

DISSERTATION CALCULATOR TOOL FOR TRACKING AND MANAGING

DISSERTATION PROGRESS FOR GRADUATE STUDENTS

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Bat-Od Bat-Otgon

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Program:

Software Engineering

November 2019

Fargo, North Dakota

North Dakota State University

Graduate School

Title

Dissertation Calculator Tool for Tracking and Managing Dissertation Progress for

Graduate Students

 By

Bat-Od Bat-Otgon

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Dr. Gursimran S. Walia

 Chair

Dr. Pratap Kotala

Dr. Limin Zhang

 Approved:

 11/19/2019 Dr. Kendall E. Nygard

 Date Department Chair

iii

ABSTRACT

Dissertation Calculator is a tool for graduate students who are working towards their

graduate degree at North Dakota State University to manage and track their dissertation progress.

It is also a communication and feedback tool between students and their advisers. It was

developed using ASP.NET Core Framework. This project is based on Model-View-Controller

and Client-Server model. There are 3 different stakeholders which are student, adviser, and

admin so each user has a different view. All the information that is created, modified, and

deleted by the users is stored on a database and the host application manages the access to it so it

is also incorporates Client-Server model. The client side will be any device with a browser. This

tool provides essential help for graduate students who wants to make sure they are on track to

complete their dissertation and get useful feedback from their adviser in a timely manner.

iv

ACKNOWLEDGEMENTS

I would like to thank Dr. Gursimran Walia for his guidance and support while I was

working on this paper. They were extremely valuable in completing this paper and one of the

reasons why this paper exists in the first place.

I would like to thank Dr. Pratap Kotala and Dr. Limin Zhang for agreeing and taking the

time to be part of my graduate committee.

I would like to thank Danjel Nygard from Graduate School and Enrico Sassi from

Graduate Center for Writers for their valuable input and feedback on completing this project for

the paper.

v

DEDICATION

I would like to dedicate this to my wife and children for their unending love and support.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

DEDICATION .. v

LIST OF FIGURES ... viii

LIST OF APPENDIX FIGURES... xi

1. INTRODUCTION .. 1

1.1. Dissertation Calculator Tool .. 1

1.2. Paper Organization ... 3

2. BACKGROUND .. 4

2.1. Dissertation Calculator by University of Minnesota .. 4

3. DESIGN .. 6

3.1. Framework ... 6

3.1.1. Entity Framework Core ... 8

3.2. Architecture .. 9

3.2.1. Database Server ... 10

3.2.2. Application Server ... 10

3.2.3. Client ... 10

3.3. DissertationCalculator.dll ... 10

3.4. Database Design ... 12

3.5. Relational Database Diagram ... 14

3.6. Use Case Diagram .. 17

4. DEVELOPMENT ... 18

4.1. Dissertation Calculator ... 18

4.1.1. Environment .. 18

vii

4.2. Configuring Host Server .. 23

4.3. Running the Application .. 24

4.4. Development Progress.. 29

4.4.1. Project File Organization ... 29

4.5. Functionalities .. 33

4.5.1. Shared Functionalities ... 33

4.5.2. Student Functionalities .. 39

4.5.3. Adviser Functionalities .. 46

4.5.4. Admin Functionalities ... 50

4.6. Improvements ... 53

5. CONCLUSION ... 55

6. FUTURE WORK .. 56

REFERENCES ... 57

APPENDIX ... 59

viii

LIST OF FIGURES

Figure Page

2.1. Dissertation Calculator - University of Minnesota .. 5

3.1. Example cshtml file organization .. 7

3.2. Example.cshtml .. 7

3.3. Example.cshtml.cs ... 7

3.4. Architecture – Deployment Diagram ... 9

3.5. Application Files .. 11

3.6. School Department Model for Database .. 13

3.7. Relational Database Diagram Part 1 .. 15

3.8. Relational Database Diagram Part 2 .. 16

3.9. Use Case Diagram.. 17

4.1. Visual Studio Installer.. 19

4.2. Visual Studio 2019 ... 20

4.3. SQL Server Object Explorer in Visual Studio ... 20

4.4. Github Desktop .. 21

4.5. Visual Studio Publish Application Menu .. 25

4.6. Visual Studio Publish Application Options ... 26

4.7. Application URL Configuration .. 26

4.8. Dissertation Calculator Tool Login ... 28

4.9. File Organization in Visual Studio .. 29

4.10. Program.cs ... 31

4.11. Startup.cs .. 32

4.12. Register Page ... 34

4.13. Email Confirmation ... 34

ix

4.14. Page Confirming Email Was Confirmed ... 35

4.15. Log in Page .. 35

4.16. Forgot Password Page .. 36

4.17. Forgot Password Email Confirmation Request.. 36

4.18. Change Password Page After Clicking on Email Link .. 36

4.19. Reset Password Page.. 37

4.20. Profile Page .. 38

4.21. Change Password Page .. 39

4.22. Select Adviser Page ... 40

4.23. Confirm Adviser Page.. 40

4.24. Current Adviser Page ... 40

4.25. Enter Expected Graduation Page ... 41

4.26. Student Home Page .. 42

4.27. Create From Template Page... 42

4.28. Template Timeline View ... 42

4.29. Enter New Name for New Timeline .. 43

4.30. Confirm Creation of Timeline with Selected Template ... 43

4.31. Student Timeline View .. 43

4.32. Blank Student Timeline ... 44

4.33. Student Timeline .. 45

4.34. Adviser Home Page - View Students... 46

4.35. Adviser Viewing Student Timelines .. 47

4.36. Adviser Viewing Student Timeline ... 47

4.37. Adviser's Template Timelines ... 48

4.38. Public Templates Available to Advisers .. 49

x

4.39. Adviser Template Timeline View .. 49

4.40. Adviser Blank Template Timeline ... 50

4.41. Admin Create Account Page .. 50

4.42. Admin Edit Account Page ... 51

4.43. Admin Departments Page .. 52

4.44. Admin Create Base Template Page ... 52

4.45. Admin Academic Calendar Dates and Deadlines Page ... 53

4.46. Admin Academic Calendar Dates and Deadlines Term Edit Page 53

xi

LIST OF APPENDIX FIGURES

Figure Page

A.1. Academic CalendarTerm.cs .. 59

A.2. AcademicCalendarTermDate.cs ... 60

A.3. BaseTemplateTimeline.cs ... 61

A.4. BaseTemplateTimelineSteps.cs .. 62

A.5. Comment.cs... 63

A.6. SchoolDepartment.cs .. 64

A.7. StudentTimeline.cs .. 64

A.8. StudentTimelineStep.cs... 65

A.9. TemplateTimeline.cs ... 66

A.10. TemplateTimelineStep.cs .. 67

A.11. ApplicationDbContext.cs .. 68

A.12. Migration Code Example .. 69

A.13. Database Tables .. 69

1

1. INTRODUCTION

For graduate students, dissertation completion is a very crucial part of their program. It

can be very daunting process with multiple steps to complete and keep track of. From the

beginning of the process such as starting with understanding the expectations to the end of the

process where you submit your dissertation to graduate school, the entire process can take very

long time. These students can get overwhelmed by the number of steps to complete while taking

classes and potentially fall behind with their schedule and miss their expected graduation date.

This opens the opportunity to fulfill the need for better method to manage, track, and

communicate changes or updates with advisers of the dissertation process with a specialized tool

to make process easier and simpler.

With this paper, we are developing a tool called Dissertation Calculator tool to assist

graduate students to manage, track, and communicate changes or updates to advisers at North

Dakota State University. As it currently stands, there is no such tool available to assist students

of NDSU thus the need for this specific tool was made apparent. The tool was requested by

Graduate Center for Writers at NDSU for development to be used by graduate students. This

paper will cover the entire process of how the tool was developed such as the design and

functionalities with the help and input from Graduate School and Center for Writers.

1.1. Dissertation Calculator Tool

Dissertation Calculator is a web application tool to assist graduate students to help them

manage and track their dissertation progress. It also provides a way to communicate updates and

changes on each step of the progress with their adviser. Advisers can also provide useful

feedback to students on each step assisting them to complete their dissertation. The main

2

stakeholders of this tool are graduate students, advisers, and administrators. Each stakeholder

will have certain number of features in the tool that they can use to perform specific functions.

Administrator users are most likely going to be employees of Graduate School and they

can create, edit, and delete accounts, departments, base template timeline, and academic calendar

dates and deadlines. The base templates are for advisers so that they can use it as a starting point

for their own template that they can make for students to use. Academic calendars dates and

deadlines are very important specifically for graduate students who wants to finish their

dissertation on time. Admin user can enter specific dates into the system so that it will show up

student’s home page to remind them.

Adviser users are faculty who are advising a graduate student in their department and

working with them towards completing a dissertation. They can view students who have selected

them as their adviser and view their dissertation progress timeline. They can also make

comments on each step of the timeline to give students updates, suggestions and provide

valuable feedback on time. One of the main functionalities that adviser user can perform is to

create a template timeline that has steps already created with description, and recommended

duration of days each step should take for the students to use to create their own student timeline

based on the template. Adviser users can create these templates from already available templates

from the system made by administrators or make them manually.

Student users are any graduate student who are working towards completing their

dissertation for their master’s or doctoral degree. They will only be able to access the student

functionalities such as creating a timeline to keep track and manage their dissertation progress,

either manually or based on the template that their adviser has created. The timeline will consist

of steps, step description, start date, end date, comments, and completed status. On the timeline,

3

student can add steps, remove steps, and edit steps. Student user can initially set their expected

graduation date and their adviser when their first login to the system with their account. Students

can change these options later if needed.

There are few things that each stakeholder can do as shared functionality such as

registering their account, login into the system, resetting forgotten password, changing their

profile information, and login out of the system.

1.2. Paper Organization

This paper provides background about existing dissertation calculator tools that are used

by other education institutions in section 2, details on design in section 3, development process

of the tool and its features in section 4, the conclusion and lessons learned from the project will

be discussed in section 5, and lastly future work needed for the tool is discussed in section 6.

4

2. BACKGROUND

There is no easy way to find which educational institutions use what kind of specific tool

for dissertation management and tracking progress, as some tools that they use might be only

available internally and not publicly available in search engines. Also, there is no specific tool

made available to public for students and advisers to use as well. However, there are some tools

used by educational institutions such as University of Kentucky, University of Minnesota,

Rochester Institute of Technology, Baker University, University of Toronto, University of

Missouri that can be looked up by search engines. These tools all work in the same manner by

entering an expected due date or date to complete and get number of steps that show a date that

the user needs to complete by and description of each step that includes additional information

by providing links to other locations. The search terms “Dissertation Calculator”, “Dissertation

Tracker”, or “Dissertation Manager” don’t yield useful results apart from what we discovered

above. Out of all the tools, one made my University of Minnesota is the most comprehensive one

with detailed description, ease of use, and best look and feel.

2.1. Dissertation Calculator by University of Minnesota

Dissertation Calculator tool made my University of Minnesota is referenced in the other

tools made by other schools. Most of them have based of their tools on the tool by University of

Minnesota. In this tool, you can enter a start date and a due date. Based on these two inputs, the

tool gives a timeline of steps or stages of your dissertation progress to complete by a specific

date on each steps or stages. Each step includes strategies to complete the step and links to other

useful information. It also includes a section called “Tips from the Libraries” where certain

specific tips that may apply for the specific step or stage. Each step or stage has a number and

how much percentage of time must be spent on it.

5

Figure 2.1. Dissertation Calculator - University of Minnesota

Based off on this brief research, there are no tools like Dissertation Calculator exists, at

least from public view or at North Dakota State University. The only tool that may have come

close is the Dissertation Calculator tool by University of Minnesota. These tools are all trying to

simplify the tracking and managing of dissertation progress easier, but Dissertation Calculator

tool discussed in this paper’s goal is to make things even more simpler to track and manage and

introduce interaction between the student and the adviser by providing more functionality such

as commenting, selecting adviser, creating templates, etc.

6

3. DESIGN

In this section, we will cover the design of Dissertation Calculator tool developed for this

paper.

3.1. Framework

The web application is based on ASP.NET Core framework. ASP.NET Core provides

two ways to develop a fully featured web application which are MVC web application or Razor

Pages web application. Razor Pages is the sub category of this framework which the web

application tool of this paper is developed on. It is based on MVC model but much simpler as it

provides page focused development and combines the model and controller to make

development simpler.

Benefits include of using ASP.NET Core include, a unified story for building web UI and

web APIs, architected for testability, razor Pages makes coding page-focused scenarios easier

and more productive, Blazor lets you use C# in the browser alongside JavaScript, share server-

side and client-side app logic all written with .NET, ability to develop and run on Windows,

macOS, and Linux, open-source and community-focused, integration of modern, client-side

frameworks and development workflows, a cloud-ready, environment-based configuration

system, built-in dependency injection, a lightweight, high-performance, and modular HTTP

request pipeline, ability to host on IIS, Nginx, Apache, Docker, or self-host in your own process,

side-by-side app versioning when targeting .NET Core, tooling that simplifies modern web

development.

7

Razor Page files consist of two files to make up the page model. First file is “.cshtml”

which handles the HTML, CSS, JavaScript codes and second file is “.cshtml.cs” file which

handles model and controller part of the code which is written in C#.

Figure 3.1. Example cshtml file organization

Figure 3.2. Example.cshtml

Figure 3.3. Example.cshtml.cs

8

3.1.1. Entity Framework Core

This project uses a relational database. ASP.NET Core works with a technology called

Entity Framework Core to assist with developing database models much simpler. It is a

lightweight, extensible, open source, and cross-platform data access technology. It allows to

create database objects using .NET objects and takes care of most of the data access code

without us needing to write them ourselves. It supports many database engines such as SQL

Server, SQLite, in-memory database, Azure Cosmos DB, PostgreSQL, MySQL, MyCAT, Oracle

DB and so much more.

With Entity Framework, data access is performed using a model. There are number of

ways to generate a model. First, you can generate your model from existing database which you

already created in database provider already. Second, manually code your model to match your

database. Lastly, you can use a process called Entity Framework Migrations to create database

from your model. This project uses the last method to create databases for the system. All the

databases are modelled in C# code and then migrated to a database table. EF migrations give the

ability to migrate data model to an updated on as models can change during development.

Database can get out of sync so dropping it and creating a new database introduces the problem

of losing the data. Migrations provide a way to migrate the data from the old database model to

the new database model without losing data.

With EF migration, you can create a migration, apply the changes to the database by

updating it, customize the migration code so that the database update is exactly what you want,

remove migration that is no longer needed, revert back migration changes, generate SQL scripts,

and apply migrations at runtime when the application first starts.

9

3.2. Architecture

Dissertation Calculator tool is based on Model-View-Controller model mixed with

Client-Server model. The reason for choosing MVC is that we have 3 different views by 3

different types of users such as students, advisers, and administrators. Each view can be

separately developed and maintained easily. This model also provides modifiability by allowing

easy changes to user interfaces. As for the client-server model side of things, the web application

will use a centralized database to store all the information that will be used by students, advisers,

and administrators so that is taken care of on server side. Client-Server model provided

interoperability, modifiability, availability, and reusability qualities. Clients are any users with a

browser that can use the web application. Modifiability allows centralized change on the server

and clients will be able to use the changes right away. Server side will be the database, and the

application hosting. This can be multiple nodes to allow for better availability. Database can be

on a separate dedicated database server as well as be on the same server as the application server.

It will depend on how the environment needs to be scaled and the data or the application could

be used for different application easily for better reusability.

Figure 3.4. Architecture – Deployment Diagram

10

3.2.1. Database Server

Entity Framework Core supports many database providers but for this project we selected

Microsoft SQL Server as the database provider. Microsoft SQL Server 2012 and onward

versions are supported for this. Microsoft SQL Server 2017 for Linux running on Ubuntu server

was used for this project, but it does not matter to the application where the database is located if

a connection can be made as long as the database provider is supported by EF Core.

3.2.2. Application Server

As mentioned before, ASP.NET Core is a cross-platform framework so it can run on

Windows, Linux, macOS or in a Docker container. For development such as writing the code,

Windows environment was used but for testing, deploying, and hosting the application, a Linux

server running Ubuntu 18.04 was used. Nginx, a HTTP, and reverse proxy web server was used

to monitor the application service and manage the traffic re-routing incoming traffic to the server

to the application. Nginx can be also used for load balancing in case we have multiple nodes for

the application server for better availability for the users.

3.2.3. Client

For client, any device with an internet or network connection to the application server

will be able to connect using a browser. Google Chrome, Firefox, and Microsoft edge browsers

were used to test the application and all three worked without any issues. Mobile device

browsers are supported, and the UI of the application will scale accordingly.

3.3. DissertationCalculator.dll

DissertationCalculator.dll is the main application that is running on the server using .NET

runtime. Each client request is made to this application via browser then database operations are

made from application to the database.

11

Figure 3.5. Application Files

Most of the other dll files are required packages and libraries to run the application.

“wwwroot” folder contains static files used by the application such as CSS files, JavaScript

libraries such as jQuery and bootstrap.

12

3.4. Database Design

Entity Framework Core manages the data access in the application. It also makes the

database modeling and creation much simpler as .NET objects. All the attributes are written as

.NET objects in the code in the model classes. Each specific information that are created,

modified, and deleted have specific database tables such as Users, Departments, Timelines,

Comments, Dates and Deadlines. We used relational database in this project as it is easy to

understand the relationship between related information. In this project, we have 17 relational

database tables. 7 of which are used and generated automatically for authentication,

authorization, and user account information such as usernames, email addresses, passwords, etc.

These are provided by the framework and generated automatically. However, it can be

customized to work with your application in specific ways you want.

There are 10 tables created using EF based on models from .NET classes. These are

Academic Calendar Terms, Academic Calendar Term Date, Base Template Timeline, Base

Template Timeline Steps, Comment, School Department, Student Timeline, Student Timeline

Step, Template Timeline, and Template Timeline Step.

Academic Calendar Terms is used to model specific terms such as fall, spring, and

summer terms in a school year. Academic Calendar Term Date is used to model the specific

dates in each term that it may have such as dissertation submission deadline, final submission

deadline, and graduation day etc.

Base Template Timeline is used to model a template that is available in the system to

adviser users. It has time line name such as “Template for 2019-2020”. Each timeline will have

steps so that is modeled by the class Base Template Timeline Step. This will be used to model,

step name, step description, created date, created by information, and step duration.

13

Comment is used to model the commenting system in the project. Each student timeline

step has comments. Comments are modeled with comment creator, comment message, comment

created time, and parent comment for reply feature.

School Department is used to model each specific department in a school. It will have

department id and department name.

Student Timeline is used to model a specific timeline that a student will create. It has

name, date created, and steps. The steps are modeled with the class Student Timeline Step class.

It is used to model step number, step name, step description, start date, end date, completed

status, and comments.

Template Timeline is used to model template timelines created by adviser users. It has

template timeline name, date created, created by, and template timeline steps. Each step is

modeled by the class Template Timeline Step. It has step number , step name, step description,

and step duration.

The figure below is a snippet of modeling of school department table in .NET object for

EF Core.

Figure 3.6. School Department Model for Database

14

3.5. Relational Database Diagram

The figure below is the relational database diagram for the tables used in the application.

It shows which tables are related to which and what are the primary key and what tables have

foreign keys in other tables as well. For all the tables, the attribute “Id” is the primary key.

When a table is referencing another table and has a foreign key, it is in the format of

“TableNameId”. For example, “StudentTimelineStep” table has a foreign key called

“StudentTimelineId” so the table it is referencing is the “StudentTimeline” table. Another

example is, “TemplateTimeline” table. It has the foreign key called

“DissertationCalculatorUserId”. The reason this is not using “AspNetUsersId” is because in the

application code, we have inherited the identity user class and created our own called

“DissertationCalculatorUserId” so EF Core automatically knows to map this foreign key to the

primary key “Id” of “AspNetUsers” table. The figure 8 and 9 show the relational database

diagram of the whole system. We have two separate diagrams because everything would not fit

in one diagram. The common table for both is “AspNetUsers” which is the table for the

containing all the information about the users of the system. Figure 9 is showing everything

related to identity meaning tables used for authentication, authorization, and roles.

15

Figure 3.7. Relational Database Diagram Part 1

16

Figure 3.8. Relational Database Diagram Part 2

17

3.6. Use Case Diagram

Figure 10 below shows the use case diagram of Dissertation Calculator tool. We have

three actors which are student, adviser, and administrator. Almost all uses cases include the use

case Login because any users will need to be logged into the system before using any

functionality.

Student actor can select an adviser, set expected graduation date, create timeline, view

their timeline, add, remove, and edit a step, comment on a step, and reset their password.

Advisers can view student list, view student timeline, comment on a step, create template

timeline, and reset their password. Administrators can create a new account, edit accounts, edit

departments, edit academic calendar dates and deadlines, create base template timeline, and reset

their password.

Student

Adviser

Select Adviser

<<include>>

View Student
List

Login

Administrator

Register Account

<<extend>>

Create Timeline

<<include>>

View Timeline

<<include>>

Step

<<extend>>

Add

Remove Edit
Mark as

complete

View Description

<<extend>>

Comment

<<extend>>

Add

Remove
Edit

Reset password

DS

View student
timeline

<<extend>> <<extend>>

Create Template
Timeline

<<include>>

<<include>>

Create/Add New
Account

Edit AccountSet Account Role

<<include>>

<<include>>

<<extend>>

Reset Account
Password

<<extend>>

Remove Account

<<extend>>

<<extend>>

Set Adviser To
Student Account

<<extend>>

Modify/Change
Account Attribute

<<extend>>

View

<<extend>>

Edit Department

Edit
Academic Calendar

Dates and Deadlines

Create Base Template Timeline

Set Expected
Graduate Date

<<include>>

<<include>>

<<include>>

<<include>>

Figure 3.9. Use Case Diagram

18

4. DEVELOPMENT

In this section, the details about the development process of Dissertation Calculator tool.

Initially, there was a previous tool developed as a class project using Maven, Tapestry, and

Cayenne development tools by students of CSCI 413. User stories were collected as a

requirement document and the project was based off on those user stories. There were lots of

limitations to this early system that is why there was a need for an upgraded system that has

more features that is on par with the updated user stories.

4.1. Dissertation Calculator

The tool was developed using Microsoft’s ASP.NET Core framework on Windows with

Visual Studio 2019. This was developed to introduce more features and change the look and feel

of the previous tool. This is not a true production environment project yet, but it is more feature

full version of the tool. It is also ready to be tested for production environment deployment. One

of the major reasons why ASP.NET Core was selected was that it was based on C# which made

the development more familiar and the other added benefits mentioned earlier also made good

contribution as it was a framework that is easily suited to develop web applications.

4.1.1. Environment

4.1.1.1. Development Tools

• Development Environment – Windows 10 Pro Version 1903 Build 18362.418

• Development Framework – ASP.NET Core

• Development Languages – C#, HTML, JavaScript, CSS

• Versioning System – Github

• IDE: Microsoft Visual Studio Enterprise 2019

• Local Database Provider: SQL Express

19

• Local Web Server: IIS Express

• Test Browser: Mozilla Firefox and Google Chrome

The development tools were selected as they are the most comprehensive and works out

of the box for ASP.NET Core development. Almost everything gets setup automatically and

from the first time you compile your code to running it, it takes one click to have everything up

and running.

Windows 10 operating system is a no brainer choice for C# development. Linux can be

used but Windows 10 provides the best experience when developing C# applications using

Visual Studio. It can run all the required tools with easy and requires little to no configuration.

Visual Studio on Windows is just one of the best IDE to use for development. It is simple

to install and configure to make it up and running for development. It also requires little to no

configuration. When installing it, the specific development tools just have to be selected and it

configures the features and requirements automatically. If any change or extra feature is

required, the Visual Studio Installer can be used to add or remove features.

Figure 4.1. Visual Studio Installer

20

Figure 4.2. Visual Studio 2019

Figure 4.3. SQL Server Object Explorer in Visual Studio

21

Github was used as the versioning tool for the project. Github Desktop application made

things very simple as it allowed GUI controls to create, merge, and delete branches. It also made

it easier to push the branch to remote so that multiple devices could be used to develop the

project.

Figure 4.4. Github Desktop

SQL Express and IIS Express gets installed and configured when Web Development

tools are installed when installing Visual Studio. They are the default tools for database provider

and web server when developing with Visual Studio. It is very easy to move over to the

production environment tools like SQL Server and IIS as the Express versions cover most of the

functionality in a smaller scale.

22

4.1.1.2. Test Environment

Local:

• Test Environment: Windows 10

• Database Provider: SQL Express

• Web Server: IIS Express

• Client: Mozilla Firefox

Hosted/ Deployed Remote Server:

• Test Environment: Ubuntu 18.04

• Database Provider: SQL Server 2017 Developer

• Web Server: Kestrel and Nginx

• Client: Mozilla Firefox and Google Chrome

The local test environment is the same environment as the development environment

since it can run the application locally using SQL Express for data provider and IIS Express for

the web server. As for testing on an actual server, a server running Ubuntu 18.04 was provided

by the Computer Science department for the project to test deployment and remote hosting. The

server is a VM hosting Ubuntu 18.04 with 4 CPU cores, 8GB of RAM, and 54GB storage.

Microsoft recently started to support SQL Server on Linux which made the transition from SQL

Express to SQL Server much easier. For this project, we used SQL Server 2017 Developer

version as provided for free by Microsoft.

ASP.NET Core applications are cross-platform which means it can be run on Windows,

Linux, macOS, or Docker environments. On Linux, the application uses a self-hosted Kestrel

web server meaning it is integrated into the application so it only requires the executable to be

run on the server given that the requirements such as .NET Core Framework is installed on the

23

server. Nginx is used as a HTTP and reverse proxy server. The server accepts requests on

“http://batod.dev.cs.ndsu.edu” address so Nginx is listening on this address on the server and re-

routes the traffic to the Kestrel web server which the application is running on. This can be used

to configure security, load balancing, and SSL certificates.

As for client to test the application, Mozilla Firefox and Google Chrome were used but

almost any browser will work with the application as it is using industry standard code thanks to

ASP.NET Core framework.

4.2. Configuring Host Server

 The host server was setup using Ubuntu 18.04 running on a virtual machine provided by

the Computer Science department. The general specifications of the server are 4 CPU cores, 8GB

of RAM, and 54GB storage. These specifications are more than enough for testing the

application and possibly as a production environment but that needs to be tested with live users

to determine. The application run on any environment that ASP.NET Core is supported so

hosting it can be easily configured on physical server or cloud server on Microsoft Azure or

Amazon Web Services

On the machine, SQL Server 2017 installed using the installation guide provided by

Microsoft. They recommend using Ubuntu 16.04 but with the latest update to SQL Server 2017,

18.04 works great on Ubuntu 18.04. The installation requires command line commands to be run

on the server, but it does not take long time to have it installed, and up and running.

As for hosting and deploying the ASP.NET Core application on a Linux server, we will

need to make sure it meets all the prerequisites such as running the supported version of Ubuntu,

installing .NET Core runtime on the server, configuring Nginx to reroute traffic, and make sure

24

the server is monitoring the running application to keep it running if it crashes or the server is

restarted.

4.3. Running the Application

In order to run the application, we will need to publish the application. It is a term used

for Visual Studio projects for compiling and getting the actual executable to run. There are two

ways to publish an ASP.NET Core application.

First method is a framework-dependent deployment. This method has few advantages and

disadvantages. The advantages are that we don’t have to define a target operating system that the

.NET Core app will run on in advance as long as a .NET Core runtime is installed and configured

on the server, the size of the deployment is relatively small, it also allows to use the latest version

of the runtime that is running on the server which means the app can run on the latest version

without any trouble, and multiple different apps can use the same runtime on the same server to

run. The disadvantages are that the application you are trying to run on can only run on a version

that your app targets or later version that is already installed on the host system, and .NET

Runtime and libraries may change in the future without your knowledge and your app my stop

working or change its behavior.

Second method is self-contained deployments which allows us to deploy the app with any

other required third-party dependencies including the version of .NET Core runtime. This also

has its advantages and disadvantages.

The advantages are that you will have the control of the version of .NET Core that is

deployed with the .NET core app and can only be serviced by you, and this way, you can make

sure the target system can run the application since you are providing the version of .NET Core

to the system.

25

The disadvantages are that you must select the target platform in advance before

deploying the packages that come with the application. Size of the deployment can get big due to

bundling all the other third party dependencies and .NET Core runtime version that you

specified. The other disadvantage is that running multiple self-contained .NET Core app on the

server can consume lots of resources such as disk space as .NET Core files will have to be

duplicated on multiple applications.

For this project and testing, framework-dependent deployment was selected as the

advantages such as not needing to define a target platform, having small deployment size,

running latest version of the runtime, are all suitable for this project. In Visual Studio, when you

publish your app, it gives us the options on which type of deployment we want to do and where

we want to deploy it. For my testing purposes, I selected to deploy the executable files in a folder

on the local computer first and then copy the files to the server using FTP protocol with WinSCP

tool.

Figure 4.5. Visual Studio Publish Application Menu

26

Figure 4.6. Visual Studio Publish Application Options

Once the files are copied to the server and .NET Core runtime is configured to run on the

server, we needed to make sure that the application web server is listening on specific URLs so

that outside requests can be routed. The application was coded to listen on two URLS,

“http://batod.dev.cs.ndsu.edu:5000” for HTTP requests and “https://batod.dev.cs.ndsu.edu:5001”

for HTTPS requests.

Figure 4.7. Application URL Configuration

 The Nginx server then reroutes “http://batod.dev.cs.ndsu.edu:80” traffic to

“https://batod.dev.cs.ndsu.edu:5001” automatically.

27

Nginx configuration:

server {

 listen 80;

 server_name batod.dev.cs.ndsu.edu *.batod.dev.cs.ndsu.edu;

 location / {

 proxy_pass http://localhost:5000;

 proxy_http_version 1.1;

 proxy_set_header Upgrade $http_upgrade;

 proxy_set_header Connection keep-alive;

 proxy_set_header Host $host;

 proxy_cache_bypass $http_upgrade;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 proxy_set_header X-Forwarded-Proto $scheme;

 }

}

After this, we make sure the server is monitoring the app and making sure it is running.

For this, we create a service file and enable to run at system startup.

For this, a service file is created with the command below:

sudo nano /etc/systemd/system/kestrel-dissertationcalculator.service

Then the following configuration is added and saved:

[Unit]

Description=Dissertation Calculator App running on Ubuntu

[Service]

WorkingDirectory=/home/batotgon/www

ExecStart=/usr/bin/dotnet /home/batotgon/www/DissertationCalculator.dll

Restart=always

Restart service after 10 seconds if the dotnet service crashes:

RestartSec=10

KillSignal=SIGINT

SyslogIdentifier=dotnet-example

User=batotgon

Environment=ASPNETCORE_ENVIRONMENT=Development

Environment=DOTNET_PRINT_TELEMETRY_MESSAGE=false

[Install]

WantedBy=multi-user.target

28

Once the file is created and saved, we need to enable the service to make sure it starts

when the system starts.

sudo systemctl enable kestrel-dissertationcalculator.service

 The service is started, and the status is checked with the following commands.

sudo systemctl start kestrel-dissertationcalculator.service

sudo systemctl status kestrel-dissertationcalculator.service

Output:

 ● kestrel-dissertationcalculator.service - Dissertation Calculator App running on Ubuntu

 Loaded: loaded (/etc/systemd/system/kestrel-dissertationcalculator.service; enabled; vendor preset: enabled)

 Active: active (running) since Tue 2019-10-29 11:38:39 CDT; 1 day 2h ago

 Main PID: 12454 (dotnet)

 Tasks: 21 (limit: 4915)

 CGroup: /system.slice/kestrel-dissertationcalculator.service

 └─12454 /usr/bin/dotnet /home/batotgon/www/DissertationCalculator.dll

After all the configuration and running the services, the app will be accessible.

Figure 4.8. Dissertation Calculator Tool Login

29

4.4. Development Progress

The project was developed in three main phases. The first phase was to get a ASP.NET

Core application up and running with basic authentication. Second phase was to get different

roles in the system and give them different views. There are three main views such as student,

adviser, and administrator views. Each stakeholder has different functionalities, so each view

was developed separately. This also gives the advantage to maintain each view separately from

each other without affecting the other. The third phase was to code on each different view to give

each specific user their functionalities based on the user stories that was developed before the

start of the project.

4.4.1. Project File Organization

Figure 4.9. File Organization in Visual Studio

30

Areas folder contain the code for identity, authentication, and profile related code. This is

created by ASP.NET Core automatically when authentication is selected to be included in the

project, but we must scaffold it to have all the code generated so that they can be modified to our

needs. ASP.NET Core Identity is a library provided so scaffolding it will provide the source code

so that we can customize it for our needs in the project. This way, we can customize the login

page, log out page, user profile page etc. Data folder contains the database context and

customized User class to add more custom user properties. Migrations folder is used by

ASP.NET Core Entity Framework Core to migrate .NET Core objects to relational database

objects. Model folder contains the .NET Core objects for the database model. Pages folder

contains all the pages used by the users of the system. Admin folder contains all the pages used

by Administrator user. Adviser folder contains all the pages used by Adviser. Student folder

contains all the pages used by Student users. Shared folder contains pages that are used

throughout the application such as “_layout.cshtml” page where it contains the code for the style,

script, layout of pages used by all the pages in the system. This way, we don’t have to keep

repeating the same code on all pages for style, script, and layout. Services folder contains few

service codes that are utilized by the email service which is using a third-party package called

SendGrid.

The other two important files in the project are “Program.cs” and “Startup.cs”.

“Program.cs” is the main program of the project where we create the host for the web

application. This process created the web server that is built-in within ASP.NET Core projects,

“Startup.cs” is a class where services required by the app are configured.

31

Figure 4.10. Program.cs

32

Figure 4.11. Startup.cs

33

4.5. Functionalities

In this section, the functionalities of the application will be discussed, and details of each

functionality will be highlighted to explain how things are developed to work.

4.5.1. Shared Functionalities

There are number of functionalities that each user such as student, adviser, and admin can

all perform in this application. We will cover them below.

4.5.1.1. Register

If you don’t have an account in the system, you will not be able to use it so first thing

each user will have to do is to register an account. When you are not sign in, there will be a

Register button at the top right corner of the application as seen on the figure below. Once you

click on it, it will ask for the user to input specific information such as first name, last name,

department, user role like student or adviser, email, and password.

 User must input their own NDSU email address as email confirmation is required to

finish setting up the account. This way, we can prevent other users from using other people’s

email addresses. Once you enter all the required information and click on “Register”, system

creates the account but “EmailConfirmed” attribute is set to false in the database and

confirmation email is sent to the user’s email address. If “EmailConfirmed” is set to false, the

system will not allow the user to login even though the account exists. When the user clicks on

the link in the email as shown in figure below, system confirms the email address as confirmed

as shown in figure below and allows the user to login to the system. Password are hashed in the

database with PBKDF2 with HMAC-SHA256, 128-bit salt, 256-bit subkey, 10000 iterations

algorithm as it is the default hashing method provided by ASP.NET Core Identity library.

Because the system uses ASP.NET Core Identity for authentication, authorization, and security,

it is very easy to customize its options such as lockout mechanism if users try wrong password

34

too many times, password requirements, sign in options such as requiring confirmed email

address or even confirmed phone number, allowed characters in usernames, in the context of the

our application this applies to email address field, and cookie settings such as cookie name,

expiration time, and password hashing options like number of iterations.

Figure 4.12. Register Page

Figure 4.13. Email Confirmation

35

Figure 4.14. Page Confirming Email Was Confirmed

4.5.1.2. Login

Login feature is functionality that everyone can perform if they have an account in the

system. If the username and password does not match and not found in the system. The

application generates an error message and requests the user to try again. As it stands right now,

there is no auto locking feature, but it can be added down the line to the system with minimal

coding. Username entered in Email field must have @ndsu.edu. If it does not, the system will be

thrown an error explaining it must have it. “Remember me?” checkbox will allow the user to

have the system remember their credentials. What this means if user closes their browser and

comes back to the application in the same browser, it will let the user access the application

without prompting for login. If you log out, manually, the cookies are expired and the

“Remember me?” option will need to be checked again for this to work.

Figure 4.15. Log in Page

36

4.5.1.3. Forgot Password or Reset Password

Forgot password and reset passwords are two separate functionalities related to password

resets. Forgot password is in case the user has no idea what their password is and reset password

is for users who are already logged into the system and wants to change their password.

Figure 4.16. Forgot Password Page

Forgot password functionality uses your email address to send you an email with a link to

reset your password.

Figure 4.17. Forgot Password Email Confirmation Request

Once you click on the link, it will give you the option to set a new password without asking your

old.

Figure 4.18. Change Password Page After Clicking on Email Link

37

Reset password functionality requires the user to be logged in already and is accessible

through the manage your account menu when you click on your name at the top right corner of

the page. The user will have to enter their current password and the new password that they

would like to use and click on update. Once password is changed, the application gives a status

message saying it has been changed.

Figure 4.19. Reset Password Page

4.5.1.4. Logout

When user clicks on Logout button at the top right corner of the page, it expires the

session of the user and redirects the user to the login page. ASP.NET Core Identity library has a

class called “SignInManager” which is used in this case and the method called “SignOut” is

called to log out the user by clearing the cookies of the sign in session.

38

4.5.1.5. Manage Account

Each user have the ability to manage their profiles. There are two options available which

are “Profile” and “Password”. In “Profile” section user can change their name, set a phone

number, and change their expected graduation date.

Figure 4.20. Profile Page

39

In “Password” section, user can change their password by entering the current password,

entering a new password, and confirming the new password.

Figure 4.21. Change Password Page

4.5.2. Student Functionalities

Student users can perform several functions while using the system. The first action that

they must perform after login in is to select an adviser if they do not have an adviser set so

adviser user must have an account already created and set as adviser role. If the user’s adviser

does not have an account, they will have to request them to create one and then they can select

their adviser from the list. User can also search and sort the adviser list.

40

Figure 4.22. Select Adviser Page

After selecting an adviser, they will confirm the selection and click on “Confirm” button

to finalize the selection and set the adviser as their adviser.

Figure 4.23. Confirm Adviser Page

Current adviser will be then displayed, and student can go to their home page.

Figure 4.24. Current Adviser Page

41

After this, when student tries to go to the home page and if they have not entered an

expected graduation date, the system will ask the student to enter a date and it will be saved to

their profile. Student can view this information later in their profile and adviser can see the

student’s planned graduation date.

Figure 4.25. Enter Expected Graduation Page

On the home page, student has some options to navigate and perform actions. In the

navigation student has the options “Home”, “Your Adviser”, “Important Dates & Deadlines”,

and “Prepare to Graduate”. “Home” takes the student user to the landing page which is “Your

Timelines” page. “Your Adviser” page shows the current adviser of the student and gives options

to change the adviser if needed. “Important Dates & Deadlines” link opens a new tab in the

browser and takes the user to NDSU’s Records and Registration Office’s Dates and Deadlines

page. “Prepare to Graduate” link takes the user to NDSU’s Graduate School page with

information on preparing to graduate for graduate students.

From the home page, student can view their timeline if they have one created, otherwise

they will have to create one using one of two options. First option is “Create From Template”,

which allows the student to use a template created by their adviser or publicly available that is

made by other advisers and set to public status. Student’s can change the name of their timeline

or even delete it. If they delete the timeline, all the related information such as steps in the

42

timeline will be deleted though the cascade delete in the database as these steps are no longer

need to be on the database since the timeline is deleted.

Figure 4.26. Student Home Page

Figure 4.27. Create From Template Page

The user can click on “View” and see the template created by their adviser and select it to

create their timeline. The user will have to enter a new name and confirm the selection to finalize

the creation of their timeline based on the template.

Figure 4.28. Template Timeline View

43

Figure 4.29. Enter New Name for New Timeline

Figure 4.30. Confirm Creation of Timeline with Selected Template

The timeline will be created, and the user will be redirected to the page with the timeline

prepopulated with the steps from the template.

Figure 4.31. Student Timeline View

Second option is “Create Manually” which allows the student to create a timeline on their

own with customizing each step for their own. Student will need to enter the timeline name and

allow the student to customize with their own steps.

44

Figure 4.32. Blank Student Timeline

 Important Dates and Deadlines will show the dates for the current year all the time. This

information is entered by the administrator in the system and will display on the home page of

student’s as these dates are very important.

4.5.2.1. Student Timeline

The student timeline is the main feature of this tool. Without this functionality, this tool

would not be as useful. There are number of actions a student user can perform on a timeline.

First, they can add a step of their own if needed even if the timeline is created using a template.

New steps will always get added at the bottom of the timeline.

If the student wants to reorganize the steps, they can do so by dragging the steps up and

down. The ordering of steps will get automatically saved and step number will be updated

accordingly in the database.

Step descriptions are hidden in a child row and can be viewed by click on the green plus

sign in front of the step name.

Start and End Date columns are clickable buttons and if the student click them, it will

enter the date of the current date and time when the student clicks on it.

45

Comments link will take the student user to the comments page for that specific step

where adviser might have left a feedback on it or the student can leave a feedback to their adviser

as well. It will also show the total number of comments and if there is a new comment made by

their adviser, it will indicate it in the “New” field with a red number.

Edit, details, delete links perform exactly what the names describe. Edit link will allow

the student to edit the step name, duration, start date, end date, and completed status. Complete

status column on the timeline will show up as marked if End Date is entered or Complete check

box is marked. It works both ways. Details link will take the user to a page and show all the

details of the step. Delete will allow the user to delete a step and once a step is deleted, all the

other steps are updated with new step number automatically in case a step is deleted from top or

middle.

Figure 4.33. Student Timeline

46

4.5.3. Adviser Functionalities

Adviser users have two main functionalities that are viewing students and their timelines, and

creating, modifying, and deleting template timelines that can be used by students. There is a left pane

menu called “Adviser Menu” with two options “View Students” and “Template Timelines”.

“View Students” will allow to see students who have selected the adviser user as their adviser. It

will show their name, email address, department, and link to their timeline.

Figure 4.34. Adviser Home Page - View Students

 When you click on the email address, it will automatically launch the default email client

on the user’s computer and allow them to send an email right away. Otherwise, the adviser user

can sort the table with student name and do search with any keyword that might be found in the

three columns.

 “View Timelines” link next to the student’s row will allow the adviser to see their

student’s timeline and check on their progress. If the student has multiple timelines, it will

display the names of their timelines.

47

Figure 4.35. Adviser Viewing Student Timelines

Adviser user then will have to click on “View” link to view the actual timeline and see

the progress.

Figure 4.36. Adviser Viewing Student Timeline

Adviser’s view of student’s timeline is very similar to how a student view’s their timeline

but advisers can only see the information and will not be able to make any modifications to the

timeline. Only other action they can perform on the timeline is to comment on a specific step. If

a student user left a new comment on a step and the adviser has not read it yet. It will show as

48

new comment in the comment column. Adviser users can see the details of each step as well and

the completed status, start date, and end date.

Figure 4.37. Adviser's Template Timelines

 The next major functionality that advisers can use is creating templates for students to

use. If adviser user has template created, the table will show the name, public status, created

date, and actions. There are 3 actions available which are “View/Edit”, “Change Name/Make

Public”, and “Delete”. “View/Edit” will allow the adviser to view the template timeline and

make edits. “Change Name/Make Public” will allow the adviser user to change the name and

mark or unmark the template as public. “Delete” will allow the adviser user to delete the

template timeline. This will not delete any student timelines created by using the template.

 Adviser users can create new template with two options which are “Create Template

From Another Template” and “Create Template Manually”. “Create Template From Another

Template” option allows the adviser user to create their template from a base template made

available by the system administrator or templates made available public by other advisers.

49

Figure 4.38. Public Templates Available to Advisers

When the adviser user clicks on View to see the system template, it will allow them to

select it, give it a name of their own, confirm the selection, and view the newly created template

from base template.

When viewing a templated that was created, it will allow the adviser user to add new

steps, reorganize the steps by dragging and dropping on the timeline, edit step name, step

description, and step duration, vie details of each step, and finally delete a step. So all the

customization is available for the user.

Figure 4.39. Adviser Template Timeline View

50

“Create Template Manually” will allow the adviser user to start with a blank template and

customize the steps themselves.

Figure 4.40. Adviser Blank Template Timeline

4.5.4. Admin Functionalities

Admin users have 5 main functionalities available to them which are “Create Account”, “Edit

Account”, “Departments”, “Create Base Template”, and “Academic Calendar Dates and Deadlines”

Figure 4.41. Admin Create Account Page

51

“Create Account” will allow the admin users to create an account in the system. Unlike

new users who are required to use their NDSU email address to register, admin can create a user

with any email address. Admin users can also create other admin accounts.

Figure 4.42. Admin Edit Account Page

“Edit Account” option allows the admin users to edit, view details, and delete adviser and

student user accounts. “Edit” will allow changing names, department, role, phone number,

adviser and expected graduation date if the account is a student account. “Details” link will show

the detailed information of the user account. “Delete” will delete the account from the system

along with its personal data like timelines and such from the database.

52

“Departments” option allows the admin users to create, edit, view details, and delete

departments. Because this is needed when users are registering their account, changing

departments, and finding their advisers in the same department.

Figure 4.43. Admin Departments Page

“Create Base Template” option allows the admin user to create a base template that is

available to all adviser users who can use it as a foundation for a template that they are creating

for their students. Admin users can also edit, change the name, and delete a base template that is

already available.

Figure 4.44. Admin Create Base Template Page

53

The last function that admin users can use is “Academic Calendar Dates and Deadlines”.

With this option, they can create terms for each semester like Fall, Spring, and Summer. Each

term can have specific dates in them, and admin users can add them to a term by clicking on

“View/Edit”.

Figure 4.45. Admin Academic Calendar Dates and Deadlines Page

Figure 4.46. Admin Academic Calendar Dates and Deadlines Term Edit Page

4.6. Improvements

When compared to the initial project developed by students of CSCI 431, the new version

of Dissertation Calculator has more features. The authentication and authorization is all handled

54

by ASP.NET Core Identity library so it is lot more secure and feature ready. Passwords have

requirements, users can only register using their NDSU email, when registering they need to

verify their email address by click on a link sent by email, etc.

Student users create timelines based on a template created by their adviser, select and

change advisers, comment on a step for feedback exchange with adviser, etc. On a student

timeline, they can add, reorganize, delete, edit steps. Each step has descriptions and it is shown

from a hidden row on the table with intuitive expanding button function.

Adviser users can see student timelines and see their progress and provide feedback by

commenting. They can also create a template that can be used by student users.

Admin users can create, modify, and remove accounts. They can also create, modify, and

remove departments. Another functionality that they can do is create, modify, and remove base

template that can be used by any adviser so that they can create their templates for students. The

last thing they can do is create, modify, and remove academic calendar items such as important

dates and deadlines.

55

5. CONCLUSION

Dissertation Calculator tool is a unique tool and can be very useful for any graduate

students who wants to complete their dissertation on time based on their expected end or

graduation date. This tool has the potential to be tool that is used by graduate students and maybe

even licensed to other schools as a tool. The development of this tool was a great learning

experience and a way to improve and educate myself in planning, designing, coding, and testing

a whole project. ASP.NET Core is an easy to learn framework with lots of features that make it

easier to develop specific functionalities. It also has tons of documentation provided by

Microsoft for new developers to get started with it and develop a web application fast and easy.

As for the usability, feedback, and importance of the tool, it needs to be tested with real world

users who will be using the system which would require careful planning and organization with

other users.

56

6. FUTURE WORK

Although, the tool has many features, there are still things that could be added to make

the experience much better.

• Find a way to incorporate the important dates and deadlines into student timeline.

• Reply system in the commenting feature as currently, there is no direct reply to a

specific comment.

• Comments could be displayed under each step by expanding the child row in the

timeline instead of going to a specific page to be viewed.

• Guide or Tutorial page where users can go to see how to use the system for each

stakeholder.

• Chatting feature for advisers and students.

• Progress report for both students and advisers in email or PDF format

• Email notification for student users.

• Possible integration with NDSU’s Central Authentication Service for

authentication and account importing.

• Purge system to remove users who are no longer part of NDSU.

• Have a super admin who can manage other admin users.

• File attachment feature for each step where specific document might be needed

• Notification inbox feature where new comment or message notification is

displayed.

57

REFERENCES

[1] Anderson, R. (2018, October 23). Scaffold Identity in ASP.NET Core projects. Retrieved

October 31, 2019, from https://docs.microsoft.com/en-

us/aspnet/core/security/authentication/scaffold-identity?view=aspnetcore-

3.0&tabs=visual-studio.

[2] Anderson, R., & Nowak, R. (2019, October 6). Introduction to Razor Pages in ASP.NET

Core. Retrieved October 31, 2019, from https://docs.microsoft.com/en-

us/aspnet/core/razor-pages/?view=aspnetcore-2.2&tabs=visual-studio.

[3] ASP.NET Core fundamentals. (2019, October 6). Retrieved October 31, 2019, from

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/?view=aspnetcore-

3.0&tabs=linux.

[4] Baker University's Dissertation Calculator. (n.d.). Retrieved from

https://www.bakeru.edu/library/Dissertation calculator/assignmentcalc/.

[5] Child rows (show extra / detailed information). (n.d.). Retrieved from

https://datatables.net/examples/api/row_details.html.

[6] Dissertation and Thesis Calculator: RIT Libraries. (n.d.). Retrieved from

https://library.rit.edu/researchguides/disscalc/.

[7] Dissertation Calculator. (n.d.). Retrieved from https://www.lib.umn.edu/ac/dissertation-

calculator.

[8] Dykstra, T., & Anderson, R. (2019, September 25). Razor Pages with Entity Framework

Core in ASP.NET Core - Tutorial 1 of 8. Retrieved October 31, 2019, from

https://docs.microsoft.com/en-us/aspnet/core/data/ef-rp/intro?view=aspnetcore-

2.2&tabs=visual-studio.

58

[9] FixedHeader. (n.d.). Retrieved from https://datatables.net/extensions/fixedheader/.

[10] Get started with SQL Server on Ubuntu - SQL Server. (2019, May 27). Retrieved

October 31, 2019, from https://docs.microsoft.com/en-us/sql/linux/quickstart-install-

connect-ubuntu?view=sql-server-ver15.

[11] Prerequisites for .NET Core on Linux. (2019, October 10). Retrieved October 31, 2019,

from https://docs.microsoft.com/en-us/dotnet/core/linux-prerequisites?tabs=netcore30.

[12] Research Paper Assistance Calculators // Libraries // Mizzou // University of Missouri.

(n.d.). Retrieved from https://library.missouri.edu/guides/assigncalc/.

[13] Roth, D., Anderson, R., & Luttin, S. (2019, October 9). Introduction to ASP.NET Core.

Retrieved October 31, 2019, from https://docs.microsoft.com/en-

us/aspnet/core/index?view=aspnetcore-2.2.

[14] RowReorder. (n.d.). Retrieved from https://datatables.net/extensions/rowreorder/.

[15] Shirhatti, S. (2019, March 30). Host ASP.NET Core on Linux with Nginx. Retrieved

October 31, 2019, from https://docs.microsoft.com/en-us/aspnet/core/host-and-

deploy/linux-nginx?view=aspnetcore-2.2.

[16] UTSC Homepage. (n.d.). Retrieved from https://ctl.utsc.utoronto.ca/dissertationcal/.

59

APPENDIX

Figure A.1. Academic CalendarTerm.cs

60

Figure A.2. AcademicCalendarTermDate.cs

61

Figure A.3. BaseTemplateTimeline.cs

62

Figure A.4. BaseTemplateTimelineSteps.cs

63

Figure A.5. Comment.cs

64

Figure A.6. SchoolDepartment.cs

Figure A.7. StudentTimeline.cs

65

Figure A.8. StudentTimelineStep.cs

66

Figure A.9. TemplateTimeline.cs

67

Figure A.10. TemplateTimelineStep.cs

68

The models are initialized in a database context like below and the Entity Framework

Core takes care of the database creation using Fluent Modeling with a process called migration.

Figure A.11. ApplicationDbContext.cs

69

Migration Code example.

Figure A.12. Migration Code Example

The databases are then created on the SQL server with command Update-Database in

Visual Studio which results in the following:

Figure A.13. Database Tables

70

Example code generated for SQL query for AcademicCalendarTerm table.

CREATE TABLE [dbo].[AcademicCalendarTerm] (

 [Id] INT IDENTITY (1, 1) NOT NULL,
 [CalendarName] NVARCHAR (50) NOT NULL,
 [TermName] NVARCHAR (50) NOT NULL,
 [TermYear] DATETIME2 (7) NOT NULL,
 [YearString] NVARCHAR (20) NULL,
 CONSTRAINT [PK_AcademicCalendarTerm] PRIMARY KEY CLUSTERED ([Id] ASC)
);

AcademicCalendarTermDate table

CREATE TABLE [dbo].[AcademicCalendarTermDate] (
 [Id] INT IDENTITY (1, 1) NOT NULL,
 [AcademicCalendarTermId] INT NOT NULL,
 [Date] DATETIME2 (7) NOT NULL,
 [DateString] NVARCHAR (50) NULL,
 [DayOfWeek] INT NOT NULL,
 [DayOfWeekString] NVARCHAR (50) NULL,
 [Description] NVARCHAR (1000) NULL,
 CONSTRAINT [PK_AcademicCalendarTermDate] PRIMARY KEY CLUSTERED ([Id] ASC),
 CONSTRAINT [FK_AcademicCalendarTermDate_AcademicCalendarTerm_AcademicCalendarTermId]
FOREIGN KEY ([AcademicCalendarTermId]) REFERENCES [dbo].[AcademicCalendarTerm] ([Id]) ON
DELETE CASCADE
);

GO
CREATE NONCLUSTERED INDEX [IX_AcademicCalendarTermDate_AcademicCalendarTermId]
 ON [dbo].[AcademicCalendarTermDate]([AcademicCalendarTermId] ASC);

As you can see from the SQL query generated by the Entity Framework Core, it takes

care of most of the modeling and data access automatically, so it makes it much simpler to

develop an application that utilizes data access.

