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ABSTRACT 

Seeding rate in hard red spring wheat (HRSW) (Triticum aestivum L.) production impacts 

input cost and grain yield.  Predicting the optimal seeding rate (OSR) for HRSW cultivars can 

aid growers and eliminate the need for costly seeding rate research. Research was conducted to 

determine the OSR of newer HRSW cultivars (released in 2013 or later) in diverse environments.  

Nine cultivars with diverse genetic and phenotypic characteristics were evaluated at four seeding 

rates in 11 environments throughout the northern Great Plains region in 2017-2018.  Results 

from ANOVA indicated environment and cultivar were more important than seeding rate in 

determining grain yield.  Though there was no environment x seeding rate interaction (P=0.37), 

OSR varied among cultivar within each environment.  Cultivar x environment interactions were 

further explored with the objective of developing a decision support system (DSS) to aid growers 

in determining the OSR for the cultivar they select, and for the environment in which it is sown.  

Data from seeding rate trials conducted in ND and MN from 2013-2015 were also used.  A novel 

method for characterizing cultivar for tillering capacity was developed and proposed as a source 

for information on tillering to be used in statistical modelling.  A 10-fold repeated cross-

validation of the seeding rate data was analyzed by 10 statistical learning algorithms to determine 

a model for predicting OSR of newer cultivars.  Models were similar in prediction accuracy 

(P=0.10).  The decision tree model was considered the most reliable as bias was minimized by 

pruning methods, and model variance was acceptable for OSR predictions (RMSE=1.24).  

Findings from this model were used to develop the grower DSS for determining OSR dependent 

on cultivar straw strength, tillering capacity, and yield of the environment.  Recommendations 

for OSR ranged from 3.1 to 4.5 million seeds ha-1.  Growers can benefit from using this DSS by 

sowing at OSR relative to their average yields; especially when seeding new HRSW cultivars. 
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PREFACE 

Seeding rate is an important factor in HRSW production as it impacts input costs and 

returns from grain yields.  New hard red spring wheat (HRSW) (Triticum aestivum L.) cultivars 

are released every year, requiring frequent (and sometimes repetitive) research to determine 

optimal seeding rates (OSR) for these new cultivars to help growers maximize yield and 

economic efficiency.  In addition to this, a recent study indicated environment may also need to 

be considered when determining OSR of HRSW cultivars.  We hypothesize that cultivars sharing 

similar characteristics for specific genetic and phenotypic traits are likely to have similar OSR.  

Therefore, it may be possible to develop a predictive model for determining OSR of new 

cultivars based on characteristics known at the time of their release.  This would help avoid the 

expense and resources needed to support continued seeding rate trials for new cultivars.  As 

cultivars can be readily profiled for specific genetic traits, it may be possible to pair this genetic 

information with phenotypic data for advanced lines in breeding programs, to be used as inputs 

in a predictive model.  Data specific to an environment could be incorporated into a predictive 

model and interfaced with a decision support system (DSS) to help growers determine the OSR 

for the cultivar they select to use in their fields.  A DSS will benefit HRSW growers by 

providing them with a tool to promote seeding efficiency and maximum yield.  Resolutions for 

the various components of this problem are detailed in the following chapters:  

1. Seeding rate selection for optimum yield of HRSW cultivars 

2. A standardized method for determining tillering capacity of HRSW cultivars 

3. Developing a decision support system to aid grower selection of optimal seeding rates 

for new HRSW cultivars in diverse environments 

4. Major findings 
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CHAPTER 1. SEEDING RATE SELECTION FOR OPTIMUM YIELD OF  

HRSW CULTIVARS 

Introduction 

Rising production costs and relatively low market prices (Winders et al., 2016) prompts 

growers to seek ways to improve production efficiency and maintain profitability.  Seeding rate 

is an important factor in HRSW production as it impacts both input costs, and returns from grain 

yields.  Environmental limitations on yield potential will vary among cultivars dependent on 

biotic and abiotic stressors present during a growing season (Molero et al., 2016).  It is expected 

that a cultivar grown under stressed conditions will establish, develop, and yield differently than 

the same cultivar under favorable conditions.  Additionally, growth and timing of development 

are expected to be influenced by plant genotype. 

Findings from a previous study in eastern North Dakota and western Minnesota revealed 

differences in OSR among HRSW cultivars (Mehring, 2016).  However, seed of most of the 

cultivars in that study are no longer commercially available.  With the continual release of new 

varieties (and subsequent discontinuation of older varieties), growers may benefit from knowing 

optimal seeding rate (OSR), specific to cultivar and environment type, will aid growers in 

minimizing production costs and improving wheat yield potential.  Identifying factors that may 

aid in predicting OSR for new varieties can eliminate the need for costly experimentation, and 

help growers maximize productivity and economic return.  

Seeding rate greatly impacts the number of established plants ha-1; one of the main 

determinants of yield.  Grafius (1956) reported yield differences in oats (Avena sativa L.) that 

were associated with changes in panicles plant-1, representing plant response to seeding rate 

increases.  Guitard et al. (1961) noted increases in seeding rate had a curvilinear effect on spikes 
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plant-1 of wheat plants; whereas the effect was linear and positive for plants ha-1.  Differences in 

yield associated with changes in seeding density and cultivar type have also been observed in 

barley (Hordeum vulgare L.) (Kirby, 1967). 

Growers typically select seeding density based on past field productivity and current cost 

of seed.  Wheat fields have commonly been planted based on a seed mass (or volume) per area 

unit; however, this can result in variations in the number of planted seeds ha-1 by ≥50% (Puri and 

Qualset, 1978).  It is important for growers to seed at a rate that is based on actual seeds ha-1, and 

supported by regional university studies, as this can help growers establish a plant density 

favorable for maximum productivity and economic efficiency (Wiersma and Ransom, 2017).    

An optimal plant density limits yield loss potential resulting from plant overcrowding or 

light-use inefficiencies (Puckridge and Donald, 1967).  Reynolds et al. (1994) observed increases 

in early-season percent ground coverage to be positively associated with yield.  These results 

may suggest that increasing early-season ground coverage with a high plant density may improve 

production efficiency compared to low plant density.  Establishing an optimal plant density is 

especially important in resource-limited environments, to maximize nutrient capture and use 

efficiency throughout the plant population (Nass and Reiser, 1975). 

For economical HRSW production, establishing a plant population of 3.2 to 3.5 million 

plants ha-1 is recommended in Minnesota and North Dakota (Wiersma and Ransom, 2017).  The 

seeding rate at which this recommended density is attained varies with crop management 

practices applied, seed germination percent, and conditions at planting (Khah et al., 1989; 

Lawrence et al., 1994; Fiez and Miller, 1995).  As Wiersma and Ransom (2017) indicated stand 

losses typically range from 10 to 20%, seeding at a rate of 3.8 to 4.1 million seeds ha-1 would 

provide the recommended plant population. 
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Plant genetic characteristics can also impact OSR.  Genetic selection for dwarfing genes 

Rht-B1 and Rht-D1 has contributed to reduced plant height in many modern cultivars, 

minimizing losses due to plant lodging.  Borrell et al. (1991) observed increased yields in semi-

dwarf Rht-B1 and Rht-D1 lines, and attributed gains to greater number of kernels plant-1 and 

spikes plant-1, as a result of increased availability of assimilates normally allocated for stem 

development.  Reductions in grain quality characteristics of protein (Law and Payne, 1983) and 

kernel weight (Allan and Pritchett, 1980) have also been observed at 1% and 3.5%, respectively, 

in cultivars possessing Rht-B1 and/or Rht-D1 dwarfing genes.  These findings demonstrate the 

importance of considering dwarfing gene and seeding rate interactions when evaluating cultivar 

growth and yield response for determining OSR. 

Though these genes impact desirable agronomic characteristics, Rht-B1 and Rht-D1 

genes are insensitive to the growth-promoting plant hormone class of gibberellins (Hedden, 

2003).  Semi-dwarf cultivars possessing this gibberellin-insensitivity tend to have shortened 

coleoptiles and reduced seedling leaf area.  These seedling characteristics increase severity of 

negative effects from adverse environmental conditions early in the growing season (Rebetzke et 

al., 2007; Amram et al., 2015).  Gale and Marshall (1973) reported an increase in tillers plant-1 

when gibberellin-insensitive dwarf cultivars were treated with gibberellin hormone.  This may 

suggest a plant compensatory mechanism (Stapper and Fischer, 1990) that may impact the 

agronomic response of cultivars possessing these genes.  With the contrasting environment types 

in this study, environmental interactions with these genes may minimize the magnitude of this 

effect, potentially influencing experimental findings. 

Rate of vegetative development of HRSW plants is influenced by cultivar sensitivity to 

day length period as wheat is a long-day plant (Syme, 1968).  Cultivar possessing the sensitive 
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allele for photoperiod response (Ppd-Db) slowly progress through vegetative stages under short 

day conditions (≤10 hr daylight).  Understandably, this characteristic would be desirable for 

winter wheat cultivars seeded in late fall, but could be detrimental for spring wheat grown in the 

short growing seasons present in the northern Great Plains region of the U.S.  Cultivars 

insensitive to photoperiod (Ppd-Da) will transition to reproductive stages even in the absence of 

long day periods (≥14 hr daylight).   

Breeder selection for photoperiod insensitive lines is common in modern spring wheat 

breeding programs as it can provide HRSW cultivars with timely maturation prior to 

temperatures and water deficits present in late summer season that can adversely impact yield 

(Beales et al., 2007).  Breeding efforts are complicated by other genetic and environmental 

factors influencing plant development and heading timing in wheat (Keim et al., 1973; Kato and 

Yamashita, 1991).  With a complex of factors influencing heading and anthesis timing, it is 

understandable how contrasting findings have been reported for yield characteristics of Ppd-D 

insensitive cultivars.  Dyck et al. (2004) reported a 5% yield penalty conferred by the dominant 

insensitive allele; whereas others have concluded insensitivity offers a yield advantage over 

sensitive cultivars (Marshall et al., 1989; Worland et al., 1998).  Though Beuerlein and Lafever 

(1989) indicated seeding rate had a minimal effect on heading timing, it would still be important 

to evaluate the impact of Ppd-D1 sensitivity when evaluating cultivar yield response to seeding 

rate in the diverse growing environments present in ND and MN. 

Plant spacing and arrangement are important agronomic factors to consider prior to 

planting to attain optimal yields in HRSW.  In plant spacing studies in rice (Oryza sativa L.), 

Ashraf et al. (2016) noted plant densities >25 plants m-2 had reduced tiller number and yields.  

Plant density studies in grain sorghum observed no difference in yields between clump 
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arrangements (2 groupings of 3 plants) and equidistant plantings (Thapa et al., 2017).  However, 

harvest index (dry weight of grain/dry weight of aboveground biomass) of clumps was 

significantly higher (0.48 vs. 0.4).  This difference was attributed to lower plant tiller numbers in 

clump arrangements compared to equidistant plantings (0.4 and 1.2 tillers plant-1, respectively).  

Spacing and density of established wheat plants impacts plant growth habit and ability to 

compete for available resources (Lemberle et al., 2001).  At decreased plant densities in narrow 

spacing (15 cm), plant tillering increases the number of spikes m-2, providing for an average 

yield increase of 0.41 Mg ha-1 compared to 30 cm spacing (Chen et al., 2008).  Though plant leaf 

area and spike size significantly influence yield, number of spikes per wheat plant generally has 

a greater influence on plant yield (Hsu and Walton, 1971).   

Fagade and de Datta (1971) reported that broadcast seeding of rice at high rates (100 kg 

ha-1) provided for greater number of tillers m-2 compared to equidistant planting at densities 

ranging from 0.04 to 1.0 m-2.  They also reported differences in tillering capacity of cultivars, as 

tiller counts were significantly different among cultivars seeded at the same density, and for 

individual cultivars at varying densities.  When selecting an OSR for a given cultivar, it may be 

important to consider the tillering capacity of the cultivar.  Tillering can provide plants with 

greater flexibility to adjust to varying densities and growing conditions (Kirby and Faris, 1972).  

This is an important consideration when determining OSR as a high tillering cultivar could 

potentially be seeded at a lower rate compared to cultivar with less tillers contributing to main 

stem yield.  Elhani et al. (2007) experimented on this and concluded that a high tillering capacity 

provided cultivar with advantages in plant growth habit and yield components over low tillering 

cultivars, but only in non-stressed, irrigated environments.  With this understanding, it also may 

be important to consider growth environment factors when determining cultivar OSR. 
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Differences in accumulation and storage of grain protein is expected with the diversity in 

genetic and morphological characteristics among cultivar.  While environmental variables and 

fertility management can greatly influence protein content, adaptations in agronomic 

management with changes in seeding rate, have not been observed to affect grain protein content 

(Briggs and Ayten-Fisu, 1979; Faris and DePauw, 1981; Jenner et al., 1991). 

The objectives of this research were to determine the OSR of new HRSW cultivars grown 

in diverse environments representing the varying wheat production regions present in ND and 

MN.  An expectation was that grouping cultivars with similar OSR would aid in identifying 

factors (environmental, genetic, phenotypic) closely associated with yield and seeding rate.  

These factors could be used in predictive models to determine OSR prior to release of a cultivar. 

Materials and Methods 

Site Description 

Experimental sites were comprised of six locations per year (2017 and 2018) and 

included a diverse range of growing conditions in North Dakota and Minnesota (Table 1).  The 

2017 site in Dickinson, ND was excluded from all analyses as it was unharvested due to 

excessive damage from varmint feeding.  Experiments were located at North Dakota State 

University and the University of Minnesota research centers and experiment stations (Table 2).  

A research protocol was developed and distributed to university research specialists at each 

location.  These specialists assisted by planting, maintaining, and harvesting experiments at each 

location (Table 2). 

Experimental Approach 

Small plot research trials were conducted to evaluate yield response of different cultivar 

at incremental seeding rates.  Experimental units were combined factors of cultivar (nine) and 
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seeding rate (four) in a factorial arrangement, with a randomized complete block design.  

Agronomic management (including cultivation, fertilization, and pest management) followed 

current Extension recommendations relevant to each location, to ensure inputs were not a 

limiting variable. 

Weather data were retrieved for each growing season period from the North Dakota 

Agricultural Weather Network (NDAWN) or from the University of Minnesota research center, 

for ND and MN experiments, respectively.  Daily observations for temperature (℃) and 

accumulated rainfall (mm) were recorded by weather stations located in close proximity to 

experiments at each site.  Observations were averaged over a 7-day period to determine a weekly 

mean value for each measure, and completed for 12 incremental weeks following planting. 

Cultivars were selected from newer-release genotypes (2013 or later) to include specific 

genetic and agronomic characteristics associated with differences in plant stature and growth 

habit (Table 3).  Four seeding rates (pure live seed) were selected to provide a range sufficient 

for fitting linear and nonlinear yield trends (Table 4).  Germination testing by ragdoll method 

was performed on all seed lots.  To evaluate cultivar establishment relative to seeding rate 

treatments, stand counts were completed in each plot around the 2-leaf stage (Zadoks 12 to 15) 

(Zadoks et al., 1974).  Stand counts were determined by counting all emerged wheat plants 

within a 30 cm section of each of the three innermost rows of each plot.  Counts were averaged 

for the three rows, and a plant density (plants m-2) was calculated for each plot. 

At the Prosper location, spike population (spikes ha-1) was estimated from spike numbers 

obtained by placing markers 91 cm apart within two of the innermost rows, and counting all 

productive spikes between markers at physiological maturity (Zadoks 89).



 

 

Table 1. Location, average yield, and soil characteristics† of 2017-2018 experiment sites. 

Location Latitude Longitude 

Yield 

(Mg ha-1) Soil series Taxonomy 
Slope 

(%) 

North Dakota       

    Dickinson 46.981 -102.824  3.06‡ Arnegard Fine-loamy, mixed, superactive, frigid Pachic Haplustolls 0-2 

    Hettinger 46.012 -102.647 2.71 Shambo Fine-loamy, mixed, superactive, frigid Typic Haplustolls 0-2 

    Minot 48.180 -101.304 4.24 Forman-
Aastad 

Fine-loamy, mixed, superactive, frigid Calcic Argiudolls 

Fine-loamy, mixed, superactive, frigid Pachic Argiudolls 

3-6 

    Prosper 47.003 -97.116 4.92 Kindred-
Bearden 

Fine-silty, mixed, superactive, frigid Typic Endoaquolls 

Fine-silty, mixed, superactive, frigid Aeric Calciaquolls 

0-2 

Minnesota       

    Crookston 47.815 -96.616 5.48 Wheatville Coarse-silty over clayey, mixed over smectitic, superactive, 
frigid Aeric Calciaquolls 

0-2 

    Lamberton 44.241 -95.312 4.00 Webster Fine-loamy, mixed, superactive, mesic Typic Endoaquolls 0-2 

† Soil data obtained from NRCS-USDA, 2017. 
‡ Average grain yield (2016-2018) reported in North Dakota and Minnesota variety trial publications. 
 
Table 2. Location and management details for 2017-2018 research environments in ND and MN. 

  2017  2018 

Location Managing unit Previous crop Seeding Harvest  Previous crop Seeding Harvest 

North Dakota         

   Dickinson Dickinson Research & Extension Center  HRSW† 28-Apr -  HRSW 2-May 13-Aug 

   Hettinger Hettinger Research & Extension Center Soybean 26-Apr 3-Aug  Soybean 27-Apr 16-Aug 

   Minot North Central Research & Extension Center Soybean 21-Apr 19-Aug  Soybean 3-May 8-Aug 

   Prosper Extension Cereals Program HRSW 22-Apr 21-Aug  HRSW 30-Apr 31-Jul 

Minnesota         

   Crookston Northwest Research & Outreach Center Soybean 3-May 29-Aug  Soybean 7-May 8-Aug 

   Lamberton Southwest Research Outreach Center Soybean 17-Apr 23-Aug  Soybean 7-May 10-Aug 

† Soybean, Glycine max (L.) Merr.; HRSW, hard red spring wheat, Triticum aestivum, L.
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Observations for agronomic measures were performed by cooperating researchers at each 

location.  Heading date was recorded for each plot as days after planting (DAP) until >50% of 

the plot was headed.  Plant height was measured as the average height (in cm) from the soil 

surface to the awns of approximately 5 spikes, with 2 areas sampled per plot.  Minimal lodging 

was observed in all environments and excluded from results. 

Table 3. Select genetic and phenotypic characteristics† of HRSW cultivars in experiment. 

Cultivar Source Plant stature‡ Photoperiodism§ Height Straw strength Heading 

  Rht-B1 Rht-D1 Ppd-D1 cm   (1-9)¶ DAP# 

LCS Anchor Limagrain a b a 71.9 5 58 

Lang-MN UMN a a a 82.6 5 61 

Linkert UMN a b b 72.9 2 59 

Prevail SDSU a a a 78.2 4 58 

Shelly UMN b a b 77.0 5 62 

Surpass SDSU a a b 79.8 7 56 

SY Valda AgriPro a b b 75.9 4 60 

ND VitPro NDSU b a b 80.0 4 59 

TCG Wildfire 21st Century b a a 86.6 4 60 

† Data obtained from North Dakota HRSW variety trial selection guide (NDSU, 2017). 
‡ a is wild-type allele, b is semi-dwarf allele. 
§ a is insensitive allele, b is sensitive allele. 
¶ Lodging score; 1 is standing erect, 9 is lying flat. 
# DAP, days after planting. 
 

Plot lengths were measured at harvest to determine area harvested by small plot combine.  

Plot grain yield was measured by an on-combine weigh system.  Plot subsamples were collected 

and processed through a Clipper multi-sieve seed cleaner (Ferrell-Ross, Bluffton, IN) prior to 

measuring moisture content and test weight with a GAC 2100 moisture tester (DICKEY-John 

Corp., Minneapolis, Minnesota).  Plot grain yields were corrected to a moisture content of 130 g 

kg-1 and expressed as Mg ha-1.  Grain protein content (percent) was measured using a DA 7250 

NIR analyzer (Perten Instruments, Stockholm, Sweden). 
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Table 4. Location, factor, and treatment of RCBD of 2017-2018 experiments. 

Location Factor Treatment 

Crookston, MN Cultivar LCS Anchor 

Dickinson, ND  Lang-MN 

Hettinger, ND  Linkert 

Lamberton, MN  Prevail 

Minot, ND  Shelly 

Prosper, ND  Surpass 

  SY Valda 

  ND VitPro 

  TCG Wildfire 

 Seeding Rate 1.85 million seeds ha-1 

  3.09 million seeds ha-1 

  4.32 million seeds ha-1 

  5.56 million seeds ha-1 

 
Statistical Analysis 

Tests for homogeneity of variance were completed prior to performing combined 

ANOVA in SAS 9.4 (PROC MIXED).  Cultivar and seeding rate were fixed effects, and 

environment was random.  Interactions were plotted in SAS (PROC GLIMMIX) and evaluated 

for crossover and non-crossover interactions (result of differences in magnitude).  Mean 

separations were established based on protected F-test using Fisher’s LSD (P≤0.05), with 

consideration for random effects from environment. 

Table 5. Sources of variation and error terms for ANOVA of 11 environments in 2017-2018. 

Source of variation df df equation Error terms in F-test 

Env [Environment] 10 env-1 - 

Rep(Env) 22 env(r-1) - 

A [Cultivar] 8 a-1 A MS/Env*A MS 

Env x A 80 (env-1)(a-1) Env*A MS/Error MS 

B [Seeding Rate] 3 (b-1) B MS/Env*B MS 

Env x B 30 (env-1)(b-1) Env*B MS/Error MS 

A x B 24 (a-1)(b-1) A*B MS/Env*A*B MS 

Env x A x B 240 (env-1)(a-1)(b-1) Env*A*B MS/Error MS 

Error 770 (ab-1)(env)(r-1) - 
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At the environment level, cultivar yield response to seeding rate was regressed by linear 

and quadratic models in SAS (PROC REG).  Coefficient of determination (R2) and residual root 

mean square error (RMSE) values (from SAS output) were used to determine model best fit for 

data.  An optimal seeding rate (OSR) was determined for each cultivar x environment 

combination.  For cultivar with a linear response to seeding rate, the OSR was the seeding rate 

treatment at which maximum yield was observed.  For quadratic models, the OSR was 

determined by evaluating the coefficients of the equation.  Quadratic equations with a negative 

linear coefficient (second term) were assigned the lowest seeding rate treatment as the OSR.  For 

all other quadratic models, the OSR was calculated by taking the first derivative of the equation. 

Results 

Weekly mean values for maximum and minimum temperatures varied by environments 

and from year-to-year for locations (Figure 1).  Rainfall timing and accumulation per growing 

season also differed among environments (Figure 2).  Overall, there were no apparent trends in 

weather data that could be readily associated with observations for grain yield or OSR.    

 
Figure 1. Weekly maximum and minimum temperatures after planting, 2017/2018 environments. 
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Figure 2. Rainfall accumulation by week after planting for 2017 and 2018 environments. 
 

Results from the ANOVA evaluating agronomic response of HRSW cultivars to seeding 

rate treatments over 11 environments are included in Table 6.  Environment interacted with 

cultivars, influencing yield, plant density, grain protein, heading date, and plant height.  

Environment also interacted with seeding rate, effecting plant density and grain protein.  The 

cultivar by seeding rate interaction was not significant for any of the responses measured. 

Table 6. Mean square values and ANOVA results for grain yield and plant establishment of 
HRSW cultivars at incremental seeding rates for combined 2017-2018 environments. 

Source df Yield Density† Protein Heading‡ Height§ 

A [Cultivar] 8 8.02*** 2364 33.4*** 7.9 169* 

Env x A 80 0.68*** 2740** 1.04*** 6.5*** 77.8*** 

B [Seeding Rate] 3 1.95*** 2816433*** 0.64 0.1 15.5 

Env x B 30 0.20 4696*** 0.48** 2.2 37.6* 

A x B 24 0.20 1239 0.26 3.7 29.5 

Env x A x B 240 0.20 1868 0.18 3.6 32.3*** 

Error 770 0.19 1905 0.24 3.4 22.5 

*, **, and ***, indicate significance at P<0.05, P<0.01, and P<0.001 respectively. 
† Plant density (plants m-2) observed at 2-leaf stage (Feekes 3). 
‡ Heading days after planting. No data reported for Crookston and Dickinson in 2018. 
§ No data reported for 2017 Crookston environment. 
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Plant Density 

Plant density (established plants m-2) differed among environments, as cultivar interacted 

with environment (Table 6).  This result demonstrates phenotypic plasticity of cultivars, as plant 

growth habit changed in response to interactive effect(s) of environment (Allard and Bradshaw, 

1964; Bradshaw, 1965).  Environment interacted with seeding rate effecting plant density of 

cultivars (Table 6).  Similar results were reported in a wheat seeding rate study conducted by 

Geleta et al. (2002).  As plant density is closely associated with yield, growers can benefit from 

establishing a plant density that is favorable for yield.  For HRSW production in the northern 

Great Plains region, an established plant density of 300 to 320 plants m-2 is considered optimum 

for early-seeded fields (Wiersma and Ransom, 2012).  The number of seeds needed to attain this 

density will vary among growers, due to differences in equipment, agronomic management, and 

environmental conditions prior-to/following seeding.   

With 11 environments in this study and a significant interactive effect of environment, 

impact of experimental and potential non-experimental variables (e.g. differences in planting 

equipment) on established plant density were not readily quantifiable.  Therefore, instead of 

focusing on yield relative to established plant density, it was more efficient and practical to focus 

on the effect of seeding rate, as it is a fixed variable in these experiments.  By taking into account 

their own experience with seedling emergence percentage, growers can readily adjust seeding 

rates relative to baseline recommendations for OSR. 

Grain Protein 

Seeding rate did not significantly affect protein content across environments (Table 7).  

These results are similar to findings reported by Larter et al. (1971) and Campbell et al. (1991).  

Combined across environments, cultivars differed in grain protein content.  These differences 
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were attributed to the innate characteristics of the cultivar influencing protein (Table 8).  Given 

the diversity in the genetic and phenotypic characteristics of the cultivars, relative differences in 

grain protein content due to the cultivar main effect were more or less in line with published 

levels.  A significant environment by cultivar interaction was also observed for protein content 

(Table 6). 

Table 7. The effect of seeding rate on yield and other agronomic traits for combined 2017-2018 
environments. 

Seeding rate Yield Density† Protein Heading‡ Height§ 

million seeds ha-1 Mg ha-1 plants m-2 g kg-1 DAP cm 

1.85 3.36a 165a 15.1 53 66.8 

3.09 3.49b 245b 15.1 53 67.2 

4.32 3.55b 322c 15.0 53 67.1 

5.56 3.51b 391d 15.0 53 66.7 

LSD0.05¶ 0.08 11 NS NS NS 

† Plant density (plants m-2) observed at 2-leaf stage (Feekes 3). 
‡ Heading days after planting (DAP). No data reported for Crookston and Dickinson in 2018. 
§ Data not reported for 2017 Crookston environment. 
¶ LSD values calculated based on Fisher’s F-protected test. 
 
Table 8. Agronomic traits of HRSW cultivars for combined 2017-2018 environments. 

Cultivar Yield Density‡ Protein Heading§ Height¶ 

 Mg ha-1 plants m-2 g kg-1 DAP cm 

LCS Anchor 2.94a† 280 15.5ab 53 66.0ab 

Lang-MN 3.52bcd 289 15.5ab 53 66.0ab 

Linkert 3.36b 280 15.7a 54 68.0bc 

Prevail 3.52bcd 283 14.4c 53 68.4c 

Shelly 3.67de 276 14.5c 54 67.5bc 

Surpass 3.57cd 278 14.8d 54 67.4bc 

SY Valda 3.84e 276 14.6c 53 67.3bc 

ND VitPro 3.43bc 284 15.5a 54 67.6bc 

TCG Wildfire 3.45bc 284 15.3b 54 64.6a 

LSD0.05 0.20 NS 0.2 NS 2.3 

† Values with the same letter in a column are not significantly different (P>0.05). 
‡ Plant density (plants m-2) observed at 2-leaf stage (Feekes 3). 
§ Heading days after planting (DAP). No data reported for Crookston and Dickinson in 2018. 
¶ No data reported for 2017 Crookston environment. 
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Cultivar sharing similar genetic characteristics for photoperiod response (Ppd-D1) and/or 

semi-dwarf gene expression (Rht-B1 or Rht-D1) did not predispose accumulation of protein at 

similar levels.  Examples of this include protein content of ND VitPro and Shelly across 

environments.  Though ND VitPro and Shelly are photoperiod insensitive and express the Rht-

B1b gene, the average protein content of ND VitPro was 1.0 g kg-1 greater than Shelly 

(calculated from Table 8).  Other examples of cultivars differing in grain protein though sharing 

similar genetic backgrounds for photoperiod response and semi-dwarfing genes, include Lang-

MN consistently having greater protein content than Prevail, and SY Valda with lower protein 

content than Linkert in all 11 environments.  Grain protein differences between environments 

and cultivars are likely to be influenced by environmental factors such as differences in daily 

temperature fluctuation, timing of available water, and amount of accumulated rainfall, as these 

all can impact yield potential of cultivars and kernel development (Pan et al., 2006). 

The relationship between protein content and grain yield was found to be curvilinear 

(Figure 3).  The general trend across cultivars is with yields ≥ 3.50 Mg ha-1, protein content 

decreased as yield increased.  This result coincides with previous findings by Faris and De Pauw 

(1981).  Under lower yielding conditions (< 3.50 Mg ha-1), the positive trend between yield and 

grain protein content is likely representative of varying degrees of drought stress that occurred.  

Drought stress was likely the cause of early plant senescence, affecting the ratio of starch to 

protein accumulation and composition in the kernels (Rakszegi et al., 2019).  Overall, these data 

suggest that regardless of cultivar, seeding rate had limited impact on grain protein content. 
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Figure 3. Protein content relative to HRSW cultivar yield, combined 2017-2018 environments. 
 
Heading Date 

Heading date was not affected by changes in seeding rate, and was similar for cultivars 

when averaged over 11 environments (Table 6).  The cultivar by environment interaction was 

attributed to differences in heading due to planting date and environment.  Though these factors 

had a different magnitude of effect on growth and development of cultivars at each location, 

cultivars were similar in rank across locations and years for relative heading date (results not 

included).  Based on these results, genotype and environment (not seeding rate) were the primary 

determinants of heading date of cultivars. 

Plant Height 

Averaged over 11 environments, plant height was unchanged by seeding rate (Table 7).  

Finlay et al. (1971) had similar findings for plant heights of six barley cultivars seeded at rates of 
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54, 108, and 161 kg ha-1.  The differences in plant height between cultivars (Table 8) was as 

expected given the diversity of cultivars.  Cultivar response to seeding rate differed among 

environments (Table 6).  Other studies however have reported seeding rate to have minimal 

effect on plant height of cultivars grown in varying environments (Pelton, 1969; Faris and De 

Pauw, 1981).  This was likely because environments were diverse in geographic location, annual 

precipitation, temperature, and other environmental factors that influence phenotype and yield 

potential of cereal crops (Thomas et al., 1993; Frensham et al., 1998; Yan and Hunt, 2001). 

Grain Yield 

Yield was significantly affected by seeding rate.  Combined over 11 environments, grain 

yield increased by 0.13 Mg ha-1 when the seeding rate was increased from 1.85 to 3.09 million 

seeds ha-1 (Table 7).  Seeding at rates greater than 3.09 million seeds ha-1 did not increase grain 

yield further.  Based on these results, it may seem appropriate to recommend 3.09 million seeds 

ha-1 as optimal for yield.  However, environment had a significant interactive effect with cultivar, 

and with seeding rate, suggesting the need to develop seeding rate recommendations that are not 

only variety specific, but also consider the environment in which they are grown. 

When combined over environments, the cultivar x seeding rate interaction was not 

significant.  Nevertheless, when each cultivar was characterized for its response to increasing 

seeding rate, they responded quite differently (Figure 4).  These differences are likely due to 

variation among cultivar in magnitude of effect of cultivar x environment interactions, affecting 

grain yield (Pendleton and Dungan, 1960; Slafer and Rawson, 1994; Geleta et al., 2002).  Also, 

as varieties were from diverse genetic backgrounds and developed by various breeding programs 

located in different areas of the northern Great Plains region, it was expected that cultivars would 

not perform the same in all environments. 
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When combined over environments, regression fitting of yield relative to seeding rate 

revealed a nonlinear relationship (Figure 5).  Yield response to seeding rate for all cultivar was 

best fit by a quadratic model (Table 9).  This indicates that growers seeding above or below the 

OSR for a cultivar are likely not maximizing seeding efficiency.  This result is best supported by 

the five cultivars with a highly predictive quadratic yield response to increasing seeding rate (as 

indicated by R2 values ≥0.89).  Yield was not closely associated with seeding rate for all 

cultivars, as yield of LCS Anchor did not respond to seeding rates (R2 ≤ 0.03). 

 
Figure 4. Grain yield of HRSW cultivars at seeding rates, combined 2017-2018 environments. 
 

When averaged over cultivar and environment, the OSR was 4.39 million seeds ha-1 

(Table 9).  Cultivar OSR ranged from 3.68 to 5.56 million seeds ha-1.  Of the five cultivars with 

high R2 values (R2 ≥ 0.89), Surpass had the lowest OSR of 4.02 million seeds ha-1, and Linkert 

had the highest OSR at 4.91 million seeds ha-1.  Results for cultivar-specific OSR provide 

opportunities for improving efficiency of HRSW production relative to seed input, in comparison 

to a general recommendation (e.g. Table 7). 
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Figure 5. Yield response to seeding rate of HRSW cultivars, combined 2017-2018 environments. 
 

Environment significantly interacted (P<0.001) with cultivars for grain yield (Table 6).  

The influence of cultivar x environment interaction was well represented by variability in yield 

response to seeding rate of Prevail, ND VitPro, and Lang-MN (Figure 4 and 5).  When combined 

over environments, seeding rate was only partially predictive of grain yield of these cultivars, as 

R2 values were 0.43 (Prevail), 0.56 (ND VitPro), and 0.67 (Lang-MN) (Table 9). 

The cultivar x environment interaction was further detailed by fitting regression functions 

for individual cultivar within each environment, and using regression equations to determine 

cultivar OSR for each environment.  By pairing these cultivar-specific OSR with observed mean 

yield values for each environment (Table 10), differences in cultivar efficiency relative to seed 

input, and differences in magnitude of interactive effect of environment, became more apparent. 
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Table 9. Yield response of cultivar to seeding rates, and regression equations with optimal 
seeding rates, based on cultivar response over 2017-2018 environments.  

 Seeding rate (million seeds ha-1)    

Cultivar 1.85 3.09 4.32 5.56 Regression equation† OSR‡ R2 

 ——————Mg ha-1——————  
million 

seeds ha-1  

LCS Anchor 2.97 2.83 3.09 2.88 ŷ=2.82+0.08x-0.01x2 3.68 0.03 

Lang-MN 3.37 3.62 3.52 3.57 ŷ=2.97+0.29x-0.03x2 4.32 0.67 

Linkert 3.24 3.32 3.46 3.41 ŷ=2.92+0.21x-0.02x2 4.91 0.89 

Prevail 3.42 3.57 3.47 3.57 ŷ=3.28+0.10x-0.01x2 5.13 0.43 

Shelly 3.50 3.70 3.74 3.70 ŷ=3.00+0.35x-0.04x2 4.33 0.99 

Surpass 3.41 3.61 3.73 3.54 ŷ=2.67+0.51x-0.06x2 4.02 0.95 

SY Valda 3.65 3.91 3.98 3.83 ŷ=2.88+0.54x-0.07x2 4.06 0.99 

ND VitPro 3.39 3.44 3.35 3.54 ŷ=3.58-0.14x+0.02x2 5.56 0.56 

TCG Wildfire 3.31 3.45 3.55 3.51 ŷ=2.90+0.27x-0.03x2 4.70 0.99 

LSD0.05 0.08§    

Combined 3.36 3.49 3.54 3.50 ŷ=3.00+0.25x-0.03x2 4.39 0.99 

† Regression equation from PROC REG for quadratic best-fit model. 
‡ OSR, optimal seeding rate; based on quadratic regression equation. 
§ LSD calculated for seeding rate main effect according to Fisher’s F-protected test. 
 

Some cultivars were consistent across varying environments in producing higher or lower 

yields, relative to other cultivars.  Of the 10 environments with significant cultivar main effect, 

SY Valda was the highest-yielding cultivar in eight of these environments (Table 10).  LCS 

Anchor was the lowest yielding in all environments.  These results are consistent with relative 

performance of these cultivars in university variety trials in North Dakota in 2016-2017 (NDSU 

Extension, 2016; 2017).  For other cultivars, yield ranking was inconsistent across environments. 

The effect of the cultivar x environment interaction was also apparent when comparing 

mean yield of cultivars grown in the same environment, and relative cultivar response across 

environments (Table 10).  Cultivars grown in the Crookston 2017 environment had the highest 

mean yield of all environments at 5.09 Mg ha-1 (range: 4.47 to 5.79 Mg ha-1).  Minot 2017 was 

the lowest yielding environment with an average yield of 1.81 Mg ha-1 (range: 1.66 to 2.13 Mg 

ha-1). 
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Cultivar OSR based on mean yield values at seeding rates combined over 11 

environments ranged from 3.68 to 5.56 million seeds ha-1 relative to mean yields ranging from 

2.94 to 3.43 Mg ha-1 (Tables 7 and 9).  SY Valda and Shelly were the highest yielding cultivars 

at 3.84 and 3.67 Mg ha-1, respectively (Table 8).  Though yield of these cultivars was similar, 

OSR for SY Valda was lower at 4.06 million seeds ha-1 compared to 4.33 million seeds ha-1 for 

Shelly (Table 9).  As environment and cultivar interaction had variable impact on yield response 

of cultivars, OSR calculated from data combined over 11 environments are not likely 

representative of the seeding rate that will promote maximum yield in individual environments. 

Yield of cultivars respective to OSR varied by environment.  In the highest yielding 

environment (Crookston 2017), yield of these two cultivars was not significantly different, but 

the OSR for Shelly was lower compared to SY Valda (3.66 and 4.32 million seeds ha-1, 

respectively) (Table 10).  Contrasting OSR of these cultivars in the lowest yielding environment 

(Minot 2017), while producing similar yields (P>0.05), SY Valda had a lower OSR of 4.08 

million seeds ha-1, compared to Shelly of 5.56 million seeds ha-1.  Other cultivars in this 

environment yielded similar to SY Valda and Shelly, and had varying OSR (Lang-MN, Linkert, 

and Prevail, at 3.69, 4.09, and 4.21 million seeds ha-1, respectively). 

 Specific environmental factors that may have influenced cultivar development 

throughout the growing season were difficult to isolate for environments.  In the absence of 

specific parameters or qualifiers to guide an unbiased classification of environments into 

different groupings, the OSR for cultivars is best represented by cultivar OSR in individual 

environments (Table 10).  However, the OSR for cultivar in each environment have a limited 

scope of application, as results are not robust enough to account for variability among growers 

and year-to-year differences in growing conditions.



 

 

Table 10. Optimal seeding rates and mean grain yield of HRSW cultivars in 2017-2018 environments in ND and MN. 

 2017 
 Crookston†  Prosper  Lamberton  Hettinger  Minot 

Cultivar  OSR‡ Yield  OSR Yield  OSR Yield  OSR Yield  OSR Yield 
 million 

seeds ha-1 Mg ha-1  million 
seeds ha-1 Mg ha-1  million 

seeds ha-1 Mg ha-1  million 
seeds ha-1 Mg ha-1  million 

seeds ha-1 Mg ha-1 
LCS Anchor 2.55 4.53a§  3.96 3.98a  3.82 2.92a  3.89 1.66a  1.85 1.20a 
Lang-MN 1.85 4.80b  5.20 4.68de  4.12 3.75c  3.78 2.00cde  3.69 1.88bc 
Linkert 5.14 4.98b  3.26 4.39bc  4.49 3.61bc  3.09 1.83abc  4.09 1.96bc 
Prevail 3.65 4.47a  5.56 4.38bc  5.56 3.81c  3.69 2.07e  4.21 1.94bc 
Shelly 3.66 5.64c  3.62 5.13f  3.91 4.16d  4.26 2.06e  5.56 1.92bc 
Surpass 3.09 4.99b  4.36 4.42bc  4.01 3.77c  3.74 2.07de  3.28 1.74b 
SY Valda 4.32 5.79c  5.56 4.85e  4.86 4.27d  3.09 2.13e  4.08 2.10c 
ND VitPro 1.85 4.89b  5.01 4.25b  5.56 3.55bc  4.16 1.91bcd  3.77 1.76b 
TCG 
Wildfire 

3.58 5.71c  5.08 4.48cd  4.58 3.39b  4.67 1.76ab  3.78 1.81b 
Mean 3.30 5.09  4.62 4.51  4.55 3.69  3.82 1.94  3.81 1.81 

               

 2018 
 Crookston  Prosper  Lamberton  Hettinger  Minot  Dickinson 

Cultivar OSR Yield  OSR Yield  OSR Yield  OSR Yield  OSR Yield  OSR Yield 

 
million 

seeds ha-1 Mg ha-1  
million 

seeds ha-1 Mg ha-1  
million 

seeds ha-1 Mg ha-1  
million 

seeds ha-1 Mg ha-1  
million 

seeds ha-1 Mg ha-1 
 million 

seeds ha-1 Mg ha-1 
LCS 
Anchor 

5.56 2.49a  1.85 3.44a  3.49 1.75a  4.32 2.81  3.42 3.97a  5.56 3.64a 
Lang-MN 2.57 3.37de  5.56 4.20b  5.56 2.88fg  2.97 2.91  5.56 4.44abcd  5.56 3.80ab 
Linkert 5.56 3.00b  5.56 4.16b  3.98 2.05b  1.85 3.22  3.09 4.09ab  1.85 3.64a 
Prevail 5.56 3.47de  4.37 4.42bc  4.36 2.99g  3.09 3.04  1.85 4.50bcd  4.24 3.61a 
Shelly 2.91 3.01bc  5.56 4.09b  5.56 2.64de  3.06 2.86  5.56 4.65cd  4.29 4.25c 
Surpass 5.56 3.42de  5.56 4.63c  1.85 2.70def  3.09 3.54  3.65 4.20abc  4.10 3.82abc 
SY Valda 3.88 3.66e  4.75 4.59c  4.26 2.75ef  3.69 3.14  3.90 4.80d  3.78 4.18bc 
ND VitPro 3.75 3.33cd  3.85 4.37bc  5.56 2.50cd  5.56 3.40  5.56 3.96a  1.85 3.81ab 
TCG 
Wildfire 

3.15 3.33d  4.32 4.13b  1.85 2.40c  1.85 3.14  5.56 4.20abc  3.50 3.64a 
Mean 4.28 3.23  4.60 4.22  4.05 2.52  3.28 3.12  4.24 4.31  3.86 3.82 

† Crookston and Lamberton are in Minnesota; Prosper, Hettinger, Minot, Dickinson are in North Dakota.  
‡ OSR, optimal seeding rate for maximum cultivar yield; based on quadratic or linear regression equation from PROC REG best fit for data. 
§ Values with the same letter within a column for individual environments are not significantly different (P>0.05) based on Fisher’s LSD.
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Cultivars included in this study were selected based on the presence or absence of certain 

genetic and phenotypic characteristics (associated with yield) to provide various groupings of 

cultivars for a more robust analysis.  Yield response of cultivars sharing similar expression for 

Rht-B, Rht-D, or Ppd-D genes (Table 3) was variable for comparisons both within, and across 

environments (Table 10).  Dominating interactions between environment and individual cultivar 

were observed in Linkert and SY Valda, which are both semi-dwarf cultivars (Rht-Db) and 

sensitive to photoperiod (Ppd-Db).  Yield of these two cultivars differed in all environments, 

with the exception of Minot 2017.  Shelly and ND VitPro share similar genetic traits for semi-

dwarf gene Rht-B and photoperiod sensitivity Ppd-D, and these two cultivars differed in yield in 

6 of the 10 environments where cultivar was a main effect. 

When comparing OSR relative to yield of cultivars sharing similar key genes, Lang-MN 

and Prevail produced similar yields in 8 of the 10 environments that had a cultivar main effect.  

The OSR of these cultivars, however, varied across environments (Table 10).  For Hettinger 

2017, the OSR for Lang-MN was 3.78 million seeds ha-1, and 3.69 million seeds ha-1 for Prevail.  

Contrasting results from Minot 2018, OSR for Lang-MN was 5.56 million seeds ha-1, versus 1.85 

million seeds ha-1 for Prevail. 

One of the yield components of HRSW is the number of spikes produced per hectare.  

Cultivars producing similar yields, but differing in OSR, may be related to differences among 

cultivar in growth habit and spike production.  For spike populations (spikes ha-1) combined for 

2017-2018 environments at Prosper, ND, there was no interaction between cultivar and seeding 

rate.  However, cultivar and seeding rate both had significant effects on total spikes ha-1 (Table 

11).  Surpass, SY Valda, and ND VitPro produced similar spike populations of 7.27 million 

spikes ha-1 (calculated mean from Table 11).  LCS Anchor, Lang-MN, Linkert, Shelly, and TCG 
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Wildfire had a lower average spike population of 6.04 million spikes ha-1 (calculated from Table 

11).  Though spike population was similar among cultivars for each of these two groupings, yield 

differed among cultivar, and from year-to-year, showing that spikes are not the only component 

of yield that was important (Table 10). 

Table 11. Spike population of HRSW cultivars at varying seeding rates, Prosper 2017-2018.  

 Seeding rate (million seeds ha-1)   

Cultivar 1.85 3.09 4.32 5.56  Mean 

 ————————————spikes ha-1——————————— 

LCS Anchor 4.69 5.97 6.88 6.53  6.01 

Lang-MN 5.15 6.05 5.91 6.18  5.82 

Linkert 5.43 5.96 6.62 7.23  6.31 

Prevail 5.91 7.28 7.46 7.62  7.06 

Shelly 5.43 5.67 6.10 6.38  5.90 

Surpass 5.82 6.67 8.08 8.62  7.30 

SY Valda 6.08 6.89 7.41 8.58  7.24 

ND VitPro 6.11 6.63 8.36 7.96  7.27 

TCG Wildfire 5.23 5.93 6.63 6.82  6.15 

Mean 5.54 6.34 7.05 7.32   

LSD0.05† 0.35  0.90 

† LSD values for mean comparisons among main effect levels from Fisher’s F-protected test. 
 

Results from spike counts within the experiments at Prosper 2017 and 2018 indicate 

differences in cultivar growth habit relative to seeding rate (as represented by spikes ha-1).  This 

may represent cultivar differences in tillering capacity, as greater spacing among plants (at lower 

seeding rates) can allow plants to utilize compensatory mechanisms to produce additional tillers 

when environmental conditions are favorable and resources are available (Elhani et al., 2007).  

These results for variable yield response of cultivar grown in different environments further 

indicates the interactive effect of environment on cultivar yield and response to seeding rate. 
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Conclusions 

Environment and cultivar were much more important than seeding rate in determining 

grain yield.  An optimal seeding rate for HRSW across environments and cultivars is 4.39 

million seeds ha-1.  Though in the combined analysis there was no environment x seeding rate 

interaction, OSR varied among cultivars within each environment.  Some cultivars had no 

response to seeding rate in some environments, and growers should seed at lower rates in these 

scenarios.  Genetic factors and spike population were not predictive of cultivar responsiveness to 

increasing seeding rate. 
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CHAPTER 2. A STANDARDIZED METHOD FOR DETERMINING  

TILLERING CAPACITY OF HRSW CULTIVARS 

Introduction 

Genotype is the primary determinant of yield potential in hard red spring wheat (HRSW) 

cultivars.  The actual yield attained by a cultivar is greatly influenced by interactive effects from 

environment and agronomic management.  One way that these factors can affect yield is by 

influencing plant growth habit and composition of yield components.  For wheat grown in 

irrigated, intensively managed environments, production of uniculm plants is considered ideal 

for yield (Donald, 1968).  As the majority of HRSW in the northern Great Plains region of the 

U.S. is seeded in dryland environments, crop management for economic production includes 

using cultivars with both main stem and tillers contributing to yield.  Tillering can allow plants to 

adjust growth relative to density of neighboring plants or quality of growing conditions (Kirby 

and Faris, 1972).  Diversity among modern HRSW cultivars includes a range of genotypes 

differing in plant growth habit and tillering capacity.  And though an extensive record of 

publications have documented efforts employed to identify quantitative trait loci (QTL) 

associated with tillering in wheat, no findings have been published to date identifying a specific 

gene associated with tillering traits (Richards, 1988; Li et al., 2002).  

Agronomic management for sustainable HRSW production includes selecting a seeding 

rate that will maximize efficiency of production for every plant.  For example, a high tillering 

cultivar could be seeded at a lower rate compared to cultivar with a lower number of tillers 

contributing to total grain yield.  When determining the seeding rate optimal for cultivar yield, it 

is important to consider the tillering capacity of a cultivar to avoid economic losses due to 

unnecessary seed costs (overseeding) or uncaptured yield (underseeding).  Underseeding to 
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promote plant tillering is likely to impact yield, though differences in reportings for percent of 

total grain yield contributed by tillers (range 6.7% to 46.9%) to make it difficult to determine a 

definitive percent (Destro et al., 2001; Otteson et al., 2008).  Additionally, underseeding a field 

with a low tillering cultivar can limit leaf area index, reducing the amount of radiative light 

intercepted ha-1, and thereby lowering production efficiency and subsequent yield at harvest 

(Fischer and Kohn, 1966).  Richards and Townley-Smith (1987) noted that greater leaf area 

index proved to be a disadvantage for high tillering cultivars subjected to early drought 

conditions occurring prior to anthesis.  When drought conditions were present only after 

anthesis, pre-anthesis vegetative growth was estimated to contribute 60% of total grain yield.   

Though it is apparent that differences among cultivars in tillering capacity and plant leaf 

area influence yield, Hsu and Walton (1971) noted spikes plant-1 generally has a greater 

influence on plant yield.  Applying this understanding on a field scale, Holliday (1960) noted 

yield gains observed in high tillering stands could be attributed to contributions from spikes, 

based on the understanding of spike photosynthetic efficiency reported by Archbold and 

Mukerjee, 1942).  Elhani et al. (2007) conducted tillering experiments and concluded that a high 

tillering capacity provided cultivars with advantages in plant growth habit and yield components 

over low tillering cultivars, but only in non-stressed, irrigated environments.  Hucl and Baker 

(1988) noted that though tillers m-2 is closely associated with spikes m-2 (r = 0.84), spikes m-2 is 

a poor determinant of yield (R2 = 0.005).  Considering diversity in tillering capacity among 

cultivars and production potential across environments, these findings reinforce the importance 

of considering cultivar tillering capacity when determining optimal seeding rates to maximize 

yield throughout the northern Great Plains region. 
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Though environment can influence tillers plant-1 produced by a cultivar, it can be 

expected to observe similar relative responses in other cultivars across environments.  Klepper et 

al. (1982) indicated that the process of wheat plant development is unchanged across 

environment types, but noted that environment affects the rate at which development occurs.  

This can be used to explain the reporting from Friend (1965) that reduced tiller numbers in 

mature wheat plants was not attributable to the plant’s inability to form tiller buds, but rather the 

lack of tillers emerging from axillary buds.  Though environment and agronomic factors can 

impact tillering, it can be expected that genotypes will not to be differentially affected by these 

factors.  Work completed by Richards (1988) provides support for this statement as varying 

planting timing of spring-seeded wheat produced similar changes in spikes plant-1 among 

tillering cultivars.  Evaluations of tiller numbers of cultivar seeded in various arrangements 

(adaptations in spacing and rectangularity) indicated arrangement had no interactive effect on 

cultivar tillering (Auld et al., 1983).  Carr et al. (2003) found that no rank changes were observed 

among HRSW cultivars when evaluating tillage and seeding rate effects on tiller production.  In 

general, these studies all document cultivar responses to agronomic practices that are similar in 

scale across cultivars. 

Though differences in wheat plant tiller number in response to varying treatments for row 

spacing, seeding rate, and planting method have been extensively published, documentation is 

minimal for current methods used by breeders and researchers to assess tillering characteristics 

of individual cultivar.  Hucl and Baker (1988) utilized various approaches for evaluating tillering 

characteristics of wheat genotypes based on spikes plant-1.  One approach included single row 

planting and subsequent thinning to 10 plants m-2 for sampling of 5 plants to represent each 

genotype.  Additional approaches included solid-seeded (2.40 million seed ha-1) and space-
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planted (est. 0.12 million seeds ha-1) conditions to determine spikes plant-1 for relative 

comparisons among genotypes.  The objective of the space-planted method was to provide 

growing conditions with minimal competition among plants to promote plant tillering for full 

evaluation of genotype tillering capacity.  Of the 373 genotypes originally evaluated, the 

genotypes with the 10 lowest, and 10 highest values for spikes plant-1 were reported as low 

tillering and high tillering genotypes, respectively.  This study demonstrated various 

experimental approaches used to identify high and low tillering genotypes, based on relative rank 

among genotypes for spikes plant-1.  However, not all HRSW cultivars available to growers are 

designated as having characteristics of high tillering or low tillering.  This reinforces the 

importance of developing a standardize system for assessing cultivar tillering capacity.   

Without a standardized system for assessing cultivars for tillering characteristics, there is 

greater uncertainty in optimal seeding rates for HRSW cultivars due to additional error 

associated with subjective evaluation of cultivar tillering habits.  Developing a standardized 

method for assessing tillering capacity of genotypes provides breeding programs with a tool to 

readily determine this important characteristic to include in the description of new cultivars upon 

release. 

The objectives of this research were to determine a method for assessing tillering of 

HRSW cultivars and develop a standardized approach for characterizing cultivar tillering 

capacity.  Various seeding techniques were applied in differing plant spacing arrangements to 

evaluate tillering habit and spikes plant-1 of diverse HRSW cultivars. 
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Materials and Methods 

Site Description 

Three different experiments were used in this study to profile various assessment 

methods.  All experiments were established at the agricultural research site near Prosper, ND 

(47.003° -97.116°), with a soil type that is characterized as somewhat poorly drained consisting 

of a complex of Kindred (fine-silty, mixed, superactive, frigid Typic Endoaquolls) and Bearden 

(fine-silty, mixed, superactive, frigid Aeric Calciaquolls) soils with a minimal slope (0-2%).  

Experiment 1 was established in 2017 and 2018 (two environments).  Experiment 2 and 

Experiment 3 were each established in 2018.  Sites were cropped to HRSW in the year prior.  

Sites received disc tillage in the fall prior, and a field cultivator in the spring, prior to planting.  

Agronomic management (including cultivation, fertilization, and pest management) followed 

NDSU extension recommendations to ensure inputs were not an additional source of variance. 

Experimental Approach 

Experiment 1 was conducted concurrently within the small plot seeding rate experiment 

described in Chapter 1.  Experimental units were 5.5 m2 plots in a randomized complete block 

design with a factorial arrangement of cultivar and seeding rate.  Treatments included 

combinations of four seeding rates and nine HRSW cultivars (Table 4) seeded in 7 rows at 18 cm 

spacing with a Great Plains no-till drill (Kincaid Research, Haven, KS).  Cultivars were selected 

to include a diversity of genetic backgrounds and phenotypes (Table 9).  Plant counts were 

completed within each plot around the 2-leaf stage (Zadoks 12 to 15) (Zadoks et al., 1974) by 

placing markers 91 cm apart within two of the innermost rows and counting all wheat plants 

between markers.  At physiological maturity (Zadoks 89), all productive spikes between markers 

were counted and averaged over early-season plant counts in each sampling area.  Values from 
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both areas sampled were averaged to determine average spikes plant-1 for each plot.  Spikes 

plant-1 was selected (versus spikes m-2 or stems m-2) to evaluate various plant spacing 

arrangements to determine the method most appropriate for evaluating cultivar tillering abilities.  

As Hucl (1986) reported spacing arrangement comparisons based on spikes plant-1 were only 

slightly correlated (r = 0.33), the focus will be on relative cultivar response across the various 

methods. 

Space-planted methods were used in Experiment 2 and Experiment 3 to promote cultivar 

expression of tillering phenotype by minimizing competition among plants (Hucl and Baker; 

1988).  Experiment 2 was a randomized complete block design with four replicates.  Nine 

HRSW cultivars were assigned as treatments.  Experimental units were 5.5 m2 plots seeded with 

a Hege 1000 no-till planter (Hege Company, Waldenburg, Germany) in 4-rows with 30 cm 

spacing.  A SOFATT (seed only few, and then thin) method was applied by seeding at a fixed 

rate of 215 000 seeds ha-1 with the objective to establish wheat plants within each plot at an 

equidistant of 30 cm for both intra-row and inter-row spacing.  Plots were thinned in early June 

to remove excess wheat plants, including any plants spaced <18 cm from a neighboring plant 

(Figure 6).  Spikes plant-1 was measured at physiological maturity (Zadoks 89) to allow plants to 

reach full tillering potential (Hucl, 1986).  Intra-row spacing of plants (in meters) and mean 

spikes plant-1 were recorded for each plot by averaging spike counts of 8 plants sampled from 

each plot (Figure 7). 

Experiment 3 was a randomized complete block design with 24 replicates.  Nine HRSW 

cultivars were assigned as treatments.  Experimental units were 0.09 m2 single-seed hills planted 

with a 4-row hill plot planter at equidistant spacing (30 cm x 30 cm).  Spikes plant-1 were 

determined at physiological maturity for each cultivar replicate. 
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Figure 6. Experiment 2 plot of HRSW plants (a) seeded at rate of 215 000 seeds ha-1 and (b) 
same plot after thinning established plants to equidistant spacings of 30 cm. 
 

 
Figure 7. Intrarow spacing and spikes plant-1 were determined for eight plants selected from 
experimental plots at physiological maturity (Zadoks 89). 
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Statistical Analysis 

Analysis of variance of Experiment 1 data was performed for 2017 and 2018 

environments using PROC MIXED in SAS 9.4 (SAS Institute Inc., Cary, NC).  Variance of 

environments was considered homogenous and data was combined for ANOVA using PROC 

MIXED in SAS 9.4.  Following the approach outlined by Carmer et al. (1989), environment was 

assigned a random effect, and fixed effects were cultivar and seeding rate.  A one-way ANOVA 

was completed for Experiment 2 in PROC MIXED and for Experiment 3 in PROC GLIMMIX 

evaluating spikes plant-1 of cultivar treatments.  Mean separations were completed according to 

F-protected LSD values (P≤0.05) determined in PROC MIXED for Experiment 1 and 

Experiment 2, and PROC GLIMMIX for Experiment 3 as an unequal number of cultivar 

replicates were present. 

Parameterization Methods 

Three parameterization methods were evaluated as potential approaches for determining 

parameters for classifications of the tillering capacity rating system.  These methods included the 

‘Means Comparisons approach’, the ‘Z-score approach’, and the ‘Standardized Distribution 

approach’. 

For the ‘Mean Comparisons approach’, SAS output for LSD mean separations of spikes 

plant-1 were used to assign parameters as qualifiers associated with each classification of the 

tillering capacity rating system (low, moderate, high).  As an objective was to develop a 

standardized system that could be applied in various environmental settings, this required a 

robust system with the capacity to assign tillering capacity ratings to cultivar from diverse 

genetic backgrounds that were assessed in differing growing conditions.  To account for the 

effects of these experiment-specific variables in regards to cultivar tillering expression, it was 
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determined that cultivar tillering capacity should be evaluated only after accounting for potential 

differences in spike densities across experiments.  This was done by using Z-score 

transformations for spikes plant-1 observations in each experiment.  This approach has been 

utilized by numerous agricultural and ecological studies, to account for variability across 

environments (Laundre and Reynolds, 1993; Ellsworth et al., 1998; Rahman et al., 2009).  The 

parameterization method used was described as the ‘Z-score approach’, which proposed that 

standardized z-scores calculated from spikes plant-1 observations, could be used to determine 

cultivar tillering capacity based on relative tillering performance of the cultivar.  The ‘Z-score 

approach’ required a data transformation step in SAS (PROC STANDARD) to calculate 

standardized z-scores from observations for spikes plant-1 as:  

z‒ score =
x − x̅

𝑠
 

where x is observed spikes plant-1, x is experimental mean, and s is experimental standard 

deviation (Clark-Carter, 2014).  This adjusted the scale of plant response for spikes plant-1 to 

have a mean of 0, and standard deviation of 1.   

The ‘Standardized Distribution approach’ was the third parameterization method 

evaluated.  This method was somewhat of a continuation of the ‘Z-score approach’, as 

standardized z-scores were used to calculate spikes plant-1 estimates to represent data relative to 

the distribution of the population as: 

x̂ = (z-score*σ) + μ 

where, x̂ is estimated spikes plant-1, z-score is z-score of spikes plant-1 observation, σ is standard 

deviation of population, and μ is population mean. 
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Results and Discussion 

Assessing Cultivar Tillering 

Experiment 1 

Results from the ANOVA of Experiment 1 revealed spikes plant-1 was consistent for 

cultivar from year-to-year (Table 12).  This is in line with findings of Klepper et al. (1982), and 

offers support that seasonal differences in environmental conditions are not likely to influence 

results when assessing tillering of HRSW cultivars to determine tillering capacity. 

Table 12. Mean square values and ANOVA results for spikes plant-1 of HRSW cultivars at 
seeding rate treatments, combined 2017-2018 experiments in Prosper, ND. 

Source df Mean square 

A [Cultivar] 8 1.14* 

Env x A 8 0.32 

B [Seeding Rate] 3 24.83** 

Env x B 3 0.27 

A x B 24 0.13 

Env x A x B 24 0.17 

Error 140 0.18 

*, **, and ***, indicate significance at P≤0.05, P≤0.01, and P≤0.001 respectively. 
 

As cultivars were of diverse genetic backgrounds and phenotypes, it was not surprising 

that spikes plant-1 differed among cultivars (Table 13).  Cultivars with higher tiller number 

(≥2.54 spikes plant-1) included SY Valda, Prevail, and ND VitPro.  Cultivars producing a 

moderate number of spikes were Surpass, Linkert, and Shelly, at spikes plant-1 of 2.50, 2.33, and 

2.21 spikes plant-1, respectively.  TCG Wildfire, LCS Anchor, and Lang-MN were low tillering 

cultivars (<2.18 spikes plant-1) in Experiment 1. 

Incremental increases in seeding rate had an inverse effect on spikes plant-1 (Table 14).  

An increase in seeding rate from 1.85 to 3.09 million seeds ha-1, reduced the number of spikes 

plant-1 from 3.3 to 2.5 spikes plant-1, respectively.  At the highest seeding rates of 4.32 and 5.56 
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million seeds ha-1, plant spikes plant-1 was the lowest at 1.9 and 1.8 spikes plant-1, respectively.  

Similar responses to seeding rate were reported by Joseph et al. (1985), where 3.7, 2.3, and 1.8 

spikes plant-1 were observed at a seeding rate of 1.86, 3.72, and 5.58 million seeds ha-1, 

respectively. 

Table 13. Spikes plant-1 of HRSW cultivars observed at 2017-2018 environments, Prosper, ND. 

Cultivar Spikes plant-1 

LCS Anchor 2.15ab† 

Lang-MN 2.06a 

Linkert 2.33abcd 

Prevail 2.60d 

Shelly 2.21abc 

Surpass 2.50bcd 

SY Valda 2.64d 

ND VitPro 2.54cd 

TCG Wildfire 2.17abc 

mean 2.36 

LSD0.05 0.38 

† Values with the same letter in a column are not significantly different. 
 
Table 14. Spikes plant-1 of HRSW at seeding rates, 2017-2018 Prosper environments. 

Seeding rate 

(million seeds ha-1) Spikes plant-1 

1.85 3.3 

3.09 2.5 

4.32 1.9 

5.56 1.8 

mean 2.4 

LSD0.05 0.3 

CV 18.0 

 
Other studies have indicated similar negative trends in number of spikes plant-1 as plant 

density increased, including observations of 29.4, 18.6, 7.2, 2.1, and 0.7 spikes plant-1 at 1.4, 7, 

35, 184, and 1078 plants m-2, respectively, and reduction in spikes from 5.6 to 3.1 spikes plant-1, 

as plant density was increased from 75 to 200 plants m-2 (Puckridge and Donald, 1967; Medd et 
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al., 1985).  As a consistent decrease in spikes plant-1 was observed across cultivars seeded at 

increasing rates, agronomic management appeared to be limiting cultivar tillering potential. 

Though spikes plant-1 was influenced by seeding rate, changes in seeding rate did not 

differentially affect cultivar spikes plant-1 (Table 12).  Simmons et al. (1982) reported similar 

findings for barley (Hordeum vulgare L.) genotypes that varied in tillering capacity.  Cultivar 

differences in tillering capacity and growth habit may explain why greater differences were not 

see among cultivars seeded at different rates in Experiment 1.  Plants established in densely-

seeded conditions are expected to have greater intraspecies competition compared to plants in 

space-planted conditions.  As neighboring plants compete for available resources, growth habit 

can vary depending on the intensity of competition among rivaling intraspecies and interspecies 

plants (Goldberg, 1990; Schenk et al., 1999).   

To further evaluate cultivar spikes plant-1 relative to seeding rate, cultivar spike counts 

from the 2018 environment were used for one-way ANOVA for each seeding rate factor level.  

The purpose of this was to evaluate each seeding rate level as a potential approach for assessing 

cultivar tillering capacity.  Results in Table 15 indicate assessments to determine cultivar 

tillering capacity should not be completed in HRSW production fields, as spikes plant-1 was 

similar among cultivar at seeding rates greater than 1.85 million seeds ha-1.  Though differences 

in spikes plant-1 were observed among cultivar seeded at 1.85 million seeds ha-1, the differences 

were minimal and not likely to be readily detected in field evaluations.  However, it is still 

important to note that spikes plant-1 of cultivars became more dissimilar as seeding rate 

decreased.  Increased cultivar expression of tillering habit with incremental decreases in seeding 

rate was represented by a continual decrease in correlation coefficient (r) values when comparing 

treatments (Table 15). 
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In summary, Experiment 1 confirmed the effects of plant density on HRSW tillering, 

primarily in relation to the level of competition among neighboring plants (Goldberg, 1990; 

Schenk et al., 1999).  As a consistent decrease in spikes plant-1 was observed across cultivars as 

seeding rate increased, tillering assessments based on plants seeded at production-level densities 

(1.85 to 5.56 million seeds ha-1), will not represent the full tillering capacity of a cultivar. 

Table 15. Spikes plant-1 of HRSW cultivars at various planting methods in 2018 at Prosper, ND. 

 Method 

 Seeding rate (million seeds ha-1) 

Cultivar 1.85 3.09 4.32 5.56 

 ————————————spikes plant-1——————————— 

LCS Anchor 2.50a† 2.23 1.61 1.59 

Lang-MN 2.67ab 2.13 1.54 1.50 

Linkert 3.55cd 2.11 2.15 1.57 

Prevail 3.02abcd 2.63 1.87 1.66 

Shelly 3.09abcd 2.13 1.58 1.35 

Surpass 3.22bcd 2.49 1.98 1.89 

SY Valda 3.63d 2.74 2.44 1.97 

ND VitPro 3.23bcd 2.80 2.19 1.96 

TCG Wildfire 2.99abc 1.95 2.05 1.58 

Mean 3.10 2.36 1.93 1.68 

LSD0.05 0.64 NS NS NS 

CV 11.8 14.9 17.4 15.4 

     

 Pearson’s correlation coefficient (r) 

     1.85 vs 3.09 ——— 0.40NS ———   

     3.09 vs 4.32  ——— 0.52NS ———  

     4.32 vs 5.56   ——— 0.76* ——— 

† Values with the same letter in a column are not significantly different (P>0.05). 
* Significant at P ≤0.05; NS, not significant. 
 
Experiment 2 

Spaced-plantings with the SOFATT method in Experiment 2 promoted cultivar 

expression of tillering phenotype as mean spikes plant-1 was 22.1 spikes plant-1 (Table 16).  

Cultivar diversity was apparent as responses in spikes plant-1 were normally distributed, and 
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spikes plant-1 differed among cultivars.  Cultivars with the greatest tillering were ND VitPro and 

Shelly at 25.9 spikes plant-1 each.  Cultivars with moderate tillering were Lang-MN and Prevail 

(each with 23.4 spikes plant-1), and Surpass and LCS Anchor producing 21.3 and 21.0 spikes 

plant-1, respectively.  Linkert, SY Valda, and TCG Wildfire were the lowest tillering cultivars, as 

all averaged <20 spikes plant-1. 

Table 16. Spikes plant-1 of HRSW cultivars in space-planted experiments, Prosper 2018. 

Cultivar Experiment 2 Experiment 3 

 ————spikes plant-1———— 

LCS Anchor 21.0ab 21.8ab 

Lang-MN 23.4bc 23.5bc 

Linkert 19.5a 22.2ab 

Prevail 23.4bc 26.4cd 

Shelly 25.9c 23.1bc 

Surpass 21.3ab 22.0ab 

SY Valda 19.5a 20.5ab 

ND VitPro 25.9c 26.6d 

TCG Wildfire 18.9a 19.7a 

Mean 22.1 22.9 

CV 11.4 21.5 

† Values with the same letter in a column are not different based on Fisher’s LSD (P>0.05). 
 

An unexpected result in this experiment was that Shelly was among the highest tillering 

cultivars, as this cultivar was one of the lower tillering cultivars in Experiment 1 (Table 14).  

This may represent adaptive abilities of this cultivar, allowing for adjustments in growth habit 

relative to the amount of intraspecies competition.  This ability may not be realized/manifest 

until Shelly is grown at wider intra-row spacings.  Increased tillering expression with greater 

intra-row spacing may be represented by other cultivars, as spikes plant-1 were not correlated (r = 

-0.23; P=0.547) when comparing cultivars at 1.85 million seeds ha-1 in Experiment 1 and at 

spaced-plantings in Experiment 2.  However this may not be the case, as there was no interaction 

for cultivar by seeding rate in Experiment 1, and Shelly did not have an apparent advantage over 
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other cultivars when different seeding density methods were used to assess tillering capacity of 

cultivars.  In general, the spaced-planting approach in Experiment 2 provided an effective 

method for assessing tillering of HRSW cultivars as the greater growing area of the experimental 

units helped minimize experimental error and maximize tillering potential of cultivars, as 

competition from neighboring plants was limited. 

Experiment 3 

Experiment 3 had poor emergence and uneven establishment across replicates, which was 

attributed to dry soil conditions at planting.  Spikes plant-1 differed among cultivar at spaced-

plantings used in Experiment 3, and the mean spikes plant-1 was 22.9 spikes plant-1 (Table 16).  

The highest tillering cultivar was ND VitPro (26.6 spikes plant-1).  The cultivar with the lowest 

amount of tillers was TCG Wildfire with 19.7 spikes plant-1.  The six other cultivars had 

moderate tillering as spikes plant-1 ranged from 20.5 to 26.4 spikes plant-1 among cultivars.  The 

lack of differences among cultivars was a result of high standard error values due to the broad 

range of spikes plant-1 observed for each cultivar (Figure 8).   

 
Figure 8. Spikes plant-1 of HRSW cultivars evaluated at spaced-plantings in Experiment 3. 
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This error was likely exacerbated by unfavorable environmental conditions at varying intensity 

throughout the site, and additional error within the experiment (CV=21.5) that was unaccounted 

for (Table 16).  Based on these results, the space-planted method used in Experiment 3 is not 

likely to provide an accurate assessment of tillering of HRSW cultivars. 

Summary 

These results indicate the spaced-planting method used in Experiment 2 provided for the 

most accurate assessment of cultivar tillering.  However, as results for cultivar spikes plant-1 in 

Experiment 3 were correlated with Experiment 2 results (r=0.79; P=0.011), this indicated that 

both space-planted methods provided for similar tillering expression of cultivars.  In summary, 

spaced-plantings are needed to properly assess tillering of HRSW cultivars.  Overall, it is 

apparent that ND VitPro is a high tillering cultivar, and SY Valda and TCG Wildfire are low 

tillering. 

Determining Cultivar Tillering Capacity 

Parameterization Methods 

Three parameterization methods were identified as potential approaches for 

differentiating the classes of low, moderate, and high, of the tillering capacity rating system.  

Parameters determined by the ‘Mean Comparisons approach’ [using letter(s) from mean 

separations based on LSD values] were selected based on SAS output for mean separations 

(P≤0.05) for cultivar spikes plant-1 in Experiment 2 (Table 16).  As four groupings of cultivars 

were indicated by mean comparisons based on Fisher’s LSD, parameters for each rating class 

were relatively easy to distinguish (Table 17).  However, in experiments where the number of 

treatments or level of precision results in greater than four letter groupings, defining parameters 

for each tillering capacity rating class would be a highly subjective process.  Also, in 



 

48 

experiments with unequal replication where alternative mean separations tests (such as Tukey 

procedure, or Tukey-Kramer test) are most appropriate, results would not be readily comparable 

across experiments.  As these factors are additional sources of error and uncertainty that are not 

easy to account for, this is likely the reason why as of now, there is no standardized method that 

is widely used when assigning tillering capacity ratings to HRSW cultivars. 

Table 17. Parameterization used for grouping HRSW cultivars based on tillering capacity in 
Experiment 2. 

 Tillering capacity 

Parameterization method Low Moderate High 

Mean separations a† ab / bc c 

Z-score < -0.6745 -0.6745 to 0.6745 > 0.6745 

Spikes plant-1 (est.) < 19.7‡ 19.7 to 24.4 > 24.4 

† Based on F-protected LSD values (P<0.05). 
‡ Estimated spikes plant-1 based on standardized distribution; calculated as: population mean ± 
0.6745*standard deviation of population. 
 

Parameterization by the ‘Z-score approach’ (data transformation to standardized z-score 

values) provided a quantitative method for determining cultivar tillering capacity ratings.  As 

spikes plant-1 responses in Experiment 2 followed a normal distribution, z-score values at the 

first quartile (Q1) and third quartile (Q3) were used as parameters for assigning tillering capacity 

ratings (Table 17).  Cultivar with an average z-score of <-0.6745 were considered to have a low 

tillering capacity.  Cultivar with a z-score ≥-0.6745 and ≤0.6745 were considered to have a 

moderate tillering capacity.  Cultivar with a high tillering capacity had a z-score >0.6745.  This 

parameterization method was very easy to complete, and interpretation of results is not limited to 

the dataset evaluated, as data were adjusted to a standardized scale, with a mean of zero and 

standard deviation of one.   

Z-scores for cultivar spikes plant-1 can be readily compared across experiments to 

determine relative tillering of cultivars in differing environments.  This was best demonstrated by 
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comparing results from Experiment 1 and Experiment 2.  Though expression of tillering 

phenotypes was limited in Experiment 1, differences in spikes plant-1 were observed among 

cultivar.  These results were used to demonstrate cultivar tillering response at densities present in 

grower production fields (Experiment 1) compared to growth in spaced-plantings (Experiment 

2).  To account for the large difference in mean spikes plant-1 between Experiment 1 and 

Experiment 2, standardized z-score values were calculated for spikes plant-1 observations in each 

experiment.  This adjusted the response scale of each experiment to be on the same relative scale 

(Figure 9).  Though data from Experiment 1 data were not used to determine cultivar tillering 

capacity, Figure 9 demonstrates how z-scores can be used to standardize observations to a scale 

that is relative to the experimental mean.  Therefore, relative response of a cultivar can be 

compared when more than one experimental dataset is used to determine cultivar tillering 

capacity. 

 
Figure 9. Observations for spikes plant-1 (a) and standardized Z-scores based on transformed 
values for spikes plant-1 (b) in Experiment 1 and Experiment 2 at Prosper, ND in 2018. 
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The ‘Standardized Distribution approach’ (standardized z-scores transformed to spikes 

plant-1 estimates based on population distribution) was the third parameterization method used.  

For this method, parameters for tillering capacity ratings were set at Q1 and Q3, and represented 

as estimated values for spikes plant-1; where μ = 22.1 and σ = 3.5.  Spikes plant-1 was estimated 

as 19.7 and 24.4 spikes plant-1 at Q1 and Q3, respectively (Table 17).  This method is most 

relevant for application in future tillering studies.   

With the diversity of cultivars and n=36 spikes plant-1 observations in Experiment 2, it 

was surmised that results from Experiment 2 were representative of most HRSW cultivars 

currently available to growers for production.  Therefore, the spikes plant-1 parameters outlined 

in Table 17 can be readily used by researchers to determine tillering capacity of cultivar when 

using the tillering assessment method from Experiment 2.  If the mean and standard deviation of 

any subsequent experiments were to differ from the population (μ = 22.1; σ = 3.5), values from 

the subsequent experiment could be considered samples of the population, and thereby readily 

adjusted by solving for X (estimated spikes plant-1) in the z-score equation, using the z-score for 

the sampled value, and the standardized distribution for the population (μ, σ). 

Cultivar Tillering Profiles 

The ranking for tillering capacity was similar across parameterization methods for each 

cultivar (Table 18).  Shelly and ND VitPro have a relatively high tillering capacity, whereas 

Linkert, SY Valda, and TCG Wildfire have relatively low tillering capacity.  Cultivars with 

moderate capacity for tillering include LCS Anchor, Surpass, Prevail, and Lang-MN.  Genetic 

influences on plant tillering were represented in Experiment 2, as cultivars with similar 

expression for a particular trait, have the same tillering capacity.  This was demonstrated by the 
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high tillering capacity cultivars (Shelly and ND VitPro), which are both photoperiod insensitive 

(Ppd-D1b) and express the Rht-B1 gene for semi-dwarf phenotype. 

Plant tillering also appears to be affected by genes other than Ppd-D1b, as other 

photoperiod insensitive cultivars (Linkert and SY Valda) have a low tillering capacity.  These 

low tillering cultivars also have a semi-dwarf phenotype; however, this phenotype is imparted by 

Rht-D1 semi-dwarf gene expression in these low tillering cultivars.  These contrasting responses 

likely represent the effects of Ppd-D1 interactions with other genes (including semi-dwarf genes 

Rht-B1 and Rht-D1 as potential interactors) discussed by Gonzalez et al. (2005).  This is further 

supported by observations for Prevail and Lang-MN, as they both possess wild-type allele for 

semi-dwarf gene expression, are similar for sensitivity to photoperiod, and both identified as 

having moderate tillering capacity (Table 18). 

Table 18. Tillering capacity of HRSW cultivars as determined by parameterization methods. 

Cultivar 
Photoperiod 

response 
Dwarfing 

gene  
Mean 

Comparisons  Z-score  
Spikes 
plant-1 

            

TCG Wildfire† Sensitive Rht-B1  a L‡  -0.92 L  18.9 L 

SY Valda Insensitive Rht-D1  a L  -0.75 L  19.5 L 

Linkert Insensitive Rht-D1  a L  -0.73 L  19.5 L 

LCS Anchor Sensitive Rht-D1  ab M  -0.31 M  21.0 M 

Surpass Insensitive Wild-type  ab M  -0.23 M  21.3 M 

Prevail Sensitive Wild-type  bc M  0.37 M  23.4 M 

Lang-MN Sensitive Wild-type  bc M  0.38 M  23.4 M 

Shelly Insensitive Rht-B1  c H  1.10 H  25.9 H 

ND VitPro Insensitive Rht-B1  c H  1.10 H  25.9 H 

† Cultivar ranked by tillering capacity; low to high. 
‡ Tillering capacity; where L is low, M is moderate, and H is high tillering cultivar. 
 

Prior studies in barley have indicated the importance of evaluating tiller density (stems 

plant-1) relative to the number of spikes plant-1, as tiller mortality differs with genotype and can 

negatively impact grain yield (Kirby, 1967; Kirby and Jones, 1977).  As tiller mortality differed 
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among cultivars in Experiment 2, these results indicate tiller production and survival are greatly 

influenced by HRSW genotype (Figure 10).  Tiller density, spikes plant-1, and tillering capacity 

did not appear to influence tiller mortality of cultivars.  These results offer additional support to 

the understanding that genotype greatly influences tiller mortality. 

 
Figure 10. Stem and spikes plant-1 (difference represents tiller mortality) of HRSW cultivars in 
spaced-plantings in Experiment 2 at Prosper, ND 2018.  Mean separations for tiller mortality 
were determined by LSD test. Cultivar with same letter are not significantly different (P>0.05).  
† TC, tillering capacity. 
 

Though tiller mortality differed among cultivars, tiller production and survival was 

consistent for all cultivars, as indicated by high correlation coefficients (r ≥ 0.93) between stem 

density and spikes plant-1 (Table 19).  This reveals that HRSW plants are able to self-regulate 

tiller formation to consistently produce a certain number of viable spikes relative to the number 
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of tillers formed.  Lang-MN and Surpass appear to have produced a more variable number of 

yield-contributing spikes relative to the number of tillers formed. 

Table 19. Spikes plant-1 of HRSW cultivars in spaced-plantings in Experiment 2, Prosper 2018. 

Cultivar Tillers plant-1 Spikes plant-1 Tiller mortality† r‡ Pr > |r| 

 stems plant-1 spikes plant-1 n plant-1   

TCG Wildfire§ 19.4 18.9 0.5 0.99 0.006 

SY Valda 20.3 19.5 0.8 0.98 0.021 

Linkert 20.5 19.5 1.0 0.99 0.003 

LCS Anchor 22.3 21.0 1.3 0.97 0.026 

Surpass 22.2 21.3 0.9 0.93 0.066 

Prevail 25.0 23.4 1.6 0.98 0.020 

Lang-MN 24.1 23.4 0.7 0.94 0.057 

Shelly 26.2 25.9 0.3 0.99 0.001 

ND VitPro 27.0 25.9 1.1 0.99 0.003 

Experimentwise 23.0 22.1 0.9 0.99 <0.0001 

LSD0.05¶ 3.7 3.0 0.7   

† Tiller mortality = (stems plant-1 – spikes plant-1). 
‡ r, Pearson’s correlation coefficient. 
§ Ranked by tillering capacity; low to high. 
¶ LSD value based on Fisher’s F-protected test (P≤0.05). 
 

These observations revealed the importance of considering the plant structure used to 

assess and determine tillering capacity of HRSW cultivars, as determining tillering capacity 

based on stems plant-1 could potentially lead to a different tillering capacity when based on 

spikes plant-1.  However, this was not the case in Experiment 2 as cultivar tillering capacity 

based on tiller density or spikes plant-1 arrived at the same tillering capacity rating (results not 

included).  As spikes plant-1 is a primary component of wheat yield, cultivar tillering capacity 

based on spikes plant-1 is more relevant to growers making seeding and crop management 

decisions, in comparison to cultivar characteristics for forming tillers; especially as not all tillers 

will produce spikes contributing to final yield. 
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Method Validation 

To validate the application of these approaches for determining cultivar tillering capacity, 

experimental means from eight similar space-planted tillering studies conducted at Prosper, ND 

and Crookston, MN in 2014 and 2015, were used to determine tillering capacity of 12 HRSW 

cultivars (Table 20).  Observations for tiller density (stems plant-1) were used for this validation, 

as spikes plant-1 was not reported.  Z-scores and standardized values for cultivar tiller density 

guided the selection of tillering capacity rating for each cultivar (Table 20). 

Results for the validation set were similar to Experiment 2 results as interactions between 

photoperiod gene Ppd-D1 and semi-dwarfing genes (Rht-B1 and Rht-D1) appear to influence 

plant tillering response.  The most revealing finding is that the two cultivar that are photoperiod 

insensitive (Ppd-D1a) and express the Rht-B1b allele, both have a high tillering capacity.  This is 

a favorable result as similar findings were revealed in Experiment 2, as Shelly and ND VitPro 

are both cultivars with high tillering capacity (Table 18).  This response could be influenced by 

QTL reported by Borras-Gelonch (2012), who indicated QTLs at a similar locus were associated 

with tillering and phenology characteristics.  Eagles et al. (2014) suggested Ppd-D1 interactions 

with alternate gene(s) (that also have effect on tillering) as a possible explanation for contrasting 

yield responses observed in genotypes with similar genetic background for Ppd-D1.  In 

comparison to these high tillering cultivars, the photoperiod insensitive cultivars with Rht-D1 

gene have a moderate tillering capacity.  As it has been noted by Addisu et al. (2010) that Rht-D1 

plants can have reduced biomass and greater harvest index in comparison to Rht-B1 plants, these 

differences in tillering capacity observed in photoperiod insensitive cultivars are understandable. 
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Table 20. Tillering of HRSW cultivars in space-planted experiments in ND and MN, 2014-2015. 

Cultivar 
Photoperiod 

response 
Dwarfing 

gene 
Observed 

stems plant-1 
Standardized 
stems plant-1 Z-score 

Tillering 
capacity 

Samson† Sensitive Rht-B1 16.8 17.7‡ -1.54 L§ 

Kelby Sensitive Rht-D1 19.3 19.7 -0.96 L 

Briggs Insensitive Wild-type 19.6 19.9 -0.89 L 

Oklee Sensitive Wild-type 20.4 20.6 -0.70 L 

Rollag Insensitive Rht-D1 20.6 20.8 -0.65 M 

Kuntz Sensitive Rht-D1 22.0 21.9 -0.33 M 

Vantage Insensitive Wild-type 23.2 22.8 -0.04 M 

Knudson Sensitive Rht-B1 25.8 24.9 0.56 M 

Marshall Insensitive Rht-D1 26.1 25.2 0.63 M 

Albany Insensitive Rht-B1 28.3 27.0 1.15 H 

Sabin Sensitive Wild-type 28.9 27.4 1.29 H 

Faller Insensitive Rht-B1 29.7 28.1 1.48 H 

Mean   23.4 23.0 0.00  

Std. Dev.   4.3 3.4 1.00  

† Cultivar ranked by tillering capacity; low to high. 
‡ Based on standardized distribution of z-scores with μ = 23.0 and σ = 3.4 stems plant-1. 
§ Tillering capacity rating based on z-score parameterization. L, Low; M, Moderate; H, High.  
 

Cultivars with photoperiod sensitivity have variable tillering capacity profiles as no 

apparent groupings were observed for sensitive cultivars with similar genetic background for 

traits affecting plant height.  As data was compiled over multiple years and locations, it is likely 

that these results represent a robust assessment of tillering habit of these cultivar, sufficient to 

determine the tillering capacity that accurately characterizes each cultivar. 

Conclusion 

Assessing cultivar tillering to determine tillering capacity was best represented by the 

SOFATT method used in Experiment 2.  Cultivar tillering habit is best represented by average 

spikes plant-1 of multiple plants sampled from a cultivar grown at spaced-plantings (inter-row 

and intra-row spacing at 30 ± 12 cm).  Plants grown at high population densities in grower 

production fields are not likely to represent full tillering potential of cultivar.  Researchers can 
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use results for average spikes plant-1 to determine tillering capacity rating for each cultivar, based 

on raw or transformed z-score values for spikes plant-1.  The Z-score approach is most relevant 

for researchers evaluating a diverse selection of HRSW genotypes (e.g. advanced breeding lines, 

variety trials).  The Standardized Distribution approach is also useful, as researchers can 

establish values for spikes plant-1 that can be used as parameters in future studies to readily 

determine cultivar tillering capacity rating. 
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CHAPTER 3. DEVELOPING A DECISION SUPPORT SYSTEM TO AID GROWER 

SELECTION OF OPTIMAL SEEDING RATES FOR NEW HRSW CULTIVARS IN 

DIVERSE ENVIRONMENTS 

Introduction 

Genetic improvement through continued breeding efforts leads to the development of 

new hard red spring wheat (HRSW) cultivars that typically provide a yield advantage over 

cultivars released in prior years (Austin et al., 1980).  Adaptations in plant growth habit, 

phenotypic traits, or physiological processes related to stress, are a few examples of ways that 

newer cultivars may provide increased yield potential over older cultivars (Austin et al., 1989; 

Christopher et al., 2008; Reynolds et al., 2012).  Growers have shown preference for newer 

cultivars, primarily driven by the opportunity for increased grain yield potential and protein 

content (Dahl et al., 2004).  This prompts public and private seed organizations to continuously 

release new HRSW cultivars, resulting in the subsequent ‘retirement’ of older cultivars.  When 

these new cultivars are first released, they are not accompanied by a seeding rate 

recommendation.  Growers rely on accurate recommendations for optimal seeding rates (OSR), 

to avoid economic losses due uncaptured yield (underseeding) or excess seed and fertilizer waste 

(overseeding). 

University extension specialists commonly provide seeding rate recommendations for 

new cultivars based on prior seeding rate studies of cultivars released in the preceding years.  

After these “new” cultivars are subsequently tested in multi-year seeding rate studies, the actual 

OSR can greatly differ from the original extension recommendation.  These differences can 

reveal 2+ years of reduced yields and economic losses (Mehring, 2016).  Though this reinforces 

the importance of proper seeding rate selection, with the continued release of new cultivars (and 
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subsequent discontinuation of older cultivars), determining OSR for each cultivar is expensive, 

time-consuming, and repetitive research.  Furthermore, environment factors (e.g. yield potential, 

annual precipitation, seasonal temperature) impact cultivar yield, and have an interactive effect 

on seeding rate (Fisher, 1985; Geleta et al., 2002; Lloveras et al., 2004).  Briggs and Ayten-Fisu 

(1979) noted the importance of including diverse environments in seeding rate studies of new 

cultivars; especially as some environment and cultivar combinations favor lower seeding rates.  

This demonstrates the importance of evaluating cultivar yield and agronomic response at 

different seeding rates, and in diverse growing conditions, to ensure robustness in the OSR 

recommendation for a cultivar. 

Decision support systems have been developed to address agricultural production 

problems related to soil, nutrient, and precipitation, with the objective to reduce economic losses 

for growers and promote sustainability by minimizing environmental impact (Bonfil et al., 2004; 

Wang et al., 2010).  These type of systems can provide environment-specific management 

recommendations based on location and field-specific information provided as inputs in a 

computer-based algorithmic model.  Currently, most of these decision support systems are 

focused on nutrient or disease management.  Small et al. (2015) developed a decision support 

system to aid growers in managing late blight disease in potatoes (Solanum tuberosum L.).  

Weather data, crop information, and grower management practices were all variables 

incorporated into this system that would alert growers when conditions were favorable for late 

blight, so growers could ensure timely management for disease prevention.   

Other decision support systems have been developed that are specific to crop 

management, but they are commonly modeled in high productivity regions (i.e. southern U.S.), 

and thereby likely to be highly-sensitive to even slight changes in input variables.  Developing a 
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predictive model for determining OSR for new cultivars could eliminate the time lag, expense, 

and repetition of the current method with field trials.  This type of model could be coupled with 

environment-specific data and incorporated into a decision support system to allow for the 

varying effects of environmental interactions to be accounted for when determining an OSR for a 

new cultivar. 

Regression functions (linear and nonlinear) are commonly used to model agronomic 

responses in seeding rate studies (Geleta et al., 2002; Lemerle, 2004).  Regression equations 

from these models are useful when considering yield tradeoffs relative to seeding rate changes 

and can also be used to determine an estimate for OSR (Wiersma, 2002).  However, when these 

models are fit to only one set of data, predictions produced by the model can be greatly biased 

and parameters have large standard error (Jones and Carberry, 1994).  Various methods of 

splitting of datasets can be used to minimize these errors when conducting statistical analyses 

(Crowley, 1992).  A prior HRSW seeding rate study conducted in ND and MN produced 

regression models predictive for grain yield by dividing the original dataset into two subsets 

(Mehring, 2016).  This method represents the validation set approach. 

When using the validation set approach, only a portion of the dataset (training set) is used 

to fit a predictive model.  The other portion of the dataset (validation set) is then used to test the 

fit of the training model.  Results for this test include the root mean squared error (RMSE) value, 

which provides an estimate for model accuracy as it represents the test error associated with 

differences in predicted and observed values.  Akin to using several regression functions to 

identify a regression model best-fit for data, comparisons among models produced by various 

statistical learning methods can be readily accomplished by evaluating RMSE values (James et 

al., 2014).  This process of evaluating the accuracy (fit) of these predictive models is called 
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model assessment.  Model assessment is critical for identifying and selecting the machine 

learning method that will best represent the data, while minimizing bias and error. 

The validation approach is an efficient way to develop and test a predictive model.  

However, decreasing the number of observations used to train the model will inherently decrease 

the power of the test, increasing the likelihood of committing a Type-II error (fail to reject the 

null hypothesis, when the null hypothesis is false).  As it is unlikely that training set data will be 

exactly representative of the validation set data, validation-trained models are likely to have 

higher RMSE values compared to models fit to only one dataset.  To address these issues, cross-

validation approaches are used in place of the traditional validation approach.  Cross-validation 

is a resampling method that is used to perform multiple ‘model-training’ iterations prior to 

producing a final model that is based on the average fit of these iterations.  Wu et al. (2012) 

demonstrated the benefits of cross-validation in regression-based modeling as they noted reduced 

bias in predicted values and a lower RMSE value compared to one-time regression analysis.  An 

improvement on this method can be made by dividing the original dataset, and performing 

multiple cross-validation iterations on each subset, then averaging these results to determine a 

final model.  This k-fold cross-validation method is a considerable improvement on the 

validation approach, as it can provide for a stable, reliable predictive model.  The application of 

the k-fold cross-validation method has been demonstrated previously in various ecological and 

agricultural studies (Wiens et al., 2008; Yost et al., 2018.). 

Numerous algorithms have been developed to guide classification of data to produce 

decision trees that are user friendly as they do not require extensive knowledge to interpret.  In 

experiments with multiple levels for each independent variable, the classification and regression 

trees (CART) algorithm can be used to readily produce decision trees.  The use of this approach 
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was demonstrated by Waheed et al. (2006), as they applied the CART decision tree algorithm to 

classify experimental plots based on irrigation use, weed management, and fertilization.   

The objective of this research was to develop a decision support system (DSS) to improve 

grower selection of optimal seeding rates for newer HRSW cultivars sown in the varying 

growing environments throughout North Dakota and Minnesota.  This DSS will benefit HRSW 

growers by providing them with a tool to promote optimal seeding efficiency and maximum 

yield for sustainable production. 

Materials and Methods 

Site and Experiment Description 

Data from seeding rate trials conducted in ND and MN from 2013-2015 and 2017-2018 

(32 total environments) were compiled for this research.  Four locations from 2013-2015 

experiments at Prosper, ND and Crookston, Hallock, and Perley, MN.  Two locations were from 

2014 and 2015 experiments at Kimball, and Lamberton, MN.  Experiment locations in 2017 and 

2018 included Dickinson (2017 only), Hettinger, Minot, and Prosper, in ND, and Crookston, and 

Lamberton, in MN.  Location and site descriptions for combined dataset are in Table 21. 

The optimal seeding rate was determined for each cultivar x environment combination 

based on regression equation output from SAS 9.4 (PROC REG).  The model considered best fit 

for data (linear or quadratic) was determined by maximizing R2 and minimizing RMSE values.  

For linear fits, OSR was the seeding rate treatment at which maximum yield was observed.  For 

quadratic fits, OSR was determined by evaluating the coefficients of the equation.  Quadratic 

equations with a negative linear coefficient (second term) were assigned the lowest seeding rate 

treatment as the OSR.  For all other quadratic models, the OSR was calculated by solving the 

first derivative of the quadratic equation. 
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Table 21. Location and soil characteristics† of environments, 2013-2015 and 2017-2018. 

Location‡ Soil series Taxonomy Slope 

   % 

North Dakota    

    Dickinson Arnegard Fine-loamy, mixed, superactive, frigid Pachic Haplustolls 0-2 

    Hettinger Shambo Fine-loamy, mixed, superactive, frigid Typic Haplustolls 0-2 

    Minot Forman Fine-loamy, mixed, superactive, frigid Calcic Argiudolls 3-6 

 Aastad Fine-loamy, mixed, superactive, frigid Pachic Argiudolls 3-6 

    Prosper Kindred Fine-silty, mixed, superactive, frigid Typic Endoaquolls 0-2 

 Bearden Fine-silty, mixed, superactive, frigid Aeric Calciaquolls 0-2 

Minnesota    

    Hallock Northcote Very-fine, smectitic, frigid Typic Epiaquerts 0-1 

    Perley Fargo Fine, smectitic, frigid Typic Epiaquerts 0-1 

    Crookston Wheatville Coarse-silty over clayey, mixed over smectitic, superactive,  
frigid Aeric Calciaquolls 

0-2 

    Lamberton Webster Fine-loamy, mixed, superactive, mesic Typic Endoaquolls 0-2 

 Normania Fine-loamy, mixed, superactive, mesic Aquic Hapludolls 0-2 

    Kimball  
      (2014) 

Fairhaven Fine-loamy over sandy or sandy-skeletal, mixed, superactive,  
mesic Typic Hapludolls 

0-2 

    Kimball  
      (2015) 

Dakota Fine-loamy over sandy or sandy-skeletal, mixed, superactive,  
mesic Typic Argiudolls 

2-6 

 Ridgeport Coarse-loamy, mixed, superactive, mesic Typic Hapludolls 2-6 

† Soil data obtained from NRCS-USDA, 2018. 
‡ Ordered by longitude, west to east. 
 
Data Structure 

Environments and cultivars were characterized prior to modelling.  Environments were 

characterized based on latitude and longitude (decimal degrees), planting date (d of the year), 

and average HRSW yield (Mg ha-1) observed in environment for the respective year (Table 22).  

These factors were selected as they can be readily determined by growers (or estimated based on 

field records from prior years) to be used as inputs in a DSS.  The use of continuous variables to 

represent environments was used to minimize bias when grouping similar data across 

environments, and reduce model overfitting, that could increase error in OSR prediction.  This 

also ensured models were robust, and thereby relevant to a greater number of growers.   
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Table 22. Location and year details for ND and MN environments in combined dataset. 

Location† 

     Year Latitude Longitude Previous crop 

Planting 

date 

Harvest 

date 

Yield 

(Mg ha-1) 

Dickinson, ND 46.981 -102.824 
 

   

     2018    HRSW§ 2-May 13-Aug 3.82 

Hettinger, ND 46.012 -102.647 
 

   

     2017   Soybean 26-Apr 3-Aug 1.94 

     2018   Soybean 27-Apr 16-Aug 3.09 

Minot, ND 48.180 -101.304 
 

   

     2017   Soybean 21-Apr 19-Aug 1.81 

     2018   Soybean 3-May 8-Aug 4.31 

Prosper, ND 47.003 -97.116 
 

   

     2013   Soybean 16-May 22-Aug 4.69 

     2014   Soybean 27-May 3-Sep 4.43 

     2015   Soybean 9-Apr 21-Aug 4.67 

     2015   Soybean 22-May 25-Aug 3.62 

     2017   HRSW 22-Apr 21-Aug 4.51 

     2018   HRSW 30-Apr 31-Jul 4.22 

Hallock, MN 48.802 -96.982 
 

   

     2013   Soybean 16-May 3-Sep 7.27 

     2014   Soybean 23-May 6-Sep 5.45 

     2015   Soybean 16-Apr 13-Aug 5.62 

Perley, MN 47.151 -96.752 
 

   

     2013   Soybean 8-May 16-Aug 5.80 

     2014   Soybean 22-May 2-Sep 6.00 

     2015   Soybean 13-Apr 11-Aug 7.03 

Crookston, MN 47.815 -96.616     

     2013   Soybean 10-May 8-Aug 6.14 

     2013   Soybean 29-May 26-Aug 6.38 

     2014   Soybean 17-May 27-Aug 4.95 

     2014   Soybean 4-Jun 27-Aug 4.55 

     2015   Soybean 23-Apr 21-Aug 6.35 

     2015   Soybean 22-May 25-Aug 5.38 

     2017   Soybean 3-May 29-Aug 5.09 

     2018   Soybean 7-May 8-Aug 3.23 

Lamberton, MN 44.241 -95.312 
 

   

     2014   Soybean 21-Apr 20-Aug 5.14 

     2015   Soybean 4-Apr 12-Aug 5.62 

     2015   Soybean 27-Apr 12-Aug 4.55 

     2017   Soybean 17-Apr 23-Aug 3.69 

     2018   Soybean 7-May 10-Aug 2.52 

Kimball, MN 45.417 -94.324 
 

   

     2014   Soybean 26-Apr 14-Aug 5.54 

     2015   Soybean 8-Apr 31-Jul 5.97 

† Ordered by longitude, west to east. 
‡ Environment not included in analysis due to >40% stand loss. 
§ HRSW, hard red spring wheat, Triticum aestivum, L.; Soybean, Glycine max (L.) Merr. 
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Specific phenotypic and genetic traits were used to characterize cultivars (Table 23).  

Data specific to each cultivar included gene expression for Ppd-D (photoperiod response), Rht-B 

and Rht-D (semi-dwarfing genes), and phenotypic characteristics for plant height, tillering 

capacity, straw strength, and heading date (days to maturity).   

Table 23. Genetic and phenotypic characteristics of HRSW cultivars. 

Cultivar 

Photoperiod 
response 
(Ppd-D1) 

Semi-dwarf 
gene 

Tillering 
capacity 

Plant 
height† 

Straw 
strength Heading 

   z-score cm  1 to 9‡  DAP§ 

Albany Insensitive Rht-B1  1.33¶ 77.0 5 63 

LCS Anchor Sensitive Rht-D1 -0.23 71.9 4 58 

Briggs Insensitive wild-type -1.03 83.3 7 57 

Faller Insensitive Rht-B1 1.70 83.3 5 61 

Kelby Sensitive Rht-D1 -1.10 72.6 4 58 

Knudson Sensitive Rht-B1 0.63 78.0 5 60 

Kuntz Sensitive Rht-D1 -0.37 75.4 4 60 

Lang-MN Sensitive wild-type 0.37 82.6 5 61 

Linkert Insensitive Rht-D1 -0.83 72.9 2 59 

Marshall Insensitive Rht-D1 0.73 78.2 4 63 

Oklee Sensitive wild-type -0.80 80.5 6 58 

Prevail Sensitive wild-type 0.67 78.2 4 58 

Rollag Insensitive Rht-D1 -0.73 75.9 3 59 

Sabin Sensitive wild-type 1.47 78.0 6 61 

Samson Sensitive Rht-B1 -1.77 73.9 3 60 

Shelly Insensitive Rht-B1 1.07 77.0 5 62 

Surpass Insensitive wild-type -0.27 79.8 6 57 

SY Valda Insensitive Rht-D1 -0.90 75.9 4 60 

Vantage Insensitive wild-type -0.07 77.5 2 64 

ND VitPro Insensitive Rht-B1 1.33 80.0 4 59 

TCG Wildfire Sensitive Rht-B1 -1.20 86.6 4 60 

† Agronomic measures for phenotypic traits averaged from HRSW variety trial results (NDSU, 
2014-2018; Univ. of MN, 2008-2018). 
‡ 1-9; 1 is erect, 9 is lying flat. 
§ DAP, days after planting. 
¶ Rating based on ‘Z-score approach’; High, ≥0.67; Moderate, 0.66 to -0.67; Low, <0.67. 
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Agronomic measures compiled from HRSW variety trial data from ND (NDSU, 2014-2018) and 

MN (Univ. of MN, 2008-2018) were used to characterize cultivar for phenotypic traits.  Tillering 

capacity was determined according to the ‘Z-score approach’ described in Ch. 2 (Table 17). 

Statistical Analysis and Model Development 

Analysis and modelling were completed in R 3.5.3 statistical software (R Development 

Core Team, 2019) with the caret package (Kuhn et al., 2016).  Variable independence was 

verified by Pearson’s correlation test prior to modelling.  Highly correlated variables (r ≥ |0.8|) 

were excluded to minimize multicollinearity and overfitting of models.  Models were fit by 

various statistical learning algorithms that have been demonstrated in prior agronomic and crop 

improvement studies (Williams et al., 1979; Piaskowski et al., 2016; Sharif et al., 2016).  These 

modelling approaches included ridge regression, elastic net, least absolute shrinkage and 

selection operator (LASSO) regression, stepwise regression, decision tree, and random forest.   

A k-fold repeated cross-validation was performed with two different settings for k (k=5 

and k=10) to produce resampling measures for assessing models and determining tuning 

parameters for each model based on estimates for test error associated with each learning 

algorithm (James et al., 2014).  Data were split into k random subsets, with k-1 subsets used as a 

training set, and the remaining subset withheld from the training step and used as the validation 

set; repeated for k iterations.  The model with the lowest root mean squared error (RMSE) value 

was selected as the optimal model (Breiman et al., 1984).   

For comparing performance of statistical learning algorithms, mean absolute error (MAE) 

was used.  Evaluations of error within each model were based on RMSE.  Mallow’s complexity 

parameter (Cp) statistic was used to guide variable selection at each split in the decision tree.  

The variable producing the lowest Cp value at a split was selected as the primary variable at that 
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branching point.  Variable importance measures were used to identify variables primarily 

impacting OSR prediction (Ruβ and Brenning, 2010).   

Results 

Cultivar and environment variables were considered independent as values for Pearson’s 

correlation coefficient were all acceptable (r ≤ |0.8|).  Initial models were prone to overfitting to 

specific latitude and longitude, so these variables were excluded from analyses.  This coincides 

with the objective of this study, to develop a predictive model that is relevant to a broad audience 

of growers.  Models overfit to individual locations or environments are not robust, and likely to 

be poor predictors of OSR for the same location in future years. 

The 10-fold repeated cross-validation was most representative of the dataset as models fit 

for each learning algorithm were more accurate than models fit by the 5-fold repeated cross-

validation (Figure 11).  This is because the additional subsets in the 10-fold provided for a more 

robust model, as the ratio of data comprising the training and validation sets were 316:35 

samples for the 10-fold, and 281:70 samples for the 5-fold.  With greater representation of 

cultivar and environment data in each 10-fold train set, and fewer samples in each validation set, 

the final model for each algorithm was fit after ‘viewing’ the dataset from multiple angles. 

Model accuracy was compared among the different learning algorithms to determine if 

one method was superior to another in predicting OSR for HRSW cultivars in different 

environments.  Mean absolute error (MAE) was similar across models (Table 24).  This revealed 

no superiority among statistical learning algorithms in producing a model with a lower amount of 

predictive error (Figure 12). 
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Figure 11. Root mean squared error (RMSE) of models fit by statistical algorithms for 
determining optimal seeding rate by k-fold repeated cross-validation of HRSW cultivars and 
environments in seeding rate dataset. SW, stepwise regression; LS, lasso regression; RG, ridge 
regression; EN, elastic net regression; TR, decision tree; RF, random forest. Models labeled with 
a ‘2’ included two-way interactions as potential model parameters.  
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Table 24. Mean absolute error and correlation with OSR for statistical learning algorithms fit by 
10-fold repeated cross-validation of HRSW cultivars in different environments in ND and MN. 

Method 

Mean 
Absolute 

Error† 

Pearson’s 
Correlation 
Coefficient 

  r 

Stepwise 1.003   0.30§ 

Lasso 1.011 0.31 

Lasso2‡ 1.008 0.40 

Ridge 1.010 0.31 

Ridge2 0.993 0.39 

Elastic Net 1.001 0.31 

Elastic Net2 0.997 0.34 

Decision Tree 1.019 0.39 

Random Forest 0.994 0.51 

Random Forest2 1.020 0.60 

Mean 1.006  

LSD0.05 NS  

† Mean absolute error between predicted and observed values for OSR. 
‡ 2 indicates two-way interactions were included as parameters in model. 
§ Correlation between resampled values of model-predicted OSR and observed OSR. 
 

As models were similar when considering overall accuracy of predicting OSR, the 

accuracy of predictions by individual models was further evaluated.  Models fit by stepwise and 

penalization regressions (lasso, ridge, elastic net) were not predictive of OSR, as all models had 

R2 ≤ 0.12 (Table 25).  The addition of two-way interactions as parameters in penalization 

regressions had minimal effect on fit of models, as RMSE values were reduced by only 0.03, 

0.09, and 0.13, for lasso, elastic net, and ridge regressions, respectively (Table 25).  Considering 

the diversity of environments, and prior knowledge of environment interactions with both 

seeding rate and cultivars (documented in Ch. 1), these results are understandable.  Tree-based 

algorithms were included in this study to further evaluate OSR within various environment 

settings. 
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Figure 12. Results from comparisons of model accuracy (based on MAE, mean absolute error) 
among OSR predictive models produced by 10-fold repeated cross-validation of seeding rate 
dataset and fit by various statistical learning algorithms. EN, elastic net regression; LS, lasso 
regression; RF, random forest; RG, ridge regression; SW, stepwise; TR, decision tree. Models 
labeled with a 2 indicate two-way interactions were included as model parameters. 
 
Table 25. Fit and error of regression models fit by 10-fold repeated cross-validation of seeding 
rate dataset. 

Method R2 RMSE† 

Stepwise 0.11 1.221 

Lasso 0.10 1.231 

Lasso2‡ 0.11 1.228 

Ridge 0.10 1.224 

Ridge2 0.12 1.211 

Elastic Net 0.11 1.221 

Elastic Net2 0.12 1.212 

† RMSE, root mean squared error. 
‡ 2 indicates two-way interactions were included as parameters in model. 
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For the decision tree algorithm, the 10-fold repeated cross-validation provided a selection 

of 10 decision tree models.  The model selected for the final decision tree had a RMSE of 1.2386 

(Table 26).  As RMSE values are reported in the same units as OSR (million seeds ha-1), and 

OSR observations were recorded to three decimals in the seeding rate dataset, one may postulate 

that any of the models from iterations 6, 8, or 9 could have been selected for the final decision 

tree.  To avoid bias in this decision, the final model for the decision tree was automatically 

selected in R, by including a data step for making the selection based on the iteration with the 

lowest RMSE value.  To prevent overfitting of the decision tree model, Mallow’s complexity 

parameter (Cp) used to guide variable selection at each potential branching point was 0.0151 

(Table 26).  Branching ceased when all variables at a potential branch point produced a Cp value 

> 0.0151.  The OSR at each terminal node (leaf) is the mean OSR of the data comprising that 

node (Figure 13). 

Table 26. Modelling summary from the 10 iterations of the decision tree algorithm. 

Iteration RMSE† Cp 

1 1.2650 0.0057 

2 1.2629 0.0060 

3 1.2633 0.0063 

4 1.2537 0.0077 

5 1.2487 0.0083 

6 1.2395 0.0097 

7 1.2386 0.0151 

8 1.2390 0.0187 

9 1.2411 0.0433 

10 1.2669 0.0734 

† RMSE, root mean squared error; Cp, Mallow’s complexity parameter. 
 

The global model from the decision tree algorithm was predictive of OSR with 67% 

accuracy (based on 100 – MAPE (mean absolute percent error).  The R model output for the 

decision tree algorithm revealed variables impacting OSR (Figure 13).  Nodes (branching points) 
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included both phenotypic characteristics (straw strength, tillering capacity) and environment 

(yield of the environment).  Based on variable importance measures (Pratt, 1987) reported in R 

(scaled relative to 1), the primary variable influencing OSR in the decision tree model was straw 

strength, with a relative variable importance of 25.7% (Figure 14).  Other variables affecting 

OSR included yield of the environment (21.0%), tillering capacity (17.6%), and plant height 

(17.3%).  Rht-D and Rht-B partially influenced OSR determined by the decision tree at 13.4% 

and 5.0%, respectively.  According to the decision tree model, cultivar differences in gene 

expression for Ppd-D (photoperiod response) did not influence OSR. 

The root node in the decision tree differentiated OSR based on cultivar straw strength 

rating (Figure 13).  This follows previous reportings of differences in OSR for cultivars varying 

in straw characteristics that affected lodging potential (Faris and DePauw, 1980).  The model 

also indicated environment interacted with cultivars, causing differential effects on OSR 

depending on straw strength and average yield of the environment (Figure 13).  This is similar to 

what Otteson et al. (2007) documented for genotype x environment interactions, where different 

seeding rates were considered optimal for yield.  For HRSW cultivars with favorable straw 

strength (rating <5), tillering capacity was a determinant of OSR, but only in environments with 

average yield ≥ 3.2 Mg ha-1 (Figure 13).  This likely demonstrates cultivar phenotype expression 

as determined by growing conditions.  This is explained by the understanding that in resource-

limited environments (e.g. water or nutrient deficiencies), expression of plant phenotype(s) 

associated with yield can be severely restricted (Richards et al., 2010; Wasson et al., 2012).  This 

is further demonstrated by findings of Hucl and Baker (1990) for HRSW cultivars grown in 

semi-arid environments in Canada (average yield of 3.55 Mg ha-1).   
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Figure 13. Decision tree model for selecting optimal seeding rate for HRSW cultivars in 
differing environments in ND and MN. Straw strength rating (1-9; 1 is erect, 9 is lying flat) for 
varieties in HRSW variety trial publications from NDSU (2014-2018) and Univ. of MN (2008-
2018). Tillering capacity determined from tillering evaluations of HRSW cultivars at spaced 
plantings. Number of samples and percent of whole dataset are reported for root, nodes and 
leaves.  RMSE, root mean squared error. 
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Though cultivars differed in tillering capacity, OSR for maximum yield was similar 

among cultivars under these growing conditions.  Variables absent from the final decision tree 

were plant height and all of the genetic traits (Rht-B, Rht-D, Ppd-D).  However, as previously 

indicated, all of these variables (except Ppd-D) were of importance to the decision tree model, 

thereby of influence on OSR (Figure 14). 

 

 
Figure 14. Results for Variable Importance for decision tree model. Importance is relative to 1. 
 

Based on the decision tree model, growers seeding in high yielding (average yield ≥ 5.5 

Mg ha-1) or moderate yielding (average yield 5.4 to 3.2 Mg ha-1) environments, should seed at a 

rate of 4.5 million seeds ha-1, unless they are seeding a cultivar with known phenotypic 

characteristics requiring a lower seeding rate (i.e. poor straw strength [rating ≥ 5] or high 
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tillering capacity) (Figure 13).  Growers in low yielding environments (average yield <3.2 Mg 

ha-1) can maximize yield by seeding HRSW at a rate of 3.7 million seeds ha-1, except when 

seeding a cultivar with poor straw strength (rating ≥ 5), where an OSR of 3.9 million seeds ha-1 is 

more favorable for yield (Figure 13).  In general, OSR for these environment types differentiated 

by average yield are similar to recommendations made by Holliday (1960) and Donald (1963), 

where environments with greater resource availability are expected to have higher OSR.  Figure 

15 was produced to provide growers with a DSS to readily determine OSR based on their 

selection for HRSW cultivar and the environment in which it is sown.   

 
Figure 15. Decision support system (DSS) for growers to determine optimal seeding rates for 
HRSW cultivars sown in diverse yielding environments in ND and MN. 
 

Though the level of variance was slightly higher for the decision tree model compared to 

linear regression models, the trade-off was for reduced bias in OSR predictions produced by the 
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decision tree model.  Similar to the other algorithms included in this study, the accuracy of the 

OSR produced by the decision tree model are greatly dependent on the data used to develop the 

model.  This is why it was important to utilize the same resources when characterizing cultivars.  

Additionally, with year-to-year variability in temperature, rainfall accumulation, and other 

environmental factors influencing wheat growth in each environment (e.g. Figures 1 and 2), 

average grain yield was used to characterize environments.  This is primarily because yield as a 

model parameter allows growers to readily determine OSR based on yields on their individual 

operations.   

The recommendations outlined in the DSS improve the accuracy of predictions for OSR 

(Model RMSE = 1.17 million seeds ha-1; Cross-validation RMSE = 1.24 million seeds ha-1) in 

comparison to the current generalized recommendation of Wiersma and Ransom (2017) for 3.8 

to 4.1 million seeds ha-1 (RMSE = 1.27 million seeds ha-1).  However, as RMSE values for the 

terminal nodes (leaves) in the decision tree model ranged from 1.0 to 1.5 million seeds ha-1, there 

are apparent limitations in these findings due to the amount of error in predicted versus observed 

OSR values.  Variability in the OSR recommendations at each terminal node could be reduced 

by allowing additional branching points, however this would lead to overfitting of the decision 

tree model and reduce the scope of these findings.  This indicates that growers should not simply 

default to the OSR indicated by the DSS, but rather utilize information from this tool to guide 

seeding rates of newer HRSW cultivars.  Growers can adapt seeding rates as needed, to account 

for operational differences in agronomic and environmental factors influencing OSR relative to 

yield (Figure 14). 
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Conclusions 

Environment and phenotypic characteristics for straw strength and tillering capacity, 

influence the seeding rate that is optimal for yield in HRSW production.  For environments 

where average yield is ≥ 3.2 Mg ha-1, the OSR is generally higher in comparison to OSR for 

lower yielding environments (4.5 versus 3.7 million seeds ha-1) and when seeding cultivars with 

high tillering capacity.  Adjustments to OSR can also be expected when seeding cultivars with 

poor straw strength (rating ≥ 5).  Breeders and agronomists should utilize this information to 

focus efforts on characterizing advanced breeding lines and new cultivars for specific genetic 

and phenotypic traits influencing OSR.  Growers can benefit from these findings by adapting 

seeding rates relative to their average yields; especially when seeding new HRSW cultivars.  
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CHAPTER 4. MAJOR FINDINGS 

Evaluating the seeding response of new hard red spring wheat (HRSW) (Triticum 

aestivum L.) cultivars in diverse growing environments revealed that environment x genotype 

interactions were more important than seeding rate per se, for determining grain yield.  As 

seeding rate studies are commonly conducted to provide growers with information relevant to 

their production region, it is likely that most HRSW seeding rate studies conducted in the 

northern Great Plains region are not likely to include the same scale of diversity in environments 

comprised in this study (based on composition/extent of geospatial location, growing season 

length, environment yield potential).  With this in consideration, it is likely that environment x 

genotype interactions are not a variable of influence (especially as a dominating variable) in most 

seeding rate studies.  However, this study revealed that environment can greatly impact the 

optimal seeding rate (OSR) for maximum yield of HRSW cultivars, with the OSR ranging from 

3.1 to 4.5 million seeds ha-1 depending on the environment where tested. 

As phenotype is a manifestation of environment influences on genotype, it was important 

to also include phenotypic characteristics as potential variables when performing statistical 

analysis and modelling to develop a model for predicting the OSR of new HRSW cultivars.  

Phenotypic traits used as potential variables in modelling were selected based on prior findings 

of traits associated with grain yield (e.g. straw strength, height, days to heading).  Tillering 

capacity was also selected as a trait to characterize cultivars, as spikes ha-1 is a yield component.  

However, as there is currently no widely-accepted method for determining the tillering capacity 

of HRSW cultivars, the SOFATT (seed only few, and then thin) method was developed and 

demonstrated as a standardized method for assessing cultivar tillering and determining tillering 
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capacity.  Results from the SOFATT method were used as measures representing the tillering 

capacity of the cultivars included in the statistical analysis and modelling portion of this study. 

Including various statistical learning algorithms in the modelling step revealed that the 

regression-only models were not predictive of cultivar OSR in diverse environments, as these 

models had R2 ≤ 0.12.  Additionally, Random Forest models were prone to overfitting, and 

thereby lacked in the robustness needed to produce accurate OSR predictions.  The statistical 

learning algorithm that provided for a predictive model that could readily support a decision 

support system (DSS) was the decision tree algorithm.  The decision tree model identified straw 

strength and tillering capacity as primary variables influencing OSR, representing the 

environment x genotype interactions identified in the original analysis of variance (Figure 13).  

Depending on the yield of the environment in which a cultivar is grown, environment may not 

have an interactive influence on cultivar that affects OSR.  For environments where average 

yield is ≥ 3.2 Mg ha-1, the OSR is generally higher in comparison to OSR for lower yielding 

environments (4.5 versus 3.7 million seeds ha-1).  However, when growing a cultivar with poor 

straw strength (rating ≥ 5) in high yielding environments (5.5 Mg ha-1), it is recommended that 

growers seed at a reduced rate of 3.1 million seeds ha-1, to reduce potential losses due to lodging.  

Overall, the DSS developed in this study reveals important information that can be applied by 

growers, breeders, and agronomists to improve seeding efficiency and promote maximum yield 

of new HRSW cultivars. 
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APPENDIX 

Table A1. Mean squares and significance from ANOVA of yield and other agronomic traits, 
Crookston 2017. 

Source df Yield Density Loss Protein 

Rep 2 4.68*** 3024 146 0.06 

A [Cultivar] 8 3.03*** 2864* 214* 5.19*** 

B [Seeding Rate] 3 0.07 300084*** 1907*** 0.12 

A*B 24 0.12 1883 128 0.10 

Error 70 0.09 1335 99 0.07 

*, **, and ***, indicate significance at P<0.05, P<0.01, and P<0.001 respectively. 
 
Table A2. Mean squares and significance from ANOVA of yield and other agronomic traits, 
Hettinger 2017. 

Source df Yield Density Loss Protein DTH Height 

Rep 2 0.54*** 139 123 0.23 2.3 22.3 

A [Cultivar] 8 0.32*** 1290 77 2.62*** 1.6 53.9*** 

B [Seeding Rate] 3 0.36*** 295633*** 539 0.69** 1.0 4.5 

A*B 24 0.04 2731 195 0.14 3.2 20.4** 

Error 70 0.05 2990 240 0.15 2.2 8.8 

*, **, and ***, indicate significance at P<0.05, P<0.01, and P<0.001 respectively. 
 
Table A3. Mean squares and significance from ANOVA of yield and other agronomic traits, 
Lamberton 2017. 

Source df Yield Density Loss Protein DTH Height 

Rep 2 0.83* 3310 141 0.43 1.8 40.1 

A [Cultivar] 8 1.93*** 2883* 344* 5.25*** 19.0** 28.3 

B [Seeding Rate] 3 1.21*** 217829*** 2634*** 0.70* 4.4 12.7 

A*B 24 0.18 845 103 0.17 3.6 32.2 

Error 70 0.19 1345 126 0.24 5.4 22.2 

*, **, and ***, indicate significance at P<0.05, P<0.01, and P<0.001 respectively. 
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Table A4. Mean squares and significance from ANOVA of yield and other agronomic traits, 
Minot 2017. 

Source df Yield Density Loss Protein DTH Height 

Rep 2 0.15 1358 107 3.41*** 0.04 19.5 

A [Cultivar] 8 0.79*** 5066 303 3.36*** 14.7** 112.8** 

B [Seeding Rate] 3 0.28 272966*** 1923*** 1.42*** 1.0 75.6 

A*B 24 0.18 2573 131 0.22* 4.9 46.3 

Error 70 0.13 2553 191 0.11 4.1 35.4 

*, **, and ***, indicate significance at P<0.05, P<0.01, and P<0.001 respectively. 
 
Table A5. Mean squares and significance from ANOVA of yield and other agronomic traits, 
Prosper 2017. 

Source df Yield Density Protein DTH Height 

Rep 2 0.12 1755 2.15*** 1.3 46.9 

A [Cultivar] 8 1.37*** 870 6.07*** 4.4 58.8** 

B [Seeding Rate] 3 0.58*** 263850*** 0.45 2.5 11.1 

A*B 24 0.14* 2600 0.19 5.9 36.8* 

Error 70 0.08 2000 0.24 3.6 20.0 

*, **, and ***, indicate significance at P<0.05, P<0.01, and P<0.001 respectively. 
 
Table A6. Mean squares and significance from ANOVA of yield and other agronomic traits, 
Crookston 2018. 

Source df Yield Density Loss Protein DTH Height 

Rep 2 0.85** 116 7.7 2.60*** 5.2 9.1 

A [Cultivar] 8 1.46*** 5942* 483** 2.37*** 2.3 10.1* 

B [Seeding Rate] 3 0.04 364820*** 1825*** 0.30 0.6 5.5 

A*B 24 0.18 2054 140 0.22 2.9 7.0* 

Error 70 0.16 2190 161 0.15 2.7 4.1 

*, **, and ***, indicate significance at P<0.05, P<0.01, and P<0.001 respectively. 
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Table A7. Mean squares and significance from ANOVA of yield and other agronomic traits, 
Dickinson 2018. 

Source df Yield Density Loss Protein Height 

Rep 2 1.06* 7188 682* 2.82** 42.5 

A [Cultivar] 8 0.67* 1715 173 3.06*** 63.4* 

B [Seeding Rate] 3 0.42 184244*** 3497*** 0.32 13.6 

A*B 24 0.30 1897 157 0.28 26.0 

Error 70 0.28 2538 198 0.37 27.0 

*, **, and ***, indicate significance at P<0.05, P<0.01, and P<0.001 respectively. 
 
Table A8. Mean squares and significance from ANOVA of yield and other agronomic traits, 
Hettinger 2018. 

Source df Yield Density Loss Protein DTH Height 

Rep 2 2.15* 1471 186 0.81 0.3 0.8 

A [Cultivar] 8 0.72 3656 199 2.29*** 2.1* 368*** 

B [Seeding Rate] 3 0.29 239193*** 2960*** 0.25 0.3 135* 

A*B 24 0.32 1557 118 0.20 0.9 84** 

Error 70 0.46 1795 130 0.28 0.8 38 

*, **, and ***, indicate significance at P<0.05, P<0.01, and P<0.001 respectively. 
 
Table A9. Mean squares and significance from ANOVA of yield and other agronomic traits, 
Lamberton 2018. 

Source df Yield Density Loss Protein DTH Height 

Rep 2 2.40*** 898 6.8 12.74*** 11.7 4.7 

A [Cultivar] 8 1.92*** 1843 190* 4.57*** 7.2 64.1** 

B [Seeding Rate] 3 0.02 160248*** 1944*** 0.40 2.3 11.9 

A*B 24 0.05 1130 116 0.31 6.1 21.7 

Error 70 0.07 1086 90 0.52 4.2 21.0 

*, **, and ***, indicate significance at P<0.05, P<0.01, and P<0.001 respectively. 
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Table A10. Mean squares and significance from ANOVA of yield and other agronomic traits, 
Minot 2018. 

Source df Yield Density Loss Protein DTH Height 

Rep 2 0.13 4477 380 0.14 0.1 8.6 

A [Cultivar] 8 1.09** 1772 125 4.03*** 6.1 93.9** 

B [Seeding Rate] 3 0.35 252645*** 739** 0.08 4.5 58.2 

A*B 24 0.51 1466 108 0.04 2.5 26.2 

Error 70 0.40 1746 134 0.06 3.9 31.2 

*, **, and ***, indicate significance at P<0.05, P<0.01, and P<0.001 respectively. 
 
Table A11. Mean squares and significance from ANOVA of yield and other agronomic traits, 
Prosper 2018. 

Source df Yield Density Loss Protein DTH Height 

Rep 2 0.20 612 14 2.67** 15.8* 1.7 

A [Cultivar] 8 1.50*** 1866 167 4.96*** 2.3 16.6 

B [Seeding Rate] 3 0.34 311877*** 1032*** 0.68 1.3 26.3 

A*B 24 0.18 1178 82 0.21 2.4 19.6 

Error 70 0.19 1383 98 0.45 3.7 17.1 

*, **, and ***, indicate significance at P<0.05, P<0.01, and P<0.001 respectively. 
 
Table A12. Summary of regression analysis results for HRSW cultivar response to seeding rates, 
Crookston 2017.  

Cultivar  RMSE† R2 Regression equation‡  Yield (ŷ)§  OSR† (x) 

    Mg ha-1 million seeds ha-1 

LCS Anchor 0.401 0.20 ŷ=4.43+0.14x-0.03x2 4.53   2.55⁋ 

Lang-MN 0.060 0.94 ŷ=5.35-0.24x+0.02x2 4.80 1.85 

Linkert 0.148 0.93 ŷ=3.52+0.67x-0.07x2 4.98 5.14 

Prevail 0.013 0.99 ŷ=3.89+0.37x-0.05x2 4.47 3.65 

Shelly 0.085 0.64 ŷ=5.21+0.27x-0.04x2 5.64 3.66 

Surpass 0.165 0.22 ŷ=4.82+0.04x 4.99 3.09 

SY Valda 0.116 0.52 ŷ=5.56+0.06x 5.79 4.32 

ND VitPro 0.075 0.97 ŷ=5.97-0.47x+0.04x2 4.89 1.85 

TCG Wildfire 0.024 0.99 ŷ=5.01+0.46x-0.06x2 5.71 3.58 

† RMSE, root mean squared error; OSR, optimal seeding rate. 
‡ Regression equation from PROC REG. 
§ ŷ, maximum yield; observed for linear model, calculated for quadratic model. 
⁋ Predictions for OSR outside range of treatments adjusted to low (1.85) or high (5.56) rate. 
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Table A13. Summary of regression analysis results for HRSW cultivar response to seeding rates, 
Hettinger 2017.  

Cultivar RMSE† R2 Regression equation‡ Yield (ŷ)§ OSR† (x) 

    Mg ha-1 million seeds ha-1 

LCS Anchor 0.189 0.58 ŷ=0.75+0.54x-0.07x2 1.66   3.89⁋ 

Lang-MN 0.036 0.99 ŷ=0.67+0.81x-0.11x2 2.00 3.78 

Linkert 0.068 0.09 ŷ=1.87-0.01x 1.83 3.09 

Prevail 0.011 0.99 ŷ=1.07+0.64x-0.09x2 2.07 3.69 

Shelly 0.077 0.97 ŷ=0.55+0.82x-0.10x2 2.06 4.26 

Surpass 0.046 0.96 ŷ=1.17+0.56x-0.08x2 2.07 3.74 

SY Valda 0.100 0.13 ŷ=2.20-0.02x 2.13 3.09 

ND VitPro 0.148 0.56 ŷ=1.25+0.35x-0.04x2 1.91 4.16 

TCG Wildfire 0.112 0.86 ŷ=0.92+0.41x-0.04x2 1.76 4.67 

† RMSE, root mean squared error; OSR, optimal seeding rate. 
‡ Regression equation from PROC REG. 
§ ŷ, maximum yield; observed for linear model, calculated for quadratic model. 
⁋ Predictions for OSR outside range of treatments adjusted to low (1.85) or high (5.56) rate. 
 
Table A14. Summary of regression analysis results for HRSW cultivar response to seeding rates, 
Lamberton 2017.  

Cultivar RMSE† R2 Regression equation‡ Yield (ŷ)§ OSR† (x) 

    Mg ha-1 million seeds ha-1 

LCS Anchor 0.335 0.14 ŷ=2.39+0.33x-0.04x2 2.92   3.82⁋ 

Lang-MN 0.418 0.41 ŷ=2.38+0.76x-0.09x2 3.75 4.12 

Linkert 0.121 0.96 ŷ=1.63+1.01x-0.11x2 3.61 4.49 

Prevail 0.137 0.94 ŷ=4.07-0.39x+0.08x2 3.81 5.56 

Shelly 0.135 0.76 ŷ=3.17+0.58x-0.07x2 4.16 3.91 

Surpass 0.375 0.60 ŷ=1.89+1.07x-0.13x2 3.77 4.01 

SY Valda 0.166 0.79 ŷ=3.34+0.45x-0.05x2 4.27 4.86 

ND VitPro 0.018 0.99 ŷ=3.79-0.21x+0.03x2 3.55 5.56 

TCG Wildfire 0.027 0.99 ŷ=0.27+1.56x-0.17x2 3.39 4.58 

† RMSE, root mean squared error; OSR, optimal seeding rate. 
‡ Regression equation from PROC REG. 
§ ŷ, maximum yield; observed for linear model, calculated for quadratic model. 
⁋ Predictions for OSR outside range of treatments adjusted to low (1.85) or high (5.56) rate. 
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Table A15. Summary of regression analysis results for HRSW cultivar response to seeding rates, 
Minot 2017.  

Cultivar RMSE† R2 Regression equation‡ Yield (ŷ)§ OSR† (x) 

    Mg ha-1 million seeds ha-1 

LCS Anchor 0.195 0.76 ŷ=2.15-0.45x+0.04x2 1.20   1.85⁋ 

Lang-MN 0.104 0.84 ŷ=0.97+0.57x-0.08x2 1.88 3.69 

Linkert 0.062 0.99 ŷ=-0.06+1.13x-0.14x2 1.96 4.09 

Prevail 0.159 0.59 ŷ=1.22+0.39x-0.05x2 1.94 4.21 

Shelly 0.041 0.99 ŷ=1.09+0.22x 1.92 5.56 

Surpass 0.185 0.59 ŷ=1.24+0.38x-0.06x2 1.74 3.28 

SY Valda 0.434 0.06 ŷ=1.67+0.24x-0.03x2 2.10 4.08 

ND VitPro 0.102 0.85 ŷ=0.79+0.59x-0.08x2 1.76 3.77 

TCG Wildfire 0.565 0.24 ŷ=0.55+0.77x-0.10x2 1.81 3.78 

† RMSE, root mean squared error; OSR, optimal seeding rate. 
‡ Regression equation from PROC REG. 
§ ŷ, maximum yield; observed for linear model, calculated for quadratic model. 
⁋ Predictions for OSR outside range of treatments adjusted to low (1.85) or high (5.56) rate. 
 
Table A16. Summary of regression analysis results for HRSW cultivar response to seeding rates, 
Prosper 2017.  

Cultivar RMSE† R2 Regression equation‡ Yield (ŷ)§ OSR† (x) 

    Mg ha-1 million seeds ha-1 

LCS Anchor 0.050 0.99 ŷ=2.25+1.00x-0.13x2 3.98   3.96⁋ 

Lang-MN 0.036 0.98 ŷ=3.97+0.32x-0.03x2 4.68 5.20 

Linkert 0.014 1.00 ŷ=3.83+0.43x-0.07x2 4.39 3.26 

Prevail 0.226 0.42 ŷ=4.28-0.03x+0.01x2 4.38 5.56 

Shelly 0.160 0.79 ŷ=3.99+0.73x-0.10x2 5.13 3.62 

Surpass 0.232 0.90 ŷ=1.98+1.28x-0.15x2 4.42 4.36 

SY Valda 0.325 0.06 ŷ=5.10-0.18x+0.03x2 4.85 5.56 

ND VitPro 0.028 0.79 ŷ=4.10+0.07x-0.01x2 4.25 5.01 

TCG Wildfire 0.316 0.81 ŷ=2.71+0.82x-0.08x2 4.48 5.08 

† RMSE, root mean squared error; OSR, optimal seeding rate. 
‡ Regression equation from PROC REG. 
§ ŷ, maximum yield; observed for linear model, calculated for quadratic model. 
⁋ Predictions for OSR outside range of treatments adjusted to low (1.85) or high (5.56) rate. 
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Table A17. Summary of regression analysis results for HRSW cultivar response to seeding rates, 
Crookston 2018.  

Cultivar RMSE† R2 Regression equation‡ Yield (ŷ)§ OSR† (x) 

    Mg ha-1 million seeds ha-1 

LCS Anchor 0.162 0.86 ŷ=3.91-0.92x+0.13x2 2.49  5.56⁋ 

Lang-MN 0.133 0.94 ŷ=3.10+0.40x-0.08x2 3.37 2.57 

Linkert 0.035 0.96 ŷ=2.66+0.09x 3.00 5.56 

Prevail 0.422 0.44 ŷ=3.63-0.26x+0.05x2 3.47 5.56 

Shelly 0.250 0.32 ŷ=2.82+0.19x-0.03x2 3.01 2.91 

Surpass 0.331 0.60 ŷ=3.25-0.08x+0.03x2 3.42 5.56 

SY Valda 0.032 0.99 ŷ=1.98+0.99x-0.13x2 3.66 3.88 

ND VitPro 0.125 0.08 ŷ=3.18+0.09x-0.01x2 3.33 3.75 

TCG Wildfire 0.163 0.07 ŷ=3.25+0.07x-0.01x2 3.33 3.15 

† RMSE, root mean squared error; OSR, optimal seeding rate. 
‡ Regression equation from PROC REG. 
§ ŷ, maximum yield; observed for linear model, calculated for quadratic model. 
⁋ Predictions for OSR outside range of treatments adjusted to low (1.85) or high (5.56) rate. 
 
Table A18. Summary of regression analysis results for HRSW cultivar response to seeding rates, 
Dickinson 2018.  

Cultivar RMSE† R2 Regression equation‡ Yield (ŷ)§ OSR† (x) 

    Mg ha-1 million seeds ha-1 

LCS Anchor 0.592 0.54 ŷ=3.59-0.26x+0.07x2 3.64   5.56⁋ 

Lang-MN 0.140 0.74 ŷ=3.35+0.12x 3.80 5.56 

Linkert 0.185 0.04 ŷ=3.80-0.10x+0.01x2 3.64 1.85 

Prevail 0.050 0.99 ŷ=1.68+1.04x-0.12x2 3.61 4.24 

Shelly 0.220 0.63 ŷ=3.19+0.56x-0.07x2 4.25 4.29 

Surpass 0.187 0.88 ŷ=1.79+1.13x-0.14x2 3.82 4.10 

SY Valda 0.094 0.98 ŷ=1.75+1.48x-0.20x2 4.18 3.78 

ND VitPro 0.759 0.25 ŷ=5.51-0.94x+0.11x2 3.81 1.85 

TCG Wildfire 0.016 0.99 ŷ=3.22+0.29x-0.04x2 3.64 3.50 

† RMSE, root mean squared error; OSR, optimal seeding rate. 
‡ Regression equation from PROC REG. 
§ ŷ, maximum yield; observed for linear model, calculated for quadratic model. 
⁋ Predictions for OSR outside range of treatments adjusted to low (1.85) or high (5.56) rate. 
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Table A19. Summary of regression analysis results for HRSW cultivar response to seeding rates, 
Hettinger 2018.  

Cultivar RMSE† R2 Regression equation‡ Yield (ŷ)§ OSR† (x) 

    Mg ha-1 million seeds ha-1 

LCS Anchor 0.643 0.00 ŷ=2.75+0.02x 2.81   4.32⁋ 

Lang-MN 0.405 0.16 ŷ=2.68+0.21x-0.04x2 2.91 2.97 

Linkert 0.752 0.32 ŷ=5.31-1.25x+0.16x2 3.22 1.85 

Prevail 0.393 0.16 ŷ=3.24-0.09x 3.04 3.09 

Shelly 0.032 1.00 ŷ=1.68+0.90x-0.15x2 2.86 3.06 

Surpass 0.024 0.75 ŷ=3.62-0.02x 3.54 3.09 

SY Valda 0.609 0.16 ŷ=2.10+0.65x-0.09x2 3.14 3.69 

ND VitPro 0.205 0.83 ŷ=4.43-0.77x+0.12x2 3.40 5.56 

TCG Wildfire 0.297 0.22 ŷ=3.75-0.33x+0.04x2 3.14 1.85 

† RMSE, root mean squared error; OSR, optimal seeding rate. 
‡ Regression equation from PROC REG. 
§ ŷ, maximum yield; observed for linear model, calculated for quadratic model. 
⁋ Predictions for OSR outside range of treatments adjusted to low (1.85) or high (5.56) rate. 
 
Table A20. Summary of regression analysis results for HRSW cultivar response to seeding rates, 
Lamberton 2018. 

Cultivar RMSE† R2 Regression equation‡ Yield (ŷ)§ OSR† (x) 

    Mg ha-1 million seeds ha-1 

LCS Anchor 0.065 0.92 ŷ=1.06+0.47x-0.07x2 1.75   3.49⁋ 

Lang-MN 0.065 0.92 ŷ=3.13-0.24x+0.04x2 2.88 5.56 

Linkert 0.139 0.62 ŷ=1.33+0.41x-0.05x2 2.05 3.98 

Prevail 0.051 0.27 ŷ=2.88+0.06x-0.01x2 2.99 4.36 

Shelly 0.197 0.50 ŷ=3.15-0.37x+0.06x2 2.64 5.56 

Surpass 0.030 0.95 ŷ=2.96-0.07x 2.70 1.85 

SY Valda 0.027 0.99 ŷ=1.47+0.69x-0.08x2 2.75 4.26 

ND VitPro 0.120 0.62 ŷ=2.68-0.17x+0.03x2 2.50 5.56 

TCG Wildfire 0.012 0.97 ŷ=2.53-0.03x 2.40 1.85 

† RMSE, root mean squared error; OSR, optimal seeding rate. 
‡ Regression equation from PROC REG. 
§ ŷ, maximum yield; observed for linear model, calculated for quadratic model. 
⁋ Predictions for OSR outside range of treatments adjusted to low (1.85) or high (5.56) rate. 
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Table A21. Summary of regression analysis results for HRSW cultivar response to seeding rates, 
Minot 2018. 

Cultivar RMSE† R2 Regression equation‡ Yield (ŷ)§ OSR† (x) 

    Mg ha-1 million seeds ha-1 

LCS Anchor 0.359 0.59 ŷ=2.75+0.85x-0.12x2 3.97   3.42⁋ 

Lang-MN 0.024 1.00 ŷ=3.38+0.29x 4.44 5.56 

Linkert 0.271 0.00 ŷ=4.12-0.01x 4.09 3.09 

Prevail 0.325 0.82 ŷ=6.56-1.00x+0.10x2 4.50 1.85 

Shelly 0.026 0.99 ŷ=4.04+0.17x 4.65 5.56 

Surpass 0.198 0.91 ŷ=1.79+1.54x-0.21x2 4.20 3.65 

SY Valda 0.613 0.31 ŷ=3.12+0.99x-0.13x2 4.80 3.90 

ND VitPro 0.200 0.96 ŷ=5.13-1.10x+0.18x2 3.96 5.56 

TCG Wildfire 0.519 0.57 ŷ=5.55-1.02x+0.16x2 4.20 5.56 

† RMSE, root mean squared error; OSR, optimal seeding rate. 
‡ Regression equation from PROC REG. 
§ ŷ, maximum yield; observed for linear model, calculated for quadratic model. 
⁋ Predictions for OSR outside range of treatments adjusted to low (1.85) or high (5.56) rate. 
 
Table A22. Summary of regression analysis results for HRSW cultivar response to seeding rates, 
Prosper 2018.  

Cultivar RMSE† R2 Regression equation‡ Yield (ŷ)§ OSR† (x) 

    Mg ha-1 million seeds ha-1 

LCS Anchor 0.057 0.98 ŷ=5.10-0.93x+0.11x2 3.44   1.85⁋ 

Lang-MN 0.195 0.72 ŷ=3.63+0.21x-0.01x2 4.20 5.56 

Linkert 0.024 0.99 ŷ=3.77+0.10x 4.16 5.56 

Prevail 0.533 0.26 ŷ=3.33+0.57x-0.07x2 4.42 4.37 

Shelly 0.362 0.63 ŷ=3.88-0.09x+0.03x2 4.09 5.56 

Surpass 0.083 0.77 ŷ=4.97-0.26x+0.04x2 4.63 5.56 

SY Valda 0.048 0.99 ŷ=3.40+0.58x-0.06x2 4.59 4.75 

ND VitPro 0.171 0.87 ŷ=2.53+1.10x-0.14x2 4.37 3.85 

TCG Wildfire 0.315 0.00 ŷ=4.14+0.0005x 4.13 4.32 

† RMSE, root mean squared error; OSR, optimal seeding rate. 
‡ Regression equation from PROC REG. 
§ ŷ, maximum yield; observed for linear model, calculated for quadratic model. 
⁋ Predictions for OSR outside range of treatments adjusted to low (1.85) or high (5.56) rate. 
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Table A23. Summary of grain yield (Mg ha-1) at incremental seeding rates and results of best fit 
regression model for select HRSW cultivars, Prosper 2017.  

 Seeding rate (million seeds ha-1)    

Cultivar 1.85 3.09 4.32 5.56 Regression equation† OSR‡ (x) R2 

 ————Mg ha-1————  million 
seeds ha-1 

 

LCS Anchor 3.66 4.17 4.18 3.92 ŷ=2.25+1.00x-0.13x2   3.96§ 0.99 

Lang-MN 4.47 4.65 4.81 4.80 ŷ=3.97+0.32x-0.03x2 5.20 0.98 

Linkert 4.40 4.52 4.46 4.18 ŷ=3.83+0.43x-0.07x2 3.26 1.00 

Prevail 4.32 3.09 4.32 5.56 ŷ=4.28-0.03x+0.01x2 5.56 0.42 

Shelly 5.04 5.19 5.37 4.90 ŷ=3.99+0.73x-0.10x2 3.62 0.79 

Surpass 3.79 4.68 4.60 4.60 ŷ=1.98+1.28x-0.15x2 4.36 0.90 

SY Valda 4.94 4.59 5.04 4.84 ŷ=5.10-0.18x+0.03x2 5.56 0.06 

ND VitPro 4.21 4.23 4.29 4.27 ŷ=4.10+0.07x-0.01x2 5.01 0.79 

TCG Wildfire 3.87 4.67 4.52 4.84 ŷ=2.71+0.82x-0.08x2 5.08 0.81 

† Regression equation from PROC REG. 
‡ OSR, optimal seeding rate. 
§ Predictions for OSR outside range of treatments adjusted to low (1.85) or high (5.56) rate. 
 
Table A24. Least squares mean values for grain yield response of HRSW cultivars to seeding 
rates, 2017-2018 experiments in ND and MN. 

Environment 

 (Location+Year) 

Seeding rate (million seeds ha-1)  

1.85 3.09 4.32 5.56 OSR† 

 
──────────────Mg ha-1───────────── 

million  
seeds ha-1 

Crookston17‡ 5.074 5.082 5.156 5.033 3.61 

Prosper17 4.299a§ 4.540b 4.647b 4.535b 3.94 

Minot18 4.172 4.331 4.296 4.449 4.59 

Prosper18 4.073 4.247 4.230 4.345 3.98 

Dickinson18 3.639 3.853 3.916 3.878 4.28 

Lamberton17 3.407a 3.675b 3.902b 3.787b 5.56 

Crookston18 3.178 3.249 3.224 3.272 4.47 

Hettinger18 3.196 2.999 3.154 2.996 1.85 

Lamberton18 2.474 2.526 2.538 2.535 4.58 

Hettinger17 1.792a 2.057c 2.005bc 1.920bc 5.56 

Minot17 1.678 1.874 1.907 1.786 5.56 

† OSR, optimal seeding rate; based on quadratic best fit regression equation from PROC REG. 
‡ Environments ordered by mean observed yield, high to low. 
§ Values sharing a letter within a row are not significantly different (P>0.05) by Fisher’s LSD.



 

 

Table A25. Mean separations for grain protein content of HRSW cultivars in 2017 and 2018 environments. 

† Crookston and Lamberton, Minnesota; Prosper, Hettinger, Minot, and Dickinson, North Dakota. 
‡ Values with the same letter within a column are not significantly different (P>0.05) based on Fisher’s LSD. 
 
Table A26. Mean separations for plant density response of HRSW cultivars to seeding rates, 2017 and 2018 environments. 

† Crookston and Lamberton, Minnesota; Prosper, Hettinger, Minot, and Dickinson, North Dakota. 
‡ Values with the same letter within a column are not significantly different (P>0.05) based on Fisher’s LSD. 
   

 2017  2018 

Cultivar Crookston† Prosper Lamberton Hettinger Minot  Crookston Prosper Lamberton Hettinger Minot Dickinson 

 ─────────────────────────────────g kg-1───────────────────────────────────────── 

LCS Anchor 15.3d‡ 14.8cd 15.5c 14.4bc 15.6c  17.0c 14.6de 15.9e 16.6c 15.6c 15.0cde 

Lang-MN 15.2d 15.1d 16.1d 14.1b 15.7cd  17.0c 14.3bcd 15.7de 16.3bc 15.6c 15.1de 

Linkert 15.8e 14.6c 15.7cd 14.6c 16.2e  17.0c 14.9e 15.2cd 17.1d 15.8cd 15.4e 

Prevail 14.7c 13.0a 14.0a 13.5a 14.8a  15.9a 12.9a 14.1a 16.0ab 14.5a 14.5bc 

Shelly 14.0a 13.6b 14.7b 13.6a 15.1b  16.5b 13.7b 14.6ab 15.6a 14.5a 13.7a 

Surpass 15.3d 13.8b 14.7b 13.6a 15.3b  16.1a 14.0bc 14.2a 16.4c 15.1b 14.8bcd 

SY Valda 14.2b 13.5b 14.7b 13.6a 14.6a  15.9a 13.8b 14.8bc 16.0ab 14.6a 14.5b 

ND VitPro 15.6e 14.8cd 15.6c 14.6c 15.9d  16.8bc 14.8de 15.3cde 16.3bc 15.9d 15.2de 

TCG Wildfire 14.2ab 14.5c 15.6c 14.5c 15.8cd  16.8bc 14.5cde 15.2bcd 16.4bc 15.6c 15.0de 

Mean 14.9 14.2 15.2 14.0 15.4  16.6 14.2 15.0 16.3 15.2 14.8 

LSD0.05 0.2 0.4 0.4 0.3 0.3  0.3 0.5 0.6 0.4 0.2 0.5 

Seeding rate  

(million seeds ha-1) 

2017  2018 

Crookston† Prosper Lamberton Hettinger Minot  Crookston Prosper Lamberton Hettinger Minot Dickinson 

 ─────────────────────────────── plants m-2 ────────────────────────────────────── 

1.85 175a‡ 175a 166a 151a 167a  188a 165a 144a 175a 146a 165a 

3.09 250b 244b 251b 237b 235b  287b 252b 216b 246b 226b 252b 

4.32 345c 346c 306c 318c 314c  381c 344c 274c 324c 297c 293c 

5.56 415d 395d 379d 394d 400d  457d 411d 323d 392d 372d 363d 
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Table A27. Mean separations for heading date of HRSW cultivars in 2017 and 2018 environments. 

† Crookston and Lamberton, Minnesota; Prosper, Hettinger, Minot, and Dickinson, North Dakota. 
‡ Data unreported for Crookston 2017 and Dickinson 2018.

 2017  2018 

Cultivar Crookston† Prosper Lamberton Hettinger Minot  Crookston Prosper Lamberton Hettinger Minot Dickinson 

 ───────────────────────────── DAP (d after planting) ──────────────────────────────────── 

LCS Anchor -   58.3‡ 57.7 55.8 55.1  47.4 51.1 50.3 53.9 47.6 - 

Lang-MN - 58.3 59.0 55.6 56.1  48.3 51.0 49.8 52.9 46.9 - 

Linkert - 58.3 60.3 55.0 56.8  47.8 50.8 50.8 53.9 47.8 - 

Prevail - 57.7 58.0 56.1 56.8  48.1 51.0 49.2 54.0 47.3 - 

Shelly - 59.3 60.5 55.6 56.3  48.6 50.3 49.7 53.6 48.0 - 

Surpass - 58.2 60.8 55.8 57.8  47.7 52.0 49.3 53.4 46.5 - 

SY Valda - 59.5 58.8 55.1 58.3  48.8 51.0 48.7 53.6 46.6 - 

ND VitPro - 58.8 60.9 55.4 58.1  47.9 50.9 49.8 54.0 48.7 - 

TCG Wildfire - 57.9 60.5 55.8 58.2  47.7 50.9 51.1 53.0 46.9 - 

Mean  58.5 59.6 55.6 57.0  48.0 51.0 49.9 53.6 47.4  

Planting date 3 May 22 April 17 April 26 April 21 April  7 May 30 April 7 May 2 May 3 May 2 May 
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Table A28. Summary of coefficient of variation (CV) values for agronomic traits from 
experiments in 2017 and 2018 environments. 

Environment Yield Density Protein DTH Height 

Crookston17 6.0 12.3 1.8 - - 

Crookston18 12.2 14.3 2.4 3.4 2.6 

Dickinson18 13.8 18.8 4.1 - 6.7 

Hettinger17 11.2 19.9 2.8 2.7 5.5 

Hettinger18 21.8 14.9 3.2 1.7 9.1 

Lamberton17 11.7 13.3 3.3 3.9 7.4 

Lamberton18 10.6 13.8 4.8 4.1 6.6 

Minot17 20.2 18.1 2.1 3.6 11.7 

Minot18 14.7 16.1 1.6 4.2 7.8 

Prosper17 6.2 15.4 3.5 3.3 6.3 

Prosper18 10.4 12.7 4.8 3.8 6.3 

 
Table A29. Mean squares and significance from ANOVA of spike population (spikes ha-1), 2017 
and 2018 experiments at Prosper, ND. 

Source df 2017 2018 

Rep 2 - - 

A [Cultivar] 8 6.6*** 5.0*** 

B [Seeding Rate] 3 18.5*** 16.2*** 

A*B 24 1.26 0.50 

Error 70 0.85 0.57 

 
Table A30. Mean squares and significance from ANOVA of spike population, 2017-2018 
experiments in Prosper, ND. 

Source df Spike population 

A [Cultivar] 8 9.80* 

Env x A 8 1.83* 

B [Seeding Rate] 3 34.4** 

Env x B 3 0.32 

A x B 24 0.91 

Env x A x B 24 0.86 

Error 140 0.71 

*, **, and ***, indicate significance at P<0.05, P<0.01, and P<0.001 respectively. 
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Table A31. Least squares mean values for spike population of HRSW at seeding rates, 2017-
2018 experiments at Prosper, ND. 

Seeding rate  

(million seeds ha-1) 2017 2018 Combined 

 ————million spikes ha-1———— 

1.85 6.15a 4.93a 5.54a 

3.09 6.94b 5.74b 6.34b 

4.32 7.80c 6.29c 7.05c 

5.56 7.92c 6.73d 7.32c 

Mean 7.20 5.92 6.56 

LSD0.05 0.50 0.41 0.35 

† Values followed by same letter in a column are not different (P>0.05) based on Fisher’s LSD. 
 
Table A32. Least squares mean values for spike population of HRSW cultivars at Prosper, ND, 
2017-2018 environments. 

Cultivar 2017 2018 Combined 

 —————million spikes ha-1————— 

LCS Anchor 6.84a† 5.19ab 6.01a 

Lang-MN 6.19a 5.45ab 5.82a 

Linkert 6.55a 6.07cd 6.31ab 

Prevail 8.03b 6.10cde 7.06bc 

Shelly 6.87a 4.92a 5.90a 

Surpass 8.17b 6.42de 7.30c 

SY Valda 7.77b 6.71e 7.24c 

ND VitPro 7.82b 6.71e 7.27c 

TCG Wildfire 6.56a 5.74bc 6.15a 

LSD0.05 0.75 0.62 0.90 

† Values followed by same letter in a column are not different (P>0.05) based on Fisher’s LSD. 
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Table A33. Top ranked variables indicated as important parameters in various models. 

 Variable associated with indicated rank of importance 

Model 1st 2nd 3rd 4th 

Stepwise Straw Tiller† Rht-D Height 

Lasso Straw Tiller Rht-D Yenv 

Lasso2 Yenv:Straw‡ Rht-D Rht-D:Yenv Yenv:Height 

Ridge Straw Tiller Rht-D Yenv 

Ridge2 Yenv:Straw Rht-D:Yenv Rht-B:Tiller Yenv:Tiller 

Elastic net Straw Tiller Rht-D Yenv 

Elastic net2 Yenv:Straw Yenv:Tiller Rht-D:Yenv Straw 

Decision Tree Straw Yenv Tiller Height 

Random Forest Tiller Straw Height Yenv 

Random Forest2 Yenv:Tiller Yenv:Straw Tiller:Straw Ppd-D:Yenv 

† Tiller, tillering capacity; Yenv, yield of the environment. 
‡ Interacting variables indicated by ‘:’ in models including two-way interactions. 
 
Table A34. Mean squared values and ANOVA results from comparisons of model accuracy for 
10 statistical learning algorithms fit by 10-fold repeated cross-validation of seeding rate dataset. 

Source df MAE† 

Fold 9 - 

A [Algorithm] 9    0.0009NS 

Error 360 0.0005 

† MAE, mean absolute error. 
NS, nonsignificant. 
 
Table A35. Modelling summary for decision tree algorithm. 

Level Cp splits Rel. error 

Root node 
error x. 

Rel. error 

  n   

1 0.0734 0 1.000 1.609 

2 0.0433 1 0.927 1.491 

3 0.0187 2 0.883 1.421 

4 0.0151 4 0.846 1.361 
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Figure A1. Unpruned decision tree from 10-fold repeated cross-validation of seeding rate dataset. 
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Figure A2. Resampling error (RMSE, root mean squared error) relative to level of Mallow’s 
complexity parameter value. 
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Figure A3. Density plot of resampling error (RMSE, root mean squared error) from OSR 
predictions of the final decision tree model. 
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Figure A4. Resampling error (RMSE, root mean squared error) associated with increasing 
number of variables in decision tree model. 
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Figure A5. Random forest model with minimal branching from 10-fold repeated cross-validation 
of seeding rate dataset. 
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Figure A6. Random forest model with maximum branching from 10-fold repeated cross-
validation of seeding rate dataset. 
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Figure A7. Root mean squared error relative to number of trees fit by random forest algorithm. 
 

 
Figure A8. Root mean square error relative to number of trees fit by random forest algorithm 
with two-way interactions. 
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Figure A9. Modelling summary for random forest algorithm. 
 

 


