
Algorithms for Calculating a Building’s Waste

 Drew Olson

This paper examines the amount of waste or unutilized material a particular design will

produce. This is being analyzed by the author through the investigation and use of multiple

software systems. The ideal intent is the creation of such a program that will be able to

inform the designer of the waste his or her particular design is going to be producing with a

real time report. This product could then be implemented into BIM programs such as Revit

by Autodesk or any other DXF file formatted software.

Introduction:

The philosophical premise behind this investigation is to get an understanding of how much waste is

being produced from a specific design. Knowledge of the waste a design is going to produce will

help bring an understanding of the designer’s impacts on the environment. Designers need to utilize

the planet’s resources in the most efficient way possible through the conservation of materials and

the economic efficiency of resources. The professions’ ideal intent is to build beautiful structures

that can coexist in their environment and do not add to the building mounds of unutilized material

in our landfills. As a student of architecture a conscious awareness of everyone’s impacts on the

environment should be fully understood for anyone to be a steward of the built environment which

architects are creating.

This paper’s goal is avoiding waste, but how is waste avoided? The resources that the building

industry is using to produce the building materials are just being transformed from their original

physical state. Viewing the world as a whole, materials are not technically producing waste unless

the product can become hazardous to our health and environment, but it is the unutilized materials

that are filling the landfills. How can one maximize their efficiency of building materials to

minimize waste?

The current waste being produced from a construction site is based off a general percentage that is

more or less just a rule of thumb than a true measure of the waste actually being produced. If the

true percentage of waste could be determined by a BIM program, then the next step is to determine

how this is produced. Can the total material used be calculated from an algorithm that could

maximize the material used to produce minimal waste? The ramifications of such an algorithm

would in turn reduce the quantity of materials in a building, allowing more money to be put toward a

higher quality of materials. The end result of this study would be the creation of a program that

would calculate the most efficient procedure and layout of material based off a particular design.

Methodology

The formulation of an algorithm that will calculate the total waste being produced from a design in

order to inform the designer; also given different circumstances, which layout of material will

produce the most efficient end product. The process is going to begin with understanding all the

variables and constants that are going to be within a specific component. With that information

gathered it is creating a step by step process of going through the different constraints of a design to

maximize the yield of material and formulate a calculated sum of unutilized material.

The goal is to create an algorithm that will calculate the total wasted materials for an individual

building component; i.e. a floor system, wall system, and roof system. With the use of a Word

document and recording the step by step process of constructing an algorithm for the computation

of wasted material of an individual building component can be analyzed for a particular design

through the use of pseudocode. The initial intent was to bring the algorithms that had been

produced to a computer software programmer who could then implement the algorithms into a

program such as Revit. As the research process unfolded, taking the step of working out and

writing a program personally became more captivating. The program would allow an individual to

analyze their design by the amount of wasted material that a particular design would be producing.

The user would be able to make changes to their design, and, with the click of a button, the program

could recalculate the wasted material of the altered design at real-time speed.

Process and Procedure

The process of this project began with researching what was currently out in the market today for

such an application. A program that provided the most insight was Floor Estimator Pro. This

program takes the floor plan and provides an accurate and quick estimation. The key concepts that

were learned in reaching this program and a couple others like it were the constraints and variables

that are associated with this component of the building system. From research of these programs,

an exercise was done on graph paper. This was a great introduction to application the constraints

and variables that were going to be in play moving forth within the research. Following these

exercises background knowledge of the content information that would form the foundation of the

research investigation was established. The resources and software programs used in this

investigation were; Modeling Objects and Environments, Fundamental Algorithms: The Art of

Computer Programming, Visual Basic Graphics Programming, electronic class posting by my

professor Dr. Ganapathy Mahalingam, online lectures from MIT structured toward computer

programming, Pseudocode Standard, Microsoft Word, Visio, and Visual Studio, Adobe’s InDesign

CS3, and Adobe’s Photoshop CS3.

The process worked in a linear fashion: beginning with the hand drawn experiments on graph paper

and then constructing the algorithm structured by the pseudocode standard. From the pseudocode

the algorithm was refined and developed into a flow chart which introduced more variables and

processes in a more detailed order. Once a flow chart was constructed, the decision of repeating

this process for another building component or carrying this component into a computer language

was addressed. Development and understanding of this algorithm were brought into Visual Basic to

construct a program that could operate the simple function of outputting a square footage of

material declared as waste and producing a graphical representation of the floor plan (polygon)

inputted into the program.

Results

Figure 1

Figures 1-4 are the four exercises that were

developed the first week of research. They

compared the origin point and direction of

the material to find how the wasted material

is created.

Figure 2

Figure 3

Figure 4

This process really engages one’s thinking and became inherently important in the understanding of

the step by step procedure required in creating an algorithm that is still being discovered at this stage

in the research. Producing the possible outcomes and recording the findings were a relatively simple

task at the beginning, but the knowledge of the pseudocode and computer programming languages

became the mountain to climb ahead.

The following is a pseudocode written aimed towards the efficiency of carpeting a floor surface

given any floor layout.

Start:

Origin = (0, 0)

OptimalMatUsage = Tot. Sq. Ft. of Floor Plan_____

 12’ (width of defined carpet)

Efficiency Check = { ((Tot. Ft. Run of Mat used)-OptimalMatUsage) }

 { OptimalMatUsage } * 100

Defined Material = 12’ x R (roll length)

Aesthetic Check = Sum Ft Run of segments

1. Input floor plan (data defined by as DXF or .dwg) or any data system based of coordinate

positioning

a. Find furthest point on x-axis

i. Store in memory

b. Find furthest point on y-axis

i. Store in memory

2. Define Bounding Box

a. Create a bounding box using the origin, furthest points on x and y axis, and their

intersecting point

3. Define Segment Box

a. Origin is defined as point 1

b. From origin move greatest width of defined material on y axis

i. Store as point 2

c. Move to greatest value of bounding box in x value, remaining with y = 12

i. Store as point 3

d. Move, on same valued x-axis, down 12 on y axis

i. Store as point 4 and return to origin

e. Store rectangle formed as Wn

4. Continue process of segment box until the Bounding Box is fully divided

a. Use point 2 from previous segment box as new location of origin

b. Store as W(n+1)

5. Intersect Wn with floor plan

a. Take the closest and furthest x value of newly formed shape

i. Store that in memory as ft. run of material used

b. Can material be placed without any obstructions?

i. If yes then;

1. End function

ii. If no then;

1. Check database for stored material that can be used

a. If yes then;

i. Use it

b. If no then;

i. Store dimension of material in database

c. Do the edge segments of the new shape share the same segments of the floor plan?

i. If yes then;

1. End function;

ii. If no then;

1. Store the length of that segment in memory

6. Repeat Process 5 with W(n+1) until all segments complete

7. Run Efficiency Check

a. Store value in memory as Testn_1

8. Run Aesthetic Check

a. Store value in memory as Testn_1

9. Repeat steps 5-8 changing order of all segments as a permutation

a. Store value in memory as Test(n+1)

10. Change point of origin of W1 by bumping the y value by 1

a. Repeat steps 3-8

b. Store value in memory as Test(n+1)

11. Repeat steps 1-10 with the values for x and y interchanged

a. Store value in memory as Test(n+1)

12. Compare all Efficiency Check Tests to find the lowest valued Testn

13. Compare all Aesthetic Check Tests to find the lowest valued Testn

14. Print Testn with lowest valued Efficiency Check and layout procedure

15. Print Testn with lowest valued Aesthetic Check and layout procedure

End

After the completing of the psuedocode, the next step was creating a flowchart of the operations and defining

the variables more specifically.

Start
Define Variables

BoundingBoxLength
BoundingBoxHeight

BoundingBox
CurrentSegmentBox
EfficiencyTestScore
AestheticTestScore

MaterialWidth
MaterialLength

OptimalMaterialUsage
Origin

FloorPlan
SegmentBoxCount
SegmentBoxOrigin

MaterialUsed
PartialMaterial

SeamLength
CurrentIntersectionBox

SubForm
SubFormCount

CurrentSubForm
SubDivision

SubDivisionCount
CurrentSubDivision

EfficiencyCheck
AestheticCheck

1. Input Floor plan (data
defined as DXF or .dwg)

Any data system based of
coordinate positioning

a. Find furthest point on x-axis. Define
BoundingBoxLength

a. Find furthest point on y-axis. Define
BoundingBoxHeight

2. Define BoundingBox
(Create a bounding box using

the Origin, furthest points on x and y
axis)

3. Define SegmentBox Using SegmentBoxOrigin
a. Define SegmentBoxOrigin as point 1
b. Make Origin@MaterialWidth as point 2
c. Make MaterialLength@MaterialWidth as point 3
d. Make Origin@MaterialLength as point 4
e. Store rectangle formed with the 4 points as

SegmentBox(SegmentBoxCount+1)
f. CurrentSegmentBox=SegmentBox(SegmentBoxCount+1)

3. Define SegmentBox Using SegmentBoxOrigin
a. Define SegmentBoxOrigin as point 1
b. Make Origin@MaterialWidth as point 2
c. Make MaterialLength@MaterialWidth as point 3
d. Make Origin@MaterialLength as point 4
e. Store rectangle formed with the 4 points as

SegmentBox(SegmentBoxCount+1)
f. CurrentSegmentBox=SegmentBox(SegmentBoxCount+1)

4. Is CurrentSegmentBox extent
greater than BoundingBox extent?

Yes

No

6. Run EfficiencyCheck and store value as
CurrentSegmentBox(EfficiencyTestScore)

7. Run AestheticCheck and store value as
CurrentSegmentBox(AestheticTestScore)

8. Repeat steps 3-7 changing order of all
segments as a permutation

Have all
permutations been

executed?

No

Yes

9. Change Origin by bumping the y value of the
Origin by 1

Have all
permutations been

executed?

No

Yes

Follow steps of
operation 5

Define
SegmentBoxOrigin

as
SegmentBoxOrigin+

MaterialWidth

10. Repeat steps 2-9 with the values for BoundingBoxLength
and BoundingBoxHeight interchanged

Compare all EfficiencyTestScores to find lowest valued test

Compare all AestheticTestScores to find lowest valued test

Print CurrentSegmentBox(EfficiencyTestScore) with lowest
value and layout procedure

Print CurrentSegmentBox(AestheticTestScore) with lowest
value and layout procedure

End

Define SubDivisions
a. take all x segments<length of CurrentIntersectionBox

b. store each segment length@MaterialWidth as a
SubDivision(SubDivisionCount+1)

c. CurrentSubDivision=SubDivision(SubDivisionCount+1)

Is the relative y value of any vertical segment of the
CurrentIntersectionBox<MaterialWidth?

No

5.Intersect CurrentSegmentBox with FloorPlan

Store intersection as CurrentIntersectionBox

Define SubForms
(a. take all x segments<length of CurrentIntersectionBox

b. Using x min and max of segment, y max from x min and extent form a rectangle
c. store rectangle as SubForm(SubFormCount+1)
d. CurrentSubForm=SubForm(SubFormCount+1))

Define PartialMaterial
PartialMaterial=(CurrentSubDivision-CurrentSubForm)

Is the relative y value of any vertical segment of the
CurrentIntersectionBox<MaterialWidth?

No

Yes

Is there any PartialMaterial that can be used
CurrentSubform?

No

Yes

Store length of CurrentSubDivision as MaterialUsed

Use it

Store any PartialMaterial created

Store length of any unshared
edge segments between

CurrentSubForm and FloorPlan
as SeamLength

Have all SubDivisions of
CurrentIntersectionBox been

executed?
Yes

No

Yes Store greatest x value -
lowest x value of

CurrentIntersectionBox
as MaterialUsed

Store length of any unshared edge
segments between

CurrentInterectionBox and FloorPlan
as SeamLength

Return to Define SegmentBoxOriginas
SegmentBoxOrigin+MaterialWidth

Expanded View of Operation 5

The flowchart was created with Microsoft Visio, which has an interface that is well adapted for flowchart

creation. The descriptive images following the flowcharts were constructed with the use of Adobe’s

Photoshop and InDesign. Figures 5-8 are visual representations of the operations and variables used in the

Operation 5 of the flowchart for better clearirty and understanding.

Figure 5

Figure 5 is a representation of the floor plan with the Origin, BoundingBox, and SegmentBoxes

overlayed and defined.

Figure 6

Figure 6 defines the CurrentIntersectionBox, SegmentBoxOrigin, and SeamLengths

Figure 7

Figure 7 shows the SubDivisions defined by the in the length of the x values that are less

than the full length of the CurrentIntersectionBox and assigning each with a number.

Figure 8

Figure 8 defines the PartialMaterial and SubForms produced from the SubDivisions

As of now this process will allow a user to analyze a floor plan and determine the most efficient

layout of material and also a more aesthetic layout. The aesthetic value is based off the idea of

having less seam lines (the joining of two pieces of material) holds a potential higher level visual

quality. After completing the decision to try and push this idea forth in a personal effort, the

next step became writing the computer program. The following is the Visual Basic code that

was created in Visual Studio to produce the resultant program.

Imports System.Drawing

Imports System.Drawing.Drawing2D

Imports System.Windows.Forms

Public Class Form1

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load

 End Sub

 Protected Overrides Sub OnPaint(ByVal e As PaintEventArgs)

 Dim g As Graphics = e.Graphics

 g.Clear(Me.BackColor)

 Dim pen As New Pen(Color.Blue, 3)

 Dim brush As New SolidBrush(Color.Red)

 Dim brush2 As New SolidBrush(Color.Blue)

 Dim polygonPointsInput As String

 polygonPointsInput = InputBox("Enter number of points in polygon")

 Dim PolygonPointCount As Integer

 PolygonPointCount = (Val(polygonPointsInput))

 Dim PointArrayCount As Integer = PolygonPointCount - 1

 Dim points(PointArrayCount) As PointF

 Dim PointCounter As Integer = 0

 While PointCounter < PolygonPointCount

 Dim p As PointF

 Dim x As String

 x = InputBox("Enter x coordinate of point " & (PointCounter + 1))

 Dim y As String

 y = InputBox("Enter y coordinate of point " & (PointCounter + 1))

 p.X = (Val(x))

 p.Y = (Val(y))

 points(PointCounter) = (p)

 PointCounter = PointCounter + 1

 End While

 Dim theFloorPlan As Drawing2D.GraphicsPath

 theFloorPlan = New Drawing2D.GraphicsPath

 theFloorPlan.Reset()

 theFloorPlan.AddPolygon(points)

 Dim floorPlanRegion As Region = New Region(theFloorPlan)

 Dim floorPlanBoundsRect As RectangleF = floorPlanRegion.GetBounds(g)

 Dim CarpetWidth As Integer

 Dim CarpetLength As Integer

 Dim carpetWidthInput As String

 carpetWidthInput = InputBox("Enter width of carpet roll")

 CarpetWidth = (Val(carpetWidthInput))

 Dim carpetLengthInput As String

 carpetLengthInput = InputBox("Enter length of carpet roll")

 CarpetLength = (Val(carpetLengthInput))

 Dim carpetStartPoint As Point

 Dim r As String

 r = InputBox("Enter x coordinate of carpet start point")

 Dim s As String

 s = InputBox("Enter y coordinate of carpet start point")

 carpetStartPoint.X = (Val(r))

 carpetStartPoint.Y = (Val(s))

 Dim carpetSize As Size

 carpetSize = New Size(CarpetLength, CarpetWidth)

 Dim regionRectArea As Double

 Dim wastedArea As Double

 wastedArea = 0

Dim carpetRegionLoops As Integer = Decimal.Ceiling(floorPlanBoundsRect.Height /

CarpetWidth)

 Dim loopCounter As Integer

 For loopCounter = 1 To carpetRegionLoops

 Dim carpetRegion As Rectangle

 carpetRegion = New Rectangle(carpetStartPoint, carpetSize)

 Dim region As Region = New Region(carpetRegion)

 region.Intersect(floorPlanRegion)

 Dim region2 As Region = New Region(carpetRegion)

 region.Xor(region2)

 Dim transformMatrix As Matrix

 transformMatrix = New Matrix

 For Each regionRect As RectangleF In region.GetRegionScans(transformMatrix)

 regionRectArea = regionRect.Width * regionRect.Height

 wastedArea = wastedArea + regionRectArea

 Next

 carpetStartPoint.Y = (carpetStartPoint.Y) + CarpetWidth

 CarpetWidth = CarpetWidth + CarpetWidth

 Next

 MsgBox("The accumulated wastage of carpet is " & wastedArea & " sq. ft.")

 g.TranslateTransform(10.0F, 10.0F)

 g.FillRegion(brush, floorPlanRegion)

 brush.Dispose()

 End Sub

 Public Sub New()

 MyBase.New()

 InitializeComponent()

 Me.AutoScaleBaseSize = New System.Drawing.Size(5, 5)

 Me.ClientSize = New System.Drawing.Size(400, 400)

 Me.StartPosition = System.Windows.Forms.FormStartPosition.CenterScreen

 End Sub

End Class

Conclusion of Results

The resulting program sends you through a series of prompt windows which asks for the data

input for the design at hand. It will start by asking the total number of points for the floor plan,

or polygon parameters, then the specific x and y values of each point. After processing the

form the program begins asking about the material’s width, length, and the starting coordinate.

This program then returns the square footage of material that is declared waste. In this

program waste isn’t calculated as accurately as it is presented in the flow chart. At this point in

the program’s evolution, the partial material is not directed into any reusable material data

memory bank, thus any partial material is being declared as waste. The following figures

present the program’s input inquiry and data output.

Figure 9 - This is the initial window

that is asking for the number of

points in the polygon.

Figure 10 - Next the program is

going to begin asking for the x

coordinates for each point.

Figure 11 - With each x value a

corresponding y coordinate will need

to be assigned for each point.

Figure 12 - Now all coordinates have

been assigned and the program is

asking you to define the materials

width.

Figure 13 - The next window is asking

for a defined length of the material.

The length is the same as the greatest

value of the bounding box,

Figure 14 – The program now needs an

origin point. This again is defined by

the coordinates being entered.

Figure 15 – After the x coordinate is

entered the y coordinate is requested.

Figure 16 – Once all the

requested information has

been inputted the program

goes to work. This figure

shows the how the program

returns the resulting

information both

quantitatively and as a visual

representation of the

polygon that was defined.

Conclusion and Projection

 In conclusion this research provides as a stepping stone toward the ultimate

achievement, a tool that will calculate a building’s waste from a particular design. Taking this

program forth requires applying the same steps and procedures toward each individual

component of a building system. Beyond producing the sum of the waste for a particular

design, this program would allow for a comparative waste analysis. One would be able to

analyze how a design that would reduce the amount of carpet or flooring material is going to

affect the amount of waste for the drywall and 2x4’s for a wall component. Further research

and development on this program would help aid the advancement of BIM tools and their need

in efficient management of resources during the building design process.

References

Kalay, Yehuda E. (1989). Modeling objects and environments. New York: John Wiley & Sons.

Knuth, Donald E. (1968). Fundamental Algorithms: the art of computer programming. Reading, MA:

Addison-Wesley Publishing Company.

Stephens, Rod (2000). Visual Basic Graphic Programming, Second Edition: hands-on applications and advanced

color development. New York: John Wiley & Sons.

