
BRAIN CANCER DETECTION USING MRI SCANS

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Shanthanreddy Thotapally

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

December 2019

Fargo, North Dakota

North Dakota State University

Graduate School

Title

BRAIN CANCER DETECTION USING MRI SCANS

 By

Shanthanreddy Thotapally

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Dr. Kendall E. Nygard

 Chair

Dr. Vasant Ubhaya

Dr. Joel K. Ransom

 Approved:

 December 6, 2019 Dr. Kendall Nygard

 Date Department Chair

iii

ABSTRACT

An estimate of about 700,000 Americans today live with a brain tumor. Of these, 70% are

benign and 30% are malicious. The average survival rate of all the malicious brain tumor patients

is 35%. Diagnosing these tumors early on gives the best chance for survival. The Doctors use

MRI scans to identify the presence of a tumor and it’s characteristics like the type and size. In

this paper, I implemented a Deep learning convolutional neural network model that classifies the

brain tumors using MRI scans. We shall use VGG-16 deep-learning approach to implement the

machine learning algorithm. The proposed system can be divided into 3 parts: data input and

preprocessing, building the VGG-16 model, image classification using the built model. Using

this approach, I have achieved 80% accuracy. The accuracy of the model developed will depend

on how correctly the affected brain tumor images can be classified from the unaffected.

Keywords: Brain Tumor, Magnetic Resonance Imaging (MRI), Data Preprocessing, Data

Augmentation, VGG-16, Jupyter notebook, Machine Learning.

iv

ACKNOWLEDGEMENTS

I would like to express my feeling of gratitude to Dr. Kendall Nygard, Department Chair,

Computer Science, North Dakota State University, Fargo, for giving me the opportunity to

pursue my research and develop this machine learning project. During my time here at NDSU,

Dr. Nygard has generously offered his advice in almost everything related to my academics. He

has set aside valuable time to be a member of my supervisory committee, and for this I am

grateful. Students would benefit from more professors like him.

I am equally grateful to my supervisory committee members, Dr. Vasant Ubhaya, Senior

Professor, Computer Science, NDSU, Fargo and Dr. Joel K. Ransom, Professor and Extension

Agronomist, Plant Sciences, NDSU, Fargo for the support and their precious time.

Last but not least, I must extend gratitude to the remainder of the Computer Science staff

for their advice and guidance throughout my Master’s program.

v

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF FIGURES .. vii

CHAPTER 1. INTRODUCTION ... 1

CHAPTER 2. PROBLEM DEFINITION AND ALGORITHM .. 2

2.1. Brain Tumor ... 2

2.2. VGG-16 Model .. 3

2.2.1. Layers and Steps Involved in VGG-16 ... 4

2.3. Objective .. 5

CHAPTER 3. EXPERIMENTAL EVALUATION .. 6

3.1. Setting Up the Environment ... 7

3.2. Data Description and Preprocessing .. 9

3.2.1. Data Description .. 9

3.2.2. Samples of Train Dataset... 11

3.2.3. Data Preprocessing .. 12

3.3. Building the CNN Model ... 14

3.3.1. Data Augmentation .. 15

3.3.2. Images of Data Augmentation Performed on a Sample Image (Demo) 15

3.3.3. Model Building and Training .. 16

3.4. Plotting the Performance and Results .. 19

3.4.1. Model Performance ... 19

3.4.2. Accuracy When Tested on the Validate Dataset ... 20

3.4.3. Accuracy When Tested on the Test Dataset .. 20

3.4.4. Confusion Matrices ... 21

vi

CHAPTER 4. CONCLUSION.. 23

CHAPTER 5. FUTURE WORK .. 24

REFERENCES ... 25

vii

LIST OF FIGURES

Figure Page

1. Brain metastasis from lung cancer [3] .. 2

2. VGG-16 model [10] .. 3

3. The proposed method for brain cancer detection from MRI scans [4] 6

4. Sample screenshot of package installs .. 7

5. Screenshot of importing relevant packages and libraries ... 8

6. Screenshot of new folder hierarchy .. 9

7. Screenshot of code distributing the images into 3 datasets... 10

8. Count of classes in each data set ... 10

9. MRI scans without the tumor [3] .. 11

10. MRI scans with the tumor [3] ... 12

11. Screenshot of code for plotting the histogram .. 12

12. Histogram of image distributions.. 13

13. Cropping of MRI scans ... 14

14. Code for finding the extreme points along contour [5]... 14

15. Screenshot showing the number of images to be augmented ... 15

16. Sample original image .. 15

17. Augmented images.. 16

18. Screenshot of code showing the loading of the core VGG_16 model 16

19. Screenshot showing the initiation of epochs ... 17

20. Screenshot showing the results of epochs ... 18

21. Model Accuracy .. 19

22. Model Loss.. 20

23. Screenshot showing Accuracy on Validate dataset .. 20

viii

24. Screenshot showing Accuracy on the Test dataset ... 21

25. Confusion matrix .. 22

1

CHAPTER 1. INTRODUCTION

In this era of unprecedented changes, with the increase in ailments, the field of heath

demands the use of new technology to provide solutions to these problems. The brain tumor is

one such malady that is the most life-threatening disease known to mankind. Even if this disease

is detected in the primal stage, it’s not completely possible to find a cure within the time frame

and save the patient’s life. The Tumor can be classified into two types: Malignant (meaning the

cells are cancerous and lethal to patient’s life) and Benign (meaning the presence of tumor won’t

affect the health of the patient in any manner). It is commonly accepted that the most important

part of the human body is the human brain, therefore, if anything shall happen to it, it will

directly impact the life expectancy of the patient. The development of a prediction model for the

diagnose of brain tumors would greatly benefit the medical community. In this project, I will

build a convolutional neural network model that classifies an image set of MRI scans based on

the presence of tumors by comparing it with the previous scans of a brain tumor. With this

project, I seek to help and devise a solution that could be useful to detect this lethal disease.

Furthermore, this model may be trained iteratively on larger and larger datasets, using a process

called Ensemble Learning.

2

CHAPTER 2. PROBLEM DEFINITION AND ALGORITHM

A Brain tumor is a collection or growth of a mass of abnormal cells within the brain. The

skull that covers the brain is very strong. Within such a restricted space, any growth may cause

problems. Two main types of tumors occur namely, Cancerous (malignant) or non-cancerous

(benign) tumors in the brain. The pressure inside your skull may increase when benign or

malignant tumors grow. The growth time of the tumors can differ greatly. The positioning,

growth rate and the size of the tumor determine how the nervous system will be affected in the

body [1].

2.1. Brain Tumor

Figure 1. Brain metastasis from lung cancer [3]

Usually, brain tumors are classified as primary or secondary. A primary tumor is the type

of tumor, that originates in the brain itself. Many of the primary tumors aren’t that harmful and

are mild that can be treated. A secondary brain tumor that is also known as a metastatic brain

tumor occurs first in other organs like lungs or breast and then it spreads(metastasizes) to your

brain cells. The symptoms vary depending on the type of brain tumor and the part involved. Few

3

include vomiting, blurred vision, change in mental functioning, memory loss, muscle weakness,

etc. [2]

2.2. VGG-16 Model

A convolution neural network is a deep learning algorithm that takes in an input image,

assigns characteristics to different aspects of the image and be able to classify that image. The

pre-processing required in the Convolution network is much lower as compared with other

classification problems. VGG-16 is one such type of convolution neural network. It is 16 layers

deep making the model heavier that could increase the training time i.e. the input images are

processed via 16 layers. In this model, the output is classified into different categories. For

example, suppose a VGG-16 network takes input images of 100 different objects, the network

then classifies the images based on the requirements such as presence/absence of a tumor,

classify objects in photographs, etc. This model was proposed by K Simonyan and A Zisserman

and achieved 92.7% accuracy in the top 5 test accuracy in ImageNet Database [10]. For the brain

cancer detection project, the image set of MRI scans is taken into consideration and it is

classifying different images based on whether the tumor is present or not.

Figure 2. VGG-16 model [10]

4

2.2.1. Layers and Steps Involved in VGG-16

VGG_16 model has 16 layers. In each and every layer, the input image is processed

through various steps. Let’s see what these steps do in detail.

1) Input the image: First, the input image of size 224 by 224 pixels is provided to the

model.

2) Convolution: Every layer has a 3x3 filter/kernel. In this step, the filter is convolved with

a stride of pixels 2 across the input image and the feature map is obtained. The feature

map is usually the dot product of the input pixel values and the filter. The feature map

obtained is passed as an input to the next layer.

3) Max pooling: The pixel density is increased in this step, reducing the dimension of the

feature map. Max pooling is nothing but taking the maximum value from a 3 x 3 filter

with a stride of 2 pixels. The core features are extracted through max pooling.

4) Normalization: The negative pixel values are converted to 0’s, this is done by taking the

max(xij,0) function. This activation function is called Rectified Linear Unit (ReLU).

Through this step, all the irrelevant pixels will be disabled.

5) Dropout: In the dropout step, randomly selected layers are labeled as zeroes, so that the

network learns new pathways to represent the final image. This helps to improve the

learning. The softmax function is usually applied in the very last step in the neural

network. Softmax converts the output produced in the last layer into a probability

distribution function. This is done based on features extracted in the middle layers of the

VGG_16 network. The predictions made are based on the results produced by this

function.

5

2.3. Objective

The objective is to develop a machine learning algorithm that identifies the parameters

that help in detecting the brain tumor and be able to classify the image as having a tumor or not.

This algorithm is developed by building the VGG_16 model based on MRI scans that are

provided as the data sets. After looking at the results, the Doctor can easily identify the tumors as

being malignant or benign. This is achieved using a Convolutional Neural Network model

(CNN), an approach that specifically helps with the image classification problems. There are

multiple CNN models out of those I chose VGG_16 as this is the most effective and has a

standard training process especially in case of image classification problems. I have used the

Jupyter notebook application to implement the model. Jupyter notebook is an open-source web

application that can be used for deep learning, data visualization, numerical and statistical

simulation and much more.

6

CHAPTER 3. EXPERIMENTAL EVALUATION

As far as health care is concerned, automated Brain cancer detection techniques are found

to be highly important as higher accuracy is needed in safety-critical processes. Automated Brain

cancer detection involves the collection of the MRI scans and the preprocessing of the data.

Figure 3. The proposed method for brain cancer detection from MRI scans [4]

First, any RGB images are first converted into grayscale. Since the dataset is small, the

process of Data Augmentation is used, which helps to increase the size of the training set. Data

preprocessing is explained more clearly in further sections. Next, a CNN model is to be built. In

our case, we used the VGG_16 model. The dataset is then used to train the built model. After the

model training i.e. running the model through many iterations called epochs, the test dataset is

7

provided as an input to the trained algorithm and the accuracy of the results produced are noted.

In my case, I have produced results that are close to 80% accuracy.

3.1. Setting Up the Environment

The environment required for the implementation has to be setup before building the

model. This includes importing and installing all the necessary packages and libraries.

Figure 4. Sample screenshot of package installs

I have used TensorFlow backend to build, train and run the model. TensorFlow is

developed by the Google Brain team. Tensorflow is an open-source machine learning library that

provides API, used in applications of neural networks and production of deep learning models.

As per the Tensorflow website, companies like Airbnb, Uber, Snapchat, Dropbox use

Tensorflow as their software library [11].

Keras is another high-level neural network library, that I used to run on the Tensorflow

backend. Keras is considered as easy to learn and use. Keras helps in fast and easy prototyping. It

runs well on the Central Processing Unit (CPU) as well as the Graphics Processing Unit (GPU)

[7]. There are 2 types of models in Keras i.e. Sequential and Model. The core data structure used

in Keras is “Model”. The Sequential model is a linear stack of layers, that can be described very

simply. I also used Keras optimization algorithms like Adaptive Moment Optimization (Adam)

and Root Mean square Propagation (RMRprop) [8].

The reason for using the Keras libraries instead of TensorFlow libraries is that Keras

libraries are written in python language. This makes the implementation easier because the whole

project was developed using python code as this is the most popular language for the deep

8

learning projects. Even though one can find the libraries written in python in Tensorflow, most

of the Tensorflow libraries are written in C++ and CUDA.

Figure 5. Screenshot of importing relevant packages and libraries

First, we import all the packages and libraries needed to set up the environment to get

started. The mainly used libraries are TensorFlow, Scikit-Learn, Numpy, and Keras. These

libraries include packages like cv2, os, shutil, itertools, imutils, sklearn label binarizer,

train_test_split, sklearn metrics, Keras preprocessing, Keras models, Keras optimizers, plotly,

etc. The packages perform various operations including mathematical operations, image

processing functions like resizing, rotating, displaying, cropping; automatic file copying and

directories, efficient looping iterators, handling iterators, splitting the dataset into the train,

9

validate and test subfolders, building confusion matrix and accuracy scores, data visualization

toolbox, etc.

3.2. Data Description and Preprocessing

The image dataset used in the project is readily available on the internet. Basically,

machine learning projects are open-source projects, so anyone can download the dataset and

build classification models. Unfortunately, there is no information in the dataset description

where these MRI images came from and so on.

3.2.1. Data Description

Initially, all the images are in one folder with “YES” and “NO” subfolders. Now, the data

needs to be spread into Train, Validate and Test folders.

Figure 6. Screenshot of new folder hierarchy

The train dataset is the dataset that is used to train the model while building.

The validation dataset is the dataset that is used during the training of the model in

order to estimate how well the model has been trained. This set of data is helpful in tuning the

hyperparameters. Examples of parameters are number of hidden units in a neural network,

weights in the neural network, learning rate of the model, support vectors, coefficients in the

functions, etc. The parameters are tuned to improve the efficiency of the model by considering

the validation accuracy produced at the end of every epoch.

10

The test dataset is the dataset that remains untouched for the whole training process.

This dataset will be used to evaluate model performance.

80% of the data is split into the Train data that are 193 images from that 74 does not have

a tumor and 119 has the tumor present. For the test data, I have split 5 in each subfolder i.e.

yes/no. And the remaining data is split into the validate data i.e. 50 images from that 20 are “no”

and 30 are “yes”. The histogram below shows the count of classes in each of the 3 datasets.

Figure 7. Screenshot of code distributing the images into 3 datasets

Figure 8. Count of classes in each data set

So, the data has been successfully divided into 3 datasets. Now, the next step is to plot a

few of the samples from a specific dataset (e.g. Train dataset) to make sure the data is loaded

11

correctly into the workspace. By doing this, the dataset will be verified and we can proceed to

the next process.

Here, out of 193 images from the train dataset, we plot 30 from each subfolder (Yes/ No).

However, these images are not yet ready to be provided as input to the VGG-16 model. These

are yet to be preprocessed through various steps.

3.2.2. Samples of Train Dataset

The images from the figures 9 & 10, are the samples of the brain MRI scans. The first set

of images does not have any tumor and are uninfected. The second set of images is affected by a

tumor that can be seen as a round lump inside the brain.

Figure 9. MRI scans without the tumor [3]

12

Figure 10. MRI scans with the tumor [3]

3.2.3. Data Preprocessing

The data has to be preprocessed before the model is built with the obtained dataset.

3.2.3.1. Image Ratio

The image size of the input layer of the VGG_16 model is (224, 224). But we can see

from the figures 9 & 10, that the image sizes differ in terms of height and width including the

difference in the size of black corners. Unfortunately, some images that are wide may look weird

after resizing. Let’s look at the ratio distributions (ratio = width/height).

Figure 11. Screenshot of code for plotting the histogram

13

Figure 12. Histogram of image distributions

From the Figure 12, we can observe that the size of the images varies widely. Most of the

images fall in the ratio value between the interval (0.7 - 1.1), which denotes that the images have

more height. However, a few fall into the ratio values of (1.2 – 1.8), meaning the images are

wider. The VGG_16 model only takes 224 by 224-pixel inputs. Thus, the data needs to be further

preprocessed and that includes image cropping before providing it as an input to the model.

3.2.3.2. Cropping the MRI Scans

In order to normalize the data, first, the images need to be cropped. For this, I have used

the technique mentioned in the “pyimagesearch” blog [5]. In general, it detects the relevant

region from the image. Next, it finds the extreme North, East, West, and South (x, y) coordinates

along the contour as described below.

14

Step 1 Step 2 Step 3 Step 4

Figure 13. Cropping of MRI scans

Step 1. First, we get the original image from the dataset.

Step 2. Next, we find the biggest contour of the brain.

Step 3. Third, we plot the extreme points on all four edges of the contour. Remember the

contour is simply a Numpy array of (x, y) – coordinates.

Figure 14. Code for finding the extreme points along contour [5]

Step 4. Lastly, we crop the image based on those extreme points [5].

Next, the cropping must be applied to all the images present in each and every dataset.

This makes the dataset ready that can be used to train and build the model.

3.3. Building the CNN Model

As we have cropped the images, these are now ready to be fed to the model. But before

building the model, I want to increase the numer of data samples by using Data Augmentation

because the obtained dataset is too small.

15

3.3.1. Data Augmentation

In order to make the most out of few data samples, we will augment the images through a

number of random transformations like rotating through different angles, flipping, resizing,

zooming in/out, etc. By doing this, the model will not see the exact same picture twice. This can

be done by setting the parameters via an “ImageDataGenerator” class in Keras [9].

Next, apply this technique to each and every image in the train dataset. Data

Augmentation helps to increase the number of images and produce a final dataset that we use to

train the model.

Figure 15. Screenshot showing the number of images to be augmented

3.3.2. Images of Data Augmentation Performed on a Sample Image (Demo)

This is a sample image which has a tumor. Let’s perform Data augmentation on it to see

what the technique produces.

Figure 16. Sample original image

16

After augmenting the sample image, we obtain multiple augmented images that are

shown in the figure 17.

Figure 17. Augmented images

3.3.3. Model Building and Training

First, we load the pre-installed VGG_16 Convolutional neural network model package.

This model is primarily used for image classification using deep learning. We can download the

VGG-16 pre-trained package online. Once the model is downloaded, it has to be imported into

the algorithm by specifying the path.

Figure 18. Screenshot of code showing the loading of the core VGG_16 model

Next, after importing the VGG_16 model, it has to be trained through multiple iterations

(called Epochs in ML). Epochs are nothing but the rounds of optimization applied during the

model training. Thus, through more rounds of optimizations i.e. epochs, the error in the training

data will be highly reduced. However, there comes a point where the model might start to lose

17

performance due to over-fitting of the train dataset. If the validation error starts increasing, this

might be a sign of overfitting. It is recommended to set as many epochs as possible and terminate

the training by looking at the error rates.

An epoch usually consists of one full processing through the entire training dataset. It is

basically a full iteration over the provided samples. This happens in the form of multiple steps.

This can be best illustrated through an example. Let us suppose we have 1000 images in the train

dataset and a batch size of 10 is used. Then every single epoch consists of 1000 images i.e. 10

images (batch size) in each step, accounting for (1000/10) steps in total or 100 steps.

Figure 19. Screenshot showing the initiation of epochs

For this model, I standardized the number of epochs to 30 because I have observed that

the learning rate degrades if the model is fed with too many iterations. I have also noticed a

gradual dropping of the validation accuracy of the model during the 25th and 26th epochs, which

is not at all a good sign. Furthermore, the model loses its effectiveness because of the over-fitting

of the data. Due to this, the learning rate of the model decreases which results in poor accuracy.

Therefore, it is always important to keep an eye on the accuracy of the results produced and the

model loss after each epoch. We obtain the metrics like the training loss, the training accuracy,

18

the validation loss and the validation accuracy once the model has completed each epoch. In the

end, we plot the results for all these metrics and draw a conclusion based on the performance

graphs.

Figure 20 shows the results of every epoch in detail. Also, the estimated time taken for

running is shown for each step in every epoch. Overall, my model did take nearly 5 hours to

complete all the epochs and finally become trained. After making the conclusion that the model

is built and ready, it can be tested on the test data to see the effectiveness of the model. This can

be done by going through the prediction scores and the test accuracy.

Figure 20. Screenshot showing the results of epochs

19

At the end of each epoch, the validation accuracy increases because the model runs

through the same process every single time and the learning rate gradually increases. After

running through 30 epochs, the model is built and ready to classify the images present in the test

dataset.

However, by running the model through too many epochs, the learning rate gradually

decreases because of the over-fitting of the data. The result of this over-fitting can be seen as the

spikes in the Figure 22 at the epochs 16 and 24.

3.4. Plotting the Performance and Results

3.4.1. Model Performance

Two important metrics define the performance of a model i.e. Model Accuracy and

Model Loss.

Model Accuracy: This is the primary metric used to evaluate classification models.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Number of Correct Predictions

Total Number of Predictions

• Accuracy gets better while Loss gets worse and vice-versa.

Figure 21. Model Accuracy

20

Model Loss: A machine learning algorithm can be optimized by using a Loss function.

In fact, the machine learns through this loss function. If the predictions deviate too much from

the actual results, the loss function will produce a very high number.

Figure 22. Model Loss

3.4.2. Accuracy When Tested on the Validate Dataset

During the process of model training i.e. running through 30 epochs, a validate dataset is

used to train the model to tune the hyperparameters. After the model is built, the same validate

dataset is provided as a test dataset to test the model’s performance. The result produced is

known as Validate Accuracy. I have achieved 88% accuracy on the validate dataset.

Figure 23. Screenshot showing Accuracy on Validate dataset

3.4.3. Accuracy When Tested on the Test Dataset

I have achieved 100% accuracy on the test dataset and the implementation was

successful. The results are highly satisfactory because the provided test dataset is small with 5

21

images in each i.e. yes/no. I have produced results by changing the test datasets multiple times

and in most cases, I have achieved an average of 84% test accuracy. Therefore, I am concluding

that I have achieved an acceptable prediction score. However, the confidence in the test accuracy

can be gained when the model is provided with large test datasets.

Figure 24. Screenshot showing Accuracy on the Test dataset

3.4.4. Confusion Matrices

Finally, we plot the confusion matrix that helps to visualize the performance of the

implemented algorithm. This is a table that usually describes the performance of the VGG_16

classification model.

From the validate set, we can observe that out of the 20 images that do not have a tumor,

17 are predicted correctly while 3 are classified as the presence of a tumor. Similarly, out of the

30 images that contain a tumor, 28 are predicted correctly while 2 are predicted as the absence of

a tumor. This affects the accuracy of the prediction.

22

Validate set Test set

Figure 25. Confusion matrix

I have produced the test results by providing various sets of test data. I am able to achieve

100% accuracy once. Therefore, the average accuracy score is approximately 83%. From the

figure 24, out of 10 images, all 5 were correctly predicted as infected and the remaining images

were correctly predicted as not infected.

23

CHAPTER 4. CONCLUSION

In conclusion, this project proposes a work on brain cancer detection using MRI scans

based on a machine learning algorithm with the combination of computer vision problems, that

helps to automate the process of cropping the brain from MRI scans. This dataset of MRI scans

consists of (i) different types of tumors having different sizes as well as positions and (ii)

unaffected brain scans for training purposes. The CNN model used for this project is VGG_16.

The existing works use the other CNN models like InceptionV3, ResNet50, FastAI, etc. Some

even used the VGG_16 model but the results are not satisfactory because the dataset available is

too small. The model I built is more like a prototype because it was trained using 243 samples of

brain MRI scans. As the dataset is too small, I implemented a technique called Data

Augmentation. This technique did generate approximately 7,776 (243 x 32) augmented images

from the 243 images. Now the VGG_16 model has to be trained with these augmented images.

After training the model, it is ready to be tested with the test dataset. I have achieved 84% Test

Accuracy and 88% Validation Accuracy. The VGG_16 model is the most efficient and best

known for its prediction accuracy. However, the predictions can be improved by implementing

Ensemble Learning. This is going to be my future work.

24

CHAPTER 5. FUTURE WORK

This algorithm was built using one of the effective CNN models, VGG_16. This model is

16 layers deep and best suited for image classification problems. Different models (like

Inception_V3, Resnet50, fastAI, etc.) produce different accuracy scores. We can also combine

multiple models together to build a meta-model for better performance. A combination of

different classifier models to produce a mega algorithm and training this built meta-model is a

whole other level of work. This process is known as Ensemble Learning. “Stacking” is the most

common Ensemble learning technique that combines multiple classification models via a meta-

classifier. The base-level models use a complete training set to get trained and the outputs

produced by these base models can be used to train the meta-model [6]. The prediction levels are

much more accurate with the use of Ensemble Learning technique. However, the implementation

of this meta-model requires a high-performance Graphics Processing Unit (GPU) in addition to

CPU that demands high computational power, cost, and time. My future work lies in the

implementation of Brain cancer detection using Ensemble learning.

25

REFERENCES

[1] Mayo Clinic. “Brain tumor.” Retrieved September 2019, from

https://www.mayoclinic.org/diseases-conditions/brain-tumor/symptoms-causes/syc-

20350084

[2] Healthline. “Different types of brain tumors” Retrieved September 2019, from:

https://www.healthline.com/health/brain-tumor

[3] Chakrabarty, N. “Dataset for Brain tumor MRI images” Retrieved October 2019, from

https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection

[4] Sharma, K., Kaur, A., Gujral, S., (October 2014). “Brain Tumor Detection based on

Machine Learning Algorithms”, in International Journal of Computer Applications (0975

– 8887) Vol. 103, Issue 1.

[5] Rosebrock, A (2016, April 11). “Finding extreme points in contours with OpenCV”

Retrieved October 2019, from https://www.pyimagesearch.com/2016/04/11/finding-

extreme-points-in-contours-with-opencv/

[6] Smolyakov, V. (2017, August 22). “Ensemble Learning to Improve Machine Learning

Results” Retrieved November 2019, from https://blog.statsbot.co/ensemble-learning-

d1dcd548e936

[7] Keras Documentation. “Keras: The Python Deep Learning library” Retrieved October

2019, from https://keras.io/

[8] Heller, M. (2019, January 28). “What is Keras? The deep neural network API explained”

Infoworld. Retrieved November 2019, from

https://www.infoworld.com/article/3336192/what-is-keras-the-deep-neural-network-api-

explained.html

[9] The Keras Blog (2016, June 5). “Building powerful image classification models using

very little data” Retrieved October 2019, from https://blog.keras.io/building-powerful-

image-classification-models-using-very-little-data.html

[10] Hassan, M.U. (2018, November 20). “VGG16 – Convolutional Network for

Classification and Detection” Retrieved October 2019, from

https://neurohive.io/en/popular-networks/vgg16/

[11] Wadhai, V.M., Chancalani, A., Kachwalla, M., Shinde, P., Katare, R., Agarwal, A. (April

2018). “Classification of Brain MRI images for Cancer Detection using Deep Learning”,

in International Journal of Advanced Research in Computer and Communication

Engineering, ISO 3297:2007 Certified, Vol. 7, Issue 4.

https://www.mayoclinic.org/diseases-conditions/brain-tumor/symptoms-causes/syc-20350084
https://www.mayoclinic.org/diseases-conditions/brain-tumor/symptoms-causes/syc-20350084
https://www.healthline.com/health/brain-tumor
https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.pyimagesearch.com/2016/04/11/finding-extreme-points-in-contours-with-opencv/
https://www.pyimagesearch.com/2016/04/11/finding-extreme-points-in-contours-with-opencv/
https://blog.statsbot.co/ensemble-learning-d1dcd548e936
https://blog.statsbot.co/ensemble-learning-d1dcd548e936
https://keras.io/
https://www.infoworld.com/article/3336192/what-is-keras-the-deep-neural-network-api-explained.html
https://www.infoworld.com/article/3336192/what-is-keras-the-deep-neural-network-api-explained.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://neurohive.io/en/popular-networks/vgg16/

