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ABSTRACT 

Background: Microarray and RNA sequencing (RNA-seq) are two commonly used 

high-throughput technologies for gene expression profiling for the past decades. For global gene 

expression studies, both techniques are expensive, and each has its unique advantages and 

limitations. Integrative analysis of these two types of data would provide increased statistical 

power, reduced cost, and complementary technical advantages. However, the complete different 

mechanisms of the high-throughput techniques make the two types of data highly incompatible. 

Methods: Based on the degrees of compatibility, the genes are grouped into different 

clusters using a novel clustering algorithm, called Boundary Shift Partition (BSP). For each 

cluster, a linear model is fitted to the data and the number of differentially expressed genes 

(DEGs) is calculated by running two-sample t-test on the residuals. The optimal number of 

cluster can be determined using the selection criteria that is penalized on the number of 

parameters for model fitting. The method was evaluated using the data simulated from various 

distributions and it was compared with the conventional K-means clustering method, 

Hartigan-Wong’s algorithm. The BSP algorithm was applied to the microarray and RNA-seq data 

obtained from the embryonic heart tissues from wild type mice and Tbx5 mice. The raw data 

went through multiple preprocessing steps including data transformation, quantile normalization, 

linear model, principal component analysis and probe alignments. The differentially expressed 

genes between wild type and Tbx5 are identified using the BSP algorithm.  

Results: The accuracies of the BSP algorithm for the simulation data are higher than those 

of Hartigan-Wong’s algorithm for the cases with smaller standard deviations across the five 

different underlying distributions. The BSP algorithm can find the correct number of the clusters 

using the selection criteria. The BSP method identifies 584 differentially expressed genes 
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between the wild type and Tbx5 mice. A core gene network developed from the differentially 

expressed genes showed a set of key genes that were known to be important for heart 

development. 

Conclusion: The BSP algorithm is an efficient and robust classification method to 

integrate the data obtained from microarray and RNA-seq. 

  



 

v 
 

TABLE OF CONTENTS 

ABSTRACT ............................................................................................................................. iii 

LIST OF TABLES ................................................................................................................. viii 

LIST OF FIGURES .................................................................................................................. ix 

LIST OF APPENDIX TABLES ................................................................................................ xi 

CHAPTER 1. INTRODUCTION .............................................................................................. 1 

1.1. Global Gene Expression Profiling .................................................................................. 1 

1.2. Microarray Data .............................................................................................................. 2 

1.3. RNA-seq Data ................................................................................................................. 6 

1.4. Motivation and Goals of Study ..................................................................................... 10 

1.5. Data Integration Methods ............................................................................................. 12 

1.5.1. Data Transformation .............................................................................................. 14 

1.5.2. Location-Scale Methods ........................................................................................ 15 

1.5.3. Matrix Factorization Methods ................................................................................ 17 

1.5.4. Model-based Integration ........................................................................................ 19 

1.5.5. Other Methods ....................................................................................................... 21 

1.6. Clustering Approaches .................................................................................................. 21 

CHAPTER 2. EMBRYONIC HEART DATA AND DATA PROCESSING ........................... 24 

2.1. Data Sets ....................................................................................................................... 24 

2.2. Data Sets Combination ................................................................................................. 25 

2.3. Magnitude Problem Solving Using Data Transformation ............................................ 26 

2.4. Linear Relationship Analysis ........................................................................................ 29 

2.5. Noise Minimization and Quantile Normalization ......................................................... 32 

2.6. Inconsistency Between Microarray and RNA-seq ........................................................ 34 

2.7. Minimizing Differences in Microarray and RNA-seq .................................................. 36 



 

vi 
 

2.8. Probe Alignments .......................................................................................................... 39 

CHAPTER 3. METHODOLOGY DEVELOPMENT ............................................................. 43 

3.1. Partition Initialization ................................................................................................... 44 

3.2. Assignment of Genes on the Edges............................................................................... 44 

3.3. Stop of the Algorithm Under Selected Criteria ............................................................. 45 

3.4. Selection Criteria for Optimal Clusters ........................................................................ 45 

3.5. Algorithm Summary ..................................................................................................... 46 

CHAPTER 4. SIMULATION .................................................................................................. 48 

4.1. Data Generation ............................................................................................................ 48 

4.2. Simulation Method ....................................................................................................... 49 

4.3. Normal Distribution ...................................................................................................... 51 

4.3.1. Misclassified Rate Comparison ............................................................................. 51 

4.3.2. The Accurate Number of Clusters Comparison ..................................................... 54 

4.4. Exponential Distribution ............................................................................................... 55 

4.4.1. Misclassified Rate Comparison ............................................................................. 55 

4.4.2. The Accurate Number of Clusters Comparison ..................................................... 57 

4.5. Gamma Distribution ..................................................................................................... 59 

4.5.1. Misclassified Rate Comparison ............................................................................. 59 

4.5.2. The Accurate Number of Clusters Comparison ..................................................... 61 

4.6. Gaussian Mixture Distribution ...................................................................................... 63 

4.6.1. Misclassified Rate Comparison ............................................................................. 63 

4.6.2. The Accurate Number of Clusters Comparison ..................................................... 65 

4.7. Beta Distribution ........................................................................................................... 67 

4.7.1. Misclassified Rate Comparison ............................................................................. 67 

4.7.2. The Accurate Number of Clusters Comparison ..................................................... 68 



 

vii 
 

4.8. Algorithm Time Complexity ......................................................................................... 69 

CHAPTER 5. APPLICATION TO THE EMBRYONIC HEART DATA ................................ 73 

5.1. Wild Type Embryonic Heart Data ................................................................................. 73 

5.2. Tbx5 +/- Embryonic Heart Data ............................................................................... 76 

CHAPTER 6. DISCUSSION ................................................................................................... 80 

CHAPTER 7. REFERENCES ................................................................................................. 84 

APPENDIX A. SUPPORTING TABLES FOR SIMULATION DATA SETS ........................ 97 

APPENDIX B. THE LIST OF THE DIFFERENTIALLY MEASURED GENES ............... 125 

 

  



 

viii 
 

LIST OF TABLES 

Table Page 

2.1. Part of Microarray Gene Expression Data ................................................................... 24 

2.2. Part of RNA-seq Gene Expression Data ...................................................................... 25 

2.3. Part of Combined Gene Expression Data .................................................................... 26 

2.4. Minimums and Maximums of the Six Samples ........................................................... 27 

2.5. Box-Cox Transformation Summary ............................................................................. 28 

2.6. Logarithm and Cubic Root Transformation Summary ................................................ 28 

2.7. Adjusted R2 for the Models.......................................................................................... 30 

2.8. Adjusted R2 for the 3rd Order Models .......................................................................... 31 

2.9. Sample Summaries Before and After Quantile Normalization .................................... 33 

2.10. Statistic Summary for the Gene Expression Difference Between Two 

Technologies ................................................................................................................ 35 

2.11. P-values of Student’s t-tests for Original Data ............................................................ 37 

2.12. P-values of Student’s t-tests for the 1st PC Removed Data .......................................... 38 

2.13. Data Summary after 1st Principle Component Removal .............................................. 38 

2.14. Summary for Probe Alignments of the Three Data Sets .............................................. 41 

2.15. Summary for Probe Alignments of the Mismatch Data Set ......................................... 42 

4.1. Simulation Data Summary ........................................................................................... 48 

4.2. The Formulas and Parameter Estimates for the Four Distributions ............................. 49 

5.1. The Number of DMGs and Criteria for the Embryonic Heart Data Set ...................... 75 

5.2. Probe Alignments Summary for DMGs ....................................................................... 76 

5.3. Probe Alignments Summary for DMGs by Clusters.................................................... 76 

5.4. Probe Alignments Summary for DEGs between Genotypes by Clusters .................... 77 

  



 

ix 
 

LIST OF FIGURES 

Figure Page 

2.1. The Scatterplots for the Transformed Data .................................................................. 29 

2.2. The 3rd Model Assumption Checking Plots ................................................................. 31 

2.3. The Scatterplot with Fitted 3rd Order Model ................................................................ 31 

2.4. The 3rd Model Assumption Checking Plots for Quantile Normalized Data ................ 33 

2.5. The Scatterplot with Fitted 3rd Order Model for Quantile Normalized Data ............... 34 

2.6. Heat Map for the Difference of the Logarithm and Cubic Root Transformed Data .... 35 

2.7. Heat Map for the Difference of the Quantile Normalized Transformed Data ............. 36 

2.8. Loading Matrix of Principal Components for Original Data ....................................... 37 

2.9. Importance of Components for Original Data ............................................................. 37 

2.10. Loading Matrix of Principal Components for the 1st PC Removed Data .................... 37 

2.11. Importance of Components for the 1st PC Removed Data ........................................... 38 

2.12. The Relationship between Microarray and RNA-seq after the Removal of the 1st 

Principle Component ................................................................................................... 39 

3.1. Example of the Random Partition ................................................................................ 44 

3.2. A Flowchart of the BSP Algorithm .............................................................................. 47 

4.1. The Flowchart of Simulation Methods ........................................................................ 50 

4.2. The Misclassified Rate Comparison between Boundary Shift Partition and 

Hartigan-Wong’s K-means for Normal Distribution ................................................... 52 

4.3. The Number of Differentially Measured Genes Comparison between Boundary 

Shift Partition and Hartigan-Wong’s K-means for Normal Distribution ..................... 53 

4.4. The Selection Criteria Accuracy Comparison between Boundary Shift Partition 

and Hartigan-Wong’s K-means for Normal Distribution ............................................ 54 

4.5. The Misclassified Rate Comparison between Boundary Shift Partition and 

Hartigan-Wong’s K-means for Exponential Distribution ............................................ 56 

4.6. The Number of Differentially Measured Genes Comparison between Boundary 

Shift Partition and Hartigan-Wong’s K-means for Exponential Distribution .............. 57 



 

x 
 

4.7. The Selection Criteria Accuracy Comparison between Boundary Shift Partition 

and Hartigan-Wong’s K-means for Exponential Distribution ..................................... 58 

4.8. The Misclassified Rate Comparison between Boundary Shift Partition and 

Hartigan-Wong’s K-means for Gamma Distribution ................................................... 60 

4.9. The Number of Differentially Measured Genes Comparison between Boundary 

Shift Partition and Hartigan-Wong’s K-means for Gamma Distribution. ................... 61 

4.10. The Selection Criteria Accuracy Comparison between Boundary Shift Partition 

and Hartigan-Wong’s K-means for Gamma Distribution ............................................ 62 

4.11. The Misclassified Rate Comparison between Boundary Shift Partition and 

Hartigan-Wong’s K-means for Gaussian Mixture Distribution ................................... 64 

4.12. The Number of Differentially Measured Genes Comparison between Boundary 

Shift Partition and Hartigan-Wong’s K-means for Gaussian Mixture Distribution .... 65 

4.13. The Selection Criteria Accuracy Comparison between Boundary Shift Partition 

and Hartigan-Wong’s K-means for Gaussian Mixture Distribution ............................ 66 

4.14. The Misclassified Rate Comparison between Boundary Shift Partition and 

Hartigan-Wong’s K-means for Beta Distribution ........................................................ 67 

4.15. The Number of Differentially Measured Genes Comparison between Boundary 

Shift Partition and Hartigan-Wong’s K-means for Beta Distribution. ......................... 68 

4.16. The Selection Criteria Accuracy Comparison between Boundary Shift Partition 

and Hartigan-Wong’s K-means for Beta Distribution ................................................. 69 

4.17. The Relationship Between Computational Time and the Gene Size ........................... 70 

4.18. The Computational Time of Different Number of Clusters for 15,000 Genes ............ 71 

5.1. The Scatterplots of Microarray and RNA-seq Before and After Transformation ........ 73 

5.2. Gene Co-expression Network of Tbx5, Osr1, Adamts1, Wnt4, and Lhx1.................... 78 

  



 

xi 
 

LIST OF APPENDIX TABLES 

Table Page 

A.1. The MR of BSP with Different  Values for Normal Distribution ............................ 98 

A.2. The MR of K-means with Different  Values for Normal Distribution .................... 99 

A.3. The Number of DMGs of BSP with Different  Values for Normal Distribution ... 100 

A.4. The Number of DMGs of K-means with Different  Values for Normal 

Distribution ................................................................................................................ 101 

A.5. The Accurate Number of Clusters of BSP with Different  Values for Normal 

Distribution ................................................................................................................ 102 

A.6. The Accurate Number of Clusters of K-means with Different  Values for 

Normal Distribution ................................................................................................... 103 

A.7. The MR of BSP with Different  Values for Exponential Distribution ................... 104 

A.8. The MR of K-means with Different  Values for Exponential Distribution ........... 105 

A.9. The Number of DMGs of BSP with Different  Values for Exponential 

Distribution ................................................................................................................ 106 

A.10. The Number of DMGs of K-means with Different  Values for Exponential 

Distribution ................................................................................................................ 107 

A.11. The Accurate Number of Clusters of BSP with Different  Values for 

Exponential Distribution ............................................................................................ 108 

A.12. The Accurate Number of Clusters of K-means with Different  Values for 

Exponential Distribution ............................................................................................ 109 

A.13. The MR of BSP with Different  Values for Gamma Distribution ......................... 110 

A.14. The MR of K-means with Different  Values for Gamma Distribution .................. 111 

A.15. The Number of DMGs of BSP with Different  Values for Gamma Distribution .. 112 

A.16. The Number of DMGs of K-means with Different  Values for Gamma 

Distribution ................................................................................................................ 113 

A.17. The Accurate Number of Clusters of BSP with Different  Values for Gamma 

Distribution ................................................................................................................ 114 



 

xii 
 

A.18. The Accurate Number of Clusters of K-means with Different  Values for 

Gamma Distribution................................................................................................... 115 

A.19. The MR of BSP with Different  Values for Gaussian Mixture Distribution ......... 116 

A.20. The Accuracy of K-means with Different  Values for Gaussian Mixture 

Distribution ................................................................................................................ 117 

A.21. The Number of DMGs of BSP with Different  Values for Gaussian Mixture 

Distribution ................................................................................................................ 118 

A.22. The Number of DMGs of K-means with Different  Values for Gaussian 

Mixture Distribution .................................................................................................. 119 

A.23. The Accurate Number of Clusters of BSP with Different  Values for Gaussian 

Mixture Distribution .................................................................................................. 120 

A.24. The Accurate Number of Clusters of K-means with Different  Values for 

Gaussian Mixture Distribution ................................................................................... 121 

A.25. The MR of BSP with Different  Values for Beta Distribution ............................... 122 

A.26. The Accuracy of K-means with Different  Values for Beta Distribution .............. 122 

A.27. The Number of DMGs of BSP with Different  Values for Beta Distribution ........ 123 

A.28. The Number of DMGs of K-means with Different  Values for Beta Distribution 123 

A.29. The Accurate Number of Clusters of BSP with Different  Values for Beta 

Distribution ................................................................................................................ 124 

A.30. The Accurate Number of Clusters of K-means with Different  Values for Beta 

Distribution ................................................................................................................ 124 



 

1 
 

CHAPTER 1. INTRODUCTION 

1.1. Global Gene Expression Profiling 

Gene expression profiling is a way to measure the activity of multiple genes 

simultaneously, sometimes even the entire genome. In most cases, gene expression profiling is 

used to distinguish the expression levels of the genes between the control group and the 

treatment group. Microarray and RNA sequencing (RNA-seq) are two commonly used 

technologies for gene expression profiling. 

In the last two decades, microarrays have been widely used and have become a standard 

tool for biological research. The cost of microarray is relatively cheap due to the technology 

development and the availability of commercial platforms. The microarray technology uses the 

hybridization between specific DNA sequences (known as probes) and target cDNA samples to 

measure the expression levels of target genes. In the National Center for Biotechnology 

Information (NCBI) PubMed website, there are 102,310 related articles as a result of searching 

the keyword “microarray” (June 2018). The oldest article was published in 1992. The number of 

publications increased dramatically from 296 in the year 2000 to 6,418 in the year 2017 

(PubMed, 2018). 

Microarray technology provides an effective way to study gene expression levels of a 

large number of genes simultaneously. However, there are some limitations while using this 

technology. First, the probe design on the microarray highly relies on the existing knowledge of 

the genome sequence. Second, the background noise of the signals is usually high. Lastly, since 

there are different platforms available from many commercial suppliers, gene expression levels 

obtained from different platforms can not be directly compared. 
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In the last decade, a sequence-based approach (RNA sequencing) has been developed and 

became popular. There are 14,668 published articles at PubMed as a result of searching the 

keywords “RNAseq” or “RNA-seq” in June 2018, with the oldest publications in 2008. While in 

2017 there were already 3,644 published papers related to RNA-seq (PubMed, 2018). RNA-seq 

technology uses next-generation sequencing (NGS) technology to sequence short cDNA 

fragments (called reads) transcribed from mRNA. It can estimate the gene expression by 

counting the number of reads mapped to the gene. One advantage of this technology is that it is 

very useful for non-model organisms because it does not require prior knowledge of the genome 

sequence. Also, it has low background signals and is highly accurate for estimating gene 

expression levels. Furthermore, it has the ability to distinguish isoforms and allelic expression 

(Wang, Gerstein, & Snyder, 2009). Some of the disadvantages of RNA-seq includes relatively 

high cost compared to microarray, complicated data analysis, lack standard protocol, and etc. 

Since both microarray and RNA-seq have been widely used in recent years, the gene 

expression data of many organisms obtained from both technologies are available. The goals of 

this study were to find an effective way to integrate data from both microarray and RNA-seq and 

increase the power of statistical testing. The data integration between microarray and RNA-seq 

will be helpful to find differentially expressed genes in the genome. 

1.2. Microarray Data 

The microarray technology is based on a simple property of DNA: the two strands of 

DNA can be separated in heat and restored to form the double helical structure in low 

temperature. This property is the foundation for DNA hybridization. Since the microarray 

technology was developed in the late 1980s, it has been used in large-scale gene studies of gene 

expression profiling (Liu, et al., 2013), single nucleotide polymorphism (SNP) detection (Jacob, 
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et al., 2015), alternative splicing detection (Kamtchueng, et al., 2014), fusion gene detection 

(Løvf, et al., 2013), and so on. 

The microarray technology can be broadly divided into two categories based on 

fabrication: spotted (cDNA) microarray (Schena, Shalon, Davis, & Brown, 1995) (DeRisi, et al., 

1996) and oligonucleotide in situ (such as Affymetrix) microarray (Fodor, et al., 1991). In 

spotted microarray, the pre-designed and synthesized probes are spotted onto glass and will 

hybridize to their complementary cDNA targets. Fluorescent signals will be generated during the 

hybridization. While in oligonucleotide in situ microarray, photolithographic synthesis is used to 

generate probes one nucleotide at a time. Due to the high reproducibility and ease of construction, 

Affymetrix microarray has become widely used by more and more researchers. 

A microarray experiment should start with the experimental design. There are two major 

elements that need to be considered while designing a microarray experiment: replicates and 

sample size. Replicates, especially biological replicates, are essential for making conclusions of 

treatment effects (Churchill, 2002). Technical replicates are also necessary for some cases, such 

as quality-control studies (Allison, Cui, Page, & Sabripour, 2006). Sample size also plays an 

important role in microarray design. A larger sample size would provide more power for 

statistical analysis, which is always recommended (Zien, Fluck, Zimmer, & Lengauer, 2004; 

Pawitan, Michiels, Koscielny, Gusnanto, & Ploner, 2005; Zehetmayer, Graf, & Posch, 2015). 

Batch effects should also be considered while constructing microarray experiments. Luo, 

et al (2010) define batch effects as the systematic biases between batches (samples) in 

microarray analysis. There are various causes for batch effects: platform differences between 

samples; experimental procedure differences between laboratories; differences based on the 

equipment used in the experiments; sample collection/storage conditions and so on (Luo, et al., 
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2010). Batch effects would introduce unwanted variability into data. Thus, minimizing or even 

eliminating such batch effects is crucial for microarray experiments. 

After obtaining the raw data, which is image signals from microarray experiments, a 

preprocessing stage is often required before making any statistical inference. The preprocessing 

stage of the microarray data analysis refers to normalization, data filtering, and transformation 

(Allison, Cui, Page, & Sabripour, 2006).  

Normalization is usually the first thing to do after the image signals of microarray are 

converted to expression values. The gene expression values of the control genes by experiment 

design are treated as constant since their expressions should not change among treatment 

conditions. One example of the control genes is housekeeping genes. Then a global 

normalization can be performed among different samples and sometimes even platforms (Bilban, 

Buehler, Head, Desoye, & Quaranta, 2002). Bolstad, et al use three normalization methods, 

cyclic loess, contrast-based method, and quantile normalization, to reduce the expression 

variation across arrays (Bolstad, Irizarry, Åstrand, & Speed, 2003). 

Data filtering is the process of removing the probes with a low expression percentage. 

For instance, the m/n filter removes the genes whose number of expression in the samples was 

less than m among a total of n microarray chips (Pounds & Cheng, 2005). This is a way to 

control the random or technical errors and to make sure that the differentially expressed genes 

are due to treatment effects (Gusnanto, Calza, & Pawitan, 2007). 

Transformation of the expression values is usually necessary since normalization is one 

of the assumptions for many traditional statistical methods such as linear model, two-sample 

t-test, and the analysis of variance (ANOVA). A common transformation used in the microarray 

study is the logarithm transformation (Rocke & Durbin, 2003), which uses the log value of the 
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expressions as the dependent variable in statistical analysis. With a constant variance after 

transformation, many statistical analyses can be conducted. 

The property of microarray data can be described in a few areas: sensitivity, specificity, 

reproducibility, and accuracy (Draghici, Khatri, Eklund, & Szallasi, 2006). Sensitivity refers to 

the ability of the probes hybridizing with the targets at a low concentration rate. The minimum 

detection limit for microarray is approximately two to ten copies per cell (Holland, 2002; Kane, 

et al., 2000). Specificity defines the ability of a probe to hybridize to a specific target and discern 

between similar sequences. The length of a probe is one of the factors that influences specificity 

(Jayaraman, Hall, & Genzer, 2006). Shorter probes (~25 bp) have higher specificity than the 

longer probes (60 bp), but lower sensitivity (Relógio, Schwager, Richter, Ansorge, & Valcárcel, 

2002). The length of the microarray probes is suggested to be about 150 base pairs (Chou, Chen, 

Lee, & Peck, 2004). Reproducibility measures the ability of the technology to achieve the same 

or similar results under repeated measurements. The reproducibility rate for Affymetrix 

microarray is shown to be around 80-90% concordance for experiments conducted within one 

facility (MAQC Consortium, et al., 2006). The correlation across different microarray platforms 

is between 0.7 and 0.8 (David, et al., 2005). Accuracy describes how the measured quantity 

agrees with the true value. Traditionally, the two-channel cDNA microarray has a higher 

accuracy than the single-channel oligonucleotide microarray since cDNA microarray measures 

expression ratio while oligonucleotide microarray measures absolute transcript concentrations 

(Czechowski, Bari, Stitt, Scheible, & Udvardi, 2004). The cost for microarray is at least $100 per 

sample (Mcloughlin, 2011), normally in the range of $100 to $300. 

Microarray was developed in the 1990s and soon became a hot topic for gene expression 

profiling due to its low cost and high throughput. There are many well-established software 
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packages available for microarray, which makes the microarray data analysis easy to perform. 

Microarray also have some limitations. Since the probes are pre-designed, it has limited use on 

the detection of the alternative splicing. The probe design requires sequence information of the 

genome. Microarray can not be used if the sequence of the genome is unknown. Also, 

researchers find out that there exists a widespread spatial bias in the probes and targets 

hybridization, which means that the probe spot position in the microarray actually affects the 

probe-targets hybridization (Steger, et al., 2011). 

1.3. RNA-seq Data 

The RNA-seq technology utilizes the NGS technology which was developed from the 

first-generation Sanger sequencing (Sanger & Coulson, 1975; Sanger, Nicklen, & Coulson, 

1977). Sanger sequencing is sometimes called chain-termination sequencing with a ‘plus and 

minus’ system. The principle used in Sanger sequencing is that the modified 

di-deoxynucleotidetriphosphates (ddNTPs) can not form phosphodiester bonds with other 

nucleotides like the normal deoxynucleosidetriphosphates (dNTPs), thus the DNA strand that 

ends with ddNTPs can not be extended by a DNA polymerase. The first DNA genome, 

bacteriophage phi X174 (or ΦX174), was obtained using Sanger sequencing (Sanger, et al., 

1977).  

The NGS is superior to Sanger sequencing in the aspects of high speed, high throughput, 

dynamic range, and reduced cost. The first NGS instrument was launched by 454 Life Sciences 

in 2005 (Margulies, et al., 2005). The sequencing mechanism of 454 is pyrosequencing, which is 

based on the sequencing by synthesis principle. Three major commercial NGS systems are 

available: Roche/454, Illumina, and SOLiD. Since Illumina is widely used with a better coverage 
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and depth than other sequencing technologies at a fixed cost, let’s use Illumina sequencing as an 

example to introduce the NGS technology. 

The process of Illumina NGS technology includes four steps: library preparation, cluster 

generation, sequencing, and data analysis (Illumina, 2017). In the library preparation step, the 

sample DNA is randomly fragmented, and adapters are ligated to both ends of the fragments. 

Then these single-stranded fragments randomly bind to their complementary adapters that are 

immobilized on the surface of the flow cell. Bridge amplification is used to form a clonal cluster 

for each bound fragment. The sequence by synthesis technology used by Illumina was developed 

from Sanger sequencing. During each sequencing cycle in Illumina, one of the four 

fluorescently-labeled dNTPs is added to the nucleic acid chain. The fluorescence emission is 

captured after laser excitation. The nucleic bases are determined by the fluorescent wave length 

and intensity. The RNA-seq data analysis process, including Illumina sequencing data, is 

introduced as follows. 

The raw data obtained from next-generation sequencing, including RNA-seq, is the 

sequence of the DNA fragments, called read. Raw reads in RNA-seq refer to the short sequences 

obtained directly from the experiments. Most of the time, raw reads are stored in the FASTQ 

format, which records both the nucleotide sequences and the corresponding quality scores (Cock, 

Fields, Goto, Heuer, & Rice, 2010). The raw reads normally go through a quality control process 

to ensure that the reads are of decent quality from the experiments for downstream analysis. 

Quality control methods include the base/sequence quality, GC content, sequence duplication 

levels, and Kmer content (Andrews, 2016). 

Once the raw reads have been verified to have good quality, they can be mapped to the 

reference genome or transcriptome. This process is called sequence alignment or mapping. This 
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is a crucial step in the preprocessing stage because the accuracy of the alignment affects the gene 

expression levels. The read alignment to the reference is a process of similarity search (Wang, 

2013). 

The mapped reads need to be quantified after read alignment to estimate the gene 

expression levels. One straightforward way to quantify the reads is using the number of 

alignments (counts) to represent the expression level of each gene. Thus, if some reads have 

multiple alignments in the genome, expression accuracy for these genes is relatively low 

compared to others that have unique alignments. 

After getting the count for each gene, statistical inference of the data can be made by 

assuming the count data follows Poisson distribution or Negative Binomial distribution. Several 

methods can also be used to normalize gene expression levels: Reads Per Kilobase per Million 

reads (RPKM), Fragments Per Kilobase of exon per Million fragments mapped (FPKM), or 

Transcripts Per Million (TPM). RPKM (Mortazavi, Williams, McCue, Schaeffer, & Wold, 2008) 

only considers the reads that can be mapped to either known exons or candidate exons based on 

the NCBI gene models. TPM is the fraction of transcripts for an isoform (Li, Ruotti, Stewart, 

Thomson, & Dewey, 2010). FPKM is very similar to RPKM and can be used for calculating the 

gene expression levels (Trapnell, et al., 2010). The only difference is that FPKM is used for the 

paired-end reads instead of the single-end reads in RPKM. FPKM counts the two paired-end 

reads as one fragment. Because the TPM value is a measure of fraction and is not highly related 

with the number of reads in the library, it is believed to be more comparable than RPKM or 

FPKM between samples from different experiments (Conesa, et al., 2016). 

In general, the quality of RNA-seq data is better than that of microarray data. The 

performances of Illumina sequencing and Affymetrix microarray have been compared by several 
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studies. Marioni et al showed that the reproducibility of RNA-seq is higher than microarray with 

less technical variation based on the Poisson model (Marioni, Mason, Mane, Stephens, & Gilad, 

2008). Fu et al compared the absolute transcript measurements between microarray and 

RNA-seq and evaluated their accuracy by shotgun mass spectroscopy quantification (Xing, et al., 

2009). RNA-seq is more accurate than microarray with regards to measuring the absolute 

transcript level. The inter-site reproducibility for RNA-seq is 95%, which is higher than 

microarray (SEQC/MAQC-III Consortium, 2014). RNA-seq has a wider dynamic range than 

microarray, which provides better sensitivity (Sîrbu, Kerr, Crane, & Ruskin, 2012; Zhao, 

Fung-Leung, Bittner, Ngo, & Liu, 2014). 

RNA-seq utilizes NGS technology to measure the gene expression levels. Since it has 

RNA sequence as a result, it can be used for splicing variant detection. Unlike microarray, 

RNA-seq does not require genome information as input. RNA-seq can be used to create a 

transcriptome through De novo assembly. Even though RNA-seq has a wider dynamic range and 

better sensitivity than microarray, it still has some disadvantages. One of them is its relatively 

high cost than microarray. Currently, the cost of RNA-seq per sample is about ten times higher 

than that of microarray. The RNA-seq technology has sequencing errors, which means that the 

sequence of the reads is not always 100% accurate. The sequencing errors can be divided into 

three categories depending on their cause: position-specific errors, sequence-specific errors, and 

systematic errors (Meacham, et al., 2011). These sequencing errors would cause problems for 

accurate SNP detection. Since most of the software designed for RNA-seq are Linux-based with 

scripts written in different programming languages, researchers normally need to have special 

bioinformatic training for RNA-seq data analysis. Due to the huge amount of raw data obtained 

from RNA-seq (> 5 GB), it requires a larger computer resources to process and store the data. 
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Even though there are plenty of software and packages available for RNA-seq data analysis, 

there is not yet one standard protocol. 

1.4. Motivation and Goals of Study 

Since invention of the microarray technology in the 1990s, it has been widely used by 

researchers in large-scale studies for gene expression profiling. The relatively low cost made 

microarray affordable by many laboratories. There are well-established methods for microarray 

data analysis. But there are some disadvantages with microarrays. For instance, microarray 

requires pre-designed probes, thus only the expression level of those genes is measured. Also, 

unspecific hybridization reduces the measurement accuracy in microarray and causes a high 

background noise level. 

The RNA-seq technology was developed about a decade ago and it soon became a 

preferred method for gene expression profiling by many researchers. Even though the expression 

levels measured by RNA-seq are more reliable than those measured by microarray, the relative 

high cost of RNA-seq limits the number of samples used in each RNA-seq experiment. With a 

smaller sample size, the power of the downstream statistical tests would be lower and false 

conclusions might be made because of it. Moreover, by removing the technology effects in the 

process of microarray and RNA-seq data integration, the artifacts by individual labs would also 

be removed. 

There is an enormous amount of publications on gene expression data sets using either 

the microarray or RNA-seq technology available online. NCBI’s Gene Expression Omnibus 

(GEO) website contains expression data from over 70,000 experiments (Edgar, Domrachev, & 

Lash, 2002). There are 423 series related to the heart tissue of Mus musculus in GEO (June 2018). 

Most of the series published prior to 2014 were conducted using microarray. RNA-seq has been 
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more frequently used in recent years. For some laboratories, it is possible that their research was 

conducted using microarray, later switching to RNA-seq because of better performance. Thus, 

data integration of microarray and RNA-seq would be useful to better utilize the existing 

information without excess cost. Besides, the increase of sample size by data integration would 

increase the reliability of the statistical inference. However, some challenges remain for data 

integration of microarray and RNA-seq. 

First, the exist of the batch effects makes the data integration harder. Here is an example 

to better understand the question. Suppose some researchers want to study the development of 

the embryonic heart in mice to find the genes that play important roles in this process. There are 

two data sets that are available in GEO: GSE73544 (Nie, et al., 2015) and GSE66965 (Wei, 

2015). GSE73544 has microarray gene expression data from embryonic day (E) 12.5 wild type 

(WT) mouse heart. GSE66965 contains the RNA-seq gene expression data from E13.5 WT 

mouse heart. Since these two data sets were generated from different technologies, they can not 

be simply combined to conduct statistical analysis. These two experiments were completed by 

different labs in different locations at different times. These factors can all affect gene expression 

measurements and introduce unwanted variation into the data. 

Secondly, the expression values measured by microarray and RNA-seq have different 

distributions. There is a magnitude problem which means that the range of expression values 

from one technology is not consistent with the range of the values from the other technology. 

Therefore, direct comparisons between the two technologies will not work since the expression 

value of 2 in microarray does not equal to the same expression value of 2 in RNA-seq. In 

microarray, the expression values of the genes rely on the binding between the cDNA/cRNA 

targets and the pre-designed probes. Following hybridization between targets and probes, the 
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detectable fluorescent signal gets transformed to digital values, which represents the gene 

expression levels. Thus, the expression levels in microarray are believed to follow a normal 

distribution. But the raw data in RNA-seq are counts, which are non-negative integers. Poisson 

distribution and negative binomial distribution are commonly used to describe the distribution of 

count data. Sometimes, the count data are further normalized using RPKM, FPKM, or TPM. 

Thirdly, the microarray and RNA-seq have different biases. A systematic spatial bias 

exists in microarray probe-target hybridization, which is caused by the lateral diffusion (Steger, 

et al., 2011). Research also shows that the amplification bias caused by long probe – ploy(A) – 

tail distance largely influences the number of differentially expressed genes (DEGs) detection 

(Wim, et al., 2007). The biases in RNA-seq includes GC bias and sequencing errors. GC bias is 

caused by the over-representation of the GC-rich sequences over AT-rich sequences in Illumina 

(Benjamini & Speed, 2012). The sequencing errors might be caused by the location of the reads, 

sequence of the reads, or genomic position (Meacham, et al., 2011). 

In this dissertation, a novel method for data integration of microarray and RNA-seq, 

Boundary Shift Partition (BSP) algorithm, is proposed and applied to E9.5 embryonic heart 

expression data collected from wild type and Tbx5 mice. 

1.5. Data Integration Methods 

Because of technology development, various types of genomic data from different 

sources have become available and have been applied in the fields of functional genomics 

(Evangelistella, et al., 2017; Chudasama, et al., 2018), epigenomics (Laird, 2010; Bien, et al., 

2017; Zhang, et al., 2017), metagenomics (Tringe, et al., 2005; Rodriguez-Brito, Rohwer, & 

Edwards, 2006; Abayasekara, et al., 2017), and so on. The genomic studies include differentially 

expressed gene analysis, single nucleotide polymorphism (SNP), copy number variation (CNV), 
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gene co-expression networks, etc. Each of these studies provides the scientists with a different 

angle for understanding the mystery of the whole genome. With the increasing amount of 

genomic data, data integration becomes a helpful tool for genomic analysis as it could increase 

the statistical power by using a larger sample size and could be used for cross validation. 

The data analysis using different platforms or results is difficult without universal 

standards or controls. This phenomenon in microarray or RNA-seq data analysis is sometimes 

called the “Tower of Babel.” In other words, the comparison of the gene expression results 

obtained using different platforms or technologies is not an easy task. The expression values 

might represent different expression levels of the genes even though the values are the same from 

different analysis. 

This section focuses on the data integration of genomic data from a statistical perspective, 

mainly the gene expression data obtained from microarray and RNA-seq technologies. The 

purpose of this section is to review some of the algorithms and methods for combining gene 

expression data. Currently, most of the algorithms for data integration are within a technology, 

such as combining two microarray data sets. For the analysis including both microarray and 

RNA-seq, most researchers analyzed the expression data separately to find the DEGs and then 

compared results. For instance, a Drosophila melanogaster embryo development study (Sîrbu, 

Kerr, Crane, & Ruskin, 2012) involved three expression data sets: RNA-seq, single-channel, and 

dual-channel microarrays. The Limma (Ritchie, et al., 2015) package in R was used to perform 

the differential expression analysis for the two microarray data sets and the DESeq (Anders & 

Huber, 2010) package was used to find DEGs in the RNA-seq data set. A similar DEGs 

comparison study between technologies was conducted using rats with exposed chemicals (Wang, 

et al., 2014). The DEGs were identified in each data set before they were compared and analyzed 
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among the data sets. Few methods have been designed for analyzing combined data sets from 

microarray and RNA-seq. 

Various methods of data integration for both within technologies and between 

technologies are discussed in this section. This review could be useful for improving 

methodologies of data integration for genomic data and help researchers identify their research 

directions. 

The methods for data integration can be broadly divided into four categories: data 

transformation, Location-Scale (LS) methods, Matrix Factorization (MF) methods, and 

model-based integration (Hamid, et al., 2009; Lazar, et al., 2012; Ritchie, et al., 2015). 

1.5.1. Data Transformation 

Data integration based on transformation refers to transforming part or all of the 

expression data obtained from different sources so that all data will follow the same distribution 

after transformation. 

The print-tip loess normalization is used to normalize the log-ratios of the gene 

expression levels from the two-color cDNA microarray (Smyth & Speed, 2003). The print-tip 

loess normalization can adjust both the spatial and intensity trends in the data. Composite loess 

normalization can be used when control spots are available.  

Wang et al use several transformation methods including normalization transformation 

and global median transformation to integrate 2,968 expression profiles of 131 microarray 

studies obtained from NCBI GEO website (Wang, Srivastava, & Schwartz, 2010). 

Tissue-sensitive genes are identified using the integrated data. 

A Training Distribution Matching (TDM) approach is developed to normalize RNA-seq 

data so that the transformed RNA-seq data would have a similar distribution to the microarray 
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data (Thompson, Tan, & Greene, 2016). TDM normalizes RNA-seq data using the quantile 

information of the data set and ensures the transformed RNA-seq data will fall in the same range 

as the microarray log2 transformed data. The TDM method is applied to breast cancer data sets 

for unsupervised and supervised classification using Partitioning Around Medoids (PAM) 

(Maechler, Rousseeuw, Struyf, Hubert, & Hornik, 2015) and LASSO multinomial logistic 

regression (Friedman, Hastie, & Tibshirani, 2010), respectively. As a result, TDM performs well 

compared to the quantile normalization, nonparanormal transformation, and log2 transformation 

on a range of data. 

An expression visualization and integration platform (expVIP) is developed to combine 

RNA-seq data sets of a crop species for DEG analysis (Borrill, Ramirez-Gonzalez, & Uauy, 

2016). The study integrates the reads of 418 wheat samples from 16 RNA-seq data sets. expVIP 

requires the raw reads, the reference genome, and metadata of the experiments as input. The 

reads are quality controlled using fastQC (Andrews, 2016) and quantified using kallisto (Bray, 

Pimentel, Melsted, & Pachter, 2016). sleuth (Pemental, Bray, Puente, Melsted, & Pachter, 2017) 

is used for differential gene expression analysis, which utilizes the kallisto quantifications and 

bootstraps. 

One of the disadvantages for data transformation method is that the batch effects are not 

considered. Therefore, the normalized data would still have the batch effects confounded with 

the expression values. 

1.5.2. Location-Scale Methods 

LS methods use a collection of techniques to transform the original expression data from 

different batches in a similar range in terms of equal mean (location) and/or variance (scale). 
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After transformation, the expression values of the genes from different batches should be 

comparable and can be used in the downstream analysis. 

One of LS methods is Batch Mean Centering (BMC). It transforms the original data by 

simply subtracting the mean value of a given gene from each sample to remove the batch effects 

(Sims, et al., 2008). Shen, Ghosh and Chinnaiya (2004) develop a two-stage Bayesian mixture 

modeling strategy to convert the original data into [-1, 1]. Over the past decade, some more 

complex LS methods, such as the Empirical Bayes (EB) method (also known as Combat) 

(Johnson, Li, & Rabinovic, 2007), the Cross-Platform Normalization (XPN) method (Shabalin, 

Tjelmeland, Fan, Perou, & Nobel, 2008), and Distance Weighted Discrimination (DWD) 

(Marron, Todd, & Ahn, 2007; Huang, Lu, Liu, & Marron, 2012), have been widely used in batch 

effect removal methods comparison. The details of these three LS methods will be introduced in 

the following paragraphs. 

The EB method, developed by Johnson, et al (2007), first standardizes the genes using 

the least-squares approach so that the expression data would have a similar mean and variance. 

The standardized data is assumed to have a normal distribution, and the parameters can be 

estimated using Bayesian approach. In the end, the EB batch-adjusted data is calculated. The EB 

method is more robust and does not require as many samples as DWD. 

The first step in the XPN algorithm (Shabalin, Tjelmeland, Fan, Perou, & Nobel, 2008) is 

median centering and standardizing the gene expression values in each sample to remove batch 

effects. Then a block linear model can be applied to the combined data using K-means clustering. 

Model parameters can be estimated using maximum likelihood estimations. Finally, the batch 

effect adjusted values can be calculated using estimations of the model parameters. One 
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limitation of XPN is that it can only be used to analyze microarray expression data from two 

batches. 

The DWD method is a margin-based classification, which is a modification of the 

Support Vector Machine (SVM) (Vapnik V. N., 1995; Vapnik, Golowich, & Smola, 1997). The 

main idea of the DWD method is to find the optimal hyperplane that maximizes the projected 

distance of all the data on this hyperplane (margin) (Marron, Todd, & Ahn, 2007; Huang, Lu, Liu, 

& Marron, 2012). Like XPN method, DWD can only analyze data from two batches at a time. A 

stepwise DWD has been developed to compare data in three batches (Benito, et al., 2004). 

Granatum is a software for analyzing Single-cell RNA sequencing (scRNA-Seq) data 

(Zhu, et al., 2017). Granatum uses ComBat (Johnson, Li, & Rabinovic, 2007) and median 

alignment to remove batch effects from data sets of the normalized expression values before 

differential expression analysis. 

Even though the transformed expression values would have similar mean (location) and 

standard deviation (scale) using LS method, the normalized distributions are not guaranteed.  

1.5.3. Matrix Factorization Methods 

The MF based methods remove the most important variation from the data set under the 

assumption that differences across batches bring more variation on the expression data than 

differences on biological groups. The Singular Value Decomposition (SVD) (Alter, Brown, & 

Botstein, 2000) and Principal Component Analysis (PCA) are the two commonly used methods 

for matrix factorization. Normally, the vector/principal component that contains the highest 

variation of the data is removed and the result is the batch effect adjusted expression data. Some 

MF methods will be introduced in the following paragraphs. 
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The Surrogate Variable Analysis (SVA) is one of the widely used MF method for batch 

effect removal (Leek & Storey, 2007). The first step of SVA is to detect the batch effects using 

SVD iteratively on the residual matrix to remove any structure. A weight is given to every gene 

which represents the signature significance of the expression heterogeneity. Then the surrogate 

variables can be constructed using the probability weights and SVD on the reduced expressed 

matrix. 

The Frozen Surrogate Variable Analysis (fSVA) is an adjustment of SVA to improve 

prediction accuracy in microarray analysis (Parker, Bravo, & Leek, 2014). The fSVA first uses 

SVA for batch effects correction. Then batch effects in new samples would be removed using the 

results from SVA. Sample prediction can be applied using the classifier that was obtained within 

these batch effects removal samples. 

The RUV-2 (Remove Unwanted Variation, 2-step) algorithm (Gagnon-Bartsch & Speed, 

2012) uses the same linear model of SVA to remove the batch effects. RUV-2 applies the factor 

analysis on the negative control genes since they are believed to be unassociated with the 

interested genes. Thus, it makes sure that the biological effects of interest would not be removed 

along with the batch effects from the original data. The performance of the RUV-2 method is 

showed to be comparable to Combat and SVA when applied to several data sets. 

An updated version of RUV-2 (Jacob, Gagnon-Bartsch, & Speed, 2016) can be used to 

remove batch effects while the genes of interest are unobserved. Since the expression values of 

the replicate samples should only be affected by the unwanted batch effects, the new RUV-2 

method uses replicate samples to estimate and remove the batch effects.  

The thresholding singular value decomposition (T-SVD) regression method is to be used 

for the prediction of microRNA (miRNA)-gene regulation and long noncoding RNA 
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(lncRNA)-gene regulation (Ma, Xiao, & Wong, 2014). First, a sparse but not orthogonal matrix 

is calculated using a thresholding-based regularized multivariate regression. Then the Sparse 

Orthogonal Decomposition Algorithm (SODA) is applied to the matrix to make it orthogonal 

while maintaining its sparsity. 

The MF method works better for the data obtained from similar sources. In another word, 

the expression values from different samples have the same distribution. If the samples have 

completely different distributions, like microarray log-fold change data and RNA-seq count data, 

the MF method is not applicable. 

1.5.4. Model-based Integration 

In the model-based integration, only the final statistical results obtained from different 

data sets are merged. Meta-analysis is an example for the model-based integration, in which 

typically the effect sizes or p-values are combined before meta-analysis model fitting.  

Rau, et al. compare the performance of p-value combination methods and a global 

negative binomial generalized linear model (GLM) with fixed effect method on two RNA-seq 

data sets of human melanoma cell lines (Rau, Marot, & Jaffrézic, 2014). In the individual p-value 

combination meta-analysis, the raw p-value of each gene is calculated by fitting a negative 

binomial GLM using the gene count in DEseq (Anders & Huber, 2010) package. The p-values of 

individual analysis are combined using the inverse normal approach (Marot & Mayer, 2009) and 

the Fisher combination approach (Fisher, 1970). In the global differential analysis, a negative 

binomial GLM with fixed study effect is used to calculate the p-value for each gene. The results 

show that global GLM with fixed study effect work well for small numbers of studies and low 

inter-study variability. 
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BayesMetaSeq identifies DEGs by fitting a Bayesian hierarchical model that assumes 

gene counts follow a negative binomial distribution with hyperparameters baseline, effect size 

and dispersion vectors (Ma, Liang, & Tseng, 2017). Model parameters are estimated using 

Markov chain Monte Carlo (MCMC) sampling. The DEGs classification is done by using a 

Dirichlet process Gaussian mixture model. The BayesMetaSeq is applied to a RNA-seq 

integrated data set of three brain samples related to the human immunodeficiency virus (HIV) 

transgenic rat. Compared to edgeR-Fisher and DEseq-Fisher, BayesMetaSeq detected more 

DEGs using the same significant levels. 

Lyu and Li propose a rank-based semi-parametric model for the DEGs detection with 

microarray and RNA-seq combined data set (Lyu & Li, 2016). The genes are assumed to belong 

to three categories: non-DEGs, up-regulated DEGs and down-regulated DEGs, which are located 

in the middle, top, and bottom of the rank list, respectively. The log-fold changed expression 

values are classified into three components using an extended copula mixture model (Li, Brown, 

Huang, & Bickel, 2011). The method is applied to a data set from Microarray Quality Control 

(MAQC) and Sequencing Quality Control (SEQC) projects and the results are compared to 

several methods including DEseq (Anders & Huber, 2010) and eBays (Smyth, 2004). The Lyu 

and Li’s method has the lowest average ranks of the fold change by the top DEGs and better 

enrichment compared to other methods presented in the paper. 

The model-based integration often lacks the robustness since there are underlying 

assumptions for each model. If one of the assumption is invalid, the performance of the 

model-based integration would probably become poor. 
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1.5.5. Other Methods 

Besides the batch effects removal methods, some other batch effects related studies have 

been done. For instance, Reese, et al (2013) use PCA and guided principal component analysis 

(gPCA) to perform a statistical test for detecting batch effects. The test statistic is defined as the 

ratio of the variance of the first principal in gPCA to the variance of the first principal in PCA. 

The p-value of the test statistic is estimated using simulation from a permutation distribution.  

A supervised classification analysis by using the median rank scores of the expression 

values and quantile discretization has been developed for significant gene prediction (Warnat, 

Eils, & Brors, 2005). Median Rank Scores (MRS) is a LS method that can transform the original 

expression values in different platforms into a similar numerical range (Tödling & Spang, 2003). 

The equal frequency binning is applied to further transform the data set (Liu, Hussain, Tan, & 

Dash, 2002). In the end, the Support Vector Machine (SVM) is used for the supervised 

classification analysis.  

In addition to the expression values of the genes, some other continuous or categorical 

variables can also be used for classification. A GLM with elastic net (Zou & Hastie, 2005) 

penalty has been used to build a multinomial classifier for disease subtypes (Hughey & Butte, 

2015). The leave-one-study-out cross-validation for the elastic net classifier can then be used for 

analyzing significant genes for the subtypes of disease. 

1.6. Clustering Approaches 

Clustering analysis refers to the algorithms that group objects (genes or samples in gene 

expression profiling) based on their similarities. Clustering analysis is one of the unsupervised 

learning approach, which means that the original data doesn’t include some label/level 

information of the observations. Two widely used clustering algorithms in gene expression 
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profiling field are hierarchical clustering (Eisen, Spellman, Brown, & Botstein, 1998; 

Sirinukunwattana, Savage, Bari, Snead, & Rajpoot, 2013) and K-means clustering (Li, et al., 

2010; Iam-On & Boongoen, 2012; Nazeer, Sebastian, & Kumar, 2013). This section will mainly 

focus on the K-means clustering as it usually served as a comparison method in clustering 

analysis. 

K-means clustering is a well-known clustering method. In brief, K-means clustering is 

trying to divide N objects into K clusters based on the distance between objects and cluster 

centers. K-means clustering selects the best partition by minimizing the within-cluster sum of 

squares. It requires the number of clusters, K, as input.  

There are four basic steps for K-means algorithm. First, the K-means algorithm randomly 

selects K objects as the centers of the K clusters. In each iteration, the Euclidean distance 

between each object and each cluster center is calculated. And the object will be assigned to its 

nearest cluster, i.e. the cluster with the smallest Euclidean distance. Thirdly, the new cluster 

centers are calculated after each iteration. Last, the second and third steps will be repeated until 

convergence. The Euclidean distance of two vectors, X and Y in n dimensions, is calculated as 

follows: 

𝐷(𝑿, 𝒀) = √∑ (𝑥𝑖 − 𝑦𝑖)2
𝑛

𝑖=1
 (1.1) 

There are mainly two assumptions for K-means clustering. K-means clustering performs 

well on spherical or ball-shaped data (Jain, 2010). Also, the number of objects in each cluster 

should approximately even with equal variance.  

This dissertation focuses on how to combine and analyze data from the microarray and 

RNA-seq technologies. Chapter 2 introduces the embryonic heart data set of microarray and 
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RNA-seq, as well as the preprocessing analysis for the data sets. The Boundary Shift Partition 

(BSP) algorithm is proposed in Chapter 3. In Chapter 4, the performance of BSP algorithm is 

evaluated and compared with the Hartigan-Wong’s (Hartigan & Wong, 1979) K-means algorithm 

using simulated data. The results of applying the BSP algorithm to the preprocessed embryonic 

heart data sets are presented in Chapter 5. Chapter 6 includes the conclusion and discussion. 
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CHAPTER 2. EMBRYONIC HEART DATA AND DATA PROCESSING 

2.1. Data Sets 

The microarray and RNA-seq data used in this study were obtained from the heart tissue 

of wild type mice. Thus, all the samples in this study were biological replicates. The microarray 

data had 45,220 probes for four samples and the RNA-seq data had 36,594 genes for two 

samples. An annotation file for the microarray data was also available. Table 2.1 and Table 2.2 

show part of the data for microarray and RNA-seq, respectively. The gene expression values for 

microarray were pre-normalized, as were the expression values for RNA-seq. 

Table 2.1. Part of Microarray Gene Expression Data 

Gene Symbol MA1 MA2 MA3 MA4 

Akt1 28256.95 31073.26 28898.22 24935.76 

H2-Q7 1662.139 1885.987 1745.079 1469.927 

Kdr 2828.991 2184.211 3196.065 1801.478 

Tyrp1 6.717917 9.32741 5.445747 27.12331 

Gpi1 163500.7 163215.3 168793.5 151467 

Hmbs 21400.02 19857.29 19153.49 16631.1 

Ntrk2 946.7777 1253.803 1199.267 882.634 

Olfr1307 9.887807 15.01386 16.75826 16.17594 

Olfr166 37.82956 41.1092 46.04584 31.2603 

Rps7 132366.4 140177 138795.1 119004.4 

Rb1 2046.421 1179.788 1492.828 1456.258 

Rps18 135911.4 142896.8 141766.1 135984.5 

Ppp1r2 1170.884 1246.634 908.9469 939.2718 

Egfr 632.85 320.6998 492.6504 513.2288 

Hist1h2af 119479.4 109577.6 126294.6 99295.84 

Hmgb1 45355.12 43946.57 43733.9 39502.78 

Ldha 115796.2 151865.7 129909.3 109036.9 

Ndufa1 11520.16 13568.99 9853.245 8809.788 

Morf4l1 42213.25 52661.69 44065.17 47247.77 
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Table 2.2. Part of RNA-seq Gene Expression Data 

Gene Symbol RNA3 RNA11 

Gnai3 88.1996 87.6813 

Pbsn 0 0 

Cdc45 28.3955 31.8773 

H19 1935 1991.3 

Scml2 1.98629 1.7267 

Apoh 0 0 

Narf 16.7858 16.1682 

Cav2 1.73598 1.37976 

Klf6 12.2728 13.0533 

Scmh1 13.3895 14.5688 

Cox5a 159.566 161.959 

Tbx2 6.74803 4.63926 

Tbx4 1.03696 0.370719 

Zfy2 0 0 

Ngfr 15.3549 13.6166 

Wnt3 0.626531 0.284542 

Wnt9a 0.825546 0.699762 

Fer 9.22548 10.1839 

Xpo6 35.2881 35.1514 

Tfe3 13.3063 11.8945 

 

2.2. Data Sets Combination 

To analyze the potential relationship between microarray and RNA-seq, the two separate 

data sets needed to be combined together. The genes that were only tested in either one of the 

data sets had to be removed for the final combined data set. In the end, the total number of genes 

in the combined data set was 14,857. For each gene, there were four samples from microarray 

technology and two samples from RNA-seq technology. Table 2.3 shows part of the combined 

data set. The following study of this research was based on this combined data. 

 



 

26 
 

Table 2.3. Part of Combined Gene Expression Data 

ID Gene MA1 MA2 MA3 MA4 RNA3 RNA11 

1 0610005C13Rik 9.170 62.082 9.016 13.971 0.343 0.605 

2 0610007P14Rik 30743.800 41798.900 30191.950 25841.170 42.795 48.368 

3 0610009B22Rik 2689.288 2867.673 2208.953 1974.990 21.416 24.036 

4 0610009O20Rik 509.854 545.401 434.529 409.202 22.130 22.761 

5 0610010F05Rik 379.490 532.325 350.831 358.410 9.278 9.826 

6 0610010K14Rik 2474.878 2673.511 2546.653 1853.097 53.963 46.830 

7 0610011F06Rik 6572.091 5595.217 6144.279 5095.386 20.136 17.472 

8 0610012G03Rik 3273.217 4917.466 3205.454 2633.260 13.095 14.455 

9 0610025J13Rik 19.970 14.762 8.790 17.921 0.208 0.000 

10 0610030E20Rik 928.720 1417.446 928.723 1211.190 9.844 9.969 

11 0610037L13Rik 2541.094 2094.012 2203.223 1513.617 44.595 42.082 

12 0610039K10Rik 5.463 9.310 4.100 13.537 0.188 0.181 

13 0610040B10Rik 26.726 18.682 28.430 25.734 1.993 2.285 

14 0610040J01Rik 5873.463 10218.140 6296.872 5715.141 1.991 2.855 

15 1110001J03Rik 13413.240 19702.430 14653.450 16726.380 30.242 28.063 

16 1110002L01Rik 5.590 30.719 4.224 13.489 8.597 8.743 

17 1110004E09Rik 17528.280 19552.970 17579.300 15785.640 19.316 19.656 

18 1110004F10Rik 30966.340 30948.160 29484.190 24864.760 97.337 96.518 

19 1110007C09Rik 1864.882 1994.757 1955.108 1819.455 5.822 6.616 

20 1110008E08Rik 5.617 9.480 4.251 13.553 0.000 0.000 

 

2.3. Magnitude Problem Solving Using Data Transformation 

After a basic analysis of the combined data set, there was a magnitude problem in the 

gene expression values between microarray technology and RNA-seq technology. Table 2.4 

shows the minimums and maximums for each sample. It is clear that the average minimum 

difference of the gene expression values between microarray and RNA-seq technology was 7.72, 

while the average maximum difference was around 306,984.43. The maximum gene expression 

value of microarray was about 100 times higher than that of RNA-seq. Therefore, direct 

comparison between microarray and RNA-seq would be a problem. Besides the magnitude 
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problem, all six samples were highly skewed to the right, no matter if the samples were from 

microarray or RNA-seq. To solve the magnitude problem and better analyze the data, 

transformation of the original data was necessary. Box-Cox transformation, logarithm and cube 

root transformation were applied to this combined data set.  

Table 2.4. Minimums and Maximums of the Six Samples 

Samples Minimum Maximum Standard deviation 

MA1 5.27 293,570.9 15,549.546 

MA2 9.08 310,030.5 16,293.554 

MA3 3.94 323,838.0 15,260.399 

MA4 12.59 312,757.1 13,984.681 

RNA3 0 2,757.4 73.005 

RNA11 0 3,371.99 77.567 

 

The one parameter Box-Cox transformation is a type of power transformation (Box & 

Cox, 1964), which is defined as:  

𝑦𝑖
(𝜆)

= {
𝑦𝑖

𝜆 − 1

𝜆
    𝑖𝑓 𝜆 ≠ 0

ln(𝑦𝑖)        𝑖𝑓 𝜆 = 0

, (2.1) 

Since the minimum expression value of RNA-seq was 0, 10−5 was added to all the data 

points to avoid problems during transformations. Logarithm and cubic root transformations are 

commonly used transformations in research. Based on the results of these two transformations, 

the logarithm and cubic root transformation was used to conduct the following research.  

After applying the Box-Cox transformation to the combined data, the ranges of the gene 

expression values of the two technologies were close to each other. The Box-Cox transformation 

summary is shown in Table 2.5. The magnitude problem of the expression values no longer 

existed after the Box-Cox transformation. However, the minimum of the RNA-seq values was 
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-7.14, which would cause problems for explanation since it was difficult to describe the gene 

expression levels with negative values.  

Table 2.5. Box-Cox Transformation Summary 

Sample λ Minimum Maximum 

MA1 -0.02 1.65 11.13 

MA2 -0.02 2.16 11.17 

MA3 -0.02 1.35 11.21 

MA4 -0.02 2.47 11.18 

RNA3 0.14 -7.14 14.51 

RNA11 0.14 -7.14 15.13 

 

Table 2.6. Logarithm and Cubic Root Transformation Summary 

 Minimum Maximum Standard deviation Skewness 

Log(MA1) 1.68 12.59 2.834 0.024 

Log(MA2) 2.21 12.64 2.741 0.126 

Log(MA3) 1.37 12.68 2.883 0.0004 

Log(MA4) 2.53 12.69 2.514 0.259 

√𝑅𝑁𝐴3
3

 0 14.02 1.487 1.201 

√𝑅𝑁𝐴11
3

 0 14.99 1.493 1.229 
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Figure 2.1. The Scatterplots for the Transformed Data. 

Table 2.6 shows the results from the logarithm and cubic root transformation. This 

transformation took the log of the microarray values and cubic root of the RNA-seq values. 

Therefore, the original data was transformed to have a similar range. After the transformation, all 

the values remained positive. The following study was conducted based on this logarithm and 

cubic root transformation. Figure 2.1 shows the scatterplot of the transformed data set. 

2.4. Linear Relationship Analysis 

To further understand the relationship between the microarray values and RNA-seq 

values without considering the gene effect, some regression models was fitted. The average gene 

expression values from the microarray were treated as the dependent variable and the average 

gene expression levels from the RNA-seq were treated as the independent variable. The 1st order, 

2nd order, 3rd order regression models and the logarithmic model were used to fit the transformed 

data. The models used are as follows:  

𝑡𝑀𝐴 =  𝛼 𝑡𝑅𝑁𝐴 +  𝜀 (2.2) 
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𝑡𝑀𝐴 =  𝛼 𝑡𝑅𝑁𝐴 +  𝛽 𝑡𝑅𝑁𝐴2 +  𝜀 (2.3) 

𝑡𝑀𝐴 =  𝛼 𝑡𝑅𝑁𝐴 +  𝛽 𝑡𝑅𝑁𝐴2 +  𝛾 𝑡𝑅𝑁𝐴3 +  𝜀 (2.4) 

𝑡𝑀𝐴 =  𝛼 log(𝑡𝑅𝑁𝐴) +  𝜀 (2.5) 

For each model fitted in the regression analysis, the p-value was less than 0.05 with 

14,857 observations. Table 2.7 shows the adjusted R-squares for each model. Based on the 

adjusted R2, the 3rd order model was best among these four models. The adjusted R2 for the 3rd 

order model was 0.7702. Figure 2.2 shows several plots for checking 3rd order model 

assumptions. Figure 2.3 is the scatterplot with fitted 3rd order model. Since the 3rd order model 

had the highest adjusted R2 value to fitting the average microarray and RNA-seq transformed 

data, this model was also used to fit each sample in microarray and RNA-seq. The adjusted R2 

values are reported in Table 2.7 and 2.8. The four samples of the transformed microarray and the 

mean expression value of transformed microarray served as the dependent variable in each 

model. The two samples of transformed RNA-seq and the mean expression value of RNA-seq 

were used as the independent variable. The adjust R2 values of the 3rd order model among each 

sample were close to each other. Therefore, the 3rd order regression model was the best among 

the four models to describe the relationship between microarray and RNA-seq gene expression 

levels without considering the individual gene effect. 

Table 2.7. Adjusted R2 for the Models 

Model Adjusted R2 

1st order model 0.6918 

2nd order model 0.7623 

3rd order model 0.7702 

Logarithmic model 0.3994 
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Table 2.8. Adjusted R2 for the 3rd Order Models 

 tRNA3 tRNA11 tRNA 

tMA1 0.768 0.765 0.768 

tMA2 0.771 0.775 0.775 

tMA3 0.771 0.769 0.772 

tMA4 0.739 0.739 0.741 

tMA 0.768 0.768 0.770 

 

 

Figure 2.2. The 3rd Model Assumption Checking Plots 

 

Figure 2.3. The Scatterplot with Fitted 3rd Order Model 
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2.5. Noise Minimization and Quantile Normalization 

To minimize the background noise from the microarray and RNA-seq technologies, the 

mismatch values within the 5th percentile of each technology were removed. For instance, if the 

average expression value of one gene from microarray was within the lowest 5% of all 

microarray gene expression values, but its mean RNA-seq expression value was greater than 5% 

of the non-zero RNA-seq values, this gene was labeled as a mismatch gene and vice versa. 

Quantile normalization was applied to this removed mismatch data set to further 

understand the relationship between microarray and RNA-seq technology. The logarithm and 

cubic root transformed data were used to conduct this quantile normalization. For each sample, 

the transformed gene expression values were ranked from smallest to largest. The genes in the 

same rank among the six samples were forced to stay the same. In this case, the mean values of 

these genes were applied. Therefore, it was guaranteed that all six samples had exactly the same 

distribution. 

For the mismatch gene detection, there were 156 genes that have an expression value 

within the lowest 5% of the microarray expression levels but higher than 5% of non-zero 

RNA-seq values. And 1,889 genes had an expression value within the lowest non-zero 5% of the 

RNA-seq expression leves (genes with RNA-seq expression value of 0 included) but higher than 

5% of microarray values. A total of 2,045 mismatch genes had been removed from the combined 

data set. 

Table 2.9 shows the sample statistic summaries before and after quantile normalization 

which include minimum, median, maximum, mean and standard deviation. The data after 

quantile normalization had been used to fit another 3rd order regression model. This model had a 

significant p-value that was less than 0.05 with all terms that were significant in the model. The 
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adjusted R2 was 0.7207, which is actually about 5% lower than the previous results. The model 

assumption plots and fitted curve plot are shown in Figure 2.4 and 2.5. 

Table 2.9. Sample Summaries Before and After Quantile Normalization 

 Minimum Median Maximum Mean SD. 

Log(MA1) 1.68089 6.521271 12.58987 6.139841 2.64616 

Log(MA2) 2.207173 6.566698 12.64443 6.22337 2.601999 

Log(MA3) 1.373153 6.456845 12.688 6.05967 2.688006 

Log(MA4) 2.533276 6.279776 12.65318 6.063591 2.423351 

√𝑅𝑁𝐴3
3

 0 1.865335 14.02275 1.975917 1.429577 

√𝑅𝑁𝐴11
3

 0 1.8528 14.99554 1.963013 1.439169 

Log(MA) 2.067095 6.495878 12.62841 6.176559 2.538741 

√𝑅𝑁𝐴
3

 0 1.862883 14.45526 1.978734 1.423216 

QN 1.33144 4.923787 13.26563 4.736925 2.183008 

QN-MA 1.305396 4.925272 13.12782 4.737567 2.168986 

QN-RNA 1.329872 4.932203 13.16276 4.7373 2.178561 

 

Figure 2.4. The 3rd Model Assumption Checking Plots for Quantile Normalized Data 
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Figure 2.5. The Scatterplot with Fitted 3rd Order Model for Quantile Normalized Data 

2.6. Inconsistency Between Microarray and RNA-seq 

To study the gene expression difference measured by different technologies, the quantile 

normalized data were used. Ideally, the quantile normalized expression levels of the same gene 

among the six samples should stay the same. Therefore, the differences between the mean 

quantile normalized microarray expression values and the mean quantile normalized RNA-seq 

expression values should be close to 0. Thus, the study of the difference can help illuminate the 

inconsistencies of the two technologies.  

The difference was calculated by using the mean quantile normalized microarray 

expression values to subtract the mean quantile normalized RNA-seq expression values within 

each gene. Table 2.10 shows the basic statistics about the difference. Heat maps were used to 

have a better visual understanding of the difference. Figure 2.6 and 2.7 are the heat maps for the 

difference of transformed data before and after quantile normalization, respectively.  
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Table 2.10. Statistic Summary for the Gene Expression Difference Between Two Technologies 

 Minimum Median Maximum Mean SD. 

Difference -5.83923 0.02498 8.35044 0.0002676 1.20344 

 

 

Figure 2.6. Heat Map for the Difference of the Logarithm and Cubic Root Transformed Data 
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Figure 2.7. Heat Map for the Difference of the Quantile Normalized Transformed Data 

2.7. Minimizing Differences in Microarray and RNA-seq 

To remove the technology effect from the logarithm and cubic root transformed data, 

principal component analysis was applied to the data set. First, the data was centered and scaled. 

Then, the components were calculated by a singular value decomposition of the data matrix. The 

component(s) that distinguish between microarray and RNA-seq were removed. 

The loading matrix and importance of components from principal component analysis are 

shown in Figure 2.8 and 2.9. Thus, the 1st principal component contained over 95% of the overall 

variability in the data set. In order to remove the component which distinguishes between the two 

technologies, the p-values from the t-test was used. Basically, for each component, the 

two-sample t-test was conducted between different technologies. Table 2.11 shows the p-values 

for each component. It is clear that the 1st principal component had a p-value that was less than 

0.05. Therefore, the 1st principal component would be removed. 
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Figure 2.8. Loading Matrix of Principal Components for Original Data 

 

 

Figure 2.9. Importance of Components for Original Data 

 

Table 2.11. P-values of Student’s t-tests for Original Data 

 PC1 PC2 PC3 PC4 PC5 PC6 

P-value 2.76e-06 0.9394 0.9605 0.9576 0.9972 0.6193 

 

Figure 2.10 and 2.11 show the loading matrix and importance of components from 

principal component analysis after the removal of the 1st PC, respectively. Based on the results of 

the t-tests (Table 2.12), none of the p-values is greater than 0.05. Thus, the technology effect has 

been removed from the original data. 

 

Figure 2.10. Loading Matrix of Principal Components for the 1st PC Removed Data 
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Figure 2.11. Importance of Components for the 1st PC Removed Data 

Table 2.12. P-values of Student’s t-tests for the 1st PC Removed Data 

 PC1 PC2 PC3 PC4 PC5 PC6 

P-value 0.9394 0.9605 0.9576 0.9972 0.6193 0.3429 

 

Table 2.13 shows the descriptive statistics of the six samples after removing the 1st 

principle component. The six samples follow similar distributions after the 1st principle 

component removal. The mean values of Microarray samples and the mean values of RNA-seq 

samples were calculated. Figure 2.12 shows the relationship between Microarray and RNA-seq 

after the 1st principle component removal. They are almost perfect correlated based on the figure. 

This is because over 95% of the variation in the original data was removed when removing the 

1st principle component. Even though the technology difference was successfully removed, it 

also removed too much variation from the data. 

Table 2.13. Data Summary after 1st Principle Component Removal 

 tMA1 tMA2 tMA3 tMA4 tRNA3 tRNA11 

Minimum 0.5223 0.5217 0.5322 1.3758 1.0134 0.5570 

1st Quantile 3.0829 2.8443 3.0507 2.8482 2.9153 2.9047 

Median 5.0543 4.9268 5.1016 4.7793 4.9523 4.9644 

3rd Quantile 6.3749 6.2904 6.4585 6.1033 6.2833 6.2917 

Maximum 12.785 12.525 12.346 12.495 12.280 12.995 

Mean 4.7760 4.7085 4.8015 4.6675 4.7337 4.7382 

Standard deviation 2.1980 2.1205 2.2721 1.9676 2.1059 2.1203 
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Figure 2.12. The Relationship between Microarray and RNA-seq after the Removal of the 1st 

Principle Component 

2.8. Probe Alignments 

The probe alignments to the reference genome were applied to the data set to have a 

better understanding of the expression values of microarray and RNA-seq because the existence 

of multiple alignments implied that the real gene expression levels were lower than the values in 

the experiment. In microarray, the gene is represented by a pre-designed short sequence called 

probes. In RNA-seq, the expression level of a gene is represented by the number of copies of the 

sequence fragments named as reads. Ideally, the probes in microarray and the reads in RNA-seq 

should be gene specified. In other words, the probes and reads should be unique to the genes that 

they are representing. However in reality, due to the small length of probes (25 – 150 bp in 

general (Chou, Chen, Lee, & Peck, 2004)) and reads (30 – 200 bp in general (Chang, Wang, & Li, 

2014)) comparing to the large genome size from 0.49 Mbp of Mycoplasma genitalium (Huber, et 

al., 2002) up to 670 Gbp in Polychaos dubium (McGrath & Katz, 2004), the sequence of probes 
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and reads might not be unique to the specific gene. Therefore, the probe alignment was necessary 

to analyze the expression accuracy. 

The process of probe alignments was mapping the probes of microarray to the reference 

genome, the mouse genome in this case. The number of alignments for each sequence was 

recorded. If a sequence has multiple alignments in the reference genome, it means that some 

sequences other than the specific gene could also contribute to the gene expression levels, which 

create a false positive result. Sometimes, a probe might not find an alignment to the reference 

genome at all. There are several reasons to cause this problem: for instance, one might make 

mistakes while doing the alignment, or the sample has a unique sequence in this region that 

differs from the reference genome. Thus, the probe alignments would help to understand the 

statistical trends of the expression values in microarray. 

The probe alignments were applied to three data sets: the original combined data set with 

14,857 genes, the data set of 12,812 genes after removal of the mismatch genes and the data set 

with the mismatch genes containing 2,045 genes. A brief summary of the probe alignments is 

shown in Table 2.14. Thus, the number of genes with multiple alignments is 1,027 in the 14,857 

genes data set, 826 in the 12,812 genes data set and 201 in the 2,045 mismatch genes data set. 

The percentage of the multiple alignment probes in the mismatch data set (9.8289%) is the 

highest among these three data sets. But the percentage of probes with no alignment to the 

reference genome in the mismatch data set (9.8778%) is lower than the other two data sets. The 

total percentage of the genes including multiple alignments and no alignment is about the same 

in these three data sets.  
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Table 2.14. Summary for Probe Alignments of the Three Data Sets 

 

# of Alignments Data sets 

Multiple alignment 

 

[2,5] 917 734 183 

(5,10] 70 59 11 

(10,∞) 40 33 7 

NAs 0 1,840 1,638 202 

Total 2,867 2,464 403 

Total number of genes 14,857 12,812 2,045 

 

Since mismatch data set showed a different performance in comparison to the other two 

data sets, detailed probe alignments were applied to the mismatch data set. Table 2.15 shows the 

summary for the probe alignments applied to the mismatch data set. Based on the definition of 

the mismatch genes, there were two cases: low microarray but high RNA-seq values and high 

microarray low RNA-seq values. The low microarray but high RNA-seq gene represented that 

the average expression value of one gene from microarray was within the lowest 5% of all 

microarray gene expression values, but its mean RNA-seq expression value was greater than 5th 

quantile of the non-zero RNA-seq values. If the average expression value of one gene from 

RNA-seq was within the lowest 5% of all non-zero RNA-seq gene expression values, but its 

mean microarray expression value was greater than 5th quantile of the microarray values, this 

gene was a high microarray low RNA-seq gene. There were 156 genes in the low microarray 

high RNA-seq category and 1,889 genes in the high microarray low RNA-seq category. As the 

results show, the percentage of probes with multiple alignments in the high microarray low 

RNA-seq category (10.4288%) is much higher than that in the low microarray high RNA-seq 

category (2.5641%). Part of the reasons to have a such results is that microarray normally has a 
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higher background noise than RNA-seq, therefore, it is expected to see some genes with low 

RNA-seq expressions values but high microarray expression values. 

Table 2.15. Summary for Probe Alignments of the Mismatch Data Set 

 

# of 

Alignments Low microarray high RNA-seq High microarray low RNA-seq 

Multiple Alignments 

 

[2,5] 4 179 

(5,10] 0 11 

(10,∞) 0 7 

NAs 0 22 180 

Total 26 377 

Total Number of genes 156 1,889 
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CHAPTER 3. METHODOLOGY DEVELOPMENT 

Suppose the gene expression data set contains the expression values for N genes which 

are collected from P samples. Among the P samples, 𝑝1 samples are analyzed using microarray 

technology, 𝑝2 samples are analyzed using RNA-seq technology, 𝑝1 + 𝑝2 = 𝑃. All these P 

samples are assumed to be collected from the same conditions. In another word, these P samples 

are biological replicates to each other.  

To measure the technology difference among the P samples, the mean expression value 

difference between microarray and RNA-seq technology for each gene can be calculated as 

follows: 

𝐷𝑖𝑓𝑓𝑖 =  𝑀𝐴𝑖 −  𝑅𝑁𝐴𝑖  (3.1) 

where 𝑀𝐴𝑖 denotes the mean expression value of gene i for the samples of microarray 

technology and 𝑅𝑁𝐴𝑖 denotes the mean expression value of gene i for the samples of RNA-seq 

technology.  

Let’s assume that 𝐷𝑖𝑓𝑓𝑖 follows a mixture normal distribution with K clusters. The 

variances of these K clusters are equal. Thus, each expression value can be fitted in a linear 

model with the form: 

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑖𝑗𝑝 = 𝑖 + 
𝑗
𝑇𝑒𝑐ℎ + 𝑖𝑗𝑝 (3.2) 

where 𝑖 represents the mean expression value of gene i for the RNA-seq technology samples, 

𝑖 = 1, 2, 3, … , 𝑁. 
𝑗
 represents the technology difference between microarray and RNA-seq for 

cluster j, 𝑗 = 1, 2, 3, … , 𝐾. 𝑖𝑗𝑝 represents the random error for gene i in cluster j of sample p, 

𝑝 = 1, 2, 3, … , 𝑃. 𝑖𝑗𝑝 follows a normal distribution with mean 0 and variance 2, whereas 

𝑖𝑗𝑝 ~𝑁(0,2). 
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The Boundary Shift Partition (BSP) algorithm involves 3 steps: partition initialization, 

assignment of genes on the edges, and stop of the algorithm under selected criteria. 

3.1. Partition Initialization 

Since gene expression data normally includes expression values from thousands of genes, 

the 𝐷𝑖𝑓𝑓𝑖 values are used to reduce the calculation complexity. Thus, the expression value of 

each gene is represented by a single value, 𝐷𝑖𝑓𝑓𝑖.  

The 𝐷𝑖𝑓𝑓𝑖 values are first sorted from smallest to largest, denoted as 𝑆𝐷𝑖𝑓𝑓𝑖. Then K − 

1 partition points can be randomly chosen among the N − 1 possible partition points for the N 

𝑆𝐷𝑖𝑓𝑓𝑖 values to have K clusters. An example of the random partition for 3 (K) clusters among 

10 (N) genes is shown in Figure 3.1. Each circle represents a 𝑆𝐷𝑖𝑓𝑓𝑖 value. There are 9 (10-1) 

possible partition points among these 10 genes. The 2 (3-1) random partition points between the 

third gene and the fourth gene, as well as the fifth gene and the sixth gene divide the 10 genes 

into 3 clusters. 

 

Figure 3.1. Example of the Random Partition 

3.2. Assignment of Genes on the Edges 

Since the 𝐷𝑖𝑓𝑓𝑖 values are sorted, only the genes on the edge of the clusters can possibly 

be moved to its nearby cluster. Let 𝑗 denote the standard deviation of the 𝑆𝐷𝑖𝑓𝑓𝑖 values for 

cluster j.  

𝑗 = √
1

𝑛𝑗 − 1
∑ (𝑆𝐷𝑖𝑓𝑓𝑖 − 𝐶𝑗)

2𝑛𝑗

𝑗=1
 (3.3) 
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where 𝑛𝑗  is the number of genes in cluster j. 𝐶𝑗 is the mean expression value for cluster j, 𝐶𝑗 =

1

𝑛𝑗
∑ 𝑆𝐷𝑖𝑓𝑓𝑖

𝑛𝑗

𝑖=1
. Let 𝐺𝑒 and 𝐺𝑒∗ denote the edge genes for partition divider D (𝐷 =

1, 2, 3, … , 𝐾 − 1) for cluster j and j+1, respectively. Thus, it’s possible that 𝐺𝑒 can belong to its 

nearby cluster (j+1). Let’s assign 𝐺𝑒 to its nearby cluster and calculate the standard deviation 

for cluster j and the standard deviation for the nearby cluster after the assignment, denoted as 𝑗
′ 

and 𝑗−𝑛𝑒𝑎𝑟𝑏𝑦
′ , respectively. 𝐺𝑒 can be assigned to its nearby cluster if 𝑗

′ + 𝑗−𝑛𝑒𝑎𝑟𝑏𝑦
′ <  𝑗 +

𝑗−𝑛𝑒𝑎𝑟𝑏𝑦. Keep moving the edge gene until it reaches the local minimum. Repeat this process 

for gene 𝐺𝑒∗. Compare the local minimum of 𝐺𝑒, 𝐺𝑒∗, and the original partition and choose the 

cutting point that provides the smallest value of the sum of the standard deviations. Repeat these 

steps until all the edges for the K clusters can’t be assigned to their nearby clusters. 

3.3. Stop of the Algorithm Under Selected Criteria 

If none of the genes on the edges can be assigned to its nearby cluster, calculate the sum 

of the standard deviation for the K clusters,  = ∑ 𝑗
𝐾
𝑗=1 . Each run of the algorithm can find a 

local minimum for . To make sure the algorithm reaches the global minimum, the algorithm 

can be stopped if the  has not changed in the last M iterations. 

3.4. Selection Criteria for Optimal Clusters 

The optimal number of clusters is selected based on the number of differential measured 

genes (DMGs) in each cluster. After the BSP algorithm, the data set is divided into K clusters. 

Then the mean values of the RNA-seq technology for each gene (𝑖)  and the technology 

difference between microarray and RNA-seq for each cluster (
𝑗
) can be estimated using the 

mean estimation. The residuals (𝑖𝑗𝑝) can be calculated for each expression value for the K 

clusters using the formula: 𝑖𝑗𝑝 = 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑖𝑗𝑝 − 𝑖 − 
𝑗
𝑇𝑒𝑐ℎ. The two-sample t-test will be 
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applied on the residuals for gene i between microarray and RNA-seq samples. The gene is 

defined to be differentially expressed if the p-value of the t-test is less than the significant level 

. Normally  is chosen to be 0.05. 

The selection criteria for the optimal number of clusters is defined as follows: 

𝑙𝑜𝑔2 (
#𝐷𝑀𝐺𝑠 + 1

𝑁
) + 𝑘 (3.4) 

The optimal number of cluster is the one that minimizes the selection criteria. 

3.5. Algorithm Summary 

The differentially expressed genes are detected using the BSP algorithm. The difference 

between the mean value of microarray and RNA-seq for each gene is used for gene clustering. A 

linear model is fitted for the genes in each cluster. The two-sample t-test uses the residuals of the 

linear model between microarray and RNA-seq technologies for DMGs detection. This algorithm 

clusters the genes into K partitions by minimizing the standard deviations of the difference 

values between microarray and RNA-seq. 

Suppose the data set contains N genes, and the optimal number of clusters is K.  

Step 1. Randomly select K-1 partition points to form K clusters for the sorted N objects. 

Step 2. For the two genes of each partition divider D (𝐷 = 1, 2, 3, … , 𝐾 − 1) in cluster j 

and j+1, assign each gene to its nearby cluster and calculate the standard deviations of the two 

clusters before and after assignment, respectively. Keep moving the edge until the local 

minimum is reached. Choose the cutoff point of these two clusters that minimize the sum of 

standard deviations for the two clusters. 

Step 3. Go back to Step 2 for the next edge or go to Step 4 if all the edges have been 

analyzed. 
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Step 4. Record the minimum value of the sum of the standard deviations for all the 

clusters. Go back to Step 1. 

Step 5. Stop the algorithm if the minimum value of the sum of the standard deviations has 

not changed in the last M iterations. 

A flowchart of the algorithm is shown in Figure 3.2. 

 

Figure 3.2. A Flowchart of the BSP Algorithm  
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CHAPTER 4. SIMULATION 

To evaluate the performance of the BSP algorithm, six simulation data sets were 

generated in order to resemble situations with different distributions and a magnitude of 

variations. Also, the Hartigan-Wong’s (Hartigan & Wong, 1979) K-means algorithm was used to 

compare the performance of the BSP algorithm. 

4.1. Data Generation 

For the simulation data, 2,000 genes were generated into four clusters. There were six 

replicates for each gene, four replicates were from microarray technology and two replicates 

were from RNA-seq technology. The simulation parameters on the linear model: 

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑖𝑗𝑝 = 𝑖 + 
𝑗
𝑇𝑒𝑐ℎ + 𝑖𝑗𝑝 , were estimated using the transformed embryonic heart 

data. In the model, 𝑖 represents the mean expression value of gene i for the RNA-seq 

technology samples. 
𝑗
 represents the technology difference between microarray and RNA-seq 

for cluster j. 𝑖𝑗𝑝 represents the random error for gene i in cluster j of sample p.  

Based on the range of the differences between microarray and RNA-seq in the embryonic 

data, the parameters of 
𝑗
 were chosen to be -0.5, 2, 4.5, and 7 for the four clusters, respectively. 

Table 4.1 shows the number of genes and the true 
𝑗
 value for each cluster.  

Table 4.1. Simulation Data Summary 

Cluster 1 2 3 4 

𝛽𝑗 -0.5 2 4.5 7 

# of genes 532 499 470 499 

 

The mean expression values for RNA-seq (𝑖) were generated from uniform distribution 

U(0, 14), based on the range of the gene expression values for the RNA-seq samples. The error 

terms of all the four clusters were assumed to have equal variance 2 with mean 0.  
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Normality was one of the assumptions for the BSP algorithm of fitting linear model. The 

model assumed that the genes in each cluster follow a normal distribution with equal variances 

among all the clusters. Therefore, the residuals of the linear model followed a normal distribution, 

𝑖𝑗𝑝~𝑁(0,2). To test the robustness of the BSP algorithm, some other distributions, besides 

normal distribution, were used to generate the error terms of the simulation data: Exponential 

distribution, Gamma distribution, Gaussian mixture distribution, and Beta distribution. The error 

terms were generated from these four distributions with mean 0 and standard deviation ranging 

from 0.1 to 1.5. Due to parameters’ boundaries, the standard deviations for beta distribution were 

in the range of 0.1 to 0.5. The error terms of these four distributions were first generated with 

shifted means. Then the error terms were subtracted by their means to shift to 0. Given mean 𝜇 

and standard deviation 𝜎, the calculation of the parameters for each distribution is shown in 

Table 4.2. The error terms were generated using corresponding functions in R software. 

Table 4.2. The Formulas and Parameter Estimates for the Four Distributions 

Distribution 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 

Exponential 
𝜆 =

1

𝜎
 

Gamma 
𝑠ℎ𝑎𝑝𝑒: 𝛼 =

𝜇2

𝜎2
 𝑠𝑐𝑎𝑙𝑒: 𝛽 =

𝜎2

𝜇
 

Mixture 0.5*N(0, 𝜎)+0.5*N(𝜇, 𝜎) 

Beta 
𝛼 = (

1 − 𝜇

𝜎2
−

1

𝜇
) 𝛽 = 𝛼 (

1

𝜇
− 1) 

 

Therefore, the RNA-seq samples for each gene were generated using the formula: 𝑖 +

𝜀𝑖𝑗𝑝. The microarray samples for each gene were generated using the formula: 𝑖 + 𝛽𝑗 + 𝜀𝑖𝑗𝑝. 

4.2. Simulation Method  

The BSP method was applied to the simulation data to test the accuracy of this method 

for 2 to up to 20 clusters. The stop criteria for the BSP algorithm was that the sum of the standard 
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deviations did not change in the last 10 iterations. Then the residuals were calculated based on 

the fitted linear model: 𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑖𝑗𝑝 = 𝑖 + 
𝑗
𝑇𝑒𝑐ℎ + 𝑖𝑗𝑝. Finally, the optimal number of 

clusters was chosen related to the minimum of the selection criteria values, which calculated 

using the number of DMGs for each cluster. 

Hartigan-Wong’s (Hartigan & Wong, 1979) K-means method was chosen as a 

comparison method for the BSP algorithm. Hartigan-Wong’s K-means method was applied to the 

simulated data by using the kmeans() function in R software (R Core Team, 2016). The default 

parameter setting was used. After the K-means classification, a similar process can be used to 

calculate the residuals and the optimal number of clusters. Figure 4.1 shows a briefly flowchart 

for the process of simulation analysis. 

 

Figure 4.1. The Flowchart of Simulation Methods. BSP: Boundary Shrift Partition; K-means: 

Hartigan-Wong’s K-means method; DMGs: Differentially Measured Genes. 
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Two evaluation parameters were used to compare the performance of the BSP and 

K-means methods: misclassified rate (MR) and the accurate number of clusters. The 

misclassified rate of the algorithm was defined as the percentage of the genes that were 

misclassified to their own clusters for the case with true number of clusters (4). For instance, 

there were n out of N genes that were not successfully classified to their correct clusters for the 

four-clusters scenario. The MR was calculated using the formula: 𝑀𝑅 =
𝑛

𝑁
× 100%. The 

accurate number of clusters for the algorithm was defined as the number of times that the 

selection criteria correctly identified the true number of clusters as the optimal number of 

clusters using the residuals of the fitted linear model. 

4.3. Normal Distribution 

4.3.1. Misclassified Rate Comparison 

Simulation data set 1 was generated with different values of the standard deviation for 

𝑖𝑗𝑝 to check the performance of the BSP algorithm. The error terms were assumed to follow a 

normal distribution, 𝑖𝑗𝑝~𝑁(0,2). The values of  ranged from 0.1 to 1.5 increasing by 0.1. 

For each case of , BSP and K-means were run 20 times to check the consistency of their results. 

As mentioned in the previous section, the 2,000 genes were generated in each case which belong 

to four clusters. Figure 4.2 shows the MR comparison between BSP and K-means. Detailed MR 

of BSP and K-means are showed in Appendix A.1 and A.2, respectively. 

Based on the figure, it’s clear that the results of BSP were more stable with small values 

of  compared to those of K-means. For the first four cases, BSP almost successfully identified 

the true cluster of all genes for the 20 runs with the MRs less than 5%. The MR curve for BSP 

increased as standard deviation increased. As  = 1.5, the MR was approximately 30%. The 
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MR curve for K-means started at 17%, decreasing to near 0% and then increased as variance 

increased. For K-means, when  > 1.3, MR increased to over 20%.  

 

Figure 4.2. The Misclassified Rate Comparison between Boundary Shift Partition and 

Hartigan-Wong’s K-means for Normal Distribution. Data shown as mean MR ± SE of 20 runs 

with different standard deviations. X-axis depicts standard deviation and y-axis represents MR. 

BSP: black solid line; K-means: red dashed line. 

The bars on the plot represent the standard error for each case of . The standard errors 

of the K-means algorithm for the first four cases were very large, probably due to the limited 

number of starting point for the K-means function in R. The K-means algorithm didn’t find the 

global minimum in these cases. For the  values between 0.6 to 1.4, the performance of BSP 

and K-means were almost identical. As  increased, the accuracy of BSP was a little bit higher 

than K-means. Overall, the BSP algorithm was more reliable to identify the true clusters of the 

genes than the K-means method, especially in the cases with smaller values of .  

After obtaining the classification results of BSP and K-means for simulation data set 1, 

the residuals of the fitted linear model were calculated for both methods. The number of DMGs 
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for each cluster was identified based on the t-test of the residuals. The level of significance was 

chosen to be 0.5. The results for the number of DMGs are shown in Appendix A.3 and A.4 for 

BSP and K-means, respectively. 

Due to the high MRs of the K-means in the first four cases, the numbers of DMGs for the 

high MR runs were much higher than the runs with lower MRs. For example, as MR increased 

from 0% to 23.5% and 24.9%, the number of DMGs increased from 14 to 972 and 1033 for the 

first case of K-means with  = 0.1 (Details shown in Appendix A.2 and A.4). After the first 

four cases, BSP and K-means had similar numbers of DMGs for different  cases. Figure 4.3 

shows the plot comparison between BSP and K-means. 

 

Figure 4.3. The Number of Differentially Measured Genes Comparison between Boundary Shift 

Partition and Hartigan-Wong’s K-means for Normal Distribution. Data shown as mean number 

of DMGs ± SE of 20 runs with different standard deviations. X-axis depicts standard deviation 

and y-axis represents the number of DMGs. BSP: black solid line; K-means: red dashed line. 
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Similar to the results of MR, the standard errors of the K-means method for the first four 

 values were very high compared to the rest of the results. The number of DMGs for K-means 

started around 700, and as  increased, the number of DMGs decreased to close to 0. The 

number of DMGs for the BSP algorithm was very stable, which was approximately 0. 

4.3.2. The Accurate Number of Clusters Comparison 

The selection criteria was applied to the 15 cases of  (simulation data set 1) to find out 

the optimal number of clusters in each case. Appendix A.5 and A.6 show the selection criteria 

accuracy levels of BSP and K-means, respectively, in which 1 means the true number of clusters 

were correctly identified in that run and 0 means four-clusters was mis-identified as the optimal. 

Figure 4.4 shows selection criteria accuracy for BSP and K-means. 

 

Figure 4.4. The Selection Criteria Accuracy Comparison between Boundary Shift Partition and 

Hartigan-Wong’s K-means for Normal Distribution. Data shown as mean accuracy ± SE of 20 

runs with different standard deviations. X-axis depicts standard deviation and y-axis represents 

the accuracy. BSP: black solid line; K-means: red dashed line. 
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A high level of variance of the optimal number of clusters accuracy for both BSP and 

K-means was found. For BSP, the selection criteria identified the true number of clusters for the 

first four cases with over 90% accuracy. In comparison, the accuracies for the same first four 

case results of K-means were much lower, which might be due to the high MRs of K-means. For 

the remaining cases, the selection criteria correctly identified the real number of clusters for 

cases with  = 0.7, 1.0, and 1.3 of the BSP results, as well as  =

0.7, 0.8, 0.9, 1.0, 1.1, 1.3, and 1.4 of the K-means results. The selection criteria did not work 

well for the remaining cases. For instance, the selection criteria could not find four clusters as 

optimal in most of the 20 runs for case  = 1.1 and 1.2 of the BSP results. An indistinguishable 

situation also happened for K-means case  = 1.5, which the selection criteria accuracy was 0% 

since the minimum of the selection criteria appeared at three-clusters case.  

For both the BSP and K-means algorithms, the selection criteria correctly identified the 

optimal number of clusters in about half of the 15 different  cases. Both algorithms had cases 

that the selection criteria could not find the true number of clusters, at least in most of the 20 runs 

for these cases. 

4.4. Exponential Distribution 

4.4.1. Misclassified Rate Comparison 

Simulation data set 2 used exponential distribution to generate the standard deviations of 

𝑖𝑗𝑝, 𝑖𝑗𝑝~𝐸𝑥𝑝(𝜆). As shown in Table 4.2, the values of 𝜆 were calculated using the formula: 

𝜆 =
1

𝜎
. Since in exponential distribution, the mean and standard deviation are the same, the error 

terms were subtracted by 𝜎s to have a mean of 0. Similar to simulation data set 1, the values of 

 ranged from 0.1 to 1.5. Two-thousand genes were generated in each case which belong to four 

clusters. Figure 4.5 shows the MR comparison between BSP and K-means for exponential 
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distribution. More details on the MRs of BSP and K-means are shown in Appendix A.7 and A.8, 

respectively. 

As shown in Figure 4.5, the MR curve for BSP increased as standard deviation increased, 

which started at 0% for the first three cases. The MR curve for K-means started at 17%, 

decreasing to close to 2.5%, which was almost identical to the MR of BSP for  = 0.6. Then 

both MR curves shared a similar trend and increased as variance increased.  

 

Figure 4.5. The Misclassified Rate Comparison between Boundary Shift Partition and 

Hartigan-Wong’s K-means for Exponential Distribution. Data shown as mean MR ± SE of 20 

runs with different standard deviations. X-axis depicts standard deviation and y-axis represents 

MR. BSP: black solid line; K-means: red dashed line. 

The number of DMGs was identified using the t-test for the residuals of the of BSP and 

K-means methods. The level of significance was chosen to be 0.5. The results for the number of 

DMGs are shown in Appendix A.9 and A.10 for BSP and K-means for exponential distribution, 

respectively. Figure 4.6 shows the plot comparison between BSP and K-means. 
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Figure 4.6. The Number of Differentially Measured Genes Comparison between Boundary Shift 

Partition and Hartigan-Wong’s K-means for Exponential Distribution. Data shown as mean 

number of DMGs ± SE of 20 runs with different standard deviations. X-axis depicts standard 

deviation and y-axis represents the number of DMGs. BSP: black solid line; K-means: red 

dashed line. 

Based on Figure 4.6, the average numbers of DMGs of K-means for the first five cases 

were higher than those of BSP. The number of DMGs started around 700, and when  increased 

the number of DMGs decreased to close to 0 for  > 0.5. The number of DMGs for the BSP 

algorithm was very stable and close to 0.  

4.4.2. The Accurate Number of Clusters Comparison 

The selection criteria values were calculated for the 15 cases of  (simulation data set 2) 

to verify the optimal number of clusters. The selection criteria accuracy of BSP and K-means are 

shown in Appendix A.11 and A.12, respectively. Figure 4.7 shows selection criteria accuracy of 

BSP and K-means. 
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Figure 4.7. The Selection Criteria Accuracy Comparison between Boundary Shift Partition and 

Hartigan-Wong’s K-means for Exponential Distribution. Data shown as mean accuracy ± SE of 

20 runs with different standard deviations. X-axis depicts standard deviation and y-axis 

represents the accuracy. BSP: black solid line; K-means: red dashed line. 

In Figure 4.7, the selection criteria for BSP identified the true number of clusters for the 

first eight cases with 100% accuracy. While the accuracy for K-means ranged between 20% and 

90% for these cases. For the rest cases, the selection criteria correctly identified the real number 

of clusters for  = 1.0 of both BSP and K-means results. Similarly, both BSP and K-means had 

0% accuracy for cases with  = 1.2, 1.4, and 1.5. Moreover, K-means had three more cases of 

0% accuracy,  = 0.8, 0.9, and 1.1. In summary, BSP had higher accuracy using the selection 

criteria compared to K-means, even though they both had cases that the selection criteria could 

not find the true number of clusters for the 20 runs. 
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4.5. Gamma Distribution 

4.5.1. Misclassified Rate Comparison 

Simulation data set 3 generated the error terms (𝑖𝑗𝑝) of the linear model with different 

values of the standard deviation, same as previous distributions. The error terms were assumed to 

follow a gamma distribution, 𝑖𝑗𝑝~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽). The shape and scale parameters, 𝛼 and 𝛽, 

were calculated using the formulas: 𝛼 =
𝜇2

𝜎2 and 𝛽 =
𝜎2

𝜇
, respectively. The values of  ranged 

from 0.1 to 1.5 increasing by 0.1. For each case of , BSP and K-means were run 20 times for 

the 2,000 genes. Figure 4.8 shows the MR comparison between BSP and K-means for gamma 

distribution. More details on the MR values of BSP and K-means are shown in Appendix A.13 

and A.14, respectively. 

As shown in Figure 4.8, BSP successfully identified the true cluster of all genes for the 

first three cases with 0% MR. After the first three cases, the MR curve for BSP increased as 

standard deviation increased. When  = 1.5, the MR of BSP was approximately 25%. The MR 

curve for K-means started around 17%, it decreased for the first six cases to close to 0% and 

increased in the remaining cases as variance increased. The standard errors of MR for the 

K-means algorithm in the first five cases were approximately 2.5%, which were much larger than 

the rest of the cases.  
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Figure 4.8. The Misclassified Rate Comparison between Boundary Shift Partition and 

Hartigan-Wong’s K-means for Gamma Distribution. Data shown as mean MR ± SE of 20 runs 

with different standard deviations. X-axis depicts standard deviation and y-axis represents MR. 

BSP: black solid line; K-means: red dashed line. 

The number of DMGs were calculated for both the BSP and K-means classifications, 

which are shown in Appendix A.15 and A.16 for BSP and K-means, respectively. The plot 

comparison between BSP and K-means for gamma distribution is shown in Figure 4.9. 

The number of DMGs for the BSP algorithm was close to 0 for all the 15 cases. While the 

number of DMGs for K-means started around 750, and as  increased the number of DMGs 

decreased to close to 0 at  = 0.6. Then for the remaining cases, the number of DMGs curves 

for both BSP and K-means had a similar trend.  
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Figure 4.9. The Number of Differentially Measured Genes Comparison between Boundary Shift 

Partition and Hartigan-Wong’s K-means for Gamma Distribution. Data shown as mean number 

of DMGs ± SE of 20 runs with different standard deviations. X-axis depicts standard deviation 

and y-axis represents the number of DMGs. BSP: black solid line; K-means: red dashed line. 

4.5.2. The Accurate Number of Clusters Comparison 

The accurate number of clusters were also calculated for gamma distribution to verify the 

selection criteria accuracy for each case. Appendix A.17 and A.18 show the selection criteria 

accuracy for BSP and K-means, respectively. The plot of selection criteria accuracy for BSP and 

K-means of gamma distribution is in Figure 4.10. 
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Figure 4.10. The Selection Criteria Accuracy Comparison between Boundary Shift Partition and 

Hartigan-Wong’s K-means for Gamma Distribution. Data shown as mean accuracy ± SE of 20 

runs with different standard deviations. X-axis depicts standard deviation and y-axis represents 

the accuracy. BSP: black solid line; K-means: red dashed line. 

In Figure 4.10, the selection criteria accuracy varied greatly for both the BSP and 

K-means algorithms, ranging between 0% to 100%. For BSP, the selection criteria identified the 

true number of clusters for the first eight cases, as well as the cases of  = 1.0 and 1.1, with 100% 

accuracy. On the other hand, the selection criteria only correctly identified the true number of 

clusters for two cases ( = 0.7 and 1.4) for K-means results. For the remaining cases, the 

selection criteria accuracies of K-means were lower than those of BSP except for  = 1.2. 

Overall, the accurate number of clusters was correctly identified in more cases for the BSP 

classification than that for the K-means classification. And the selection criteria accuracy of BSP 

had relatively smaller standard errors compared to those of K-means. 
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4.6. Gaussian Mixture Distribution 

4.6.1. Misclassified Rate Comparison 

Simulation data set 4 assumed the error terms follow a gaussian mixture distribution: 

𝑖𝑗𝑝~𝑁(𝜇𝑧 ,𝑧
2), where 𝜇𝑧 = (0, 𝜇), 𝑧 = (𝜎, 𝜎), and 𝑤𝑧 = (0.5, 0.5). The values of  were 

in the range between 0.1 and 1.5. The error terms were subtracted by 
𝜇

2
 to make the means 

shifted to 0. Both BSP and K-means run 20 times for each case of . As mentioned in the 

previous section, the true number of clusters for the simulation data was four. Figure 4.11 shows 

the MR comparison between BSP and K-means for gaussian mixture distribution. Individual MR 

values of the 15 cases for BSP and K-means are showed in Appendix A.19 and A.120, 

respectively. 

In Figure 4.11, the MR results of BSP were more stable compared to those of K-means, 

especially for small values of . The MR for BSP started at 0% for the first three cases and 

gradually increased to more than 30% at 𝜎 = 1.5. The MR curve for K-means decreased for the 

first five cases from about 17% to 0% and then increased as variance increased.  
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Figure 4.11. The Misclassified Rate Comparison between Boundary Shift Partition and 

Hartigan-Wong’s K-means for Gaussian Mixture Distribution. Data shown as mean MR ± SE of 

20 runs with different standard deviations. X-axis depicts standard deviation and y-axis 

represents MR. BSP: black solid line; K-means: red dashed line. 

After receiving the classification results of BSP and K-means for simulation data set 4, 

the residuals of the fitted linear model were calculated for both methods. The number of DMGs 

was identified based on the t-test of the residuals with the level of significance as 0.5. The results 

for the number of DMGs are shown in Appendix A.21 and A.22 for BSP and K-means, 

respectively. Figure 4.12 shows the plot comparison of the number of DMGs between BSP and 

K-means for gaussian mixture distribution. 
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Figure 4.12. The Number of Differentially Measured Genes Comparison between Boundary Shift 

Partition and Hartigan-Wong’s K-means for Gaussian Mixture Distribution. Data shown as Mean 

number of DMGs ± SE of 20 runs with different standard deviations. X-axis depicts standard 

deviation and y-axis represents the number of DMGs. BSP: black solid line; K-means: red 

dashed line. 

Like the results of MR, the standard errors of the number of DMGs for the K-means 

method were very high in the first four cases compared to the rest of the cases. The number of 

DEGs for K-means were over 700 in the first case, and as  increased the number of DMGs 

decreased to close to 0 after the fifth case. The number of DMGs for BSP algorithm was much 

stable and varied around 0.   

4.6.2. The Accurate Number of Clusters Comparison 

After obtaining the number of DMGs for the 15 cases of , the selection criteria were 

used to verify the optimal number of clusters. The selection criteria accuracy of gaussian mixture 
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distribution are shown in Appendix A.23 and A.24 for BSP and K-means, respectively. The plot 

comparison of the accuracy for BSP and K-means is shown in Figure 4.13. 

 

Figure 4.13. The Selection Criteria Accuracy Comparison between Boundary Shift Partition and 

Hartigan-Wong’s K-means for Gaussian Mixture Distribution. Data shown as mean accuracy ± 

SE of 20 runs with different standard deviations. X-axis depicts standard deviation and y-axis 

represents the accuracy. BSP: black solid line; K-means: red dashed line. 

For BSP, the selection criteria had an accuracy over 60% in 12 out of 15 cases. While for 

K-means, only 9 out of 15 cases had accuracy more than 60%. The selection criteria correctly 

identified the real number of clusters five times and six times for BSP and K-means, respectively. 

K-means had one more case (2) with 0% accuracy than the cases of BSP (1). 
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4.7. Beta Distribution 

4.7.1. Misclassified Rate Comparison 

The beta distribution was used to generate the simulation data set 5. The values of the 

standard deviation for 𝑖𝑗𝑝 ranged from 0.1 to 0.5 due to the parameters’ boundaries of beta 

distribution. The error terms of the expression values for the 2,000 genes were assumed to follow 

a beta distribution: 𝑖𝑗𝑝~𝑏𝑒𝑡𝑎(𝛼, 𝛽), where  𝛼 = (
1−𝜇

𝜎2 −
1

𝜇
) and 𝛽 = 𝛼 (

1

𝜇
− 1). Then the 

mean values of the errors were subtracted from the error terms. For each case of , BSP and 

K-means were run 20 times to check the consistency of their results. Figure 4.14 shows the MR 

comparison between BSP and K-means for beta distribution. Detailed MR of BSP and K-means 

are showed in Appendix A.25 and A.26, respectively. 

 

Figure 4.14. The Misclassified Rate Comparison between Boundary Shift Partition and 

Hartigan-Wong’s K-means for Beta Distribution. Data shown as mean MR ± SE of 20 runs with 

different standard deviations. X-axis depicts standard deviation and y-axis represents MR. BSP: 

black solid line; K-means: red dashed line. 
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The residuals of fitted linear model were used to calculate the number of DMGs, which 

are shown in Appendix A.27 and A.28 for BSP and K-means, respectively. Figure 4.15 shows the 

plot comparison between BSP and K-means for beta distribution. 

 

Figure 4.15. The Number of Differentially Measured Genes Comparison between Boundary Shift 

Partition and Hartigan-Wong’s K-means for Beta Distribution. Data shown as mean number of 

DMGs ± SE of 20 runs with different standard deviations. X-axis depicts standard deviation and 

y-axis represents the number of DMGs. BSP: black solid line; K-means: red dashed line. 

Similar to the results of MR, the number of DMGs for BSP was varied around 0. And the 

number of DMGs for K-means had a decreasing trend started at approximately 700 to about 100.  

4.7.2. The Accurate Number of Clusters Comparison 

The selection criteria accuracies were also calculated for the 15 cases of , which are 

shown in Appendix A.29 and A.30 for BSP and K-means, respectively. Figure 4.16 shows 

selection criteria accuracy of BSP and K-means for the five cases of beta distribution. 
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Figure 4.16. The Selection Criteria Accuracy Comparison between Boundary Shift Partition and 

Hartigan-Wong’s K-means for Beta Distribution. Data shown as mean accuracy ± SE of 20 runs 

with different standard deviations. X-axis depicts standard deviation and y-axis represents the 

accuracy. BSP: black solid line; K-means: red dashed line. 

Based on Figure 4.16, the selection criteria identified the true number of clusters for BSP 

with 100% accuracy in all five cases. In comparison, the selection criteria accuracies were below 

80% for the K-means algorithm. The results indicated that the BSP classification was more stable 

than K-means on identifying the true number of clusters using the selection criteria, at least with 

small values of the standard deviation for the error terms.   

4.8. Algorithm Time Complexity 

Regarding the computational complexity for the BSP algorithm, the running time is 

𝑂(𝑁𝐾 − 𝐾2) ≈ 𝑂(𝑁𝐾) for the worst scenario, where K is the number of clusters and N is the 

total number of genes in the data set. Since in reality, K is also unknown. The BSP algorithm 
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considers a range of possible K values, which is between 2 and 20 in this research. Let Қ denotes 

the maximum number of clusters tested in BSP. In another word, the BSP algorithm would find 

the partitions for 2 to up to Қ clusters. The running time for this process would be 𝑂(𝑁Қ2 −

Қ3) ≈ 𝑂(𝑁Қ2).  

Another simulation data set 6 was generated to study the computational time of the 

algorithm. The number of genes in each case was 1,000, 2,500, 5,000, 7,500, 10,000, 12,500, 

15,000, 20,000, 25,000, and 30,000. Similar with the previous simulation data, there were four 

clusters for each scenario and the standard deviation of the residuals () was chosen to be 0.5. 

The algorithm searched the optimal number of cluster in the range of 2 clusters to 20 clusters. 

The stop criteria of the algorithm was that the sum of the standard deviations did not change in 

the last 10 iterations. Figure 4.17 shows the relationship between computational time and the 

gene size. 

 

Figure 4.17. The Relationship Between Computational Time and the Gene Size. X-axis depicts 

the number of genes and y-axis represents the computational time in seconds. 
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As shown is Figure 4.17, the computation time increased when the number of genes in 

the data set increased. On average, the algorithm took 3437.44 seconds to classify 30,000 genes 

into 2 clusters to 20 clusters. One thing to be noticed, the computational time would vary for 

each run since the stop criteria was that the minimum of the sum of the standard deviations does 

not change in last 10 iterations. Figure 4.18 shows the computational time of one run for 

different number of clusters with the simulation data of 15,000 genes. 

 

Figure 4.18. The Computational Time of Different Number of Clusters for 15,000 Genes. X-axis 

depicts the number of clusters and y-axis represents the computational time in seconds.  

In Figure 4.18, the computational time changed between approximately 30 seconds and 

100 seconds. There was a slightly decreasing trend for the computational time with the number 

of cluster increased, which indicated that the computational time had a negative relationship with 

the number of clusters.  

Since normality is one of the assumptions for the residuals of the linear model, simulation 

data set 1 was generated using normal distribution. For simulation data set 1, the BSP algorithm 
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successfully classified the 2,000 genes into their true clusters with less than 5% mean MRs 

where small standard deviations (𝜎 ≤ 0.8) were used, shown in Figure 4.2. There was clearly an 

increasing trend of the MR curve for BSP as the standard deviation increased. On the other hand, 

the MR curve for K-means started at a very high average MR (approximately 17%), and it 

decreased to close to 0% at 𝜎 = 0.5 then increased as 𝜎 increased.  

The number of DMGs for the BSP algorithm was very stable with all the DMGs near 0 

for the 15 cases of normal distribution (Figure 4.3). The DMGs curve for K-means started at 

about 700, decreased in the first five cases and then shared a similar trend for the DMGs curve of 

BSP.  

The selection criteria accuracy for normal distribution varied greatly for both BSP and 

K-means, shown in Figure 4.4. The accurate number of clusters identified using the selection 

criteria for BSP in the first four cases was very high (over 95%) compared to those of K-means. 

As standard deviation increased, the selection criteria accuracy varied in the range of 0% to 100% 

for both BSP and K-means. Thus, the selection criteria worked well for the BSP classification 

with small values of standard deviation (𝜎 ≤ 0.4).  

Even though normality is one of the assumptions for the linear model, the residuals are 

not always guaranteed to follow a normal distribution, which means the assumption might be 

invalid. Four other distributions, Exponential distribution, Gamma distribution, Gaussian 

Mixture distribution, and Beta distribution, were chosen to check the robustness of the BSP 

algorithm when normality was not valid. These four distributions shared similar patterns of the 

normal distribution for both the BSP and K-means classification methods. It is safe to say that 

performance of BSP is very stable with different underlying distributions.  
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CHAPTER 5. APPLICATION TO THE EMBRYONIC HEART DATA 

5.1. Wild Type Embryonic Heart Data 

The BSP algorithm was applied to the transformed embryonic heart data set with six 

samples consisting of 12,812 genes each. The four microarray samples used the logarithm 

transformation and the two RNA-seq samples used the cubic root transformations. Figure 5.1 

shows the scatterplots of microarray and RNA-seq before and after transformation.  

 

Figure 5.1. The Scatterplots of Microarray and RNA-seq Before and After Transformation. The 

plot on the left was the scatterplot of microarray and RNA-seq before transformation. The plot 

on the right was the scatterplot after transformation. 

The BSP algorithm stop criteria was that the minimum of the sum of the standard 

deviations did not change in last 1,000 iterations. The increase on the number of stop iterations 

compared to the simulation analysis would help the BSP algorithm to reach the global minimum. 

The regression model was fitted using the algorithm results with the technology effects and gene 

effects.  

To fit the linear model, the expression values were treated as the dependent variable and 

the gene effect and technology effect were treated as the independent variables. Because the 
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technology had two levels, only 1 indicator variable was used for the technology effect. The 

RNA-seq technology was used as the baseline. 

Technology = {
0, 𝑖𝑓 𝑇𝑒𝑐ℎ = 𝑅𝑁𝐴𝑠𝑒𝑞
1,   𝑖𝑓 𝑇𝑒𝑐ℎ = 𝑀𝑖𝑐𝑟𝑜𝑎𝑟𝑟𝑎𝑦

 (5.1) 

Thus, the simple linear model fitted was in this form: 

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑖𝑗𝑝 = 𝑖 + 
𝑗
𝑇𝑒𝑐ℎ + 𝑖𝑗𝑝 (5.2) 

The residual for each observation was calculated to identify the number of the DMGs for 

each cluster using the t-test. The optimal number of clusters was chosen as the one that 

minimized the selection criteria: 

𝑙𝑜𝑔2 (
#𝐷𝑀𝐺𝑠 + 1

𝑁
) + 𝑘 (5.3) 

The algorithm detected five clusters to be the optimal number of clusters for the 

embryonic heart data set, shown in Table 5.1. The corresponding number of the DMGs was 471 

using 0.05 as the significant level, which was about 3.676% (471/12,812) of the genes in the data 

set. All the DMGs are listed in Appendix B. Since the percentage of the DMGs was less than 5%, 

the type I error rate, which is usually chosen as 0.5, was well controlled.  
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Table 5.1. The Number of DMGs and Criteria for the Embryonic Heart Data Set  

Cluster # of DMGs Criteria 

2 5052 0.657716 
3 2211 0.465928 
4 956 0.257167 
5 471 0.237435 
6 391 0.969502 
7 372 1.897824 
8 299 2.583611 
9 293 3.554464 
10 297 4.57396 
11 302 5.597966 
12 288 6.529718 
13 278 7.478913 
14 290 8.539667 
15 283 9.504539 
16 249 10.32058 
17 263 11.39919 
18 240 12.26768 
19 270 13.43694 
20 255 14.35479 

 

The summary of the probe alignments for the DMGs with their clusters is shown in Table 

5.2. 30.79% (145/471) of the genes among all the DMGs had either multiple alignments or no 

alignment. Compared to the values in Table 2.14, the total percentage of the genes with multiple 

alignments and NAs in the DMGs was much higher than that of genes for the whole data set. For 

genes with multiple alignments, the percentage increased from 6.45% (826/12,812) in the whole 

data set (shown in Table 2.14) to 21.66% (102/471) in DMGs. But the percentage of genes with 

NAs decreased from 12.78% (1,638/12,812, shown in Table 2.14) to 9.13% (43/471) in the 
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DMGs. Therefore, multiple alignments (> 30%) is one of the reasons for the genes to be 

identified as differentially expressed. 

Table 5.2. Probe Alignments Summary for DMGs 

 # of Alignments DMGs 

Multiple Alignments 

[2,5] 80 

(5,10] 14 

(10,∞) 8 

NAs 0 43 

Total 145 

 

Table 5.3 shows the DMGs probe alignments based on the five clusters. All the DMGs 

were either in cluster 1 or in cluster 5, which means that these DMGs were most likely to have 

extreme values. The majority of the DMGs (77.27%) in cluster 1 did not have alignments (NAs). 

While 92.09% (92/101) of the DMGs in cluster 5 had at least two alignments.  

Table 5.3. Probe Alignments Summary for DMGs by Clusters 

 
# of Alignments Cluster 1 Cluster 5 

Multiple Alignments 

[2,5] 8 72 

(5,10] 2 12 

(10,∞) 0 8 

NAs 0 34 9 

Total 44 101 

 

5.2. 𝑻𝒃𝒙𝟓+/− Embryonic Heart Data 

Tbx5 belongs to the T-box transcription factor family and involves in the regulation of 

cardiac and forelimb developmental processes. Mutations of Tbx5 cause Holt–Oram syndrome 

(HOS; OMIM142900) in humans (Li, et al., 1997; Bruneau, et al., 2001). HOS is a rare penetrant 

disorder (affects ∼1 in 100,000 livebirths) which may result in congenital heart disease including 
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abnormal heart rates and arrhythmias (Basson, et al., 1999; Petal, Silcock, McMullan, Brueton, 

& Cox, 2012). 

Four samples of the Tbx5 embryonic heart data were obtained from Tbx5 heterozygous 

mouse line. The Affymetrix microarray technology was used to measure the expression values of 

Tbx5 samples. Same as the four wild type microarray samples, the expression values of the Tbx5 

samples were logarithm transformed to prevent the magnitude problem between the microarray 

and RNA-seq technology. Then the expression values of the 12,812 selected genes from the six 

wild type samples were combined with those from the four Tbx5 microarray samples to study the 

DEGs between the two genotypes. 

According to the BSP results of the wild type embryonic heart data, shown in Table 41, 

the optimal number of cluster was five. The same parameter estimations of the linear model were 

used to calculate the residuals of the genes for the Tbx5 samples. The DEGs were defined to be 

the genes that had the Benjamini and Yekutieli’s (BY) adjusted (Benjamini & Yekutieli, 2001) 

p-value less than 0.05 in the two-sample t-test between Tbx5 samples and wild type samples. 

There were 584 DEGs found between Tbx5 samples and wild type samples. The probe 

alignments for these 584 genes by their clusters are shown in Table 5.4. 

Table 5.4. Probe Alignments Summary for DEGs between Genotypes by Clusters 

 # of Alignments Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 

 

Multiple Alignments 

[2,5] 5 8 4 5 8 

(5,10] 1 1 0 1 1 

(10,∞) 0 0 0 0 0 

NAs 0 18 24 27 15 9 

Total 24 33 31 21 18 

 

The number of the DEGs for the five clusters was 68, 116, 164, 136, and 100, 

respectively. The percentage of the NAs in cluster 1 to cluster 5 were ranging from 50% to about 
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90% (75.00%, 72.73%, 87.10%, 71.43%, 50.23%, respectively). The percentage of the multiple 

alignments and NAs varied from 15% to 35% for these five clusters. 

A gene co-expression network analysis was conducted using the GeneNet (Schaefer, 

Opgen-Rhein, & Strimmer, 2015) package in R software. The residual matrix for the 584 DEGs 

was used as input to calculate the partial correlation in the Graphical Gaussian Models. Among 

these DEGs, Tbx5 co-expressed with four genes, Osr1, Adamts1, Wnt4, and Lhx1. A gene 

co-expression network among these four genes was generated using GeneMANIA (Warde-Farley, 

et al., 2010) website, shown in Figure 5.2.  

 

Figure 5.2. Gene Co-expression Network of Tbx5, Osr1, Adamts1, Wnt4, and Lhx1. 



 

79 
 

In conclusion, the BSP algorithm was applied to the transformed embryonic heart data set 

with 12,812 genes of the six wild type samples. 3.676% (471/12,812) of the genes in the mice 

heart data set were identified to be differentially measured between the microarray and RNA-seq 

technologies by this method. Since all the samples in this data set were biological replicates, it 

assumed that the expression levels for these 12,812 genes among the 6 samples were the same. 

The percentage of the DMGs (3.676%) was the type I error rate for the BSP algorithm, which 

was lower than the commonly used cutoff 0.5. In another word, the type I error rate was well 

controlled by the BSP classification method.  

The results of BSP algorithm were also used to identify the DEGs between the four Tbx5 

samples and the six wild type samples. 4.56% (584/12,812) of the genes was identified as 

differentially expressed between these two genotypes. As expected, Tbx5 was one of the DEGs 

among these 584 genes. Gata4 and Tbx5 are the two transcription factors that interact with each 

other and play important roles in heart development (Bruneau, et al., 2001; Moskowitz, et al., 

2007; McCulley & Black, 2012). The BSP algorithm successfully listed Gata4 as the one of the 

DEGs using 0.05 as the significant levels for t-test between Tbx5 samples and wild type samples. 

Gata4 was down-regulated in the Tbx5 samples due to the down-expression of Tbx5 gene. 
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CHAPTER 6. DISCUSSION 

Microarray and RNA-seq are two commonly used high-throughput technologies for 

transcriptome analysis. Microarray is relatively inexpensive, and the data analysis is relatively 

easy with the availability of many user-friendly software tools. Nevertheless, microarray 

technology has several limitations, such as high background noise level and inaccuracy of probe 

detection. On the other hand, RNA-seq is a newer technology with a higher level of sensitivity 

and specificity. However, due to the large amount of raw sequencing data obtained from 

RNA-seq, the preprocessing and analysis of RNA-seq data is time consuming and requires 

researchers proficient with have bioinformatics knowledge and programming languages. Most of 

the software designed for RNA-seq are Linux-based with scripts written in different 

programming languages. Even though there are plenty of software packages available for 

RNA-seq data analysis, there is not yet one standard protocol or pipeline. With all the advantages 

and disadvantages for microarray and RNA-seq, data integration would help to reduce the 

experimental cost and increase the statistical power by increasing the sample size. The goal of 

this research is to find an efficient way to combine the data sets from these two technologies and 

identify the DEGs using the combined data.  

The data integration between microarray and RNA-seq is more challenging than 

integration within technologies. There are two methods, which we are aware of, that were 

proposed to solve this kind of problem: Training Distribution Matching (TDM) approach 

(Thompson, Tan, & Greene, 2016) and a rank-based semi-parametric model (Lyu & Li, 2016). 

The TDM normalizes the RNA-seq data using quantile information to ensure a same distribution 

between RNA-seq and microarray data. The TDM shows a similar performance as quantile 

normalization in both simulated and real data. The TDM has a higher accuracy than quantile 
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normalization in the cases with higher noise level. One of the downsides of TDM is that it 

assumes the discrepancy between microarray and RNA-seq is the same for all the genes. The 

rank-based semi-parametric model classifies the gene expression levels into three categories, 

non-DEGs, up-regulated DEGs, and down-regulated DEGs, using an extended copula mixture 

model. The rank-based semi-parametric model has a better performance on DEGs detection 

compared to other methods including DEseq and eBays. But the rank-based semi-parametric 

model has less statistical power compared with parametric models. Both the TMD and 

rank-based semi-parametric model fail to consider the variable discrepancy among the subsets of 

genes, which is confounding within the data set. 

By comparison, the BSP removed the batch effects from the integrated data set by 

removing the technology effects in the linear model. Other than removing batch effect, there are 

more advantages for BSP algorithm. The performance of the BSP algorithm was consistent in the 

simulation data of the five different underlying distributions. The BSP algorithm correctly 

identified the true clusters of greater than 95% genes in almost all the cases with standard 

deviations ≤ 0.6 among the five distributions, which indicates that the BSP algorithm is robust 

for various distributions.  

Additionally, BSP results had a higher accuracy than the results of K-means in the cases 

of small standard deviations. Moreover, the number of DMGs identified by BSP were close to 

type I error rate 5% in all cases with different values of 𝜎. Since in the simulation data, all the 

genes were generated under the same condition among samples, there were no DMGs 

theoretically. Therefore, any DMGs in simulation data are false positive, which is a component 

of the type I error. This result indicated that the type I error rate was well controlled by our 

method. 
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Since the BSP algorithm used the sorted difference values of the genes as input, it highly 

reduced the computational complexity. The computational time for BSP was 𝑂(𝑁𝐾 − 𝐾2) ≈

𝑂(𝑁𝐾) for the worst scenario, which was linear to the number of genes in the data set. 

Moreover, the computational time had a slightly decreasing trend as the number of cluster 

increasing. Our simulation study validated the theoretical results of the time complexity. 

Therefore, BSP is an efficient algorithm for data integration between microarray and RNA-seq. 

However, there are some limitations to the BSP algorithm. First of all, the BSP might be 

trapped in a local minimum in some of the runs, as shown in some of the simulation results. One 

possible solution is to increase the number of iterations in the BSP stop criteria, and it is always 

recommended to use a large number of iterations in the data sets with large numbers of genes. 

But the computational time would be increased accordingly. Another solution is to generate more 

optimal initial partitions with other conventional clustering algorithms. 

Secondly, we have only applied the BSP algorithm to the complete randomized design, 

which is the simplest experimental design. We expect the BSP algorithm can be applied to more 

complicated design when the corresponding linear model is fitted to the data. A related question 

is, can our method be used for the study where there are no matched samples between microarray 

and RNA-seq? Theoretically it is impossible to integrate non-matching data because the 

technology effect is confounded with the treatment effects. Nevertheless, it is feasible to use 

matched samples from a different study that uses the same microarray and RNA-seq platforms. 

Future studies will be devoted to implement the method for such non-matching scenario and to 

test the performance. 

Thirdly, the selection criteria for the optimal number of clusters was chosen to detect the 

“elbow point”. It worked well for BSP in the cases with small standard deviations. More 
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extensive simulation study should be conducted for validating the selection criteria. Future 

research need to be done for providing the theoretical proof of the selection criteria. 

When our method was used for comparing the gene expression profiles between wildtype 

and Tbx5+/- in embryonic mouse hearts, 584 genes have been found to be exponentially 

expressed. A number of the DEGs were known to be involved in heart development and their 

mutations induce congenital heart diseases. For instance, Osr1 gene was on the top DEGs that 

showed high partial correlation with Tbx5 in our analysis. The previous studies by our lab and 

other research groups have found that Osr1 is the downstream gene of Tbx5 and the loss of 

function of Osr1 induces atrial septal defects and out flow track abnormality (Xie, et al., 2012; 

Zhou, et al., 2015; Zhang, et al., 2016). 

In this study, we have developed the BSP algorithm for robustly, efficiently and 

accurately removing the technology effect between microarray and RNA-seq and thus provided 

integrative analysis of microarray and RNA-seq data. The simulation study and real data 

application showed that the proposed method achieved well controlled type I error rate and better 

performance than the conventional clustering method, K-means. This study provides researchers 

a novel and rigorous approach to combine microarray and RNA-seq data, for an increased power 

for the downstream statistical analysis.  
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Table A.1. The MR of BSP with Different  Values for Normal Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
0.1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.642 0.000 0.000 0.000 0.000 0.000 

0.3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.4 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.000 

0.5 0.005 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.002 0.003 0.002 0.002 0.002 0.002 0.346 0.005 0.003 0.002 0.003 0.003 

0.6 0.015 0.015 0.016 0.015 0.014 0.015 0.015 0.015 0.015 0.016 0.014 0.015 0.015 0.015 0.016 0.015 0.015 0.015 0.016 0.015 

0.7 0.029 0.030 0.028 0.028 0.031 0.027 0.031 0.028 0.028 0.029 0.031 0.031 0.027 0.032 0.031 0.028 0.031 0.028 0.030 0.031 

0.8 0.048 0.048 0.048 0.049 0.048 0.048 0.048 0.053 0.048 0.048 0.049 0.047 0.049 0.048 0.056 0.048 0.049 0.048 0.047 0.049 

0.9 0.087 0.092 0.090 0.089 0.097 0.090 0.090 0.087 0.098 0.089 0.091 0.087 0.087 0.092 0.087 0.091 0.095 0.091 0.091 0.093 

1.0 0.118 0.114 0.108 0.107 0.108 0.109 0.112 0.110 0.108 0.114 0.121 0.132 0.109 0.106 0.109 0.112 0.109 0.124 0.111 0.115 

1.1 0.145 0.145 0.155 0.147 0.147 0.158 0.162 0.166 0.156 0.155 0.148 0.155 0.147 0.145 0.154 0.149 0.159 0.146 0.146 0.145 

1.2 0.181 0.181 0.179 0.178 0.202 0.180 0.178 0.184 0.178 0.180 0.180 0.187 0.177 0.175 0.178 0.180 0.179 0.181 0.190 0.177 

1.3 0.197 0.211 0.190 0.217 0.192 0.208 0.198 0.204 0.189 0.192 0.193 0.192 0.192 0.189 0.192 0.199 0.233 0.190 0.190 0.192 

1.4 0.220 0.239 0.240 0.245 0.221 0.249 0.269 0.267 0.240 0.220 0.245 0.252 0.257 0.221 0.239 0.225 0.221 0.249 0.224 0.245 

1.5 0.304 0.283 0.293 0.276 0.283 0.247 0.315 0.310 0.243 0.331 0.305 0.288 0.313 0.312 0.310 0.283 0.315 0.317 0.352 0.276 
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Table A.2. The MR of K-means with Different  Values for Normal Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 0.235 0.250 0.000 0.250 0.235 0.000 0.235 0.235 0.000 0.235 0.000 0.250 0.250 0.235 0.250 0.235 0.235 0.235 0.250 0.000 

0.2 0.000 0.235 0.235 0.000 0.235 0.250 0.250 0.000 0.000 0.000 0.250 0.000 0.250 0.235 0.000 0.235 0.250 0.250 0.250 0.000 

0.3 0.000 0.000 0.000 0.000 0.000 0.235 0.000 0.000 0.250 0.235 0.000 0.000 0.000 0.235 0.000 0.000 0.000 0.000 0.250 0.000 

0.4 0.236 0.250 0.236 0.000 0.236 0.000 0.000 0.000 0.000 0.000 0.000 0.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.5 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 

0.6 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 

0.7 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 

0.8 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 

0.9 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 0.094 

1.0 0.107 0.106 0.106 0.107 0.107 0.107 0.106 0.107 0.107 0.107 0.107 0.106 0.106 0.106 0.106 0.106 0.107 0.106 0.106 0.106 

1.1 0.150 0.150 0.147 0.150 0.150 0.147 0.150 0.150 0.147 0.150 0.147 0.150 0.147 0.150 0.147 0.150 0.150 0.147 0.150 0.150 

1.2 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 0.176 

1.3 0.200 0.198 0.200 0.198 0.198 0.200 0.200 0.200 0.198 0.200 0.198 0.198 0.198 0.200 0.198 0.198 0.198 0.198 0.198 0.200 

1.4 0.231 0.232 0.232 0.232 0.231 0.231 0.232 0.232 0.231 0.232 0.231 0.232 0.231 0.231 0.232 0.232 0.231 0.231 0.231 0.232 

1.5 0.274 0.263 0.263 0.263 0.263 0.274 0.263 0.263 0.274 0.274 0.263 0.274 0.274 0.264 0.263 0.263 0.263 0.263 0.263 0.263 
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Table A.3. The Number of DMGs of BSP with Different  Values for Normal Distribution  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 

0.2 10 10 10 10 10 10 10 10 10 10 10 10 10 10 970 10 10 10 10 10 

0.3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 

0.4 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 

0.5 10 8 8 6 6 8 9 8 6 8 8 6 7 7 501 12 7 8 7 7 

0.6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.8 4 4 5 5 3 5 4 5 4 5 5 5 5 4 5 5 5 3 3 3 

0.9 2 2 2 2 3 2 1 2 1 1 1 1 2 1 2 1 1 1 2 4 

1.0 3 3 3 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 

1.1 3 3 3 5 3 3 2 7 5 5 3 5 3 3 3 3 3 3 3 3 

1.2 5 2 5 5 3 6 5 2 5 2 5 2 5 5 5 6 5 5 5 5 

1.3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

1.4 1 1 1 1 1 1 3 3 1 1 1 1 1 1 1 1 1 3 1 1 

1.5 2 2 2 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 
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Table A.4. The Number of DMGs of K-means with Different  Values for Normal Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 972 1033 14 1033 972 14 973 973 14 972 14 1036 1033 972 1033 974 974 973 1033 14 

0.2 10 974 974 10 970 1032 1032 10 10 10 1032 10 1034 970 10 974 1032 1032 1032 10 

0.3 7 7 7 7 7 951 7 7 1016 951 7 7 7 951 7 7 7 7 1016 7 

0.4 754 822 754 14 754 14 14 14 14 14 14 822 14 14 14 14 14 14 14 14 

0.5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

0.6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

0.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

1.1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

1.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

1.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1.5 2 1 1 1 1 2 1 1 2 2 1 2 2 2 1 1 1 1 1 1 
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Table A.5. The Accurate Number of Clusters of BSP with Different  Values for Normal Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 

0.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 

0.6 0 1 1 1 0 0 0 0 1 0 1 0 0 1 1 1 1 0 1 0 

0.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.8 1 1 1 1 1 1 1 0 0 0 1 1 0 1 0 0 1 1 1 1 

0.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 

1.1 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 

1.2 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 

1.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1.4 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 1 1 

1.5 0 0 0 1 0 1 0 0 1 0 0 1 1 1 1 1 1 1 0 1 
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Table A.6. The Accurate Number of Clusters of K-means with Different  Values for Normal Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 

0.2 1 0 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 

0.3 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 

0.4 0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 

0.5 1 0 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 

0.6 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 

0.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1.2 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 0 1 0 1 

1.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.7. The MR of BSP with Different  Values for Exponential Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
0.1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.4 0.003 0.005 0.004 0.003 0.004 0.003 0.003 0.003 0.004 0.004 0.004 0.004 0.003 0.004 0.003 0.004 0.003 0.004 0.005 0.003 

0.5 0.011 0.012 0.011 0.013 0.012 0.013 0.011 0.012 0.014 0.011 0.014 0.010 0.011 0.012 0.010 0.012 0.012 0.011 0.011 0.010 

0.6 0.021 0.023 0.022 0.022 0.023 0.023 0.021 0.021 0.021 0.021 0.023 0.021 0.023 0.022 0.022 0.022 0.021 0.021 0.022 0.022 

0.7 0.044 0.042 0.043 0.043 0.044 0.043 0.046 0.045 0.043 0.041 0.043 0.043 0.043 0.043 0.043 0.044 0.043 0.043 0.043 0.043 

0.8 0.052 0.052 0.052 0.055 0.054 0.056 0.051 0.051 0.052 0.052 0.053 0.054 0.053 0.052 0.053 0.052 0.052 0.052 0.052 0.055 

0.9 0.076 0.079 0.083 0.079 0.084 0.079 0.077 0.076 0.078 0.076 0.076 0.077 0.082 0.081 0.076 0.076 0.078 0.078 0.078 0.077 

1.0 0.112 0.122 0.114 0.117 0.116 0.113 0.115 0.129 0.114 0.124 0.117 0.118 0.115 0.117 0.119 0.111 0.114 0.129 0.118 0.115 

1.1 0.121 0.117 0.117 0.115 0.128 0.117 0.118 0.116 0.118 0.122 0.118 0.117 0.119 0.117 0.117 0.117 0.117 0.118 0.118 0.117 

1.2 0.149 0.153 0.146 0.151 0.149 0.148 0.150 0.153 0.150 0.152 0.150 0.152 0.152 0.152 0.155 0.149 0.146 0.152 0.151 0.150 

1.3 0.171 0.164 0.193 0.186 0.177 0.166 0.173 0.170 0.176 0.173 0.177 0.164 0.185 0.170 0.171 0.172 0.177 0.167 0.174 0.181 

1.4 0.199 0.191 0.190 0.197 0.198 0.197 0.200 0.197 0.211 0.200 0.199 0.201 0.199 0.196 0.198 0.198 0.191 0.201 0.199 0.205 

1.5 0.224 0.241 0.220 0.222 0.215 0.219 0.267 0.219 0.262 0.221 0.256 0.214 0.213 0.225 0.238 0.239 0.220 0.219 0.219 0.265 
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Table A.8. The MR of K-means with Different  Values for Exponential Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 0.235 0.250 0.000 0.250 0.235 0.000 0.235 0.235 0.000 0.235 0.000 0.250 0.250 0.235 0.250 0.235 0.235 0.235 0.250 0.000 

0.2 0.000 0.235 0.235 0.000 0.235 0.250 0.250 0.000 0.000 0.000 0.250 0.000 0.250 0.235 0.000 0.235 0.250 0.250 0.235 0.000 

0.3 0.000 0.000 0.000 0.000 0.000 0.235 0.000 0.000 0.250 0.235 0.000 0.000 0.000 0.235 0.000 0.000 0.000 0.000 0.250 0.000 

0.4 0.238 0.250 0.238 0.003 0.238 0.003 0.003 0.003 0.003 0.003 0.003 0.250 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 

0.5 0.010 0.010 0.010 0.242 0.010 0.010 0.010 0.253 0.010 0.010 0.010 0.010 0.242 0.010 0.010 0.010 0.242 0.010 0.010 0.010 

0.6 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 

0.7 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 

0.8 0.050 0.051 0.050 0.051 0.051 0.051 0.051 0.051 0.050 0.050 0.050 0.050 0.051 0.051 0.051 0.051 0.051 0.050 0.051 0.051 

0.9 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 0.077 

1.0 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 0.112 

1.1 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 0.120 

1.2 0.144 0.143 0.143 0.143 0.143 0.144 0.143 0.143 0.144 0.144 0.143 0.144 0.144 0.143 0.144 0.144 0.143 0.144 0.144 0.143 

1.3 0.163 0.166 0.163 0.166 0.166 0.163 0.163 0.163 0.166 0.163 0.166 0.166 0.166 0.163 0.166 0.166 0.166 0.166 0.166 0.163 

1.4 0.191 0.190 0.190 0.190 0.192 0.192 0.190 0.190 0.192 0.190 0.192 0.190 0.192 0.190 0.190 0.190 0.192 0.192 0.192 0.190 

1.5 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 0.221 
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Table A.9. The Number of DMGs of BSP with Different  Values for Exponential Distribution  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 

0.2 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 

0.3 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 

0.4 27 28 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 27 28 27 

0.5 30 32 31 34 32 35 30 33 36 30 34 31 30 32 30 31 32 30 34 30 

0.6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 

0.7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 

0.8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 

0.9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

1.0 3 4 3 3 3 3 3 4 3 4 3 3 3 3 4 3 3 4 3 3 

1.1 9 8 8 8 10 8 8 8 8 9 8 8 8 8 8 8 8 8 8 8 

1.2 9 9 9 10 9 9 9 10 9 10 10 9 10 10 10 10 8 9 10 10 

1.3 4 1 6 4 4 3 3 4 4 4 4 1 4 4 4 4 4 3 4 4 

1.4 7 7 7 7 7 7 7 7 7 6 7 7 7 7 7 6 6 6 7 7 

1.5 7 7 7 7 7 7 7 7 7 7 7 7 7 8 7 7 7 7 7 7 
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Table A.10. The Number of DMGs of K-means with Different  Values for Exponential Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 975 1036 17 1036 973 17 973 973 17 973 17 1037 1036 973 1036 973 973 973 1036 17 

0.2 23 979 979 23 969 1040 1040 23 23 23 1040 23 1039 969 23 976 1040 1040 979 23 

0.3 18 18 18 18 18 952 18 18 1024 952 18 18 18 952 18 18 18 18 1024 18 

0.4 825 848 825 27 825 27 27 27 27 27 27 848 27 27 27 27 27 27 27 27 

0.5 29 29 29 518 29 29 29 570 29 29 29 29 518 29 29 29 518 29 29 29 

0.6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 

0.7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 

0.8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 

0.9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

1.1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 

1.2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 

1.3 2 1 2 1 1 2 2 2 1 2 1 1 1 2 1 1 1 1 1 2 

1.4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

1.5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
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Table A.11. The Accurate Number of Clusters of BSP with Different  Values for Exponential Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.9 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1.1 0 0 1 1 0 0 1 1 0 0 1 1 1 1 0 1 1 1 0 1 

1.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1.3 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 

1.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.12. The Accurate Number of Clusters of K-means with Different  Values for Exponential Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 

0.2 1 0 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 

0.3 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 

0.4 0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 

0.5 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0.6 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 

0.7 1 1 1 0 1 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 

0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1.3 0 1 0 1 1 0 0 0 1 0 1 1 1 0 1 1 1 1 1 0 

1.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.13. The MR of BSP with Different  Values for Gamma Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
0.1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.4 0.003 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.004 0.004 0.003 0.003 0.004 0.003 0.003 0.004 0.003 0.003 

0.5 0.009 0.009 0.009 0.008 0.008 0.007 0.007 0.008 0.009 0.008 0.007 0.008 0.008 0.007 0.008 0.008 0.008 0.009 0.008 0.007 

0.6 0.027 0.027 0.026 0.028 0.027 0.027 0.027 0.030 0.027 0.030 0.027 0.027 0.027 0.026 0.026 0.029 0.027 0.027 0.027 0.027 

0.7 0.038 0.038 0.038 0.038 0.038 0.038 0.038 0.042 0.037 0.038 0.041 0.038 0.038 0.039 0.038 0.038 0.038 0.038 0.038 0.041 

0.8 0.056 0.053 0.054 0.053 0.053 0.057 0.053 0.053 0.053 0.056 0.054 0.053 0.054 0.048 0.056 0.053 0.053 0.053 0.052 0.048 

0.9 0.083 0.079 0.079 0.078 0.080 0.078 0.078 0.079 0.079 0.078 0.078 0.078 0.079 0.080 0.081 0.078 0.080 0.081 0.079 0.079 

1.0 0.097 0.099 0.096 0.098 0.103 0.105 0.100 0.097 0.113 0.101 0.099 0.096 0.103 0.105 0.095 0.104 0.100 0.098 0.097 0.103 

1.1 0.117 0.119 0.116 0.117 0.115 0.119 0.117 0.117 0.117 0.121 0.116 0.117 0.121 0.119 0.119 0.124 0.118 0.119 0.121 0.116 

1.2 0.148 0.148 0.143 0.146 0.143 0.148 0.145 0.146 0.145 0.145 0.146 0.144 0.147 0.146 0.147 0.143 0.145 0.160 0.143 0.162 

1.3 0.178 0.174 0.177 0.176 0.178 0.177 0.177 0.175 0.176 0.183 0.176 0.183 0.177 0.176 0.177 0.179 0.177 0.175 0.172 0.178 

1.4 0.214 0.202 0.201 0.200 0.209 0.197 0.198 0.203 0.196 0.202 0.210 0.215 0.197 0.212 0.206 0.210 0.198 0.201 0.211 0.234 

1.5 0.223 0.222 0.224 0.223 0.222 0.228 0.219 0.222 0.225 0.220 0.225 0.229 0.240 0.225 0.224 0.228 0.220 0.220 0.224 0.232 
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Table A.14. The MR of K-means with Different  Values for Gamma Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 0.235 0.250 0.000 0.250 0.235 0.000 0.235 0.235 0.000 0.235 0.000 0.250 0.250 0.235 0.250 0.235 0.235 0.235 0.250 0.000 

0.2 0.000 0.237 0.237 0.000 0.235 0.250 0.250 0.000 0.000 0.000 0.250 0.000 0.250 0.235 0.000 0.235 0.250 0.250 0.250 0.000 

0.3 0.000 0.000 0.000 0.000 0.000 0.235 0.000 0.000 0.250 0.235 0.000 0.000 0.000 0.235 0.000 0.000 0.000 0.000 0.250 0.000 

0.4 0.237 0.251 0.237 0.003 0.237 0.003 0.003 0.003 0.003 0.003 0.003 0.251 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 

0.5 0.008 0.008 0.008 0.241 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.241 0.008 0.008 0.008 0.241 0.008 0.008 0.008 

0.6 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027 

0.7 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 0.037 

0.8 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 0.048 

0.9 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 

1.0 0.097 0.098 0.098 0.097 0.097 0.097 0.098 0.097 0.097 0.098 0.097 0.098 0.098 0.098 0.098 0.098 0.097 0.098 0.098 0.098 

1.1 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 0.118 

1.2 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 

1.3 0.172 0.167 0.172 0.167 0.167 0.172 0.172 0.172 0.167 0.172 0.167 0.167 0.167 0.172 0.167 0.167 0.167 0.167 0.167 0.172 

1.4 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 0.195 

1.5 0.213 0.215 0.215 0.215 0.215 0.213 0.215 0.215 0.213 0.213 0.215 0.213 0.213 0.213 0.215 0.215 0.215 0.215 0.215 0.215 
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Table A.15. The Number of DMGs of BSP with Different  Values for Gamma Distribution  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 

0.2 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 

0.3 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 28 

0.4 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 

0.5 14 13 13 12 12 12 12 12 14 13 12 12 12 12 12 13 12 13 12 12 

0.6 6 6 6 7 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 6 

0.7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 

0.8 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 3 3 

0.9 7 7 7 7 6 7 6 6 7 6 6 7 7 7 5 6 7 7 6 6 

1.0 4 4 4 4 6 6 6 4 6 6 4 4 6 6 4 4 6 4 4 4 

1.1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 

1.2 8 8 6 8 7 8 7 8 8 8 8 5 8 6 8 8 8 8 5 8 

1.3 8 7 8 8 8 8 7 7 8 8 7 8 7 7 8 8 7 7 7 8 

1.4 3 2 2 2 2 2 2 2 2 2 2 3 2 3 2 2 2 2 2 3 

1.5 8 8 8 7 9 8 8 8 8 8 8 8 8 8 9 9 8 8 8 8 
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Table A.16. The Number of DMGs of K-means with Different  Values for Gamma Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 976 1040 25 1040 976 25 980 980 25 976 25 1036 1040 976 1040 975 975 980 1040 25 

0.2 23 976 976 23 975 1036 1036 23 23 23 1036 23 1038 975 23 975 1036 1036 1036 23 

0.3 28 28 28 28 28 958 28 28 1030 958 28 28 28 958 28 28 28 28 1030 28 

0.4 793 820 793 11 793 11 11 11 11 11 11 820 11 11 11 11 11 11 11 11 

0.5 12 12 12 520 12 12 12 12 12 12 12 12 519 12 12 12 520 12 12 12 

0.6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

0.7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 

0.8 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

0.9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

1.1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 

1.2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

1.3 7 6 7 6 6 7 7 7 6 7 6 6 6 7 6 6 6 6 6 7 

1.4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

1.5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
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Table A.17. The Accurate Number of Clusters of BSP with Different  Values for Gamma Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.9 0 0 0 0 1 0 1 1 0 1 0 0 0 1 1 1 0 0 0 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1.2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 

1.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1.4 0 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 0 

1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.18. The Accurate Number of Clusters of K-means with Different  Values for Gamma Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 

0.2 1 0 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 

0.3 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 

0.4 0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 

0.5 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 

0.6 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 

0.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 

1.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1.2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 

1.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.19. The MR of BSP with Different  Values for Gaussian Mixture Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
0.1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.4 0.000 0.000 0.001 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.000 

0.5 0.006 0.006 0.005 0.006 0.005 0.007 0.005 0.008 0.008 0.007 0.006 0.006 0.005 0.008 0.005 0.005 0.006 0.005 0.005 0.007 

0.6 0.028 0.031 0.028 0.027 0.029 0.027 0.026 0.028 0.026 0.026 0.029 0.029 0.028 0.030 0.030 0.029 0.026 0.024 0.030 0.028 

0.7 0.047 0.050 0.046 0.047 0.047 0.046 0.045 0.045 0.048 0.051 0.046 0.046 0.050 0.052 0.051 0.045 0.052 0.045 0.046 0.048 

0.8 0.087 0.082 0.081 0.087 0.085 0.079 0.081 0.086 0.082 0.083 0.082 0.081 0.082 0.083 0.082 0.081 0.082 0.083 0.082 0.080 

0.9 0.105 0.104 0.118 0.105 0.118 0.103 0.103 0.108 0.108 0.104 0.105 0.104 0.108 0.104 0.108 0.107 0.108 0.108 0.103 0.104 

1.0 0.169 0.174 0.171 0.223 0.193 0.174 0.172 0.181 0.173 0.196 0.225 0.182 0.173 0.181 0.165 0.228 0.171 0.180 0.171 0.169 

1.1 0.176 0.178 0.178 0.188 0.185 0.193 0.178 0.177 0.188 0.179 0.190 0.177 0.189 0.184 0.189 0.179 0.190 0.189 0.192 0.178 

1.2 0.215 0.220 0.219 0.215 0.216 0.208 0.217 0.214 0.222 0.215 0.217 0.229 0.218 0.207 0.215 0.214 0.207 0.214 0.215 0.215 

1.3 0.253 0.248 0.250 0.273 0.248 0.249 0.261 0.270 0.247 0.249 0.247 0.247 0.262 0.274 0.260 0.257 0.248 0.242 0.253 0.259 

1.4 0.266 0.278 0.273 0.297 0.270 0.272 0.286 0.292 0.305 0.280 0.278 0.302 0.289 0.292 0.287 0.268 0.281 0.275 0.269 0.291 

1.5 0.327 0.329 0.322 0.313 0.332 0.318 0.310 0.316 0.327 0.319 0.334 0.332 0.306 0.319 0.315 0.304 0.318 0.317 0.300 0.355 
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Table A.20. The Accuracy of K-means with Different  Values for Gaussian Mixture Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 0.235 0.250 0.000 0.250 0.235 0.000 0.235 0.235 0.000 0.235 0.000 0.250 0.250 0.235 0.250 0.235 0.235 0.235 0.250 0.000 

0.2 0.000 0.235 0.235 0.000 0.235 0.250 0.250 0.000 0.000 0.000 0.250 0.000 0.000 0.235 0.000 0.235 0.250 0.250 0.235 0.000 

0.3 0.000 0.000 0.000 0.000 0.000 0.235 0.000 0.000 0.250 0.235 0.000 0.000 0.000 0.235 0.000 0.000 0.000 0.000 0.250 0.000 

0.4 0.236 0.253 0.236 0.000 0.236 0.000 0.000 0.000 0.000 0.000 0.000 0.253 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.5 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 

0.6 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 

0.7 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 0.053 

0.8 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 0.083 

0.9 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 0.104 

1.0 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 0.162 

1.1 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 0.178 

1.2 0.212 0.212 0.212 0.212 0.212 0.212 0.212 0.212 0.212 0.212 0.212 0.212 0.212 0.212 0.212 0.212 0.212 0.212 0.212 0.212 

1.3 0.247 0.254 0.247 0.254 0.254 0.247 0.247 0.247 0.254 0.247 0.254 0.254 0.254 0.247 0.254 0.254 0.254 0.254 0.254 0.247 

1.4 0.272 0.274 0.274 0.274 0.272 0.272 0.274 0.274 0.272 0.274 0.272 0.274 0.272 0.274 0.274 0.274 0.272 0.272 0.272 0.274 

1.5 0.306 0.304 0.304 0.304 0.304 0.306 0.304 0.304 0.306 0.306 0.304 0.306 0.306 0.306 0.304 0.304 0.304 0.304 0.304 0.304 
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Table A.21. The Number of DMGs of BSP with Different  Values for Gaussian Mixture Distribution  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 

0.2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 

0.3 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 

0.4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 

0.5 3 2 2 4 2 4 2 6 7 4 4 2 2 5 2 2 2 2 2 3 

0.6 4 5 3 3 4 4 3 3 3 3 4 3 3 4 4 4 3 3 4 3 

0.7 2 1 1 1 1 1 2 1 2 1 1 1 2 1 1 2 1 2 2 2 

0.8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

0.9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

1.0 4 3 3 3 3 3 3 3 3 3 3 3 3 8 4 3 3 3 4 2 

1.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1.2 1 2 0 1 0 0 0 2 2 0 0 0 0 1 2 1 0 0 0 0 

1.3 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 

1.4 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 

1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  



 

 
 

1
1
9
 

Table A.22. The Number of DMGs of K-means with Different  Values for Gaussian Mixture Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 974 1034 12 1034 974 12 972 972 12 974 12 1032 1034 974 1034 970 970 972 1034 12 

0.2 9 971 971 9 971 1033 1033 9 9 9 1033 9 9 971 9 971 1033 1033 971 9 

0.3 11 11 11 11 11 902 11 11 965 902 11 11 11 902 11 11 11 11 965 11 

0.4 659 654 659 8 659 8 8 8 8 8 8 654 8 8 8 8 8 8 8 8 

0.5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

0.6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

0.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 

0.9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1.4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table A.23. The Accurate Number of Clusters of BSP with Different  Values for Gaussian Mixture Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.5 1 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 0 

0.6 0 0 1 1 0 0 1 1 1 1 0 1 1 0 0 0 1 1 0 1 

0.7 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.9 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 

1 0 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 0 1 

1.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1.2 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 

1.3 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 

1.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

  



 

 
 

1
2
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Table A.24. The Accurate Number of Clusters of K-means with Different  Values for Gaussian Mixture Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 

0.2 1 0 0 1 0 0 0 1 1 1 0 1 1 0 1 0 0 0 0 1 

0.3 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 

0.4 0 0 0 1 0 1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 

0.5 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 1 1 

0.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.9 1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1.3 0 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 0 1 0 

1.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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Table A.25. The MR of BSP with Different  Values for Beta Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
0.1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 

 

Table A.26. The Accuracy of K-means with Different  Values for Beta Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 0.235 0.250 0.000 0.250 0.235 0.000 0.235 0.235 0.000 0.235 0.000 0.250 0.250 0.235 0.250 0.235 0.235 0.235 0.250 0.000 

0.2 0.000 0.236 0.236 0.000 0.235 0.250 0.250 0.000 0.000 0.000 0.250 0.000 0.250 0.235 0.000 0.235 0.250 0.250 0.236 0.000 

0.3 0.000 0.000 0.000 0.000 0.000 0.235 0.000 0.000 0.250 0.235 0.000 0.000 0.000 0.235 0.000 0.000 0.000 0.000 0.250 0.000 

0.4 0.235 0.250 0.235 0.000 0.235 0.000 0.000 0.000 0.000 0.000 0.000 0.250 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

0.5 0.000 0.000 0.000 0.235 0.000 0.000 0.000 0.238 0.000 0.000 0.000 0.000 0.238 0.253 0.000 0.000 0.235 0.000 0.000 0.000 
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Table A.27. The Number of DMGs of BSP with Different  Values for Beta Distribution  

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 

0.2 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 

0.3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 

0.4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

 

Table A.28. The Number of DMGs of K-means with Different  Values for Beta Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 973 1039 24 1039 974 24 975 975 24 974 24 1042 1039 974 1039 978 978 975 1039 24 

0.2 19 973 973 19 973 1036 1036 19 19 19 1036 19 1038 973 19 975 1036 1036 973 19 

0.3 6 6 6 6 6 947 6 6 1018 947 6 6 6 947 6 6 6 6 1018 6 

0.4 766 795 766 2 766 2 2 2 2 2 2 795 2 2 2 2 2 2 2 2 

0.5 0 0 0 471 0 0 0 559 0 0 0 0 471 568 0 0 471 0 0 0 
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Table A.29. The Accurate Number of Clusters of BSP with Different  Values for Beta Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

 

Table A.30. The Accurate Number of Clusters of K-means with Different  Values for Beta Distribution 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

0.1 0 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 

0.2 1 0 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0 1 

0.3 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 1 0 1 

0.4 0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 

0.5 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 
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APPENDIX B. THE LIST OF THE DIFFERENTIALLY MEASURED GENES 

GENE_SYMBOL GENE_NAME Alignment 

Agpat4 
1-acylglycerol-3-phosphate O-acyltransferase 1 

(lysophosphatidic acid acyltransferase, delta) 
1 

Hacl1 2-hydroxyacyl-CoA lyase 1 1 

Adam22 a disintegrin and metallopeptidase domain 22 1 

Akap12 A kinase (PRKA) anchor protein (gravin) 12 2 

Abhd4 abhydrolase domain containing 4 1 

Anp32a 
acidic (leucine-rich) nuclear phosphoprotein 32 family, 

member A 
1 

Arpc1b actin related protein 2/3 complex, subunit 1B 1 

Actb actin, beta, cytoplasmic 1 

Actg2 actin, gamma 2, smooth muscle, enteric NA 

Actg-ps1 actin, gamma, pseudogene 1 1 

Ascc1 activating signal cointegrator 1 complex subunit 1 1 

Atf5 activating transcription factor 5 1 

Acss1 acyl-CoA synthetase short-chain family member 1 1 

Acadvl acyl-Coenzyme A dehydrogenase, very long chain 1 

Ap3b1 adaptor-related protein complex 3, beta 1 subunit 2 

Adssl1 adenylosuccinate synthetase like 1 1 

Aldh7a1 aldehyde dehydrogenase family 7, member A1 1 

Ambp alpha 1 microglobulin/bikunin NA 

Atrx 
alpha thalassemia/mental retardation syndrome X-linked 

homolog (human) 
1 

Angptl4 angiopoietin-like 4 1 

Ankrd13b ankyrin repeat domain 13b 1 

Apobec2 apolipoprotein B editing complex 2 1 

Rnpepl1 arginyl aminopeptidase (aminopeptidase B)-like 1 1 

Arntl2 aryl hydrocarbon receptor nuclear translocator-like 2 NA 

Asns asparagine synthetase 1 

Aste1 asteroid homolog 1 (Drosophila) 1 

Astn2 astrotactin 2 1 

Atxn7l1 ataxin 7-like 1 1 
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GENE_SYMBOL GENE_NAME Alignment 

Atxn7l3 ataxin 7-like 3 NA 

Atp5g2 
ATP synthase, H+ transporting, mitochondrial F0 complex, 

subunit c (subunit 9), isoform 2 
3 

Atp5h 
ATP synthase, H+ transporting, mitochondrial F0 complex, 

subunit d 
2 

Atp13a2 ATPase type 13A2 1 

Btg1 B-cell translocation gene 1, anti-proliferative 3 

Bbc3 Bcl-2 binding component 3 1 

Bok Bcl-2-related ovarian killer protein NA 

Bmp10 bone morphogenetic protein 10 1 

Bche butyrylcholinesterase 1 

Celsr1 cadherin EGF LAG seven-pass G-type receptor 1 1 

Cdh24 cadherin-like 24 1 

Cnn1 calponin 1 1 

Cnr1 cannabinoid receptor 1 (brain) 1 

Chsy1 carbohydrate (chondroitin) synthase 1 1 

Cbl Casitas B-lineage lymphoma 1 

Casp2 caspase 2 1 

Cdx1 caudal type homeo box 1 1 

Cebpd CCAAT/enhancer binding protein (C/EBP), delta 1 

Cd63 Cd63 antigen 1 

Cables1 Cdk5 and Abl enzyme substrate 1 1 

BC003965 cDNA sequence BC003965 1 

BC017158 cDNA sequence BC017158 1 

BC037034 cDNA sequence BC037034 1 

BC048507 cDNA sequence BC048507 1 

Cdc5l cell division cycle 5-like (S. pombe) 5 

Crabp2 cellular retinoic acid binding protein II 1 

Cep68 centrosomal protein 68 1 

Cspp1 centrosome and spindle pole associated protein 1 1 

Cct6b chaperonin subunit 6b (zeta) 1 

Cmklr1 chemokine-like receptor 1 NA 

Coq10a coenzyme Q10 homolog A (yeast) 1 
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GENE_SYMBOL GENE_NAME Alignment 

Coq3 coenzyme Q3 homolog, methyltransferase (yeast) 1 

Cfl1 cofilin 1, non-muscle 2 

Cc2d1b coiled-coil and C2 domain containing 1B 1 

Ccdc12 coiled-coil domain containing 12 2 

Ccdc15 coiled-coil domain containing 15 1 

Ccdc22 coiled-coil domain containing 22 1 

Ccdc42 coiled-coil domain containing 42 1 

Ccdc73 coiled-coil domain containing 73 1 

Ccdc85b coiled-coil domain containing 85B 1 

Csf2ra 
colony stimulating factor 2 receptor, alpha, low-affinity 

(granulocyte-macrophage) 
2 

Ccnk cyclin K NA 

Cdk4 cyclin-dependent kinase 4 1 

Cyyr1 cysteine and tyrosine-rich protein 1 1 

Creld2 cysteine-rich with EGF-like domains 2 1 

Cox4i2 cytochrome c oxidase subunit IV isoform 2 NA 

Cox5b cytochrome c oxidase, subunit Vb 3 

Cox6b1 cytochrome c oxidase, subunit VIb polypeptide 1 2 

Cycs cytochrome c, somatic 2 

Ddx23 DEAD (Asp-Glu-Ala-Asp) box polypeptide 23 1 

Ddx54 DEAD (Asp-Glu-Ala-Asp) box polypeptide 54 1 

Dhx30 DEAH (Asp-Glu-Ala-His) box polypeptide 30 1 

Degs2 
degenerative spermatocyte homolog 2 (Drosophila), lipid 

desaturase 
1 

Dnase1 deoxyribonuclease I 1 

Dhdh dihydrodiol dehydrogenase (dimeric) 1 

Dab2ip disabled homolog 2 (Drosophila) interacting protein 2 

Dvl3 dishevelled 3, dsh homolog (Drosophila) NA 

D17H6S53E DNA segment, Chr 17, human D6S53E 1 

Dnajc19 DnaJ (Hsp40) homolog, subfamily C, member 19 2 

Dpm3 dolichyl-phosphate mannosyltransferase polypeptide 3 NA 

Dusp6 dual specificity phosphatase 6 1 

Dctn3 dynactin 3 1 
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GENE_SYMBOL GENE_NAME Alignment 

E2f2 E2F transcription factor 2 1 

E2f4 E2F transcription factor 4 1 

Elf4 E74-like factor 4 (ets domain transcription factor) 1 

Ehd1 EH-domain containing 1 1 

Ehd4 EH-domain containing 4 1 

Elk1 ELK1, member of ETS oncogene family 1 

Elk4 ELK4, member of ETS oncogene family 1 

Sil1 
endoplasmic reticulum chaperone SIL1 homolog (S. 

cerevisiae) 
1 

Erp29 endoplasmic reticulum protein 29 1 

Erdr1 erythroid differentiation regulator 1 NA 

Eef1a1 eukaryotic translation elongation factor 1 alpha 1 9 

Eif2b3 eukaryotic translation initiation factor 2B, subunit 3 1 

Eif4ebp3 eukaryotic translation initiation factor 4E binding protein 3 1 

Exoc8 exocyst complex component 8 1 

Exo1 exonuclease 1 1 

Nme2 expressed in non-metastatic cells 2, protein 3 

AU020206 expressed sequence AU020206 1 

F11r F11 receptor 1 

Fance Fanconi anemia, complementation group E 1 

Daxx Fas death domain-associated protein 1 

Fabp3 fatty acid binding protein 3, muscle and heart 2 

Fabp5 fatty acid binding protein 5, epidermal NA 

Ferd3l Fer3-like (Drosophila) 1 

Fbl fibrillarin 2 

Fau 
Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV) 

ubiquitously expressed (fox derived) 
2 

Fkbp10 FK506 binding protein 10 1 

Foxa2 forkhead box A2 1 

Foxg1 forkhead box G1 1 

Fmnl3 formin-like 3 2 

Frem1 Fras1 related extracellular matrix protein 1 1 

Frat1 frequently rearranged in advanced T-cell lymphomas 1 



 

129 
 

GENE_SYMBOL GENE_NAME Alignment 

Fyb FYN binding protein 1 

Gps1 G protein pathway suppressor 1 2 

Gpr63 G protein-coupled receptor 63 1 

Gabpb2 GA repeat binding protein, beta 2 NA 

Galt galactose-1-phosphate uridyl transferase 1 

Gjc1 gap junction membrane channel protein chi 1 1 

Gata4 GATA binding protein 4 1 

Gsn gelsolin 1 

Gtf2f1 general transcription factor IIF, polypeptide 1 1 

Gpi1 glucose phosphate isomerase 1 2 

Gstm1 glutathione S-transferase, mu 1 2 

Gstm3 glutathione S-transferase, mu 3 1 

Grrp1 glycine/arginine rich protein 1 1 

Gsk3a glycogen synthase kinase 3 alpha 1 

Grhpr glyoxylate reductase/hydroxypyruvate reductase 1 

Gpc1 glypican 1 1 

Gnas 
GNAS (guanine nucleotide binding protein, alpha stimulating) 

complex locus 
NA 

Golga2 golgi autoantigen, golgin subfamily a, 2 1 

Gpsm1 G-protein signalling modulator 1 (AGS3-like, C. elegans) 1 

Gab2 growth factor receptor bound protein 2-associated protein 2 NA 

Gnb1l 
guanine nucleotide binding protein (G protein), beta 

polypeptide 1-like 
1 

Gnal 
guanine nucleotide binding protein, alpha stimulating, 

olfactory type 
NA 

H19 H19 fetal liver mRNA 1 

H2afj H2A histone family, member J 3 

Hsp90ab1 heat shock protein 90kDa alpha (cytosolic), class B member 1 1 

Herc1 
hect (homologous to the E6-AP (UBE3A) carboxyl terminus) 

domain and RCC1 (CHC1)-like domain (RLD) 1 
1 

Hba-x hemoglobin X, alpha-like embryonic chain in Hba complex 1 

Hbb-y hemoglobin Y, beta-like embryonic chain 1 

Hbb-bh1 hemoglobin Z, beta-like embryonic chain 1 
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GENE_SYMBOL GENE_NAME Alignment 

Hs6st1 heparan sulfate 6-O-sulfotransferase 1 1 

Hps4 Hermansky-Pudlak syndrome 4 homolog (human) 1 

Hk2 hexokinase 2 1 

H2-T10 histocompatibility 2, T region locus 10 2 

H2-T24 histocompatibility 2, T region locus 24 NA 

Hist1h2af histone 1, H2af 13 

Hist1h2ai histone 1, H2ai 5 

Hist1h2ak histone 1, H2ak 3 

Hist1h4f histone 1, H4f 11 

Hist2h2ac histone 2, H2ac 4 

Hist2h3c1 histone 2, H3c1 3 

Hist2h4 histone 2, H4 1 

Hist3h2a histone 3, H2a 1 

Hdac1 histone deacetylase 1 NA 

Hoxd9 homeo box D9 1 

Hunk hormonally upregulated Neu-associated kinase 1 

Hcn1 hyperpolarization-activated, cyclic nucleotide-gated K+ 1 1 

Ier5 immediate early response 5 1 

Imp4 IMP4, U3 small nucleolar ribonucleoprotein, homolog (yeast) 1 

Incenp inner centromere protein 1 

Impdh2 inosine 5'-phosphate dehydrogenase 2 2 

Itpr3 inositol 1,4,5-triphosphate receptor 3 1 

Insr insulin receptor 1 

Itgb5 integrin beta 5 1 

Ifitm7 interferon induced transmembrane protein 7 1 

Il11ra1 interleukin 11 receptor, alpha chain 1 1 

Il12rb2 interleukin 12 receptor, beta 2 1 

Ift122 intraflagellar transport 122 homolog (Chlamydomonas) 1 

Irx3 Iroquois related homeobox 3 (Drosophila) 1 

Jmjd4 jumonji domain containing 4 1 

Kpna2 karyopherin (importin) alpha 2 7 

Klhl17 kelch-like 17 (Drosophila) 1 

Krt8 keratin 8 2 
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GENE_SYMBOL GENE_NAME Alignment 

Ldhb lactate dehydrogenase B 2 

Lats1 large tumor suppressor 1 

Lime1 Lck interacting transmembrane adaptor 1 1 

Lemd2 LEM domain containing 2 1 

Lrfn1 
leucine rich repeat and fibronectin type III domain containing 

1 
1 

Lrrc45 leucine rich repeat containing 45 1 

Lrrc58 leucine rich repeat containing 58 5 

Lzts2 leucine zipper, putative tumor suppressor 2 1 

Letm1 leucine zipper-EF-hand containing transmembrane protein 1 1 

Lrch3 
leucine-rich repeats and calponin homology (CH) domain 

containing 3 
1 

Lrig3 leucine-rich repeats and immunoglobulin-like domains 3 1 

Lars2 leucyl-tRNA synthetase, mitochondrial 3 

Lmx1b LIM homeobox transcription factor 1 beta NA 

Lsr lipolysis stimulated lipoprotein receptor NA 

Lrp12 low density lipoprotein-related protein 12 1 

Lsm7 
LSM7 homolog, U6 small nuclear RNA associated (S. 

cerevisiae) 
3 

Lfng lunatic fringe gene homolog (Drosophila) 1 

Lyl1 lymphoblastomic leukemia 1 

Smad9 MAD homolog 9 (Drosophila) NA 

Mgrn1 mahogunin, ring finger 1 1 

Mfhas1 malignant fibrous histiocytoma amplified sequence 1 2 

Mlycd malonyl-CoA decarboxylase 1 

Man2a1 mannosidase 2, alpha 1 1 

Maml3 mastermind like 3 (Drosophila) 1 

Mnt max binding protein 3 

Mia3 melanoma inhibitory activity 3 NA 

Mbd5 methyl-CpG binding domain protein 5 1 

Mical1 
microtubule associated monoxygenase, calponin and LIM 

domain containing 1 
1 

Mdn1 midasin homolog (yeast) 1 
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GENE_SYMBOL GENE_NAME Alignment 

Mdk midkine 1 

Mfge8 milk fat globule-EGF factor 8 protein 1 

Mrpl11 mitochondrial ribosomal protein L11 1 

Mrpl23 mitochondrial ribosomal protein L23 2 

Map3k1 mitogen activated protein kinase kinase kinase 1 1 

Map3k2 mitogen activated protein kinase kinase kinase 2 1 

Mapk8ip3 mitogen-activated protein kinase 8 interacting protein 3 1 

Mkl2 MKL/myocardin-like 2 1 

Mogat2 monoacylglycerol O-acyltransferase 2 1 

Morf4l1 mortality factor 4 like 1 10 

Mmrn2 multimerin 2 1 

Msi1 Musashi homolog 1(Drosophila) 1 

Mcc mutated in colorectal cancers 1 

Mybpc3 myosin binding protein C, cardiac 1 

Myo18b myosin XVIIIb 1 

Myh4 myosin, heavy polypeptide 4, skeletal muscle 1 

Myh7 myosin, heavy polypeptide 7, cardiac muscle, beta 1 

Myh8 myosin, heavy polypeptide 8, skeletal muscle, perinatal 1 

Myh9 myosin, heavy polypeptide 9, non-muscle 1 

Myl6 
myosin, light polypeptide 6, alkali, smooth muscle and 

non-muscle 
6 

Ndufa13 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 13 1 

Ndufb4 NADH dehydrogenase (ubiquinone) 1 beta subcomplex 4 3 

Ndufs5 NADH dehydrogenase (ubiquinone) Fe-S protein 5 2 

Nkd1 naked cuticle 1 homolog (Drosophila) 1 

Naca nascent polypeptide-associated complex alpha polypeptide 2 

Nell1 NEL-like 1 (chicken) 1 

Ntng2 netrin G2 NA 

Neurod4 neurogenic differentiation 4 1 

Nenf neuron derived neurotrophic factor 1 

Nkx2-9 NK2 transcription factor related, locus 9 (Drosophila) 1 

Nomo1 nodal modulator 1 1 

Nr2f1 nuclear receptor subfamily 2, group F, member 1 1 
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GENE_SYMBOL GENE_NAME Alignment 

Ofd1 oral-facial-digital syndrome 1 gene homolog (human) 1 

Osbpl5 oxysterol binding protein-like 5 1 

Pappa2 pappalysin 2 NA 

Pask PAS domain containing serine/threonine kinase 1 

Peg10 paternally expressed 10 1 

Pdzrn3 PDZ domain containing RING finger 3 1 

Pelo pelota homolog (Drosophila) 1 

Ppard peroxisome proliferator activator receptor delta 1 

Ebp phenylalkylamine Ca2+ antagonist (emopamil) binding protein 1 

Ppap2b phosphatidic acid phosphatase type 2B 1 

Pik3r4 
phosphatidylinositol 3 kinase, regulatory subunit, polypeptide 

4, p150 
1 

Pitpnm1 phosphatidylinositol membrane-associated 1 1 

Pgm2 phosphoglucomutase 2 1 

Plcb4 phospholipase C, beta 4 1 

Phyhipl phytanoyl-CoA hydroxylase interacting protein-like NA 

Phlda3 pleckstrin homology-like domain, family A, member 3 1 

Plag1 pleiomorphic adenoma gene 1 1 

Paox polyamine oxidase (exo-N4-amino) 2 

Polr2a polymerase (RNA) II (DNA directed) polypeptide A 1 

Polr2k polymerase (RNA) II (DNA directed) polypeptide K 4 

Polr2l polymerase (RNA) II (DNA directed) polypeptide L 2 

Kctd15 potassium channel tetramerisation domain containing 15 1 

Kcnmb4 
potassium large conductance calcium-activated channel, 

subfamily M, beta member 4 
1 

Kcna6 
potassium voltage-gated channel, shaker-related, subfamily, 

member 6 
1 

Pou3f2 POU domain, class 3, transcription factor 2 1 

Pbxip1 pre-B-cell leukemia transcription factor interacting protein 1 1 

Pfdn4 prefoldin 4 1 

Pdss2 prenyl (solanesyl) diphosphate synthase, subunit 2 1 

Pfn1 profilin 1 1 

Pdcd10 programmed cell death 10 2 
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GENE_SYMBOL GENE_NAME Alignment 

Pdcd5 programmed cell death 5 2 

Ptger1 prostaglandin E receptor 1 (subtype EP1) NA 

Psmd3 proteasome (prosome, macropain) 26S subunit, non-ATPase, 3 1 

Psma5 proteasome (prosome, macropain) subunit, alpha type 5 3 

Psmb10 proteasome (prosome, macropain) subunit, beta type 10 1 

Psmb3 proteasome (prosome, macropain) subunit, beta type 3 3 

Pin4 
protein (peptidyl-prolyl cis/trans isomerase) 

NIMA-interacting, 4 (parvulin) 
2 

Prmt2 protein arginine N-methyltransferase 2 1 

Prmt7 protein arginine N-methyltransferase 7 1 

Ptprz1 protein tyrosine phosphatase, receptor type Z, polypeptide 1 15 

Ptprs protein tyrosine phosphatase, receptor type, S 1 

Pcmtd1 
protein-L-isoaspartate (D-aspartate) O-methyltransferase 

domain containing 1 
2 

Ptma prothymosin alpha 5 

Rab15 RAB15, member RAS oncogene family 1 

Rabep2 rabaptin, RAB GTPase binding effector protein 2 1 

Rdm1 RAD52 motif 1 1 

Rad54l2 Rad54 like 2 (S. cerevisiae) 1 

Rapgef3 Rap guanine nucleotide exchange factor (GEF) 3 1 

Rhoc ras homolog gene family, member C 1 

Rasal2 RAS protein activator like 2 1 

Rasl2-9 RAS-like, family 2, locus 9 1 

Rgs12 regulator of G-protein signaling 12 1 

Rexo4 REX4, RNA exonuclease 4 homolog (S. cerevisiae) 1 

Rft1 RFT1 homolog (S. cerevisiae) 1 

Arhgap19 Rho GTPase activating protein 19 NA 

Arhgef17 Rho guanine nucleotide exchange factor (GEF) 17 1 

Rhbdd3 rhomboid domain containing 3 1 

Rpl12 ribosomal protein L12 13 

Rpl17 ribosomal protein L17 7 

Rpl18a Ribosomal protein L18A 4 

Rpl23 ribosomal protein L23 1 
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GENE_SYMBOL GENE_NAME Alignment 

Rpl23a ribosomal protein L23a 16 

Rpl27 ribosomal protein L27 10 

Rpl28 ribosomal protein L28 6 

Rpl3 ribosomal protein L3 4 

Rpl35 ribosomal protein L35 5 

Rpl36 ribosomal protein L36 10 

Rpl36a ribosomal protein L36a 5 

Rpl37 ribosomal protein L37 1 

Rpl37a ribosomal protein L37a 1 

Rpl38 ribosomal protein L38 5 

Rpl41 ribosomal protein L41 7 

Rpl5 ribosomal protein L5 6 

Rpl7a ribosomal protein L7a 14 

Rpl9 ribosomal protein L9 10 

Rps12 ribosomal protein S12 1 

Rps13 ribosomal protein S13 NA 

Rps16 ribosomal protein S16 4 

Rps21 ribosomal protein S21 1 

Rps23 ribosomal protein S23 10 

Rps27 ribosomal protein S27 6 

Rps28 ribosomal protein S28 6 

Rps29 ribosomal protein S29 5 

Rps5 ribosomal protein S5 1 

Rps7 ribosomal protein S7 21 

Rps9 ribosomal protein S9 2 

Rplp2 ribosomal protein, large P2 2 

0610040J01Rik RIKEN cDNA 0610040J01 gene 1 

1110002L01Rik RIKEN cDNA 1110002L01 gene 1 

1700049G17Rik RIKEN cDNA 1700049G17 gene 1 

1700073E17Rik RIKEN cDNA 1700073E17 gene 1 

1810022K09Rik RIKEN cDNA 1810022K09 gene 2 

2610042L04Rik RIKEN cDNA 2610042L04 gene 35 

2610307P16Rik RIKEN cDNA 2610307P16 gene 1 



 

136 
 

GENE_SYMBOL GENE_NAME Alignment 

2700029M09Rik RIKEN cDNA 2700029M09 gene 1 

2700060E02Rik RIKEN cDNA 2700060E02 gene 1 

2810468N07Rik RIKEN cDNA 2810468N07 gene NA 

3000002C10Rik RIKEN cDNA 3000002C10 gene 1 

3300002I08Rik RIKEN cDNA 3300002I08 gene 1 

4930480K23Rik RIKEN cDNA 4930480K23 gene 1 

4930481A15Rik RIKEN cDNA 4930481A15 gene 2 

9930104L06Rik RIKEN cDNA 9930104L06 gene 1 

A430005L14Rik RIKEN cDNA A430005L14 gene 1 

B230118H07Rik RIKEN cDNA B230118H07 gene 1 

B230369F24Rik RIKEN cDNA B230369F24 gene 1 

D130017N08Rik RIKEN cDNA D130017N08 gene 1 

D130040H23Rik RIKEN cDNA D130040H23 gene 1 

D330041H03Rik RIKEN cDNA D330041H03 gene NA 

D430019H16Rik RIKEN cDNA D430019H16 gene 1 

E030024N20Rik RIKEN cDNA E030024N20 gene 1 

E030030I06Rik RIKEN cDNA E030030I06 gene 2 

Rfwd3 ring finger and WD repeat domain 3 2 

Rnf150 ring finger protein 150 1 

Rnf167 ring finger protein 167 NA 

Rbm10 RNA binding motif protein 10 1 

Rpusd2 RNA pseudouridylate synthase domain containing 2 1 

Robo4 roundabout homolog 4 (Drosophila) 1 

Rspo3 R-spondin 3 homolog (Xenopus laevis) NA 

Rspo1 R-spondin homolog (Xenopus laevis) 1 

Rufy2 RUN and FYVE domain-containing 2 1 

Runx1t1 
runt-related transcription factor 1; translocated to, 1 (cyclin 

D-related) 
1 

Ruvbl1 RuvB-like protein 1 2 

Ryr2 ryanodine receptor 2, cardiac NA 

Sap30l SAP30-like 1 

Slfn9 schlafen 9 2 

Scrib scribbled homolog (Drosophila) 1 
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Scyl1 SCY1-like 1 (S. cerevisiae) 1 

Sec61b Sec61 beta subunit 2 

Sec61g SEC61, gamma subunit 2 

Selenbp2 selenium binding protein 2 2 

Selk selenoprotein K 2 

Serpina1d serine (or cysteine) peptidase inhibitor, clade A, member 1d 2 

Spint2 serine protease inhibitor, Kunitz type 2 NA 

Srrm1 serine/arginine repetitive matrix 1 1 

Stk32c serine/threonine kinase 32C NA 

Sh3pxd2a SH3 and PX domains 2A 1 

Shroom4 shroom family member 4 1 

Sirt3 
sirtuin 3 (silent mating type information regulation 2, 

homolog) 3 (S. cerevisiae) 
1 

Ssb Sjogren syndrome antigen B 1 

Srgap1 SLIT-ROBO Rho GTPase activating protein 1 1 

Snrpf small nuclear ribonucleoprotein polypeptide F 3 

Snrpg small nuclear ribonucleoprotein polypeptide G 3 

Snapc4 small nuclear RNA activating complex, polypeptide 4 1 

Smcr8 
Smith-Magenis syndrome chromosome region, candidate 8 

homolog (human) 
1 

Snai2 snail homolog 2 (Drosophila) 1 

Scn5a sodium channel, voltage-gated, type V, alpha 1 

Slc24a2 
solute carrier family 24 (sodium/potassium/calcium 

exchanger), member 2 
1 

Slc25a23 
solute carrier family 25 (mitochondrial carrier; phosphate 

carrier), member 23 
1 

Slc26a11 solute carrier family 26, member 11 1 

Slc35b2 solute carrier family 35, member B2 1 

Slc35e3 solute carrier family 35, member E3 2 

Slc4a4 solute carrier family 4 (anion exchanger), member 4 1 

Slc6a9 
solute carrier family 6 (neurotransmitter transporter, glycine), 

member 9 
1 
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Slc7a1 
solute carrier family 7 (cationic amino acid transporter, y+ 

system), member 1 
1 

Slco3a1 solute carrier organic anion transporter family, member 3a1 1 

Slco5a1 solute carrier organic anion transporter family, member 5A1 1 

Sorbs1 sorbin and SH3 domain containing 1 1 

Spock1 
sparc/osteonectin, cwcv and kazal-like domains proteoglycan 

1 
1 

Sparcl1 SPARC-like 1 (mast9, hevin) 1 

Spata5l1 spermatogenesis associated 5-like 1 NA 

Smpd1 sphingomyelin phosphodiesterase 1, acid lysosomal 1 

Sf3a2 splicing factor 3a, subunit 2 1 

Spry4 sprouty homolog 4 (Drosophila) 1 

Sart1 squamous cell carcinoma antigen recognized by T-cells 1 NA 

Sart3 squamous cell carcinoma antigen recognized by T-cells 3 1 

Sox12 SRY-box containing gene 12 1 

Sox3 SRY-box containing gene 3 NA 

Sox5 SRY-box containing gene 5 1 

Sfn stratifin NA 

Strn3 striatin, calmodulin binding protein 3 1 

Sod2 superoxide dismutase 2, mitochondrial 1 

Synpo2l synaptopodin 2-like 1 

Syt7 synaptotagmin VII NA 

Ss18 synovial sarcoma translocation, Chromosome 18 2 

Taf10 
TAF10 RNA polymerase II, TATA box binding protein 

(TBP)-associated factor 
1 

Tbc1d10b TBC1 domain family, member 10b 1 

Tbx1 T-box 1 1 

Tead1 TEA domain family member 1 1 

Tgif2 TGFB-induced factor 2 3 

Traip TRAF-interacting protein 1 

Tle4 
transducin-like enhancer of split 4, homolog of Drosophila 

E(spl) 
1 

Tmed1 transmembrane emp24 domain containing 1 1 
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Tmed10 transmembrane emp24-like trafficking protein 10 (yeast) 2 

Tmem109 transmembrane protein 109 1 

Tmem158 transmembrane protein 158 1 

Tsen54 
tRNA splicing endonuclease 54 homolog (SEN54, S. 

cerevisiae) 
1 

Tnni2 troponin I, skeletal, fast 2 1 

Trub2 TruB pseudouridine (psi) synthase homolog 2 (E. coli) 1 

Tysnd1 trypsin domain containing 1 1 

Tufm Tu translation elongation factor, mitochondrial 2 

Tsc2 tuberous sclerosis 2 1 

Tbcc tubulin-specific chaperone c 1 

Tnfsf12 tumor necrosis factor (ligand) superfamily, member 12 1 

Ttyh2 tweety homolog 2 (Drosophila) 1 

Ywhae 
tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 

activation protein, epsilon polypeptide 
1 

Ube2d1 
ubiquitin-conjugating enzyme E2D 1, UBC4/5 homolog 

(yeast) 
1 

Uxt ubiquitously expressed transcript 1 

B4galt5 
UDP-Gal:betaGlcNAc beta 1,4-galactosyltransferase, 

polypeptide 5 
1 

Unc45b unc-45 homolog B (C. elegans) 1 

Ulk1 Unc-51 like kinase 1 (C. elegans) 2 

Upp2 uridine phosphorylase 2 1 

Utp14b 
UTP14, U3 small nucleolar ribonucleoprotein, homolog B 

(yeast) 
NA 

Abl2 
v-abl Abelson murine leukemia viral oncogene 2 (arg, 

Abelson-related gene) 
NA 

Vps13d vacuolar protein sorting 13D (yeast) 1 

Vegfc vascular endothelial growth factor C 1 

Ralb v-ral simian leukemia viral oncogene homolog B (ras related) 1 

Wasf3 WAS protein family, member 3 1 

Wdr20 WD repeat domain 20 1 

Wdr76 WD repeat domain 76 1 
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Wtip WT1-interacting protein 1 

Zic2 Zic finger protein of the cerebellum 2 1 

Zc3hav1l zinc finger CCCH-type, antiviral 1-like 1 

Zfp109 zinc finger protein 109 1 

Zfp146 zinc finger protein 146 1 

Zfp286 zinc finger protein 286 1 

Zfp36l2 zinc finger protein 36, C3H type-like 2 1 

Zfp395 zinc finger protein 395 1 

Zfp428 zinc finger protein 428 1 

Zfp503 zinc finger protein 503 1 

Zfp521 zinc finger protein 521 1 

Zfp58 zinc finger protein 58 NA 

Zfp597 zinc finger protein 597 1 

Zfp691 zinc finger protein 691 1 

Zfp697 zinc finger protein 697 1 

Zic5 zinc finger protein of the cerebellum 5 2 

Zfand1 zinc finger, AN1-type domain 1 2 

Zbed3 zinc finger, BED domain containing 3 1 

  


