
i

A SMARTPHONE-BASED POINTING TECHNIQUE IN CROSS-DEVICE INTERACTION

A Paper
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Juechen Yang

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE

Major Program:
Software Engineering

April 2019

Fargo, North Dakota

ii

North Dakota State University
Graduate School

Title

A Smartphone-Based Pointing Technique In Cross-Device Interaction

 By

Juechen Yang

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Dr. Jun Kong

 Chair

Dr. Zhili(Jerry) Gao

Dr. Changhui Yan

 Approved:

 July 31, 2019 Dr. Kendall Nygard
 Date Department Chair

iii

ABSTRACT

In this paper, the author develops a novel cross-device cursor position estimation system

for transferring a mobile device’s four-direction 2D movement to a cursor’s four-direction

movement on a large display device; this is achieved through the use of sound-source

localization and machine-learning algorithms. This system is implemented in two steps. First, the

system starts the cursor’s position initialization by taking advantage of the theory of sound-

source localization. Second, the system transfers the mobile device’s movement to the cursor’s

movement by means of a machine-learning model. This newly developed system improves

usability of cross-device applications by offering intuitive 2D move gesture and multi-user

interaction context and removes physical distance restrictions. A pilot test has been conducted,

and the results have demonstrated that naïve Bayes and gradient boosting are suitable for

detecting the 2D movement of a mobile device.

iv

TABLE OF CONTENTS

ABSTRACT ... iii

LIST OF TABLES ...vi

LIST OF FIGURES ... vii

INTRODUCTION .. 1

RELATED WORK .. 5

Three Domains Of Interaction-Sensing Techniques .. 5

Sensor-Based Daily Activities Detection .. 8

RESEARCH OVERVIEW .. 10

Motivating Examples ... 10

Low-Cost ... 10

Intuitive ... 10

Physically Unconstrained ... 10

Workflow .. 11

CURSOR INITIALIZATION DESIGN ... 14

Overview ... 14

Estimate Interaction Area... 14

Estimate Initial Position Coordinates ... 15

DETECTING CURSOR MOVEMENTS .. 19

Overview ... 19

Pixel-Movement Experiment Design ... 20

Facility Setup ... 20

Design Details ... 20

PREPROCESSING AND FEATURE EXTRACTION .. 24

Data Preprocessing .. 24

v

Feature Extraction ... 25

CLASSIFICATION AND RESULTS .. 28

Basic Cross-Validation .. 28

10-Folds Cross-Validation ... 28

FEATURE SELECTION... 33

Algorithm-Based Methods ... 33

Linear Correlation Analysis ... 33

Select K Best ... 34

Recursive Feature Elimination ... 34

Algorithm-Based Results ... 35

Manual Feature Selection .. 36

Vector-Based Feature Selection .. 38

Feature-Category-Based Feature Selection ... 40

Combined Analysis .. 41

CONCLUSION AND DISCUSSION .. 44

REFERENCES ... 46

vi

LIST OF TABLES

Table Page

1. Action design .. 21

2. Labeling design ... 21

3. Extracted features on domains ... 25

4. All 63 features ... 26

5. Cross-validation results for all features .. 30

6. Confusion matrices for top three classifiers ... 31

7. Cross-validation for algorithm-based feature selection ... 36

8. Performance of vector-based feature selection ... 39

9. Performance of feature-category based feature selection .. 41

10. Feature selection performance with benchmark classifiers ... 42

vii

LIST OF FIGURES

Figure Page

1. Flow chart of cursor's movement estimation .. 13

2. Flow chart of cursor initialization .. 13

3. Determine initialization area (A and B) .. 15

4. Sound localization schema... 16

5. Graph demo of experiment design ... 22

6. Cross-validation results for all features (Boxplot) .. 29

1

INTRODUCTION

The use of mobile devices, especially smartphones and tablet computers, is becoming

popular in the U.S. in recent years. According to a technology report from the Pew Research

Center, smartphone ownership rates remained high at 77% in 2018, and from 2016 to 2018, the

influx rate of tablet computers increased from 12% to 20% (http://www.pewinternet.org/fact-

sheet/mobile/). These facts indicate that mobile devices will continue to be a major player in the

field of information technology in the 21st century.

Public display devices have been widely deployed in diverse environments. These

devices, in most cases, serve as broadcast platforms that raise no interest from bypassers

(Sarabadani Tafreshi, Soro, and Tröster 2018). First, the content in most public displays is static

and uninteresting, and there is no user-triggered interaction. Viewers can only passively receive

information from the screen. For example, a crowded shopping mall contains many large

electronic screens that advertise various brands. However, bystanders rarely care about these

advertisements because they do not desire the products. Second, a single public display device

only allows one person to operate it at a time; this causes substantial waiting times. The use of

these public displays also raises health concerns due to the high-frequency use of contaminated

input hardware, such as the touchscreen and the game handler. To summarize, direct methods of

interaction present numerous issues that cross-device interactions could solve.

Many studies have been engaged in discovering a method and style that can be applied to

cross-device interactions. One impressive study has created a “drag-and-drop” style of

interaction that allows the user to transfer data objects between two touchable devices (Ikematsu

and Siio 2015). Another interesting application called Gradual Engagement can automatically

detect transferrable data objects between devices that are physically close to each other

2

(Marquardt et al. 2012). To implement the data transfer, this application requires the user to drag

the detected data object to the display zone on the destination screen.

The two aforementioned applications are only viable when all the screen regions of the

large display device are physically accessible. However, current trends have indicated that the

size of large display devices will continue to increase due to the decreasing price of hardware

and the demand for experience and usability. Paay et al. have noted a crucial point for all

interaction methods: a larger target display (termed a “large display device” in this study) leads

to more efficient and effective interactions (Paay et al. 2017). This observation raises an

important consideration for cross-device interactions; if the size of a large display device is

extremely big that not all the regions are physically accessible, then it could be arduous to build a

seamless connection between a mobile device and a large display device. This theory has not yet

been thoroughly studied.

Considering the issues that have been expressed in prior studies, this project is motivated

to produce a low-cost, intuitive, and physically unconstrained cursor position estimation system

in order to improve the experience of a single user and to enable the availability of multi-user

participation. The attribute of “low-cost” implies, on the user side, that the system only uses

built-in sensors to capture a device’s movements. The attribute “intuitive” is reflected by the

“sliding move” gesture, which can be grasped by users without any learning or reasoning

process. The attribute “physically unconstrained” means that the experience of controlling the

cursor remotely is offered. Thus, the chance for multiple users to interact with the large display

simultaneously is provided.

The purpose of this study centers on two objectives. First, this project uses sound

localization to facilitate cursor initialization and to enable coarse cursor position estimation.

3

Second, the project aims to enable precise cursor position estimation through the detection of the

four-direction mobile device’s movement on a 2D surface by means of machine learning

classification. Although, in terms of direction, the current position estimation system can only

distinguish the direction of a device’s movement based on four directions, the estimation system

is still a core research section that contributes to the precise mapping system because, on a 2D

flat surface, an object’s motion in any direction can be considered as a vector that can be

decomposed, in turn, into two vectors that are perpendicular to each other. The four-direction

movement, to some extent, reflect the two vectors and, thus, should be treated as the core

research objective for mapping a mobile device’s movement to a cursor’s movement.

The project is composed of two steps. First, there is a cursor initialization app that can

allow the user to initiate the cursor’s position on a large display device through sound

localization, thus improving the adaptability of the system when interacting with extremely large

devices. Second, the device’s movement translation system transfers the 2D mobile device’s

four-direction movement to the cursor’s four-direction movement by machine-learning models.

The project also encompasses a data-analysis pipeline for characterizing data into statistical

features (mean, standard deviation, min-max difference, and power energy) and spectral features

(dominant frequency and spectral energy) and provides a comprehensive study of different

machine-learning (ML) algorithms and feature selection sets. The conclusions explain what

features and what ML algorithms should be used to classify the four-direction movement and the

stand statuses(no movement) during the time interval used for 1 pixel movement of a typical

computer mouse, and increase the seamless experience of the interaction.

In terms of cursor initialization, the project uses sound localization to determine the 2D

coordinates of the cursor starting position on the large display screen. At the same time, a

4

resolution conversion has been applied so as to ensure the cursor position estimation area on the

large screen is physically equal to the size of the mobile device. In the data-analysis section, both

10-folds cross-validation and a confusion matrix have been implemented, and multiple feature-

selection methods have been conducted in order to find the most relevant features that contribute

to the machine-learning model.

The results of this study reveal that three classifiers, in particular, gradient boosting,

linear discriminant analysis (LDA), and naïve Bayes, have demonstrated a high performance

through the use of not only all features but also multiple feature sets that are generated by

feature-selection methods. Feature-selection tests indicate that features that combine speed and

mean or speed and median can contribute the most to the recognition rate. However,

performance of classification can be boosted by using features that include all vectors

(acceleration, angular-velocity, and speed) but that limit feature categories only to mean or

median.

5

RELATED WORK

 Three Domains Of Interaction-Sensing Techniques

Prior studies have proposed numerous notable findings with regards to cursor position

estimation and selection in cross-device applications. To summarize all the related studies, there

are principally three domains to consider. First, the use of direct touch on a large display device

has been applied to a large number of applications. Strohmeier (Strohmeier 2015) has introduced

an interaction framework that uses the mobile device as the operational commander to initiate

designated operations and to implement them through direct finger touch. For example, users can

pick a color on their personal devices and can then draw a shape on the large target display using

a finger motion.

Schmidt et al. have provided a novel solution (Schmidt et al. 2012) that combines the

physical touch initiated from a mobile device with its orientation to indicate the target interaction

region and to manipulate various operations. The restriction of this framework is that it does not

allow the remote control of the target region and, thus, creates barriers to multiple users

interacting with the large display simultaneously. Another project called SleeDCursor (von

Zadow et al. 2014) is a target-region-selection application that uses a touch-based system to

provide users with increased flexibility in that they can initiate the binding of a device through

close-coupling (where one selects the closest device to interact with). However, through the

aforementioned interaction techniques, users are still forced to maintain physical proximity to the

large public screen in order to exchange information. Consequently, if multiple users initiate data

transfers from the public screen simultaneously, they can still commonly interfere with one

another and, thus, produce a negative experience. All these direct-touch applications have the

same drawback—the strict requirement that the user must have physical access to the screen of

6

the target large display device. However, in this project, the renovated cursor position estimation

system can offer users a remote controlling experience that significantly improves the flexibility

of the usage.

The second domain uses additional pointing devices, such as laser pointers, to help the

server identify the position of the mobile device. The developer of PointerPhone (Seifert, Bayer,

and Rukzio 2013) has systematically built multiple applications that use laser pointers and

cameras on the server’s system to precisely detect the laser-point motion and to heighten a user’s

ability of controlling the large display screen remotely. Another hybrid technique with a gesture-

assisted, head-based coarse pointing style has been introduced in this work(Nancel et al. 2013).

This technique has created predefined gesture combinations in order to trigger the pointing task,

and the technique used an equipped headset to perform a precise position estimation of the point

thereafter. For example, a user could initiate a tap gesture on the touchpad surface followed by a

drag operation so as to activate the pointing task and enable any area of the large display to be

reached with absolute precision. Nonetheless, this approach contains some shortcomings as well.

The framework requires certain additional devices, resulting in a high-cost setup for the user.

Second, gesture-initiated pointing tasks increase the complexity of manipulation. Under certain

circumstances, the user may have a higher chance of triggering an undesired operation, and this

results in a negative experience and poor usability. This project distinguishes its methods from

the applications mentioned above by leveraging built-in sensors, rather than additional devices,

to enable position estimation from the device’s movement to the cursor’s movement; this

adjustment reduces the usage complexity of cross-device interaction applications.

The third domain utilizes all available built-in sensors, such as cameras, accelerometers,

and gyroscopes, in order to sense the mobile device’s movement. This study (Boring, Jurmu, and

7

Butz 2009) has proposed three interaction styles to mimic the movement of the device and to

map it to the large display pointer. Gestures such a“tilting” and “scrolling” were created to

evaluate the motion by means of a built-in accelerometer that calculated the value of acceleration

continuously. The author’s project has chosen the gesture of the “sliding move,” which is

regarded as more intuitive than “tilting” or “scrolling” since this movement style performs

similarly to the cursor action (such as moving up and down or left and right) and could be easier

for users to understand and learn. Furthermore, the implementation has been renovated by means

of collecting data from motion sensors (accelerometer and gyroscope) instead of a camera.

In terms of pairing devices, many techniques have been experimented with. Rekimoto

(Rekimoto 2004) has built the “SyncTap” and has constructed a collaborative pairing style for

cross-device interactions that allows multiple users to pair devices with a single tap on the

touchscreen. Peng et al. created “Point&Connect” (Peng et al. 2009) which has a technique for

combining devices by leveraging the built-in microphone and acoustic signals. Yuan et al. have

proposed using a cross-device tracking framework (Yuan et al. 2018) to identify “same” devices

in terms of user typing actions and then building secure cross-device communication.

This paper has proposed a pairing style with an extended ability not only to pair the

devices by means of a web socket as the connection channel but also to initialize the cursor’s

estimated location on the large display by the application of sound localization through a

microphone array. This design innovatively explores a new interaction medium that can use the

movement of a mobile device on a flat surface, such as a desk, so as to move the cursor in four

directions on the large display, which is comparable to a computer mouse. Under this style,

interactions can be both easy and intuitive.

8

 Sensor-Based Daily Activities Detection

Several studies have sought to improve the utilization and analysis of data generated from

accelerometers by sensing the daily activities of people. A study by Chen, Yang, and Jaw (Chen,

Yang, and Jaw 2016) has introduced the use of accelerometers for detecting a person’s fall. Their

study has also detailed a basic workflow for parsing and filtering the data retrieved from the

accelerometer. Their project has introduced and investigated features such as sum vector,

rotation angle, and slope to detect falls with a degree of both specificity and sensitivity.

Furthermore, their study has noted a critical decision-making strategy: it is no longer sufficient to

determine results based on the generated data by simply proposing different thresholds in making

predictions. Instead, machine-learning models and algorithms should be applied to extract

patterns from the observed data and to help solve complex problems.

Another fall-detection study performed by Rakhman et al. (2014) has tried to detect fall-

down activity through the magnitude of both the accelerometer and gyroscope and through the

rotation angle of the mobile device. They have proposed an in-house algorithm to calculate all

the features needed and to discover the thresholds on values for fall-down determination.

Moreover, they have categorized fall activity into four subcategories, such as “fall forward” and

“fall backward”, in order to measure the accuracy rate.

A gait-sensing study by Ferrero et al. (2015) has comprehensively investigated how to

sense human gaits based on the data collected from an accelerometer. Their study has introduced

some crucial data-preprocessing steps, including linear interpolation, data normalization, and

noise filtration. Because of the earth’s gravitational force, it is ideal to incorporate all three

dimensions’ acceleration data in an analysis. However, if a mobile device can be placed

9

perpendicular to the ground throughout the sensing session, then the model should be adjusted to

assume that only one dimension is affected by gravity.

The major difference between the author’s project and other sensor-based, activity-

detection projects concerns the “time window.” The time window used in sensing daily activities

is normally 1 or 2 seconds. However, this project is pursuing an extremely sensitive system that

uses a 0.015 second time window in order to detect a device’s movement. This requirement has

imposed challenging tasks, such as preprocessing the raw data and tagging the classification

samples.

10

RESEARCH OVERVIEW

Motivating Examples

Generally, for cross-device applications, it is unavoidable that one selects the object and

interacts with it through many approaches. A number of studies have introduced their unique

methods of selecting an object. In order to improve the usability of existing studies and

applications, this project has selected three attributes: low-cost, intuitive, and physically

unconstrained in finding new solutions.

Low-Cost

A low-cost cursor position estimation application indicates that the amount of software or

hardware involved in a system should be minimized. This study has followed the objective of

being low-cost by only using built-in sensors for detecting the four-direction movement of the

mobile device rather than applying additional devices (Nancel et al. 2013)(Seifert et al. 2013).

Thus, this design improves user usability and experience.

Intuitive

Instead of using gestures such as tilting (Boring et al. 2009), this project has developed an

intuitive gesture that can be termed as “sliding move” for controlling the cursor’s movement via

the mobile device. This gesture is intuitive since the cursor’s movement is highly consistent with

the sliding gesture such that the learning time of a user can be significantly reduced.

Furthermore, for controlling the cursor on the display screen, users are used to sliding a

computer mouse on a 2D flat surface and controlling the position of the cursor.

Physically Unconstrained

Physically unconstrained typically means that the implementation of interaction methods

should always avoid the requirement that the user be physically close to the large display device.

11

It is recommended that the interaction application has a remote-control mechanism that offers

freedom to the user. In that context, the user can participate in cross-device interaction if the

large display is visible to the user. At the same time, multi-user participation becomes viable

since the user does not need to stand in front of the large display and to interfere with others.

Thus, this paper has proposed a new cursor position estimation system that can provide remote-

control function, rather than a touch-based control mechanism (Strohmeier 2015) (von Zadow et

al. 2014); this innovation allows the user to manipulate objects on the large display devices from

his or her mobile device.

Workflow

The general working flow of this cursor position estimation application can be

demonstrated in two flow charts (Figure 1 and 2), which refer to the cursor position initialization

and the cursor’s movement estimation steps. The first workflow can be depicted in a series of

sub-steps. First, the user launches the application from the client-side and requests a connection

to the webserver, which is the public display that runs the application. Then the server responds

to the mobile device with a successful connection message. Second, the user requests cursor

initialization from the client-side, and the server starts a listening session to identify touch-down

sound. Third, the user produces a touch-down sound during the listening session, and then the

server determines whether it is a qualified sound input for triggering the initialization of the

cursor. If the sound is qualified, the server computes the location coordinates (X, Y) of sound via

sound localization, and it sends the location object to the mobile device. Subsequently, the

mobile device can use the location coordinates (X, Y) to display an area of contents on the

server’s screen using (X, Y) as the upper left vertex and use the physical length and width of the

12

mobile device as the size. Fourth, the user can move the mobile device on the 2D flat surface to

any location on the server’s screen and interact with its contents on the mobile device’s screen.

The second workflow starts from the data collection in which the user performs ten

“sliding move” movements such that the mobile device can record the raw data generated from

the built-in sensors. Five of them are left-right-based movements; this means that each “sliding

move” contains the following gestures: 2 seconds of “stand,” 3 seconds of “move right,” and 2

seconds of “move left.” Another five of them are up-down-based movements; this means that

each “sliding move” contains the following gestures: 2 seconds of “stand,” 3 seconds of “move

up,” and 2 seconds of “move down.” Subsequently, the mobile device fits this data into an

algorithm and builds a machine-learning model to detect pixel movements. Moreover, a series of

continuous pixel movements are used to construct a cursor’s movement. Finally, the cursor’s

movement is implemented on the screen of large display devices with the distance equal to the

number of pixel movements inside the cursor’s movement.

13

Figure 1. Flow chart of
cursor's movement estimation

Figure 2. Flow chart of cursor
initialization

14

CURSOR INITIALIZATION DESIGN

Basically, cursor initialization benefits the user when he or she is involved in cross-

device interactions, where the target large display screen is extremely large. The user can

perform a coarse position-estimation to find out an area that he or she is interested in, and then

use cursor movement simulation to precisely locate the designated object displayed on the large

screen.

Overview

The general workflow in cursor initialization can be represented in the following steps.

First, the user briefly examines the content on the large display screen and coarsely selects an

area where he or she is willing to interact. Second, the user estimates the touch-down area on the

flat surface based on the positioning layout of the selected area, the center point of the screen's

top bar, and the position of the microphone array. Third, the user places the mobile device onto

the touch-down area with a sound generated from the collision between the mobile device and

flat surface. Fourth, the large display device computes the angle direction relative to the

microphone array and then provides the coordinates of the user-interested area. Finally, the

mobile device displays that desired area for the user to interact within.

Estimate Interaction Area

A user can estimate the interaction area that he or she is interested in through coarse

position-estimation. First, a user must define a rectangle working area (on a flat surface) whose

physical width and height are both M times the width and height of the large display screen. The

value of M should be set between 0 and 1 since this adjustment will downsize the working area

and will render it more accessible than the large display screen. Second, a microphone array is

set on the top center of the working area (see Figure 3A). Third, when the user finalizes a desired

15

area A on the large display (see Figure 3B), he or she should estimate the relative position A’

(see Figure 3A) on the working area based on the center of the microphone array. One should

assume that the physical distance between the center of area A and the top center of the large

display is “cld ” then the estimated distance “cld’ ”on the working area is equal to cld * M. The

position angle a on the large display device is equal to a’ on the working area. Finally, the user

can make a touch-down sound on the area of A’ in order to initialize the cursor on the area where

he or she is interested.

Estimate Initial Position Coordinates

The cursor initialization is completed by taking advantage of a mobile device, a flat

surface, and a large display device so as to produce a touch-down sound that can be captured by

a microphone array equipped with the large display device. This touch-down sound is then

analyzed as the cue for computing the coordinates that represent the location of the sound source.

The angle of the sound source aligned to the center of the microphone array can be obtained

a’

cld’ A’

Microphone array

a

cld A

Figure 3. Determine initialization area (A and B)

A B

16

through the calculation of the time-delay difference between each channel of the microphone

array (see Figure 4).

As Figure 4 shows, the distance between A and B is evaluated by the production of a time

delay difference (TDD) and the speed of the sound. The distance between A and B can be a

negative value if the sound source is located on the other side of the microphone array’s central

point, and this causes the TDD to be negative. A dual-delay algorithm was implemented with

“binaural sound source localization” (http://www.laurentcalmes.lu/soundloc_software.html) as a

reference. The distance between B and C is captured by the measurement of the distance between

the two channels of the microphone array. Thus, the angle of the sound source 𝜃 can be

calculated via Formula 1:

𝜃 = arcsin
𝐴𝐵
𝐵𝐶

 (1)

Once the angle has been calculated, the sound intensity can be evaluated through the

computation of the decibel level of the touch-down sound. Since environmental noise could

easily interfere with sound localization, a threshold was proposed to determine whether the

A

B C

q

Figure 4. Sound localization schema

17

sampled sound is a real touch-down sound that is qualified to trigger the initialization. If the

intensity of the sampled sound is larger than the threshold, the mobile device is registered as a

client of the target device. Sound intensity also helps to estimate the relative source sound (x, y),

which is implemented in Formula 2:

𝑥 = 𝑠𝑖𝑛 𝜃 ∙ 𝑑𝑠

𝑦 = cos𝜃 ∙ 𝑑𝑠
(2)

In the above formula, 𝑑𝑠 is an estimated measurement of the distance between the

source touch-down sound and the microphone array using sound intensity. The coordinates are

used as the relative pixel-based start-point on the target device screen, which takes the center of

its top boundary as the original base point. The actual start-point (X, Y) is estimated based on

Formula 3:

𝑋 =
𝐻𝑅
2
+ 𝑥

𝑌 = 0 + 𝑦	
(3)

Where HR represents the horizontal resolution of the large display device. However,

since θ can vary from -90° to 90° and the value ds is not restricted by the size of the large display

screen, it is possible that (X, Y) could be out of the range of the large display screen. If either X

or Y is out of the range, then the application should automatically adjust the value to its closest

boundary in order to avoid a positioning error. For example, if the target device has a resolution

of 1024px * 768px and if the source sound coordinates are (500, 866), then the actual location

start point is calculated as follows: (1,024/2 + 500)px, (0 + 866)px. In this case, the system

adjusts the value of Y from 866px to 768px since the vertical positioning is higher than the

maximum boundary (866px > 768px).

18

The estimated area is strictly equivalent to the physical size of the mobile device. A key

attribute called “dots per inch” (DPI) was used to obtain the relative pixel-based width (RPW)

and relative pixel-based height (RPH) for the mobile device on the large display by means of

Formula 4:

𝑅𝑃𝑊 =
𝑚𝑥
𝑚𝑑𝑝𝑖

∙ 𝑙𝑑𝑝𝑖

(4)
𝑅𝑃𝐻 =

𝑚𝑦
𝑚𝑑𝑝𝑖

∙ 𝑙𝑑𝑝𝑖

In the above formula, 𝑚𝑥 and 𝑚𝑦 are the horizontal and vertical resolutions of the

mobile device, and mdpi and ldpi are the DPIs for the mobile device and large display,

respectively.

Finally, the server sends a screenshot image and its screen DPI to the client-side mobile

device. When the image is received by the mobile device, it only displays the partial area of that

screenshot that uses (X, Y) as the base point and has the width of RPW and height of RPH.

These designs can deliver the experience of having a virtual screen on a flat surface. If,

moreover, the user touches down on the coordinates relative to the center point of the

microphone array, it is possible to begin the interaction at exactly the same coordinates relative

to the top center of the large display.

19

DETECTING CURSOR MOVEMENTS

Overview

The cursor movement simulation indicates the core process of position estimation. In

other words, this section is trying to transfer the mobile device’s four-direction movement to the

cursor’s four-direction movement. There are two critical parameters for simulating the device's

movement to the cursor's movement. The first involves the movement status detection, which

means detecting whether the device is moving or not in real time; the second parameter entails

the direction.

According to a study by Bohan, Thompson, and Samuelson (2003), a typical cursor

movement takes 1.002 seconds to finish and travels 18.75 mm, which is 66 px on the monitor

that the aforementioned study used (a 19-inch monitor with a resolution of 1400 * 1050).

However, one should not simply determine each cursor movement based on the data collected

every 1.002 seconds because the cursor will jump from one location to another rather than

moving continuously.

Therefore, a typical cursor movement simulation should be broken into pixel-movement

detection for classification. Pixel-movement detection can be described as follows: (1) Collecting

sensors’ raw data during a time interval (0.015s), which is the time used by the cursor to travel 1

pixel (2) Extracting features of the raw data to compose as one sample. (3) Six classes are

predefined (referred to as “stand_on_x,” “move_right,” “move_left,” “stand_on_y,” “move_up,”

and “move_down”) in order to indicate different statuses. (4) This sample is classified into one

of the six predefined groups. Thus, through the implementation of this process, both movement

status and direction detection can be addressed.

20

Pixel-Movement Experiment Design

Facility Setup

The application in this study was developed on an Android platform using API level 16.

The actual test run was performed on a Samsung Galaxy S4, which is an Android mobile device.

A cross-device large display server was set up on a traditional desktop device embedded with a

Windows operating system. Any Java-supported desktop device using any operating system

could also serve as the target device. Moreover, an Andrea SoundMAX Superbeam Array

Microphone was deployed in the system to enable sound localization.

Design Details

In order to sample the data for all six predefined class, the pixel-movement classification

experiment was designed to have a 7-second data collection session applied on x and y axes

separately that included three separate actions: 2 seconds of “stand,” 3 seconds of

“move_right/up,” and 2 seconds of “move left/down” to the axis. Tables 1 and 2 list the detailed

actions in the data collection session. The raw data from the accelerometer and gyroscope were

sampled at a rate of 590 hertz since, on average, 4,131 raw data instances were fetched from the

experimental phone in 7 seconds. In addition, the time spent for a 1 px movement was 0.015s;

since in 1.002 seconds, the cursor can travel 66 pixels.

Moreover, a visual text interface was provided to notify the user of the designated action

to perform at a given timestamp. Normally, the visual reaction for a human is 0.25 seconds

(https://backyardbrains.com/experiments/reactiontime). This application notified the user to

perform an action 0.25 seconds before the actual recording time. This adjustment was designed

to ensure that the user-recognized timestamp was strictly in accordance with the machine’s

recording time.

21

Table 1. Action design

Actions Timestamp

Stand 0 to 2 second

Move right 2 to 5 second

Move left 5 to 7 second

Stand 0 to 2 second

Move up 2 to 5 second

Move down 5 to 7 second

Table 2. Labeling design

Labels Timestamp

0(stand_on_x) 0 to 1 second

1(move_right) 3 to 4 second

2(move_left) 6 to 7 second

3(stand_on_y) 0 to 1 second

4(move_up) 3 to 4 second

5(move_down) 6 to 7 second

The time frame as shown in Table 1 and Table 2 was designed due to an important issue

encountered during the data collection. This issue raised a question of how to label the

benchmark class correctly. This problem is closely related to the motive for designing this

experiment. Each test may contain thousands of raw instances, and each device has its own

mechanical delays because of the variance in the buildup of CPU (central processing unit)

speeds. For example, on the threshold of performing actions in Second 2 or Second 5 (indicated

by a red circle in Figure 5), the designated class could be mislabeled even when the visual delay

22

time is added prior to the actual action timestamp. For example, presumably, the program labels

the raw instances collected after Second 2 as “move right.” However, when the user receives the

visual notice and starts to move the device, the timer may have already reached Second 2.2.

Thus, the raw instances fetched between Second 2 and Section 2.2 are mislabeled. The reason for

this design is twofold. First, sufficient samples for labeling require at least 1 second, which is the

typical cursor movement duration (use 1 to replace 1.002 for easy calculation), to be assigned to

the labeling session. Additionally, at least 1 second between the labeling session and the action

change threshold is also necessary in order to accommodate potential mislabels. Second, it is

important to shorten the data collection session as much as possible because this data collection

process is required when the user is trying to control the cursor by means of the device’s

movements. It is a usability requirement that the application should maintain a low complexity

and should avoid overtaxing the user’s patience. If an application has many complex

preprocessing steps that consume a substantial amount of time before actual usage, users tend to

lose interest in the application. This design allowed the experiment simultaneously to maximize

the duration of effective sampling data and to minimize the complexity of using the application.

Thus, the total time is measured in formula 5:

5

Move left/down

6 7

Labelling
session

Move right/up Stand

1 0 2 3 4

Labelling
session

Labelling
session

Figure 5. Graph demo of experiment design

23

𝑀𝑖𝑛(𝑡𝑙𝑠 + 𝑡𝑙𝑚𝑝 + 𝑡𝑙𝑚𝑛 + 𝑡𝑑𝑠 + 2𝑡𝑑𝑚𝑝 + 𝑡𝑑𝑚𝑛) (5)

In the above equation, tls, tlmp, and tlmn are the times used for labeling “stand,” “move

right/up,” and “move left/down,” while tds, tdmp, and tdmn are required sessions to prevent

mislabeling. Since both the labeling session and the mislabel preventing session require 1 second

as the minimum time interval, the total required time for data collection is 7s, based on the above

formula. Furthermore, since the action “move right/up” is located in the middle, it required two

sessions to prevent mislabeling (see Figure 5).

The experiment was performed ten times. Five of the tests were left-right-movement

based, and five of them were up-down-movement based. Ten raw datasets were produced by

leveraging the aforementioned strategy. These datasets were then used in downstream analysis in

order to determine the best models and features for predicting the mobile device’s movement on

the 2D flat surface.

24

PREPROCESSING AND FEATURE EXTRACTION

Data Preprocessing

There were ten raw datasets generated from the ten tests, and the preprocessing method

was applied to each raw dataset. The preprocessing of the raw instances was composed of two

steps. First, only instances with a predefined class label were kept to construct the filtered raw

dataset. According to the experiment design, more than half of the raw instances could be

potentially labeled incorrectly (1 s to 3 s and 4 s to 6 s in Figure. 5); thus, these raw instances

were dropped in order to avoid mislabeling. Second, the filtered raw dataset was divided into

sub-datasets to facilitate statistical calculations and feature extraction. Nine raw instances were

assigned to each sub-dataset sequentially on the time frame so as to test different machine-

learning algorithms with the goal of making the application extremely sensitive to the device’s

movement detection. Nine raw instances were used as the grouping metrics because a pixel

movement typically finished in 0.015 seconds, and there were, on average, 4,131 instances

collected in 7 seconds from each raw dataset. Therefore, to accurately classify each pixel

movement, nine raw instances were required. Subsequently, each group of nine raw instances

was transformed into a sample that represented a pixel movement, with features calculated by

feature-extraction methods. The label values (0, 1, 2, 3, 4, 5) typically represent the device’s

statuses (“stand_on_x,” “move_right,” “move_left,” “stand_on_y,” “move_up,” and

“move_down”). The label that occurred most frequently in the group were assigned as the label

for the corresponding sample. Finally, all the generated samples from a single raw dataset

constructed a preprocessed dataset, and ten preprocessed datasets, marked from “data 0” to “data

9,” were produced with, on average, 196 samples in each.

25

Feature Extraction

A total of 63 features were extracted from the raw data via mathematical or statistical

computation. For the raw data, tri-axial accelerometer and gyroscope data, indicated as (ax, ay,

az) and (gx, gy, gz), were collected to compute these features. Furthermore, tri-axial speed

values (vx, vy, vz) were captured through the use of acceleration and timestamp at each raw

instance. Formula 6 depicts the detailed computation method.

𝑉F = G
𝑎F ∙ 𝑡F				𝑤ℎ𝑒𝑟𝑒	𝑖 = 0

𝑉FMN + 𝑎F ∙ 𝑡F				𝑤ℎ𝑒𝑟𝑒	𝑖 > 0
 (6)

In general, feature categories can be classified into two domains, represented as the time

domain and frequency domain (Table 3). All the 63 extracted features are listed in Table 4.

Table 3. Extracted features on domains

Domains Feature categories

Time domain

Mean

Standard deviation

Minimum-maximum
difference

Median

Energy

Frequency domain

Dominant frequency

Spectral energy

26

Table 4. All 63 features

Vectors Axe
s

Mea
n

Standar
d

deviation

Minimu
m-

maximu
m

differenc
e

Median Energy

Domina
nt

frequenc
y

Spectral
energy

Accelera
tion

X mean
*ax

std*ax min_max
_gap*ax

median*
ax

energy*a
x

main_fre
q*ax

spectral_ene
rgy*ax

Y mean
*ay

std*ay min_max
_gap*ay

median*
ay

energy*a
y

main_fre
q*ay

spectral_ene
rgy*ay

Z mean
*az

std*az min_max
_gap*az

median*
az

energy*a
z

main_fre
q*az

spectral_ene
rgy*az

Rotation

X mean
*gx

std*gx min_max
_gap*gx

median*
gx

energy*g
x

main_fre
q*gx

spectral_ene
rgy*gx

Y mean
*gy

std*gy min_max
_gap*gy

median*
gy

energy*g
y

main_fre
q*gy

spectral_ene
rgy*gy

Z mean
*gz

std*gz min_max
_gap*gz

median*
gz

energy*g
z

main_fre
q*gz

spectral_ene
rgy*gz

Speed

X mean
*vx

std*vx min_max
_gap*vx

median*
vx

energy*v
x

main_fre
q*vx

spectral_ene
rgy*vx

Y mean
*vy

std*vy min_max
_gap*vy

median*
vy

energy*v
y

main_fre
q*vy

spectral_ene
rgy*vy

Z mean
*vz

std*vz min_max
_gap*vz

median*
vz

energy*v
z

main_fre
q*vz

spectral_ene
rgy*vz

The frequency-domain features were captured through Fast Fourier Transform (FFT),

which transfers a signal from a time-domain to a frequency-domain (Welch 1967). Formula 7

provides the equation:

𝑋P =Q𝑥R ∙ 𝑒
	M	FSTU PR

U	M	N

R	V	W

 (7)

In this above formula, 𝑥R indicates sensors’ readings on time domain, and N indicates

the length of this signal. The real number part of the computed 𝑋P indicates the amplitude

27

spectrum of each frequency domain. The dominant frequency is captured through finding a

frequency value that has the maximum amplitude.

The energy of each axis was computed by adding up the square numbers of the raw

instances in a signal. The spectral energy was calculated using the same method but with the raw

value transformed from a time-domain to a frequency-domain by FFT. Formula 8 (Parseval's

theorem) and 9 (cf. Stein and Jonathan Y. 2000) describe the detailed calculation:

Enery(y) = [𝑥RS
U

R	V	N

 (8)

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙(y) = [(𝐹𝐹𝑇(𝑥R))S
U

R	V	N

 (9)

where 𝑥R indicates sensors’ readings on time domain, and N indicates the length of this signal.

The Python programming language, with its powered libraries such as Pandas, Scikit-

learn, and NumPy, was used in both the preprocessing and feature extraction. These libraries and

tools contain powerful built-in functions that can capture statistical features with a high speed

and accuracy.

28

CLASSIFICATION AND RESULTS

Several studies have been conducted to determine which classification algorithm is the

most accurate candidate for extracting patterns from built-in sensors’ data. Algorithms such as

the support vector machine (SVM) (Zhang et al. 2006), k-nearest neighbors (Preece et al. 2009),

and naïve Bayes (Bao and Intille 2004) have been used to extract data patterns in order to verify

whether daily activities can be detected. In terms of multi-class classification tasks, the study by

Lee and Kwan (2018) has suggested that random forest and gradient boosting are the most

favored candidates for personal-activity classification. To better fit the data model and

classification task in this study, all the classifiers previously mentioned, along with additional

candidates, were included in the pool to ascertain whether there were any novel findings.

Basic Cross-Validation

Cross-validation is an evaluation tool that examines whether a model is an effective

predictor for data that is completely new and differs from the existing dataset. The simplest way

to avoid this “overfit” issue is what is known as a “holdout method.” This method typically splits

the dataset into two groups: one group is used for training, and the other group is used for testing.

The amount of training and testing is generally assigned at a ratio of 7:3. However, there is an

evident weakness that can produce a high variance in the model. The result of each test

classification may rely on the endpoint of the training or testing set. Therefore, the strategy of

splitting the dataset becomes a critical factor that can affect the evaluation results.

10-Folds Cross-Validation

This investigation applied a 10-folds cross-validation to avoid the aforementioned bias.

10-folds cross-validation is a specific case of a general method known as “K-folds cross-

validation.” Through the use of this K-folds cross-validation, the dataset could be split into K

29

subsets, and on each subset the holdout method was performed once. Each iteration only used

one of the K subsets as the test group and the other K-1 subsets as the training group. This

method notably improved the holdout since it mitigated the impact of the data-division strategy.

As the K value increased, the variance in the evaluation results declined. Moreover, K = 10 was

used because the number of test times in this study equals 10. Thus, to keep the consistency, the

author chose 10 as the value for parameter K.

A 10-folds cross-validation was applied on a dataset that contained 1,969 samples. This

dataset was combined by appending ten preprocessed datasets together. Ten classifiers were

evaluated by the accuracy performance (Figure 6 and Table 5); these classifiers included

AdaBoost (adaptive boosting), decision tree, gradient boosting, LDA (linear discriminant

analysis), linear SVM (support vector machine), naïve Bayes, nearest neighbors, neural network,

random forest, and RBF (radial basis function) SVM.

In Figure 6, from left to right, the performance of all classifiers is sorted by descending

order of mean and by ascending order of standard deviation. From the observations, gradient

boosting, LDA, and naïve Bayes are the top three classifiers, which have reached the average

Figure 6. Cross-validation results for all features (Boxplot)

30

accuracy of 83.65%, 83.43%, and 79.42%; their standard deviation is measured at 11.18%,

7.43%, and 6.68%, respectively. Based on the average accuracy, gradient boosting should be

selected as the agent for this classification problem; however, gradient boosting has a higher

standard deviation (11.18% versus 7.43%) but a similar average accuracy (83.65% versus

83.43%) compared with LDA. This comparison suggests that the performance of gradient

boosting may significantly vary when different training and testing data are used for

classification problems. Thus, LDA is recommended when all features are included.

Table 5. Cross-validation results for all features

Classifiers Accuracy mean Accuracy std

Gradient boosting 83.65% 11.18%

LDA 83.43% 7.43%

naïve Bayes 79.42% 6.68%

Decision tree 76.91% 11.66%

Linear SVM 76.24% 5.60%

Random forest 72.70% 6.22%

Neural net 72.47% 7.06%

Nearest neighbors 66.51% 11.05%

AdaBoost 48.24% 4.03%

RBF SVM 44.27% 8.66%

In machine learning, besides the accuracy rate, the manner in which the results of the

error predictions are distributed is also critical for downstream analysis. The distribution of

errors can be determined through an examination of the confusion matrix of the classification

results proposed by each classifier. In this project, the confusion matrices of the top three

classifiers (gradient boosting, LDA, naïve Bayes) were demonstrated (Table 6).

31

Table 6. Confusion matrices for top three classifiers

Gradient boosting

stand_on_
x move_right move_left stand_on_y move_up move_down Classified

as
208 1 0 116 0 0 stand_on_x

0 277 14 0 38 0 move_right

0 1 311 0 5 19 move_left

70 1 0 261 0 0 stand_on_y

0 26 3 0 289 0 move_up

0 0 22 0 0 307 move_dow
n

LDA
stand_on_

x move_right move_left stand_on_y move_up move_down Classified
as

218 0 0 107 0 0 stand_on_x

0 307 0 0 22 0 move_right

0 6 307 0 18 5 move_left

127 1 0 204 0 0 stand_on_y

0 29 9 1 279 0 move_up

0 0 0 0 1 328 move_dow
n

naïve Bayes
stand_on_

x move_right move_left stand_on_y move_up move_down Classified
as

206 2 2 115 0 0 stand_on_x

0 242 23 0 64 0 move_right

0 16 252 0 52 16 move_left

73 3 0 255 1 0 stand_on_y

0 3 19 0 296 0 move_up

0 2 14 0 0 313 move_dow
n

The confusion matrix generally shows the distribution of correct and error predictions.

Each row label indicates the predicted class, and the column label indicates the actual class. For

example, based on the confusion matrix of naïve Bayes, the first observation of 206 falls under

the column of “stand_on_x” and the row of “stand_on_x” as well. This result means that 206

32

samples are predicted as “stand_on_x” and also belong to the “stand_on_x” class, and this

means, ultimately, that these 206 samples have been predicted correctly. However, the second

horizontal observation 2 indicates that two samples are predicted as “stand_on_x” but actually

belong to the “move_right” class; this means that these samples have been predicted incorrectly.

Some notable findings can be ascertained from the confusion matrix. First, it seems that

all these three classifiers have managed an exemplary performance in distinguishing “move” and

“stand” regardless of direction since there are few observations in the cells of “stand_on_x/y”

that are classified as “move_right/left/up/down.” Second, commonly, samples are classified into

incorrect labels where the difference only lies in an axis (x or y) compared with the original

label. For example, there are many error predictions that fail to distinguish whether the sample is

in the “stand_on_x” group or the “stand_on_y” group.

33

FEATURE SELECTION

In machine learning, feature selection plays an important role that can substantially

impact not only the learning accuracy of the prediction model but also the efficiency and user

experience of the application. Feature selection represents the process of fetching a subset that

contains the most relevant features from an original feature set based on statistical algorithms

and has been proven to be accurate through both theoretical and practical success in multiple

application scenarios (Liu et al. 2018) (Ali and Aittokallio 2019). To determine what features

should be selected, multiple methods were applied in this project, and these methods can be

grouped into two categories: algorithm-based methods and manual feature selection methods.

Algorithm-Based Methods

Three algorithm-based methods were tested in this project: linear correlation analysis,

select k best, and recursive feature elimination (RFE). All were evaluated by applying 10-folds

cross-validation on the feature sets proposed.

Linear Correlation Analysis

Linear correlation is a statistical method to investigate the strength of association between

two features in order to obtain the most relevant features and to remove irrelevant features

through an examination of the strength between each feature and the labeled class. Moreover, a

Pearson correlation coefficient was computed for each pair of features by means of Formula 10:

r =
∑ (𝑥F − 𝑥̅)((𝑦F − 𝑦c)F

d∑ (𝑥F − 𝑥̅)F
S d∑ (𝑦F − 𝑦c)F

S
 (10)

In this formula, 𝑥F and 𝑦F represent the values of two features, and 𝑥̅ and 𝑦c are the

mean values of each feature. The result is always a decimal number between -1 and 1. If this

34

number is close to 1, then the two variables X and Y reveal a high positive correlation. If this

number is close to -1, then the two variables reveal a high negative correlation. A threshold of

0.5 (https://www.dummies.com/education/math/statistics/how-to-interpret-a-correlation-

coefficient-r/) was proposed so as to keep features that have absolute values of their correlations

with a label class larger or equal to 0.5. A feature set containing four features was generated:

“mean*vz,” “median*vz,” “energy*vz,” and “spectral_energy*vz”.

Select K Best

 A select K best method uses a specific function to score each feature and to select the

highest K scoring features. This project computed an analysis of variance (ANOVA) F-value

between the label and each feature, and it used K = 10 to perform this task because the author

aimed to investigate the performance of each classifier when the number of features increased

compared with a linear correlation analysis. Selected features were as follows: “median*vz,"

“mean*vz," “spectral_energy*vz,” “energy*vz,” “spectral_energy*vy,” “energy*vy,”

“spectral_energy*vx,” “energy*vx,” “median*vy,” and “mean*vy”.

Recursive Feature Elimination

 Recursive feature elimination (RFE) is a method that proposes certain candidate features

by gradually focusing on a smaller set of features. Usually, it starts with a trained estimator to

assign an importance value to each feature, and then the feature with the lowest importance value

is eliminated from the candidate pool. This process is continued recursively until the desired

number of features has been satisfied.

 This study employed a linear SVM as a trained estimator since it has a high accuracy

and an efficient generalization ability for removing features recursively (Yan and Zhang 2015).

35

With this algorithm fitted into the dataset, the RFE model proposed an optimized number of 31

features.

Algorithm-Based Results

Cross-validation results for the top three classifiers in each method have been

demonstrated in Table 7. From the observation of proposed features, there are 33 unique features

selected by all three methods, and 84.85% (28 out of 33) are time-domain-related; this

potentially suggests that frequency-domain features are not as important as time-domain features

for this classification task. In addition, LDA, naïve Bayes, and gradient boosting are potential

candidates to be recognized as the best classifier for detecting device movement since they are

ranked as the top three classifiers in at least two feature-selection methods. Furthermore, 39.4%

(13 out of 33) of the proposed features are speed-related, and both the select K best and the linear

correlation selected features that are all speed-related; this may indicate that speed is a critical

vector in terms of determining device movement.

36

Table 7. Cross-validation for algorithm-based feature selection

Feature selection
method

Selected features classifiers Accuracy
_mean

Accuracy
_std

Linear correlation “mean*vz”, “median*vz”, “energy*vz”,
“spectral_energy*vz”

naïve
Bayes

73.20% 12.07%

RBF SVM 72.57% 11.50%

Neural
Nnet

72.13% 13.20%

Select k best
(Anova)

“median*vz", “mean*vz",
“spectral_energy*vz”, “energy*vz”,
“spectral_energy*vy”, “energy*vy”,
“spectral_energy*vx”, “energy*vx”,

“median*vy”, “mean*vy”

LDA 78.75% 8.13%

Random
forest

76.26% 9.59%

Gradient
boosting

76.12% 10.81%

Recursive feature
elimination

“mean*ax”, “mean*ay”, “mean*az”,
“mean*vx”, “mean*vy”, “mean*vz”,

“mean*gx”, “mean*gz”,
“min_max_gap*ax”,

“min_max_gap*ay”, “min_max_gap*az”,
“min_max_gap*vy”,
“min_max_gap*gy”,

“min_max_gap*gz”, “median*ax”,
“median*ay”, “median*az”,
“median*vx”, “median*vy”,
“median*vz”, “median*gz”,

“main_freq*gy”, “main_freq*gz”,
“energy*ax”, “energy*az”, “energy*vx”,
“energy*vz”, “energy*gy”, “energy*gz”,

“spectral_energy*vy”,
“spectral_energy*vz”

Gradient
boosting

84.07% 10.74%

LDA 82.82% 8.14%

naïve
Bayes

80.40% 4.26%

Manual Feature Selection

Manual feature selection is another method for pursuing a small set of features by

removing irrelevant features. However, instead of using algorithms to determine feature

importance, Manual feature selection proposes feature sets based on assumptions that may

explain what features are related to the success of movement detection. For example, in physics,

speed typically describes where and how fast the object is moving. Angular velocity detects

whether the object has any rotation event. Thus, an assumption can be made as when the

37

machine-learning model tries to detect the four-direction movement of a mobile device, it’s

better using speed-related features rather than angular-velocity-related features to build the

model. Because the key of determining four-direction movement is to detect where and how fast

the object is moving. Movements on a flat surface barely produce rotation event.

Another hypothesis is that speed-related features should exclude standard deviation and

minimum-maximum difference in order to have a better performance. Because the standard

deviation and minimum-maximum difference can only measure the extent of speed alteration

rather than indicate where and how fast the object is moving. The ideal feature category should

be mean or median because they reflect the raw values of speed in a pixel-movement time

interval.

The core process of manual feature selection is composed of five steps: (1) Evaluating the

classification performance of feature sets that each of them relates to either one vector

(acceleration, angular-velocity, and speed) or one feature category (mean, std, min_max_gap,

median, energy, dominant frequency, and spectral energy). Since each vector or feature category

has its unique physical or statistical meanings, it’s better to understand how they uniquely impact

the success of the classification. (2) Finding out the vector VH that its related features can

produce a higher recognition rate than other vectors. (3) Finding out the feature category FCH

that its related features can produce a higher recognition rate than other feature categories. (4)

Selecting a combined feature set that contains features relates to VH and FCH simultaneously.

(5) Evaluating the performance of this combined feature set to verify if the recognition rate can

be higher than former feature sets. The objective of this section is to examine whether using

features that relate simultaneously to the most relevant vector and most relevant feature category

can reach a higher performance

38

Vector-Based Feature Selection

The difference between vectors acts as an imperative factor for the success of the

classification task because different vectors represent their own unique physical significance.

Therefore, it is critical to evaluate features related to a single vector or a single feature category

separately. An analysis for selecting features based on different vectors is demonstrated in Table

8.

39

Table 8. Performance of vector-based feature selection

Vector selection Selected features
Number

of
features

Classif
iers

Accuracy_
mean

Accuracy
_std

Acceleration

"mean*ax", "mean*ay","mean*az","std*ax",
"std*ay","std*az", "std*az","min_max_gap*ax",

"min_max_gap*ay","min_max_gap*az","median*ax",
"median*ay","median*az","energy*ax",

"energy*ay","energy*az", "main_freq*ax",
"main_freq*ay","main_freq*az","spectral_energy*ax",

"spectral_energy*ay","spectral_energy*az"

21 Gradient
boosting 63.87% 5.27%

Random
forest 61.07% 5.26%

Decision
tree 57.12% 4.28%

Angular velocity

"mean*gx", "mean*gy","mean*gz","std*gx",
"std*gy","std*gz", "std*gz","min_max_gap*gx",

"min_max_gap*gy","min_max_gap*gz","median*gx",
"median*gy","median*gz","energy*gx",

"energy*gy","energy*gz", "main_freq*gx",
"main_freq*gy","main_freq*gz","spectral_energy*gx",

"spectral_energy*gy","spectral_energy*gz"

21 Decision
tree 51.96% 5.31%

Gradient
boosting 51.96% 3.97%

Random
forest 50.67% 7.45%

Speed

"mean*vx", "mean*vy","mean*vz","std*vx",
"std*vy","std*vz", "std*vz","min_max_gap*vx",

"min_max_gap*vy","min_max_gap*vz","median*vx",
"median*vy","median*vz","energy*vx",

"energy*vy","energy*vz", "main_freq*vx",
"main_freq*vy","main_freq*vz","spectral_energy*vx",

"spectral_energy*vy","spectral_energy*vz"

21
LDA 80.03% 9.84%

Random
forest 79.98% 8.92%

Gradient
boosting 79.06% 6.92%

Acceleration and
angular-velocity

"mean*gx", "mean*gy","mean*gz","std*gx",
"std*gy","std*gz", "std*gz","min_max_gap*gx",

"min_max_gap*gy","min_max_gap*gz","median*gx",
"median*gy","median*gz","energy*gx",

"energy*gy","energy*gz", "main_freq*gx",
"main_freq*gy","main_freq*gz","spectral_energy*gx",
"spectral_energy*gy","spectral_energy*gz","mean*gx",

"mean*gy","mean*gz","std*gx", "std*gy","std*gz",
"std*gz","min_max_gap*gx",

"min_max_gap*gy","min_max_gap*gz","median*gx",
"median*gy","median*gz","energy*gx",

"energy*gy","energy*gz", "main_freq*gx",
"main_freq*gy","main_freq*gz","spectral_energy*gx",

"spectral_energy*gy","spectral_energy*gz"

42 Gradient
boosting 65.08% 5.33%

Random
forest 62.20% 3.51%

Decision
Tree 59.59% 5.95%

Speed and
acceleration

"mean*ax", "mean*ay","mean*az","std*ax",
"std*ay","std*az", "std*az","min_max_gap*ax",

"min_max_gap*ay","min_max_gap*az","median*ax",
"median*ay","median*az","energy*ax",

"energy*ay","energy*az", "main_freq*ax",
"main_freq*ay","main_freq*az","spectral_energy*ax",
"spectral_energy*ay","spectral_energy*az","mean*vx",

"mean*vy","mean*vz","std*vx", "std*vy","std*vz",
"std*vz","min_max_gap*vx",

"min_max_gap*vy","min_max_gap*vz","median*vx",
"median*vy","median*vz","energy*vx",

"energy*vy","energy*vz", "main_freq*vx",
"main_freq*vy","main_freq*vz","spectral_energy*vx",

"spectral_energy*vy","spectral_energy*vz"

42 Gradient
boosting 83.25% 10.90%

naïve
Bayes 83.01% 7.36%

LDA 81.71% 7.05%

Speed and angular-
velocity

"mean*vx", "mean*vy","mean*vz","std*vx",
"std*vy","std*vz", "std*vz","min_max_gap*vx",

"min_max_gap*vy","min_max_gap*vz","median*vx",
"median*vy","median*vz","energy*vx",

"energy*vy","energy*vz", "main_freq*vx",
"main_freq*vy","main_freq*vz","spectral_energy*vx",
"spectral_energy*vy","spectral_energy*vz","mean*gx",

"mean*gy","mean*gz","std*gx", "std*gy","std*gz",
"std*gz","min_max_gap*gx",

"min_max_gap*gy","min_max_gap*gz","median*gx",
"median*gy","median*gz","energy*gx",

"energy*gy","energy*gz", "main_freq*gx",
"main_freq*gy","main_freq*gz","spectral_energy*gx",

"spectral_energy*gy","spectral_energy*gz"

42
LDA 82.31% 8.94%

Gradient
boosting 81.75% 7.76%

Linear
SVM 75.71% 6.55%

From the results of vector-based feature selection, it is obvious that as long as speed-

related features are included, then the average accuracy of classification is always significantly

higher (80.47% > 58.16%) than the feature set without speed-related features. At the same time,

40

acceleration- or angular-velocity-related features can be considered as artifacts for the

classification task: first, because features based on these two vectors are performing at an

extremely low accuracy rate (on average, 58.16%); second, because there is no significant

accuracy improvement when either acceleration- or angular-velocity-related features are mixed

with speed-related features (for example, LDA sits at 80.03% with speed-only features, but at

81.71% and 82.31% when mixing speed with acceleration- and angular-velocity features,

respectively).

Feature-Category-Based Feature Selection

The feature categories presented in the feature extraction section were inspired by

previous studies (Preece et al. 2009) (Fang, Yishui, and Wei 2016). However, some of the

feature categories are either mathematical- or statistical-confounding factors for the project’s

classification problem. Thus, it is wise to analyze them separately in order to observe what

feature categories contribute positively to the machine-learning model.

This study applied cross-validation on seven feature categories independently, and the

results, including the top three classifiers that have the highest accuracy rates, are shown in Table

9. From the observations, it seems that through the application of median-related features, the

accuracy rate can boom to 85.36% when naïve Bayes is used as the classifier. However, there is

another observation that also uses naïve Bayes as the classifier but applies mean-related features;

this reaches a similar recognition rate of 85.25%. These findings suggest that either median- or

mean-related features contribute to the learning process. In addition, the accuracy rate of main-

frequency-related (“main_freq”) features are significantly lower than the accuracy of other

feature categories; this could indicate that major frequency-related features are irrelevant to the

success of the project’s classification task.

41

Table 9. Performance of feature-category based feature selection

Feature-
category Selected features

Numbe
r of

feature
s

Classifiers Accuracy_
mean

Accur
acy_st

d

Mean
"mean*ax","mean*ay","mean*az"
,"mean*gx","mean*gy","mean*gz
","mean*vx","mean*vy","mean*v

z"
9

naïve Bayes 85.25% 6.53%

Gradient boosting 84.00% 12.42
%

LDA 77.98% 11.57
%

Std
"std*ax","std*ay","std*az","std*g
x","std*gy","std*gz","std*vx","st

d*vy","std*vz"
9

Gradient boosting 56.51% 4.01%

Decision tree 48.54% 6.84%

Random forest 46.51% 6.40%

Min_max_ga
p

"min_max_gap*ax","min_max_ga
p*ay","min_max_gap*az","min_

max_gap*gx","min_max_gap*gy"
,"min_max_gap*gz","min_max_g
ap*vx","min_max_gap*vy","min_

max_gap*vz"

9

Gradient boosting 58.05% 4.26%

Decision tree 50.29% 5.56%

Random forest 50.27% 4.88%

Median
"median*ax","median*ay","media
n*az","median*gx","median*gy",
"median*gz","median*vx","media

n*vy","median*vz"
9

naïve Bayes 85.36% 7.27%

Gradient boosting 82.54% 10.69
%

Random forest 78.55% 7.82%

Energy
"energy*ax","energy*ay","energy
*az","energy*gx","energy*gy","e
nergy*gz","energy*vx","energy*v

y","energy*vz"
9

Gradient boosting 83.00% 11.06
%

naïve Bayes 78.50% 6.23%

Decision tree 77.93% 11.29
%

Main_freq

"main_freq*ax","main_freq*ay","
main_freq*az","main_freq*gx","
main_freq*gy","main_freq*gz","
main_freq*vx","main_freq*vy","

main_freq*vz"

9

LDA 25.95% 1.60%

Linear SVM 25.85% 0.72%

Decision tree 25.49% 1.06%

Spectral_ene
rgy

"spectral_energy*ax","spectral_en
ergy*ay","spectral_energy*az","s
pectral_energy*gx","spectral_ener
gy*gy","spectral_energy*gz","spe
ctral_energy*vx","spectral_energy

*vy","spectral_energy*vz"

9

Gradient boosting 83.10% 11.42
%

Decision tree 78.42% 11.84
%

naïve Bayes 78.29% 7.19%

Combined Analysis

From the brief analysis of the previous two feature-selection methods, another hypothesis

can be posited that if the feature set was downsized into a state where only speed and mean- or

median-related features were included, then the accuracy of the specific classifier should be

higher or remain at the same level. To verify this assumption, this study has created two feature

42

sets: one containing only the speed and mean-related feature, and the other only the speed and

median-related feature. Cross-validation was then applied on these two feature sets. After

generating the results, the author selected “gradient boosting,” “LDA,” and “naïve Bayes” as the

benchmark classifiers for comparing since these are the most recurrent classifiers considered to

be high performing, based on the previous results.

Table 10. Feature selection performance with benchmark classifiers

Description Feature set
Number

of
features

Gradient
boosting LDA naïve

Bayes

Speed and
mean

"mean*vx","mean*vy","mean*vz"
3 79.10% 72.34% 74.38%

All vectors
and mean

mean*vx,"mean*vy","mean*vz","mea
n*ax","mean*ay","mean*az","mean*g
x","mean*gy","mean*gz"

9 84.00% 77.98% 85.25%

Speed and
median

"median*vx","median*vy","median*v
z" 3 78.32% 72.34% 74.38%

All vectors
and median

"median*vx","median*vy","median*v
z","median*ax","median*ay","median
*az","median*gx","median*gy","medi
an*gz"

9 82.54% 77.88% 85.36%

Speed and
all feature
categories

mean*vx,
"mean*vy","mean*vz","std*vx",
"std*vy","std*vz","min_max_gap*vx"
,
"min_max_gap*vy","min_max_gap*v
z","median*vx",
"median*vy","median*vz","energy*v
x", "energy*vy","energy*vz",
"main_freq*vx",
"main_freq*vy","main_freq*vz","spec
tral_energy*vx",
"spectral_energy*vy","spectral_energ
y*vz"

21 79.06% 80.03% 71.43%

All 63
features

All 63 features
63 83.65% 83.43% 79.42%

The compared results (Table 10) provide strong evidence for declining the

aforementioned hypothesis. With a focus on features that are only related to speed and mean, the

43

performance of the classification actually decreased for all three benchmark classifiers,

compared to the performance of the feature set with all vectors (speed, acceleration and angular-

velocity). The same trend occurred on another feature set (speed and median related feature)

since the recognition rates of benchmark classifiers boomed when features related to all vector

and median were involved in the learning model.

Moreover, these results also provide evidence against the assumption addressed in 8.2.1,

that acceleration- and angular-velocity-related features cannot contribute to the performance of

the classification task because it is evident that the addition of more vector-based features can

lead to a boom in performance (gradient boosting: from 79.10% to 84.00%; LDA: from 72.34%

to 77.98%; naïve Bayes: from 74.38% to 85.25%).

Furthermore, this performance boom was not driven from the addition of the number of

features: Table 10 shows that even with 21 features or all 63 features selected, gradient boosting

and naïve Bayes performed worse than previous feature sets (all vectors and mean, all vectors

and median) that only have 9 features.

44

CONCLUSION AND DISCUSSION

In this paper, a novel approach leveraging machine learning for estimating cursor

position has been proposed. The new method can allow the user to remotely initialize and control

the position of the cursor with the benefits of a low-cost, intuitive, and physically unconstrained

experience. Through sound localization, the user can perform a coarse pointing to the desired

interaction area by using a touch-down sound on the flat surface. In terms of cursor’s movements

control, this project proposed a four-direction mobile device’s movement detection system for

allowing the user to control the cursor by moving the mobile device. In total, 63 features and 10

classifiers were employed to construct the machine-learning models, and multiple feature-

selection methods have been applied to find an optimized machine-learning model.

Four major conclusions should be addressed. First, this study proposed naïve Bayes,

gradient boosting, and LDA as the reliable classifiers to build machine-learning models.

Regardless of whether there is any feature-selection method involved, these three agents always

have a higher recognition rate than others.

Second, from the result of the confusion matrix, it appears that there is almost no error

prediction between “stand” classes (stand_on_x, stand_on_y) and “move” classes (move_right,

move_left, move_up and move_down); this implies that the proposed machine-learning model

performs well in distinguishing “move” from “stand”. Most of the error predictions centered on

classes inside “stand” and “move”. For example, with all features selected, gradient boosting

incorrectly classified 70 “stand_on _x” samples into “stand_on_y” samples and 116

“stand_on_y” samples into “stand_on_x” samples; these incorrect predictions capture 58.86%

(186 out of 316) of the total number of incorrect predictions. Moreover, there were more error

predictions in classifying two groups: “move_right” or “move_up” and “move_left” or

45

“move_down)”. This suggests that it is more difficult to differentiate “move right or move _up”

and “move left or move down” than other combinations.

Third, only recursive feature elimination in the algorithm-based feature-selection method

can reach a similar recognition rate compared to the non-feature-selection model. It reduces half

of the dimensions by only using 31 features, but it is also a challenge to explain why these 31

selected features contributed to the learning results.

Fourth, by applying manual-selected features, the findings demonstrate that in vectors

(acceleration, angular-velocity, and speed), speed-related features are more relevant to the

classification task than the other two vectors. Furthermore, in feature categories, mean- and

median-related features contribute more to the learning process than other feature categories.

However, by limiting the features to speed and mean-related features (mean*vx, mean*vy, and

mean*vz), the performance drops significantly, based on the three benchmark classifiers (see

Figure 10). It seems that to have a high performance, the learning model should add back some

features. Based on the observation in Figure 10, gradient boosting and naïve Bayes have a

prominent recognition rate increase when other vector-related features are added back. However,

when all feature-category-related features are added back (third row in Figure 10), there is no

performance boom. These findings suggest that the presence of all vector-related features is more

important than the presence of all feature-category-related features in terms of performance, and,

moreover, it is wise to only use speed-related features to perform the classification task since

other vectors also contribute to the learning process.

46

REFERENCES

Ali, Mehreen and Tero Aittokallio. 2019. “Machine Learning and Feature Selection for Drug
Response Prediction in Precision Oncology Applications.” Biophysical Reviews
11(1):31–39.

Bao, Ling and Stephen S. Intille. 2004. “Activity Recognition from User-Annotated Acceleration
Data.” Pp. 1–17 in Pervasive Computing. Vol. 3001, edited by A. Ferscha and F. Mattern.
Berlin, Heidelberg: Springer Berlin Heidelberg.

Backyard Brains. “Experiment: How Fast Your Brain Reacts To Stimuli.” Retrieved January 24,
2019a (https://backyardbrains.com/experiments/reactiontime)

Bluma, Avrim L. 1997. “Selection of Relevant Features and Examples in Machine Learning.”
Artificial Intelligence 97:245–271.

Bohan, Michael, Shelby G. Thompson, and Peter J. Samuelson. 2003. “Kinematic Analysis Of
Mouse Cursor Positioning As A Function Of Movement Scale And Joint Set.”
Proceedings of the 8th Annual International Conference on Industrial Engineering –
Theory, Applications and Practice.

Boring, Sebastian, Marko Jurmu, and Andreas Butz. 2009. “Scroll, Tilt or Move It: Using Mobile
Phones to Continuously Control Pointers on Large Public Displays.” P. 161 in
Proceedings of the 21st Annual Conference of the Australian Computer-Human
Interaction Special Interest Group on Design: Open 24/7 - OZCHI ’09. Melbourne,
Australia: ACM Press.

Calmes, L. (2019). Binaural sound source localization - Software. [online] Laurentcalmes.lu.
Available at: http://www.laurentcalmes.lu/soundloc_software.html [Accessed 28 Jul.
2019].

Chen, Kuang-Hsuan, Jing-Jung Yang, and Fu-Shan Jaw. 2016. “Accelerometer-Based Fall
Detection Using Feature Extraction and Support Vector Machine Algorithms.”
Instrumentation Science & Technology 44(4):333–42.

Deborah J. Rumsey. “How to Interpret a Correlation Coefficient r.” Dummies. Retrieved March
28, 2019b (https://www.dummies.com/education/math/statistics/how-to-interpret-a-
correlation-coefficient-r/).

Fang, L., S. Yishui, and C. Wei. 2016. “Up and down Buses Activity Recognition Using
Smartphone Accelerometer.” Pp. 761–65 in 2016 IEEE Information Technology,
Networking, Electronic and Automation Control Conference.

Ferrero, Renato, Filippo Gandino, Bartolomeo Montrucchio, Maurizio Rebaudengo, Alejandro
Velasco, and Imane Benkhelifa. 2015. “On Gait Recognition with Smartphone
Accelerometer.” Pp. 368–73 in 2015 4th Mediterranean Conference on Embedded
Computing (MECO). Budva, Montenegro: IEEE.

47

Ikematsu, Kaori and Itiro Siio. 2015. “Memory Stones: An Intuitive Information Transfer
Technique between Multi-Touch Computers.” Pp. 3–8 in Proceedings of the 16th
International Workshop on Mobile Computing Systems and Applications - HotMobile ’15.
Santa Fe, New Mexico, USA: ACM Press.

Lee, Kangjae and Mei-Po Kwan. 2018. “Physical Activity Classification in Free-Living
Conditions Using Smartphone Accelerometer Data and Exploration of Predicted Results.”
Computers, Environment and Urban Systems 67:124–31.

Liu, Zhen-Tao, Min Wu, Wei-Hua Cao, Jun-Wei Mao, Jian-Ping Xu, and Guan-Zheng Tan. 2018.
“Speech Emotion Recognition Based on Feature Selection and Extreme Learning
Machine Decision Tree.” Neurocomputing 273:271–80.

Marquardt, Nicolai, Till Ballendat, Sebastian Boring, Saul Greenberg, and Ken Hinckley. 2012.
“Gradual Engagement: Facilitating Information Exchange between Digital Devices as a
Function of Proximity.” P. 31 in Proceedings of the 2012 ACM international conference
on Interactive tabletops and surfaces - ITS ’12. Cambridge, Massachusetts, USA: ACM
Press.

Nancel, Mathieu, Olivier Chapuis, Emmanuel Pietriga, Xing-Dong Yang, Irani Pourang, and
Michel Beaudouin-Lafon. 2013. “High-Precision Pointing on Large Wall Displays Using
Small Handheld Devices.” Pp. 831–40 in CHI ’13: SIGCHI Conference on Human
Factors and Computing Systems, edited by ACM. Paris, France.

Pew Research Center “Demographics of Mobile Device Ownership and Adoption in the United
States.” Retrieved January 5, 2019 (http://www.pewinternet.org/fact-sheet/mobile/).

Paay, Jeni, Dimitrios Raptis, Jesper Kjeldskov, Mikael B. Skov, Eric V. Ruder, and Bjarke M.
Lauridsen. 2017. “Investigating Cross-Device Interaction between a Handheld Device
and a Large Display.” Pp. 6608–19 in Proceedings of the 2017 CHI Conference on
Human Factors in Computing Systems - CHI ’17. Denver, Colorado, USA: ACM Press.

Preece*, S. J., J. Y. Goulermas, L. P. J. Kenney, and D. Howard. 2009. “A Comparison of Feature
Extraction Methods for the Classification of Dynamic Activities From Accelerometer
Data.” IEEE Transactions on Biomedical Engineering 56(3):871–79.

Preece, S. J., J. Y. Goulermas, L. P. J. Kenney, and D. Howard. 2009. “A Comparison of Feature
Extraction Methods for the Classification of Dynamic Activities From Accelerometer
Data.” IEEE Transactions on Biomedical Engineering 56(3):871–79.

Rakhman, Arkham Zahri, Lukito Edi Nugroho, Widyawan, and Kurnianingsih. 2014. “Fall
Detection System Using Accelerometer and Gyroscope Based on Smartphone.” Pp. 99–
104 in 2014 The 1st International Conference on Information Technology, Computer, and
Electrical Engineering. Semarang, Indonesia: IEEE.

Rekimoto, Jun. 2004. “SyncTap: Synchronous User Operation for Spontaneous Network
Connection.” Personal and Ubiquitous Computing 8(2):126–34.

48

Sarabadani Tafreshi, Amir E., Andrea Soro, and Gerhard Tröster. 2018. “Automatic, Gestural,
Voice, Positional, or Cross-Device Interaction? Comparing Interaction Methods to
Indicate Topics of Interest to Public Displays.” Frontiers in ICT 5.

Schmidt, Dominik, Julian Seifert, Enrico Rukzio, and Hans Gellersen. 2012. “A Cross-Device
Interaction Style for Mobiles and Surfaces.” P. 318 in Proceedings of the Designing
Interactive Systems Conference on - DIS ’12. Newcastle Upon Tyne, United Kingdom:
ACM Press.

Seifert, Julian, Andreas Bayer, and Enrico Rukzio. 2013. “PointerPhone: Using Mobile Phones
for Direct Pointing Interactions with Remote Displays.” Pp. 18–35 in Human-Computer
Interaction – INTERACT 2013. Vol. 8119, edited by P. Kotzé, G. Marsden, G. Lindgaard,
J. Wesson, and M. Winckler. Berlin, Heidelberg: Springer Berlin Heidelberg.

Strohmeier, Paul. 2015. “DisplayPointers: Seamless Cross-Device Interactions.” Pp. 1–8 in
Proceedings of the 12th International Conference on Advances in Computer
Entertainment Technology - ACE ’15. Iskandar, Malaysia: ACM Press.

Welch, P. 1967. “The Use of Fast Fourier Transform for the Estimation of Power Spectra: A
Method Based on Time Averaging over Short, Modified Periodograms.” IEEE
Transactions on Audio and Electroacoustics 15(2):70–73.

Yan, Ke and David Zhang. 2015. “Feature Selection and Analysis on Correlated Gas Sensor Data
with Recursive Feature Elimination.” Sensors and Actuators B: Chemical 212:353–63.

Yuan, H., C. Maple, C. Chen, and T. Watson. 2018. “Cross-Device Tracking through
Identification of User Typing Behaviours.” Electronics Letters 54(15):957–59.

von Zadow, Ulrich, Wolfgang Büschel, Ricardo Langner, and Raimund Interactive Media Lab
Dachselt. 2014. “SleeD: Using a Sleeve Display to Interact with Touch-Sensitive Display
Walls.” Pp. 129–38 in Proceedings of the Ninth ACM International Conference on
Interactive Tabletops and Surfaces - ITS ’14. Dresden, Germany: ACM Press.

Zhang T., Wang J., Xu L., Liu P. 2006 Fall Detection by Wearable Sensor and One-Class SVM
Algorithm. In: Huang DS., Li K., Irwin G.W. (eds) Intelligent Computing in Signal
Processing and Pattern Recognition. Lecture Notes in Control and Information Sciences,
vol 345. Springer, Berlin, Heidelberg

