
EVALUATION OF A SPARK-ENABLED GENETIC ALGORITHM APPLIED TO THE

TRAVELLING SALESMAN PROBLEM

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Amritha Raveendran

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Computer Science

April 2020

Fargo, North Dakota

North Dakota State University

Graduate School

Title

EVALUATION OF A SPARK-ENABLED GENETIC ALGORITHM

APPLIED TO THE TRAVELLING SALESMAN PROBLEM

 By

Amritha Raveendran

 The Supervisory Committee certifies that this Paper complies with North Dakota State

University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Dr. Simone Ludwig

 Chair

Dr. Pratap Kotala

Dr. Annie Tangpong

 Approved:

 April 17, 2020 Dr. Kendall Nygard

 Date Department Chair

iii

ABSTRACT

Traveling salesman problem aims to find the shortest route. A salesman travels to each of

the cities once. Genetic Algorithm is used for solving this problem, which returns the best

solution found showing the distance that can be covered with the minimum cost (shortest path).

A Spark-enabled parallel implementation was investigated in terms of performance. The aim of

the study was to show the effect of parallelization of a Genetic Algorithm applied to the

Travelling salesman problem. Experiments are run using different numbers of processors and the

performance of the algorithm is evaluated based on the execution speed. To identify the best

performing number of processors to be used, we made a comparison measuring the execution

time of the algorithm for different numbers of cities using different numbers of cores.

iv

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor Dr. Simone Ludwig

for the continuous support of my MS Paper, for her patience, motivation, enthusiasm and

immense knowledge. Her guidance helped in all the time of research and writing of my paper.

Besides my advisor, I would like to thank my MS paper committee members Dr. Pratap Kotala

and Dr. Anne Tangpong for their encouragement and support. A special thanks to Computer

Science department System Administrator, Guy Hokanson, for his time and patience in

answering my queries. Last but not the least, I would like to thank my family and friends for all

the strength and support.

v

DEDICATION

I would like to dedicate this project to my family, friends and teachers who supported me

throughout my life.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS... iv

DEDICATION ..v

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

1. INTRODUCTION AND RELATED WORK ..1

2. APPROACH ...6

2.1. Genetic Algorithm ..6

2.1.1. Crossover ...8

2.1.2. Mutation ... 12

2.2. Spark .. 15

3. ALGORITHM SETUP .. 17

4. RESULTS ... 22

5. CONCLUSION ... 45

REFERENCES ... 46

vii

LIST OF TABLES

Table Page

1. Command Line Options .. 21

2. Final Optimum Distance .. 44

viii

LIST OF FIGURES

Figure Page

1. Single Point Crossover ..9

2. Double Point Crossover ...9

3. Uniform Crossover .. 10

4. Flow Chart of Genetic Algorithm .. 15

5. Class Diagram of the Process .. 18

6. 1-core machine .. 22

7. 2-core machine .. 23

8. 3-core machine .. 24

9. 4-core machine .. 26

10. 5-core machine .. 27

11. 6-core machine .. 28

12. 7-core machine .. 30

13. 8-core machine .. 31

14. 9-core machine .. 32

15. 10-core machine .. 33

16. 11-core machine .. 34

17. 12-core machine .. 36

18. 13-core machine .. 37

19. 14-core machine .. 38

20. 15-core machine .. 40

21. 16-core machine .. 41

22. Time Taken ... 42

23. SpeedUp .. 43

1

1. INTRODUCTION AND RELATED WORK

The traveling salesman problem aims to find the shortest distance (optimal solution) that

can be travelled from one city to another city. One algorithm that can be applied to the problem

is the Genetic algorithm. The Genetic algorithm is a search heuristic theory based on the idea of

natural selection inspired by Charles Darwin [20]. The process of natural selection begins by

choosing the fittest individuals from a population. The individuals produce offspring which

inherit the characteristics of their parents and will be added to the next generation. The fitter

parents will have a better chance of producing better offspring. This process continues to iterate

and at the end, a generation with the fittest individual is selected. There are different genetic

operators that play a major role in the performance of the genetic algorithm.

We applied a Genetic Algorithm to solve the Travelling Salesman Problem using Spark,

which is a parallel implementation, to find the optimum solution. We ran the program for

different numbers of cities on different number of processors (cores), calculated the shortest

distance, the time taken to execute it and calculated the speedup. The main objective of the

project is to:

• Show the effect of the parallelization using a Spark-based implementation of a genetic

algorithm applied to the travelling salesman problem.

• Evaluate the performance of running the genetic algorithm on different numbers of

processors in terms of execution time.

• Focus on the parallelization aspect of the Spark-based GA implementation.

Parallelization is the act of intending a computer program to process data in parallel instead of

running sequentially. If a system is parallelized, it breaks the problem into parts and runs them

independently at the same time by discrete processors. Earlier, computer software was written

2

for serial computing [25]. In order to solve a problem, an algorithm is constructed and is run

sequentially. Advantages of parallel computing are that it saves processing time and solves larger

problems in a shorter time compared to serial computing [26]. Many operations can be done

simultaneously using parallel computing. In this Travelling Salesman problem, the reason why

we chose Genetic Algorithm is because it is a population-based method in which each of the

individual solutions will be given attention and we work on each of them simultaneously. Due to

this reason, Genetic Algorithm is the best fit for a parallel implementation. Spark is used as the

tool to enable the computation. Spark is an open-source distributed cluster computing

framework. It was developed at UC Berkeley on 2014. One of the main building blocks of Spark

is Resilient Distributed Dataset [RDD]. Spark uses Resilient Distributed Datasets to perform

parallel processing across processors. In the Travelling salesman problem using Genetic

Algorithm with Spark, we ran the solutions on different number of cores parallelly. Then,

obtained the execution time of each of the processors. Later, the speedup is calculated to

compare the performance of different number of processors. Thus, we can show the effect of

parallelization of a genetic algorithm applied to Travelling salesman problem using Spark.

The application of the genetic algorithm in Urban Bus Route Network Design [1],

emphasized on urban public transport system involving determining a route configuration with a

set of transit routes and associated frequencies that achieves the desired objective. The authors

formulated the scenario as an optimization problem by minimizing the overall cost of users and

the operator. The main focus is on the Genetic Algorithm. The design is done in two phases, first

a set of potential routes called the candidate route set is generated using the genetic algorithm.

Then, an optimum set of routes are selected from the candidate route set using the genetic

algorithm. The reason for using this approach is because the genetic algorithm can provide a

3

robust search as well as a near optimal solution in a reasonable time (for small problems). In

another paper [2], the author used Genetic Algorithm using Spark. The authors used parallelism

to enhance the computation performance and to improve the quality of the solutions. The authors

proposed a two-phase parallelization algorithm that involves the fitness evaluation parallelization

and the genetic operation parallelization. Their experimental result clearly depicts the fact that

this method is an improvement of the genetic algorithm for pairwise test suite generation. In the

Powerful Genetic Algorithm for Traveling Salesman Problem [3], they added edge swapping

with a local search procedure to filter better combinations of building blocks of parent solutions

for producing best offspring. We know that the performance of the genetic algorithm mainly

depends on the type of genetic operators; selection, crossover, mutation and replacement are

used. In the Study of Various Mutation Operators in Genetic Algorithms [4], the authors mainly

discussed about various mutation methods that can be implemented in a genetic algorithm to

solve the problem that involves large population sizes. The authors discussed about nearly nine

mutation techniques starting from insert mutation to creep mutation. In a Study of Various

Crossover Operators in Genetic Algorithm [5], the authors discussed the different crossover

operators that are used to solve large population size optimization problems using a genetic

algorithm. The authors mainly discussed the eight types of crossover techniques beginning from

single point crossover to cycle crossover. To analyze the performance of mutation operators

applied to solve the Travelling Salesman Problem [6], a comparative analysis of different

mutation operators was presented, surrounded by a discussion that justifies the relevance of

genetic operators chosen to solve the travelling salesman problem. A powerful machine with best

performing processors is needed to make a comparison of modern CPUs and GPUs running the

Genetic Algorithm under the Knapsack Benchmark as done by Jiri Jaros and team from Brno

4

University [7]. The authors introduced an optimized multicore CPU implementation of the

genetic algorithm and compared its performance with a fine-tuned GPU version. Their goal was

to show the true performance relation between modern CPUs and GPUs and eradicate some of

the myths surrounding GPU performance. In the Travelling Salesman Problem using Genetic

Algorithm [9], the authors mainly compared the efficiency of the new crossover operator with

some existing crossover operators. In Genetic Algorithms and Parallel Processing in Maximum-

Likelihood Phylogeny Inference [10], the authors investigated the usefulness of parallel genetic

algorithm for phylogenetic inference under the maximum likelihood optimality criterion. The

authors explored various ways of optimizing and tuning the parameters of the genetic algorithm.

In their analysis, the authors could not find the best-known solution using the genetic algorithm

approach before terminating each run. The authors said that even if the process speeds up by the

addition of processors resulting in a decrease of problems of size variation, they still have issues

with processors when they duplicate each other’s calculations resulting in redundancy. As

communication among processors if often slow relative to computational time, this transmission

of duplicate data may significantly slow the process. Researchers from University of Bucharest

researched about a distributed implementation using Apache Spark of a genetic algorithm

applied to test data generation [12]. The authors mainly used the parallelized genetic algorithm

test data generation for executable programs. GenRBFNSpark: A first implementation in Spark

of a genetic algorithm to RBFN design is mentioned in [13], where Spark is discussed, which is a

powerful cluster computing platform based on Map-Reduce. Due to dependencies between data

that involves a multi-pass computing mode, there are no implementations of artificial networks

models in well-known libraries of machine learning. In their paper the authors tried to develop

Radical Basis Function Networks and GenRBFNSpark by implementing Spark with the genetic

5

method. The authors ran the algorithm with different configurations, and at the end they

demonstrated that GenRBFNSpark achieves a remarkable speed up with respect to the local

version.

6

2. APPROACH

2.1. Genetic Algorithm

Genetic Algorithm is a process for solving both forced and free optimization problems

and is centered on natural selection, the process that pushes biological evolution. The genetic

algorithm repeatedly modifies a population of individual solutions [21]. Genetic algorithms were

developed to mimic some of the processes observed in natural evolution, a process that functions

on chromosomes. The genetic algorithm method differs from other search methods in that it

searches among a population of points and work with a coding of parameters, rather than the

parameter values themselves. The old methods of genetic algorithm used gradient information,

but the evolution scheme is probabilistic [24]. Due to these characteristics, genetic algorithms are

being used as general-purpose optimization algorithms. The working principles of a genetic

algorithm is as follows:

• Randomly initialize the population

• Repeat

• Find objective function value

• Find fitness function value

• Generate next population using operators

• Reproduction

• Crossover

• Mutation

• Until convergence

The flow chart of genetic algorithm is shown in Fig 4. The main step involved in a

genetic algorithm is generating the population of solutions, finding the objective function and

7

fitness function, and the application of the genetic operators. Coding of variables is the important

characteristic of a genetic algorithm. If the problem has more than one variable, a multivariable

coding is constructed by concatenating as many single-variable coding as the number of

variables in the problem. GAs process a number of solutions simultaneously. The first step is to

generate a random population whose individuals represent feasible solutions. It starts from a

wide range of solutions in the solution space, so the search is robust and unbiased. Next,

individual members of the population are evaluated to find the objective function value. Then,

the objective function is mapped onto a fitness function that computes a fitness value for each

member of the population. The fitness function is used to allocate reproductive trails to the

individuals in the population and thus acts as some measure of goodness to be maximized. Thus,

individuals with a higher fitness value will have a higher probability of being selected as

candidates for further examination. A new population is generated from the current population

by performing three distinct genetic operators, namely reproduction, crossover and mutation.

Reproduction is an operator that makes more copies of better individuals in a new

population. Healthier individuals should be from the fittest individuals of the preceding

population; this is attained by calculating the reproduction count associated with each individual

and then removing or copying the individual depending on the values of the reproduction count.

The reproduction count is computed based on the fitness value by various methods; the present

work uses stochastic sampling without replacement, because it is both superior to other schemes

and widely used [22].

The advantages of a genetic algorithm compared to a classical optimization algorithm [6]

are it uses only the evaluation of the objective function regardless of its nature. In fact, we do not

require any special property of the function to be optimized, which gives it more flexibility and a

8

wide range of applications. The work is done in parallel by working on several solutions at once

instead of using a single iteration in a classical algorithm. The use of probabilistic alteration rules

compared to deterministic algorithms where the evolution between two individuals is required by

the structure and nature of the algorithm.

2.1.1. Crossover

In the crossover operation, a recombination process creates diverse individuals in the next

generation by combining material from two individuals of the earlier generation. A crossover

operator is used to recombine two chromosomes to get a better chromosome (solution).

Crossover is usually performed with a probability called crossover probability to preserve some

of the good chromosomes found previously [16]. Crossover is done at the gene (individual part

of a chromosome) level by randomly selecting two chromosomes for the crossover operation. It

is a process of taking more than one parent solution and producing a child solution from them.

There are many types of crossover techniques.

9

• Single Point Crossover: Single point crossover in which a single crossover point on both

parents’ organism strings (chromosomes) is selected [16]. All data beyond that point in

either organism string is swapped between the two-parent organisms in the resulting

organisms are the children as shown in Figure 1.

 Parents

Children

Crossover point

Figure 1. Single Point Crossover

• Double-Point Crossover: It calls for two points to be selected on the parent organism

strings. Everything between the two points is swapped between the parent organisms,

rendering two child organisms as shown in Figure 2.

 Parents

Children

Crossover points

Figure 2. Double Point Crossover

• Uniform Crossover: Uniform and half uniform crossover is another operator. Uniform

crossover follows a step that applies a fixed mixing ratio between both the parents.

Unlike single and double point crossover, the uniform crossover enables the parent

10

chromosomes to contribute the gene level rather than the segment level as shown in

Figure 3. Even if the crossover points can be randomly chosen as seen in the figure,

suppose the mixing ratio is 0.5, the offspring has approximately half of the genes from

the first parent and the next half from the second parent. It evaluates each bit in the parent

strings for exchange with a probability of 0.5. Empirical evidence suggests that it is a

more investigative approach to crossover than the traditional manipulative approach that

maintains longer plans. This results in a more complete search of the design space with

maintaining the exchange of good information [5].

 Parents

Children

With a probability of 0.5, children have 50% genes from first parent and
50% of genes from second parent even with randomly chosen crossover

points

Figure 3. Uniform Crossover

• N-point Crossover: This was first implemented by De Jong in 1975. It has many cross

over sites but the rule used is the same as in single point crossover. The significance of

crossover sites is 2 in 2-point crossover [5]. Adding more crossover disrupts the building

blocks of the chromosomes and that would affect the performance of the genetic

algorithm. Here the author accepts both the head and the tail section of the chromosome.

• Three Parent Crossover: Here three parents are chosen arbitrarily. Each gene of the first

parent is compared with the equivalent gene of the second parent [5]. If both genes are

11

similar, then the gene is used as the offspring or else the gene from the third parent is

taken as the offspring.It is typically used in case of binary encoded chromosomes.

• Arithmetic Crossover: It is used in the case of real-value encoding. The arithmetic

crossover operator linearly combines the two parent chromosomes [5]. Two

chromosomes are chosen randomly for crossover to create two offspring which are a

linear mixture of their parents.

• Partially mapped Crossover: This is the most often used crossover operator. It was

proposed by Goldberg and Lingle for the Travelling Salesman Problem. Two

chromosomes are combined, and two crossover sites are chosen randomly [5]. The

portion of chromosomes between the two crossover points gives an equivalent selection

that undergoes the crossover process through position-by-position exchange operations.

This crossover method tends to respect the absolute positions.

• Order Crossover: It was proposed by Davis and also used for chromosomes with

permutation encoding. The process starts in a way similar to partially mapped crossover

by choosing two crossover points [5]. But in its place of using point-by-point exchanges

as in the case of partially mapped crossover, order crossover applies a sliding motion to

fill up the left out spaces by sending the mapped positions. It copies the portion of

permutation elements between the crossover points from the cut string directly to the

offspring, inserting them in the same absolute position.

12

• Cycle Crossover: If there are chromosomes with permutation encoding, this crossover is

used. During recombination in cyclic crossover there is a limitation that each gene either

comes from the one parent or the other [5]. The fundamental model at the back-cycle

crossover is that each gene either comes from the one parent or the other. To construct a

cycle of genes from parent1 we must start with the first gene of parent1. Then look at the

gene at the equal position in parent 2 and go to the position with the same gene in parent

1. Insert this gene to the cycle in the first child on the positions they have in the first

parent and the remaining genes of first child come from the second parent along with

their position. Produce next cycle from parent 2.

2.1.2. Mutation

Mutation is a genetic operator used to conserve the genetic diversity from one generation

of a population of chromosomes to the next generation of a population of genetic algorithm

chromosomes. It is similar to biological mutation. It alters one or more gene values in a

chromosome from its initial state [4]. There are different types of mutation techniques:

• Insert Mutation: It is used in Permutation encoding. First, pick two gene values at random

[4]. Then move the second gene to follow the first, shifting the rest along to

accommodate. This conserves most of the symmetry and the adjacency information.

• Inversion Mutation: This is used for chromosomes with permutation encoding. To do

inversion, pick two genes randomly and then invert the substring between them. It

preserves most adjacency information and only breaks two links but it leads to the

disruption of order information [4].

13

• Scramble Mutation: It is also used with permutation encoded chromosomes. In this

mutation, one must pick a subset of genes at random and then randomly rearrange the

genes in those positions. Subset does not have to be contiguous [4].

• Swap Mutation: It is also in permutation encoding. The method is, select two genes at

random and swap their positions. It preserves most of the adjacency information, but the

links broken disrupts the order more [4].

• Flip Mutation: According to a generated mutation chromosome, flipping of a bit involves

altering 0 to 1 and 1 to 0. A parent is studied, and a mutation chromosome is randomly

produced. For a 1 in mutation chromosome, the corresponding bit in the parent

chromosome is flipped and the child chromosome is produced. It is commonly used in

binary encoding [4].

• Interchanging Mutation: Two random positions of the string are chosen and the bits

corresponding to those positions are interchanged [4].

• Reversing Mutation: This is applied for binary encoded chromosomes. Here they choose

a random spot and the bits next to that spot are reversed and the child chromosome is

generated [4].

• Uniform Mutation: The value of a chosen gene with a uniform random value selected

between the user specified upper and lower bound for that gene will be changed by the

mutation operator. It is used in case of real and integer representation [4].

• Creep Mutation: In creep mutation, a random gene is chosen, and its value is modified

with a random value between lower and upper bound. It is used in the case of real

representation [4].

14

For solving the Traveling salesman problem using a genetic algorithm, the following basic steps

can be used:

• Encoding: Permutation encoding is used to solve traveling salesman problem. We

symbolize cities with an integer value, and later we initialize the population.

• Distance matrix: Distance matrix is an NxN matrix of point to point distance.

• Selection based on fitness function: It will be the total cost of the tour represented by

each chromosome. The lesser the sum, the fitter the solution represented by that

chromosome. Figure 4 shows the flow chart of the genetic algorithm steps.

15

Figure 4. Flow Chart of Genetic Algorithm

2.2. Spark

Spark is an open source cluster computing system whose aim is to fasten data analytics

[15]. Spark is fast to run as well as write. Spark offers high-level APIs in Java, Scala, Python and

R, and to support general execution graphs, an optimized engine is used. It helps a find set of

higher-level tools including Spark SQL for SQL and structured data processing, GraphX for

graph processing, and Spark streaming, MLib for machine learning.

Initial Population

Evaluation Fitness

Selection

Cross Over & Mutation

New Population

Meet

Stop

Criteria

?
Exit

Yes

No

16

At a high level, every Spark application contains a driver program that runs the user’s

main function and executes several parallel operations on a cluster. The main concept spark

provides is a resilient distributed database (RDD), which is a collection of elements assigned

across the nodes of the cluster that can be operated on in parallel [19]. RDDs are created by

starting with a file in the Hadoop file system or any other Hadoop-supported file system, or an

existing Scala collection in the driver program, and transforming it. Users may also ask Spark to

continue an RDD in memory, allowing it to be reused efficiently across parallel operations.

Finally, RDDs automatically recover from node failures. The second concept in Spark is shared

variables that can be used in parallel operations. By default, when Spark runs a function in

parallel as a set of tasks on different nodes, it sends a copy of each variable used in the function

to each task. Sometimes across tasks and driver program, a variable need to be shared. There are

two types of shared variables in spark: broadcast variables, which can be used to cache a value in

memory on all nodes, and accumulators, which are variables that are only added to, like counters

and sums.

17

3. ALGORITHM SETUP

We are investigating the performance of the parallel Spark implementation of the

Traveling Salesman Problem as outlined in [17]. The program finds the shortest distance while

travelling many cities while starting and ending in the same city. To do this, it uses a Genetic

algorithm which generates random routes between cities, finds the best ones and then recombines

and mutates the best ones to find even better ones. This is done in several iterations.

The algorithm runs in parallel when we split the work between threads, after they will

start to do a lot of double work. Therefore, it works in a fork-solve-recombine fashion where

after each iteration a new work package is constructed from the best routes so far. This process

continues either until the max number of iterations is reached or there is no change in distance

anymore between iterations.

The steps that were followed was, initiate an initial population of chromosomes P. Assess

the fitness of each chromosomes. Through proportional selection, choose P/2 parents from the

current population. To create offspring using crossover operator, randomly select two parents.

For minor changes apply the mutation operator. Repeat random selection, cross over and

mutation until all parents are chosen and mated. Replace old population of chromosomes with

new population. Evaluate the fitness of each chromosome in the newly created population.

Terminate if the number of generations meets some upper bound, otherwise again choose P/2

parents from the current population via proportional selection and repeat the steps.

18

Figure 5. Class Diagram of the Process

19

The spark-of-life project [17] has been used. The following steps are used in the project,

there is a Salesman folder in which classes named City and Route are listed that give the list of

cities and size of route, respectively. This is used as the input for creating the population. A class

named Solver does the actual genetic algorithm steps. It creates the generation size, finds the list

of cities, it sets the route update, creates a random function to generate a random population and

new array list of cities, later they make use of the genetic algorithm operators like Crossover and

Mutation. There is another folder called Spark that has two classes named SparkFacade and

Work. Both have shared the task to make the process easier. SparkFacade access the cities and

routes and they help the solver to do initialization followed by iterations. Before they begin the

iteration, each set of population should be sent to different processors parallel. The Work Class

represents the unit of work that is executed by the Spark Executors. Work Class directs the

population into different processors to do parallelization. For this purpose, the Work class help

the solver and continue the execution of the population and begin the iteration process to get the

final optimum result as the output. The end result would give the best solution, execution time of

each processors and SpeedUp.

A class named City was created with many variables, name, lat1, lat2 and lon1, lon2 for

name, latitude and longitude. This calculates the number of cities and distance between each

cities. Theta value is calculated by finding the difference between lon1 and lon2.

 Distance = sin(deg2rad(lat1))*sin(deg2rad(lat2)+cos(deg2rad(lat2))*cos(deg2rad(theta)) (1)

• Deg2rad:-Converts degrees to radians. The input deg must be a scalar, vector, or N-

dimensional array of double or single floating point values. Deg may be complex in which

case the real and imaginary components are converted separately. The output rad is the same

size and shape as deg with degrees converted to radians using the conversion constant pi/180.

20

• Rad2deg:- This is to convert radians to degrees. The conversion constant is 180/pi. What was

done is to parallelize the task so that we can utilize the efficiency of multiple worker threads.

By approximating Pi, a code uses many workers to do a CPU related task. To do fork-solve-

recombine, the RDD is parallelized first, then the CPU bound calculation is done in the map

and then reduce the values to print the approximation of Pi.

Figure 5 shows the Class diagram of the process. In the Solve method, the algorithm runs

the parallelize-map-reduce code inside the for loop. A work class is created, it has the list of

routes that can be a task for the Worker to solve. The Solve method is called in the map function

and it runs until it reaches a maximum time, repeated value, or maximum number of generations.

The loop ends if there are no improvements in the distance or when the maximum number of

iterations are done.

In the class Route, the city list is collected in which they put the number of cities as the

route size. The distance should always be greater than 1. The used for loop is to show the

distance of the route. The crossover and mutation are done by dividing the route into half and

appending it with the other one. Mutation is done randomly on any index values and it returns a

new route. The StringBuilder method is used to append the string representation of the argument.

In the Solver class, the generation size, final list of cities, and route update is set. Then a

random function is created for generating a random population. A new array list of cities is

created. The for loop is used in all creations. Then, the parent routes are selected. They are

sorted and compared by distance. Then, the final route is selected and added in a new array list.

An if statement is used to check if the distance of the routes is same or not. If they are different,

the crossover is done between them by obtaining a child route. In the child route, mutation is

done by making small change in index. Then, they create the new population.

21

The next step is the update for the next generation. The new generation set is taken and

considered as parents for the next generation and then the process is continued. The process

continues until it reaches an optimal solution that gives the best solution. As they are run in

different cores, we kept track of the execution time of each of the cores. The execution time is

calculated by computing the current time and start time in milliseconds.

 T = current time - start time (2)

Then, the execution speedup is calculated by dividing the time taken for running the algorithm in

one core and the time taken for running the algorithm in different numbers of cores.

We can run the program from IDE by running the

com.nibado.example.sparkoflife.Main.class. It has sensible defaults for the different command

line options [17].

We can run it using the command line "–c 20 –s –I 10 –d 4 –m local[2] –a MyApp"

This will run the example with 20 cities, shuffled, in 10 iterations max with an iteration duration

of 4 seconds max. It runs in Spark in local mode with 2 workers and label the Spark application

as MyApp. But we do not shuffle the cities in this case.

Table 1. Command Line Options

Option Type Default Description

-c int 100 Number of cities to limit to

-i in 4 Number of iterations

-d int 8 Iteration max duration in seconds

-s

False Shuffle city input

-m String local[4] Spark Master

-a String SparkOfLife Application name

Here in this GA, the more time you let it spend the closer it will get to an optimal

solution, but there is no guarantee that the found solution is optimal [17].

22

4. RESULTS

After sending the population to the different cores for execution, we obtained the optimal

solution which is the shortest distance. We used 70 iterations for each of the experiments. The

results of the experiments are the shortest distance, execution time for each of the cores, and the

calculated speedup.

Figure 6. 1-core machine

Figure 6 shows the result when the program was run on 1 core with 70 iterations. For 20

cities the optimum distance obtained was 15285.75 Km. For 30 Cities, the initial distance

obtained in 0th iteration was 18745.65 Km and at the end, the final optimized distance was

17793.67 Km. When run with 40 cities, the distance was 22368.18 Km in the 0th iteration and

21437.1 Km in the 70th iteration. For 50 Cities, the initial distance was 32783.73 Km and the

final optimized distance was 25621.57 Km. 46785.49 Km was the distance in the 0th iteration

and 34042.24 Km in the 70th iteration for 60 cities. For 70 Cities, 60594.62 Km was the distance

obtained in 0th iteration and 38712.94 Km for the 70th iteration. The distance obtained when the

0

20000

40000

60000

80000

100000

120000

140000

160000

0 2 4 6 8 10121416182022242628303234363840424446485052545658606264666870

D
is

ta
n

ce
 in

 K
m

Iterations

20 Cities 30 Cities 40 Cities 50 Cities 60 Cities

70 Cities 80 Cities 90 Cities 100 Cities 110 Cities

23

program was run with 80 cities was 74828.97 Km and 48615.4 Km as the initial distance and the

final optimized distance obtained. For 90 cities, in the 0th iteration, the distance obtained was

107283.6 Km and for 70th iteration, the final distance obtained was 53436.76 Km. For 100 cities,

the distance in the 0th iteration was 115387 Km and for the 70th iteration, 53066.59 Km was the

result. When the program was run with 110 cities, the initial value obtained was 146729.3 Km

and the final optimized value was 61098.32 Km.

Figure 7. 2-core machine

Figure 7 shows the result when the program was run on 2 cores with 70 iterations. For 20

cities, the initial distance was 15798.85 Km and the optimum distance obtained was 15684.06

Km. For 30 Cities, the initial distance obtained in 0th iteration was 19021.73 Km and at the end,

the final optimized distance was also the same. When run with 40 cities, the distance was

22302.03 Km in the 0th iteration as well as 70th iteration. For 50 Cities, the initial distance was

32678.03 Km and the final optimized distance was 28060.47 Km. 46785.49 Km was the distance

0

20000

40000

60000

80000

100000

120000

140000

160000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69

D
is

ta
n

ce
 in

 K
m

Iterations

20 Cities 30 Cities 40 Cities 50 Cities 60 Cities

70 Cities 80 Cities 90 Cities 100 Cities 110 Cities

24

in the 0th iteration and 32996.03 Km in the 70th iteration for 60 cities. For 70 Cities, 64305.55

Km was the distance obtained in 0th iteration and 40468.17 Km for the 70th iteration. The

distance obtained when the program was run with 80 cities was 80488.95 Km and 49028.83 Km

as the initial distance and the final optimized distance obtained respectively. For 90 cities, in the

0th iteration, the distance obtained was 95072.45 Km and for 70th iteration, the final distance

obtained was 55900.47 Km. For 100 cities, the distance in the 0th iteration was 111485 Km and

for the 70th iteration, 48644.79 Km was the result. When the program was run with 110 cities,

the initial value obtained was 141086.2 Km and the final optimized value was 65746.72 Km.

Figure 8. 3-core machine

Figure 8 shows the result when the program was run on 3 cores with 70 iterations. For 20

cities the optimum distance obtained was 15243.56 Km. For 30 Cities, the initial distance

obtained in 0th iteration was 19160.22 Km and at the end, the final optimized distance was

0

20000

40000

60000

80000

100000

120000

140000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69

D
is

ta
n

ce
 in

 K
m

Iterations

20 Cities 30 Cities 40 Cities 50 Cities 60 Cities

70 Cities 80 Cities 90 Cities 100 Cities 110 Cities

25

19160.22 Km. When run with 40 cities, the distance was 23057.85 Km in the 0th iteration and

21366.98 Km in the 70th iteration. For 50 Cities, the initial distance was 28787 Km and the final

optimized distance was 25182.21 Km. 46785.49 Km was the distance in the 0th iteration and

39469.2 Km in the 70th iteration for 60 cities. For 70 Cities, 60786.76 Km was the distance

obtained in 0th iteration and 38712.94 Km for the 70th iteration. The distance obtained when the

program was run with 80 cities was 84219.67 Km and 50592.18 Km as the initial distance and

the final optimized distance obtained. For 90 cities, in the 0th iteration, the distance obtained was

99489.08 Km and for 70th iteration, the final distance obtained was 43498.64 Km. For 100 cities,

the distance in the 0th iteration was 114855.3 Km and for the 70th iteration, 58751.5 Km was the

result. When the program was run with 110 cities, the initial value obtained was 129853 Km and

the final optimized value was 60499.12 Km.

26

Figure 9. 4-core machine

Figure 9 shows the result when the program was run on 4 cores with 70 iterations. For 20

cities the optimum distance obtained was 15437.06 Km. For 30 Cities, the initial distance

obtained in 0th iteration was 18441.62 Km and at the end, the final optimized distance was

18441.62 Km. When run with 40 cities, the distance was 21668 Km in the 0th iteration and

20399.14 Km in the 70th iteration. For 50 Cities, the initial distance was 29487.22 Km and the

final optimized distance was 24505.71 Km. 43595.48 Km was the distance in the 0th iteration

and 30241.51 Km in the 70th iteration for 60 cities. For 70 Cities, 56988.09 Km was the distance

obtained in 0th iteration and 38287.77 Km for the 70th iteration. The distance obtained when the

program was run with 80 cities was 77849.49 Km and 47583.3 Km as the initial distance and the

final optimized distance obtained respectively. For 90 cities, in the 0th iteration, the distance

0

20000

40000

60000

80000

100000

120000

140000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69

D
is

ta
n

ce
 in

 K
m

Iterations

20 Cities 30 Cities 40 Cities 50 Cities 60 Cities

70 Cities 80 Cities 90 Cities 100 Cities 110 Cities

27

obtained was 100471.6 Km and for 70th iteration, the final distance obtained was 44357.03 Km.

For 100 cities, the distance in the 0th iteration was 112731.2 Km and for the 70th iteration,

53907.01 Km was the result. When the program was run with 110 cities, the initial value

obtained was 125787.4 Km and the final optimized value was 61532.21 Km.

Figure 10. 5-core machine

Figure 10 shows the result when the program was run on 5 cores with 70 iterations. For

20 cities the optimum distance obtained was 15243.56 Km. For 30 Cities, the initial distance

obtained in 0th iteration was 17058.89 Km and at the end, the final optimized distance was

17058.89 Km. When run with 40 cities, the distance was 21966.1 Km in the 0th iteration and

19667.46 Km in the 70th iteration. For 50 Cities, the initial distance was 32249.88 Km and the

0

20000

40000

60000

80000

100000

120000

140000

160000

0 2 4 6 8 10121416182022242628303234363840424446485052545658606264666870

D
is

ta
n

ce
 in

 K
m

Iterations

20 Cities 30 Cities 40 Cities 50 Cities 60 Cities

70 Cities 80 Cities 90 Cities 100 Cities 110 Cities

28

final optimized distance was 28760.3 Km. 43072.59 Km was the distance in the 0th iteration and

30368.92 Km in the 70th iteration for 60 cities. For 70 Cities, 64863.6 Km was the distance

obtained in 0th iteration and 40373.83 Km for the 70th iteration. The distance obtained when the

program was run with 80 cities was 83459.52 Km and 46438.45 Km as the initial distance and

the final optimized distance obtained respectively. For 90 cities, in the 0th iteration, the distance

obtained was 88103.75 Km and for 70th iteration, the final distance obtained was 49762.59 Km.

For 100 cities, the distance in the 0th iteration was 120105.3 Km and for the 70th iteration,

52025.7 Km was the result. When the program was run with 110 cities, the initial value obtained

was 137744.5 Km and the final optimized value was 64835.04 Km.

Figure 11. 6-core machine

Figure 11 shows the result when the program was run on 6 cores with 70 iterations. For

20 cities the optimum distance obtained was 15684.06 Km. For 30 Cities, the initial distance

0

20000

40000

60000

80000

100000

120000

140000

160000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69

D
is

ta
n

ce
 in

 K
m

Iterations

20 Cities 30 Cities 40 Cities 50 Cities 60 Cities

70 Cities 80 Cities 90 Cities 100 Cities 110 Cities

29

obtained in 0th iteration was 16916.49 Km and at the end, the final optimized distance was

16916.49 Km. When run with 40 cities, the distance was 21717.85 Km in the 0th iteration and

21176.29 Km in the 70th iteration. For 50 Cities, the initial distance was 29469.77 Km and the

final optimized distance was 24476.94 Km. 41008.34 Km was the distance in the 0th iteration

and 31660.57 Km in the 70th iteration for 60 cities. For 70 Cities, 61956.58 Km was the distance

obtained in 0th iteration and 39546.51 Km for the 70th iteration. The distance obtained when the

program was run with 80 cities was 78642.66 Km and 43463.88 Km as the initial distance and

the final optimized distance obtained respectively. For 90 cities, in the 0th iteration, the distance

obtained was 99620.4 Km and for 70th iteration, the final distance obtained was 54027.96 Km.

For 100 cities, the distance in the 0th iteration was 115178.1 Km and for the 70th iteration,

50906.56 Km was the result. When the program was run with 110 cities, the initial value

obtained was 134454.2 Km and the final optimized value was 60485.33 Km.

30

Figure 12. 7-core machine

Figure 12 shows the result when the program was run on 7 cores with 70 iterations. For

20 cities the optimum distance obtained was 15243.56 Km. For 30 Cities, the initial distance

obtained in 0th iteration was 18362.75 Km and at the end, the final optimized distance was

18337.75 Km. When run with 40 cities, the distance was 21719.42 Km in the 0th iteration and

21060.81 Km in the 70th iteration. For 50 Cities, the initial distance was 32826.89 Km and the

final optimized distance was 23506.55 Km. 42960.95 Km was the distance in the 0th iteration

and 29560.79 Km in the 70th iteration for 60 cities. For 70 Cities, 64233.2 Km was the distance

obtained in the 0th iteration and 39515.49 Km for the 70th iteration. The distance obtained when

the program was run with 80 cities was 85897.04 Km and 47171.54 Km as the initial distance

and the final optimized distance obtained respectively. For 90 cities, in the 0th iteration, the

0

20000

40000

60000

80000

100000

120000

140000

0 2 4 6 8 10121416182022242628303234363840424446485052545658606264666870

D
is

ta
n

ce
 in

 K
m

Iterations

20 Cities 30 Cities 40 Cities 50 Cities 60 Cities

70 Cities 80 Cities 90 Cities 100 Cities 110 Cities

31

distance obtained was 101760 Km and for 70th iteration, the final distance obtained was

48242.71 Km. For 100 cities, the distance in the 0th iteration was 113507.1 Km and for the 70th

iteration, 50199.86 Km was the result. When the program was run with 110 cities, the initial

value obtained was 133256.2 Km and the final optimized value was 63777 Km.

Figure 13. 8-core machine

Figure 13 shows the result when the program was run on 8 cores with 70 iterations. For

20 cities the optimum distance obtained was 15437.06 Km. For 30 Cities, the initial distance

obtained in 0th iteration was 17497.76 Km and at the end, the final optimized distance was

17497.76 Km. When run with 40 cities, the distance was 20924.37 Km in the 0th iteration and

20457.59 Km in the 70th iteration. For 50 Cities, the initial distance was 26924.37 Km and the

final optimized distance was 25229.49 Km. 38938.81 Km was the distance in the 0th iteration

0

20000

40000

60000

80000

100000

120000

140000

160000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

D
is

ta
n

ce
 in

 K
m

Iteration

20 Cities 30 Cities 40 Cities 50 Cities 60 Cities

70 Cities 80 Cities 90 Cities 100 Cities 110 Cities

32

and 28167.17 Km in the 70th iteration for 60 cities. For 70 Cities, 63962.2 Km was the distance

obtained in 0th iteration and 37496.83 Km for the 70th iteration. The distance obtained when the

program was run with 80 cities was 79712.04 Km and 47910.33 Km as the initial distance and

the final optimized distance obtained respectively. For 90 cities, in the 0th iteration, the distance

obtained was 96334.46 Km and for 70th iteration, the final distance obtained was 45233.52 Km.

For 100 cities, the distance in the 0th iteration was 114380.4 Km and for the 70th iteration,

52101.65 Km was the result. When the program was run with 110 cities, the initial value

obtained was 139235.1 Km and the final optimized value was 56157.38 Km.

Figure 14. 9-core machine

Figure 14 shows the result when the program was run on 9 cores with 70 iterations. For

20 cities the optimum distance obtained was 15285.75 Km. For 30 Cities, the initial distance

obtained in 0th iteration was 16820.22 Km and at the end, the final optimized distance was

16820.22 Km. When run with 40 cities, the distance was 22766.5 Km in the 0th iteration and

0

20000

40000

60000

80000

100000

120000

140000

0 2 4 6 8 10121416182022242628303234363840424446485052545658606264666870

D
is

ta
n

ce
 in

 K
m

Iterations

20 Cities 30 Cities 40 Cities 50 Cities 60 Cities

70 Cities 80 Cities 90 Cities 100 Cities 110 Cities

33

21555.95 Km in the 70th iteration. For 50 Cities, the initial distance was 32123.62 Km and the

final optimized distance was 29081.49 Km. 42232.41 Km was the distance in the 0th iteration

and 28106.16 Km in the 70th iteration for 60 cities. For 70 Cities, 66582.35 Km was the distance

obtained in 0th iteration and 44194.25 Km for the 70th iteration. The distance obtained when the

program was run with 80 cities was 77140.23 Km and 46500.35 Km as the initial distance and

the final optimized distance obtained respectively. For 90 cities, in the 0th iteration, the distance

obtained was 95853.69 Km and for 70th iteration, the final distance obtained was 43718.64 Km.

For 100 cities, the distance in the 0th iteration was 116931.6 Km and for the 70th iteration,

44748.78 Km was the result. When the program was run with 110 cities, the initial value

obtained was 122007.5 Km and the final optimized value was 56303.68 Km.

Figure 15. 10-core machine

Figure 15 shows the result when the program was run on 10 cores with 70 iterations. For

20 cities the optimum distance obtained was 15940.64 Km. For 30 Cities, the initial distance

obtained in 0th iteration was 16796.97 Km and at the end, the final optimized distance was

16796.97 Km. When run with 40 cities, the distance was 22321.06 Km in the 0th iteration and

0

20000

40000

60000

80000

100000

120000

140000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69

D
is

ta
n

ce
 in

 K
m

Iterations

20 Cities 30 Cities 40 Cities 50 Cities 60 Cities

70 Cities 80 Cities 90 Cities 100 Cities 110 Cities

34

21500.2 Km in the 70th iteration. For 50 Cities, the initial distance was 29728.66 Km and the

final optimized distance was 26206.03 Km. 43402.39 Km was the distance in the 0th iteration

and 30696.95 Km in the 70th iteration for 60 cities. For 70 Cities, 67400.69 Km was the distance

obtained in 0th iteration and 42848.72 Km for the 70th iteration. The distance obtained when the

program was run with 80 cities was 76214.42 Km and 38382.86 Km as the initial distance and

the final optimized distance obtained respectively. For 90 cities, in the 0th iteration, the distance

obtained was 97703.96 Km and for 70th iteration, the final distance obtained was 58117.92 Km.

For 100 cities, the distance in the 0th iteration was 114779.4 Km and for the 70th iteration,

55076.18 Km was the result. When the program was run with 110 cities, the initial value

obtained was 131947.1 Km and the final optimized value was 56879.42 Km.

Figure 16. 11-core machine

Figure 16 shows the result when the program was run on 11 cores with 70 iterations. For

20 cities the optimum distance obtained was 15243.56 Km. For 30 Cities, the initial distance

0

20000

40000

60000

80000

100000

120000

140000

160000

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69

D
is

ta
n

ce
 in

 K
m

Iterations

20 Cities 30 Cities 40 Cities 50 Cities 60 Cities

70 Cities 80 Cities 90 Cities 100 Cities 110 Cities

35

obtained in 0th iteration was 17819.8 Km and at the end, the final optimized distance was

17819.8 Km. When run with 40 cities, the distance was 21683.92 Km in the 0th iteration and

21312.13 Km in the 70th iteration. For 50 Cities, the initial distance was 29646.72 Km and the

final optimized distance was 25711.21 Km. 42634.72 Km was the distance in the 0th iteration

and 30176.97 Km in the 70th iteration for 60 cities. For 70 Cities, 63912.72 Km was the distance

obtained in 0th iteration and 43403.25 Km for the 70th iteration. The distance obtained when the

program was run with 80 cities was 76218.83 Km and 40082.96 Km as the initial distance and

the final optimized distance obtained respectively. For 90 cities, in the 0th iteration, the distance

obtained was 98256.86 Km and for 70th iteration, the final distance obtained was 46664.44 Km.

For 100 cities, the distance in the 0th iteration was 112024.6 Km and for the 70th iteration,

52519.73 Km was the result. When the program was run with 110 cities, the initial value

obtained was 138715.2 Km and the final optimized value was 57919.82 Km.

36

Figure 17. 12-core machine

Figure 17 shows the result when the program was run on 12 cores with 70 iterations. For

20 cities the optimum distance obtained was 15285.75 Km. For 30 Cities, the initial distance

obtained in 0th iteration was 18328.05 Km and at the end, the final optimized distance was

18328.05 Km. When run with 40 cities, the distance was 22088.14 Km in the 0th iteration and

21722.21 Km in the 70th iteration. For 50 Cities, the initial distance was 28385.77 Km and the

final optimized distance was 23392.49 Km. 34586.67 Km was the distance in the 0th iteration

and 30014.63 Km in the 70th iteration for 60 cities. For 70 Cities, 64827.07 Km was the distance

obtained in 0th iteration and 39376.31 Km for the 70th iteration. The distance obtained when the

program was run with 80 cities was 78226.16 Km and 40633.98 Km as the initial distance and

0

20000

40000

60000

80000

100000

120000

140000

160000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

D
is

ta
n

ce
 in

 K
m

Iterations

20 Cities 30 Cities 40 Cities 50 Cities 60 Cities

70 Cities 80 Cities 90 Cities 100 Cities 110 Cities

37

the final optimized distance obtained respectively. For 90 cities, in the 0th iteration, the distance

obtained was 98459.06 Km and for 70th iteration, the final distance obtained was 50014.62 Km.

For 100 cities, the distance in the 0th iteration was 111134.2 Km and for the 70th iteration,

45872.82 Km was the result. When the program was run with 110 cities, the initial value

obtained was 139371.9 Km and the final optimized value was 63686.06 Km.

Figure 18. 13-core machine

Figure 18 shows the result when the program was run on 13 cores with 70 iterations. For

20 cities the optimum distance obtained was 15243.56 Km. For 30 Cities, the initial distance

obtained in 0th iteration was 17060.84 Km and at the end, the final optimized distance was

17060.84 Km. When ran with 40 cities, the distance was 23906.48 Km in the 0th iteration and

23676.3 Km in the 70th iteration. For 50 Cities, the initial distance was 30638.16 Km and the

final optimized distance was 24284.6 Km. 43254 Km was the distance in the 0th iteration and

0

20000

40000

60000

80000

100000

120000

140000

160000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

D
is

ta
n

ce
 in

 K
m

Iterations

20 Cities 30 Cities 40 Cities 50 Cities 60 Cities

70 Cities 80 Cities 90 Cities 100 Cities 110 Cities

38

27751.75 Km in the 70th iteration for 60 cities. For 70 Cities, 65510 Km was the distance

obtained in 0th iteration and 38598.62 Km for the 70th iteration. The distance obtained when the

program was run with 80 cities was 81476.19 Km and 43852.64 Km as the initial distance and

the final optimized distance obtained respectively. For 90 cities, in the 0th iteration, the distance

obtained was 100820.5 Km and for 70th iteration, the final distance obtained was 50163.08 Km.

For 100 cities, the distance in the 0th iteration was 121232.3 Km and for the 70th iteration,

46136.33 Km was the result. When the program was run with 110 cities, the initial value

obtained was 13835.3 Km and the final optimized value was 59554.48 Km.

Figure 19. 14-core machine

0

20000

40000

60000

80000

100000

120000

140000

160000

0 2 4 6 8 10121416182022242628303234363840424446485052545658606264666870

D
is

ta
n

ce
 in

 K
m

Iterations

20 Cities 30 Cities 40 Cities 50 Cities 60 Cities

70 Cities 80 Cities 90 Cities 100 Cities 110 Cities

39

Figure 19 shows the result when the program was run on 14 cores with 70 iterations. For

20 cities the optimum distance obtained was 15691.85 Km. For 30 Cities, the initial distance

obtained in 0th iteration was 17669.36 Km and at the end, the final optimized distance was

17669.36 Km. When run with 40 cities, the distance was 23875.2 Km in the 0th iteration and

22863.8 Km in the 70th iteration. For 50 Cities, the initial distance was 27214.56 Km and the

final optimized distance was 25144.48 Km. 44132 Km was the distance in the 0th iteration and

28997.03 Km in the 70th iteration for 60 cities. For 70 Cities, 62794.71 Km was the distance

obtained in 0th iteration and 41188.93 Km for the 70th iteration. The distance obtained when the

program was run with 80 cities was 82090.38 Km and 43446.11 Km as the initial distance and

the final optimized distance obtained respectively. For 90 cities, in the 0th iteration, the distance

obtained was 97070.08 Km and for 70th iteration, the final distance obtained was 42471.44 Km.

For 100 cities, the distance in the 0th iteration was 115747.6 Km and for the 70th iteration,

49880.21 Km was the result. When the program was run with 110 cities, the initial value

obtained was 140174.4 Km and the final optimized value was 54816.97 Km.

40

Figure 20. 15-core machine

Figure 20 shows the result when the program was run on 15 cores with 70 iterations. For

20 cities the optimum distance obtained was 15285.75 Km. For 30 Cities, the initial distance

obtained in 0th iteration was 18964.75 Km and at the end, the final optimized distance was

17424.65 Km. When run with 40 cities, the distance was 25937.87 Km in the 0th iteration and

21324.32 Km in the 70th iteration. For 50 Cities, the initial distance was 28563.85 Km and the

final optimized distance was 25726.34 Km. 43418.21 Km was the distance in the 0th iteration

and 28144.14 Km in the 70th iteration for 60 cities. For 70 Cities, 60495.19 Km was the distance

obtained in 0th iteration and 43320.05 Km for the 70th iteration. The distance obtained when the

program was run with 80 cities was 79767.92 Km and 39805.33 Km as the initial distance and

the final optimized distance obtained respectively. For 90 cities, in the 0th iteration, the distance

obtained was 101109.1 Km and for 70th iteration, the final distance obtained was 50893.58 Km.

For 100 cities, the distance in the 0th iteration was 119741.4 Km and for the 70th iteration,

0

20000

40000

60000

80000

100000

120000

140000

160000

0 2 4 6 8 10121416182022242628303234363840424446485052545658606264666870

D
is

ta
n

ce
 in

 K
m

Iterations

20 Cities 30 Cities 40 Cities 50 Cities 60 Cities

70 Cities 80 Cities 90 Cities 100 Cities 110 Cities

41

42722.52 Km was the result. When the program was run with 110 cities, the initial value

obtained was 134173 Km and the final optimized value was 54009.78 Km.

Figure 21. 16-core machine

Figure 21 shows the result when the program was run on 16 cores with 70 iterations. For

20 cities the optimum distance obtained was 15285.75 Km. For 30 Cities, the initial distance

obtained in 0th iteration was 17381.5 Km and at the end, the final optimized distance was

17247.83 Km. When run with 40 cities, the distance was 21651.29 Km in the 0th iteration and

20280.08 Km in the 70th iteration. For 50 Cities, the initial distance was 31069.69 Km and the

final optimized distance was 24852.36 Km. 45062.47 Km was the distance in the 0th iteration

and 29574.28 Km in the 70th iteration for 60 cities. For 70 Cities, 67220.34 Km was the distance

obtained in 0th iteration and 41289.24 Km for the 70th iteration. The distance obtained when the

program was run with 80 cities was 77324.28 Km and 39592.02 Km as the initial distance and

the final optimized distance obtained, respectively. For 90 cities, in the 0th iteration, the distance

obtained was 97016.57 Km and for 70th iteration, the final distance obtained was 48891.82 Km.

0

20000

40000

60000

80000

100000

120000

140000

160000

0 2 4 6 8 10121416182022242628303234363840424446485052545658606264666870

D
is

ta
n

ce
 in

 K
m

Iterations

20 Cities 30 Cities 40 Cities 50 Cities 60 Cities

70 Cities 80 Cities 90 Cities 100 Cities 110 Cities

42

For 100 cities, the distance in the 0th iteration was 120369.7 Km and for the 70th iteration,

50054.93 Km was the result. When the program was run with 110 cities, the initial value

obtained was 142125.5 Km and the final optimized value was 49751.01 Km.

Figure 22. Time Taken

In Figure 22, the time taken by the different cores for different numbers of cities are

shown. Time is directly proportional to the number of cities. Core 1 took more time than Core

16. The final optimum distance taken by each cores with different numbers of cities are shown in

Table 2. The optimized result varies based on the number of cities as well as the number of

cores. Looking at the figure, we can also see that at some point, even the difference in the

number of cities does not vary much in execution time when the program is run in different

cores. So when it is going too high, the difference is less sometimes. For example, in the figure

if we take the execution time of Core 5, after reaching 100 cities, the execution time is similar

even for 110 cities. Core 16 has similar execution time for 80 cities, 90 cities, and so on. It has

only very little variation.

0

5

10

15

20

25

20 30 40 50 60 70 80 90 100 110

Ex
ec

u
ti

o
n

 ti
m

e
in

 s
ec

o
n

d
s

Number of Cities

Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7 Core 8

Core 9 Core 10 Core 11 Core 12 Core 13 Core 14 Core 15 Core 16

43

Figure 23. SpeedUp

In Figure 23, it shows the execution speedup, which is calculated by dividing the time

taken for running the algorithm on one core and the time taken for running the algorithm on

several cores. When the speedup value of the different numbers of cores were compared, the

highest number of cores had the highest performance.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Sp
ee

d
U

p

Number of Core

20 Cities 30 Cities 40 Cities 50 Cities 60 Cities

70 Cities 80 Cities 90 Cities 100 Cities 110 Cities

44

Table 2. Final Optimum Distance

Core # 20 Cities 30 Cities 40 Cities 50 Cities 60 Cities 70 Cities 80 Cities 90 Cities 100

Cities

110

Cities

1 15910.43 17793.67 21437.10 25621.57 34042.24 38712.94 48615.40 53436.76 53066.59 61098.32

2 15684.06 19021.73 22302.03 28060.47 32996.03 40468.17 49028.83 55900.47 48644.79 65746.72

3 15243.56 19160.22 21366.98 25182.21 33088.20 39469.20 50592.18 43498.64 58751.50 60499.12

4 15437.06 18441.62 20399.14 24505.71 30241.51 38287.77 47583.30 44357.03 53907.01 61532.21

5 15243.56 17058.89 19667.46 28760.30 30368.92 40373.83 46438.45 49762.59 52025.70 64835.04

6 15684.06 16916.49 21176.29 24476.94 31660.57 39546.51 43463.88 54027.96 50906.56 60485.33

7 15243.56 18337.75 21060.81 23506.55 29560.79 39515.49 47171.54 48242.71 50199.86 63777.00

8 15437.06 17497.76 20457.59 25229.49 28167.17 37496.83 47910.33 45233.52 52101.65 56157.38

9 15285.75 16820.22 21555.95 29081.49 28106.16 44194.25 46500.35 43718.64 44748.78 56303.68

10 15940.64 16796.97 21500.20 26206.03 30696.95 42848.72 38382.86 58117.92 55076.18 56879.42

11 15243.56 17819.80 21312.13 25711.21 30176.97 43403.25 40082.96 46664.44 52519.73 57919.82

12 15285.75 18328.05 21722.21 23392.49 30014.63 39376.31 40633.98 50014.62 45872.82 63686.06

13 15243.56 17060.84 23676.30 24284.60 27751.75 38598.62 43852.64 50163.08 46136.33 59554.48

14 15691.85 17669.36 22863.80 25144.48 28997.03 41188.93 43446.11 42471.44 49880.21 54816.97

15 15285.75 17424.65 21324.32 25726.34 28144.14 43320.05 39805.33 50893.58 42722.52 54009.78

16 15285.75 17247.83 20280.08 24852.36 29574.28 41289.24 39592.02 48891.82 50054.93 49751.01

45

5. CONCLUSION

The travelling salesman problem applying genetic algorithm using spark is a good

approach for optimization. The problem addressed mainly focused on how to show the effect of

parallelization of a genetic algorithm using the travelling salesman problem as the benchmark.

Thus, the genetic algorithm based travelling salesman problem parallelized with Spark was

investigated.

The algorithm was run on different numbers of cores with different numbers of cities

using 70 iterations. The result was an optimized final distance. The execution time was also

recorded to calculate and compare the speedup value of the different experiments. The

conclusion from the results of the experiments are that the speedup obtained using the highest

numbers of cores is higher than the others, i.e., the performance of using 16 cores is better than

when lesser numbers of cores are used.

As for future work, a comparison of the genetic algorithm with other optimization

methods could be made by implementing the other optimization methods using the Spark

framework so that the speedup could be compared.

46

REFERENCES

[1] S. B. Pattnaik, S. Mohan, V. M. Tom. July 2008. Urban Bus Route Network Design

Using Genetic Algorithm. Journal of Transportation Engineering. 124 4. doi:

https://doi.org/10.1061/(ASCE)0733-947X(1998)124:4(368).

[2] R. Qi, Z. Wang, S. Li, IEEE. March 2016. A Parallel Genetic Algorithm Based on Spark

for Pairwise Test Suite Generation. Journal of Computer Science and

Technology 31(2):417-427. doi: 10.1007/s11390-016-1635-5.

[3] S. Liu, Sun Yat-sen University, Guangzhou China. February 2014. A Powerful Genetic

Algorithm for Traveling Salesman Problem. eprint arXiv: 1402.4699. doi:

2014arXiv1402.4699L.

[4] N. Soni, T. Kumar. Lingaya’s University, Faridabad. 2014. Study of Various Mutation

Operators in Genetic Algorithms. International Journal of Computer Science and

Information Technologies, Vol. 5(3), 2014, 4519-4521. Issn: 0975-9646.

[5] N. Soni, T. Kumar. Lingaya’s University, Faridabad. 2014. Study of Various Crossover

Operators in Genetic Algorithms. International Journal of Computer Science and

Information Technologies, Vol. 5(6), 2014, 7235-7238. Issn:0975-9646.

[6] O. Abdoun, J. Abouchabaka, C. Tajani, Ibn Tofail University, Kenitra, Morocco. March

2012. Analyzing the Performance of Mutation Operators to Solve the Travelling

Salesman Problem. IJES, International Journal of Emerging Sciences , 2(1), 61-

77. arXiv:1203.3099v1 [cs.NE]. Issn: 2222-4254.

[7] J. Jaros, P. Pospichal. April 2012. A Fair Comparison of Modern CPUs and GPUs

Running the Genetic Algorithm under the Knapsack Benchmark. Applications of

Evolutionary Computation. doi: 10.1007/978-3-642-29178-4_43.

https://doi.org/10.1061/(ASCE)0733-947X(1998)124:4(368)
http://dx.doi.org/10.1007/s11390-016-1635-5
http://adsabs.harvard.edu/abs/2014arXiv1402.4699L
https://arxiv.org/abs/1203.3099v1
https://www.springerprofessional.de/en/applications-of-evolutionary-computation/3859748
https://www.springerprofessional.de/en/applications-of-evolutionary-computation/3859748

47

[8] S. Gupta, G. Agarwal, V. Kumar. April 2013. An Efficient and Robust Genetic

Algorithm for Multiprocessor Task Scheduling. IJCTE 2012 Vol.5(2): 377-382 ISSN:

1793-8201. doi: 10.7763/IJCTE.2013.V5.713.

[9] V. Dwivedi, T. Chauhan, S. Saxena, P. Agarwal. 2012. Travelling Salesman Problem

using Genetic Algorithm. National Conference on Development of Reliable Information

systems, Techniques and Related Issues (DRISTI). Proceedings published in

International Journal of Computer Applications (IJCA).

https://www.ijcaonline.org/proceedings/dristi/number1/5926-1007.

[10] M. J. Brauer, M. T. Holder, L. A. Dries, D. J. Zwickl, P. O. Lewis, D. M. Hillis. October

2002. Genetic Algorithms and Parallel Processing in Maximum-Likelihood Phylogeny

Inference. Oxford Journals https://doi.org/10.1093/oxfordjournals.molbev.a003994.

[11] S. Forrest. August 1993. Genetic Algorithms: Principles of Natural Selection Applied to

Computation. New Series. American Association for the Advancement of Science.

Volume 261, Issue 5123(Aug. 13, 1993), 872-878.

https://www.jstor.org/stable/2882113?seq=1#metadata_info_tab_contents.

[12] C. Paduraru, M. Melemciuc, A. Stefanescu, University of Bucharest and Electronic Arts

Bucharest, Romania. July 2017. A distributed implementation using Apache Spark of a

genetic algorithm applied to test data generation. The Genetic and Evolutionary

Computation Conference Companion. doi: 10.1145/3067695.3084219.

[13] A. J. Rivera, M.D. Perez-Godoy, F. Pulgar and M. J. Jesus. GenRBFNSpark: A first

implementation in Spark of a genetic algorithm to RBFN design.

http://simd.albacete.org/actascaepia15/papers/01011.pdf.

https://www.ijcaonline.org/proceedings/dristi/number1/5926-1007
https://doi.org/10.1093/oxfordjournals.molbev.a003994
https://www.jstor.org/publisher/aaas
https://www.jstor.org/stable/2882113?seq=1#metadata_info_tab_contents
http://simd.albacete.org/actascaepia15/papers/01011.pdf

48

[14] The Apache Software Project. Introduction to the POM.

http://maven.apache.org/guides/introduction/introduction-to-the-pom.html.

 [15] Apache Spark Introduction.

https://www.tutorialspoint.com/apache_spark/apache_spark_introduction.htm

[16] Crossover_(genetic_algorithm)

https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)

[17] Example of Running Genetic Algorithm

https://github.com/nielsutrecht/spark-of-life

[18] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S.

Shenker, Ion Stoica University of California, Berkeley.Resilient. 2012. Distributed

Dataset: A Fault-Tolerant Abstraction for In-Memory Clister Computing. Usenix: The

Advanced Computing Systems Association.

https://cs.stanford.edu/~matei/papers/2012/nsdi_spark.pdf.

[19] RDD — Resilient Distributed Dataset

http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.rdd.RDD.

[20] Genetic Algorithms – Darwin’s influence in computer science

https://blogs.unimelb.edu.au/sciencecommunication/2013/10/14/genetic-algorithms-

darwins-influence-in-computer-science/

[21] What is the Genetic Algorithm?

https://www.mathworks.com/help/gads/what-is-the-genetic-algorithm.html

[22] Genetic Algorithm.

T.V. Mathew, Department of Civil Engineering, Indian Institute of Technology Bombay.

https://datajobs.com/data-science-repo/Genetic-Algorithm-Guide-[Tom-Mathew].pdf

http://maven.apache.org/guides/introduction/introduction-to-the-pom.html
https://www.tutorialspoint.com/apache_spark/apache_spark_introduction.htm
https://www.tutorialspoint.com/apache_spark/apache_spark_introduction.htm
https://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
https://github.com/nielsutrecht/spark-of-life
https://cs.stanford.edu/~matei/papers/2012/nsdi_spark.pdf
http://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.rdd.RDD
https://blogs.unimelb.edu.au/sciencecommunication/2013/10/14/genetic-algorithms-darwins-influence-in-computer-science/
https://blogs.unimelb.edu.au/sciencecommunication/2013/10/14/genetic-algorithms-darwins-influence-in-computer-science/
https://www.mathworks.com/help/gads/what-is-the-genetic-algorithm.html

49

[23] Genetic Algorithms.

https://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol1/hmw/article1.html

[24] Genetic Algorithms

https://datajobs.com/data-science-repo/Genetic-Algorithm-Guide-[Tom-Mathew].pdf

[25] Parallel computing

 https://en.wikipedia.org/wiki/Parallel_computing

[26] Parallel computing and its advantage and disadvantage

https://www.geekboots.com/story/parallel-computing-and-its-advantage-and-

disadvantage

