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Abstract: 
The Weather Generator (WGEN) and Chemical Movement through Lay-
ered Soils (CMLS) computer models were modified and combined with 
two sets of soil and climate inputs to evaluate the impact of input data map 
resolution on model predictions. The basic soil and climate inputs required 
by WGEN and CMLS were acquired from either: (i) the USDA-NRCS 
State Soil Geographic Database (STATSGO) database; (ii) the USDA-
NRCS (County) Soil Survey Geographic (SSURGO) database; (iii) the 
Montana Agricultural Potential System (MAPS) database (which divides 
Montana into approximately 18,000 twenty square kilometer cells and 
stores more than 200 different land and climate characteristics for each of 
these cells); and (iv) a series of fine-scale monthly climate surfaces devel-
oped by the authors (0.55 km2 cell size) using thin-plate splines, published 
climate station records, and USGS Digital Elevation Models (DEMs). Fif-
teen years of daily precipitation and evapotranspiration (ET) values were 
generated and combined with soil and pesticide inputs in CMLS to esti-
mate the depth of picloram (4-amino-3,5,6-trichloro-2-pyridinecarboxylic 
acid) movement at the end of the growing season for every unique combi-
nation (polygon) of soil and climate in a 320 km2 area in Teton County, 
Montana. Results indicate that: (i) the mean depths of picloram movement 
predicted for the study area with the SSURGO (county) soils and MAPS 
(coarse-scale) climate information and the two model runs using the fine-
scale climate data were significantly different from the values predicted 
with the STATSGO (state) soils and MAPS climate data (based on a new 
variable containing the differences between the depths of leaching pre-
dicted with the different input data by soil/climate map unit and testing 
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whether the mean difference was significantly different from zero at the 
0.01 significance level); and (ii) CMLS identified numerous (small) areas 
where the mean center of the picloram solute front was likely to leach be-
yond the root zone when the county soils information was used. This last 
measure may help to identify areas where potential chemical applications 
are likely to contaminate groundwaters. 

Abbreviations: 
WGEN, weather generator; CMLS, Chemical Movement through Layered 
Soils; STATSGO, State Soil Geographic Database; SSURGO, Soil Survey 
Geographic Database; MAPS, Montana Agricultural Potential System; 
DEMs, Digital Elevation Models; PFBA, pentafluorobenzoic acid; DFBA, 
difluorobenzoic acid; BD, bulk density; OC, organic carbon; OM, organic 
matter; AWC, available water-holding capacity; ET, evapotranspiration; 
PET, potential evapotranspiration; SAS, Statistical Analysis System. 

Approximately 50% of Montana�s population obtains its drinking water from 
groundwater wells. Consequently, the transport of agricultural chemicals through soils 
into groundwater represents a potential threat to water quality in Montana. The Environ-
mental Management Division of the Montana Department of Agriculture reported detect-
able quantities of picloram (4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid), 2,4-D 
[(2,4-dichlorophenoxy) acetic acid], MCPA [(4-chloro-2-methylphenoxy acetic acid], 
dicamba (3,6-dichloro-2-methoxybenzoic acid), and aldicarb [2-methyl-2 (methylthio) 
propionaldehyde 0-methylearbamoyl oxime] in groundwater around the state (DeLuca et 
al., 1989). These pesticides may be transported to groundwater because of their low solu-
bility, the large amount of pesticide applied, and/or the presence of seasonally high water 
tables, shallow soils, and high permeability rates (sandy soils). 

The GIS-based solute transport models may offer simple, user-friendly tools for iden-
tifying sites that are likely to experience pesticide contamination problems, and Wilson et 
al. (1993) have described one such methodology that combines modified versions of the 
CMLS model (Nofziger and Hornsby, 1986, 1987) and WGEN weather generator 
(Richardson and Wright, 1984) with the STATSGO (Bliss and Reybold, 1989; Reybold 
and TeSelle, 1989) and MAPS (Nielsen et al., 1990) databases. Wilson et al. (1993) also 
digitized several weed infestation maps and overlaid them in ARC/INFO with the CMLS 
model results for picloram to demonstrate how their methodology could be used to illus-
trate the threat to groundwater posed by current herbicide applications in Teton County, 
Montana. 

The CMLS is a one-dimensional solute transport model that uses a piston flow ap-
proach to simulate the vertical movement of selected chemicals through the agricultural 
root zone on a layer-by-layer basis. Although this model was written primarily as a man-
agement and educational tool, it has been tested favorably and used with several different 
types of input data in many parts of the country (Hornsby et al., 1988; Jones and Hanks, 
1988; Mulla et al., 1989; Zhang et al., 1990; Inskeep et al., 1996). The choice of input 
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data resolution for GIS-based solute transport modeling studies is usually justified in 
terms of the geographic extent of the problem (study area), and coarse input data (i.e., 
single values representing large mapping units or raster cells) are often used in place of 
actual field data in regional studies covering entire watersheds, counties, or states because 
of computer resource and/or data availability limitations (e.g., Zhang et al., 1990; Petach 
et al., 1991; Hutson, 1993; Wilson et al., 1993). The consequences of taking this type of 
approach are not always obvious and more work is needed to document the effects of 
data quality and scaling issues on model predictions (Merchant, 1994). 

Our recent work has tackled these problems at two different scales. In one study, In-
skeep et al. (1996) compared predicted and observed pentafluorobenzoic acid (PFBA), 
2,6-difluorobenzoic acid (DFBA) and dicamba travel times at a single field site near 
Manhattan, MT. CMLS and LEACHM (Wagenet and Hutson, 1989) predictions were 
generated using: (i) detailed site-specific measurements (both models); (ii) conductivity 
and retentivity functions estimated from the USDA-NRCS SSURGO database 
(LEACHM); and (iii) volumetric water contents estimated from textural data in the 
SSURGO database and daily precipitation and ET estimated with the WGEN weather 
generator and MAPS database (CMLS model). Comparison of observed and simulated 
mean travel times showed that: (i) both LEACHM and CMLS performed adequately with 
site-specific inputs (the CMLS predicted mean travel times, for example, were within 3.5 
to 38% of observed data over two growing seasons under a variety of crop and fallow 
conditions); and (ii) the CMLS predictions were less sensitive to data input resolution 
than the LEACHM predictions due in part to the fact that CMLS provides an oversimpli-
fied description of transport processes. Inskeep et al. (1996) concluded that the use of the 
SSURGO and MAPS databases with CMLS may provide a reasonable approach for clas-
sifying the susceptibility of map units in terms of solute movement, although the potential 
applicability of this approach is limited to areas with digital copies of the SSURGO (se-
lected counties scattered throughout the country) and MAPS databases (Montana only). 
The sensitivity of CMLS model predictions to other soil and climate databases was not 
examined at the Manhattan site. 

The current paper reports the results from a second study in which four readily avail-
able sets of soil and climate inputs were used in CMLS to estimate the depth of picloram 
(4-amino-3,5,6-trichloro-2-pyridinecarboxylic acid) movement at the end of the growing 
season for every unique combination (polygon) of soil and climate in a 326 km2 area in 
Teton County, Montana. A large study area was needed to evaluate the effects of using 
four different combinations of: (i) the USDA-NRCS State Soil Geographic Database 
(STATSGO) database; (ii) the USDA-NRCS (County) Soil Survey Geographic 
(SSURGO) database; (iii) the Montana Agricultural Potential System (MAPS) database 
(which divides Montana into approximately 18,000 twenty km2 cells and stores more 
than 200 different land and climate characteristics for each of these cells); and (iv) a se-
ries of fine-scale (high spatial resolution; 0.55 km2 cell size) monthly climate surfaces 
developed by the authors using thin-plate splines, published climate station records and 
USGS DEMs on CMLS model predictions. The ARC/INFO GIS was used in this study 
to: (i) generate and organize the input data for the CMLS model runs; and (ii) prepare 
maps showing different predicted picloram leaching depths. 
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Models and data sources 
Chemical movement through layered soils (CMLS) model 

The CMLS model was developed by Nofziger and Hornsby (1986, 1987) to interac-
tively simulate chemical movement through soil with easily obtained soil, chemical, and 
weather inputs. CMLS divides the soil into as many as 20 layers and estimates the posi-
tion of the chemical in the soil at different times using an algorithm first proposed by Rao 
et al. (1976). This algorithm incorporates six key assumptions: (i) all soil water residing 
in pore spaces participates in the transport process; (ii) water entering the soil redistrib-
utes instantaneously to �field capacity�; (iii) water is removed by ET from each layer in 
the root zone in proportion to the relative amount of water available in that layer; (iv) 
upward movement of water does not occur anywhere in the soil profile; (v) the adsorption 
process can be described by a linear, reversible, equilibrium model; and (vi) the half-life 
for biological degradation of the chemical is constant with time. Nofziger and Hornsby 
(1986) explain why these assumptions are valid for many soils and when they are likely 
to be violated. 

The soil properties affecting water and chemical movement (soil texture, bulk den-
sity, �field capacity� and �permanent wilting point� volumetric water contents, soil or-
ganic C content) may vary among the layers, but are assumed to be uniform within each 
layer. Two chemical properties (the partition efficient (Koc) normalized to soil organic C, 
and degradation half-life) and the climatic and cultural factors known to affect water and 
chemical movement (plant rooting depth, daily rainfall, irrigation and ET amounts) are 
also required by the model. The interactive PC version of CMLS acquired from the 
model developers was ported to a VMS mainframe and modified by the authors to read 
from and write to a series of digital data files because of the large variety of sod and 
weather conditions experienced in the study area. The model itself was not altered and 
the VMS version required the same inputs for each location (i.e., each soil layer in each 
unique climate and soil map unit) as the original interactive version. 

Four sets of CMLS predictions were prepared with different combinations of soils 
and weather data. One run used STATSGO soil data and weather data compiled from 
U.S. Weather Service climate records for the Town of Choteau and the MAPS database. 
The second run used the STATSGO soil database and a series of higher resolution (0.55 
km2 cell size compared to 20 km2 for the MAPS database) climate surfaces developed by 
the authors using thin-plate splines, published climate station data, and USGS 1:250,000-
scale DEMs. The final two runs used these two sets of weather data with the higher reso-
lution SSURGO soils data. The weather files were combined with the soil records (one 
per layer) for each of these runs in ARC/INFO and a series of FORTRAN programs writ-
ten by the authors. The chemical data file was compiled from published literature (Jury et 
al., 1987; Nofziger and Hornsby, 1987). The final overlays and maps were prepared with 
ARC/INF0. The overall approach is summarized in Fig 1 and the individual steps are de-
scribed in more detail in the four subsections that follow. 
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Soil data 

The STATSGO database was developed at a scale of 1:250,000 by generalizing more 
detailed county soil survey maps and is used primarily for regional resource planning 
management, and monitoring (Reybold and TeSelle, 1989). This database divides the 
landscape into map units (i.e., polygons) and percentage composition of the soil series 
(≤21 soil series) that occur in these general map units is recorded. A series of geocodes is 
provided for linkage with the nation Soil Interpretations Record database that provides 
detailed information on various properties for each soil, usually ranges of high and low 
values by soil layer (Bliss and Reybold, 1989). The soils that compose each map unit will 
have generally formed in similar kinds of parent material and have a similar repeating 
pattern of landforms, but will vary in one or more characteristics (texture, available wa-
ter-holding capacity, etc.). This arrangement means that simple maps cannot be used to-
present information on a specific soil series attribute because there is no map delineation 
for the locations of individual soil series that make up each STATSGO map unit. 

Bliss and Reybold (1989) have described the general process that should be used for 
linking soil attributes to soil maps and also provide a series of examples to illustrate the 
wealth of attribute data that can be accessed via the STATSGO map units. Our approach, 
summarized in Fig. 1, generally follows their schematic diagram linking GIS and the two 
STATSGO database components. 

Our work with the STATSGO database started with the Teton County ARC/INFO 
coverage used by Wilson et al. (1993). Four contiguous polygons (representing two dif-
ferent STATSGO map units) that covered parts of the USGS 1:24,000-scale Pishkun 
Reservoir and nine adjacent map sheets were extracted and used to define the study area 
(Fig. 2a). The SSURGO database was constructed by the authors by one or other of two 
methods: (i) converting USDA-NRCS soil map unit boundaries stored as Digital Line 
Graph (DLG) files to a series of ARC/INFO line coverages or (ii) scanning USDA-NRCS 
mylar separates (map sheets) containing the soil map unit boundaries and converting 
these data to a series of ARC/INFO line coverages. The ARC/INFO coverages were then 
edited, labeled, edgematched, and map joined to form one coverage and this product was 
clipped to match the extent of the four STATSGO polygons that defined the study area 
(Fig. 2b). 

SSURGO soil maps are prepared in the field using aerial photographs as a map base 
by USDA-NRCS staff. These maps, which are usually organized by county, offer in-
creased spatial resolution compared to the STATSGO maps (compare Fig. 2a and 2b) and 
are used primarily for farm and ranch conservation planning and other local resource 
planning and management activities (Reybold and TeSelle, 1989). However, this data-
base is similar to the STATSGO database in that it divides the landscape into map units 
and the percentage composition of the soil series (≤5 soil series) that occur in these map 
units is recorded. A series of geocodes is provided for linkage with the national Soil In-
terpretations Record database discussed above. Hence, we were able to use the same pro-
grams for the STATSGO and SSURGO model runs because of the structural similarities 
between these two databases. 
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Fig. 1. Schematic diagram showing linkages between individual models and databases. 
 

A FORTRAN program developed by Wilson et al. (1993) was modified and used to: 
(i) read the STATSGO/SSURGO Component data files and write the STA-
TSGO/SSURGO soil map unit codes and soil series sequence (component) numbers, 
codes and names to a new file; (ii) combine this file with the STATSGO/SSURGO Layer 
files based on soil mapping unit and soil series codes; and (iii) extract and write the soil 



Page 7 of 17 

layer attributes required to calculate CMLS soil inputs to a new file. A second FOR-
TRAN program was used to calculate the actual CMLS model inputs. This program 
checked the layer records for missing data and computed CMLS inputs for each layer and 
soil series with complete information. This approach meant that a small number of STA-
TSGO and SSURGO map units were rejected because of incomplete information and ex-
cluded from the model comparisons discussed below. These polygons covered <10 km2 
(3%) of the study area in all instances. 

 

 

Fig. 2. Maps of study area showing (a) MAPS cells overlaid on STATSGO mapping units, 
and (b) ANUSPLIN cells overlaid on SSURGO mapping units. 
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Eight soil inputs (percents clay, silt, sand; bulk density; organic matter content; wilt-
ing point, field capacity, and saturation: volumetric water contents) were computed for 
the VMS version of the CMLS model as follows. 

Bulk density (BD) and percent clay were obtained by computing the midpoints of the 
ranges specified for each soil layer in the SSURGO and STATSGO databases. Percent 
sand was computed as: 

% sand = 100[(n10 - n200)/n10]   [1] 

where n10and n200 are the average percentages of soil passing through the no. 10 and 200 
soil sieves, respectively. The percent clay and percent san10d were then subtracted from 
100 to estimate percent silt. Bulk densities were estimated from soil texture information 
and the Grossman/Baumer ternary diagram (reproduced in Wilson et al., 1992) for those 
soil layers missing recorded BD ranges. 

Surface and subsurface soil layer organic C contents (OC) were computed by a com-
bination of methods. The average organic matter content (OM) was multiplied by 0.5 to 
obtain OC values for surface layers. Because SSURGO and STATSGO only report OM 
contents for surface layers, subsurface OC values were estimated by the following meth-
ods. 

The Montana Soil Pedon Database (Jersey and Nielsen, 1992) was used to access 
laboratory determined soil OC values by profile depth for more than 60 agricultural soils 
in Montana. Linear regression analysis of soil OC values with profile depth produced Eq. 
[2] (R2 = 0.71), which was used to compute subsurface OC values for soils with surface 
OC values exceeding 0.8%: 

 

OCi = 1.71 + 0.117(OCs) - 0.367[ln(Di)]    [2] 

 

where OCi is the percent organic C content of the ith layer, OCs. is the average percent 
organic C content of the surface layer, and Di is the average depth of the ith layer in me-
ters times 100 divided by profile depth in meters (Wilson et al., 1993). 

For soils with surface OC values below 0.8 %, two equations developed by Jury et al. 
(1987) were found to best estimate subsurface OC values (based on comparisons with the 
Montana Soil Pedon data) (Wilson et al., 1993). These equations, originally developed to 
estimate subsurface microbial populations, are: 

 

OC2 = OCs,e-γ(Z-L) [3] 

OCi = OCs e-γ(H-L)  [4] 

 

where OC2 is the organic C content of the second layer, γ was treated as a depth constant 
of 3 m-1 for qualifying soils in the study area, Z is the average depth of the second layer in 
meters, L is the depth of the surface layer in meters, OCi is the organic C content in hori-
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zons below the second layer, and H is the depth from the surface to the bottom of the ith 
layer in meters. 

Standard equations reported by Rawls and Brakensiek (1989) were used to compute 
the three volumetric water contents needed by CMLS as follows: 

 

θv.1 = (n10/100)*[0.4118 - 0.0030(%sand) 
+ 0.0023(%clay) + 0.0317(%OM)] [5] 

θ v.15 = (n10/100)*[0.026 + 0.005(%clay) 
+ 0.0158(%OM)] [6] 

θ vSAT = (n10/100)*[0.7899 - 0.0037(%sand) 
+ 0.01(%OM) - 0.1315(BD)]  [7] 

 

where θv.1, θv.15, and θvSAT are the field capacity (-0.01 MPa), wilting point (- 1.5 MPa), 
and saturation volumetric water contents, respectively, n10 is the average percentage of 
soil particles passing through a no. 10 soil sieve, %OM is average percent organic matter 
content, and BD is the average bulk density in Mg m-3. 

These eight soil parameters were computed for each soil layer and printed to a file for 
input to the VMS version of CMLS. The same FORTRAN program was also used to 
compute the available water-holding capacity (AWC) of the entire soil profile for each 
soil series as this information was needed to compute the daily ET values required by 
CMLS. The profile AWC values were estimated by multiplying the depths of the individ-
ual soil layers (cm) by their AWCs (cm of water per cm of soil) and summing these sub-
totals. 

Weather data 

The first two CMLS model runs required daily precipitation and ET totals for the 53 
twenty km2 MAPS cells that overlapped the study area (Fig. 2a). The MAPS cell bounda-
ries were converted to a polygon coverage, and attribute tables containing mean monthly 
precipitation totals and minimum/maximum temperatures were transferred from the 
MAPS database (Nielsen et al., 1990) to ARC/INFO attribute tables. The STATSGO and 
SSURGO soil coverages were then overlaid with the MAPS coverage in ARC/INFO to 
produce new coverages containing 58 and 1595 climate and soil map units (polygons), 
respectively. Several climate and soil map unit combinations appeared more than once, so 
that the MAPS/STATSGO and MAPS/ SSURGO coverages divided the study area into 
51 and 548 unique climate and soil polygons, respectively. 

The fine-scale climate data used in this study were extracted from a series of mean 
monthly and annual climate surfaces that have been developed by one of the authors for 
Montana and the Dakotas with ANUSPLIN (Hutchinson, 1995). This program fits multi-
dimensional Laplacian thin-plate splines to spatial data with the degree of smoothing de-
termined by minimizing the predictive error of the surface through generalized cross-
validation. Latitude, longitude, and elevation usually serve as independent variables for 
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this routine, which has been successfully applied to several areas, including two USGS 1: 
250,000-scale map sheets in Montana (Custer et al., 1996). The ANUSPLIN program 
provides an objective and repeatable method for generating spatially variable estimates of 
mean monthly and annual precipitation and temperature from DEMs and published cli-
mate station data. 

The final two CMLS runs required the same daily precipitation and ET values as the 
earlier MAPS runs for the 719 0.55 km2 ANUSPLIN cells that overlapped the study area 
(Fig. 2b). The STATSGO and SSURGO soil coverages were overlaid with the ANUS-
PLIN coverage in ARC/INFO to produce new coverages containing 758 and 4448 cli-
mate and soil map units, respectively. Some of these climate and soil map units also 
appeared more than once, so that the ANUSPLIN/STATSGO and ANUSPLIN/SSURGO 
coverages divided the study area into 748 and 3061 unique climate and soil polygons, 
respectively. 

The WGEN weather generator, which provides simulated daily precipitation, mini-
mum temperature, maximum temperature, and solar radiation values with the same statis-
tical characteristics as the actual weather for user-specified periods at given locations, 
was modified and expanded to generate the weather parameters required by CMLS. The 
WGEN PAR option was used to generate parameters from the long-term daily records 
available for the Choteau (in Teton County) and Great Falls (the nearest station with daily 
total solar radiation data) climate stations maintained by the U.S. Weather Service. 
WGEN PAR reads daily precipitation, minimum temperature, maximum temperature and 
total solar radiation values, and writes the generation parameters (probabilities, long-term 
averages, etc.) required by WGEN to another data file. 

These data were used with monthly means to generate the daily precipitation but not 
the daily ET values needed by CMLS. Two additional steps were required to generate 
spatially variable daily ET values: (i) daily potential evapotranspiration (PET) was esti-
mated with the solar thermal unit model developed by Caprio (1971) using the daily 
mean temperature and total solar radiation values calculated with WGEN as inputs; and 
(ii) daily ET values were estimated from these PET values and the profile AWC for every 
unique combination of climate and soil mapping unit. A separate FORTRAN program 
was written for this last step as the ARC/INFO �joinitem� command could not achieve 
the desired geographic linkage because the common (relate) attribute was not unique in at 
least one of the two files. The PET values were then read one cell at a time and the ap-
propriate soil parameters for that cell were accessed sequentially and used with the Et al-
gorithm from the Palmer (1965) drought index model to generate 15 years of daily ET 
data for each accessed record. The ET data were written to a file that also contained the 
daily precipitation data generated by WGEN. This file served as the climate input for the 
CMLS model runs. 

Chemical data 

The chemical attributes required for CMLS input include the partition coefficient nor-
malized to soil organic C (Koc, L kg-1) and the half-life (t½, days). For picloram, we used a 
Koc. of 48 L kg-1 and a surface half-life value of 100 d (Jury et al., 1987; Nofziger and 
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and Hornsby, 1987). For soil horizons below the surface layer we used a biodegradation 
depth function developed by Jury et al. (1987): 

 

tl/2(z) = t1/2(0)eγ(Z-L)  [8] 

 

where t1/2(z) is the half-life with respect to depth z in meters, tl/2(0) is the half-life at the 
soil surface, Ύ was treated as a depth constant equal to 1.5 m-1 for this study, Z is the av-
erage depth of the ith layer in meters, and L is the depth of the surface layer in meters. 
Using a γ value of 1.5 m-1 resulted in maximum t1/2 values 10 times the surface horizon 
values. This relationship is generally consistent with the effects of soil depth on herbicide 
degradation rates (t1/2) observed in other studies (Moorman and Harper, 1989; Pothuluri 
et al., 1990; Boesten and van der Linden, 1991). 

Results and discussion 
 

Four sets of CMLS model predictions were prepared with different input data to 
evaluate the impact of input data map resolution on model outcomes. Wilson et al. 
(1993) noted how information on both the spatial variability and depth of movement of 
applied chemicals is required to evaluate the threat to groundwater posed by current her-
bicide applications and the results presented below address both of these types of meas-
urements. The CMLS model predictions prepared with the MAPS and STATSGO 
databases are examined first because these model runs used the most generalized climate 
and soil information and the results from these model runs provide reference values 
against which the predictions from the other model runs can be compared.  

The two pairs of STATSGO mapping units contained 12 and 15 soil series, respec-
tively and the GIS overlays of MAPS cells and STATSGO map units divided the study 
area into 58 polygons (Fig. 2a). Three polygons labeled as water (Pishkun Reservoir) and 
one polygon with missing soil information in the STATSGO database were excluded 
from the model comparisons. CMLS was used to predict the position of the picloram sol-
ute at the end of the growing season for each of the remaining 54 polygons averaged over 
all soil series (weighted by area) and all 15 weather years (Table 1). The study area mean 
of 18.4 cm predicted with CMLS indicates a moderate leaching hazard, and the range 
(6.7 cm), weighted standard deviation (3.8) and coefficient of variation (0.2) provide 
measures of the spatial variability for this set of CMLS model predictions. 

The MAPS/SSURGO model runs combined 53 MAPS cells and 102 SSURGO soil 
map units (198 soil series) into 1595 climate and soil polygons, so that each of the 
MAPS/STATSGO polygons reproduced in Fig. 2a was divided into approximately 30 
MAPS/SSURGO polygons. The CMLS model predicted more solute movement and 
greater spatial variability (measured in terms of minimum and maximum predicted 
depths, the weighted standard deviation and the coefficient of variation) with the MAPS 
and SSURGO information compared to the MAPS and STATSGO data inputs (Table 1). 
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Table 1. Predicted depth of picloram solute front at end of growing season for different 
Chemical Movement through Layered Soils (CMLS) model runs. 
 No. of Predicted solute front depth, cm 
Model run polygons� Min. Max. Mean� SD§ 
MAPS/STATSGO 54 15.26 21.94 18.37 3.76 
MAPS/SSURGO 548 11.77 631.74 20.52 5.03 
ANUSPLIN/STATSGO 749 14.59 19.84 16.51 2.57 
ANUSPLIN/SSURGO 3061 11.79 562.56 19.14 4AS 
�Number of unique climate cells and soil mapping units (see Fig. 2a and 2b for Montana Agricultural Potential Sys-
tem/State Soil Geographic Database (MAPS/STATSGO) and splinted climate data/Soil Survey Geographic Database 
(ANUSPLIN/SSURGO) examples). 
�CMLS predictions averaged over all soil series (weighted by areal extent) and 15 weather years. 
§Weighted standard deviations. 

 

The MAPS/SSURGO and MAPS/STATSGO predictions were then aggregated using 
the overlay functions in ARC/INFO and the difference between each of the 
MAPS/SSURGO and MAPS/STATSGO weighted mean depths (in each unique 
MAPS/STATSGO/SSURGO polygon) was calculated. The Statistical Analysis System 
(SAS) was used to calculate a t statistic and probability value for the null hypothesis that 
the mean difference is equal to zero (SAS Institute, 1988). The results indicate that the 
average difference is significantly different from zero at the 0.01 level of significance 
(Table 2). The first of the three frequency histograms reproduced in Fig. 3a shows the 
differences between the individual MAPS/ STATSGO and MAPS/SSURGO polygons in 
5-cm depth increments (-7.5 to -2.5 cm, -2.5 to 2.5 cm, 2.5 to 7.5 cm, 7.5 to 12.5 cm, etc.) 
weighted by area. Negative values in Fig. 3 indicate that the MAPS/SSURGO, ANUS-
PLIN/STATSGO, and ANUSPLIN/SSURGO input data predicted lower leaching depths 
than the MAPS/ STATSGO input data. The results reproduced in Fig. 3a show that: (i) 
the two sets of CMLS predictions varied by less than ± 2.5 cm and ± 7.5 cm. in 57 and 
94.9% of the study area, respectively; and (ii) the predicted depth of the solute front ex-
ceeded 100 cm in 0.08% (0.24 km2) of the study area when the SSURGO soils informa-
tion was used in place of the STATSGO soils information. 

 

Table 2. T test results comparing the Montana Agricultural Potential System/Soil Survey 
Geographic (MAPS/SSURGO), ANUSPLIN/STATSGO, and ANUSPLIN/SSURGO CMLS 
model  predictions with the MAPS/STATSGO CMLS model predictions. 

 Mean   
Model run depth, cm Std. error T Prob > |T| 
MAPS/SSURGO 2.52 0.43 5.80 0.0001 
ANUSPLIN/STATSGO -1.37 0.19 -7.12 0.0001 
ANUSPLIN/SSURGO 1.65 0.47 3.49 0.0010 
 

The ANUSPLIN/STATSGO model runs combined 719 ANUSPLIN cells and the four 
STATSGO polygons into 758 climate and soil polygons. These CMLS model runs pre-
dicted more spatially uniform and generally less solute movement than the 
MAPS/STATSGO model runs (Table 1). This result occurred because the ANUSPLIN 
climate data differed from the MAPS data in two important respects: (i) the values used 
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for monthly means (ANUSPLIN inputs were interpolated by the authors with a model 
that incorporated 1961 to 1990 climate station data, latitude, longitude, and elevation 
whereas the MAPS values had been estimated by hand (?) from published data and local 
knowledge some years earlier); and (ii) the spatial resolution (the ANUSPLIN and MAPS 
cells measured 30 arc s and 3 min on a side, respectively). The average difference was 
again significantly different from zero (Table 2), although the histogram reproduced in 
Fig. 3b shows that the differences between the MAPS/STATSGO and ANUS-
PLIN/STATSGO predictions were less than ± 2.5 cm in 66.2 % of the study area and that 
these differences were bounded by -7.5 cm (i.e., ANUSPLIN/STATSGO predicted 
depths < MAPS/STATSGO predicted depths) and + 2.5 cm. (i.e., ANUSPLIN/  
STATSGO predicted depths > MAPS/STATSGO predicted depths). 

The final CMLS models used the ANUSPLIN climate and SSURGO soils information 
as inputs. These data sources divided the study area into 4448 polygons because many of 
the 3061 unique polygons occurred more than once in the study area (Fig. 2b). The 
CMLS model predictions generated with these data sources were more variable and lar-
ger in magnitude than those produced with the MAPS climate and STATSGO soils in-
formation (Table 1). The average difference in area-weighted solute movement was again 
significantly different from zero (Table 2) even though the effects of substituting 
SSURGO in place of STATSGO soils data and ANUSPLIN in place of MAPS climate 
data tended to cancel each other out. The histogram reproduced in Fig. 3c has the same 
general form as the histogram generated with the MAPS/SSURGO data (Fig. 3a), and 
reaffirms the importance of using SSURGO soils information to identify those locations 
where the depth of solute movement is likely to exceed the rooting depth. 

The results described above show: (i) how a GIS can be used to compile several differ-
ent sets of soil and climate input data; and (ii) the impact of soil and climate input data 
map resolution on CMLS model predictions. The ARC/INFO GIS and a series of FOR-
TRAN programs written by the authors were used to integrate the soils information verti-
cally over the layers in each soil series in each soil/climate map unit (Fig. 1) and horizon-
tally based on the percentage of that soil/climate map unit occupied by that soil series. 
This approach generated large numbers of map units (polygons) and retained the spatial 
variability inherent in the input data (Fig. 2) in the model predictions (Tables 1 and 2). 
Colored maps of the CMLS model predictions could have been produced relatively easily 
with ARC/INFO and used to illustrate this variability as well. The sensitivity of the 
CMLS model predictions to the methods and map resolution used to represent the soil 
and climate input data (Fig. 3) demonstrates the need to exercise care in choosing model 
inputs for solute transport modeling applications. 

Further work of this type is needed to: (i) extend the results obtained in this study to 
other models and/or environments; and (ii) determine the accuracy of model predictions 
based on different input data map resolutions compared to observed leaching behavior. 
Use of the GIS approach discussed in this study with other models may yield signifi-
cantly different model predictions of mean travel times because of differential effects of 
parameter estimation routines on model calculations. For example, Inskeep et al. (1996) 
showed that LEACHM predicted mean travel times were significantly higher (slower 
transport) than CMLS values when estimation routines (e.g., pedotransfer functions) were 
used to generate necessary model input parameters. They noted that estimated saturated  
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Fig. 3. Histograms showing differences in depth of solute movement between CMLS model 
predictions based on MAPS/STATSGO databases and (a) MAPS/SSURGO, (b) ANUS-
PLIN/STATSGO, and (c) ANUSPLIN/SSURGO databases. 

 

hydraulic conductivities (necessary for LEACHM) obtained from regression equations 
based on texture and porosity were lower than measured values, and resulted in higher 
mean travel times of several nonreactive tracers than observed. Although LEACHM is a 
more detailed process model than CMLS, it requires a correspondingly greater number of 
input parameters. Consequently, LEACHM requires the estimation of a greater set of in-
put parameters for climate/soil map unit applications, and what might be gained in proc-
ess description may be sacrificed in the estimation of required input parameters. Results 
from the current study and those obtained by Inskeep et al. (1996) show that CMLS is a 
useful transport model for GIS applications, and that predicted mean travel times over 
several different weather years could be used to classify map units based on their suscep-
tibility to solute transport. 
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Summary 
 

The CMLS model was chosen for this study because of favorable reviews and past 
work by Zhang et al. (1990) and Wilson et al. (1993) in linking this simplified one-
dimensional solute transport model to GIS data layers. Four sets of CMLS model piclo-
ram-leaching predictions were prepared with different input data to evaluate the sensitiv-
ity of model outcomes to different input data map scales. The CMLS model predictions 
prepared with the most generalized climate (MAPS) and soil (STATSGO) information 
provided reference values against which the predictions from the other model runs were 
compared. The MAPS/SSURGO (coarse climate and fine-scale soil data), ANUS-
PLIN/STATSGO (fine-scale climate and coarse-scale soil data), and ANUSPLIN/ 
SSURGO (fine-scale climate and soil data) results were combined with the 
MAPS/STATSGO predictions using the overlay functions in ARC/INFO and the differ-
ence between each of the MAPS/SSURGO, ANUSPLIN/ STATSGO; and ANUS-
PLIN/SSURGO weighted mean depths and the MAPS/STATSGO weighted mean depths 
(for each unique polygon) was calculated. The Statistical Analysis System (SAS) was 
used to calculate a t statistic and probability value for the null hypothesis that the mean 
difference is equal to zero. The average difference was significantly different from zero 
in all three instances at the 0.01 level of significance. The two CMLS model runs that 
used the SSURGO soil inputs in place of the STATSGO soil inputs also identified nu-
merous small areas where the predicted depth of the picloram solute front exceeded 100 
cm. These results demonstrate that the CMLS model predictions vary with the choice of 
climate and soil inputs and that high resolution SSURGO soil information is needed if the 
goal is to identify those areas where potential chemical applications are likely to con-
taminate groundwater. Additional research is required to extend these results to other 
models and/or environments. 
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