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ABSTRACT

The number of standard Young tableaux is given by the hook-length formula of Frame,

Robinson, and Thrall. Recently, Naruse found a hook-length formula for the number of skew

shaped standard Young tableaux. In a series of papers, Morales, Pak, and Panova prove the

Naruse hook-length formula as well as q-analogues of Naruse’s formula. In this paper, we will

discuss their work, including connections between excited diagrams and Dyck paths.

iii



ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Jessica Striker, for directing me towards this fasci-

nating subject and for being so patient with me in writing my paper. Also, thank you to Dylan

Heuer and Corey Vorland for proof-reading my paper. I would also like to thank my fellow graduate

students, especially my office mates, for always lending me their ears.

iv



DEDICATION

This expository paper is dedicated to my family. Alex, thank you for believing in me. Without

your encouragement and support, I would not have been able to do this. Thank you to my family

for always being my cheering section. I love you all.

v



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1. Definitions and Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3. THE HOOK LENGTH FORMULA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1. History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2. Hook Content Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3. q-analogues of the Hook Length Formula and Hook Content Formula . . . . . . . . . 9

4. HOOK LENGTH FORMULA FOR SKEW SHAPES . . . . . . . . . . . . . . . . . . . . 11

4.1. Naruse Hook Length Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2. Proof of the NHLF Using Excited Diagrams . . . . . . . . . . . . . . . . . . . . . . . 12

4.3. Proof of the NHLF Using Pleasant Diagrams . . . . . . . . . . . . . . . . . . . . . . 13

4.4. Proof of the NHLF Using Shadow Lines . . . . . . . . . . . . . . . . . . . . . . . . . 17

5. FUN WITH EXCITED DIAGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1. Catalan Numbers and Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2. Catalan Numbers and Excited Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . 21

6. OTHER RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.1. Lozenge Tilings and Excited Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2. Reverse Plane Partitions of Skew Staircase Shapes and q-Euler Numbers . . . . . . . 32

6.3. Future Investigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vi



REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



LIST OF FIGURES

Figure Page

2.1. Young diagrams of the partitions of 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2. The skew diagram constructed from λ and µ. . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3. Hook lengths of a Young diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.4. Two elements of SYT(5,3,3,2,1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.5. Two standard Young tableaux of skew shape. . . . . . . . . . . . . . . . . . . . . . . . . 4

2.6. Two elements of SSYT(5,3,3,2,1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.7. Two plane partitions of shape (3,3,1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.8. Two reverse plane partitions of shape (3,3,1). . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1. The first Young diagram above shows the content of each cell. The second Young
diagram shows the values of m+ c(u) for each cell. . . . . . . . . . . . . . . . . . . . . . 9

4.1. The excited diagrams of shape (5, 3, 3, 2, 1)/(3, 1, 1). . . . . . . . . . . . . . . . . . . . . 12

4.2. Hook lengths in the excited diagrams of shape (5, 3, 3, 2, 1)/(3, 1, 1). . . . . . . . . . . . 12

4.3. The pleasant diagrams of shape (2,2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.1. Catalan objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2. Finding the flag of the tableau of shape (12, 12, 10, 9, 9, 6, 6, 6)/(7, 5, 5, 4, 2). . . . . . . . 23

5.3. Constructing a flagged tableau given an excited diagram. . . . . . . . . . . . . . . . . . 23

5.4. Border strips of δ8/δ4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.5. The Kreiman decomposition for δ8/δ4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.6. Boarder strips of δ8/δ4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.7. Kreiman outer decompositions of δ8/δ4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.1. A triangular grid and lozenges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2. Excited diagrams of skew shape (3, 3, 2)/(2, 1). . . . . . . . . . . . . . . . . . . . . . . . 31

6.3. Lozenge tilings corresponding to the excited diagrams of skew shape (3, 3, 2)/(2, 1). . . . 31

viii



1. INTRODUCTION

Standard Young tableaux are a common mathematical construct in areas such as repre-

sentation theory, algebraic combinatorics, and enumerative combinatorics. In combinatorics, we

appreciate an explicit counting formula whenever it can be found. The number of standard Young

tableaux of partition shape λ, denoted fλ, is determined by the celebrated hook length formula

of Frame, Robinson, and Thrall. The product formula, which was found in 1954, is given by

fλ =
n!∏

u∈[λ] h(u)
(see Chapter 2 for definitions of notation). Stanley related this formula to the

Schur symmetric functions as follows: sλ(1, q, q2, . . . ) = qb(λ)
∏
u∈[λ]

1

1− qh(u)
. The first topic of this

paper is to explore proofs and generalizations of the hook length formula.

Recently, in 2014, Naruse found a formula that counts the number of standard Young

tableaux of skew shape λ/µ by looking at a new object called excited diagrams, ε(λ/µ). The

formula is as follows: for λ, µ partitions such that µ ⊂ λ, fλ/µ = |λ/µ|!
∑

D∈ε(λ/µ)

∏
u∈D

1

h(u)
.

In a series of papers [10, 11, 12], Morales, Pak, and Panova give multiple proofs of the

Naruse hook length formula. The second topic of this paper is to investigate these proofs and

q-analogues of the Naruse hook length formula.

Finally, we will discuss an interesting corollary that connects Dyck paths, counted by Cata-

lan numbers, with excited diagrams of thick strips.

This paper begins with Chapter 2 containing prerequisite definitions and examples. Then in

Chapter 3 we discuss the hook length formula for standard Young tableaux as well as its adaptation

for semistandard Young tableaux. Chapter 4 is dedicated to the Naruse hook length formula for

skew standard Young tableaux and three different proofs of it. In Chapter 5, we discuss a connection

between excited diagrams and Catalan numbers. Chapter 6 contains other findings from [10, 11, 12],

related recent work, and future directions of research.
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2. BACKGROUND

In this chapter, we give background definitions and formulas that are fundamental for

understanding the work of Morales, Pak, and Panova [10, 11, 12]. Many of these combinatorial

definitions are central to tableaux theory and combinatorics itself.

2.1. Definitions and Operations

The structures of Young tableaux were derived from partitions of positive integers. The

concept of partitioning integers occurs in mathematics and physics. Below we give the definition

of a partition and related ideas, followed by examples.

Definition 2.1.1. Given a positive integer n, we say λ = (λ1, . . . , λr) is a partition of n, when

λ1 + · · ·+ λr = n such that each λi is a positive integer and λ1 ≥ λ2 ≥ · · · ≥ λr. We say that the

length of λ = (λ1, . . . , λr) is r. That is, `(λ) = r. Given a partition λ = (λ1, . . . , λr) its Young

diagram, denoted [λ], is a collection of boxes, or cells, arranged in left-justified rows with λi boxes

in the i-th row. The upper left cell of [λ] is denoted (1, 1), and the rest of the cells are denoted with

(i, j) matrix indexing. The number of cells in [λ] is called the size of [λ]. We denote this as |λ| = n.

The conjugate partition of λ, written λ′, is obtained by reflecting [λ] over its main diagonal. After

this process, the first row of λ will become the first column of λ′ and so on. The Durfee square,

denoted �λ, is the largest subdiagram of [λ] that has the form {(i, j) | 1 ≤ i ≤ λ1, 1 ≤ j ≤ `(λ)}.

Consider λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs). We say [µ] ⊆ [λ] if µi ≤ λi, for all i. If [µ] ⊆ [λ],

the skew shape λ/µ is constructed by removing the boxes of [µ] from [λ]. We call a box an inside

corner of the deleted diagram µ if the box below and the box to the right of it are both not in µ.

We call a box an outside box of λ if there are no boxes below or to the right of it. Given a cell

u = (i, j) ∈ [λ], the hook length of u, h(u) = λi − i+ λ′j − j + 1, is the number of cells to the right

of u in row i and below u in column j including itself.

Example 2.1.2. There are 7 ways to partition 5; namely 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1,

and 1+1+1+1+1. Below are the Young diagrams for each of the partitions. Observe that the first

and seventh diagrams, second and sixth diagrams, and third and fifth diagrams are conjugates.
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The fourth diagram is conjugate to itself.

Figure 2.1. Young diagrams of the partitions of 5.

Example 2.1.3. Let λ = (5, 3, 3, 2, 1) and µ = (3, 1, 1). The cells in the diagram below that are

unshaded form the skew Young diagram [λ/µ]. Notice that |λ| = 14, |µ| = 5, and |λ/µ| = 9. The

inside corners are outlined in purple and the outside boxes are shown in green.

λ = µ = λ/µ =

Figure 2.2. The skew diagram constructed from λ and µ.

Example 2.1.4. For λ = (5, 3, 3, 2, 1), below we show [λ] filled with the hook length of each cell.

Notice that the Durfee square, �λ, is the (3, 3, 3) subdiagram outlined in red.

λ = 9 7 5 2 1
6 4 2
5 3 1
3 1
1

Figure 2.3. Hook lengths of a Young diagram.

The following are two of the many ways that we can fill Young diagrams:

3



Definition 2.1.5. Let λ be a partition of n. A standard Young tableau (SYT) is a filling of [λ] such

that the numbers 1, . . . , n are each used exactly once and the entries in the rows and columns are

strictly increasing. We denote the set of all SYT of shape λ as SY T (λ). The number of standard

Young tableaux of shape λ is denoted by fλ. Similarly, the set of all SYT of skew shape λ/µ is

written as SY T (λ/µ) and the cardinality of this set is fλ/µ.

Example 2.1.6. Below are two SYT of shape λ = (5, 3, 3, 2, 1).

T1 = T2 =1 2 3 4 5
6 7 8
9 10 11
1213
14

1
2
3

4
5
7 9 13
12

1014
6 11
8

Figure 2.4. Two elements of SYT(5,3,3,2,1).

Example 2.1.7. Below are two examples of SYT of shape (5, 3, 3, 2, 1)/(3, 1, 1).

3 7
1 5
4 9

2 8
6

1 2
3 4
5 6

7 8
9

T1 = T2 =

Figure 2.5. Two standard Young tableaux of skew shape.

Definition 2.1.8. A semistandard Young tableau (SSYT) is a filling of [λ] such that the entries

in the rows are increasing and the entries in the columns are strictly increasing. Notice that there

is no restriction on how many times a value is used and there is no restriction on the maximum

value of entries (unless otherwise noted). We denote the set of all SSYT of shape λ as SSY T (λ).

Similarly, the set of all SSYT of skew shape λ/µ is written as SSY T (λ/µ).

Example 2.1.9. Shown below are two SSYT of shape λ = (5, 3, 3, 2, 1).

4



T1 = T2 =1 1 1 1 1
2 2 2
3 3 3
4 4
5

2
3
8

2
7
4 8 23
15

1121
9 19
16

Figure 2.6. Two elements of SSYT(5,3,3,2,1).

Remark 2.1.10. In this paper, T will be used to represent a SYT or SSYT.

To keep track of what numbers are filling a SYT or SSYT, we define the content of a tableau.

Definition 2.1.11. Let λ be a partition and let T be a tableau of shape λ. We say the content of

T is t = (t1, t2, . . . , tm), where ti is the number of i’s in T . For any T ∈ SYT(λ), t = (1, 1, . . . , 1).

We say that |T | =
∑

i tii, that is, |T | is the sum of the entries of T .

Example 2.1.12. The SSYT from Figure 2.6 have contents t1 = (5, 3, 3, 2, 1) and

t2 = (0, 2, 1, 1, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1), respectively. So, |T1| = 5+6+9+8+5 = 33

and |T2| = 4 + 3 + 4 + 7 + 16 + 9 + 11 + 15 + 16 + 19 + 21 + 23 = 148.

We can connect the set of semistandard Young tableaux to reverse plane partitions.

Definition 2.1.13. A plane partition π of shape λ is constructed by filling [λ] with non-negative

integers where the entries are decreasing along rows and columns. The collection of all the plane

partitions of shape λ is denoted PP(λ), and the collection plane partitions of skew shape λ/µ is

denoted PP(λ/µ). A reverse plane partition π of shape λ is constructed by filling an array with

non-negative integers where the entries are increasing along rows and columns. We denote the set

of all reverse plane partitions of shape λ by RPP(λ), and the set of all reverse plane partitions of

skew shape by RPP(λ/µ). We say that π ∈ RPP(λ/µ) has support of shape ρ/ν if the cells that

have non-zero entries form the shape ρ/ν.

Example 2.1.14. Let λ = (3, 3, 1). The following are two elements of PP(λ).

5



π1 = π2 =0 0 0
0 0 0
0

5 3 1
2 1 0
2

Figure 2.7. Two plane partitions of shape (3,3,1).

Example 2.1.15. Let λ = (3, 3, 1). The following are two elements of RPP(λ).

π1 = π2 =0 0 0
0 0 0
0

0 1 2
3 3 4
3

Figure 2.8. Two reverse plane partitions of shape (3,3,1).

Notice that if we restrict RPP(λ/µ) to have strictly increasing columns, we get SSYT(λ/µ).

Therefore SSYT(λ/µ) ⊂ RPP(λ/µ).

Two of the common combinatorial statistics that are related to SYT are descents and major

index.

Definition 2.1.16. A descent of a SYT T is an index i such that i + 1 appears in a row below

i. The collection of descents of T is written as Des(T ). The major index, denoted tmaj(T ), is∑
i∈Des(T )

i.

Example 2.1.17. Recall the second SYT in Figure 2.4. Des(T ) = {1, 2, 4, 5, 7, 9, 10, 13} so

tmaj(T ) = 1 + 2 + 4 + 5 + 7 + 9 + 10 + 13 = 51.

When using tmaj(T ), we frequently also use a q-analogue of it.

Definition 2.1.18. For a variable q and positive integer i, the q-integer is defined as [i]q =

(1 + q + q2 + · · · + qi−1). The q-factorial is defined by the following: [i]q! = [i]q[i − 1]q · · · [2]q[1]q.

We say a q-analogue of an algebraic expression is a new expression dependent on q, such that when

the limit as q → 1 is applied, the result equals the original expression. For example, [n]q! is a

q-analogue of n!.

We can also define the major index of a permutation. Permutations are one of the most

widely used objects in enumerative combinatorics.

6



Definition 2.1.19. Given the set S = {1, . . . , n}, we define a permutation on S, denoted σ(S)

as a bijective map from S to S such that σ reorders S. We consider permutations as words

ω = w1w2 . . . wn where wi ∈ S and wi = wj if and only if i = j. The collection of all permutations on

n elements is called the symmetric group and is denoted Sn. For ω ∈ Sn, the descent set is given by

Des(ω) = {i | wi > wi+1, 1 ≤ i ≤ n− 1}, and the descent number is des(ω) = |Des(ω)|. In a similar

fashion, we have the inversion number of a permutation ω, where inv(ω) = |{(i, j)| wi > wj , i < j}|.

The sign of ω is defined as sgn(ω) = (−1)inv(ω). We call a permutation odd if sgn(ω) = −1, and

even otherwise. If permutation ω has the form w1 > w2 < w3 > w4 < . . . , we say ω is an alternating

permutation. The number of alternating permutations of Sn is called the Euler number, denoted

En.

Example 2.1.20. Let S = {1, 2, 3}. Then the set of all permutations on S is:

S3 = {123, 132, 213, 231, 312, 321}. The alternating permutations of S3 are 213 and 312. So

E3 = 2.

Let ω = 43152 ∈ S5. Then Des(ω) = {1, 2, 4}, so des(ω) = 3 and maj(ω) = 1 + 2 + 4 = 7. Also,

inv(ω) = |{(1, 2), (1, 3), (1, 5), (2, 3), (2, 5), (4, 5)}| = 6. Thus, sgn(ω) = (−1)6 = 1.

We can create monomials and symmetric polynomials based on the fillings of tableaux.

Definition 2.1.21. We say that a polynomial P (X1, . . . , Xn) of n variables is symmetric if for

σ ∈ Sn, P (X1, . . . , Xn) = P (Xσ(1), . . . , Xσ(n)). Let T be a SSYT and t be the content of T . Let

xT be the monomial for content t of partition λ, defined as

m∏
i=1

(xi)
ti . The symmetric polynomial of

shape λ with content t of variables x = (x1, . . . , xm) is called the Schur polynomial, and is defined by

sλ(x) =
∑

T∈SSYT(λ)

xT . A q-analogue of the Schur polynomial is sλ(1, q, . . . , qm) =
∑

T∈SSYT(λ)

q|T |. A

complete homogeneous symmetric polynomial of degree k is defined as hk =
∑

1≤i1≤···≤ik≤n
Xi1 · · ·Xik .

Example 2.1.22. Recall Figure 2.6. The contribution of the first tableau to s(5,3,3,2,1) is x51x
3
2x

3
3x

2
4x5.

The second tableau has contribution x22x3x4x7x
2
8x9x11x15x16x19x21x23 to s(5,3,3,2,1).

7



3. THE HOOK LENGTH FORMULA

The question of “How many?” is the fundamental question for the theory of enumerative

combinatorics. Hence, it is natural to ask “How many standard Young tableaux of shape λ are

there?” Further, we ask “How many semistandard Young tableaux with entries at most m of shape

λ are there?” To answer these questions, mathematicians developed the hook length formula for

SYT and the hook content formula for SSYT.

3.1. History

In 1954, Frame, Robinson, and Thrall discovered the hook length formula (HLF).

Theorem 3.1.1 ([3], Theorem 1). Let λ be a partition of n. Then

fλ =
n!∏

u∈[λ]

h(u)
,

where h(u) is the hook length of the cell u.

Example 3.1.2. The number of SYT of shape λ = (5, 3, 3, 2, 1) is as follows.

f (5,3,3,2,1) =
14!

9 · 7 · 5 · 2 · 1 · 6 · 4 · 2 · 5 · 3 · 1 · 3 · 1 · 1
= 14 · 13 · 11 · 8 · 4 = 64064

Frame, Robinson, and Thrall’s proof relies on the Frobenius formula [18], which computes

the characters of the irreducible representations of Sn corresponding to a partition λ. Although

their formula has been widely used, their proof of the HLF has not. Many feel that the proof is

unintuitive. A proof that more clearly incorporates the role of the hook lengths was developed by

Hillman and Grassl [5].

Their strategy begins with finding a generating function based on the number of π ∈

RPP(λ). Next, they define a bijection between the set RPP(λ) and the set of s-tuples of the

multiplicities of hook lengths. They use this bijection to prove that the generating function for

RPP(λ) is the same the generating function for the set of s-tuples, thus, proving the HLF.

8



3.2. Hook Content Formula

The enumeration formula for SSYT is called the hook content formula. This counts the

number of SSYT of shape λ with entries at most m. The hook content formula was alluded to by

Littlewood and Richardson, but the first precise statement was given by Stanley [21].

Now let us state the hook content formula (HCF) for SSYT of shape λ with entries at most

m.

Theorem 3.2.1 ([2, 21]). The number of SSYT of shape λ and entries at most m is computed by

∏
u∈[λ]

m+ c(u)

h(u)
,

where c(u) = j − i for cell u = (i, j).

Remark 3.2.2. We call c(u) the content of cell u for u ∈ [λ].

Example 3.2.3. Recall Figure 2.6. Let us compute the number of SSYT(5, 3, 3, 2, 1) with en-

tries at most 6. The number of SSYT of shape (5,3,3,2,1) with entries at most m = 6 equals

6 · 7 · 8 · 9 · 10 · 5 · 6 · 7 · 4 · 5 · 6 · 3 · 4 · 2
9 · 7 · 5 · 2 · 1 · 6 · 4 · 2 · 5 · 3 · 1 · 2 · 1 · 1

= 20160.

0 1 2 3 4
-10 1
-2 -1 0
-3 -2
-4

6 7 8 9 10
5 6 7
4 5 6
3 4
2

Figure 3.1. The first Young diagram above shows the content of each cell. The second Young
diagram shows the values of m+ c(u) for each cell.

3.3. q-analogues of the Hook Length Formula and Hook Content Formula

There are numerous other versions and generalizations of the HLF and HCF. One general-

ization, due to Stanley, is a q-analogue of the HCF.

Theorem 3.3.1 ([21], Theorem 7.21.2). Let λ be a partition. Then the Schur polynomial sλ(x1, . . . , xm)

9



with xi = qi−1 is given by

sλ(1, q, . . . , qm−1) = qb(λ)
∏
u∈[λ]

[m+ c(u)]q
[h(u)]q

with b(λ) =
∑

i(i− 1)λi.

Theorem 3.3.1 has the following corollaries.

Corollary 3.3.2 ([21], Corollary 7.21.3). For any partition λ, we have

sλ(1, q, q2, . . . ) = qb(λ)
∏
u∈λ

1

1− qh(u)
,

where b(λ) =
∑

i(i− 1)λi.

Remark 3.3.3. One can derive the HLF from its q-analogue by Stanley’s theory of P -partitions

[20] or by a geometric argument of Pak [16]. Pak’s argument is centered around taking the volume

of cones of functions.

By taking the limit as q approaches 1 in Corollary 3.3.2, the HLF is obtained. Therefore,

Corollary 3.3.2 is considered a combinatorial q-analogue of the HLF.

Corollary 3.3.4 ([21], Corollary 7.21.5). Let λ be a partition of n. Then,

∑
T∈SY T (λ)

qmaj(T ) =
qb(λ)[n]q!∏
u∈[λ][h(u)]q

.
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4. HOOK LENGTH FORMULA FOR SKEW SHAPES

Naturally, in mathematics, when a new object is defined that is derived from another, we

try to see what results from the known object can be adapted for the new. Since we know the hook

length formula, it is natural to try and find a formula that enumerates skew standard tableaux of

shape λ/µ. In this chapter, we will discuss this recently found formula and its proofs.

4.1. Naruse Hook Length Formula

In 2014, Naruse found the following formula and presented it, unproven, at a conference:

Theorem 4.1.1 (Naruse Hook Length Formula (NHLF), [14]). Let λ, µ be partitions such that

µ ⊂ λ. Then

fλ/µ = |λ/µ|!
∑

D∈ε(λ/µ)

∏
u∈[λ]\D

1

h(u)
.

Subsequently, the formula we proven by Morales, Pak, and Panova in three different ways

[10]. We will discuss these different proofs of the NHLF. Before we can see an example of the

NHLF, we must first introduce excited diagrams.

Definition 4.1.2 ([14]). Let λ/µ be a skew partition and D be a subset of the Young diagram of

λ. A cell u = (i, j) ∈ D is called active if (i + 1, j), (i, j + 1) and (i + 1, j + 1) are all in [λ] \D.

For an active cell u ∈ D, αu(D) is the set obtained by replacing (i, j) in D by (i + 1, j + 1). This

process is called an excited move. An excited diagram of λ/µ is a sub-diagram of λ obtained from

the Young diagram of µ after a sequence of excited moves on excited cells. Let ε(λ/µ) be the set

of excited diagrams of λ/µ and e(λ/µ) = |ε(λ/µ)|.

Remark 4.1.3. Notice that if µ = ∅, then there is a unique excited diagram D = ∅. In this case,

the NHLF simplifies to the HLF.

Example 4.1.4. Let λ = (5, 3, 3, 2, 1) and µ = (3, 1, 1). The shape λ/µ is an excited diagram with

D = [µ] and no excited moves completed. In Figure 4.1, the cell outlined in red is active since the

cells below, right, and diagonal from it are in [λ/µ]. We complete an excited move to get another

excited diagram. There are no other spaces we can move that cell in D, so we move to the next

11



cell, outlined in blue. This is another active cell. We do another excited move to get our last

excited diagram. This is the final excited diagram, since there are no other cells in D that have

the surrounding three cells in λ/µ.

Figure 4.1. The excited diagrams of shape (5, 3, 3, 2, 1)/(3, 1, 1).

Now let us use the NHLF to find the number of SYT of shape λ/µ.

Example 4.1.5. For λ and µ as in the previous example, we observe that |λ/µ| = 9. In figure

4.2, we have the three excited diagrams of shape (5, 3, 3, 2, 1)/(3, 1, 1) filled with their hook lengths.

Then, by the NHLF,

fλ/µ = 9!

(
1

2 · 1 · 4 · 2 · 3 · 1 · 3 · 1 · 1
+

1

2 · 1 · 4 · 2 · 5 · 3 · 1 · 3 · 1
+

1

2 · 1 · 6 · 4 · 2 · 5 · 1 · 3 · 1

)
= 3276.

9 7 5 2 1
6 4 2
5 3 1
3 1
1

9 7 5 2 1
6 4 2
5 3 1
3 1
1

9 7 5 2 1
6 4 2
5 3 1
3 1
1

Figure 4.2. Hook lengths in the excited diagrams of shape (5, 3, 3, 2, 1)/(3, 1, 1).

4.2. Proof of the NHLF Using Excited Diagrams

Similar to the HLF having a q-analogue, there is also a q-analogue from which the NHLF

can be derived.
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Theorem 4.2.1 ([10], Theorem 1.4). For λ/µ, we have

sλ/µ(1, q, q2, . . . ) =
∑

S∈ε(λ/µ)

∏
(i,j)∈[λ]\S

qλ
′
j−i

1− qh(i,j)
.

In Stanley’s theory of (P, ω)-partitions [20], he shows the following equality:

sλ/µ(1, q, q2, . . . ) =

∑
T q

tmaj(T )

(1− q)(1− q2) · · · (1− qn)
(4.1)

where T ∈ SYT(λ/µ). Now we will outline the proof found in [10] that the q-analogue of the NHLF

implies the NHLF.

Proof of Theorem 4.1.1. We begin by multiplying both sides of the equation (4.1) by

(1− q)(1− q2) · · · (1− qn). Using Theorem 4.2.1, we have

∑
T∈SYT(λ/µ)

qtmaj(T ) =

n∏
i=1

(1− qi)
∑

D∈ε(λ/µ)

∏
(i,j)∈[λ]\D

qλ
′
i−i

1− qh(i,j)
.

Since all of the excited diagrams D ∈ ε(λ/µ) have the same size, |λ/µ|, we obtain the NHLF by

taking the limit as q approaches 1.

4.3. Proof of the NHLF Using Pleasant Diagrams

The second proof of the NHLF by Morales, Pak, and Panova [10] relies on the relationship

between pleasant diagrams and excited diagrams.

Definition 4.3.1 ([5]). We define the Hillman-Grassl map, Φ, by using the following process. Let

π ∈ RPP(λ) and let A be an array of zeros of shape λ. The following defines the map Φ. Let p be

a path of north steps, (0, 1), and east steps, (1, 0), in π such that:

1. The path p starts at the most southwest nonzero entry in π. Denote cs by the column of the

starting entry.

2. If p reaches (i, j) and πi,j = πi−1,j > 0, then p will move north to cell (i− 1, j). However, if

0 < πi,j < πi−1,j , then p will move east to cell (i, j + 1).
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3. When there are no possible east moves remaining, p terminates. Denote rf to be the row of

the final entry.

Now let π′ be constructed by subtracting 1 from every entry in the path p. Notice that π′ ∈ RPP(λ).

Then in A, add 1 to position Acs,rf to obtain A′. Continue the process until the reverse plane

partition has only zeros for entries.

Theorem 4.3.2 ([5]). Let A(λ) denote the set of all fillings of [λ] with nonnegative integers. The

Hillman-Grassl map Φ : RPP (λ)→ A(λ) is a bijection.

We next discuss the application of the Hillman-Grassl map to pleasant diagrams, which

establishes a theorem required in the proof of Theorem 4.1.1.

Definition 4.3.3 ([10, 11]). Let λ be a partition. For an integer k, where 1 − `(λ) ≤ k ≤ λi − 1,

let dk be the diagonal {(i, j) ∈ λ/µ | i − j = k}. Let �λ
k be the largest rectangle with i rows and

i + k columns that is a subdiagram of λ starting at (1, 1). We say that a diagram S ⊂ [λ] is a

pleasant diagram of λ/µ if, for all k ∈ Z, with 1 − `(λ) ≤ k ≤ λ1 − 1, the subarray Sk := S ∩ �λ
k

has no descending chain larger than the length sk of the diagonal dk of λ/µ. Let P(λ/µ) be the

set of pleasant diagrams of λ/µ. Let p(λ/µ) = |P(λ/µ)|.

Example 4.3.4 ([11]). Let λ = (2, 2) and µ = (1). The pleasant diagrams cannot have descending

chains in S−1, S0, and S1 of sizes greater than one. Hence, we must exclude the subsets of [λ] =

{(1, 1), (1, 2), (2, 1), (2, 2)} that contain the descending chain ((1, 1), (2, 2)). So of the sixteen subsets

of [λ], twelve are pleasant diagrams. Below are all of the subsets of [λ], with the pleasant diagrams

outlined in blue.

Figure 4.3. The pleasant diagrams of shape (2,2).
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The second proof of the NHLF also requires two theorems from [10], which we give without

proof.

Theorem 4.3.5 ([10], Theorem 6.3). A reverse plane partition π ∈ RPP(λ) has support in a skew

shape λ/µ if and only if the support of Φ(π) is a pleasant diagram in P(λ/µ). Moreover,

∑
π∈RPP (λ/µ)

q|π| =
∑

S∈P(λ/µ)

[∏
u∈S

qh(u)

1− qh(u)

]
.

Theorem 4.3.6 ([10], Theorem 6.5). A pleasant diagram S ∈ P(λ/µ) has size |S| ≤ |λ/µ|. S has

maximal size |S| = |λ/µ| if and only if the complement [λ]\S = S is an excited diagram in ε(λ/µ).

The proof also requires a theorem given by Stanley in [20]. Before we can give the statement

of the proof, we need to establish some definitions and notation. The following two sets of definitions

can be found in [20].

Definition 4.3.7 ([20], Section 3.1). A partially ordered set P (poset) is a set with an associated

binary relation, which we denote ≤, such that

• for all x ∈ P, x ≤ x,

• if x ≤ y and y ≤ x, then x = y, and

• if x ≤ y and y ≤ z, then x ≤ z.

These properties are called reflexivity, antisymmetry, and transitivity, respectively.

Remark 4.3.8. We can view Young diagrams as posets by considering the following: For two cells

of [λ/µ], u = (i, j) and v = (i′, j′), we say u ≤ v in the poset Pλ/µ if and only if i ≤ i′ and j ≤ j′.

Definition 4.3.9 ([20], Section 3.15). Let P be a finite poset with p elements. Then a bijection

ω : P → {1, . . . , p} is called a labeling of P . We define a (P, ω)-partition as a map σ : P → N that

satisfies:

• if x ≤ y in P , then σ(x) ≥ σ(y) (σ is called order-reversing).

• if x < y and ω(x) > ω(y), then σ(x) > σ(y).
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If
∑
t∈P

σ(t) = n, then σ is a (P, ω)-partition of n. The fundamental generating function associated

with (P, ω)-partitions is given by

FP,ω(x1, . . . , xp) =
∑
σ

x
σ(t1)
1 · · ·xσ(tp)p ,

where the sum is over all σ ∈ (P, ω)-partitions. A linear extension of a poset is a labeling ω such

that ω(x) < ω(y) implies x < y. We denote the set of all linear extensions of P by ω as L(P ). Let

a(n) be the number of (P, ω)-partitions of n. Define the generating function GP,ω(x) =
∑
n≥0

a(n)xn.

Also, let WP,ω(x) =
∑

ω∈L(P )

xmaj(ω).

Theorem 4.3.10 ([20], Theorem 3.15.7). We have

GP,ω(x) =
WP,ω(x)

(1− x)(1− x2) · · · (1− xp)
.

This theorem of Stanley’s is used to begin the second proof of the NHLF from [10].

Proof of Theorem 4.1.1. Let n = |λ/µ| and consider the poset Pλ/µ of the skew diagram λ/µ. Then,

∑
π∈RPP(λ/µ)

q|π| =
WPλ/µ,ω(q)∏n
i=1(1− qi)

. (4.2)

If we multiply both sides of equation (4.2) by
∏n
i=1(1− qi), then we have

(
n∏
i=1

(1− qi)

) ∑
S∈P(λ/µ)

∏
u∈S

qh(u)

1− qh(u)
=

∑
ω∈L(Pλ/µ)

qmaj(ω). (4.3)

By Theorem 4.3.6, the pleasant diagrams S ∈ P(λ/µ) have size |S| ≤ n, and |S| = n when

S ∈ ε(λ/µ). By letting q → 1 in (4.3),
∑

ω∈L(Pλ/µ)

qmaj(ω) becomes fλ/µ. Also, the left-hand side of

the equation transforms to ∑
S∈ε(λ/µ)

∏
u∈S

1

h(u)
.
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That is, we have

fλ/µ = |λ/µ|!
∑

S∈ε(λ/µ)

∏
u∈S

1

h(u)

as desired.

4.4. Proof of the NHLF Using Shadow Lines

The third proof of the NHLF provided in [10] is based on Stanley’s theory of P -partitions

and the enumeration of pleasant diagrams of shape λ/µ. However, to use the enumeration, we

require the following somewhat conceptual definitions.

Definition 4.4.1 ([23]). Consider S ∈ P(λ/µ). First, we visualize a light source located in the

(1, 1) cell of [λ] and any elements of S cast shadows along the axes positioned on the north and west

borders of [λ]. The boundary of the casted shadows forms the shadow line L1. We can recursively

define the set of Li’s by the following method:

1. Delete any of the elements in S that were in the previous shadow lines.

2. Designate the shadow line formed by the remaining elements of S as the new shadow line.

Continue the above process until there are no remaining elements of S.

Now on excited diagrams, we discuss the idea of excited peaks.

Definition 4.4.2 ([11]). Let D ∈ ε(λ/µ). We call the subset [λ] \ D, denoted Λ(D), the set of

excited peaks. For D with active cell u = (i, j), the excited peaks of αu(D) are

λ(αu(D)) = (Λ(D) \ {(i, j + 1), (i+ 1, j)}) ∪ {u}. When [µ] ∈ ε(λ/µ), then Λ([µ]) = ∅. We denote

the number of excited peaks of D as expk(D) := |Λ(D)|.

Using the definition of excited peaks, the number of pleasant diagrams of skew shape can

be enumerated.

Theorem 4.4.3 ([11], Theorem 6.14). Let λ and µ be partitions with µ ⊂ λ.

|P(λ/µ)| =
∑

D∈ε(λ/µ)

2|λ/µ|−expk(D).
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Corollary 4.4.4 ([11], Corollary 6.17). Let λ and µ be partitions with µ ⊂ λ.

∑
π∈RPP(λ/µ)

q|π| =
∑

D∈ε(λ/µ)

qa
′(D)

∏
u∈[λ]\D

1

1− qh(u)

Now we can give the third proof of the NHLF from [10].

Proof of Theorem 4.1.1. We begin the proof by recalling the generating function from Theorem

4.3.10. Then we procure (4.2). When we multiply both sides of (4.2) by
n∏
i=1

(1 − qi) for n = |λ/µ|

and use Corollary 4.4.4, we arrive at the following:

∑
ω∈L(Pλ/µ)

qmaj(ω) =

n∏
i=1

(1− qi)
∑

D∈ε(λ/µ)

qa
′(D)

∏
u∈[λ]\D

1

1− qh(u)
.

Now we take the limit of the above equation as q → 1. Therefore, the NHLF has been proved.
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5. FUN WITH EXCITED DIAGRAMS

Excited diagrams are not only crucial in the development of the NHLF, but have surprising

results that are connected to Catalan objects. The Catalan numbers were named after Eugéne

Charles Catalan. This is a sequence of numbers that arises in many counting problems.

5.1. Catalan Numbers and Objects

Any objects that are counted by the Catalan numbers are Catalan objects. The sequence

of Catalan numbers is 1, 1, 2, 5, 14, 42, 132,. . . . The n-th Catalan number is found by using one

of the following equivalent formulas:

Cn =
1

n+ 1

(
2n

n

)
=

(2n)!

(n+ 1)!n!
=

(
2n

n

)
−
(

2n

n+ 1

)
=

n∏
k=2

n+ k

k
.

Two types of the Catalan objects that are relevant to this paper are SY T (λ) where λ = (n, n) and

Dyck paths. See [19] for many more Catalan objects.

Definition 5.1.1. A Dyck path is a path in the plane that begins at (0, 0) and ends (2n, 0), using

only up-steps (1, 1) and down-steps (1,−1), and never going below the x-axis.

Proposition 5.1.2 ([19]). The number of Dyck paths from (0, 0) to (2n, 0) equals the n-th Catalan

number, Cn.

Proof. Consider all paths from (0, 0) to (2n, 0) consisting of up-steps (1, 1) and down-steps (1,−1).

Each path has n up-steps and n down-steps. Thus, there are
(
2n
n

)
possible paths. However, some

of these paths will go below the x-axis. That is, not all of the
(
2n
n

)
paths are Dyck paths. For any

non-Dyck path, pick the point with the most negative y-coordinate. If there are multiple points

with this same y-coordinate, then pick the point furthest to the left. Now change the down-step

immediately to the left of this point to an up-step. But now the path will have n + 1 up-steps

and n − 1 down-steps, resulting in an endpoint of (2n, 2). Hence, we have constructed a map

f : {non-Dyck paths from (0, 0) to (2n, 0)} → {all paths from (0, 0) to (2n, 2)}.

Now we construct the inverse map, f−1. For a path from (0, 0) to (2n, 2), find the point

19



with the most negative y-coordinate. This time, if there are multiple points having the same most

negative y-coordinate, pick the point furthest to the right. Change the up-step immediately to the

right of this point to a down-step. This is the inverse of f since it will change the extra up-step

created by f to a down-step, leaving the rest of the path unchanged. Thus, f is a bijection. Since

the set of all paths from (0, 0) to (2n, 2) are counted by

(
2n

n+ 1

)
, the number of Dyck paths from

(0, 0) to (2n, 0) is

(
2n

n

)
−
(

2n

n+ 1

)
= Cn.

Proposition 5.1.3 ([19]). For λ = (n, n), |SY T (λ)| = Cn.

Proof. We show this class of SYT are Catalan objects by constructing a bijection with Dyck paths.

First, notice that |λ| = 2n and the length of a Dyck path is 2n. Numbers in the top row of the

SYT correspond to up-steps and numbers in the bottom row of the SYT correspond to down-steps.

That is, for i in the top row, the i-th step of the corresponding Dyck path is an up-step, and for

i in the bottom row, the i-th step is a down step. The condition that the rows and columns are

increasing corresponds exactly to the condition that the Dyck path cannot go below the x-axis.

Example 5.1.4. Below are the Catalan objects for Dyck paths of length 2n and SYT of shape

λ = (n, n), for n = 1, 2, 3.

1
2

1 2
3 4

1
2
3
4

1 2 3
4 5 6

1
2
3 4
5 6

1 2
3

4
5 6

1 2 5
3 4 6

1 3 5
2 4 6, ,

, ,

Figure 5.1. Catalan objects.
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Remark 5.1.5 ([9]). The following is a notable determinant:



C1 C2 · · · Cn

C2 C3 · · · Cn+1

...
...

. . .
...

Cn Cn+1 . . . C2n


= 1.

5.2. Catalan Numbers and Excited Diagrams

In this section, we discuss a corollary that shows the number of excited diagrams of staircase

shape is enumerated by a determinant of Catalan numbers.

Definition 5.2.1. A Young diagram of shape δn = (n−1, n−2, . . . 2, 1) is staircase shaped. Further,

the skew diagram δn+2k/δn is called thick strip.

Corollary 5.2.2 ([11], Corollary 8.1). The number of excited diagrams of thick strip shape is given

by the following: e(δn+2/δn) = Cn, e(δn+4/δn) = CnCn+2 − C2
n+1, and in general,

e(δn+2k/δn) = det[Cn−2+i+j ]
k
i,j=1 =

∏
1≤i<j≤n

2k + i+ j − 1

i+ j − 1
. (5.1)

To prove this interesting corollary, we will introduce another type of tableau.

Definition 5.2.3 ([10]). Let µ be a partition. Let f = (f1,f2, . . . ,f `(µ)) be a sequence of positive

integers, which we call a flag. Given a flag f , the flagged tableaux of shape µ are a subset of

SSY T (µ) such that the entries in row i are at most fi. We write the set of flagged tableaux of

shape µ and flag f as F(µ,f). A cell (x, y) of T in F(µ,f) is active if increasing Tx,y by 1 gives a

flagged tableau, T ′, in F(µ,f). We call this map a flagged move, denoted α′x,y(T ) = T ′. We denote

the tableau of shape µ with all entries in row i equal to i as Tµ.

The number of F(µ,f) is given by the following proposition:

Proposition 5.2.4 ([4, 24]). Using the above notation, we have the following equalities:

|F(µ,f)| = det [hµi−i+j(f i)]
`(µ)
i,j=1 = det

[(
f i + µi − i+ j − 1

µi − i+ j

)]`(µ)
i,j=1
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where hk(x1, x2, . . . ) is the complete homogeneous symmetric function.

Definition 5.2.5 ([10]). We define the flag fλ/µ = (f1,f2, . . . ,f `(µ)) as follows. Let f i be the

row of λ in which the last cell of row i of µ ends after applying all possible excited moves to µ.

We define a map φ : ε(λ/µ)→ F(µ,fλ/µ) as follows. Let (i, j) be a box in the excited diagram D.

Let (xi, yj) be the position of the box after applying excited moves to the excited diagram until no

more are possible. Construct T := φ(D) by putting j in the box (xi, yj) of µ. That is, Txi,yj := j.

We do this for each box in the excited diagram.

Proposition 5.2.6 ([10], Proposition 3.6). The map φ : ε(λ/µ)→ F(µ,fλ/µ) is a bijection. More-

over, e(λ/µ) = |F(µ,fλ/µ)|.

Proof. [10] We begin by proving that φ is well-defined. That is, we want to show that T = φ(D)

is a SSYT through induction on the number of excited moves of D. Assume D ∈ ε(λ/µ). Notice

that φ([µ]) = Tµ, which is a SSYT. Now, T = φ(D) is a SSYT and that D′ = α(i,j)(D) corresponds

to (xi, yj) ∈ [µ] for an active cell (i, j) ∈ D. We get T ′ = φ(D) from T by adding 1 to the entry

Txi,yj = i and leaving the remaining entries unchanged. For (xi + 1, yj) ∈ [µ], since (i+ 1, j) is not

a cell in D, the cell of the diagram corresponding to (xi + 1, yj) is located in a row below i + 1.

Hence T ′xi,yj = i+ 1 < Txi+1,yj = T ′xi+1,yj
. Similarly, if (xi, yj + 1) ∈ [µ], since (i, j + 1) is not a cell

in D, then the cell of the diagram corresponding to (xi, yj + 1) is located in a row below i. Thus,

T ′xi,yj = i+ 1 ≤ Txi,yj+1 = T ′ + xi, yj + 1. Therefore, T ′ ∈ SSYT(λ/µ).

Now, we want to show that T ∈ F(µ,fλ). Let D ∈ ε(λ/µ). If the cell (i, j) ∈ D corresponds

to (xi, yj) ∈ [µ], then yj ≤ f j by definition of the flag fλ/µ. Hence, Txi,yj ≤ f j .

Lastly, we will show φ is a bijection by constructing its inverse. Let T ∈ F(µ,fλ/µ) and

let D = ψ(T ) where D = {(x + Tx,y, y + Tx,y)|(x, y) ∈ [µ]}. Now we want to show that our

new map ψ is well-defined. Notice that D ⊆ [λ] from the definition of the flag fλ/µ. We want

to prove that D ∈ ε(λ/µ) by inducting on the number of flagged moves, α′x,y(·). Notice that

ψ(Tµ) = [µ] ∈ ε(λ/µ). Suppose that for T ∈ F(µ,fλ/µ), D = ψ(T ) ∈ ε(λ/µ) and T ′ = α′x,y(T ) for

some active cell (x, y) ∈ T . Notice that the replacement of Tx,y with Tx,y + 1 resulting a flagged

tableau T ′ ∈ F(µ,fλ/µ) is equivalent to the cell (x + Tx,y, y + Tx,y) ∈ D being active. Since

ψ(T ′) = αix,iy(D) and αix,iy(D) is an excited diagram, we have constructed ψ = φ−1.
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Example 5.2.7. Let λ = (12, 12, 10, 9, 9, 6, 6, 6), µ = (7, 5, 5, 4, 2), and refer to the image below.

For each row i of µ we record as f i the row of λ in which the last cell of row i of µ ended after a

sequence of all possible excited moves. Thus, we have the flag fλ/µ = (3, 5, 5, 6, 8).

fk1 = 3
fk2 = 5

fk5 = 6
fk4 = 8

fk3 = 5

Figure 5.2. Finding the flag of the tableau of shape (12, 12, 10, 9, 9, 6, 6, 6)/(7, 5, 5, 4, 2).

Example 5.2.8. Now we give an example of the map φ. For a blue cell (i, j) in the image below,

its value is j in T . If we perform reverse excited moves, that is, determine its original location, this

tells the row location of xi in the tableau.

1 1 1 1 1
2 2 2 2
3 3

3
3 3

4 4
5 5

5
6 6

7 8

Figure 5.3. Constructing a flagged tableau given an excited diagram.

These two propositions combine to give the following corollary:
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Corollary 5.2.9 ([10], Corollary 3.7). Let λ and µ be partitions such that µ ⊂ λ and fλ/µ be as

in Definition 5.2.5. Then

e(λ/µ) = det

[(
f i + µi − i+ j − 1

f i − 1

)]`(µ)
i,j=1

.

In order to prove Corollary 5.2.2, we require a result that counts the number of non-

intersecting lattice paths. This result was predicted by Lindström, but stated by Gessel and

Viennot [20]. The statement of the lemma depends on the following definitions.

Definition 5.2.10 ([20]). Let A = {a1, . . . , an} be a collection of starting points and B =

{b1, . . . , bn} be a collection of ending points in the two-dimensional lattice. A lattice path from

ai to bj is a sequence of north steps, (0, 1), and east steps (1, 0) beginning at point ai and ending

at point bj . Let us denote the number of lattice paths from ai to bj as pij . An n-tuple of non-

intersecting lattice paths from A to B are paths (P1, . . . , Pn) such that for all i 6= j, Pi and Pj have

no point in common. For clarity of notation, we define a matrix

M =



p11 p12 · · · p1n

p21 p22 · · · p2n
...

...
. . .

...

pn1 pn2 . . . pnn


.

The lemma below states det(M) is the number of non-intersecting lattice paths from A to

B.

Lemma 5.2.11 (Lindström, Gessel-Viennot Lemma, [4]). Using the notation established in the

previous definition, we have that the number of tuples (P1, . . . Pn) of non-intersecting lattice paths

is given by det(M).

Below is a definition of a type of non-intersecting lattice paths for Young diagrams of

staircase shape.

Definition 5.2.12 ([11]). A border strip of [λ] is a connected skew shape without any 2×2 squares.

The starting point of the strip is located at a southwest cell from the endpoint. An outer border
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strip is the strip from the most southwest cell of [λ] to the most northeast cell which contains all

the cells that share a vertex with the outside corners. The Lascoux-Pragacz decomposition of λ/µ

decomposes [λ/µ] into k-maximal outer border strips by using the following process:

1. Let θ1 be the outer border strip of [λ].

2. Let θ2 be the outer border strip of [λ] \ θ1.

3. Continue defining each θj as the outer border strip of [λ] \ θj−1 until an outer border strip

intersects [µ].

4. Once [µ] begins to be intersected, decompose the remaining smaller connected components.

We refer to θ1 as the cutting strip and denote it as τ . For p, q ∈ Z, we write the substrip of the

cutting strip from p to q as ϕ[p, q]. We say that ϕ[p, p] = (1), ϕ[p + 1, p] = ∅, and for p > q + 1,

ϕ[p, q] is undefined. Let p(θi) and q(θi) be the contents of the starting and ending point of the strip

θi. Then we define the strip θi#θj as the substrip ϕ[p(θj), q(θi)] of τ .

Example 5.2.13. In the example for δ8/δ4 below, we see the θ1 and θ2 are border strips. Notice

the cutting strip θ1 connects outside corners.

θ1

θ2

Figure 5.4. Border strips of δ8/δ4.

Theorem 5.2.14 ([7]). If (θ1, . . . , θk) is the Lascoux-Pragacz decomposition of [λ/µ] into k maximal

outer border strips, then

e(λ/µ) = det
[
e(θi#θj)

]k
i,j=1

,

25



where e(∅) = 1, and whenever ϕ[p, q] is undefined, e(ϕ[p, q]) = 0.

We give another definition of a type of non-intersecting lattice paths for Young diagrams of

staircase shape.

Definition 5.2.15. Consider δn+2k/δn. We define a tuple of border strips strip (γ∗1 , . . . , γ
∗
k), called

the Kreiman decomposition of δn+2k/δn, by the following process:

• Let γ∗1 be the border strip that begins at cell (n+ 2k − 1, 1) and ends at cell (1, n+ 2k − 1)

which contains the cells that are below inside corners of the skew shape.

• Let γ∗2 be the border strip that begins at cell (n+ 2k − 2, 2) and ends at cell (2, n+ 2k − 2)

which contains the cells below γ∗1 .

• Continue defining each γ∗i as the inner border strip until there are k border stips.

The support of (γ∗1 , . . . , γ
∗
k) is the set of boxes in the paths (γ∗1 , . . . , γ

∗
k). Now we let NI(δn+2k/δn)

denote the Kreiman decomposition of δn+2k/δn.

Example 5.2.16. In the figure given below, we observe the Kreiman decomposition for δ8/δ4.

γ1
γ2

Figure 5.5. The Kreiman decomposition for δ8/δ4.

In [7], Kreiman proved that the supports of the paths in NI(λ/µ) are precisely the com-

plements of ε(λ/µ).

Proposition 5.2.17 ([7]). The k-tuples of paths in NI(λ/µ) are uniquely determined by their

supports in [λ]. Moreover, the supports are exactly the complements of excited diagrams of [λ/µ].
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Now we return to the proof of Corollary 5.2.2 from [11].

Proof of Corollary 5.2.2. We first prove the case where k = 1. In this case, we have δn+2/δn,

the zigzag outer border strip. From Proposition 5.2.6, we know that the complement of excited

diagrams of δn+2/δn are the paths γ : (n + 1, 1) → (1, n + 1), γ ⊆ δn+2. A rotation of these paths

by −π
4 radians gives us Dyck paths of length 2n. Hence, e(δn+2/δn) = Cn.

Now we consider the general case for k. Then δn+2k/δn has the Lascoux-Pragacz decompo-

sition into k maximal border strips (θ1, . . . θk). Theorem 5.2.14 implies that

e(δn+2k/δn) = det
[
e(θi#θj)

]k
i,j=1

.

Recall that the cutting strip of δn+2k/δn is τ = θ1. The strips θi#θj that are in the determinant

are also zigzags, since they are substrips of τ . The strip θi#θj ∈ θ1 are cells with content from

2 + 2j − n − 2k to n + 2k − 2i − 2. Thus, the strip is a zigzag δm+2/δm of size 2m + 1, where

m = n+ 2k + i+ j + 2. From the above case, we know that δm+2k/δm is counted by Cm. Hence,

e(δn+2k/δn) = det
[
Cn+2k−i−j−2

]k
i,j=1

= det
[
Cn+i+j−2

]k
i,j=1

.

The last equality above results from a relabeling of the matrix. Hence, the first equality of (5.1) is

proved.

In order to prove the second equality of (5.1), we use the characterization of excited diagrams

as flagged tableaux. Recall Proposition 5.2.6. Then we have that ε(δn+2k/δn) is in bijection with

flagged tableaux of shape δn with flag (k + 1, k + 2, . . . , k + n − 1). When we subtract i from all

cells in row i, the resulting tableaux are equivalent to reverse plane partitions in RPP(δn) having

entries at most k. These are enumerated by the product formula due to [17].

Example 5.2.18. Let k = 1. In this case, the remaining strip of δn+2/δn is the zigzag border

strip. A rotation of the border strip by −π
4 radians reveals that the shape is merely a Dyck path.

In Proposition 5.1.2, we saw that Dyck paths are enumerated by Cn. Now we consider the general

equalities. For the first equality, we begin with a skew Young diagram of shape δn+2k/δn. Then we
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create border strips, not necessarily of zigzag shape. To do so, we pick the most southeast cell and

create a path to the most northeast cell by going through the corner cells. The first image below

is of the border strips of δ8/δ4 when no excited moves have been performed. The second image is

of border strips of δ8/δ4 when two excited moves have occurred and the third is after three excited

moves have been done.

θ1

θ2 θ2θ2

θ1 θ1

Figure 5.6. Boarder strips of δ8/δ4.

We change these to Kreiman outer decompositions by instead picking the most southwest cell and

moving to the most northeast cell by going on the most northerly path. These paths are also

Dyck paths. We obtain more Dyck paths by completing excited moves. The first image shows the

Kreiman outer decomposition of δ8/δ4 when no excited moves have been done. The second image

depicts the Kreiman outer decomposition after two excited moves and the third image is after three

excited moves.

γ1
γ2γ1 γ2γ1

γ2

Figure 5.7. Kreiman outer decompositions of δ8/δ4.

Notice that these paths will never intersect and are actually a type of lattice path. Thus, we
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can apply Lemma 5.2.11. Hence we arrive at a determinant. Since the case of k = 1 established

these paths are counted by Cn, we get the desired result. For the second equality, we observe

that ε(δn+2k/δn) is in bijection with flagged tableaux of shape δn with flag f δn+2k/δn = (k + 1, k +

2, . . . , k + n − 1). If we subtract i from each i−th row, the result is equivalent to reverse plane

partitions of shape δn and have entries less than or equal to k. To conclude this example we find

the number of excited diagrams of shape δ8/δ4 as shown below:

det

C6 C5

C5 C4

 = C6C4 − C2
5 = (132)(14)− (42)2 = 84.

Applying Proposition 5.2.6 to Corollary 5.2.2, yields the following corollary.

Corollary 5.2.19 ([11], Corollary 8.3).

det

[(
n− i+ j

i

)]n−1
i,j=1

= Cn.

Proof. From Corollary 5.2.2, we have |ε(δn+2/δn)| = Cn. Now we use Proposition 5.2.9 for δn+2/δn

with flag f δn+2/δn = (2, 3, . . . , n). Then we have that |ε(δn+2/δn)| is found by the determinant

above.
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6. OTHER RESULTS

Amongst the many additional topics covered in the series of papers by Morales, Pak, and

Panova [10, 11, 12] are results on Lozenge tilings and excited diagrams. In this chapter, we discuss

some these results as well as some subsequent work of other authors.

6.1. Lozenge Tilings and Excited Diagrams

Another visual interpretation of an excited diagrams is as a lozenge tiling.

Definition 6.1.1 ([12]). Consider a triangular grid in the plane where two of the axes are identified

as x and y, as denoted below. Adjacent triangles that are paired are called lozenges. When a

lozenge’s long axis is horizontal, we call it a horizontal lozenge. In the image below, we have

the triangular grid and three possible lozenges (the horizontal lozenge shown in green). The local

weight is denoted wt(T ) :=
∏

(i,j)∈hl(T )(xi− yi), where T is a tiling of a grid and hl(T ) is the set of

horizontal lozenges. That is, the weight of each of the horizontal lozenges is assigned by its position

with respect to the x and y axes. Given a partition µ and d ∈ Z, consider the plane partitions of

base µ and height no larger than d. This corresponds to the region Ωµ,d in the plane with lower

side determined by µ and the remaining side bounded by the top four sides of a hexagon of vertical

side length d. Suppose λ/µ is a skew partition. Then Ωµ(λ) ⊆ Ωµ,d, for d = `(λ) − `(µ), and

on each vertical diagonal i − j = k, there are no horizontal lozenges with coordinates (i, i − k)

when i − k > λi. Let D ∈ ε(λ/µ); we define the map τ(D) := T to be a tiling of T with base

µ such that if cell (i, j) ∈ D, then T has a horizontal lozenge in position (i, j) with coordinates

x1x2x3
x4

x5x6

y1
y2 y3 y4 y5

y6

. .
. . . .

Figure 6.1. A triangular grid and lozenges.
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(λi − i+ 1,−λ′j + j).

Now we discuss a map between excited diagrams and lozenge tilings of base µ. Given

D ∈ ε(λ/µ), define τ(D) := T to be a tiling T with base µ, such that for box (i, j) ∈ D, T has a

horizontal lozenge in position (i, j) as described above.

Theorem 6.1.2 ([12], Theorem 7.2). The map τ is a bijection between excited diagrams ε(λ/µ)

and lozenge tilings Ωµ(λ).

Proof. [12] Consider the excited diagram D as a plane partition P of shape µ with non-positive

entries using the map determined by Pi,j = −ri,j + i, where ri,j is the row number of the final

position of the box (i, j) of µ after it has been moved under the excited moves from µ to D. Now P

corresponds to a lozenge tiling by the following: set level 0 to be the top z-plane and the horizontal

lozenges are moved down to the heights given by Pi,j . Notice that the boxes on the diagonal

i− j = k cannot be moved further than the intersection of the diagonal and λ, since D ⊂ [λ]. This

is equivalent to the condition (i, j) ∈ λ if and only if j ≤ λi.

Example 6.1.3 ([12]). Consider the skew shape (3, 3, 2)/(2, 1). Then we have the following five

excited diagrams:

Figure 6.2. Excited diagrams of skew shape (3, 3, 2)/(2, 1).

The lozenge tilings in Ω2,1(3, 3, 2) that correspond to the excited diagrams are:

Figure 6.3. Lozenge tilings corresponding to the excited diagrams of skew shape (3, 3, 2)/(2, 1).
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6.2. Reverse Plane Partitions of Skew Staircase Shapes and q-Euler Numbers

The paper [6] proved two conjectures stated in [11]. Before we state the conjectures, we

need the following proposition. Also, recall the Euler number, En, is the number of alternating

permutations of Sn.

Proposition 6.2.1 ([20], Proposition 1.6.1). The generating function for En is given by the fol-

lowing: ∑
n≥0

En
xn

n!
= secx+ tanx.

From [11], we have two standard q-analogues given as

En(q) :=
∑

σ∈Alt(n)

qmaj(σ−1) and E∗n(q) :=
∑

σ∈Alt(n)

qmaj(σ−1
k )

Definition 6.2.2 ([1]). For a given Dyck path, we say it has a high peak when there is an upstep

immediately followed by a downstep. We call the number of Dyck paths of size n with k − 1 high

peaks the Narayana number, N(n, k).

Remark 6.2.3. It is known that N(n, k) = 1
n

(
n
k

)(
n
n−1
)
.

Definition 6.2.4 ([11]). Let the number of lattice paths from (0, 0) to (2n, 0) using the steps

(1, 1), (1,−1), and (2, 0) that never go below the x-axis and have no steps (2, 0) on the x-axis be

called the Schröder number. We write the n-th Schröder number as sn.

Proposition 6.2.5 ([22]). The n-th Schröder number is

sn =

n∑
k=1

N(n, k)2k−1.

The following two theorems were stated as conjectures in [11] are proven in [6].

Theorem 6.2.6 ([6, 11]). We have that p(δn+4/δn) = 22n+5(snsn+2 − s2n+1). In general, for all

k ≥ 1, we have

p(δn+2k/δn) = 2(k2)det[sn−2+i+j ]
k
i,j=1 for sn = 2n+2sn.
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Theorem 6.2.7 ([6, 11]).

∑
π∈RPP(δn+2k/δn)

q|π| = q−Ndet
[
e∗2(n+i+j)−3(q)

]k
i,j=1

,

where N = k(k − 1)(6n+ 8k − 1)/6 and e∗k(q) = E∗k(q)/((1− q) · · · (1− qk)).

6.3. Future Investigation

Since the HLF has an adaptation for SSYT, it is natural to want to know if there is a Hook

Content Formula type adaptation for the NHLF. Other desires by the community are to find a

probabilistic style bijective proof of the NHLF similar to that of [15]. Also, there is a curiosity

to see how E∗n(q) meshes into known work on multivariate Euler polynomials and statistics on

alternating permutations.
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