 

the synchronous and PCHB MACs seem similar, they are structurally very different. 

Synchronous registers are clocked, whereas alternating DATA/NULL transitions in PCHB are 

maintained via C-elements and a well-defined handshaking scheme. 
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Figure 26. Synchronous MAC Structure. 
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Figure 27. PCHB MAC Structure. 

3.2.3.1. Safety check for sequential PCHB circuits 

Fig. 28 shows the datapath connection (without handshaking signals) diagram of a 4 + 

2×2 PCHB MAC. (X1, X0) and (Y1, Y0) are the two bits of inputs X and Y, respectively. The 

product of X and Y is added with the 4-bit accumulator output, A, where A3 and A0 are the MSB 

and LSB, respectively. Each input and output are dual-rail signals. HA and FA are the PCHB 
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half-adder and full-adder components [46], respectively. The highlighted components in Fig. 28 

are reset-to-NULL/DATA0 PCHB registers. Fig. 29 shows the handshaking connection between 

components for the 4 + 2x2 PCHB MAC, which will be discussed in the next section. 

There are four feedback loops (FL) in Fig 28, utilizing different register arrangements to 

better illustrate the verification approach for different cases. The first loop, FL1, contains one 

reset-to-NULL HA component (HA_N) followed by two reset-to-DATA0 (Reg_D0) registers; a 

Reg_D0 register preceded by 2 HA_N components and 2 reset-to-NULL PCHB FA (FA_N) 

components are utilized in FL2 and FL3, respectively, to meet the three register minimum 

requirement for the one DATA token in each; and FL4 contains a reset-to-DATA0 PCHB 

component (FAs_D0) preceded by Reg_N and Reg_D0 components.  

HA_N

HA_NFA_N HA_N
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Figure 28. PCHB 4 + 2x2 MAC Datapath Connection. 
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Figure 29. PCHB 4 + 2x2 MAC Handshaking Connection. 

 Fig. 30 shows the netlist of the PCHB 4+2×2 MAC, following the same structure as 

described in Section 3.2.2.1. The first 2 lines are the circuit inputs and outputs, respectively; lines 

3-13 are the PCHB C/L gates; lines 14-19 are the PCHB registers; and lines 20-29 are C-

elements used in the handshaking network. Note that the HA and FA components each contain 

two outputs, sum followed by carry. FAs_D0 is a modified FA component with only sum output. 

 This sequential PCHB netlist is then automatically converted into its equivalent 

synchronous netlist, depicted in Fig. 31, similar to the conversion process described in Section 

3.2.2.1 for combinational PCHB circuits. Each dual-rail signal is replaced with a corresponding 

Boolean signal; and all handshaking signals and C-elements are eliminated.  
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1. x0_1x0_0,x1_1x1_0,y0_1y0_0,y1_1y1_0
2. a0_1a0_0,a1_1a1_0,a2_1a2_0,a3_1a3_0
3. and2-N   1   x0_1x0_0,y0_1y0_0   reset   lack5   lack1   p0_1p0_0
4. and2-N   1   x1_1x1_0,y0_1y0_0   reset   lack6   lack2   t0_1t0_0
5. and2-N   1   x0_1x0_0,y1_1y1_0   reset   lack6   lack3   t1_1t1_0
6. and2-N   1   x1_1x1_0,y1_1y1_0   reset   lack8   lack4   p2_1p2_0
7. ha2-N   2   p0_1p0_0,a0_1a0_0    reset   LACK2   lack5   m0_1m0_0,c1_1c1_0
8. ha2-N   2   t0_1t0_0,t1_1t1_0       reset   LACK1   lack6   p1_1p1_0,c0_1c0_0
9. ha2-N   3   p1_1p1_0,a1_1a1_0    reset   LACK3   lack7   p3_1p3_0,c2_1c2_0
10. fa3-N   3   p2_1p2_0,a2_1a2_0,c0_1c0_0   reset   LACK4   lack8   p4_1p4_0,c3_1c3_0
11. ha2-N   4   p3_1p3_0,c1_1c1_0   reset   LACK5   lack11  z1_1z1_0,c4_1c4_0
12. fa3-N   5   p4_1p4_0,c2_1c2_0,c4_1c4_0   reset   LACK6   lack12   z2_1z2_0,c5_1c5_0
13. fas3-D0   6   z3_1z3_0,c3_1c3_0,c5_1c5_0   reset   LACK9   lack17   a3_1a3_0
14. Reg_D0   m0_1m0_0   reset     lack14      lack10      z0_1z0_0
15. Reg_D0   z0_1z0_0       reset     LACK7       lack14      a0_1a0_0
16. Reg_D0   z1_1z1_0       reset     LACK7       lack15      a1_1a1_0
17 .Reg_D0   z2_1z2_0       reset     LACK8       lack16      a2_1a2_0
18. Reg_N     a3_1a3_0       reset     lack13       lack9         t3_1t3_0
19. Reg_D0    t3_1t3_0       reset     lack17       lack13       z3_1z3_0
20. C2   lack7,lack8   LACK1
21. C2   lack10,lack11   LACK2
22. C2   lack11,lack12   LACK3
23. C2   lack12,lack17   LACK4
24. C2   lack15,lack12   LACK5
25. C2   lack16,lack17   LACK6
26. C3   RACK,lack5,lack7   LACK7
27. C2   RACK,lack8   LACK8
28. C2   RACK,lack9   LACK9
29. C4   lack1,lack2,lack3,lack4   LACK

 

Figure 30. PCHB 4 + 2x2 MAC Unit Netlist. 

1.   x0,x1,y0,y1

2.   a0,a1,a2,a3

3.   and2   1    x0,y0    p0

4.   and2   1    x1,y0    t0

5.   and2   1    x0,y1    t1

6.   and2   1    x1,y1    p2

7.   ha2     2    p0,a0    m0,c1

8.   ha2     2    t0,t1      p1,c0

9.   ha2     3    p1,a1     p3,c2 

10. fa3      3    p2,a2,c0   p4,c3

11. ha2     4    p3,c1    z1,c4

12. fa3      5    p4,c2,c4    z2,c5

13. fas3    6     a3,c3,c5     r1

14. Reg_0       m0    a0

15. Reg_0       z1     a1

16. Reg_0       z2     a2

17. Reg_0       r1     a3
 

Figure 31. Equivalent Boolean Converted Netlist. 
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 Procedure 2 illustrates the conversion algorithm for PCHB components (i.e., gates and 

registers). A PCHB component structure, PCHB_comp, containing all information related to 

individual components (i.e., gate type, reset type, data inputs, reset input, rack, lack, and data 

outputs) is created for each component by traversing the netlist (line 1 in Procedure 2). 

Procedure 2. Procedure to generate synchronous circuit from PCHB circuit 

1: Create PCHB_comp (PCHB_Netlist) 

2:  for i←1 to num_pchb_components do  

3:    if PCHB_comp(i).gate_type != Reg then 

4:      if PCHB_comp(i).reset_type == D0 or D1 then 

5:       for j←1 to num_outputs do 

6:        if PCHB_comp(i).output(j) connected to rst-to-DATA comp then 

7:         report warning message 

8:        else  

9:         Add PCHB_comp Register after PCHB_comp(i).output(j) 

10:       end if 

11:      end for 

12:     end if 

13:   else if PCHB_comp(i).reset_type == N then // PCHB_comp(i) is Reg_N 

14:      merge PCHB gates separated by PCHB_comp(i) 

15:      delete PCHB_comp(i) 

16:   else if PCHB_comp(i).output(1) connected to rst-to-DATA comp then 

17:      report warning message 

18:      merge PCHB gates separated by PCHB_comp(i) 

19:      delete PCHB_comp(i) 

20:   end if 

21:  end for 

22:  for i←1 to num_pchb_components do  

23:    convert_to_synchronous (PCHB_comp(i)) 

24:  end for 

 

 Each PCHB gate/component (e.g., AND gate or FA component), excluding registers, is 

replaced with its corresponding Boolean gate/component, which does not include a reset input. 

Every reset-to-NULL register, Reg_N, is eliminated by setting its output equal to its input, as 

those are added in feedback loops to avoid deadlock or to increase throughput via slack matching 

[47], and have no corresponding functionality in the equivalent synchronous circuit. Each reset-
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to-DATA register is replaced with its corresponding resettable synchronous register, except for 

paths where its output is input to another reset-to-DATA register/component, in which case it’s 

eliminated like a reset-to-NULL register described previously, since adjacent reset-to-DATA 

registers/components only represent a single DATA token, which corresponds to a single 

synchronous register. In addition to each reset-to-DATA PCHB gate/component being replaced 

with its corresponding Boolean gate/component, as previously mentioned, an additional 

resettable synchronous register is also added following its output(s), except again for paths where 

an output is input to another reset-to-DATA register/component, in which case no synchronous 

register is added. Referring to Procedure 2, lines 2-21 add and delete PCHB register components, 

according to the description above, such that after exiting that for loop, any remaining PCHB 

register component directly corresponds to a synchronous register. Lines 22-24 then replace each 

PCHB component with its corresponding synchronous/Boolean component. For example, 

referring to Fig. 28, the two adjacent Reg_D0 components in FL1 are replaced with a single 

synchronous Reg_0 component, shown on line 14 in Fig. 31; the Reg_D0 components in FL2 

and FL3 are each replaced with a single synchronous Reg_0 component, shown on line 15 and 

16 in Fig. 31, respectively; and in FL4, the FAs_D0 component is replaced by a Boolean full 

adder followed by a Reg_0 component, shown on lines 13 and 17 in Fig. 31, respectively, while 

the preceding Reg_N and Reg_D components are eliminated. The equivalent converted 

synchronous circuit is depicted in Fig. 32. 
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Figure 32. Equivalent Synchronous Circuit after Conversion. 

 While consecutive reset-to-DATA registers/components are not necessarily incorrect, as 

discussed in the example above, typically only a single reset-to-DATA register/component is 

utilized to represent a DATA token. Therefore, our conversion tool generates a warning message 

that flags all adjacent reset-to-DATA components for manual inspection (lines 7 and 17 in 

Procedure 2), since this could cause deadlock upon reset in some cases without violating our 

safety or handshaking checks. For example, replacing the middle FA_N with FA_D0 and 

swapping it with the last Reg_D0 in Fig. 28 FL3, will result in the circuit snippet shown in Fig. 

33. Converting this circuit results in the same converted netlist as Fig. 32; however, this reset 

state will result in deadlock (i.e., LACK8 will never become initialized, as can be seen from the 

data and handshaking signal transitions in Fig. 33).  Even if the C-element that produces LACK8 

was replaced with a resettable version to initialize LACK8, the circuit will still deadlock upon 

reset. For example, if LACK8 was reset to 0, A2 would transition to NULL causing the sum 

output of FA_N in FL3, p4, to never become DATA (i.e., the initial A2 data would be lost before 

being fed back). If instead LACK8 was reset to 1, the c5 input to FAs_D0 would never become 

NULL and therefore its lack17 output would never become 1. If one transitioned the other would 
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be able to transition; however, neither can transition without the other transitioning first. This 

type of reset state error is easily detected in simulation, since the circuit will deadlock after reset 

before completing its first DATA/NULL cycle. For our example in Fig. 28, the two Reg_D0 

components in FL1 and the Reg_D0 and FAs_D0 components in FL4 would be flagged for 

manual inspection. 
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Figure 33. Alternate Arrangement in FL3 and FL4 to Demonstrate Deadlock. 

 Functional equivalence checking of sequential PCHB circuits is more complicated than 

for combinational PCHB circuits described in Section 3.2.2.1. Sequential circuits require states 

and transitions between the states, such that both specification and implementation can be 

modeled as a transition system (TS). These TSs are then checked for equivalence using the 

theory of WEB refinement [34], which utilizes two functions, rank and refinement-map, to 

distinguish between finite stuttering and infinite stuttering (deadlock) states, and to map 

implementation states to corresponding specification states, respectively. However, since the 

registers of the specification sequential circuit, SPEC_SEQ, and those of the equivalent 
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synchronous circuit, PCHB_SEQ, automatically generated from the PCHB circuit as described 

above, have a one-to-one mapping, there is no stuttering. Moreover, the refinement-map function 

is just a projection of each implementation stage register to its corresponding specification stage 

register. Hence, the correctness proof obligation can be reduced to Proof Obligation 1, shown 

below.  

Proof Obligation 1 : { s:: s SPCHB_SEQ ::  

   [u = Reg_Proj (s) ˄ w = StepPCHB_SEQ (s) ˄   v = StepSPEC_SEQ (u)]  

    w = v} 

Fig. 34 is used to explain the proof obligation. s is a state of PCHB_SEQ, and u is a 

SPEC_SEQ state, which includes a projection of register values of state S. StepPCHB_SEQ and 

StepSPEC_SEQ are two functions that step PCHB_SEQ and SPEC_SEQ once, respectively. w 

and v are the next states of s and u respectively. The proof obligation states that PCHB_SEQ and 

SPEC_SEQ are equivalent iff the projection values of all registers in state w equal the values of 

their corresponding registers in state v. The proof obligation is encoded in SMT-LIB, and 

checked using an SMT solver. 

 Additionally, since PCHB_SEQ and SPEC_SEQ have a one-to-one register mapping, the 

register reset values are compared to ensure that the two circuits have the same initial reset state. 

If a one-to-one register mapping does not exist, this is an error; for example, a PCHB register 

being reset to NULL instead of DATA, as it was supposed to be, could result in 1 fewer register 

in PCHB_SEQ. 
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Figure 34. Formulation of Proof Obligation to Check Equivalence of PCHB_SEQ and 

SPEC_SEQ. 

3.2.3.2. Liveness and handshaking correctness check 

Fig. 29 shows the handshaking connections between components for the 4+2×2 PCHB 

MAC, where RACK and LACK are the external request and acknowledge signals, respectively. 

The same handshaking check algorithm detailed in Section 3.2.2.2 is utilized to check the 

handshaking connections, with the only difference being the level restriction check for full-word 

completion (i.e., each gate that is in comp_fanin(k) and not in fanout(k) must be from the 

immediate subsequent level of gate/input k), since this level restriction no longer holds due to 

datapath feedback. Therefore, we do not require level for PCHB register components; and level 

for other PCHB gates is ignored for sequential circuits. To demonstrate this, we have utilized 

partial full-word completion in Fig. 29, by combining the request generation of the two LSB 

registers. The comp_fanin list of the 2 LSB Reg_D0 components will contain one additional 

signal each, lack7 for the LSB register in FL1 and lack5 for the next LSB register in FL2. This is 

not an error, but may slow down the circuit. The handshaking algorithm generates a warning 

under such scenario, highlighting the additional signal for further inspection.  
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Following the above handshaking check, the method developed by Shih et. al. for 

deadlock verification [39] is applied, as mentioned at the beginning of Section 3.2.3. This 

method, along with our handshaking correctness check, guarantees liveness for sequential PCHB 

circuits. 

3.2.4. Detection of All Possible Faults 

Section 3.2.1 enumerates the faults that could occur in a PCHB circuit comprised solely 

of PCHB gates and C-elements (i.e., no special asynchronous control elements, such as F-

element, D-element, Tangram S-element, etc.), and proves that the 18 faults listed comprise all 

possible faults. Below, we show how the proposed methodology detects all 18 of these faults. 

Cases 1-8 correspond to datapath faults, which are detected in our safety check; Cases 9-17 

correspond to handshaking faults, which are detected in our liveness check; and Case 18 

corresponds to electrical faults, which can occur in either the datapath or handshaking circuitry, 

and are detected in our safety or liveness check, respectively.  

Case 1: Faulty data connection, Case 2: Swapped dual-rail connection, and Case 6: 

Incorrect logic implementation, would all result in functional inequivalence between 

implementation and specification, and would be detected by the SMT solver. Case 3: Rails from 

different signals, Case 4: Rail Duplication, Case 5: Handshaking signal connected to data 

signal, and Case 7: Non-PCHB gate in datapath, would all be detected in the PCHB-to-Boolean 

netlist conversion algorithm, described in Sections 3.2.2.1 and 3.2.3.1. For Case 8: Incorrect 

reset, the external reset input not being connected to all PCHB gates’ reset input would be 

detected in the PCHB-to-Boolean netlist conversion algorithm, while an incorrect reset value 

would be detected in the register reset value comparison check described at the end of Section 

3.2.3.1. 
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Case 9: Insufficient registers in a feedback loop, would be detected by the verification 

procedure proposed by Shih et. al. [39], which follows our handshaking check, as described in 

Section 3.2.3.2. Cases 10-13: Missing handshaking signal, Additional handshaking signal, 

External Lack error, and External Rack error, would all be detected in the handshaking 

correctness check, described in Sections 3.2.2.2 and 3.2.3.2. Cases 14-17: Non-C-element in 

handshaking circuitry, Data signal input to C-element, Data signal input to PCHB gate Rack 

input, and C-element structure feedback, would all be detected by the algorithm that generates 

the fanout and comp_fanin for each PCHB gate and external data input, described in Section 

3.2.2.2.  

Case 18: Shorted output, would be detected by the PCHB-to-Boolean netlist conversion 

algorithm for shorted PCHB gate data outputs, and by the fanout/comp_fanin generation 

algorithm for shorted PCHB Lack or C-element outputs. Hence, our proposed methodology will 

detect all 18 fault cases, which in Section 3.2.1 were proved to comprise all possible PCHB 

circuit faults; therefore, our proposed methodology guarantees full functional correctness for any 

PCHB circuit composed solely of PCHB gates and C-elements (i.e., no special asynchronous 

control elements, such as F-element, D-element, Tangram S-element, etc.). 

3.2.5. Results 

 The proposed methodology is demonstrated by verifying several different sized MACs 

and ISCAS sequential circuit benchmarks [48], as shown in Table 5, which lists the verification 

time for each circuit. MAC circuits could be considered a special case, since they only contain 

non-interacting feedback loops; however, the ISCAS benchmarks are more general and contain 

various interacting feedback paths. PCHB MAC circuits are complex sequential pipeline 

structures, with each PCHB component acting as a state holding element. For example, an 
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optimized 20+10×10 PCHB MAC requires 18,612 transistors, whereas its synchronous 

counterpart only requires 4,710 transistors, demonstrating the substantially increased complexity 

of PCHB circuits vs. their synchronous equivalent. The PCHB-to-Boolean netlist conversion 

time and the time to generate fanout and comp_fanin for each PCHB gate was negligible 

compared to the time to perform the safety check by the Z3 SMT solver [44]; additionally, the 

handshaking check was also negligible, as seen in Table 5. Note that Table 5 does not include the 

deadlock verification times, as this algorithm was developed by Shih et. al. and fully detailed in 

[39].  

 To check our methodology, we injected bugs into the 20+10×10 MAC, corresponding to 

all 18 fault cases, except for Case 9: Insufficient registers in a feedback loop, as the method to 

detect this fault was already developed by Shih et. al. in [39]. The –Bn multipliers in Table 5 are 

the buggy circuits, where n corresponds to a Case n bug; and the (B) in either the Safety Check 

or Handshaking Check column denotes which check detected the bug. -B8i corresponds to a 

register reset to an incorrect value, while B8ii corresponds to a signal other than the external 

reset being connected to a PCHB gate’s reset input. 

 In every case, the proposed methodology detected the bug and produced a 

counterexample and/or descriptive error message, in order to assist in identifying where the error 

occurred. Verification was performed using the same computer described in Section 3.2.2.3. 
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Table 5. Verification Results for Various Sequential PCHB Circuits Based on Equivalence 

Checking. 

PCHB 

Circuits 

Verification Time (in sec.) PCHB 

Circuits 

Verification Time (in sec.) 

Safety 

Check 

Hand-

shaking 

Check 

Total 

Time 

Safety 

Check 

Hand-

shaking 

Check 

Total 

Time 

4+2x2 MAC 0.01 0.0053 0.0153 
20+10x10 

MAC- B6 

0.23 (B) 1.7862 2.0162 

8+4x4 MAC 0.07 0.0278 0.0978 
20+10x10 

MAC- B7 

0.0109 

(B) 

1.7862 1.7971 

16+8x8 

MAC 
12.06 0.7893 12.8493 

20+10x10 

MAC- B8i 

0.17 (B) 1.7862 1.9562 

20+10x10 

MAC 
813.03 1.7862 814.8162 

20+10x10 

MAC- B8ii 

0.0206 

(B) 

1.7862 1.8068 

ISCAS s27 0.01 0.0010 0.0110 
20+10x10 

MAC- B10 

813.03 3.0563 (B) 816.0863 

ISCAS s208 0.17 0.0378 0.2078 
20+10x10 

MAC- B11 

813.03 2.5998 (B) 815.6298 

ISCAS s298 0.23 0.0459 0.2759 
20+10x10 

MAC- B12 

813.03 1.8368 (B) 814.8668 

ISCAS s444 0.76 0.1008 0.8608 
20+10x10 

MAC- B13 

813.03 1.8989 (B) 814.9289 

20+10x10 

MAC- B1 
0.11 (B) 1.7862 1.8962 

20+10x10 

MAC- B14 

813.03 0.9063 (B) 813.9363 

20+10x10 

MAC- B2 
0.14(B) 1.7862 1.9262 

20+10x10 

MAC- B15 

813.03 1.1856 (B) 814.2156 

20+10x10 

MAC- B3 

0.0324 

(B) 
1.7862 1.8186 

20+10x10 

MAC- B16 

813.03 1.1121 (B) 814.1421 

20+10x10 

MAC- B4 

0.0175 

(B) 
1.7862 1.8037 

20+10x10 

MAC- B17 

813.03 0.8555(B) 813.8855 

20+10x10 

MAC- B5 

0.0154 

(B) 
1.7862 1.8016 

20+10x10 

MAC- B18 

0.1333 

(B) 

1.7862 1.9195 

 

3.3. Conclusions 

Formal verification methodologies for QDI PCHB paradigms have long been desired in 

industry. In this chapter, two developed formal verification methods for QDI PCHB circuits have 

been illustrated in details. The first method based on model checking is the first known formal 

verification method for PCHB circuits that checks for both safety and liveness. However, 
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scalability is an issue with the approach. The second method is based on equivalence checking, 

which is one of the popular formal verification approaches that is highly scalable and efficient. 

This chapter discusses the first ever equivalence checking based formal verification methodology 

for QDI PCHB circuits. This second approach is scalable, fast, and applicable to any 

combinational or sequential PCHB circuit comprised entirely of PCHB gates and C-elements. 

We have demonstrated that the proposed approach detects all possible faults, thereby 

guaranteeing correctness, and have proved that the 18 fault cases presented herein comprise all 

faults that could possibly occur in a PCHB circuit comprised entirely of PCHB gates and C-

elements. 
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4. FORMAL MODELING AND VERIFICATION METHODS FOR QDI NCL 

ASYNCHRONOUS CIRCUITS1 

Vidura et al. [33] have previously developed an approach for verifying the equivalence of 

an NCL circuit against a synchronous circuit. They use the theory of Well-Founded Equivalence 

Bisimulation (WEB) refinement [34] as the notion of equivalence.  In WEB refinement, both the 

circuit to be verified (here the NCL circuit) and the specification circuit (here the synchronous 

circuit) are modeled as transition systems (TSs), which capture the behavior of the circuit as a set 

of states and transitions between the states. WEB refinement essentially defines what it means 

for two TSs to be functionally equivalent. Their approach performs symbolic simulation on both 

the NCL circuit and the synchronous circuit to generate the TSs corresponding to both circuits. A 

decision procedure is then used to verify that the two TSs satisfy the WEB refinement property. 

In working with the above approach, it is found that because NCL circuits exhibit highly 

non-deterministic behaviors, the corresponding TSs are very complex, even for relatively simple 

circuits. This complexity leads to two issues. First is state space explosion. Second, it becomes 

very difficult to compute the reachable states of the resulting TS. Computing reachable states is 

important because unreachable states often flag numerous spurious counterexamples that makes 

verification intractable. 

 

 

 

1The functional equivalence check and invariant checks documented in this dissertation were a 

collaborative work between Ashiq Sakib, Son Le, Scott Smith, and Sudarshan Srinivasan. The conversion 

of NCL combinational circuits to equivalent Boolean circuits and conversion of NCL sequential circuits 

to equivalent synchronous circuits were done by Ashiq. Equivalence checking for combinational circuits 

was done by Ashiq. An automated tool to generate the initial equivalence proof for the sequential logic 

and proofs of sequential circuits was done by Son. For the invariant check, all combinational circuits were 

done by Ashiq and the sequential circuits were done by modifying Son’s equivalence models. The 

handshaking check algorithms for both combinational and sequential NCL circuits were developed and 

implemented by Ashiq. 



 

73 

An alternate approach to circumvent having to deal with the NCL TS is discussed in this 

chapter. The strategy behind the methodology is similar to the equivalence verification method 

for PCHB circuits, as discussed in Section 3.2. The high-level idea is to perform structural 

transformation on the NCL circuit netlist to convert the NCL circuit into an equivalent 

synchronous circuit. The converted synchronous circuit is then compared against the 

specification synchronous circuit, using WEB refinement as the notion of correctness. The 

converted synchronous circuit, specification synchronous circuit, and the WEB refinement 

property are then automatically encoded in the Satisfiability Modulo Theory Library (SMT-Lib) 

language [49]. The resulting equivalence property is then checked using an SMT solver.  

Additional checks need to be performed to ensure that the NCL circuit is live (i.e., deadlock 

free). Thus, the overall verification has three high-level steps: (1) Conversion from NCL to 

synchronous; (2) Verification of converted synchronous against specification synchronous; (3) 

Additional checks on original NCL circuit to ensure liveness. The methodology can also be used 

to check the equivalence of two NCL circuits by applying the conversion technique to both NCL 

circuits to obtain two corresponding synchronous circuits, verifying these two synchronous 

circuits against each other, and performing the additional liveness checks on both NCL circuits. 

4.1. Equivalence Verification for Combinational NCL Circuits 

In industry, asynchronous NCL circuits are typically synthesized from their synchronous 

counterparts. Throughout the synthesis and optimization process, the synchronous specification 

undergoes several transformations, resulting in major structural differences between the 

implemented NCL circuit and its synchronous specification. For this kind of scenario, 

equivalence checking is a widely used formal verification method that checks for logical and 

functional equivalence between two different circuits.  
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NCL verification based on equivalence checking has proved to be a unified, fast, and 

scalable approach that eliminates most of the limiting factors of previous verification works in 

the field. The NCL equivalence verification method requires 5 steps, as described below and 

detailed in the following sub sections: 

1) The netlist of an NCL circuit to be verified is converted into a corresponding 

Boolean/synchronous netlist, which is modeled in the SMT-Lib language using an automated 

script that we developed. The converted netlist is then checked against its corresponding 

Boolean/synchronous specification using an SMT solver to test for functional equivalence.  

2) Step 1 only checks the converted circuit’s signals corresponding to the original NCL 

circuit’s rail1 signals with their equivalent Boolean/synchronous specification external outputs or 

register outputs; hence, the original NCL circuit’s rail0 signals must also be ensured to be 

inverses of their respective rail1 signals, in order to guarantee safety after passing Step 1. 

3) The NCL netlist is then automatically converted into a graph-structure, and 

information related to the handshaking control is gathered by traversing the graph. This 

information is utilized to analyze the handshaking correctness of the circuit in order to check for 

deadlock. 

4 and 5) Once the NCL circuit passes Step 2, each combinational logic (C/L) block must 

be verified to be both input-complete (Step 4) and observable (Step 5) in order to guarantee 

liveness of the circuit under all timing scenarios. The input completeness and observability check 

is already established and illustrated in details in [37]. Hence, input-completeness and 

observability check are not discussed further in this dissertation.  



 

75 

4.1.1. Functional Equivalence Check 

A 3×3 NCL multiplier, shown in Fig. 35, is used as an example to illustrate the 

equivalence verification procedure for combinational NCL circuits. NCL multipliers use input-

incomplete NCL AND functions (denoted with an I inside the AND symbol), input-complete 

NCL AND functions (denoted with a C inside the AND symbol), NCL Half-Adders (HA), and 

NCL Full-Adders (FA), which all consist of a combination of NCL threshold gates, as shown in 

Figs. 36a, 36b, 37, and 38, respectively. All signals in Fig. 35 are dual-rail; and all registers are 

reset-to-NULL, denoted as REG_NULL. In addition to the I/O registers, the multiplier in Fig. 35 

includes one intermediate register stage to increase throughput.  
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Figure 35. 3×3 NCL Multiplier Circuit. 
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 (a)                (b) 

Figure 36. (a) Input Incomplete NCL AND. (b) Input Complete NCL AND. 

(A+B)(C+D)

(A+B)(C+D)

 

Figure 37. NCL Half Adder Circuit. 

 

Figure 38. NCL Full Adder Circuit. 
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 The netlist of the NCL 3×3 multiplier is shown in Fig. 39a. The first two lines indicate all 

primary inputs and primary outputs, respectively. Lines 3-44 correspond to the NCL C/L 

threshold gates, where the first column is the type of gate, the second column lists the gate’s 

inputs, in comma separated format starting with input A, and the last column is the gate’s output. 

Lines 45-64 correspond to 1-bit NCL registers, where the first column is the reset type of the 

register (i.e., _NULL, _DATA0, or _DATA1, for reset to NULL, DATA0, or DATA1, 

respectively), the second column denotes the register’s level (i.e., the depth of the path through 

registers without considering the C/L in-between). For the 3×3 multiplier example, there are 3 

stages of registers, with levels 1, 2, and 3, starting from the input registers), the third and fourth 

columns are the register’s rail0 and rail1 data inputs, respectively, the fifth and sixth columns are 

the register’s Ki input and Ko output, respectively, and the seventh and eighth columns are the 

register’s rail0 and rail1 data outputs, respectively. Lines 65-72 correspond to the C-elements 

(i.e., THnn gates) used in the handshaking control circuitry, where the first column is Cn, with n 

indicating the number of inputs to the C-element,  the second column lists the inputs in comma 

separated format, and the last column is the C-element’s output. For example, C4 on line 65 is a 

4-input C-element. 

  The NCL netlist is input to a conversion algorithm that converts it into an equivalent 

Boolean netlist, as shown in Fig. 39b for the Fig. 39a example. Each NCL C/L gate is replaced 

with its corresponding Boolean gate that has the same set function, but no hysteresis; each 

internal dual-rail signal is already represented as 2 Boolean signals, the first for rail1 and the 

second for rail0, so no changes are needed for these; and each primary dual-rail input is replaced 

with that signal’s rail1, as this corresponds to the equivalent Boolean signal.   
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1.   xi0_0, xi0_1, xi1_0, xi1_1, … , yi1_0, yi1_1,yi2_0, yi2_1
2.   p0_0,p0_1, p1_0, p1_1,…,p5_0,p5_1
3.    th22 x0_1,y0_1  m0_1
4.    thand0 y0_0,x0_0,y0_1,x0_1  m0_0
5.    th22   x0_1,y1_1  t0_1
6.    th12   x0_0,y1_0  t0_0
7.    th22   x0_1,y2_1  t4_1
8.    th12   x0_0,y2_0  t4_0
9.    th22   x1_1,y0_1  t1_1
10.  th12   x1_0,y0_0  t1_0
11.  th22   x1_1,y1_1  t2_1
12.  thand0   y1_0,x1_0,y1_1,x1_1  t2_0
13.  th22   x1_1,y2_1  t6_1
14.  th12   x1_0,y2_0  t6_0
15.  th22   x2_1,y0_1  t3_1
16.  th12   x2_0,y0_0  t3_0
17.  th22   x2_1,y1_1  t5_1
18.  th12   x2_0,y1_0  t5_0
19.  th22   x2_1,y2_1  t7_1
20.  thand0   y2_0,x2_0,y2_1,x2_1  t7_0
21.  th24comp   t0_0,t1_0,t0_1,t1_1  m1_1
22.  th24comp   t0_0,t1_1,t1_0,t0_1  m1_0
23.  th22   t0_1, t1_1  c1_1
24.  th12   t0_0,t1_0  c1_0
25.  th23   t3_0,t2_0,c1_0  c2_0
26.  th23   t3_1,t2_1,c1_1  c2_1
27.  th34w2    c2_0,t3_1,t2_1,c1_1   s1_1
28.  th34w2    c2_1,t3_0,t2_0,c1_0   s1_0
29.  th24comp    s1_0,t4_0,s1_1,t4_1   m2_1
30.  th24comp    s1_0,t4_1,t4_0,s1_1   m2_0
31.  th22    s1_1,t4_1   c3_1
32.  th12    s1_0,t4_0   c3_0
33.  th23    m5_0,m4_0,m3_0   c4_0
34.  th23    m5_1,m4_1,m3_1   c4_1
35.  th34w2    c4_0,m5_1,m4_1,m3_1   s2_1
36.  th34w2    c4_1,m5_0,m4_0,m3_0   s2_0
37.  th24comp    s2_0,m6_0,s2_1,m6_1   z3_1
38.  th24comp    s2_0,m6_1,m6_0,s2_1   z3_0
39.  th22    s2_1,m6_1   c5_1
40.  th12    s2_0,m6_0   c5_0
41.  th23    m7_0,c4_0,c5_0   z5_0
42.  th23    m7_1,c4_1,c5_1   z5_1
43.  th34w2    z5_0,m7_1,c4_1,c5_1  z4_1
44.  th34w2    z5_1,m7_0,c4_0,c5_0  z4_0
45.  Reg_NULL   1   xi0_0 xi0_1   KO3   ko1   x0_0 x0_1
46.  Reg_NULL   1   xi1_0 xi1_1   KO3   ko2   x1_0 x1_1
47.  Reg_NULL   1   xi2_0 xi2_1   KO3   ko3   x2_0 x2_1
48.  Reg_NULL   1   yi0_0 yi0_1   KO3   ko4   y0_0 y0_1
49.  Reg_NULL   1   yi1_0 yi1_1   KO3   ko5   y1_0 y1_1
50.  Reg_NULL   1   yi2_0 yi2_1   KO3   ko6   y2_0 y2_1
51.  Reg_NULL   2   m0_0 m0_1   ko15   ko7   z0_0 z0_1
52.  Reg_NULL   2   m1_0 m1_1   ko16   ko8   z1_0 z1_1
53.  Reg_NULL   2   m2_0 m2_1   ko17   ko9   z2_0 z2_1
54.  Reg_NULL   2   c3_0 c3_1   KO4   ko10   m3_0 m3_1
55.  Reg_NULL   2   c2_0 c2_1   KO4   ko11   m4_0 m4_1
56.  Reg_NULL   2   t5_0 t5_1   KO4   ko12   m5_0 m5_1
57.  Reg_NULL   2   t6_0 t6_1   KO4   ko13   m6_0 m6_1
58.  Reg_NULL   2   t7_0 t7_1   KO5   ko14   m7_0 m7_1
59.  Reg_NULL   3   z0_0 z0_1   Ki   ko15   p0_0 p0_1
60.  Reg_NULL   3   z1_0 z1_1   Ki   ko16   p1_0 p1_1
61.  Reg_NULL   3   z2_0 z2_1   Ki   ko17   p2_0 p2_1
62.  Reg_NULL   3   z3_0 z3_1   Ki   ko18   p3_0 p3_1
63.  Reg_NULL   3   z4_0 z4_1   Ki   ko19   p4_0 p4_1
64.  Reg_NULL   3   z5_0 z5_1   Ki   ko20   p5_0 p5_1
65.  C4   ko7,ko8,ko9,ko10   KO1
66.  C4   ko11,ko12,ko13,ko14   KO2
67.  C2   KO1,KO2   KO3
68.  C3   ko18,ko19,ko20   KO4
69.  C2   ko19,ko20      KO5 
70.  C3   ko4,ko5,ko6   KO6
71.  C3   ko1,ko2,ko3   KO7
72.  C2   KO7,KO6   KO

1.   xi0_1, xi1_1, xi2_1, yi0_1, yi1_1, yi2_1
2.   p0_0,p0_1, p1_0, p1_1,…,p5_0,p5_1
3.   not     xi0_1   xi0_0
4.   not     xi1_1   xi1_0
5.   not     xi2_1   xi2_0 
6.   not     yi0_1   yi0_0
7.   not     yi1_1   yi1_0
8.   not     yi2_1   yi2_0
9.   th22    xi0_1 ,yi0_1   p0_1
10. thand0    yi0_0,xi0_0,yi0_1,xi0_1   p0_0
11. th22    xi0_1,yi1_1   t0_1
12. th12    xi0_0,yi1_0   t0_0 
13. th22    xi0_1,yi2_1   t4_1
14. th12    xi0_0,yi2_0   t4_0
15.  th22  xi1_1,yi0_1 t1_1
16.  th12  xi1_0,yi0_0 t1_0
17.  th22  xi1_1,yi1_1 t2_1
18.  thand0  yi1_0,xi1_0,yi1_1,xi1_1 t2_0
19.  th22  xi1_1,yi2_1 t6_1
20.  th12  xi1_0,yi2_0 t6_0
21.  th22  xi2_1,yi0_1 t3_1
22.  th12  xi2_0,yi0_0 t3_0
23.  th22  xi2_1,yi1_1 t5_1
24.  th12  xi2_0,yi1_0 t5_0
25.  th22  xi2_1,yi2_1 t7_1
26.  thand0    yi2_0,xi2_0,yi2_1,xi2_1   t7_0
27.  th24comp    t0_0,t1_0,t0_1,t1_1   p1_1
28.  th24comp    t0_0,t1_1,t1_0,t0_1   p1_0
29.  th22    t0_1, t1_1   c1_1
30.  th12    t0_0,t1_0   c1_0
31.  th23    t3_0,t2_0,c1_0   c2_0
32.  th23    t3_1,t2_1,c1_1   c2_1
33.  th34w2    c2_0,t3_1,t2_1,c1_1   s1_1
34.  th34w2    c2_1,t3_0,t2_0,c1_0   s1_0
35.  th24comp    s1_0,t4_0,s1_1,t4_1   p2_1
36.  th24comp    s1_0,t4_1,t4_0,s1_1   p2_0
37.  th22    s1_1,t4_1   c3_1
38.  th12    s1_0,t4_0   c3_0
39.  th23    t5_0,c2_0,c3_0   c4_0
40.  th23    t5_1,c2_1,c3_1   c4_1
41.  th34w2    c4_0,t5_1,c2_1,c3_1   s2_1
42.  th34w2    c4_1,t5_0,c2_0,c3_0   s2_0
43.  th24comp    s2_0,t6_0,s2_1,t6_1   p3_1
44.  th24comp    s2_0,t6_1,t6_0,s2_1   p3_0
45.  th22    s2_1,t6_1   c5_1
46.  th12    s2_0,t6_0   c5_0
47.  th23    t7_0,c4_0,c5_0    p5_0
48.  th23     t7_1,c4_1,c5_1   p5_1
49.  th34w2     p5_0,t7_1,c4_1,c5_1   p4_1
50.  th34w2     p5_1,t7_0,c4_0,c5_0   p4_0

 

Figure 39. (a) 3x3 NCL Multiplier Netlist. (b) Converted Boolean Netlist. 
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The rail1 primary inputs are then inverted to produce internal signals corresponding to 

what used to be the rail0 primary inputs, as these are utilized in the internal logic. The first two 

lines in the converted netlist are the list of primary inputs and outputs, respectively, where the 

inputs correspond to the original NCL netlist’s rail1 inputs, and the outputs include both rail0 and 

rail1 outputs. Lines 3-8 in the converted netlist are the added inverters used to produce the 

equivalent signals to the original rail0 inputs, as these were removed in the conversion. The 

format of each gate is the same as explained above for the NCL netlist. All Reg_NULL 

components are removed during conversion by setting their data outputs equal to their data 

inputs, since these have no corresponding functionality in the equivalent Boolean circuit. Purely 

C/L circuits will not include Reg_DATA components, as these correspond to synchronous 

registers; these will be discussed in Section 4.2: Equivalence Verification for Sequential NCL 

Circuits. 

The converted Boolean netlist is automatically encoded in the Satisfiability Modulo 

Theory Library (SMT_LIB) language [49], using a conversion tool we developed, which is then 

input to an SMT solver to check for functional equivalence with the corresponding specification. 

For the 3x3 multiplier example, the SMT solver checks for the following safety property: 

FNCL_Bool_Equiv. (x2_1, x1_1, x0_1, y2_1, y1_1, y0_1) = MUL (x, y), where (x2_1, x1_1, x0_1) and 

(y2_1, y1_1, y0_1) are the x and y rail1 inputs, respectively, starting with the MSB. We use the 

Z3 SMT solver [44] to check for equivalence, but any combinational equivalence checker could 

be used. Note that only the rail1 outputs need to be checked here, as these correspond to the 

Boolean specification circuit outputs. The rail0 outputs will be utilized for the invariant check, 

described next. 
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4.1.2. Invariant Check 

Since only the rail1 outputs are utilized for the functional equivalence check, the rail0 

outputs must also be checked to ensure safety. To address correctness of the rail0 outputs, an 

additional SMT invariant proof obligation is required for the original NCL circuit, which states 

that in any reachable NCL circuit state where the outputs are all DATA, every rail0 output must 

be the inverse of its corresponding rail1 output.  

One way to achieve this is to initialize all registers to NULL, all C/L gate outputs to 0, 

and all register Ki inputs to rfd (i.e., logic 1), then make all the primary inputs DATA (i.e., 

represented in SMT as all combinations of valid DATA) and step the circuit. This will allow the 

input DATA to flow through all stages of the circuit, generating all possible combinations of 

valid DATA at the primary outputs. For each primary dual-rail output, the invariant is then 

checked to ensure that the rail0 output is the inverse of its corresponding rail1 output. For a C/L 

circuit with j registers r1, …, rj, k C/L threshold gates g1, …, gk, q dual-rail inputs i1, …, iq, and l 

dual-rail outputs o1<R0, R1>, …, ol<R0, R1>, where R0 and R1 are the output’s rail0 and rail1, 

respectively, the proof obligation for this invariant check is shown below as Proof Obligation 1. 

Predicate P1 indicates that all registers in step A are reset-to-NULL. P2 and P3 state that all 

threshold gates and Ki register inputs are initialized to logic 0 and 1, respectively. P4 indicates 

that all step A inputs are DATA. P5 represents the symbolic step of the circuit with all threshold 

gates set to 0 and all inputs set to DATA, with the new values of the threshold gates stored in 

(gB
1… gB

k). P6 states that the rails of each dual-rail output are complements of each other. The 

proof obligation, PO1, indicates that if DATA is allowed to flow from the primary inputs to the 

primary outputs, then for all possible valid DATA inputs, each output’s rail0, R0, is always the 

inverse of its respective rail1 output, R1. 
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Proof Obligation 1:  

 P1: ⋀  𝑗
𝑛=1  (rA

n = 0b00)  

 P2: ⋀  𝑘
𝑛=1  (gA

n = 0) 

 P3: ⋀  𝑗
𝑛=1  (KiA

n = 1) 

 P4: ⋀  𝑞
𝑛=1 (𝑖𝐴

𝑛 = 0𝑏01) ∨ (𝑖𝐴
𝑛 = 0𝑏10) 

 P5: (𝑔𝐵
1, … , 𝑔𝐵

𝑘) = 𝑁𝐶𝐿𝑆𝑡𝑒𝑝(𝑖𝐴
1, … , 𝑖𝐴

𝑞) 

 P6: ⋀  𝑙
𝑛=1 oB

n <R0>= oB
n <R1> 

         PO1: {P1 ˄ P2 ˄ P3 ˄ P4 ˄ P5  P6} 

An alternative, faster method to check invariants is to check each NCL circuit stage 

independently. To do this, we developed an algorithm that reads the original NCL circuit netlist 

and separately extracts each circuit stage. Then, for each extracted stage, we set all gate outputs 

to 0, all stage inputs to DATA, and step the circuit, such that the stage’s outputs become all 

possible combinations of valid DATA. Finally, the invariant is checked for each of the stage’s 

dual-rail outputs to ensure that its rail0 is the inverse of its corresponding rail1. The proof 

obligation for this second invariant check method is shown below as Proof Obligation 2, where 

the extracted stage has j dual-rail inputs i1, …, ij, m threshold gates g1, …, gm, and k dual-rail 

outputs  o1<R0, R1>, …, ok<R0, R1>, where R0 and R1 are the output’s rail0 and rail1, respectively. 

Predicate P1 indicates that all stage inputs are valid data; P2 indicates that all NCL threshold 

gates in the stage are initialized to 0; P3 corresponds to a NULL to DATA transition of the stage; 

and P4 states that the rails of each dual-rail output are complements of each other. The Proof 

Obligation states that after a NULL to DATA transition of the stage with all possible valid 

DATA inputs, that each output’s rail0, R0, is always the inverse of its respective rail1 output, R1. 

Proof Obligation 2:  

 P1: ⋀  𝑗
𝑛=1  (iA

n = 0b01) ˅ (iA
n = 0b10) 

 P2: ⋀  𝑚
𝑛=1  (gA

n = 0) 

 P3: (𝑔𝐵
1, … , 𝑔𝐵

𝑚) = 𝑁𝐶𝐿𝑆𝑡𝑒𝑝(𝑖𝐴
1, … , 𝑖𝐴

𝑗) 

 P4: ⋀  𝑘
𝑛=1 oB

n <R0>= oB
n <R1> 

       PO2: {P1 ˄ P2 ˄ P3  P4} 



 

82 

This second invariant check method is much faster than the first, since it breaks the 

problem into a set of smaller invariant checks (i.e., one per stage), whereas the first method 

checks the invariant for the entire circuit all at once. For example, method 2 is 38% faster for a 

2-stage 10×10 multiplier, and becomes even faster when the circuit includes additional stages. 

Note that for both invariant check methods, the NCL gates are modeled in SMT as Boolean 

functions (i.e., no hysteresis), since invariant checking only requires the NULL to DATA 

transition that only utilizes each gate’s set function, which is the same for the Boolean and NCL 

state-holding gate implementations. This optimization reduces the invariant check time by 

approximately half (e.g., 377 sec. vs 192 sec. for a non-pipelined 10-bit × 10-bit unsigned 

multiplier). 

4.1.3. Handshaking Check 

Liveness means absence of deadlock in a circuit. For combinational NCL circuits, proper 

connections between handshaking signals, along with observable and input-complete C/L, 

ensures liveness. The same NCL netlist shown in Fig. 39a, used as input for the functional 

equivalence and invariant checks, is also utilized as input for the liveness checks. For the 

handshaking check, the NCL netlist is automatically converted into a graph structure, and the 

handshaking paths and C-element connections are traced back to verify proper handshaking, 

ensuring that every register input acknowledges all preceding stage register outputs that took part 

in its calculation. For each NCL register, i, its dual-rail input is traced back through its preceding 

C/L to identify every NCL register’s dual-rail output that took part in its calculation, generating a 

fan-in list, reg_fanin(i). For example, referring to Fig. 35, reg_fanin(8) would be 1, 2, 4, 5, since 

x0, x1, y0, and y1 are all used to generate m1. Also, for each NCL register, i, its Ko output is 

traced through the C-element handshaking circuitry to identify every NCL register’s Ki input that 
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registeri’s Ko output took part in calculating, generating a Ko fanout list, ko_fanout(i). For 

example, referring to Fig. 40, which shows the handshaking circuitry for the 3×3 multiplier 

example, ko_fanout(8) would be 1, 2, 3, 4, 5, 6, since ko8 takes part in the generation of the Ki 

input for all of the preceding stage’s registers (i.e., 1-6). 
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REG (18) REG (17) REG (16) REG (15)REG (20) REG (19)
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Figure 40. Handshaking Connection for 3x3 NCL Multiplier. 

After reg_fanin and ko_fanout for each NCL register is calculated, as shown in Fig. 41 

for the 3×3 multiplier example, reg_fanin(k) is checked to ensure that it is a subset of 
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ko_fanout(k), for all NCL registers. Note that 0 in reg_fanin denotes a primary data input; and 0 

in ko_fanout denotes the external Ko output. Bit-wise completion results in reg_fanin(k) being 

equal to ko_fanout(k), while full-word completion results in reg_fanin(k) being a proper subset 

of ko_fanout(k), with the restriction that each register that is in ko_fanout(k) and not in 

reg_fanin(k) must be from the immediate preceding register stage of register k. reg_fanin(k) not 

being a subset of ko_fanout(k) could result in deadlock, while reg_fanin(k) being a proper subset 

of ko_fanout(k) but violating the stage restriction described above, could either result in deadlock 

or may just decrease circuit performance. Hence, if reg_fanin(k) is a proper subset of 

ko_fanout(k), then each register that is in ko_fanout(k) and not in reg_fanin(k) is automatically 

inspected to ensure that it meets this stage restriction. If not, a warning message is generated 

denoting the extra register in that particular register’s ko_fanout list, to allow for easier manual 

inspection. For the Fig. 40 example, the first stage utilizes full-word completion, while the 

second stage uses bit-wise completion. 

An additional check is needed to ensure correct connection of the external Ki input, 

namely that the external Ki should be the Ki input to every register that produces a primary data 

output. The developed algorithm generates an appropriate descriptive error message in case the 

NCL circuit fails to satisfy any of these handshaking checks.  Furthermore, it checks to ensure 

that no data signal is part of the handshaking circuitry, and that no handshaking signal is part of a 

data signal. 
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1:  reg_fanin: 0                                  ko_fanout: 0
2:  reg_fanin: 0                                  ko_fanout: 0
3:  reg_fanin: 0                                  ko_fanout: 0
4:  reg_fanin: 0                                  ko_fanout: 0
5:  reg_fanin: 0                                  ko_fanout: 0
6:  reg_fanin: 0                                  ko_fanout: 0
7:  reg_fanin: [1, 4]                           ko_fanout: [1, 2, 3, 4, 5, 6]
8:  reg_fanin: [1, 2, 4, 5]                   ko_fanout: [1, 2, 3, 4, 5, 6]
9:  reg_fanin: [1, 2, 3, 4, 5, 6]           ko_fanout: [1, 2, 3, 4, 5, 6]
10: reg_fanin: [1, 2, 3, 4, 5, 6]          ko_fanout:[ 1, 2, 3, 4, 5, 6]
11: reg_fanin: [1, 2, 3, 4, 5]              ko_fanout: [1, 2, 3, 4, 5, 6]
12: reg_fanin: [3, 5]                          ko_fanout:[ 1, 2, 3, 4, 5, 6]
13: reg_fanin: [2, 6]                          ko_fanout: [1, 2, 3, 4, 5, 6]
14: reg_fanin: [3, 6]                          ko_fanout: [1, 2, 3, 4, 5, 6]
15: reg_fanin: [7]                              ko_fanout: [7]
16: reg_fanin: [8]                              ko_fanout: [8]
17: reg_fanin: [9]                              ko_fanout: [9]
18: reg_fanin: [10, 11, 12, 13]          ko_fanout: [10, 11, 12, 13]
19: reg_fanin: [10,11,12,13,14]        ko_fanout: [10, 11, 12, 13, 14]
20: reg_fanin: [10,11,12,13,14]        ko_fanout: [10, 11, 12, 13, 14]

 

Figure 41. Reg_fanin and Ko_fanout Lists for the 3x3 NCL Multiplier. 

4.1.4. Combinational NCL Circuits Results 

The methodology has been demonstrated on several multipliers and ISCAS-85 [45] 

combinational circuit benchmarks, as shown in Table 6. umultN represents a non-pipelined N-bit 

× N-bit unsigned multiplier. The NCL-to-Boolean netlist conversion time was negligible 

compared to the safety check and invariant check performed by the Z3 SMT solver [44] on an 

Intel® Core™ i7-4790 CPU with 32GB of RAM, running at 3.60 GHz. To test the methodology, 

we injected several bugs. The umult10-Bn multipliers are circuits with n different kinds of bugs, 

and the (B) in either the Functional Check, Invariant check, or Handshaking Check column 

denotes which check detected the bug. The –B1 bug incorrectly swaps rails of a dual-rail signal. 

–B2 represents a faulty data connection. For example, the F output of NCL gatei should be 

connected to the X input of NCL gatej; however, X is instead connected to the output of NCL 

gatek, which would result in a logical error. –B3 corresponds to an incorrect handshaking 
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connection; and external Ki and Ko bugs are represented by –B4. –B5 denotes a rail-duplication 

error, where rail0 and rail1of a particular signal are the same wire. 

Table 6. Verification Results for Various C/L NCL Circuits. 

Circuits Functional 

Check (sec.) 

Invariant 

Check (sec.) 

Handshaking 

Check (sec.) 

Total Time 

(sec.) 

ISCAS c17 0.01 0.01 0.0020 0.0220 

umult2 0.02 0.01 0.0997 0.1297 

umult3 0.04 0.02 0.1087 0.1687 

umult6 0.32 0.33 0.8238 1.4738 

umult8 10.62 6.79 9.3090 26.719 

umult10 683.49 192.39 70.370 946.25 

ISCAS c432 1.03 1.06 3.0111 5.1011 

umult10-B1 0.08 (B) 0.10 (B) 70.370 70.550 

umult10-B2 0.06 (B) 192.39 70.370 262.82 

umult10-B3 683.49 192.39 69.1538 (B) 945.034 

umult10-B4 683.49 0.08 (B) 72.0235 (B) 755.5935 

umult10-B5 0.1 (B) 0.09 (B) 70.37 71.37 

 

4.2. Equivalence Verification for Sequential NCL Circuits 

4.2.1. Safety Check 

As demonstrated in Section 4.1, proposed equivalence verification methodology proved 

to be a fast and scalable approach for C/L NCL circuits. Hence, in this section that approach is 

further extended to the verification of sequential NCL circuits, which is far more complex due to 

datapath feedback.  

The verification procedure requires two steps. In the first step, we take a sequential NCL 

circuit and convert it to an equivalent synchronous circuit. We utilize the theory of WEB-

refinement [34] to compare the synchronous netlist generated from the NCL circuit with the 

original synchronous specification, as the notion of correctness. The major advantage of applying 
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WEB-refinement to the generated equivalent synchronous circuit instead of the actual NCL 

circuit is that a synchronous circuit is much more deterministic compared to its NCL equivalent, 

which makes the verification time much faster. The generated synchronous circuit, specification 

synchronous circuit, and the WEB-refinement property are automatically encoded in the SMT-

LIB language. The resulting equivalence property is then checked using an SMT solver. In the 

second step, we check the handshaking connections between components, which is similar to the 

C/L NCL handshaking check, discussed in Section 4.1.3. 

To describe this methodology, an unsigned Multiply and Accumulate (MAC) unit is 

utilized as an example circuit. Fig. 26 shows a synchronous MAC, where A’ = A + X×Y; and Fig. 

42 shows the equivalent NCL version. The 4-phase QDI handshaking protocol utilized for NCL 

circuits requires at least 2N+1 NCL registers in a feedback loop that contains N DATA tokens, in 

order to avoid deadlock [24]. Hence, at least 3 NCL registers are needed in the MAC feedback 

loop to avoid deadlock, as shown in Fig. 42. Although the synchronous and NCL MACs seem 

similar, they are structurally very different. Synchronous registers are clocked, whereas 

alternating DATA/NULL transitions in NCL are maintained via C-elements and a well-defined 

handshaking scheme. Ki and Ko are the external request input and acknowledge output, 

respectively. 
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Figure 42. NCL MAC Unit. 

Fig. 43 shows the datapath diagram for a 4 + 2×2 NCL MAC with 2 C/L stages and 4 

registers in the feedback loop (note that including a 4th register in the feedback loop increases 

throughput compared to using the minimum required 3 registers, since this allows the DATA and 

NULL wavefronts to flow more independently [24]. (Xi1, Xi0) and (Yi1, Yi0) are the two bits of 

inputs Xi and Yi, respectively. The product of Xi and Yi is added with the 4-bit accumulator 

output, Acci, where Acci3 and Acci0 are the MSB and LSB, respectively. All signals shown in 

Fig. 43 are dual-rail signals. HA and FA are the NCL half-adder and full-adder components, 

shown in Figs. 37 and 38, respectively; and FAs is a full-adder component without a carry 

output; hence, it utilizes two 2-input XOR functions, each comprised of two TH24comp gates, to 

compute its sum output.  
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Figure 43. 4 + 2x2 NCL MAC Datapath. 

 Fig. 44a shows the netlist of the NCL 4+2×2 MAC, following the same structure as 

described in Section 4.1.1. The first 2 lines are the circuit inputs and outputs, respectively; lines 

3-38 are the NCL threshold gates; lines 39-61 are the NCL registers; and lines 62-69 are C-

elements used in the handshaking network. 



 

90 

1.   xi0_0, xi0_1, xi1_0, xi1_1, yi0_0, yi0_1, yi1_0, yi1_1
2.   acci0_0,acci0_1,acci1_0,acci1_1,…,acci3_0,acci3_1
3.   th22    x0_1,y0_1   t0_1
4.   thand0  y0_0,x0_0,y0_1,x0_1   t0_0
5.   th12    x1_0,y0_0   t1_0
6.   th22    x1_1,y0_1   t1_1
7.   th12    x0_0,y1_0   t2_0
8.   th22    x0_1,y1_1   t2_1
9.   th12    x1_0,y1_0   t3_0
10.  th22    x1_1,y1_1   t3_1
11.  th24comp    t2_0,t1_1,t1_0,t2_1   t4_0
12.  th24comp    t2_0,t1_0,t2_1,t1_1   t4_1
13.  th12    t2_0,t1_0   c0_0
14.  th22    t1_1,t2_1   c0_1
15.  th24comp    acc0_0,t0_1,t0_0,acc0_1   t5_0
16.  th24comp    acc0_0,t0_0,acc0_1,t0_1   t5_1
17.  th12    acc0_0,t0_0   c1_0
18.  th22    t0_1,acc0_1   c1_1
19.  th24comp    acc1_0,t4_1,t4_0,acc1_1   t6_0
20.  th24comp    acc1_0,t4_0,acc1_1,t4_1   t6_1
21.  th12    acc1_0,t4_0   c2_0
22.  th22    t4_1,acc1_1   c2_1
23.  th23    t3_0,acc2_0,c0_0   c3_0
24.  th23    t3_1,acc2_1,c0_1   c3_1
25.  th34w2    c3_1,t3_0,acc2_0,c0_0   t7_0
26.  th34w2    c3_0,t3_1,acc2_1,c0_1   t7_1
27.  th24comp    r1_0,r2_1,r2_0,r1_1   t8_0
28.  th24comp    r1_0,r2_0,r1_1,r2_1   t8_1
29.  th12    r1_0,r2_0   c4_0
30.  th22    r2_1,r1_1   c4_1
31.  th23    r4_0,r3_0,c4_0   c5_0
32.  th23    r4_1,r3_1,c4_1   c5_1
33.  th34w2    c5_1,r4_0,r3_0,c4_0   t9_0
34.  th34w2    c5_0,r4_1,r3_1,c4_1   t9_1
35.  th24comp    r5_0,r6_1,r6_0,r5_1   c6_0
36.  th24comp    r5_0,r6_0,r5_1,r6_1   c6_1
37.  th24comp    c5_0,c6_1,c6_0,c5_1   t10_0
38.  th24comp    c5_0,c6_0,c5_1,c6_1   t10_1
39.  Reg_NULL 1   xi0_0,xi0_1   KO2   ko1   x0_0,x0_1
40.  Reg_NULL 1   xi1_0,xi1_1   KO2   ko2   x1_0,x1_1
41.  Reg_NULL 1   yi0_0 yi0_1   KO2   ko3   y0_0 y0_1
42.  Reg_NULL 1   yi1_0 yi1_1   KO2   ko4   y1_0 y1_1
43.  Reg_NULL 1   acci0_0 acci0_1  KO2   ko5   acc0_0 acc0_1
44.  Reg_NULL 1   acci1_0 acci1_1  KO2   ko6   acc1_0 acc1_1
45.  Reg_NULL 1   acci2_0 acci2_1  KO2   ko7   acc2_0 acc2_1
46.  Reg_NULL 1   acci3_0 acci3_1  KO2  ko8   acc3_0 acc3_1
47.  Reg_NULL  2   t5_0  t5_1  ko16  ko9     r0_0  r0_1
48.  Reg_NULL  2  c1_0  c1_1  KO3   ko10  r1_0  r1_1
49.  Reg_NULL  2  t6_0 t6_1   KO3   ko11    r2_0 r2_1
50.  Reg_NULL  2  c2_0 c2_1  KO3   ko12    r3_0 r3_1
51.  Reg_NULL  2  t7_0 t7_1  KO3   ko13    r4_0 r4_1
52.  Reg_NULL  2  c3_0 c3_1  KO3   ko14    r5_0 r5_1
53.  Reg_NULL  2  acc3_0 acc3_1  KO3   ko15    r6_0 r6_1
54.  Reg_NULL  3  r0_0 r0_1  ko20   ko16    p0_0 p0_1
55.  Reg_NULL  3  t8_0 t8_1  ko21   ko17    p1_0 p1_1
56.  Reg_NULL  3  t9_0 t9_1  ko22   ko18    p2_0 p2_1
57.  Reg_NULL  3  t10_0 t10_1  ko23   ko19   p3_0 p3_1
58.  Reg_DATA0 4  p0_0  p0_1   KO4   ko20   acci0_0  acci0_1
59.  Reg_DATA0 4  p1_0  p1_1   KO5   ko21   acci1_0  acci1_1
60.  Reg_DATA0 4  p2_0  p2_1   KO6   ko22   acci2_0  acci2_1
61.  Reg_DATA0 4  p3_0  p3_1   KO7   ko23   acci3_0  acci3_1
62.  C4   ko9,ko10,ko11,ko12  KO1
63.  C4   ko13,ko14,ko15,KO1   KO2
64.  C3   ko17,ko18,ko19  KO3
65.  C2   Ki,ko5   KO4
66.  C2   Ki,ko6   KO5
67.  C2   Ki,ko7   KO6
68.  C2   Ki,ko8   KO7
69.  C4   ko1,ko2,ko3,ko4   KO

1. xi0_1, xi1_1,  yi0_1, yi1_1
2.acci0_0,acci0_1,acci1_0,acci1_1,…,acci3_0,acci3_1
3.  not   xi0_1  xi0_0
4.  not   yi0_1  yi0_0
5.  not   xi1_1  xi1_0
6.  not   yi1_1  yi1_0  
7.  th12    xi0_0,yi0_0   t0_0
8.  th22    xi0_1,yi0_1   t0_1
9.  th12    xi1_0,yi0_0   t1_0
10.  th22    xi1_1,yi0_1   t1_1
11.  th12    xi0_0,yi1_0   t2_0
12.  th22    xi0_1,yi1_1   t2_1
13. th12    x1_0,y1_0   t3_0
14.  th22    x1_1,y1_1   t3_1
15.  th24comp    t2_0,t1_1,t1_0,t2_1   t4_0
16.  th24comp    t2_0,t1_0,t2_1,t1_1   t4_1
17.  th12    t2_0,t1_0   c0_0
18.  th22    t1_1,t2_1   c0_1
19.  th24comp    acci0_0,t0_1,t0_0,acci0_1   t5_0
20.  th24comp    acci0_0,t0_0,acci0_1,t0_1   t5_1
21.  th12    acci0_0,t0_0   c1_0
22.  th22    t0_1,acci0_1   c1_1
23.  th24comp    acci1_0,t4_1,t4_0,acci1_1   t6_0
24.  th24comp    acci1_0,t4_0,acci1_1,t4_1   t6_1
25.  th12    acci1_0,t4_0   c2_0
26.  th22    t4_1,acci1_1   c2_1
27.  th23    t3_0,acci2_0,c0_0   c3_0
28.  th23    t3_1,acci2_1,c0_1   c3_1
29.  th34w2    c3_1,t3_0,acci2_0,c0_0   t7_0
30.  th34w2    c3_0,t3_1,acci2_1,c0_1   t7_1
31.  th24comp    c1_0,t6_1,t6_0,c1_1   t8_0
32.  th24comp    c1_0,t6_0,c1_1,t6_1   t8_1
33.  th12    c1_0,t6_0   c4_0
34.  th22    t6_1,c1_1   c4_1
35.  th23    t7_0,c2_0,c4_0   c5_0
36.  th23    t7_1,c2_1,c4_1   c5_1
37.  th34w2    c5_1,t7_0,c2_0,c4_0   t9_0
38.  th34w2    c5_0,t7_1,c2_1,c4_1   t9_1
39.  th24comp    c3_0,acci3_1,acci3_0,c3_1   c6_0
40.  th24comp    c3_0,acci3_0,c3_1,acci3_1   c6_1
41.  th24comp    c5_0,c6_1,c6_0,c5_1   t10_0
42.  th24comp    c5_0,c6_0,c5_1,c6_1   t10_1
43.  Reg_0    t5_0  t5_1   acci0_0  acci0_1
44.  Reg_0    t8_0  t8_1   acci1_0  acci1_1
45.  Reg_0    t9_0  t9_1   acci2_0  acci2_1
46.  Reg_0    t10_0  t10_1   acci3_0  acci3_1

 

Figure 44. (a) 4 + 2x2 NCL MAC Netlist. (b) Converted Synchronous Equivalent Netlist. 
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 The converted netlist (NCL-SYNC) is depicted in Fig. 44b. The conversion algorithm for 

sequential NCL circuits is slightly different than that for C/L NCL circuits, described in Section 

4.1.1, since the sequential NCL circuit contains reset-to-DATA registers, which are replaced 

with a 2-bit resettable synchronous register, 1 bit for each rail of the corresponding NCL dual-

rail register. Like for C/L NCL circuits, all reset-to-NULL registers, handshaking signals, and C-

elements are eliminated; and all C/L NCL gates are replaced with their corresponding relaxed 

(i.e., Boolean) gate. 

 The NCL-SYNC netlist must next be checked against the synchronous specification 

(SPEC-SYNC) netlist for equivalence. When verifying C/L NCL circuits, the circuit 

functionality could be specified as a Boolean function. However, since sequential circuits 

involve states and transitions, transition systems are used as the formal model to capture the 

behaviors of both the NCL-SYNC netlist as well as the SPEC-SYNC netlist. The theory of WEB 

refinement [34] defines what it means for an implementation transition system to be functionally 

equivalent to a specification transition system, as discussed in Section 3.2.3.1. Therefore, the 

theory of WEB refinement is implemented for checking equivalence in the NCL sequential case 

as well. 

 The theory of WEB refinement allows for stutter between the implementation transition 

system and the specification transition system. What this means is that multiple but finite 

transitions of the implementation can match to a single specification transition. Rank functions 

(functions that map circuit states to natural numbers) are used to distinguish finite stutter from 

deadlock (infinite stutter). Another characteristic of WEB refinement is the use of refinement 

maps, which are functions that map implementation states to specification states. Refinement 

maps allow for the implementation and specification to be specified at significantly different 
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abstraction levels. However, since the rail1 registers of NCL-SYNC and the registers of SPEC-

SYNC have a one-to-one mapping, there is no stutter between these two transition systems, and 

the refinement is simply a projection of the rail1 registers of the implementation state to the 

registers of the specification state. 

s

w

u

v

StepSYNC_NCL StepSYNC_SPEC

Implementation Specification

 

Figure 45. Proof Obligation to Check Equivalence of NCL_SYNC and SPEC_SYNC Netlists. 

Therefore, the correctness proof obligations required for verifying WEB refinement can 

be reduced to the proof obligation given below and shown in Fig. 45. In the figure, s is a state of 

NCL-SYNC. u is a SPEC-SYNC state obtained by projecting the values of the rail1 registers 

from state s. StepSYNC_NCL and StepSYNC_SPEC are the functions that correspond to a single step of 

the NCL-SYNC circuit and the SPEC-SYNC circuit, respectively. w is the state obtained by 

stepping NCL-SYNC from state s; and v is the state obtained by stepping SPEC-SYNC from 

state u. The proof obligation states that the two circuits are functionally equivalent if for every 

state s of NCL-SYNC, the corresponding projection of values from the rail1 registers of the w 

state are equivalent to the values of the corresponding registers in the v state. This proof 

obligation can be encoded in the SMT-LIB language, as shown in Proof Obligation 3, PO3, 

below, and checked using an SMT solver. 
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Proof Obligation 3: 

PO3 :{ s:: s SSYNC_NCL:: [u= Reg_Proj (s) ˄ w= StepSYNC_NCL (s) ˄ v= StepSYNC_SPEC (u)]  

     Reg_Proj (w)= v}. 

After verifying function equivalence, the rail0 outputs of each C/L stage must also be 

checked to ensure safety, as detailed in Section 4.1.2. Note that for sequential circuits, which 

include datapath feedback, the first invariant check method that checks the entire circuit 

simultaneously won’t work; hence, the second, much faster method that performs the invariant 

check independently for each stage is utilized. 

4.2.2. Liveness Check 

Fig. 46 shows the handshaking connections for the 4 + 2×2 NCL MAC. Full-word 

completion is used by the input register, Reg 1, to generate a single Ko. Full-word completion is 

also utilized between Reg 1 and Reg 2, since bit-wise completion would have the same delay and 

require more area. Partial bit-wise completion is utilized between Reg 2 and Reg 3, since full bit-

wise completion would have the same delay and require more area. Bit-wise completion is 

utilized between Reg 3 and Reg 4, and for the output register, Reg 4. The handshaking check for 

sequential NCL circuits is essentially the same as that for C/L NCL circuits, described in Section 

4.1.3. The only addition is calculating a feedback register’s level, which should be assigned the 

same level as other registers that share its Ki input signal, or 1 level more than its previous 

register, if its Ki input signal is not shared with another register already assigned a level. For the 

MAC example in Fig. 46, feedback registers 5-8 would be assigned level 1, since they share their 

Ki input with the other level 1 registers, 1-4; and feedback register 15 would be assigned level 2, 

since it shares its Ki input with other level 2 registers, 10-14.   
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Figure 46. Handshaking Connections for the 4 + 2x2 NCL MAC. 

Fig. 47 shows the reg_fanin and ko_fanout lists for each register in the 4+ 2×2 NCL 

MAC example. After verifying handshaking correctness, each stage’s C/L must also be checked 

for input-completeness and observability, utilizing the methods detailed in [37]. 
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1:  reg_fanin: 0                                 ko_fanout: 0
2:  reg_fanin: 0                                 ko_fanout: 0
3:  reg_fanin: 0                                 ko_fanout: 0
4:  reg_fanin: 0                                 ko_fanout: 0
5:  reg_fanin: [20]                            ko_fanout: [20]
6:  reg_fanin: [21]                            ko_fanout: [21]
7:  reg_fanin: [22]                            ko_fanout: [22]
8:  reg_fanin: [23]                            ko_fanout: [23]
9:  reg_fanin: [1, 3, 5]                      ko_fanout: [1,2,3,4,5,6,7,8]
10: reg_fanin: [1, 3, 5]                     ko_fanout: [1,2,3,4,5,6,7,8]
11: reg_fanin: [1, 2, 3, 4, 6]             ko_fanout: [1,2,3,4,5,6,7,8]
12: reg_fanin: [1, 2, 3, 4, 6]             ko_fanout: [1,2,3,4,5,6,7,8]
13: reg_fanin: [1, 2, 3, 4, 7]             ko_fanout: [1,2,3,4,5,6,7,8]
14: reg_fanin: [1, 2, 3, 4, 7]             ko_fanout: [1,2,3,4,5,6,7,8]
15: reg_fanin: [8]                             ko_fanout: [1,2,3,4,5,6,7,8]
16: reg_fanin: [9]                             ko_fanout: [9]
17: reg_fanin: [10, 11]                     ko_fanout: [10,11,…14,15]
18: reg_fanin: [10, 11, 12, 13]         ko_fanout: [10,11,…14,15]
19: reg_fanin: [10,11…,14,15]        ko_fanout: [10,11,…14,15]
20: reg_fanin: [16]                           ko_fanout: [16]
21: reg_fanin: [17]                           ko_fanout: [17]
22: reg_fanin: [18]                           ko_fanout: [18]
23: reg_fanin: [19]                           ko_fanout: [19]  

Figure 47. Reg_fanin and Ko_fanout Lists for the 4 + 2x2 NCL MAC. 

4.2.3. Sequential NCL Circuit Results 

The verification results for sequential NCL circuits, including functional equivalence and 

handshaking checks, are shown in Table 7. Since the invariant checks are exactly the same for 

combinational and sequential NCL circuits, these results are not included in Table 7. Test circuits 

include multiple MAC units and one ISCAS-89 benchmark, s27 [48]. The MAC units are 

represented as A + M×N, where A, M, and N represent the length of the accumulator, 

multiplicand, and multiplier, respectively. The same types of bugs were tested for the MACs as 

tested for the multipliers, and the same machine was used to perform the sequential circuit 

verification, both as described at the end of Section 4.1.4. 
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Table 7. Verification Results for Sequential NCL Circuits. 

Circuits Safety Check (sec.) Handshaking Check 

(sec.) 

Total Time (sec.) 

ISCAS s27 0.01 0.0019 0.0119 

4+2×2MAC 0.01 0.0045 0.0145 

8+4×4MAC 0.05 0.7852 0.8352 

12+6×6MAC 0.77 2.331 3.101 

16+8×8MAC 47.55 21.7411 69.2911 

20+10×10MAC 2643.99 163.6463 2807.6363 

20+10×10MAC-B1 0.11 (B) 163.6463 163.7563 

20+10×10MAC-B2 0.13 (B) 163.6463 163.7763 

20+10×10MAC-B3 2643.99 169.8422 (B) 2813.8322 

20+10×10MAC-B4 2643.99 159.3253 (B) 2803.3153 

20+10×10MAC-B5 0.20 (B) 163.6463 163.8463 

 

4.3. Conclusions 

This chapter presents a novel methodology for formally verifying the correctness (both 

safety and liveness) of combinational and sequential NCL circuits. The approach includes 

methods for ensuring handshaking correctness, and functional correctness of both rail1 and rail0 

outputs, which along with the existing input-completeness and observability check can guarantee 

correct operation under all timing scenarios. The presented methodology is applicable to both 

NCL circuits designed using only NCL gates with hysteresis, as well as relaxed NCL circuits, 

where NCL gates with hysteresis are replaced with their Boolean equivalent gate when hysteresis 

is not required for input-completeness and/or observability. 
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5. CONCLUSIONS 

The major limiting factor that has hindered the widespread implementation and 

application of asynchronous paradigms is the lack of design and verification tools. In today’s 

industry, formal verification is of utmost importance in ASIC design flow, and there exists very 

few formal verification methodologies for asynchronous circuits. The goal of the Ph.D. research 

work illustrated in the dissertation was to develop unified, scalable, and fast verification 

methodologies with the potential to meet commercial standards. While scopes and areas of 

optimization remain to be ventured, the methods developed herein have enormous prospects to 

be the support tool, which will facilitate the growing interest of asynchronous domain in industry 

as well as academic research.  

5.1. Summary 

The Quasi-Delay Insensitive (QDI) design is one of the most commercially successful 

asynchronous design models. QDI circuits have two major paradigms: NULL Convention Logic 

(NCL) and Pre-Charge Half Buffers (PCHB). Although both are QDI paradigms, they are 

structurally very different from each other, as demonstrated in Chapter 2. Different verification 

methodologies applicable to PCHB and NCL circuits have been discussed in the dissertation.  

Formal modeling and verification methodologies for QDI PCHB circuits were 

demonstrated in Chapter 3. The first developed method was based on model checking, which is a 

widely utilized formal verification method in industry. To the best of my knowledge, this method 

was the first published work on verification of combinational PCHB circuits capable of verifying 

both safety (functional correctness) and liveness (absence of deadlock). This work had three 

major contributions: 1) formal modeling of PHCB gates and circuits by developing a set of 

generic rules to compute the Transition System (TS) of any n-input PCHB gate, 2) developing a 
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set of local properties applicable locally to every PCHB gate in a circuit to verify the liveness, 

and 3) developing an N-stage pipeline architecture to track the DATA inputs and their 

corresponding outputs to check for the functional equivalence between the Boolean specification 

and PCHB implementation. The method was demonstrated on different combinational PCHB 

circuits along with buggy circuits. The approach successfully detected all the bugs and provided 

counter-examples to trace back the path of error. However, the circuit state space increases 

exponentially with every added gate, resulting in state-space explosion and an infeasible 

verification time for higher order circuits. Therefore, scalability remains an issue with the model 

checking based approach. 

To overcome the scalability issue, an alternate verification methodology was proposed 

for combinational as well as sequential PCHB circuits based on equivalence checking. The 

method relies on a structural reduction of the PCHB circuit to convert it to an equivalent 

synchronous circuit. The reduced equivalent circuit is then checked against the synchronous 

specification utilizing WEB refinement as a notion of functional equivalence ensuring the safety 

of the circuits. A developed graph based approach checks for the handshaking correctness and 

liveness of the circuit. An enumeration of all possible structural faults that could occur in a 

PCHB circuit comprised of PCHB components and C-elements was discussed. The verification 

method was demonstrated on several different types of circuits, such as, higher order multipliers, 

multiply and accumulate units, ISCAS combinational benchmarks, and ISCAS sequential 

benchmarks. It was also proven by demonstration that all possible errors could be detected by the 

proposed methodology. 

The equivalence verification methodology for PCHB circuits was further extended to be 

applicable to NCL combinational and sequential circuits. The methodology required 
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considerable modifications because of the structural dissimilarities between NCL and PCHB 

paradigms. The fundamental idea of the safety check based on structural reduction and 

equivalence checking remains the same. However, the implementation steps were quite different. 

For NCL circuits, the separated registration units, threshold gates, and both rails’ functionalities 

were added into consideration to develop the safety check model. Two different invariant check 

mechanisms were discussed to check the rails of each dual rail signals. The first method 

initializes all the registration and combinational stages as NULL, and flows a symbolic DATA 

set through all stages to check every stage together, while the second method checks each stage 

individually. It was shown that the second method was 1.4 times faster than the first approach for 

a 2-stage 10x10 multiplier. Furthermore, modeling the threshold gates as Boolean functions 

made the invariant check 2x faster than modeling the gates with hysteresis.  

For NCL, the handshaking check remains a graph-based approach similar to PCHB, but 

requires certain modifications. Mostly because in case of NCL, only registration units along with 

completion components control handshaking, while in PCHB each component contributes in 

handshaking control along with C elements. Since PCHB gates consist of dual-rail inputs and 

output(s), invariant, input-completeness, and observability checking are not required, as these are 

ensured within the primitive PCHB gates themselves. 

5.2. Future Works 

As part of our future work, the intention is to tailor the method presented herein to be 

compatible with existing commercial equivalence checkers, such as Jasper Gold Sequential 

Equivalence Checker, Cadence Encounter Conformal Equivalence Checker, Calypto SLEC, etc., 

in order to further improve verification time. This work has the potential to be developed into the 

first ever commercial equivalence checker for QDI PCHB and NCL circuits. 
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Additionally, the NCL verification method can be extended to work with embedded 

registration [24], where some of the NCL registers are combined with the combinational logic to 

reduce area, latency, and power, and increase throughput.  
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