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ABSTRACT 

In this paper, the author develops a novel cross-device cursor position estimation system 

for transferring a mobile device’s four-direction 2D movement to a cursor’s four-direction 

movement on a large display device; this is achieved through the use of sound-source 

localization and machine-learning algorithms. This system is implemented in two steps. First, the 

system starts the cursor’s position initialization by taking advantage of the theory of sound-

source localization. Second, the system transfers the mobile device’s movement to the cursor’s 

movement by means of a machine-learning model. This newly developed system improves 

usability of cross-device applications by offering intuitive 2D move gesture and multi-user 

interaction context and removes physical distance restrictions. A pilot test has been conducted, 

and the results have demonstrated that naïve Bayes and gradient boosting are suitable for 

detecting the 2D movement of a mobile device. 
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INTRODUCTION 

The use of mobile devices, especially smartphones and tablet computers, is becoming 

popular in the U.S. in recent years. According to a technology report from the Pew Research 

Center, smartphone ownership rates remained high at 77% in 2018, and from 2016 to 2018, the 

influx rate of tablet computers increased from 12% to 20% (http://www.pewinternet.org/fact-

sheet/mobile/). These facts indicate that mobile devices will continue to be a major player in the 

field of information technology in the 21st century. 

Public display devices have been widely deployed in diverse environments. These 

devices, in most cases, serve as broadcast platforms that raise no interest from bypassers 

(Sarabadani Tafreshi, Soro, and Tröster 2018). First, the content in most public displays is static 

and uninteresting, and there is no user-triggered interaction. Viewers can only passively receive 

information from the screen. For example, a crowded shopping mall contains many large 

electronic screens that advertise various brands. However, bystanders rarely care about these 

advertisements because they do not desire the products. Second, a single public display device 

only allows one person to operate it at a time; this causes substantial waiting times. The use of 

these public displays also raises health concerns due to the high-frequency use of contaminated 

input hardware, such as the touchscreen and the game handler. To summarize, direct methods of 

interaction present numerous issues that cross-device interactions could solve. 

Many studies have been engaged in discovering a method and style that can be applied to 

cross-device interactions. One impressive study has created a “drag-and-drop” style of 

interaction that allows the user to transfer data objects between two touchable devices (Ikematsu 

and Siio 2015). Another interesting application called Gradual Engagement can automatically 

detect transferrable data objects between devices that are physically close to each other 
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(Marquardt et al. 2012). To implement the data transfer, this application requires the user to drag 

the detected data object to the display zone on the destination screen. 

The two aforementioned applications are only viable when all the screen regions of the 

large display device are physically accessible. However, current trends have indicated that the 

size of large display devices will continue to increase due to the decreasing price of hardware 

and the demand for experience and usability. Paay et al. have noted a crucial point for all 

interaction methods: a larger target display (termed a “large display device” in this study) leads 

to more efficient and effective interactions (Paay et al. 2017). This observation raises an 

important consideration for cross-device interactions; if the size of a large display device is 

extremely big that not all the regions are physically accessible, then it could be arduous to build a 

seamless connection between a mobile device and a large display device. This theory has not yet 

been thoroughly studied. 

Considering the issues that have been expressed in prior studies, this project is motivated 

to produce a low-cost, intuitive, and physically unconstrained cursor position estimation system 

in order to improve the experience of a single user and to enable the availability of multi-user 

participation. The attribute of “low-cost” implies, on the user side, that the system only uses 

built-in sensors to capture a device’s movements. The attribute “intuitive” is reflected by the 

“sliding move” gesture, which can be grasped by users without any learning or reasoning 

process. The attribute “physically unconstrained” means that the experience of controlling the 

cursor remotely is offered. Thus, the chance for multiple users to interact with the large display 

simultaneously is provided. 

The purpose of this study centers on two objectives. First, this project uses sound 

localization to facilitate cursor initialization and to enable coarse cursor position estimation. 
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Second, the project aims to enable precise cursor position estimation through the detection of the 

four-direction mobile device’s movement on a 2D surface by means of machine learning 

classification. Although, in terms of direction, the current position estimation system can only 

distinguish the direction of a device’s movement based on four directions, the estimation system 

is still a core research section that contributes to the precise mapping system because, on a 2D 

flat surface, an object’s motion in any direction can be considered as a vector that can be 

decomposed, in turn, into two vectors that are perpendicular to each other. The four-direction 

movement, to some extent, reflect the two vectors and, thus, should be treated as the core 

research objective for mapping a mobile device’s movement to a cursor’s movement. 

The project is composed of two steps. First, there is a cursor initialization app that can 

allow the user to initiate the cursor’s position on a large display device through sound 

localization, thus improving the adaptability of the system when interacting with extremely large 

devices. Second, the device’s movement translation system transfers the 2D mobile device’s 

four-direction movement to the cursor’s four-direction movement by machine-learning models. 

The project also encompasses a data-analysis pipeline for characterizing data into statistical 

features (mean, standard deviation, min-max difference, and power energy) and spectral features 

(dominant frequency and spectral energy) and provides a comprehensive study of different 

machine-learning (ML) algorithms and feature selection sets. The conclusions explain what 

features and what ML algorithms should be used to classify the four-direction movement and the 

stand statuses(no movement) during the time interval used for 1 pixel movement of a typical 

computer mouse, and increase the seamless experience of the interaction.  

In terms of cursor initialization, the project uses sound localization to determine the 2D 

coordinates of the cursor starting position on the large display screen. At the same time, a 
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resolution conversion has been applied so as to ensure the cursor position estimation area on the 

large screen is physically equal to the size of the mobile device. In the data-analysis section, both 

10-folds cross-validation and a confusion matrix have been implemented, and multiple feature-

selection methods have been conducted in order to find the most relevant features that contribute 

to the machine-learning model. 

The results of this study reveal that three classifiers, in particular, gradient boosting, 

linear discriminant analysis (LDA), and naïve Bayes, have demonstrated a high performance 

through the use of not only all features but also multiple feature sets that are generated by 

feature-selection methods. Feature-selection tests indicate that features that combine speed and 

mean or speed and median can contribute the most to the recognition rate. However, 

performance of classification can be boosted by using features that include all vectors 

(acceleration, angular-velocity, and speed) but that limit feature categories only to mean or 

median.  
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RELATED WORK 

 Three Domains Of Interaction-Sensing Techniques 

Prior studies have proposed numerous notable findings with regards to cursor position 

estimation and selection in cross-device applications. To summarize all the related studies, there 

are principally three domains to consider. First, the use of direct touch on a large display device 

has been applied to a large number of applications. Strohmeier (Strohmeier 2015) has introduced 

an interaction framework that uses the mobile device as the operational commander to initiate 

designated operations and to implement them through direct finger touch. For example, users can 

pick a color on their personal devices and can then draw a shape on the large target display using 

a finger motion. 

Schmidt et al. have provided a novel solution (Schmidt et al. 2012) that combines the 

physical touch initiated from a mobile device with its orientation to indicate the target interaction 

region and to manipulate various operations. The restriction of this framework is that it does not 

allow the remote control of the target region and, thus, creates barriers to multiple users 

interacting with the large display simultaneously. Another project called SleeDCursor (von 

Zadow et al. 2014) is a target-region-selection application that uses a touch-based system to 

provide users with increased flexibility in that they can initiate the binding of a device through 

close-coupling (where one selects the closest device to interact with). However, through the 

aforementioned interaction techniques, users are still forced to maintain physical proximity to the 

large public screen in order to exchange information. Consequently, if multiple users initiate data 

transfers from the public screen simultaneously, they can still commonly interfere with one 

another and, thus, produce a negative experience. All these direct-touch applications have the 

same drawback—the strict requirement that the user must have physical access to the screen of 
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the target large display device. However, in this project, the renovated cursor position estimation 

system can offer users a remote controlling experience that significantly improves the flexibility 

of the usage. 

The second domain uses additional pointing devices, such as laser pointers, to help the 

server identify the position of the mobile device. The developer of PointerPhone (Seifert, Bayer, 

and Rukzio 2013) has systematically built multiple applications that use laser pointers and 

cameras on the server’s system to precisely detect the laser-point motion and to heighten a user’s 

ability of controlling the large display screen remotely. Another hybrid technique with a gesture-

assisted, head-based coarse pointing style has been introduced in this work(Nancel et al. 2013). 

This technique has created predefined gesture combinations in order to trigger the pointing task, 

and the technique used an equipped headset to perform a precise position estimation of the point 

thereafter. For example, a user could initiate a tap gesture on the touchpad surface followed by a 

drag operation so as to activate the pointing task and enable any area of the large display to be 

reached with absolute precision. Nonetheless, this approach contains some shortcomings as well. 

The framework requires certain additional devices, resulting in a high-cost setup for the user. 

Second, gesture-initiated pointing tasks increase the complexity of manipulation. Under certain 

circumstances, the user may have a higher chance of triggering an undesired operation, and this 

results in a negative experience and poor usability. This project distinguishes its methods from 

the applications mentioned above by leveraging built-in sensors, rather than additional devices, 

to enable position estimation from the device’s movement to the cursor’s movement; this 

adjustment reduces the usage complexity of cross-device interaction applications. 

The third domain utilizes all available built-in sensors, such as cameras, accelerometers, 

and gyroscopes, in order to sense the mobile device’s movement. This study (Boring, Jurmu, and 
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Butz 2009) has proposed three interaction styles to mimic the movement of the device and to 

map it to the large display pointer. Gestures such a“tilting” and “scrolling” were created to 

evaluate the motion by means of a built-in accelerometer that calculated the value of acceleration 

continuously. The author’s project has chosen the gesture of the “sliding move,” which is 

regarded as more intuitive than “tilting” or “scrolling” since this movement style performs 

similarly to the cursor action (such as moving up and down or left and right) and could be easier 

for users to understand and learn. Furthermore, the implementation has been renovated by means 

of collecting data from motion sensors (accelerometer and gyroscope) instead of a camera. 

In terms of pairing devices, many techniques have been experimented with. Rekimoto 

(Rekimoto 2004) has built the “SyncTap” and has constructed a collaborative pairing style for 

cross-device interactions that allows multiple users to pair devices with a single tap on the 

touchscreen. Peng et al. created “Point&Connect” (Peng et al. 2009) which has a technique for 

combining devices by leveraging the built-in microphone and acoustic signals. Yuan et al. have 

proposed using a cross-device tracking framework (Yuan et al. 2018) to identify “same” devices 

in terms of user typing actions and then building secure cross-device communication.  

This paper has proposed a pairing style with an extended ability not only to pair the 

devices by means of a web socket as the connection channel but also to initialize the cursor’s 

estimated location on the large display by the application of sound localization through a 

microphone array. This design innovatively explores a new interaction medium that can use the 

movement of a mobile device on a flat surface, such as a desk, so as to move the cursor in four 

directions on the large display, which is comparable to a computer mouse. Under this style, 

interactions can be both easy and intuitive. 
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 Sensor-Based Daily Activities Detection 

Several studies have sought to improve the utilization and analysis of data generated from 

accelerometers by sensing the daily activities of people. A study by Chen, Yang, and Jaw (Chen, 

Yang, and Jaw 2016) has introduced the use of accelerometers for detecting a person’s fall. Their 

study has also detailed a basic workflow for parsing and filtering the data retrieved from the 

accelerometer. Their project has introduced and investigated features such as sum vector, 

rotation angle, and slope to detect falls with a degree of both specificity and sensitivity. 

Furthermore, their study has noted a critical decision-making strategy: it is no longer sufficient to 

determine results based on the generated data by simply proposing different thresholds in making 

predictions. Instead, machine-learning models and algorithms should be applied to extract 

patterns from the observed data and to help solve complex problems. 

Another fall-detection study performed by Rakhman et al. (2014) has tried to detect fall-

down activity through the magnitude of both the accelerometer and gyroscope and through the 

rotation angle of the mobile device. They have proposed an in-house algorithm to calculate all 

the features needed and to discover the thresholds on values for fall-down determination. 

Moreover, they have categorized fall activity into four subcategories, such as “fall forward” and 

“fall backward”, in order to measure the accuracy rate. 

A gait-sensing study by Ferrero et al. (2015) has comprehensively investigated how to 

sense human gaits based on the data collected from an accelerometer. Their study has introduced 

some crucial data-preprocessing steps, including linear interpolation, data normalization, and 

noise filtration. Because of the earth’s gravitational force, it is ideal to incorporate all three 

dimensions’ acceleration data in an analysis. However, if a mobile device can be placed 
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perpendicular to the ground throughout the sensing session, then the model should be adjusted to 

assume that only one dimension is affected by gravity. 

The major difference between the author’s project and other sensor-based, activity-

detection projects concerns the “time window.” The time window used in sensing daily activities 

is normally 1 or 2 seconds. However, this project is pursuing an extremely sensitive system that 

uses a 0.015 second time window in order to detect a device’s movement. This requirement has 

imposed challenging tasks, such as preprocessing the raw data and tagging the classification 

samples. 
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RESEARCH OVERVIEW 

Motivating Examples 

Generally, for cross-device applications, it is unavoidable that one selects the object and 

interacts with it through many approaches. A number of studies have introduced their unique 

methods of selecting an object. In order to improve the usability of existing studies and 

applications, this project has selected three attributes: low-cost, intuitive, and physically 

unconstrained in finding new solutions. 

Low-Cost 

A low-cost cursor position estimation application indicates that the amount of software or 

hardware involved in a system should be minimized. This study has followed the objective of 

being low-cost by only using built-in sensors for detecting the four-direction movement of the 

mobile device rather than applying additional devices (Nancel et al. 2013)(Seifert et al. 2013). 

Thus, this design improves user usability and experience. 

Intuitive 

Instead of using gestures such as tilting (Boring et al. 2009), this project has developed an 

intuitive gesture that can be termed as “sliding move” for controlling the cursor’s movement via 

the mobile device. This gesture is intuitive since the cursor’s movement is highly consistent with 

the sliding gesture such that the learning time of a user can be significantly reduced. 

Furthermore, for controlling the cursor on the display screen, users are used to sliding a 

computer mouse on a 2D flat surface and controlling the position of the cursor. 

Physically Unconstrained 

Physically unconstrained typically means that the implementation of interaction methods 

should always avoid the requirement that the user be physically close to the large display device. 
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It is recommended that the interaction application has a remote-control mechanism that offers 

freedom to the user. In that context, the user can participate in cross-device interaction if the 

large display is visible to the user. At the same time, multi-user participation becomes viable 

since the user does not need to stand in front of the large display and to interfere with others. 

Thus, this paper has proposed a new cursor position estimation system that can provide remote-

control function, rather than a touch-based control mechanism (Strohmeier 2015) (von Zadow et 

al. 2014); this innovation allows the user to manipulate objects on the large display devices from 

his or her mobile device. 

Workflow   

The general working flow of this cursor position estimation application can be 

demonstrated in two flow charts (Figure 1 and 2), which refer to the cursor position initialization 

and the cursor’s movement estimation steps. The first workflow can be depicted in a series of 

sub-steps. First, the user launches the application from the client-side and requests a connection 

to the webserver, which is the public display that runs the application. Then the server responds 

to the mobile device with a successful connection message. Second, the user requests cursor 

initialization from the client-side, and the server starts a listening session to identify touch-down 

sound. Third, the user produces a touch-down sound during the listening session, and then the 

server determines whether it is a qualified sound input for triggering the initialization of the 

cursor. If the sound is qualified, the server computes the location coordinates (X, Y) of sound via 

sound localization, and it sends the location object to the mobile device. Subsequently, the 

mobile device can use the location coordinates (X, Y) to display an area of contents on the 

server’s screen using (X, Y) as the upper left vertex and use the physical length and width of the 
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mobile device as the size. Fourth, the user can move the mobile device on the 2D flat surface to 

any location on the server’s screen and interact with its contents on the mobile device’s screen. 

The second workflow starts from the data collection in which the user performs ten 

“sliding move” movements such that the mobile device can record the raw data generated from 

the built-in sensors. Five of them are left-right-based movements; this means that each “sliding 

move” contains the following gestures: 2 seconds of “stand,” 3 seconds of “move right,” and 2 

seconds of “move left.” Another five of them are up-down-based movements; this means that 

each “sliding move” contains the following gestures: 2 seconds of “stand,” 3 seconds of “move 

up,” and 2 seconds of “move down.” Subsequently, the mobile device fits this data into an 

algorithm and builds a machine-learning model to detect pixel movements. Moreover, a series of 

continuous pixel movements are used to construct a cursor’s movement. Finally, the cursor’s 

movement is implemented on the screen of large display devices with the distance equal to the 

number of pixel movements inside the cursor’s movement.  
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Figure 1. Flow chart of 
cursor's movement estimation 

Figure 2. Flow chart of cursor 
initialization 
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CURSOR INITIALIZATION DESIGN 

Basically, cursor initialization benefits the user when he or she is involved in cross-

device interactions, where the target large display screen is extremely large. The user can 

perform a coarse position-estimation to find out an area that he or she is interested in, and then 

use cursor movement simulation to precisely locate the designated object displayed on the large 

screen. 

Overview 

The general workflow in cursor initialization can be represented in the following steps. 

First, the user briefly examines the content on the large display screen and coarsely selects an 

area where he or she is willing to interact. Second, the user estimates the touch-down area on the 

flat surface based on the positioning layout of the selected area, the center point of the screen's 

top bar, and the position of the microphone array. Third, the user places the mobile device onto 

the touch-down area with a sound generated from the collision between the mobile device and 

flat surface. Fourth, the large display device computes the angle direction relative to the 

microphone array and then provides the coordinates of the user-interested area. Finally, the 

mobile device displays that desired area for the user to interact within. 

Estimate Interaction Area 

A user can estimate the interaction area that he or she is interested in through coarse 

position-estimation. First, a user must define a rectangle working area (on a flat surface) whose 

physical width and height are both M times the width and height of the large display screen. The 

value of M should be set between 0 and 1 since this adjustment will downsize the working area 

and will render it more accessible than the large display screen. Second, a microphone array is 

set on the top center of the working area (see Figure 3A). Third, when the user finalizes a desired 
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area A on the large display (see Figure 3B), he or she should estimate the relative position A’ 

(see Figure 3A) on the working area based on the center of the microphone array. One should 

assume that the physical distance between the center of area A and the top center of the large 

display is “cld ” then the estimated distance “cld’ ”on the working area is equal to cld * M. The 

position angle a on the large display device is equal to a’ on the working area. Finally, the user 

can make a touch-down sound on the area of A’ in order to initialize the cursor on the area where 

he or she is interested.  

  

 

Estimate Initial Position Coordinates 

The cursor initialization is completed by taking advantage of a mobile device, a flat 

surface, and a large display device so as to produce a touch-down sound that can be captured by 

a microphone array equipped with the large display device. This touch-down sound is then 

analyzed as the cue for computing the coordinates that represent the location of the sound source. 

The angle of the sound source aligned to the center of the microphone array can be obtained 

a’ 

 

cld’  A’ 

Microphone array  

a 

cld A 

Figure 3. Determine initialization area (A and B) 

A B 
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through the calculation of the time-delay difference between each channel of the microphone 

array (see Figure 4).  

As Figure 4 shows, the distance between A and B is evaluated by the production of a time 

delay difference (TDD) and the speed of the sound. The distance between A and B can be a 

negative value if the sound source is located on the other side of the microphone array’s central 

point, and this causes the TDD to be negative. A dual-delay algorithm was implemented with 

“binaural sound source localization” (http://www.laurentcalmes.lu/soundloc_software.html) as a 

reference. The distance between B and C is captured by the measurement of the distance between 

the two channels of the microphone array. Thus, the angle of the sound source 𝜃 can be 

calculated via Formula 1: 

𝜃 = arcsin
𝐴𝐵
𝐵𝐶

 (1) 

 

Once the angle has been calculated, the sound intensity can be evaluated through the 

computation of the decibel level of the touch-down sound. Since environmental noise could 

easily interfere with sound localization, a threshold was proposed to determine whether the 

A 

B C 

q 

Figure 4. Sound localization schema 
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sampled sound is a real touch-down sound that is qualified to trigger the initialization. If the 

intensity of the sampled sound is larger than the threshold, the mobile device is registered as a 

client of the target device. Sound intensity also helps to estimate the relative source sound (x, y), 

which is implemented in Formula 2: 

𝑥 = 𝑠𝑖𝑛 𝜃 ∙ 𝑑𝑠 

𝑦 = cos𝜃 ∙ 𝑑𝑠 
(2) 

In the above formula, 𝑑𝑠 is an estimated measurement of the distance between the 

source touch-down sound and the microphone array using sound intensity. The coordinates are 

used as the relative pixel-based start-point on the target device screen, which takes the center of 

its top boundary as the original base point. The actual start-point (X, Y) is estimated based on 

Formula 3: 

𝑋 =
𝐻𝑅
2
+ 𝑥 

𝑌 = 0 + 𝑦	
(3) 

Where HR represents the horizontal resolution of the large display device. However, 

since θ can vary from -90° to 90° and the value ds is not restricted by the size of the large display 

screen, it is possible that (X, Y) could be out of the range of the large display screen. If either X 

or Y is out of the range, then the application should automatically adjust the value to its closest 

boundary in order to avoid a positioning error. For example, if the target device has a resolution 

of 1024px * 768px and if the source sound coordinates are (500, 866), then the actual location 

start point is calculated as follows: (1,024/2 + 500)px, (0 + 866)px. In this case, the system 

adjusts the value of Y from 866px to 768px since the vertical positioning is higher than the 

maximum boundary (866px > 768px). 
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The estimated area is strictly equivalent to the physical size of the mobile device. A key 

attribute called “dots per inch” (DPI) was used to obtain the relative pixel-based width (RPW) 

and relative pixel-based height (RPH) for the mobile device on the large display by means of 

Formula 4: 

𝑅𝑃𝑊 =
𝑚𝑥
𝑚𝑑𝑝𝑖

∙ 𝑙𝑑𝑝𝑖 

(4) 
𝑅𝑃𝐻 =

𝑚𝑦
𝑚𝑑𝑝𝑖

∙ 𝑙𝑑𝑝𝑖 

In the above formula, 𝑚𝑥 and 𝑚𝑦 are the horizontal and vertical resolutions of the 

mobile device, and mdpi and ldpi are the DPIs for the mobile device and large display, 

respectively. 

Finally, the server sends a screenshot image and its screen DPI to the client-side mobile 

device. When the image is received by the mobile device, it only displays the partial area of that 

screenshot that uses (X, Y) as the base point and has the width of RPW and height of RPH. 

These designs can deliver the experience of having a virtual screen on a flat surface. If, 

moreover, the user touches down on the coordinates relative to the center point of the 

microphone array, it is possible to begin the interaction at exactly the same coordinates relative 

to the top center of the large display. 
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DETECTING CURSOR MOVEMENTS 

Overview 

The cursor movement simulation indicates the core process of position estimation. In 

other words, this section is trying to transfer the mobile device’s four-direction movement to the 

cursor’s four-direction movement. There are two critical parameters for simulating the device's 

movement to the cursor's movement. The first involves the movement status detection, which 

means detecting whether the device is moving or not in real time; the second parameter entails 

the direction. 

According to a study by Bohan, Thompson, and Samuelson (2003), a typical cursor 

movement takes 1.002 seconds to finish and travels 18.75 mm, which is 66 px on the monitor 

that the aforementioned study used (a 19-inch monitor with a resolution of 1400 * 1050). 

However, one should not simply determine each cursor movement based on the data collected 

every 1.002 seconds because the cursor will jump from one location to another rather than 

moving continuously. 

Therefore, a typical cursor movement simulation should be broken into pixel-movement 

detection for classification. Pixel-movement detection can be described as follows: (1) Collecting 

sensors’ raw data during a time interval (0.015s), which is the time used by the cursor to travel 1 

pixel (2) Extracting features of the raw data to compose as one sample. (3) Six classes are 

predefined (referred to as “stand_on_x,” “move_right,” “move_left,” “stand_on_y,” “move_up,” 

and “move_down”) in order to indicate different statuses. (4) This sample is classified into one 

of the six predefined groups. Thus, through the implementation of this process, both movement 

status and direction detection can be addressed. 
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Pixel-Movement Experiment Design 

Facility Setup 

The application in this study was developed on an Android platform using API level 16. 

The actual test run was performed on a Samsung Galaxy S4, which is an Android mobile device. 

A cross-device large display server was set up on a traditional desktop device embedded with a 

Windows operating system. Any Java-supported desktop device using any operating system 

could also serve as the target device. Moreover, an Andrea SoundMAX Superbeam Array 

Microphone was deployed in the system to enable sound localization. 

Design Details 

In order to sample the data for all six predefined class, the pixel-movement classification 

experiment was designed to have a 7-second data collection session applied on x and y axes 

separately that included three separate actions: 2 seconds of “stand,” 3 seconds of 

“move_right/up,” and 2 seconds of “move left/down” to the axis. Tables 1 and 2 list the detailed 

actions in the data collection session. The raw data from the accelerometer and gyroscope were 

sampled at a rate of 590 hertz since, on average, 4,131 raw data instances were fetched from the 

experimental phone in 7 seconds. In addition, the time spent for a 1 px movement was 0.015s; 

since in 1.002 seconds, the cursor can travel 66 pixels.  

Moreover, a visual text interface was provided to notify the user of the designated action 

to perform at a given timestamp. Normally, the visual reaction for a human is 0.25 seconds 

(https://backyardbrains.com/experiments/reactiontime). This application notified the user to 

perform an action 0.25 seconds before the actual recording time. This adjustment was designed 

to ensure that the user-recognized timestamp was strictly in accordance with the machine’s 

recording time. 



 

21 

Table 1. Action design 

Actions Timestamp 

Stand 0 to 2 second 

Move right 2 to 5 second 

Move left 5 to 7 second 

Stand 0 to 2 second 

Move up 2 to 5 second 

Move down 5 to 7 second 
 

 

Table 2. Labeling design 
 

Labels Timestamp 

0(stand_on_x) 0 to 1 second 

1(move_right) 3 to 4 second 

2(move_left) 6 to 7 second 

3(stand_on_y) 0 to 1 second 

4(move_up) 3 to 4 second 

5(move_down) 6 to 7 second 

 

The time frame as shown in Table 1 and Table 2 was designed due to an important issue 

encountered during the data collection. This issue raised a question of how to label the 

benchmark class correctly. This problem is closely related to the motive for designing this 

experiment. Each test may contain thousands of raw instances, and each device has its own 

mechanical delays because of the variance in the buildup of CPU (central processing unit) 

speeds. For example, on the threshold of performing actions in Second 2 or Second 5 (indicated 

by a red circle in Figure 5), the designated class could be mislabeled even when the visual delay 
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time is added prior to the actual action timestamp. For example, presumably, the program labels 

the raw instances collected after Second 2 as “move right.” However, when the user receives the 

visual notice and starts to move the device, the timer may have already reached Second 2.2. 

Thus, the raw instances fetched between Second 2 and Section 2.2 are mislabeled. The reason for 

this design is twofold. First, sufficient samples for labeling require at least 1 second, which is the 

typical cursor movement duration (use 1 to replace 1.002 for easy calculation), to be assigned to 

the labeling session. Additionally, at least 1 second between the labeling session and the action 

change threshold is also necessary in order to accommodate potential mislabels. Second, it is 

important to shorten the data collection session as much as possible because this data collection 

process is required when the user is trying to control the cursor by means of the device’s 

movements. It is a usability requirement that the application should maintain a low complexity 

and should avoid overtaxing the user’s patience. If an application has many complex 

preprocessing steps that consume a substantial amount of time before actual usage, users tend to 

lose interest in the application. This design allowed the experiment simultaneously to maximize 

the duration of effective sampling data and to minimize the complexity of using the application. 

Thus, the total time is measured in formula 5: 

5 

Move left/down  

6 7 

Labelling 
session 

Move right/up Stand 

1 0 2 3 4 

Labelling 
session 

Labelling 
session 

Figure 5. Graph demo of experiment design 
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𝑀𝑖𝑛(𝑡𝑙𝑠 + 𝑡𝑙𝑚𝑝 + 𝑡𝑙𝑚𝑛 + 𝑡𝑑𝑠 + 2𝑡𝑑𝑚𝑝 + 𝑡𝑑𝑚𝑛) (5) 

 

In the above equation, tls, tlmp, and tlmn are the times used for labeling “stand,” “move 

right/up,” and “move left/down,” while tds, tdmp, and tdmn are required sessions to prevent 

mislabeling. Since both the labeling session and the mislabel preventing session require 1 second 

as the minimum time interval, the total required time for data collection is 7s, based on the above 

formula. Furthermore, since the action “move right/up” is located in the middle, it required two 

sessions to prevent mislabeling (see Figure 5).  

The experiment was performed ten times. Five of the tests were left-right-movement 

based, and five of them were up-down-movement based. Ten raw datasets were produced by 

leveraging the aforementioned strategy. These datasets were then used in downstream analysis in 

order to determine the best models and features for predicting the mobile device’s movement on 

the 2D flat surface. 
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PREPROCESSING AND FEATURE EXTRACTION 

Data Preprocessing 

There were ten raw datasets generated from the ten tests, and the preprocessing method 

was applied to each raw dataset. The preprocessing of the raw instances was composed of two 

steps. First, only instances with a predefined class label were kept to construct the filtered raw 

dataset. According to the experiment design, more than half of the raw instances could be 

potentially labeled incorrectly (1 s to 3 s and 4 s to 6 s in Figure. 5); thus, these raw instances 

were dropped in order to avoid mislabeling. Second, the filtered raw dataset was divided into 

sub-datasets to facilitate statistical calculations and feature extraction. Nine raw instances were 

assigned to each sub-dataset sequentially on the time frame so as to test different machine-

learning algorithms with the goal of making the application extremely sensitive to the device’s 

movement detection. Nine raw instances were used as the grouping metrics because a pixel 

movement typically finished in 0.015 seconds, and there were, on average, 4,131 instances 

collected in 7 seconds from each raw dataset. Therefore, to accurately classify each pixel 

movement, nine raw instances were required. Subsequently, each group of nine raw instances 

was transformed into a sample that represented a pixel movement, with features calculated by 

feature-extraction methods. The label values (0, 1, 2, 3, 4, 5) typically represent the device’s 

statuses (“stand_on_x,” “move_right,” “move_left,” “stand_on_y,” “move_up,” and 

“move_down”). The label that occurred most frequently in the group were assigned as the label 

for the corresponding sample. Finally, all the generated samples from a single raw dataset 

constructed a preprocessed dataset, and ten preprocessed datasets, marked from “data 0” to “data 

9,” were produced with, on average, 196 samples in each. 
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Feature Extraction 

A total of 63 features were extracted from the raw data via mathematical or statistical 

computation. For the raw data, tri-axial accelerometer and gyroscope data, indicated as (ax, ay, 

az) and (gx, gy, gz), were collected to compute these features. Furthermore, tri-axial speed 

values (vx, vy, vz) were captured through the use of acceleration and timestamp at each raw 

instance. Formula 6 depicts the detailed computation method.  

𝑉F = G
𝑎F ∙ 𝑡F				𝑤ℎ𝑒𝑟𝑒	𝑖 = 0

𝑉FMN + 𝑎F ∙ 𝑡F				𝑤ℎ𝑒𝑟𝑒	𝑖 > 0
 (6) 

In general, feature categories can be classified into two domains, represented as the time 

domain and frequency domain (Table 3). All the 63 extracted features are listed in Table 4. 

Table 3. Extracted features on domains 

Domains Feature categories 

Time domain 

Mean 

Standard deviation 

Minimum-maximum 
difference 

Median 

Energy 

Frequency domain 

Dominant frequency 

Spectral energy 
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Table 4. All 63 features 

Vectors Axe
s 

Mea
n 

Standar
d 

deviation 

Minimu
m-

maximu
m 

differenc
e 

Median Energy 

Domina
nt 

frequenc
y 

Spectral 
energy 

Accelera
tion 

X mean
*ax 

std*ax min_max
_gap*ax 

median*
ax 

energy*a
x 

main_fre
q*ax 

spectral_ene
rgy*ax 

Y mean
*ay 

std*ay min_max
_gap*ay 

median*
ay 

energy*a
y 

main_fre
q*ay 

spectral_ene
rgy*ay 

Z mean
*az 

std*az min_max
_gap*az 

median*
az 

energy*a
z 

main_fre
q*az 

spectral_ene
rgy*az 

Rotation 

X mean
*gx 

std*gx min_max
_gap*gx 

median*
gx 

energy*g
x 

main_fre
q*gx 

spectral_ene
rgy*gx 

Y mean
*gy 

std*gy min_max
_gap*gy 

median*
gy 

energy*g
y 

main_fre
q*gy 

spectral_ene
rgy*gy 

Z mean
*gz 

std*gz min_max
_gap*gz 

median*
gz 

energy*g
z 

main_fre
q*gz 

spectral_ene
rgy*gz 

Speed 

X mean
*vx 

std*vx min_max
_gap*vx 

median*
vx 

energy*v
x 

main_fre
q*vx 

spectral_ene
rgy*vx 

Y mean
*vy 

std*vy min_max
_gap*vy 

median*
vy 

energy*v
y 

main_fre
q*vy 

spectral_ene
rgy*vy 

Z mean
*vz 

std*vz min_max
_gap*vz 

median*
vz 

energy*v
z 

main_fre
q*vz 

spectral_ene
rgy*vz 

 

The frequency-domain features were captured through Fast Fourier Transform (FFT), 

which transfers a signal from a time-domain to a frequency-domain (Welch 1967). Formula 7 

provides the equation: 

𝑋P =Q𝑥R ∙ 𝑒
	M	FSTU PR

U	M	N

R	V	W

 (7) 

In this above formula, 𝑥R indicates sensors’ readings on time domain, and N indicates 

the length of this signal. The real number part of the computed 𝑋P indicates the amplitude 
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spectrum of each frequency domain. The dominant frequency is captured through finding a 

frequency value that has the maximum amplitude. 

The energy of each axis was computed by adding up the square numbers of the raw 

instances in a signal. The spectral energy was calculated using the same method but with the raw 

value transformed from a time-domain to a frequency-domain by FFT. Formula 8 (Parseval's 

theorem) and 9 (cf. Stein and Jonathan Y. 2000) describe the detailed calculation: 

Enery(y) = [ 𝑥RS
U

R	V	N

 (8) 

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙(y) = [ (𝐹𝐹𝑇(𝑥R))S
U

R	V	N

 (9) 

 
where 𝑥R indicates sensors’ readings on time domain, and N indicates the length of this signal. 

The Python programming language, with its powered libraries such as Pandas, Scikit-

learn, and NumPy, was used in both the preprocessing and feature extraction. These libraries and 

tools contain powerful built-in functions that can capture statistical features with a high speed 

and accuracy. 
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CLASSIFICATION AND RESULTS 

Several studies have been conducted to determine which classification algorithm is the 

most accurate candidate for extracting patterns from built-in sensors’ data. Algorithms such as 

the support vector machine (SVM) (Zhang et al. 2006), k-nearest neighbors (Preece et al. 2009), 

and naïve Bayes (Bao and Intille 2004) have been used to extract data patterns in order to verify 

whether daily activities can be detected. In terms of multi-class classification tasks, the study by 

Lee and Kwan (2018) has suggested that random forest and gradient boosting are the most 

favored candidates for personal-activity classification. To better fit the data model and 

classification task in this study, all the classifiers previously mentioned, along with additional 

candidates, were included in the pool to ascertain whether there were any novel findings. 

Basic Cross-Validation 

Cross-validation is an evaluation tool that examines whether a model is an effective 

predictor for data that is completely new and differs from the existing dataset. The simplest way 

to avoid this “overfit” issue is what is known as a “holdout method.” This method typically splits 

the dataset into two groups: one group is used for training, and the other group is used for testing. 

The amount of training and testing is generally assigned at a ratio of 7:3. However, there is an 

evident weakness that can produce a high variance in the model. The result of each test 

classification may rely on the endpoint of the training or testing set. Therefore, the strategy of 

splitting the dataset becomes a critical factor that can affect the evaluation results. 

10-Folds Cross-Validation 

This investigation applied a 10-folds cross-validation to avoid the aforementioned bias. 

10-folds cross-validation is a specific case of a general method known as “K-folds cross-

validation.” Through the use of this K-folds cross-validation, the dataset could be split into K 
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subsets, and on each subset the holdout method was performed once. Each iteration only used 

one of the K subsets as the test group and the other K-1 subsets as the training group. This 

method notably improved the holdout since it mitigated the impact of the data-division strategy. 

As the K value increased, the variance in the evaluation results declined. Moreover, K = 10 was 

used because the number of test times in this study equals 10. Thus, to keep the consistency, the 

author chose 10 as the value for parameter K. 

A 10-folds cross-validation was applied on a dataset that contained 1,969 samples. This 

dataset was combined by appending ten preprocessed datasets together. Ten classifiers were 

evaluated by the accuracy performance (Figure 6 and Table 5); these classifiers included 

AdaBoost (adaptive boosting), decision tree, gradient boosting, LDA (linear discriminant 

analysis), linear SVM (support vector machine), naïve Bayes, nearest neighbors, neural network, 

random forest, and RBF (radial basis function) SVM.  

In Figure 6, from left to right, the performance of all classifiers is sorted by descending 

order of mean and by ascending order of standard deviation. From the observations, gradient 

boosting, LDA, and naïve Bayes are the top three classifiers, which have reached the average 

Figure 6. Cross-validation results for all features (Boxplot) 
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accuracy of 83.65%, 83.43%, and 79.42%; their standard deviation is measured at 11.18%, 

7.43%, and 6.68%, respectively. Based on the average accuracy, gradient boosting should be 

selected as the agent for this classification problem; however, gradient boosting has a higher 

standard deviation (11.18% versus 7.43%) but a similar average accuracy (83.65% versus 

83.43%) compared with LDA. This comparison suggests that the performance of gradient 

boosting may significantly vary when different training and testing data are used for 

classification problems. Thus, LDA is recommended when all features are included. 

Table 5. Cross-validation results for all features 

Classifiers Accuracy mean Accuracy std 

Gradient boosting 83.65% 11.18% 

LDA 83.43% 7.43% 

naïve Bayes 79.42% 6.68% 

Decision tree 76.91% 11.66% 

Linear SVM 76.24% 5.60% 

Random forest 72.70% 6.22% 

Neural net 72.47% 7.06% 

Nearest neighbors 66.51% 11.05% 

AdaBoost 48.24% 4.03% 

RBF SVM 44.27% 8.66% 

 

In machine learning, besides the accuracy rate, the manner in which the results of the 

error predictions are distributed is also critical for downstream analysis. The distribution of 

errors can be determined through an examination of the confusion matrix of the classification 

results proposed by each classifier. In this project, the confusion matrices of the top three 

classifiers (gradient boosting, LDA, naïve Bayes) were demonstrated (Table 6). 
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Table 6. Confusion matrices for top three classifiers 

Gradient boosting 

stand_on_
x move_right move_left stand_on_y move_up move_down Classified 

as 
208 1 0 116 0 0 stand_on_x 

0 277 14 0 38 0 move_right 

0 1 311 0 5 19 move_left 

70 1 0 261 0 0 stand_on_y 

0 26 3 0 289 0 move_up 

0 0 22 0 0 307 move_dow
n 

LDA 
stand_on_

x move_right move_left stand_on_y move_up move_down Classified 
as 

218 0 0 107 0 0 stand_on_x 

0 307 0 0 22 0 move_right 

0 6 307 0 18 5 move_left 

127 1 0 204 0 0 stand_on_y 

0 29 9 1 279 0 move_up 

0 0 0 0 1 328 move_dow
n 

naïve Bayes 
stand_on_

x move_right move_left stand_on_y move_up move_down Classified 
as 

206 2 2 115 0 0 stand_on_x 

0 242 23 0 64 0 move_right 

0 16 252 0 52 16 move_left 

73 3 0 255 1 0 stand_on_y 

0 3 19 0 296 0 move_up 

0 2 14 0 0 313 move_dow
n 

 

The confusion matrix generally shows the distribution of correct and error predictions. 

Each row label indicates the predicted class, and the column label indicates the actual class. For 

example, based on the confusion matrix of naïve Bayes, the first observation of 206 falls under 

the column of “stand_on_x” and the row of “stand_on_x” as well. This result means that 206 
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samples are predicted as “stand_on_x” and also belong to the “stand_on_x” class, and this 

means, ultimately, that these 206 samples have been predicted correctly. However, the second 

horizontal observation 2 indicates that two samples are predicted as “stand_on_x” but actually 

belong to the “move_right” class; this means that these samples have been predicted incorrectly. 

Some notable findings can be ascertained from the confusion matrix. First, it seems that 

all these three classifiers have managed an exemplary performance in distinguishing “move” and 

“stand” regardless of direction since there are few observations in the cells of “stand_on_x/y” 

that are classified as “move_right/left/up/down.” Second, commonly, samples are classified into 

incorrect labels where the difference only lies in an axis (x or y) compared with the original 

label. For example, there are many error predictions that fail to distinguish whether the sample is 

in the “stand_on_x” group or the “stand_on_y” group. 
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FEATURE SELECTION 

In machine learning, feature selection plays an important role that can substantially 

impact not only the learning accuracy of the prediction model but also the efficiency and user 

experience of the application. Feature selection represents the process of fetching a subset that 

contains the most relevant features from an original feature set based on statistical algorithms 

and has been proven to be accurate through both theoretical and practical success in multiple 

application scenarios (Liu et al. 2018) (Ali and Aittokallio 2019). To determine what features 

should be selected, multiple methods were applied in this project, and these methods can be 

grouped into two categories: algorithm-based methods and manual feature selection methods. 

Algorithm-Based Methods 

Three algorithm-based methods were tested in this project: linear correlation analysis, 

select k best, and recursive feature elimination (RFE). All were evaluated by applying 10-folds 

cross-validation on the feature sets proposed. 

Linear Correlation Analysis 

Linear correlation is a statistical method to investigate the strength of association between 

two features in order to obtain the most relevant features and to remove irrelevant features 

through an examination of the strength between each feature and the labeled class. Moreover, a 

Pearson correlation coefficient was computed for each pair of features by means of Formula 10: 

 

r =
∑ (𝑥F − 𝑥̅)((𝑦F − 𝑦c)F

d∑ (𝑥F − 𝑥̅)F
S d∑ (𝑦F − 𝑦c)F

S
 (10) 

 

In this formula, 𝑥F and 𝑦F represent the values of two features, and 𝑥̅ and 𝑦c are the 

mean values of each feature. The result is always a decimal number between -1 and 1. If this 
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number is close to 1, then the two variables X and Y reveal a high positive correlation. If this 

number is close to -1, then the two variables reveal a high negative correlation. A threshold of 

0.5 (https://www.dummies.com/education/math/statistics/how-to-interpret-a-correlation-

coefficient-r/) was proposed so as to keep features that have absolute values of their correlations 

with a label class larger or equal to 0.5. A feature set containing four features was generated: 

“mean*vz,” “median*vz,” “energy*vz,” and “spectral_energy*vz”.  

Select K Best 

 A select K best method uses a specific function to score each feature and to select the 

highest K scoring features. This project computed an analysis of variance (ANOVA) F-value 

between the label and each feature, and it used K = 10 to perform this task because the author 

aimed to investigate the performance of each classifier when the number of features increased 

compared with a linear correlation analysis. Selected features were as follows: “median*vz," 

“mean*vz," “spectral_energy*vz,” “energy*vz,” “spectral_energy*vy,” “energy*vy,” 

“spectral_energy*vx,” “energy*vx,” “median*vy,” and “mean*vy”. 

Recursive Feature Elimination 

 Recursive feature elimination (RFE) is a method that proposes certain candidate features 

by gradually focusing on a smaller set of features. Usually, it starts with a trained estimator to 

assign an importance value to each feature, and then the feature with the lowest importance value 

is eliminated from the candidate pool. This process is continued recursively until the desired 

number of features has been satisfied. 

 This study employed a linear SVM as a trained estimator since it has a high accuracy 

and an efficient generalization ability for removing features recursively (Yan and Zhang 2015). 
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With this algorithm fitted into the dataset, the RFE model proposed an optimized number of 31 

features. 

Algorithm-Based Results 

Cross-validation results for the top three classifiers in each method have been 

demonstrated in Table 7. From the observation of proposed features, there are 33 unique features 

selected by all three methods, and 84.85% (28 out of 33) are time-domain-related; this 

potentially suggests that frequency-domain features are not as important as time-domain features 

for this classification task. In addition, LDA, naïve Bayes, and gradient boosting are potential 

candidates to be recognized as the best classifier for detecting device movement since they are 

ranked as the top three classifiers in at least two feature-selection methods. Furthermore, 39.4% 

(13 out of 33) of the proposed features are speed-related, and both the select K best and the linear 

correlation selected features that are all speed-related; this may indicate that speed is a critical 

vector in terms of determining device movement. 
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Table 7. Cross-validation for algorithm-based feature selection 

Feature selection 
method 

Selected features classifiers Accuracy 
_mean 

Accuracy
_std 

Linear correlation “mean*vz”, “median*vz”, “energy*vz”, 
“spectral_energy*vz” 

naïve 
Bayes 

73.20% 12.07% 

RBF SVM 72.57% 11.50% 

Neural 
Nnet 

72.13% 13.20% 

Select k best 
(Anova) 

“median*vz", “mean*vz", 
“spectral_energy*vz”, “energy*vz”, 
“spectral_energy*vy”, “energy*vy”, 
“spectral_energy*vx”, “energy*vx”, 

“median*vy”, “mean*vy” 

LDA 78.75% 8.13% 

Random 
forest 

76.26% 9.59% 

Gradient 
boosting 

76.12% 10.81% 

Recursive feature 
elimination 

“mean*ax”, “mean*ay”, “mean*az”, 
“mean*vx”, “mean*vy”, “mean*vz”, 

“mean*gx”, “mean*gz”, 
“min_max_gap*ax”, 

“min_max_gap*ay”, “min_max_gap*az”, 
“min_max_gap*vy”, 
“min_max_gap*gy”, 

“min_max_gap*gz”, “median*ax”, 
“median*ay”, “median*az”, 
“median*vx”, “median*vy”, 
“median*vz”, “median*gz”, 

“main_freq*gy”, “main_freq*gz”, 
“energy*ax”, “energy*az”, “energy*vx”, 
“energy*vz”, “energy*gy”, “energy*gz”, 

“spectral_energy*vy”, 
“spectral_energy*vz” 

Gradient 
boosting 

84.07% 10.74% 

LDA 82.82% 8.14% 

naïve 
Bayes 

80.40% 4.26% 

 
 

Manual Feature Selection 

Manual feature selection is another method for pursuing a small set of features by 

removing irrelevant features. However, instead of using algorithms to determine feature 

importance, Manual feature selection proposes feature sets based on assumptions that may 

explain what features are related to the success of movement detection. For example, in physics, 

speed typically describes where and how fast the object is moving. Angular velocity detects 

whether the object has any rotation event. Thus, an assumption can be made as when the 
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machine-learning model tries to detect the four-direction movement of a mobile device, it’s 

better using speed-related features rather than angular-velocity-related features to build the 

model. Because the key of determining four-direction movement is to detect where and how fast 

the object is moving. Movements on a flat surface barely produce rotation event.  

Another hypothesis is that speed-related features should exclude standard deviation and 

minimum-maximum difference in order to have a better performance. Because the standard 

deviation and minimum-maximum difference can only measure the extent of speed alteration 

rather than indicate where and how fast the object is moving. The ideal feature category should 

be mean or median because they reflect the raw values of speed in a pixel-movement time 

interval.  

The core process of manual feature selection is composed of five steps: (1) Evaluating the 

classification performance of feature sets that each of them relates to either one vector 

(acceleration, angular-velocity, and speed) or one feature category (mean, std, min_max_gap, 

median, energy, dominant frequency, and spectral energy). Since each vector or feature category 

has its unique physical or statistical meanings, it’s better to understand how they uniquely impact 

the success of the classification. (2) Finding out the vector VH that its related features can 

produce a higher recognition rate than other vectors. (3) Finding out the feature category FCH 

that its related features can produce a higher recognition rate than other feature categories. (4) 

Selecting a combined feature set that contains features relates to VH and FCH simultaneously. 

(5) Evaluating the performance of this combined feature set to verify if the recognition rate can 

be higher than former feature sets. The objective of this section is to examine whether using 

features that relate simultaneously to the most relevant vector and most relevant feature category 

can reach a higher performance 



 

38 

Vector-Based Feature Selection 

The difference between vectors acts as an imperative factor for the success of the 

classification task because different vectors represent their own unique physical significance. 

Therefore, it is critical to evaluate features related to a single vector or a single feature category 

separately. An analysis for selecting features based on different vectors is demonstrated in Table 

8. 
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Table 8. Performance of vector-based feature selection 

Vector selection Selected features 
Number 

of 
features 

Classif
iers 

Accuracy_
mean 

Accuracy
_std 

Acceleration 

"mean*ax", "mean*ay","mean*az","std*ax", 
"std*ay","std*az", "std*az","min_max_gap*ax", 

"min_max_gap*ay","min_max_gap*az","median*ax", 
"median*ay","median*az","energy*ax", 

"energy*ay","energy*az", "main_freq*ax", 
"main_freq*ay","main_freq*az","spectral_energy*ax", 

"spectral_energy*ay","spectral_energy*az" 

21 Gradient 
boosting 63.87% 5.27% 

Random 
forest 61.07% 5.26% 

Decision 
tree 57.12% 4.28% 

Angular velocity 

"mean*gx", "mean*gy","mean*gz","std*gx", 
"std*gy","std*gz", "std*gz","min_max_gap*gx", 

"min_max_gap*gy","min_max_gap*gz","median*gx", 
"median*gy","median*gz","energy*gx", 

"energy*gy","energy*gz", "main_freq*gx", 
"main_freq*gy","main_freq*gz","spectral_energy*gx", 

"spectral_energy*gy","spectral_energy*gz" 

21 Decision 
tree 51.96% 5.31% 

Gradient 
boosting 51.96% 3.97% 

Random 
forest 50.67% 7.45% 

Speed 

"mean*vx", "mean*vy","mean*vz","std*vx", 
"std*vy","std*vz", "std*vz","min_max_gap*vx", 

"min_max_gap*vy","min_max_gap*vz","median*vx", 
"median*vy","median*vz","energy*vx", 

"energy*vy","energy*vz", "main_freq*vx", 
"main_freq*vy","main_freq*vz","spectral_energy*vx", 

"spectral_energy*vy","spectral_energy*vz" 

21 
LDA 80.03% 9.84% 

Random 
forest 79.98% 8.92% 

Gradient 
boosting 79.06% 6.92% 

Acceleration and 
angular-velocity 

"mean*gx", "mean*gy","mean*gz","std*gx", 
"std*gy","std*gz", "std*gz","min_max_gap*gx", 

"min_max_gap*gy","min_max_gap*gz","median*gx", 
"median*gy","median*gz","energy*gx", 

"energy*gy","energy*gz", "main_freq*gx", 
"main_freq*gy","main_freq*gz","spectral_energy*gx", 
"spectral_energy*gy","spectral_energy*gz","mean*gx", 

"mean*gy","mean*gz","std*gx", "std*gy","std*gz", 
"std*gz","min_max_gap*gx", 

"min_max_gap*gy","min_max_gap*gz","median*gx", 
"median*gy","median*gz","energy*gx", 

"energy*gy","energy*gz", "main_freq*gx", 
"main_freq*gy","main_freq*gz","spectral_energy*gx", 

"spectral_energy*gy","spectral_energy*gz" 

42 Gradient 
boosting 65.08% 5.33% 

Random 
forest 62.20% 3.51% 

Decision 
Tree 59.59% 5.95% 

Speed and 
acceleration 

"mean*ax", "mean*ay","mean*az","std*ax", 
"std*ay","std*az", "std*az","min_max_gap*ax", 

"min_max_gap*ay","min_max_gap*az","median*ax", 
"median*ay","median*az","energy*ax", 

"energy*ay","energy*az", "main_freq*ax", 
"main_freq*ay","main_freq*az","spectral_energy*ax", 
"spectral_energy*ay","spectral_energy*az","mean*vx", 

"mean*vy","mean*vz","std*vx", "std*vy","std*vz", 
"std*vz","min_max_gap*vx", 

"min_max_gap*vy","min_max_gap*vz","median*vx", 
"median*vy","median*vz","energy*vx", 

"energy*vy","energy*vz", "main_freq*vx", 
"main_freq*vy","main_freq*vz","spectral_energy*vx", 

"spectral_energy*vy","spectral_energy*vz" 

42 Gradient 
boosting 83.25% 10.90% 

naïve 
Bayes 83.01% 7.36% 

LDA 81.71% 7.05% 

Speed and angular-
velocity 

"mean*vx", "mean*vy","mean*vz","std*vx", 
"std*vy","std*vz", "std*vz","min_max_gap*vx", 

"min_max_gap*vy","min_max_gap*vz","median*vx", 
"median*vy","median*vz","energy*vx", 

"energy*vy","energy*vz", "main_freq*vx", 
"main_freq*vy","main_freq*vz","spectral_energy*vx", 
"spectral_energy*vy","spectral_energy*vz","mean*gx", 

"mean*gy","mean*gz","std*gx", "std*gy","std*gz", 
"std*gz","min_max_gap*gx", 

"min_max_gap*gy","min_max_gap*gz","median*gx", 
"median*gy","median*gz","energy*gx", 

"energy*gy","energy*gz", "main_freq*gx", 
"main_freq*gy","main_freq*gz","spectral_energy*gx", 

"spectral_energy*gy","spectral_energy*gz" 

42 
LDA 82.31% 8.94% 

Gradient 
boosting 81.75% 7.76% 

Linear 
SVM 75.71% 6.55% 

 

From the results of vector-based feature selection, it is obvious that as long as speed-

related features are included, then the average accuracy of classification is always significantly 

higher (80.47% > 58.16%) than the feature set without speed-related features. At the same time, 
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acceleration- or angular-velocity-related features can be considered as artifacts for the 

classification task: first, because features based on these two vectors are performing at an 

extremely low accuracy rate (on average, 58.16%); second, because there is no significant 

accuracy improvement when either acceleration- or angular-velocity-related features are mixed 

with speed-related features (for example, LDA sits at 80.03% with speed-only features, but at 

81.71% and 82.31% when mixing speed with acceleration- and angular-velocity features, 

respectively).  

Feature-Category-Based Feature Selection 

The feature categories presented in the feature extraction section were inspired by 

previous studies (Preece et al. 2009) (Fang, Yishui, and Wei 2016). However, some of the 

feature categories are either mathematical- or statistical-confounding factors for the project’s 

classification problem. Thus, it is wise to analyze them separately in order to observe what 

feature categories contribute positively to the machine-learning model. 

This study applied cross-validation on seven feature categories independently, and the 

results, including the top three classifiers that have the highest accuracy rates, are shown in Table 

9. From the observations, it seems that through the application of median-related features, the 

accuracy rate can boom to 85.36% when naïve Bayes is used as the classifier. However, there is 

another observation that also uses naïve Bayes as the classifier but applies mean-related features; 

this reaches a similar recognition rate of 85.25%. These findings suggest that either median- or 

mean-related features contribute to the learning process. In addition, the accuracy rate of main-

frequency-related (“main_freq”) features are significantly lower than the accuracy of other 

feature categories; this could indicate that major frequency-related features are irrelevant to the 

success of the project’s classification task. 



 

41 

Table 9. Performance of feature-category based feature selection 

Feature-
category Selected features 

Numbe
r of 

feature
s 

Classifiers Accuracy_
mean 

Accur
acy_st

d 

Mean 
"mean*ax","mean*ay","mean*az"
,"mean*gx","mean*gy","mean*gz
","mean*vx","mean*vy","mean*v

z" 
9 

naïve Bayes 85.25% 6.53% 

Gradient boosting 84.00% 12.42
% 

LDA 77.98% 11.57
% 

Std 
"std*ax","std*ay","std*az","std*g
x","std*gy","std*gz","std*vx","st

d*vy","std*vz" 
9 

Gradient boosting 56.51% 4.01% 

Decision tree 48.54% 6.84% 

Random forest 46.51% 6.40% 

Min_max_ga
p 

"min_max_gap*ax","min_max_ga
p*ay","min_max_gap*az","min_

max_gap*gx","min_max_gap*gy"
,"min_max_gap*gz","min_max_g
ap*vx","min_max_gap*vy","min_

max_gap*vz" 

9 

Gradient boosting 58.05% 4.26% 

Decision tree 50.29% 5.56% 

Random forest 50.27% 4.88% 

Median 
"median*ax","median*ay","media
n*az","median*gx","median*gy",
"median*gz","median*vx","media

n*vy","median*vz" 
9 

naïve Bayes 85.36% 7.27% 

Gradient boosting 82.54% 10.69
% 

Random forest 78.55% 7.82% 

Energy 
"energy*ax","energy*ay","energy
*az","energy*gx","energy*gy","e
nergy*gz","energy*vx","energy*v

y","energy*vz" 
9 

Gradient boosting 83.00% 11.06
% 

naïve Bayes 78.50% 6.23% 

Decision tree 77.93% 11.29
% 

Main_freq 

"main_freq*ax","main_freq*ay","
main_freq*az","main_freq*gx","
main_freq*gy","main_freq*gz","
main_freq*vx","main_freq*vy","

main_freq*vz" 

9 

LDA 25.95% 1.60% 

Linear SVM 25.85% 0.72% 

Decision tree 25.49% 1.06% 

Spectral_ene
rgy 

"spectral_energy*ax","spectral_en
ergy*ay","spectral_energy*az","s
pectral_energy*gx","spectral_ener
gy*gy","spectral_energy*gz","spe
ctral_energy*vx","spectral_energy

*vy","spectral_energy*vz" 

9 

Gradient boosting 83.10% 11.42
% 

Decision tree 78.42% 11.84
% 

naïve Bayes 78.29% 7.19% 
 

Combined Analysis 

From the brief analysis of the previous two feature-selection methods, another hypothesis 

can be posited that if the feature set was downsized into a state where only speed and mean- or 

median-related features were included, then the accuracy of the specific classifier should be 

higher or remain at the same level. To verify this assumption, this study has created two feature 
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sets: one containing only the speed and mean-related feature, and the other only the speed and 

median-related feature. Cross-validation was then applied on these two feature sets. After 

generating the results, the author selected “gradient boosting,” “LDA,” and “naïve Bayes” as the 

benchmark classifiers for comparing since these are the most recurrent classifiers considered to 

be high performing, based on the previous results.  

Table 10. Feature selection performance with benchmark classifiers 

Description Feature set 
Number 

of 
features 

Gradient 
boosting LDA naïve 

Bayes 

Speed and 
mean 

"mean*vx","mean*vy","mean*vz" 
3 79.10% 72.34% 74.38% 

All vectors 
and mean 

mean*vx,"mean*vy","mean*vz","mea
n*ax","mean*ay","mean*az","mean*g
x","mean*gy","mean*gz" 

9 84.00% 77.98% 85.25% 

Speed and 
median 

"median*vx","median*vy","median*v
z" 3 78.32% 72.34% 74.38% 

All vectors 
and median 

"median*vx","median*vy","median*v
z","median*ax","median*ay","median
*az","median*gx","median*gy","medi
an*gz" 

9 82.54% 77.88% 85.36% 

Speed and 
all feature 
categories 

mean*vx, 
"mean*vy","mean*vz","std*vx", 
"std*vy","std*vz","min_max_gap*vx"
, 
"min_max_gap*vy","min_max_gap*v
z","median*vx", 
"median*vy","median*vz","energy*v
x", "energy*vy","energy*vz", 
"main_freq*vx", 
"main_freq*vy","main_freq*vz","spec
tral_energy*vx", 
"spectral_energy*vy","spectral_energ
y*vz" 

21 79.06% 80.03% 71.43% 

All 63 
features 

All 63 features 
63 83.65% 83.43% 79.42% 

 

The compared results (Table 10) provide strong evidence for declining the 

aforementioned hypothesis. With a focus on features that are only related to speed and mean, the 
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performance of the classification actually decreased for all three benchmark classifiers, 

compared to the performance of the feature set with all vectors (speed, acceleration and angular-

velocity). The same trend occurred on another feature set (speed and median related feature) 

since the recognition rates of benchmark classifiers boomed when features related to all vector 

and median were involved in the learning model.  

Moreover, these results also provide evidence against the assumption addressed in 8.2.1, 

that acceleration- and angular-velocity-related features cannot contribute to the performance of 

the classification task because it is evident that the addition of more vector-based features can 

lead to a boom in performance (gradient boosting: from 79.10% to 84.00%; LDA: from 72.34% 

to 77.98%; naïve Bayes: from 74.38% to 85.25%). 

Furthermore, this performance boom was not driven from the addition of the number of 

features: Table 10 shows that even with 21 features or all 63 features selected, gradient boosting 

and naïve Bayes performed worse than previous feature sets (all vectors and mean, all vectors 

and median) that only have 9 features. 
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CONCLUSION AND DISCUSSION 

In this paper, a novel approach leveraging machine learning for estimating cursor 

position has been proposed. The new method can allow the user to remotely initialize and control 

the position of the cursor with the benefits of a low-cost, intuitive, and physically unconstrained 

experience. Through sound localization, the user can perform a coarse pointing to the desired 

interaction area by using a touch-down sound on the flat surface. In terms of cursor’s movements 

control, this project proposed a four-direction mobile device’s movement detection system for 

allowing the user to control the cursor by moving the mobile device. In total, 63 features and 10 

classifiers were employed to construct the machine-learning models, and multiple feature-

selection methods have been applied to find an optimized machine-learning model. 

Four major conclusions should be addressed. First, this study proposed naïve Bayes, 

gradient boosting, and LDA as the reliable classifiers to build machine-learning models. 

Regardless of whether there is any feature-selection method involved, these three agents always 

have a higher recognition rate than others.  

Second, from the result of the confusion matrix, it appears that there is almost no error 

prediction between “stand” classes (stand_on_x, stand_on_y) and “move” classes (move_right, 

move_left, move_up and move_down); this implies that the proposed machine-learning model 

performs well in distinguishing “move” from “stand”. Most of the error predictions centered on 

classes inside “stand” and “move”. For example, with all features selected, gradient boosting 

incorrectly classified 70 “stand_on _x” samples into “stand_on_y” samples and 116 

“stand_on_y” samples into “stand_on_x” samples; these incorrect predictions capture 58.86% 

(186 out of 316) of the total number of incorrect predictions. Moreover, there were more error 

predictions in classifying two groups: “move_right” or “move_up” and “move_left” or 
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“move_down)”. This suggests that it is more difficult to differentiate “move right or move _up” 

and “move left or move down” than other combinations. 

Third, only recursive feature elimination in the algorithm-based feature-selection method 

can reach a similar recognition rate compared to the non-feature-selection model. It reduces half 

of the dimensions by only using 31 features, but it is also a challenge to explain why these 31 

selected features contributed to the learning results. 

Fourth, by applying manual-selected features, the findings demonstrate that in vectors 

(acceleration, angular-velocity, and speed), speed-related features are more relevant to the 

classification task than the other two vectors. Furthermore, in feature categories, mean- and 

median-related features contribute more to the learning process than other feature categories. 

However, by limiting the features to speed and mean-related features (mean*vx, mean*vy, and 

mean*vz), the performance drops significantly, based on the three benchmark classifiers (see 

Figure 10). It seems that to have a high performance, the learning model should add back some 

features. Based on the observation in Figure 10, gradient boosting and naïve Bayes have a 

prominent recognition rate increase when other vector-related features are added back. However, 

when all feature-category-related features are added back (third row in Figure 10), there is no 

performance boom. These findings suggest that the presence of all vector-related features is more 

important than the presence of all feature-category-related features in terms of performance, and, 

moreover, it is wise to only use speed-related features to perform the classification task since 

other vectors also contribute to the learning process. 
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