

Summer 2008

Volume: 2
 No: 3

In This Issue

- From the State Climatologist
- Weather Highlights: Seasonal Summary
- The Season in Graphics: Summer 2008 Weather in North Dakota
- Storms \& Record Events: State Tornado, Hail, and Wind Reports \& Record Events
- Outlook: Fall 2008
- Hydro-Talk: Is Long Lake Becoming a Salt Lake?
- Science Bits: How Drought Stress Impacts Corn Development.

NDSCO

Editor

Adnan Akyüz, Ph.D
Graphics
Mullins \& North Dakota State Climate Office

Contributing Writers:
Barbara A. Mullins
Mark Ewens
Leonard Peterson Joel Ransom

North Dakota State Climate Office www.ndsu.edu/ndsco Copyright ©2008

From the State Climatologist

 The Climate Bulletin is a digital quarterly publication of the North Dakota State Climate Office, the College of Agriculture, Food Systems and Natural Resources, North Dakota State University in Fargo, North Dakota.

Compared historically, North Dakota had a wet and a warm summer following a dry and a cold spring. Extreme to severe drought ruled the western $1 / 2$ of the state during the summer. Regionally, western North Dakota was very warm and dry while eastern half was very wet and cool. Temperature-wise, the summer of 2008 was the $49^{\text {th }}$ warmest since 1895. Precipitation-wise, it was the $25^{\text {th }}$ wettest summer since 1895 . The summer temperature trend for the period of record (1895 to present) was $0.21^{\circ} \mathrm{F}$ per decade indicating that this summer in ND was $2.1^{\circ} \mathrm{F}$ warmer than it was 100 years ago on the average. The total precipitation as percentage of the normal and average temperature departure from normal are shown on pages 4 through 12 (Season in-Graphics). The Season inGraphics also displays the time series of monthly total precipitation and average temperature of North Dakota for respective months of the season. This bulletin can be accessed at http://www.ndsu.edu/ndsco/. This web site hosts other great resources for climate and weather information.

Adnan Akyüz, Ph.D.
North Dakota
State
Climatologist

Seasonal Summary:

June 2008

The state average precipitation was 4.22 inches which is above the 1971-2000 normal of 3.19 inches. June 2008 state average precipitation ranked $28^{\text {th }}$ wettest in the last 114 years with a maximum of 7.21 " in 2005 and a minimum of 1.14 " in 1974.

Welcomed rains fell across the state throughout the first half of June with daily record rainfall at several locations on June $11^{\text {th }}$. The second half of June saw more dry conditions with intermittent showers across the state. June precipitation ranged from just under 2 " in the west to as high as nearly 7 " in the southeast. The percent of normal precipitation ranged from 50% in the west and isolated areas in the east central region to nearly 200% in the southeast with a couple pockets of over 200%. The US Drought Monitor classified the central regions as abnormally dry with the western region as moderately dry and the far western part of the state with severe drought. The eastern part of the state did not have drought conditions. The USDA, National Agricultural Statistics Service, North Dakota Field Office reported a topsoil moisture of 8\% very short, 34\% short, 57% adequate, and 1% surplus with a subsoil moisture reported as 15% very short, 31% short, 54% adequate, and 1% surplus (Weekly Weather and Crop Bulletin Vol. 95, No. 28).

The National Weather Service (NWS) reported breaking five rainfall records on the $11^{\text {th }}$. Bismarck recorded 1.37" of rain breaking the previous record of 0.86 " set in 1880. Jamestown recorded 2.62 " breaking the previous record of 0.77 " set in 2001. Minot recorded 1.88 " breaking the previous record of 1.61 " set in 1977. Dickinson recorded 0.65 " breaking the previous record of 0.64 " set in 1966. Williston recorded 0.94 " breaking the previous record of 0.69 " set in 2003. The top five June daily rainfall totals measured from the North Dakota Agricultural Weather Network (NDAWN) all fell on the $11^{\text {th }}$ and they were 2.16 " at Fargo, 2.23 " at Mohall, 2.30" at Minot, 2.63" at Fingal, and 2.68 " at Jamestown. The storm system on the $11^{\text {th }}$ produced rainfall at all 70 of the North Dakota Agricultural Weather Network (NDAWN) stations. The smallest amounts were in the southwest corner and ranged from 0.2 to 0.5 inches. Nearly all other areas received between an inch and 2" of rain. National Weather Service's Storm Prediction Center (SPC) recorded only 7 reports of hail and 2 reports of high wind from the system. The top five June daily maximum wind speeds recorded from NDAWN was 73.4 mph on the $14^{\text {th }}$ at McHenry, 68.7 mph on the $11^{\text {th }}$ at Marion, 60.1 mph on the $5^{\text {th }}$ at Oakes, 58.7 mph on the $14^{\text {th }}$ at Carrington, and 58.0 mph on the $14^{\text {th }}$ at Dazey. NDAWN wind speeds are measured at a height of 10 feet (3 m).

According to the preliminary reports of the National Weather Service’s Storm Prediction Center (SPC), June had 58 reported high wind events, 108 reports of hail, and 5 reported tornadoes. Nearly half of the high wind reports fell on the $14^{\text {th }}$ when a storm system that stretched from the northwest corner down to the southeast corner produced some rain but mostly hail (11events reported by SPC), one tornado and high winds (23 events reported by SPC). The one tornado was sighted in Barnes County. The 11 hail reports came from Ramsey, Divide, Mountrail, Ward, Cass, Burleigh, Sargent, McHenry and Barnes Counties. The 14 high winds were reported from

Divide, Mountrail, Ward, Traill, Dickey, Ransom, McHenry, McLean, Cass, Pierce, Benson, Eddy, Wells, Foster, Benson, Ramsey, Barnes, Nelson, Eddy, and Grand Forks Counties.

On the $11^{\text {th }}$, a storm system produced rainfall at all of the North Dakota Agricultural Weather Network (NDAWN) stations. The smallest amounts were in the southwest corner and ranged from 0.2 to 0.5 inches. Nearly all other areas received between an inch and 2" of rain. NDAWN stations with over two inches of rain were Jamestown at 2.68", Fingal with 2.63", Minot with 2.30 ", Mohall with 2.23 ", Fargo with 2.16 ", Berthold with 2.07 " and Galesburg with 2.00 ". SPC recorded only 7 reports of hail and 2 reports of high wind from the system. The counties reporting hail were Richland, McLean, Burleigh, Sargent, Grant, and Kidder. The high winds were reported in Richland, Cass, and Barnes counties.

A storm system on the $18^{\text {th }}$ produced rain in the central part of the state with some places receiving a half inch. NDAWN had one station that measured over an inch of rain at Mandan with 1.30 ". SPC had 2 reported tornadoes in Morton County. There were also 27 hail reports primarily from central counties including Oliver, McLean, Bottineau, McHenry, Mercer, Ward, McKenzie, Ward, Morton, Sheridan, and Sioux.

The storm system on the $23^{\text {rd }}$ through the $24^{\text {th }}$ brought rain to areas from the northwest down to the southeast with isolated showers in the northeast. NDAWN stations recording greater than an inch of rain across the two days were Leonard with 1.49", Jamestown with 1.40" and Tappen with 1.78 ". According to SPC there were 31 reports of hail from Billings, Stark, Dunn, Mercer, Morton, Sioux, Burleigh, McLean, Stutsman, Pierce, Benson, Towner, Cavalier, Wells, and Eddy Counties. There were 5 high wind reports from Dunn, Stark, Stutsman, Lamoure, and Barnes. SPC listed one tornado sighting in Benson County that touched down briefly.

The $26^{\text {th }}$ storm system brought various amounts of rain to many parts of the state. NDAWN had two stations recording over an inch of rain (McHenry with 1.11 " and Carrington with 1.01 "). SPC listed 15 reports of hail and 3 reports of high wind. The hail was sighted in Williams, McKenzie, Mercer, Stark, McLean, Sioux, Foster, Steele, and Emmons Counties. The high winds were reported in Morton and Burleigh Counties.

The state average air temperature was $60.9^{\circ} \mathrm{F}$ which is below on the 1971-2000 normal of 63.7 ${ }^{\circ}$ F. June 2008 state average air temperature ranked $29^{\text {th }}$ coolest in the past 114 years with a maximum of $74.2^{\circ} \mathrm{F}$ in 1988 and a minimum of $56.2^{\circ} \mathrm{F}$ in 1915.

The daily average temperatures for the first half of June were below normal across the state while the second half of June's daily temperatures were near normal. The average monthly air temperature ranged from a $66^{\circ} \mathrm{F}$ in the southeast to $57^{\circ} \mathrm{F}$ in the northwest. The monthly departure from normal average air temperatures ranged from -1 to -5 . Therefore, even with an increase in temperatures in the second half of June, the monthly end result was below normal temperatures across the state.

NDAWN's highest recorded daily air temperature for June was $98^{\circ} \mathrm{F}$ at Sidney, MT on the $30^{\text {th }}$. The lowest recorded daily air temperature was $34.9^{\circ} \mathrm{F}$ at Mott on the $10^{\text {th }}$.

July 2008
The state average precipitation was 2.73 inches which was nearly equal to the 1971-2000 normal state average of 2.75 inches. July 2008 state average precipitation ranked the $67^{\text {th }}$ driest in the past 114 years with a maximum of 7.88 inches in 1993 and a minimum of 0.62 inches in 1936.

Total July rainfall ranged from just under an inch, primarily in the west, to just over 5 inches, primarily in the east. The areas of the state that received above normal precipitation were the south central and east central regions. Most of the above normal precipitation was between 100 and 150% of normal with a few areas in McIntosh, Steele, and Trail counties with 150 to 300\% of normal. The remainder of the state received below normal July precipitation with the lowest value of less than 50% of normal on the western edge of the state. According to the US Drought Monitor, a third of North Dakota including the northwest, north central, and southwest is under severe to extreme drought conditions (Figure 1). The majority of the remainder of the state is considered abnormally dry. The dry conditions depleted pasture land and provoked some producers to harvest small grains for hay. There were also reports of producers selling livestock because of the dry conditions. The USDA, National Agricultural Statistics Service, North Dakota Field Office reported a topsoil moisture of 17% very short, 30% short, 52% adequate, and 1% surplus with a subsoil moisture reported as 20% very short, 35% short, 44% adequate, and 1% surplus (Weekly Weather and Crop Bulletin Vol. 95, No. 32).

A record rainfall of 1.67 " was recorded by the National Weather Service (NWS) at Jamestown on the $23^{\text {rd }}$ breaking the previous record of $0.63 "$ set in 1987. Also on the $30^{\text {th }}$ the NWS reported a record rainfall of 0.33 " at Minot which broke the previous record of 0.22 " set in 1984. The top five July daily rainfall totals measured from the North Dakota Agricultural Weather Network (NDAWN) was 2.73 " on the $29^{\text {th }}$ at Perley MN, 2.41 " on the $19^{\text {th }}$ at Britton SD, $2.16^{\prime \prime}$ on the $31^{\text {st }}$ at Oakes, 2.08 " on the $28^{\text {th }}$ at Mayville, and 2.04 " on the $7^{\text {th }}$ at Grafton. The top five July daily maximum wind speeds recorded from NDAWN was 62.3 mph on the $30^{\text {th }}$ at Mandan, 59.1 mph on the $28^{\text {th }}$ at Watford City, another 59.1 mph on the $27^{\text {th }}$ at Mott, 57.6 mph on the $10^{\text {th }}$ at Wahpeton, and another 57.6 mph on the $16^{\text {th }}$ at Streeter. NDAWN wind speeds are measured at a height of 10 feet (3 m).

According to the preliminary reports of the National Weather Service's Storm Prediction Center (SPC), throughout July there were 33 reported high wind events, 108 reports of hail, and 18 reported tornadoes. Some of these reports came from major storm systems on the $7^{\text {th }}, 10^{\text {th }}, 19^{\text {th }}$, $28^{\text {th }}$, and $30^{\text {th }}$. Outside of a few scattered showers, July precipitation started out quiet for the first few days. On the $7^{\text {th }}$, the eastern half of the state had rainfall amounts as high as 1 to 2 inches. NDAWN had one station with over two inches at Grafton with 2.04" of rain. Tornadoes were reported in Bottineau, Rolette, Towner, Steele, and Walsh counties. Hail was reported in Steele, Cass, Benson, Eddy, Foster, Richland, Griggs (golf ball size), Barnes, Pembina, and Trail counties.

The storm system that moved through ND on the $10^{\text {th }}$ brought limited rains that fell primarily in the east. The highest totals were only between 0.5 " and 1 " in the southeast corner. The SPC reported sightings of tornadoes in Grant and Burleigh counties. Hail was reported in Grant, Burleigh, Richland, Mclean, Morton, Wells, Dickey, Lamoure, Emmons and Sargent Counties.

The $19^{\text {th }}$ storm system dropped hail with very little rain. SPC reported one tornado in Dunn County. Dime to quarter sized hail fall in McKenzie, Mercer, Emmons, McIntosh, and Oliver counties. Golf ball sized hail was reported in Williams, Dunn and Morton Counties with baseball sized hail reported in Burleigh County.

Rain fell on the $28^{\text {th }}$ in the northern half of the state with small and trace amounts in the south central region. According to SPC there was a tornado reported in Burleigh County. Hail was reported at Burleigh, Mclean, Steele, Nelson, Towner, and Trail. Golf ball sized hail was
reported in Dunn, Mercer, and McIntosh Counties. Heavy rain fell in Nelson County where NDAWN recorded 1.77" at the Michigan weather station.

The $30^{\text {th }}$ had rainfall primarily in the west central, central and north central regions. Most of the daily totals were around a tenth with a few pockets of over an inch. This storm event produced very large hail. SPC had McKenzie County with 1 " hail, McLean, Morton, and Mercer with quarter to tennis ball hail, Adams with golf ball hail, Stark and Grant with nickel sized hail, and Ward with quarter sized hail. Wind speeds were reported over or near 60 mph at McLean, Stark, and Mercer. It was also reported on SPC that Mercer had 12" diameter trees blown down. The heaviest rain was in Morton where NDAWN's Mandan station recorded 1.38".

Even though the state average air temperature was $69.3^{\circ} \mathrm{F}$ which is slightly above the 1971-2000 normal of $68.7^{\circ} \mathrm{F}$, the majority of the state experienced below normal temperatures. July 2008 state average air temperature ranked the $61^{\text {st }}$ coolest in the past 114 years with a maximum of $79.7^{\circ} \mathrm{F}$ in 1936 and a minimum of $61.8^{\circ} \mathrm{F}$ in 1992.

The average monthly air temperatures ranged from $65^{\circ} \mathrm{F}$ in the northeast to $70^{\circ} \mathrm{F}$ in the southwest. The departure from normal monthly average air temperature ranged from -4 in the northeast to 4 in the southwest. So while the southwest had above normal average air temperatures, the remainder of the state had below normal average air temperatures. The higher temperatures of the southwest skewed the state average air temperature to be $69.3^{\circ} \mathrm{F}$ which was slightly above normal.

NDAWN's highest recorded daily air temperature for July was $99^{\circ} \mathrm{F}$ at Dickinson on the $10^{\text {th }}$. The lowest recorded daily air temperature was $40^{\circ} \mathrm{F}$ at Bottineau on the $3^{\text {rd }}$.

U.S. Drought Monitor North Dakota

August 5, 2008
 Valid 7 a.m. EST

Figure 1. Drought Monitor for North Dakota (National Drought Mitigation Center)

August 2008

The state average precipitation was 2.48 inches which is above the 1971-2000 normal of 2.10 inches. August 2008 state average precipitation ranked $36^{\text {th }}$ wettest in the past 114 years with a maximum of 5.02 inches in 1900 and a minimum of 0.72 inches in 1961.

The August total rainfall in the southwest was primarily between 0.5 and 1.5 inches. Most of the rainfall totals in the central, north central, northwest and northeast part of the state were wide spread falling between 2 and 7 inches. The southeast corner also varied with anywhere between 1 and 4 inches of rain. Around half or more of the state has below normal precipitation, however the state average was 2.48 inches which is above the 1971-2000 normal of 2.10 inches. The north central region had generally around 200% to 300% of normal precipitation. The US Drought Monitor classified the south-eastern $1 / 3^{\text {rd }}$ of the state as no longer under drought conditions. McKenzie, Dunn, Golden Valley, Billings and Stark counties were classified as extreme drought. Counties surrounding the area of extreme drought along with the counties in the northwest were classified as severe drought. The remaining western counties fell in the abnormally dry to moderate drought range (Figure 1). The USDA, National Agricultural Statistics Service, North Dakota Field Office reported a topsoil moisture of 20% very short, 23% short, 56% adequate, 1% surplus with a subsoil moisture reported as 24% very short, 27% short, and 49% adequate (Weekly Weather and Crop Bulletin Vol. 95, No. 36).

A record rainfall of 3.33" was recorded by the National Weather Service (NWS) at Fargo on the $11^{\text {th }}$ breaking the previous record of 2.10 " set in 1963 . Also on the $11^{\text {th }}$ the NWS reported a record rainfall of 1.64 " at Grand Forks which broke the previous record of 0.89 " set in 1999. The top five August daily rainfall totals measured from the North Dakota Agricultural Weather Network (NDAWN) was 3.92 " on the $11^{\text {th }}$ at Wahpeton, $3.25^{\prime \prime}$ on the $21^{\text {st }}$ at Harvey, $3.07^{\prime \prime}$ on the $11^{\text {th }}$ at Wyndmere, $2.77^{\prime \prime}$ on the $11^{\text {th }}$ at Sabin MN, and $2.54^{\prime \prime}$ on the $2^{\text {nd }}$ at Rolla. The top five August daily maximum wind speeds recorded from NDAWN was 70.5 mph on the $3^{\text {rd }}$ at Plaza, 53.0 mph on the $3^{\text {rd }}$ at Watford City, 49.8 mph on the $21^{\text {st }}$ at Dickinson, 48.7 mph on the $22^{\text {nd }}$ at Watford City, and 48.0 mph on the $22^{\text {nd }}$ at both Bowman and Linton. NDAWN wind speeds are measured at a height of 10 feet (3 m).

The National Weather Service's Storm Prediction Center (SPC) preliminary August storm reports had 13 reported high wind events, 62 reports of hail, and 7 reported tornadoes. The majority of the storm reports fell on the $1^{\text {st }}, 2^{\text {nd }}, 11^{\text {th }}, 14^{\text {th }}, 21^{\text {st }}$, and the $26^{\text {th }}$. The first half of August saw more rainfall than the second half. From the $1^{\text {st }}$ through the $14^{\text {th }}$, rain fell across the state with the larger amounts falling in the northern and eastern parts of the state. The $15^{\text {th }}$ through the $20^{\text {th }}$ was mostly dry. The $21^{\text {st }}$ and $22^{\text {nd }}$ had scattered showers mostly in the north, west central and central regions. The $23^{\text {rd }}$ through the $25^{\text {th }}$ was dry. The $26^{\text {th }}$ through the $28^{\text {th }}$ had rainfall in the eastern part of the state and the $29^{\text {th }}$ through the $31^{\text {st }}$ was dry.

The storm system of the August $1^{\text {st }}$ and $2^{\text {nd }}$ had rain falling in the north and eastern part of the state. SPC had 33 reports of hail with most falling in Benson, Bottineau (quarter sized), Dunn (nickel to golf ball sized), Mountrail, McLean (quarter sized), and Ward (quarter to golf ball size) counties. SPC also had 3 reports of high winds of over 70 mph on the $2^{\text {nd }}$ in Mercer, Golden Valley, and Plaza counties.

The storm system of the August $11^{\text {th }}$ had rain fall again in the north and eastern part of the state. NDAWN recorded over 3 inches at Wahpeton and Wyndmere, and over 2 inches at Fargo, Oakes, Ekre, Sabin MN, Warren MN, and Grand Forks weather stations. SPC reported 6 tornadoes that briefly touched down in Burleigh, McLean, McHenry, and Benson counties.

The August $14^{\text {th }}$ storm system had scattered light showers scattered across the state. The highest amounts as recorded by NDAWN was 0.99 " at Fargo and 0.90 " at Pillsbury. SPC had 8 reports of hail in Barnes, Cass, Pembina, Ransom, and Steele counties. SPC had 1 reported tornado in Steele and 2 reports of high winds in Griggs and Walsh counties.

The August $21^{\text {st }}$ storm system had light showers mostly in the northern and west central part of the state. The highest amount recorded at the Harvey NDAWN station was 3.25". SPC had 13 reported hail events in Rolette, McHenry, Billings, Stark, Benson, Billings Oliver, McLean, Ramsey and Stark counties. There were also 3 high wind reports from Ward and Stark counties.

The storm system on the $26^{\text {th }}$ had rainfall in the eastern part of the state. SPC had 4 hail reports from Barnes, Emmons, Richland and Sioux counties.

The state average air temperature was $68.6^{\circ} \mathrm{F}$ which is above the 1971-2000 normal of $67.2^{\circ} \mathrm{F}$. August 2008 state average air temperature ranked the $33^{\text {rd }}$ warmest in the past 114 years with a maximum of $73.6^{\circ} \mathrm{F}$ in 1983 and a minimum of $60.9^{\circ} \mathrm{F}$ in 1977.

The average monthly air temperatures ranged from $70^{\circ} \mathrm{F}$ in the southwest to $65^{\circ} \mathrm{F}$ in the northeast. Most of the state had above normal air temperatures with most of the state having 1 to $3^{\circ} \mathrm{F}$ above normal. The second half of August had record high temperatures. According to the National Weather Service (NWS) on the $19^{\text {th }}$ Williston tied the record high temperature of $98^{\circ} \mathrm{F}$ that was set in 1992. Again on the $30^{\text {th }}$ Williston tied the 1983 record high temperature of $97^{\circ} \mathrm{F}$. Also on the $30^{\text {th }}$, Bismarck had a record high temperature of $100^{\circ} \mathrm{F}$ breaking the previous record of 97° set in 1948 and Dickinson had a record high temperature of $101^{\circ} \mathrm{F}$ breaking the previous record of 96° set in 1929. On the $31^{\text {st }}$ Grand Forks had a record high minimum temperature of $68^{\circ} \mathrm{F}$ breaking the previous record of 67° set in 1953. The top five August maximum daily air temperatures recorded from NDAWN was $101.8^{\circ} \mathrm{F}$ on the $1^{\text {st }}$ at Sidney MT, $100.8^{\circ} \mathrm{F}$ on the $30^{\text {th }}$ at Bowman, $100.7^{\circ} \mathrm{F}$ on the $30^{\text {th }}$ at Hazen, $100.3^{\circ} \mathrm{F}$ on the $30^{\text {th }}$ at Mott, and $100.2^{\circ} \mathrm{F}$ on the $1^{\text {st }}$ at Brorson MT.

The NWS reported a record low temperature at Grand Forks on the $24^{\text {th }}$ of $39^{\circ} \mathrm{F}$ which broke the previous record of 40° set in 1942. The top five August minimum daily air temperatures recorded from NDAWN was $34.1^{\circ} \mathrm{F}$ on the $23^{\text {rd }}$ at Bowman, $35.4^{\circ} \mathrm{F}$ on the $23^{\text {rd }}$ at Mott, $36.4^{\circ} \mathrm{F}$ on the $23^{\text {rd }}$ at Hettinger, $37.4^{\circ} \mathrm{F}$ on the $27^{\text {th }}$ at Hettinger and $37.6^{\circ} \mathrm{F}$ on the $28^{\text {th }}$ at Bottineau and $37.6^{\circ} \mathrm{F}$ also on the $24^{\text {th }}$ at Rolla and Warren MN.

Season in Graphics

Summer 2008 Weather in North Dakota:

Total Precipitation percent of mean (1971-2000)
Precipitation Percent of Normal
(Data from NWS Cooperative Network)

Average Temperature (${ }^{\circ}$ F) Deviation from Mean (1971-2000)

Departure From Normal Monthly Average Air Temperature in degrees F
(Data from North Dakota Agricultural Weather Network (NDAWN))

North Dakota State Climate Office

Season in Graphics

Summer 2008 Weather in North Dakota:

Total Precipitation percent of mean (1971-2000)
Precipitation Percent of Normal
(Data from NWS Cooperative Network)

North Dakota State Climate Office
Average Temperature (${ }^{\circ}$ F) Deviation from Mean (1971-2000)
Departure From Normal Monthly
Average Air Temperature in degrees F

North Dakota State Climate Office

Summer 2008 Weather in North Dakota:

Total Precipitation percent of mean (1971-2000)
Precipitation Percent of Normal
(Data from NWS Cooperative Network)

North Dakota State Climate Office
Average Temperature (${ }^{\circ}$ F) Deviation from Mean (1971-2000)
Departure From Normal Monthly Average Air Temperature in degrees F
(Data from North Dakota Agricultural Weather Network (NDAWN))

North Dakota State Climate Office

Historical June Precipition for lorth Dadota

June Precipitation Statistics

2008 Amount: $\quad 4.22$ inches
Maximum: 7.21 inches in 2005
State Normal: 3.19" (1971-2000)

[^0]
Historical Juy Precipitation for North Dakota

July Precipitation Statistics

2008 Amount: 2.73 inches
Maximum: $\quad 7.88$ inches in 1993
State Normal: 2.75" (1971-2000)

Monthly Ranking: $67^{\text {th }}$ Driest in 114 years
Minimum: 0.62 inches in 1936
Years in Record: 114

Histoicial August Precipilation for North Datota

August Precipitation Statistics

2008 Amount: 2.48 inches
Maximum: 5.02 inches in 1900
State Normal: 2.10" (1971-2000)

Monthly Ranking: $36^{\text {th }}$ Wettest in 114 years Minimum: $\quad 0.72$ inches in 1961
Years in Record: 114

June Temperature Statistics

2008 Average: $60.9^{\circ} \mathrm{F}$
Maximum: $\quad 74.2^{\circ} \mathrm{F}$ in 1988
State Normal: 63.73° F (1971-2000)

Monthly Ranking: $29^{\text {th }}$ Coolest in 114 years
Minimum: $\quad 56.2^{\circ} \mathrm{F}$ in 1915
Years in Record: 114

July Temperature Statistics

2008 Average: $69.3^{\circ} \mathrm{F} \quad$ Monthly Ranking: $61^{\text {st }}$ Coolest in 114 years
Maximum: $\quad 79.7^{\circ} \mathrm{F}$ in 1936
State Normal: $68.7^{\circ} \mathrm{F}$ (1971-2000)
Minimum: $61.8^{\circ} \mathrm{F}$ in 1992
Years in Record: 114

August Temperature Statistics

2008 Average: 68.6° F
Maximum: $\quad 73.6^{\circ} \mathrm{F}$ in 1983
State Normal: $67.2^{\circ} \mathrm{F}$ (1971-2000)

Monthly Ranking: $\quad 33^{\text {rd }}$ Warmest in 114 years
Minimum: $\quad 60.9^{\circ} \mathrm{F}$ in 1977
Years in Record: 114

State Tornado, Hail, and Wind Reports for Summer 2008 by B. A. Mmlins

North Dakota 3 Month Total	Wind	Hail	Tornado
	104	278	30

Reports by Month			
Month	Wind	Hail	Tornado
Total June	58	108	5
Total July	33	108	18
Total August	13	62	7

North Dakota Record Event Reports for Summer 2008

Date	Location	Type of Record	Previous Record
06/11/08	Bismarck	Record rainfall of 1.37 inches.	0.86 inches set in 1880.
06/11/08	Jamestown	Record rainfall of 2.62 inches.	0.77 inches set in 2001.
06/11/08	Minot	Record rainfall of 1.88 inches.	1.61 inches set in 1977.
06/11/08	Dickinson	Record rainfall of 0.65 inches.	0.64 inches set in 1966.
06/11/08	Williston	Record rainfall of 0.94 inches.	0.69 inches set in 2003.
07/23/08	Jamestown	Record rainfall of 1.67 inches.	0.63 set in 1987 .
07/30/08	Minot	Record rainfall of 0.33 inches.	0.22 set in 1984.
08/11/08	Fargo	Record rainfall of 3.33 inches.	2.10 set in 1963.
08/11/08	Grand Forks	Record rainfall of 1.64 inches.	0.89 set in 1999.
08/19/08	Williston	Record high temperature of $98{ }^{\circ} \mathrm{F}$.	It ties the previous record set in 1992.
08/24/08	Grand Forks	Record low temperature of $39^{\circ} \mathrm{F}$.	40° set in 1942.
08/30/08	Williston	Record high temperature of $97^{\circ} \mathrm{F}$.	It ties the previous record set in 1983.
08/30/08	Bismarck	Record high temperature of $100^{\circ} \mathrm{F}$.	97° set in 1948.
08/30/08	Dickinson	Record high temperature of $101^{\circ} \mathrm{F}$.	96° set in 1929.
08/31/08	Grand Forks	Record highest minimum temperature of $68^{\circ} \mathrm{F}$.	67° set in 1953.

Fall Climate Outlooks

This past summer was a fairly cool summer across much of the United States, and in the northern plains in particular. While not record cold, it was consistently cold, with very few very warm days conducive to the rapid accumulation of heat units. This has lead to concerns that an early frost may hurt certain crops. On the other hand, timely rains and moderate temperatures allowed for several of the small grains to grow very well.

The overall weather pattern for the upcoming fall season is forecast to create warmer weather than normal across a large part of the plains states. This outlook is based mainly on the past decades trends of warmer fall weather. Due to the lack of strong forcing from the Pacific signal, the Climate Prediction Center uses the trends of the past decade to drive the outlook. Precipitation is expected to show its normal climatic variability.

Local research agrees that the fall will probably be, on balance, warmer than average.
Precipitation will probably end up being above normal, which is based heavily on the trend and persistence of the pattern we have experienced this fall. As is always the case with precipitation, significant variability from place to place is most likely.

These outlooks are available at
http://www.cpc.ncep.noaa.gov/products/OUTLOOKS_index.shtml

North Dakota State Climate Office has links to National Weather Service’s local 3-month temperature outlooks into the fall of 2009. Those outlooks can be accessed from the following web site for your location:
http://www.ndsu.nodak.edu/ndsu/ndsco/outlook/L3MTO.html
Also the readers will find the following National Weather Service office web sites very useful for shorter term weather forecasts:

Eastern North Dakota: http://www.crh.noaa.gov/fgf/ Western North Dakota: http://www.crh.noaa.gov/bis/

ndsco, Hydro-Talk

Is Long Lake Becoming a Salt Lake?

On a clear day, satellite pictures are displaying a unique white area in south central North Dakota near Moffit (see the highlighted area in the picture below). This turns out to be an area of Long Lake that is shrinking and leaving a large salt deposit. The direct sun is reflecting enough of this area to be visible on the satellite pictures. This picture on the right is from MODIS 250 meter resolution on August 18, 2008. The lake levels at Long Lake, Moffit have been decreasing over the past few years due to a continual drought condition. During the past 8 years at Moffit there have been 4 very
 dry years, 2 near normal and only 2 wet years. The wettest period was 1993 when the annual total precipitation was 24.39 inches (green line in the graph below). The driest year in this period was 1988 when the total annual precipitation was 7.15 inches (tan line in the graph below). The average annual precipitation for this area is 16.53 inches. The total precipitation so far this year, January through July, is 6.39 inches which is 1.32 inches below normal (blue line in the graph below). Temporary relief from the drought conditions may occur with scattered thunderstorms but a long term moisture laden season is needed to bring significant relief.

Period of record for wettest and driest: 1943-2008.

The state drought conditions as of September 9, 2008 indicate more than 15% of the state is experiencing at least severe drought conditions in the west central North Dakota. Slight improvement is expected through western counties during the next 60 days.

For updated information on the state drought conditions check the following National Drought Mitigation web site: http://drought.unl.edu/dm

How Drought Stress Impacts Corn Development
Drought has been a serious concern in more than half of the state during the 2008 growing season with nearly a third of the state is under severe drought during part of the year. Corn is one of the most water efficient crops grown in North Dakota. Nevertheless, it has a high water requirement because of its high yield potential and can be significantly impacted by drought. The impact of drought on corn growth and yield varies considerably depending on its timing and severity. Research has shown that there is little impact of drought on corn growth during early vegetative stages. During late vegetative development, however, short periods of drought stress (four days of sufficient stress to cause leaves to curl) during this growth stage can reduce yields by $5-10 \%$. During late vegetative development until just before the silk emergence, kernel numbers per cob are set, so drought stress during this period can impact the size of the cob. Drought stress during tassel emergence has the potential to reduce yields by 10 to 25%. The most sensitive period for drought stress in corn is during the period between silk emergence and the blister stage where yield losses between $40-50 \%$ can occur. Corn is most sensitive to drought during this stage because the male and female flowers are separated by a considerable distance and pollen and silks are sensitive to hot and dry conditions. When corn is severely stressed prior to flowering, silk growth is delayed and pollen shed will occur before the silks have emerged, resulting in barrenness. Silks can also dry before they are pollinated resulting in poor fertilization and missing kernels. Abortion of developing kernels is common, particularly towards the tip of the ears, with drought stress during early grain fill. Since the corn plant has the capacity to store considerable reserves in the stem, yield losses when drought stress is delayed until the dough stage usually are in the $20-30 \%$ range. These yield losses discussed above can be additive if stress occurs a more than one growth stage. Readers can refer to the Table 1 below to access tabular depiction of the drought impact on corn yield at different growth stages corresponding approximate corn time in Accumulated Growing Degree Units (AGDU).

Table 1. Yield reduction due to drought stress (4 days of accumulative visible wilting) at different growth stages for corn hybrids with 80-95 Relative Maturity (After Classen and Shaw, 1970).

Growth Stage	Approximate AGDU	Potential Yield Reduction
Late Vegetative	$600-800$	$5-10 \%$
Tassel Emergence	$900-1000$	$10-25 \%$
Silk Emergence-Pollen Shedding	$950-1150$	$40-50 \%$
Blister	$1500-1700$	$30-40 \%$
Dough	$1800-2000$	$20-30 \%$

[^1]
How is yield affected by late season drought stress?

During the first stage of stress, the upper leaves curl or roll towards the midrib during the hottest part of the day (see the picture on the right). If stress continues, premature leaf death begins at the bottom of the plant and proceeds upward. Leaf death is the first sign of permanent damage to the plant. With severe stress, the upper leaves roll so tightly that they appear like "onion leaves". With less leaf area capable of photosynthesis, grain filling is slowed even while maturing at an accelerated pace. Carbohydrates that had been stored in the stem earlier in the season are moved to the developing
 ear. Not surprisingly, drought stressed crops are more prone to lodging because of poor stalk health. There may be some kernel abortion in the tips of the ears, but for the most part, kernel numbers are not reduced significantly with late season drought. Yield losses will largely be due to reduced kernel size and reduction in test weight. The amount of reduction will be related to the amount of stress prior to harvest.

Reference

Classen, M.M. and Shaw, R.H., 1970. Water Deficit Effects on Corn II-Grain Components. Agron. J. 62, pp. 652-655.

CONTACTING

NORTH DAKOTA STATE CLIMATE OFFICE

Please contact us if you have any inquiries, comments, or would like to know how to contribute to this quarterly bulletin.

North Dakota State Climate Office
College of Agriculture, Food Systems, and Natural Resources
North Dakota State University
209 Walster Hall, Fargo, ND 58105
Administration: 701-231-8901
Climate Services: 701-231-6577
Fax: 701-231-7861
URL: http://www.ndsu.edu/ndsco
E-mail: Adnan.Akyuz@ndsu.edu

[^0]: Monthly Ranking: $\quad 28^{\text {th }}$ Wettest in 114 years Minimum: 1.14 inches in 1974
 Years in Record: 114

[^1]: ${ }^{1}$ The corresponding author: Joel Ransom is an Extension Agronomist of NDSU-Cereal Crops joel.ransom@ndsu.nodak.edu

