
ADAPTIVE MESH REFINMENT APPLICATIONS FOR ADVICTION-DIFFUSION

PROBLEMS USING AMREX

A Paper

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Venkata Satya Ramakrishna Raju Kanumuru

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Program:

Computer Science

March 2020

Fargo, North Dakota

North Dakota State University

Graduate School

Title

ADAPTIVE MESH REFINMENT APPLICATIONS FOR ADVICTION-

DIFFUSION PROBLEMS USING AMREX

 By

Venkata Satya Ramakrishna Raju Kanumuru

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Dr. Kendall Nygard

 Chair

Dr. Trung Le

Prof. Oksana Myronovych

 Approved:

 05/15/2020 Dr. Kendall Nygard

 Date Department Chair

iii

ABSTRACT

In this paper we implemented an adaptive mesh refinement in high performance

computing environment to study a wide range of problems in engineering. They are nonlinear

Fisher-Kolmogorov equation, heat equation, advection equation and poisons equation using

traditional message passing interface (MPI). We used adaptive mesh refinement library called

AMReX for computation. AMReX is a numerical library containing the functionality to write

massively parallel, block-structured adaptive mesh refinement (AMR) applications. Our study

includes examples to solve poisons equation in traditional MPI approach and compared the

performance between the two methods.

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Trung Le, for his constant guidance throughout the

project. His timely feedback and encouraging words helped to complete the paper within time. A

special thanks to Center for Computationally Assisted Science and Technology (CCAST), for

computational resources. I’d also like to thank my graduate academic advisor, Dr. Kendall

Nygard and committee member Prof. Oksana Myronovych, for their support with the study.

Lastly, I wish to acknowledge my family and everyone who has been a part of my graduate life

in North Dakota State University, for their unfailing support.

v

DEDICATION

I would like to dedicate this project to my family, friends and teachers who supported me

throughout my life.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

DEDICATION .. v

LIST OF FIGURES ... viii

1. INTRODUCTION .. 1

1.1. Heat Equation ... 1

1.2. Dirichlet Boundary Condition on Heat Equation ... 2

1.3. Fisher–Kolmogorov Equation Solver ... 3

1.4. The Advection Equation ... 4

1.5. Jacobi Methods ... 4

1.5.1. Jacobi nth Order Basic Example .. 4

1.5.2. Message Passing Interface Jacobi Iterative Method on Laplace Equation.................... 5

1.5.3. Matrix Laboratory Programs Jacobi Iterative Method .. 6

2. AMREX .. 8

2.1. Load Balancing .. 9

2.2. Amr-Mesh and Amr-Core .. 9

2.3. Tag-Box and Cluster .. 11

2.4. Fill-Patch-Util and Interpolater .. 11

3. LITERATURE REVIEW ... 12

4. RESULTS ... 16

4.1. Heat Equation ... 16

4.2. Dirichlet Boundary Condition on Heat Equation ... 17

4.3. Fisher–Kolmogorov Equation Solver ... 19

4.4. The Advection Equation ... 20

vii

5. CONCLUSION ... 24

REFERENCES ... 25

APPENDIX A. JACOBI ITERATIVE METHOD WITH BASIC EXAMPLE 27

APPENDIX B. JACOBI ITERATIVE METHOD WITH BASIC EXAMPLE 29

APPENDIX C. JACOBI NTH ORDER BASIC EXAMPLE ... 30

APPENDIX D. MPI JACOBI ITERATIVE METHOD ON LAPLACE EQUATION

ROW WISE .. 32

APPENDIX E. MPI JACOBI ITERATIVE METHOD ON LAPLACE EQUATION

COLUMN WISE .. 34

APPENDIX F. MPI JACOBI ITERATIVE METHOD ON LAPLACE EQUATION

GRID WISE WITH 4 PROCESSES... 36

APPENDIX G. MPI JACOBI ITERATIVE METHOD ON LAPLACE EQUATION

GRID WISE WITH 16 PROCESSES IN 4X4 GRID ... 39

APPENDIX H. MPI JACOBI ITERATIVE METHOD ON LAPLACE EQUATION

GRID WISE WITH 16 PROCESSES IN 2X16 GRID ... 44

APPENDIX I. JACOBI .. 50

APPENDIX J. JACOBI NTH ORDER .. 51

APPENDIX K. 1D POISON EQUATION ... 52

APPENDIX L. 2D POISON EQUATION ... 53

viii

LIST OF FIGURES

Figure Page

1. Source Code Tree for The Amradvection Amrcore Example ... 10

2. Protected Code ... 10

3. Functions .. 11

4. Showing Heat Expansion with Time and Space T=0.0000000 & T=0.0274658 16

5. Showing Heat Expansion with Time and Space T=0.0961304 & T=0.1373290 16

6. Boundary Conditions ... 18

7. Dirichlet Boundary Condition on Heat Equation with Time and Space T=0.000000

& T=0.00219727 .. 18

8. Dirichlet Boundary Condition on Heat Equation with Time and Space

T=0.01098630 & T=0.04394530 ... 18

9. Dirichlet Boundary Condition on Heat Equation with Time and Space

T=0.10986300 & T=0.21972700 ... 19

10. Fisher Kolmogorov Wave Equation with Time and Space T=0.0000000 &

T=0.0274658 .. 19

11. Fisher Kolmogorov Wave Equation with Time and Space T=0.0961304 &

T=0.1373290 .. 20

12. 2D Multiple Vortex Comparison Time = 0 sec ... 21

13. 2D Multiple Vortex Comparison Time = 0.480124 sec .. 22

14. 3D Double Vortex with Time = 0 sec .. 22

15. 3D Double Vortex with Time = 1.09375 sec ... 23

1

1. INTRODUCTION

In many engineering and science problems, the elliptic equation arises in the form of

poisons equation as:

 (1)

Here f and coefficient are given values and φ is derived from boundary conditions.

Poisons equation has a broad usage in physics. It is the generalized form of the Laplacian

equation. this has many applications like electrostatic potentials or simulation incompressible

flows. non-local property of the elliptic equations is important. If is locally dependent, then we

can be applied on adaptive mesh refinement using the library presented in this study.

Fast Fourier transforms (FTTs), Cyclic reduction methods, direct sparse solvers,

preconditioned iterative methods, multi-grid methods etc. solve the elliptic PDEs. All these

methods are differing in supported mesh types or boundary conditions and on coefficient which

has to variations like smooth or discontinuous. Time complexity of fastest multi-grid methods is

O(N), here n is number of unknowns. whereas time complexity of the FFT methods is around O

(N logN). based on parallelization solvers shows significant difference due to the non-local

nature of the elliptic equations.

1.1. Heat Equation

More Complicated thing is the extension of the equation (1) can be formulated in a time

dependent form. It intensifies the need to find an exact solution for the poisons type equations.

Consider two one dimensional diffusion equations, a well-known and famous heat equation.

Heat equation is a partial differential equation that describes how the distribution of some

quantity like heat, evolves over time in a solid medium.

(2)

2

using forward Euler temporal integration on a periodic domain. We could use a 5-point (in 2D)

or 7-point (in 3D) stencil, but for demonstration purposes we spatially discretize the PDE by first

constructing (negative) fluxes on cell faces, e.g.,

(3)

and then taking the divergence to update the cells,

(4)

1.2. Dirichlet Boundary Condition on Heat Equation

Boundary of a domain takes a value on a solution when applied on partial differential

equations or ordinary differential equations is called as Dirichlet boundary condition, Dirichlet

boundary condition is also referred as fixed boundary condition.

• ODE

For an ordinary differential equation, for instance,

 y00 + y = 0, y00 + y = 0 (5)

the Dirichlet boundary conditions on the interval [a, b] take the form

 y(a) = α, y(b) = β, y(a) = α, y(b) = β (6)

where α and β are given numbers.

• PDE

For a partial differential equation, for example,

 ∇2y + y = 0, ∇2y + y = 0, (7)

where ∇2 denotes the Laplace operator, the Dirichlet boundary conditions take the form

 y(x) = f(x) ∀x ∈ ∂Ω, y(x) = f(x) ∀x ∈ ∂Ω, (8)

where f is a known function defined on the boundary ∂Ω.

3

1.3. Fisher–Kolmogorov Equation Solver

Fisher proposed this equation in his 1937 paper the wave of advance of advantageous

genes [5] in the context of population dynamics to describe the spatial spread of an advantageous

allele and explored its traveling wave solutions.

Muhammad Shaklee has worked on Traveling Wave Solution of the Fisher-Kolmogorov

Equation with Non-Linear Diffusion [6]. he chooses the diffusion as a function of cell density

such that it is high in highly cell populated areas and low in lower cell populated areas. The

Fisher equation with non-linear diffusion is known as modified Fisher equation. Analytical

solution for approximation of minimum wave speed by modified Fisher equation using

eigenvalues of the stationary states, and numerically by using COMSOL (a commercial finite

element solver) is produced in this study. Results shows that minimum wave speed depends on

the parameter values. We observe that when diffusion is moderately non-linear, the eigenvalue

method correctly predicts the minimum wave speed in our numerical calculations, but when

diffusion is strongly non-linear the eigenvalues method gives the wrong answer

And heat equation with nonlinear term called as Fisher-Kolmogorov equation. Fisher and

Kolmogorov introduced a classical model to describe the propagation of an advantageous gene in

a one-dimensional habitat. The equation describing the phenomenon is a one-dimensional non-

linear reaction diffusion equation

Fisher–Kolmogorov equation belongs to the reaction diffusion equation. This equation

has extra nonlinear term attached to the heat equation.

 (9)

We get, Fisher–Kolmogorov equation Solver as by making constants to unity.

 (10)

)

)

4

Using forward Euler temporal integration on a periodic domain. We could use a 5-point

(in 2D) or 7-point (in 3D) stencil, but for demonstration purposes we spatially discretize the PDE

by first constructing (negative) fluxes on cell faces, e.g.,

(11)

and then taking the divergence to update the cells,

(12)

1.4. The Advection Equation

Advection equation is solved on multi-level, adaptive grid structure

(13)

The velocity field is a specified divergence-free (so the flow field is incompressible)

function of space and time. The initial scalar field is a Gaussian profile. To integrate these

equations on a given level, we use a simple conservative update,

(14)

Here the velocity U is the parameter that controls the motion of the vortex. Depending on

how U varies with space and time, we can have different motion of the vortices. Here we choose

the form of U is in equation 12.

1.5. Jacobi Methods

1.5.1. Jacobi nth Order Basic Example

Here the same Jacobi method is applied but the equations are taken through a file input

which contains matrices. Here unknowns are given at runtime of the program. This program

solves up to ten unknowns. Also, we need to specify the number iterations in run time, or we can

5

hard code them in the program. I have hard coded it as 200 iterations. As the number of iterations

increases the solution converges to exact solution.

 Ax = b (15)

(16)

A can be decomposed into a diagonal component D, and the remainder R:

A = D+R where

(17)

(18)

The solution is then obtained iteratively.

1.5.2. Message Passing Interface Jacobi Iterative Method on Laplace Equation

In many engineering applications, the Laplace equation arises naturally from the

governing equations. When the size of the matrix A becomes very large (N = 1 million or billion)

then the convergence [8] of the Jacobi method becomes very slow because memory in single

CPU is very less to handle large size of matrix. So, we need to accelerate the computation and

MPI is the best way to do it.

Linear system of equations is solved using Jacobi iteration [7] of approximations.

Laplace equation in two dimensions with finite differences is solved by using this numerical

method. relaxation technique is used to find the value of each element. Laplace equation and its

6

generalized form Poisons equation is the model for relaxation technique. In these equations’

boundary values are specified on the boundary of a domain. This technique is used to solve the

linear equations resulting from a discretization of the differential equation.

If iterations are converged, then this means diffnorm [8] is less than 1.0e-2. And if the

iterations are also specified in the program as 100. MPI is used for communication between the

nodes or processors. Each processor is represented based on the rank and communication is done

between nodes by the reference of the rank. Here, 12x12 mesh is solved using 4 processors. The

processors arrangement looks like the row wise arrangement. The use of ghost points to

determine the values in parallel data structure is the simplest. Initial values are given same as the

rank in the interior of the mesh and boundary are filled with -1 on top and bottom.

Here I started different variations of the MPI implementations. MPI implementation is

done by using the functions called MPI-Send and MPI-Rec. these functions send and receive the

data from different neighboring nodes. First thing is applying MPI in column wise by dividing

the 12x12 mesh vertically into 4 processors. Later the same is applied on both ways i.e. the

division of the rank represent the 2x2 grid with 4 processors here grid means first row has 2

processors and second row has 2 processors. Next application is on the 4x4 grid with 16

processors. Here the number of iterations to find the exact solution is fixed because of the mesh

size i.e. 12x12. Later experiment is done on the 2x16 grid with 16 processors on 32x32 mesh.

Here I have observed that the iterations are increased to get the exact solution.

1.5.3. Matrix Laboratory Programs Jacobi Iterative Method

Iterative method [7] is also done using the Matrix Laboratory (MATLAB) code in single

processor. First done with the simple example and extended to the nth order Jacobi. Also, one-

dimensional and two-dimensional poisons equation is also solved using the MATLAB. Showed

7

the graphs between the exact solution and the solution obtained by the iterative relations

technique. The results are showed no difference in the exact and numerical method. as the

iterations are increased the convergence of the solution also increased. Please see the appendix

for the code.

8

2. AMREX

Exascale computing refers to computing systems capable of at least one exaflops, or a

billionth of billion (i.e. a quintillion) calculations per second. Such capacity represents a

thousand-fold increase over the first peta-scale computer that came into operation in 2008.

Although the exascale wall for FLOPS was not broken in 2019, the Oak Ridge National

Laboratory performed a 1.8x1018 operation calculation per second (which is not the same as

1.8x1018 flops). Exascale computing would be a significant achievement in computer

engineering, as an exascale computer would have processing power on the order of the estimated

processing power of the human brain at the neural level. AMReX [9] is designed to be used on

Exascale computing system. This paper concentrates mainly on AMReX Framework and its

applications. Basically, there are two code suites which are based on AMReX Framework [9].

They are AMReXAstro and AMReX-Combustion also called as Pele Suite. AMReX-Astro is a

suite of Open astrophysical hydrodynamics codes for exascale architectures and AMReX-

Combustion is a suite of adaptive mesh hydrodynamics simulation codes for reacting flows.

Also, there are several individual codes based on these AMReX code suites. they are Castro [10],

IAMR, MAESTROeX [10], MFIXExa, Nyx, WrapX, PeleLM and PeleC. Castro [10],

MAESTROex [10] and Nyx comes under the suit AMReX-Astro [10].

Key features of AMReX Framework are as follows:

• Whole codebase is written in C++ and Fortran interfaces.

• Supports 1-D, 2-D, 3-D.

• Cell-centered, face-centered, edge-centered, and nodal data are supported.

• Elliptic, hyperbolic or parabolic solution on hierarchical adaptive grid structure is

supported.

9

• Optional subcycling in time for time dependent PDEs

• Support for particles

• Support for embedded boundary (cut cell) representations of complex geometries

Amrex follow a simple process to divide large domain into small grids and then distribute

small grids to MPI ranks. Gridding and distributing the grids to MPI ranks is combinedly called

as the load balancing. Gridding is based on the Berger-Rigoutsis clustering algorithm. Any

algorithm from the options like Knapsack, SFC or Round-robin can be used while load

balancing.

2.1. Load Balancing

Load balancing process is independent of the grid creation, but weights assigned to the

grids and each grid are the inputs for the load balancing. Different algorithms supported by the

Amrex are as follows.

Knapsack algorithm: Array of weights, one per grid or MultiFab of weights per cell used

to compute the weight per grid can be passed using Amrex.

SFC: this is the default algorithm used in load balancing in Amrex. Enumerate grids with

a space -filling Z-Morton curve, then partition the resulting ordering across ranks in a way that

balances the load.

Round-robin: Fab I is owned by CPU i%N. where N is total number of MPI ranks.

2.2. Amr-Mesh and Amr-Core

User need to build the Geometry, DistributionMaping and BoxArray objects in single-

level simulation. For multiple level simulations AmrMesh class is the container which stores

arrays of these objects and information about grid structure. The protected data members are:

10

Figure 1. Source Code Tree for The Amradvection Amrcore Example

Figure 2. Protected Code

AmrCore is a pure virtual class, which is derived from the AmrMesh class. There are no

pure virtual functions in AmrMesh, there are 5 pure virtual functions in AmrCore class. They are

as follows. AmrCore have a member functions, most of them override the base class AmrMesh.

Applications must implement these 5 functions.

11

Figure 3. Functions

2.3. Tag-Box and Cluster

These class are used in the grid creation, cells tagged for refinement is marked by a data

structure called TagBox. Cluster class helps sort tagged cells and generate a grid structure with

tagged cells. Regrid and ErrorEst are the interfaces which hide the member functions.

2.4. Fill-Patch-Util and Interpolater

Array of MultiFabs one for each level of refinement uses the fillpatch to fill MultiFabs

temporarily that include different ghost cells based on the coarsest level and non-coarsest level.

AMReX FillPatchUtil.cpp contains two functions. FillPatchUtil uses an interpolator. Interpolator

is a virtual base class and have some derived classes.

• FillPatchSingleLevels (): this fills the ghost region at single level of refinement. It

interpolates in time between tow MultiFabs associated with different times.

• FillPatchTwoLevels (): this fills the ghost regions at single level of refinement,

assuming the is a coarse level. This uses the FillPatchSingleLevel for interpolation.

12

3. LITERATURE REVIEW

Over the last decade block-structured adaptive mesh refinement usage has increased a lot

along with the codebases and frameworks. block-structured adaptive mesh refinement

frameworks have evolved to different paths. Amrex is one of the frameworks which have been in

existence over a decade or more, with reasonably sized and active user base and is publicly

available. Earlier Amrex is called with the name called Boxlib. There are various other

frameworks available but this amrex is compatible and suitable for the latest hardware systems.

There are different other frameworks that are like the amrex. Most of the explicit methods for

compressible hydrodynamics are solved using these frameworks in the early times. Some of

these frameworks are AstroBEAR, CRASH, Cactus, Enzo, FLASH, Overture, PLUTO, and

Uintah [1]. These frameworks focused on specific domain individually. While other frameworks

concentrated on more general functionalities, all frameworks can solve hyperbolic conservation

laws explicitly but not all frameworks have the functionality to solve elliptic equations

accurately. AMROC and AMRClaw frameworks are used to solve g hyperbolic conservation

laws specifically, also these latest frameworks include tsunami simulation tool. Amrex, Chombo,

Jasmine and SAMRAI are the frameworks, who’s main functionality is to solve hyperbolic,

parabolic and elliptic equations. PARAMESH is for mesh management which achieves equation

independent ability.

Over the last decade block-structured adaptive mesh refinement usage has increased a lot

along with the codebases and frameworks. block-structured adaptive mesh refinement

frameworks have evolved to different paths. Amrex is one of the frameworks which have been in

existence over a decade or more, with reasonably sized and active user base and is publicly

13

available. Earlier Amrex is called with the name called Boxlib. There are various other

frameworks available but this amrex is compatible and suitable for the latest hardware systems.

There are different other frameworks that are like the amrex. Most of the explicit

methods for compressible hydrodynamics are solved using these frameworks in the early times.

Some of these frameworks are AstroBEAR, CRASH, Cactus, Enzo, FLASH, Overture, PLUTO,

and Uintah [1]. These frameworks focused on specific domain individually. While other

frameworks concentrated on more general functionalities, all frameworks can solve hyperbolic

conservation laws explicitly but not all frameworks have the functionality to solve elliptic

equations accurately. AMROC and AMRClaw frameworks are used to solve g hyperbolic

conservation laws specifically, also these latest frameworks include tsunami simulation tool.

Amrex, Chombo, Jasmine and SAMRAI are the frameworks, who’s main functionality is to

solve hyperbolic, parabolic and elliptic equations. PARAMESH is for mesh management which

achieves equation independent ability.

Amrex is a framework for building massively parallel adaptive mesh refinement. This

framework helps developers to implement new algorithms fast. Also, this framework is easy to

implement large scale domain specific numerical analysis in the fields like astrophysics,

cosmology, surface flow, turbulent combustion and mainly on time dependent PDE’s. this

framework is not fixed to time stepping or discretization strategy, this is the reason for its

flexibility.

On adaptive mesh, AMReX provides very general functionality for solving the time

dependent PDE’s. Also, there are specific applications like CASTRO and MAESTRO which are

based on AMReX framework are used to solve fully compressible radiation-hydrodynamics and

low Mach number astrophysical flows, respectively. My work is like the kind of study is done by

14

P. M. Ricker on a direct multigrid poison solver for oct-tree adaptive meshes using PARAMESH

library [2]. This study is done by a finite volume method for solving poison equation on oct-tree

adaptive meshes. This is the modified method of the Huang and Greengard’s method which is

based on the finite differences meshes and refined patches doesn’t share boundaries. Ricker work

uses the FLASH code framework and also the PARAMESH library.

J. Teunissen and R. Keppens has done a similar work on a geometric multigrid library for

quadtree/octree AMR grids coupled to MPI-AMRVAC [3]. Their geometric multigrid library is

efficient MPI-parallel library for quadtree(2D) or octree(3D) grids with adaptive refinement.

Second order discretization for elliptic operators with cartesian 2D/3D and cylindrical 2D

geometries are supported. Boundary conditions like Periodic, Dirichlet, and Neumann can be

handled. FFT-based solver on the coarse grid is used for free-space boundary conditions for 3D

poisons problems. Scaled results up to 1792 cores using this library are showed. This library

extended the MPI-AMRVAC an adaptive mesh refinement framework with an elliptic solver.

divergence of the magnetic field in magnetohydrodynamic simulations is controlled by the

multigrid routines for several test cases.

Poisson solvers in the unit cube are used in many applications in computational science

and engineering. The fast Fourier transform (FFT), the fast multipole method (FMM), the

geometric multigrid (GMG), and algebraic multigrid (AMG) are widely used methods for

solving poisons solver in the unit cube. In this paper high order, highly nonuniform

discretization’s is the main focus among solvers. FFT and regular-stencil multigrid are the

solvers which are specialized for problems on regular grids. high-performance geometric

multigrid (HPGMG) is a finite element multigrid benchmark is used to here. Five codes are

shown in this study, in which three methods are developed in their group. FFT, GMG, and FMM

15

are parallel solvers, these use high-order approximation schemas for poison problems with

continuous forcing function (right hand side). These are based on FFTW for single node

parallelism, AMG code is from the Trillions library from the Sandia National Laboratory [4],

GMG and FMM support octree-based mesh refinement and variable coefficients and enable

highly nonuniform discretization’s. results also considered weak scaling, strong scaling, and time

to solution for uniform and highly refined grids. Stampede and Titan are two supercomputer

systems used to test these solvers. 600 billion unknowns on 229,379 cores of Titan is the largest

test case [4]. Their results show smooth source functions that require uniform resolution are good

with FFT. When source function is considered with internal sharp layers then FFT is less

efficient when compared to the FMM and GMG, which showed high sensitivity to quality. The

low-order accurate counterparts are less efficient when compared with high-order accurate

versions of GMG and FMM [4].

Alzheimer’s disease is an irreversible neuro degenerative disorder that manifests itself in

the progressive aggregation of misfolded tau protein, neuronal death, and cerebral atrophy.

16

4. RESULTS

4.1. Heat Equation

Heat equation is a partial differential equation that describes how the distribution of some

quantity like heat, evolves over time in a solid medium.

(19)

Initial conditions of heat source is located at x initial = 0.25 and y initial = 0.25, and the

boundary condition used is periodic, Now we use the heat equation 6 to simulate the propagation

of heat inside this domain, in fig.1 heat is propagating in all directions along with the x-y

coordinates, at time T = 0.0274658 and T = 0.0961304 and finally at T = 0.1373290.

The implementation details of the code are discussed in section Example: Heat Equation

EX1 C For now let’s visualize the results.

Figure 4. Showing Heat Expansion with Time and Space T=0.0000000 & T=0.0274658

Figure 5. Showing Heat Expansion with Time and Space T=0.0961304 & T=0.1373290

17

4.2. Dirichlet Boundary Condition on Heat Equation

Input is given in the form of file and then this input is parsed with param function to take

values for boundary type. Here we are taking Dirichlet boundary condition as INLET (phi = val

at boundary) allowable options for this example are

-1 = PERIODIC

11 = INLET (phi = val at boundary)

12 = OUTLET (phi = extrap at boundary)

14 = SLIP WALL (dphi/dn=0 at boundary)

15 = NO SLIP WALL (dphi/dn=0 at boundary)

bcx lo = 11

bcx hi = 11

bcy lo = 11

bcy hi = 11

Main function which solves heat equation calls a subroutine named multifa fill ghost cells

which in-turn calls another subroutine named multifab physbc. this multifab physbc is where we

give our boundary conditions a value. where we specifically mention the type of the boundary

condition in the input file.

18

Figure 6. Boundary Conditions

Figure 7. Dirichlet Boundary Condition on Heat Equation with Time and Space

T=0.000000 & T=0.00219727

Figure 8. Dirichlet Boundary Condition on Heat Equation with Time and Space

T=0.01098630 & T=0.04394530

19

Figure 9. Dirichlet Boundary Condition on Heat Equation with Time and Space

T=0.10986300 & T=0.21972700

4.3. Fisher–Kolmogorov Equation Solver

Fisher–Kolmogorov equation belongs to the reaction diffusion equation. This equation

has extra nonlinear term attached to the heat equation.

(20)

Initial conditions of wave source is located at x initial = 0.0 and y initial = 0.0, and the boundary

condition used is periodic, Now we use the wave equation 10 and 11 to simulate the propagation

of heat inside this domain, in fig.2 wave is propagating in all directions along with the x-y

coordinates, at time T = 0.0274658 and T = 0.0961304 and finally at T = 0.1373290.

Figure 10. Fisher Kolmogorov Wave Equation with Time and Space T=0.0000000 &

T=0.0274658

20

Figure 11. Fisher Kolmogorov Wave Equation with Time and Space T=0.0961304 &

T=0.1373290

4.4. The Advection Equation

Advection equation is solved on multi-level, adaptive grid structure. Initialization of

velocity field is done on different vortex’s and each formula is shown below. Also, the boundary

condition used is periodic.

Single Vortex

(21)

(22)

Double Vortex

(23)

(24)

(25)

Triple Vortex

(26)

(27)

(28)

(29)

21

Quadra Vortex

(30)

(31)

(32)

(33)

 φi,j,k = 1.0 + e−r2 + e−r21 + e−r22 (34)

Below figures shows the differences between the multiple vortices at Time =

0 sec and at Time = 0.480124

Figure 12. 2D Multiple Vortex Comparison Time = 0 sec

The impact of U on the motion of the vortices is described in this case, the adaptive mesh

refinement plays a significant role in solving the equations from 14 to 25 because they follow the

motion of the vortices of figures 3 and 4 by comparing the mesh. The benefit of having adaptive

mesh is to solve the vortices at location the source exists.

22

Figure 13. 2D Multiple Vortex Comparison Time = 0.480124 sec

Figure 14. 3D Double Vortex with Time = 0 sec

23

Figure 15. 3D Double Vortex with Time = 1.09375 sec

24

5. CONCLUSION

This paper presents massively parallel, block-structured adaptive mesh refinement

(AMR) framework (AMReX) to solve various applications. First heat equation is solved using

this framework and next an extension to the heat equation by adding nonlinear term which gives

a reaction diffusion equation called Fisher–Kolmogorov equation. Also showed how heat and

wave propagates in 2D and 3D. Later we solved Advection equation using AMReX Framework.

Also showed Multiple vortex comparison with respect to time in 2D and 3D environments. And

finally solved the MPI based parallel programming example using Jacobi iterative methods.

25

REFERENCES

[1] Anshu Dubey, Ann Almgren, John Bell, Martin Berzins, Steve Brandt, Greg Bryan,

Phillip Colella, Daniel Graves, Michael Lijewski, Frank Löffler, Brian O’Shea, Erik

Schnetter, Brian Van Straalen, Klaus Weide, A survey of high level frameworks in block-

structured adaptive mesh refinement packages, Journal of Parallel and Distributed

Computing, Volume 74, Issue 12, 2014, Pages 3217-3227, ISSN 0743-7315,

https://doi.org/10.1016/j.jpdc.2014.07.001.

[2] Ricker, Paul. (2007). A Direct Multigrid Poisson Solver for Oct-Tree Adaptive Meshes.

Astrophysical Journal, Supplement Series. 176. 10.1086/526425.

[3] J. Teunissen, R. Keppens, A geometric multigrid library for quadtree/octree AMR grids

coupled to MPI-AMRVAC, Computer Physics Communications, Volume 245, 2019,

106866, ISSN 0010-4655, https://doi.org/10.1016/j.cpc.2019.106866.

[4] Malhotra, Dhairya & Sundar, Hari & Biros, George. (2014). FFT, FMM, or Multigrid? A

comparative study of state-of-the-art Poisson solvers. SIAM Journal on Scientific

Computing (submitted).

[5] Fisher, R.A. (1937), The wave of advance of advantageous genes. Annals of Eugenics, 7:

355-369. doi:10.1111/j.1469-1809.1937.tb02153.x

[6] Shakeel, Muhammad. (2013). Travelling Wave Solution of the Fisher-Kolmogorov

Equation with Non-Linear Diffusion. Applied Mathematics. 04. 148-160.

10.4236/am.2013.48A021.

[7] MPI Forum. Argonne National Laboratory, A simple Jacobi iteration,

https://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/src/jacobi/C/main.html

https://www.mcs.anl.gov/research/projects/mpi/tutorial/mpiexmpl/src/jacobi/C/main.html

26

[8] HarpinderKaur, HarpinderKaur. (2012). Convergence of Jacobi and Gauss-Seidel

Method and Error Reduction Factor. IOSR Journal of Mathematics. 2. 20-23.

10.9790/5728-0222023.

[9] Zhang, Weiqun & Almgren, Ann & Beckner, Vince & Bell, John & Blaschke, Johannes

& Chan, Cy & Day, Marcus & Friesen, Brian & Gott, Kevin & Graves, Daniel & Katz,

Max & Myers, Andrew & Nguyen, Tan & Nonaka, Andrew & Rosso, Michele &

Williams, Samuel & Zingale, Michael. (2019). AMReX: a framework for block-

structured adaptive mesh refinement. Journal of Open Source Software. 4. 1370.

10.21105/joss.01370.

[10] Zingale, M. & Almgren, Ann & Sazo, M. & Beckner, V. & Bell, John & Friesen, B. &

Jacobs, A. & Katz, M. & Malone, Chris & Nonaka, Andy & Willcox, D. & Zhang, W..

(2017). Meeting the Challenges of Modeling Astrophysical Thermonuclear Explosions:

Castro, Maestro, and the AMReX Astrophysics Suite. Journal of Physics: Conference

Series. 1031. 10.1088/1742-6596/1031/1/012024.

27

APPENDIX A. JACOBI ITERATIVE METHOD WITH BASIC EXAMPLE

Numerical methods most commonly involve iterative methods and Jacobi iterative

method is one of them. I am experimenting on the various equations by applying the Jacobi

iterative method. Here in this example I took three equations with three unknowns and arranged

in matrix form Ax = b. where x is the unknown matrix of size 3x1, A is the matrix of size 3x3

and with each coefficient of the left hand side of the equations and b is the matrix with 3x1 order

which represent the right hand side of the equations. Also, by the assumption of the initial

unknown values as 0’s and applying on the new unknown values derived from the Jacobi method

we get the new unknown values. These new unknown values are applied iteratively on the Jacobi

formula. After multiple iterations we can see the convergence of the unknown values to the

solution.

Ax = b

Basic Example

 (A1)

we can solve the first row for x, the second for y and the third for z

 x = (8 − 2y − 3z)/4 (A2)

 y = (−14 − 3x − 2z)/ (−5) (A3)

 z = (27 + 2x − 3y)/8 (A4)

we will begin with x = y = z = 0 as our initial approximation

 x = (8 − 2 ∗ 0 − 3 ∗ 0)/4 = 2 (A5)

 y = (−14 − 3 ∗ 0 − 2 ∗ 0)/ (−5) = 2.8 (A6)

 z = (27 + 2 ∗ 0 − 3 ∗ 0)/8 = 3.375 (A7)

28

Although the early iterations do not look promising in terms of convergence, things do

eventually settle down.

29

APPENDIX B. JACOBI ITERATIVE METHOD WITH BASIC EXAMPLE

#include <stdio.h>

int main ()
{

int a[3][3] = {{4, 2, 3}, {3, -5, 2}, {-2, 3, 8}}; int b[3][1] = {{8}, {-14},

{27}}; int i, j; float x1 = 0, x2 = 0, x3 = 0, x1_new, x2_new,

x3_new;

for (i = 1; i < 100; i++)
{ x1_new = (b[0][0] - a[0][1] * x2 - a[0][2] * x3) / a[0][0]; x2_new = (b[1][0] -

a[1][0] * x1 - a[1][2] * x3) / a[1][1]; x3_new = (b[2][0] - a[2][0] * x1 -

a[2][1] * x2) / a[2][2];

x1 = x1_new;

x2 = x2_new;

x3 = x3_new; }

int c[3][1] =

{{x1}, {x2},

{x3}}; for (i = 0;

i < 3; i++)
{

j = 0;
printf ("%d \n\n", c[i][j]);

}
}

Commands to compile and run:
$ mpicc -o jacobi jacobi.c
$ mpirun ./jacobi

30

APPENDIX C. JACOBI NTH ORDER BASIC EXAMPLE

Ax=B is the equation and we need to give the order of the matrix. A matrix will be given

in a file and its order is NxN and X will be Nx1 and B will be Nx1.

Input file names are matrix_a.csv, matrix_x.csv and matrix_b.csv.

#include <stdio.h>

float coeff[10][10]; float Dinv[10][10]; float approx[10][1];

float R[10][10]; //declare the relevant matrices float

matrixRes[10][1]; float b[10][1]; float temp[10][1]; int row,

column, size, navigate;
void multiply(float matrixA[][10], float matrixB[][1])
{ int ctr, ictr;

//function to perform multiplication for (ctr =

0; ctr < size; ctr++)
{ matrixRes[ctr][0] = 0;

for (navigate = 0; navigate < size; navigate++) matrixRes[ctr][0] = matrixRes[ctr][0] +

matrixA[ctr][navigate] * matrixB[navigat
} }

int main()

{

printf("En

ter the

number

of

unknown\

n");

scanf("%d

", &size);

//enter

the size

int

p=8*size;

FILE *myFile, *myFile1, *myFile2; myFile =

fopen("matrix_a.csv", "r"); myFile1 =

fopen("matrix_x.csv", "r"); myFile2 =

fopen("matrix_b.csv", "r"); if (myFile == NULL)
{ printf("\n file opening failed ");
} printf("coefficent matrix scanned...\n"); for (row = 0; row <

size; row++) for (column = 0; column < size; column++)

fscanf(myFile, "%f,", &coeff[row][column]);
// for(row=0;row<size;row++)

 // for(column=0;column<size;column++)

 // printf(" coeff %f", coeff[row][column]);

31

printf("first approximation set to 0...\n"); for (row = 0;

row < size; row++)
fscanf(myFile1, "%f,", &approx[row][0]);

// for(row=0;row<size;row++)

 // printf(" app %f", approx[row][0]);

printf("RHS coefficient scanned...\n"); for (row = 0;

row < size; row++) fscanf(myFile2, "%f,",

&b[row][0]);
// for(row=0;row<size;row++)

 // printf(" b %f", b[row][0]);

for (row = 0; row < size; row++) //We calculate the diagonal inverse matrix make all oth for (column = 0;

column < size; column++)
{ if (row == column)

Dinv[row][column] = 1 / coeff[row][column]; else
Dinv[row][column] = 0;

}
for (row = 0; row < size; row++) for (column = 0; column < size; column++) //calculating the R

matrix L+U
{ if (row == column)

R[row][column] = 0;

else if (row !=

column)
R[row][column] = coeff[row][column];

}

int iter;
// printf("Enter the number of iterations:\n"); //

scanf("%d",&iter);//enter the number of iterations iter = 200; int

ctr = 1; int octr;

while (ctr <= iter)
{ multiply(R, approx); //multiply L+U and the approximation for (row = 0; row < size;

row++) temp[row][0] = b[row][0] - matrixRes[row][0]; //the matrix(b-Rx)

multiply(Dinv, temp); //multiply D inverse and (b-Rx) for (octr = 0; octr < size; octr++) approx[octr][0]

= matrixRes[octr][0]; //store matrixRes value in the next approx
printf("The Value after iteration %d is\n", ctr); for (row = 0; row < size; row++)

printf("%.3f\n", approx[row][0]); //display the value after the pass
ctr++;

}
}

Commands to compile and run:
$ mpicc -o jacobi jacobi.c
$ mpirun ./jacobi

32

APPENDIX D. MPI JACOBI ITERATIVE METHOD ON LAPLACE EQUATION ROW

WISE

#include <stdio.h>
#include <math.h>
#include "mpi.h"
/* This example handles a 12 x 12 mesh, on 4 processors only. */
#define maxn 12 int main(argc,

argv) int argc; char **argv;
{ int rank, value, size, errcnt, toterr, i, j, itcnt;

int i_first, i_last;
MPI_Status status; double diffnorm,

gdiffnorm; double xlocal[(12 / 4) +

2][12]; double xnew[(12 / 3) + 2][12];
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

if (size != 4)
MPI_Abort(MPI_COMM_WORLD, 1);

/* xlocal[][0] is lower ghostpoints, xlocal[][maxn+2] is upper */ /* Note that top

and bottom processes have one less row of interior points */ i_first = 1; i_last =

maxn / size; if (rank == 0) i_first++;
if (rank == size - 1) i_last--;
/* Fill the data as specified */ for (i = 1; i

<= maxn / size; i++)
for (j = 0; j < maxn; j++) xlocal[i][j] = rank;

for (j = 0; j < maxn; j++)
{ xlocal[i_first - 1][j] = -2; xlocal[i_last +

1][j] = -2;
}
for (i = 0; i <= 4; i++)
{

for (j = 0; j <= 4; j++)
{ printf("%f ", xlocal[i][j]);
} printf("\n");

} itcnt = 0;

do {
/* Send up unless I’m at the top, then receive from below */ /* Note the

use of xlocal[i] for &xlocal[i][0] */ if (rank < size - 1)
MPI_Send(xlocal[maxn / size], maxn, MPI_DOUBLE, rank + 1, 0,
MPI_COMM_WORLD);

if (rank > 0)
MPI_Recv(xlocal[0], maxn, MPI_DOUBLE, rank - 1, 0,

MPI_COMM_WORLD, &status);
/* Send down unless I’m at the bottom */ if (rank >

0)
MPI_Send(xlocal[1], maxn, MPI_DOUBLE, rank - 1, 1,

MPI_COMM_WORLD);
if (rank < size - 1)

33

MPI_Recv(xlocal[maxn / size + 1], maxn, MPI_DOUBLE, rank + 1, 1,

MPI_COMM_WORLD, &status); /* Compute new values (but not on boundary) */

itcnt++; diffnorm = 0.0; for (i = i_first; i <= i_last; i++)
for (j = 1; j < maxn - 1; j++)
{ xnew[i][j] = (xlocal[i][j + 1] + xlocal[i][j - 1] +

xlocal[i + 1][j] + xlocal[i - 1][j]) /
4.0; diffnorm += (xnew[i][j] -

xlocal[i][j]) *
(xnew[i][j] - xlocal[i][j]);

}
/* Only transfer the interior points */ for (i =

i_first; i <= i_last; i++) for (j = 1; j < maxn - 1;

j++) xlocal[i][j] = xnew[i][j];
MPI_Allreduce(&diffnorm, &gdiffnorm, 1, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);
gdiffnorm = sqrt(gdiffnorm); if (rank == 0) printf("At iteration

%d, diff is %e\n", itcnt, gdiffnorm);

} while (gdiffnorm > 1.0e-2 && itcnt < 100); FILE *fp;

char filename[80]; sprintf(filename,

"Aprocessor%d.txt", rank); if ((fp = fopen(filename,

"wb")) == NULL)
{ printf("Cannot open file.\n");
} for (i = i_first; i <= i_last; i++)
{

for (j = 1; j < maxn - 1; j++)
{ fprintf(fp, "%f ", xlocal[i][j]);
} fprintf(fp, "\n");

} fclose(fp);

MPI_Finalize

(); return 0;
}

Commands to compile and run:
$ mpicc -o row_wise row_wise.c
$ mpirun -np 16 ./row_wise

34

APPENDIX E. MPI JACOBI ITERATIVE METHOD ON LAPLACE EQUATION

COLUMN WISE

#include <stdio.h>
#include <math.h>
#include "mpi.h"
/* This example handles a 12 x 12 mesh, on 4 processors only. */
#define maxn 12 int main(argc,

argv) int argc; char **argv;
{ int rank, value, size, errcnt, toterr, i, j, itcnt; int j_left, j_right;

MPI_Status status; double diffnorm, gdiffnorm; double

xlocal[12][(12 / 4) + 2]; double xnew[12][(12 / 3) + 2];
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

if (size != 4)
MPI_Abort(MPI_COMM_WORLD, 1);

/* xlocal[][0] is lower ghostpoints, xlocal[][maxn+2] is upper */
/* Note that top and bottom processes have one less row of interior points */ j_left

= 1; j_right = maxn / size; if (rank == 0) j_left++;
if (rank == size - 1) j_right--;
/* Fill the data as specified */ for (i = 0; i <

maxn ; i++) for (j = 1; j <= maxn/size; j++)

xlocal[i][j] = rank;
for (i = 0; i < maxn; i++)
{ xlocal[i][j_left-1] = -1;

xlocal[i][j_right+1] = -1;
} itcnt = 0;

do {
/* Send up unless I’m at the top, then receive from below */ /* Note the

use of xlocal[i] for &xlocal[i][0] */ if (rank < size - 1) for(i=0;i<maxn;i++){
MPI_Send(&xlocal[i][maxn / size], 1, MPI_DOUBLE, rank + 1, 0, MPI_COMM_WORLD);

}
if (rank > 0)
for(i=0;i<maxn;i++){

MPI_Recv(&xlocal[i][0], 1, MPI_DOUBLE, rank - 1, 0,
MPI_COMM_WORLD, &status);

}/* Send down unless I’m at the bottom */ if (rank

> 0)
for(i=0;i<maxn;i++){

MPI_Send(&xlocal[i][0], 1, MPI_DOUBLE, rank - 1, 1,
MPI_COMM_WORLD);

}
if (rank < size - 1) for(i=0;i<maxn;i++){

MPI_Recv(&xlocal[i][maxn / size + 1], 1, MPI_DOUBLE, rank + 1, 1,

MPI_COMM_WORLD, &status); }/* Compute new values (but not on boundary) */

itcnt++; diffnorm = 0.0; for (i = 1; i < maxn-1; i++) for (j = j_left; j <= j_right; j++)
{ xnew[i][j] = (xlocal[i][j + 1] + xlocal[i][j - 1] +

xlocal[i + 1][j] + xlocal[i - 1][j]) /

35

4.0; diffnorm += (xnew[i][j] -

xlocal[i][j]) *
(xnew[i][j] - xlocal[i][j]);

}
/* Only transfer the interior points */ for (i = 1;

i < maxn-1; i++) for (j = j_left; j <= j_right; j++)

xlocal[i][j] = xnew[i][j];
MPI_Allreduce(&diffnorm, &gdiffnorm, 1, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);
gdiffnorm = sqrt(gdiffnorm); if (rank == 0) printf("At iteration

%d, diff is %e\n", itcnt, gdiffnorm);

} while (gdiffnorm > 1.0e-2 && itcnt < 100); FILE *fp;

char filename[80]; sprintf(filename,

"Bprocessor%d.txt", rank); if ((fp = fopen(filename,

"wb")) == NULL)
{ printf("Cannot open file.\n");
}
for (i = 1; i < maxn-1; i++)
{ for (j = j_left; j <= j_right; j++)

{ fprintf(fp, "%f ", xlocal[i][j]);
} fprintf(fp, "\n");

} fclose(fp);

MPI_Finalize();

return 0;
}

Commands to compile and run:
$ mpicc -o column_wise column_wise.c
$ mpirun -np 16 ./column_wise

36

APPENDIX F. MPI JACOBI ITERATIVE METHOD ON LAPLACE EQUATION GRID

WISE WITH 4 PROCESSES

#include <stdio.h>
#include <math.h>
#include "mpi.h"
/* This example handles a 12 x 12 mesh, on 4 processors only. */
#define maxn 12 int main(argc,

argv) int argc; char **argv;
{ int rank, value, size, errcnt, toterr, i, j, itcnt; int i_first, i_last, j_left,

j_right,i_cpu,j_cpu; MPI_Status status; double diffnorm,

gdiffnorm;
double xlocal[8][8]; double

xnew[8][8];
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

if (size != 4)
MPI_Abort(MPI_COMM_WORLD, 1);

/* xlocal[][0] is lower ghostpoints, xlocal[][maxn+2] is upper */ /* Note that top

and bottom processes have one less row of interior points */

i_cpu = 2; j_cpu

= 2;

i_first = 1; j_left = 1; i_last

= maxn / i_cpu; j_right =

maxn / j_cpu;

for (i = 1; i < maxn / i_cpu; i++)
for (j = 1; j < maxn / j_cpu; j++) xlocal[i][j] = rank;

for (i = 0; i <= maxn/i_cpu; i++)
{ xlocal[0][i] = -1; xlocal[i][0]

= -1; xlocal[6][i+1] = -1;

xlocal[i+1][6] = -1;
}

itcnt = 0;

do {
/* Send up unless I’m at the top, then receive from below */ /* Note the

use of xlocal[i] for &xlocal[i][0] */ if (rank == 0)
MPI_Send(xlocal[maxn/i_cpu], maxn/i_cpu, MPI_DOUBLE, 2, 0,

MPI_COMM_WORLD);
if (rank == 0)

MPI_Recv(xlocal[0], maxn/i_cpu, MPI_DOUBLE, 2, 0,
MPI_COMM_WORLD, &status);

if (rank == 2)
MPI_Send(xlocal[0], maxn/i_cpu, MPI_DOUBLE, 0, 0,

MPI_COMM_WORLD);

37

if (rank == 2)
MPI_Recv(xlocal[maxn/i_cpu], maxn/i_cpu, MPI_DOUBLE, 0, 0,

MPI_COMM_WORLD, &status);

if (rank == 1)
MPI_Send(xlocal[maxn/i_cpu], maxn/i_cpu, MPI_DOUBLE, 3, 0,

MPI_COMM_WORLD);
if (rank == 1)

MPI_Recv(xlocal[0], maxn/i_cpu, MPI_DOUBLE, 3, 0,
MPI_COMM_WORLD, &status);

if (rank == 3)
MPI_Send(xlocal[0], maxn/i_cpu, MPI_DOUBLE, 1, 0,

MPI_COMM_WORLD);
if (rank == 3)

MPI_Recv(xlocal[maxn/i_cpu], maxn/i_cpu, MPI_DOUBLE, 1, 0,
MPI_COMM_WORLD, &status);

/* Send up unless I’m at the top, then receive from below */ /* Note the

use of xlocal[i] for &xlocal[i][0] */ if (rank == 0)
for (i = 1; i < (maxn / j_cpu); i++)
{

MPI_Send(&xlocal[i][maxn/j_cpu], 1, MPI_DOUBLE, 1, 0,
MPI_COMM_WOR

LD); }
if (rank == 0)

for (i = 1; i < (maxn / j_cpu); i++)
{

MPI_Recv(&xlocal[i][0], 1, MPI_DOUBLE, 1, 0,
MPI_COMM_WORLD, &status);

}
if (rank == 1)

for (i = 1; i < (maxn / j_cpu); i++)
{

MPI_Send(&xlocal[i][0], 1, MPI_DOUBLE, 0, 0,
MPI_COMM_WOR

LD); }
if (rank == 1)

for (i = 1; i < (maxn / j_cpu); i++)
{

MPI_Recv(&xlocal[i][maxn/j_cpu], 1, MPI_DOUBLE, 0, 0,
MPI_COMM_WORLD, &status);

}
if (rank == 2)

for (i = 1; i < (maxn / j_cpu); i++)
{

MPI_Send(&xlocal[i][maxn/j_cpu], 1, MPI_DOUBLE, 3, 0,
MPI_COMM_WORLD);

}
if (rank == 2)

for (i = 1; i < (maxn / j_cpu); i++)
{

MPI_Recv(&xlocal[i][0], 1, MPI_DOUBLE, 3, 0,

38

MPI_COMM_WORLD, &status);
}

if (rank == 3)
for (i = 1; i < (maxn / j_cpu); i++)
{

MPI_Send(&xlocal[i][0], 1, MPI_DOUBLE, 2, 0,
MPI_COMM_WOR

LD); }
if (rank == 3)

for (i = 1; i < (maxn / j_cpu); i++)
{

MPI_Recv(&xlocal[i][maxn/j_cpu], 1, MPI_DOUBLE, 2, 0,
MPI_COMM_WORLD, &status);

}/* Compute new values (but not on boundary) */ itcnt++;

diffnorm = 0.0; for (i = i_first; i < i_last; i++) for (j = j_left; j <

j_right; j++)
{ xnew[i][j] = (xlocal[i][j + 1] + xlocal[i][j - 1] + xlocal[i + 1][j] + xlocal[i -

1][j]) /
4.0; diffnorm += (xnew[i][j] -

xlocal[i][j]) *
(xnew[i][j] - xlocal[i][j]);

}
/* Only transfer the interior points */ for (i =

i_first; i < i_last; i++) for (j = j_left; j < j_right;

j++) xlocal[i][j] = xnew[i][j];
MPI_Allreduce(&diffnorm, &gdiffnorm, 1, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD); gdiffnorm =

sqrt(gdiffnorm); if (rank == 0) printf("At iteration %d, diff is

%e\n", itcnt, gdiffnorm);

} while (gdiffnorm > 1.0e-4 && itcnt < 200); FILE *fp;

char filename[80]; sprintf(filename,

"ABprocessor%d.txt", rank); if ((fp = fopen(filename,

"wb")) == NULL)
{ printf("Cannot open file.\n");
} for (i = i_first; i < i_last; i++)
{ for (j = j_left; j < j_right; j++)

{ fprintf(fp, "%f ", xlocal[i][j]);
} fprintf(fp, "\n");

} fclose(fp);

MPI_Finalize();

return 0;
}

Commands to compile and run:
$ mpicc -o both2x2 both2x2.c
$ mpirun -np 4 ./both2x2

39

APPENDIX G. MPI JACOBI ITERATIVE METHOD ON LAPLACE EQUATION GRID

WISE WITH 16 PROCESSES IN 4X4 GRID

#include <stdio.h>
#include <math.h>
#include "mpi.h"
/* This example handles a 12 x 12 mesh, on 16 processors only. */
#define maxn 12 int main(argc,

argv) int argc; char **argv;
{ int rank, value, size, errcnt, toterr, i, j, itcnt,l,m,p; int i_first, i_last, j_left,

j_right, i_cpu, j_cpu; MPI_Status status; double diffnorm, gdiffnorm;

double xlocal[6][6]; double xnew[6][6];
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

if (size != 16)
MPI_Abort(MPI_COMM_WORLD, 1);

/* xlocal[][0] is lower ghostpoints, xlocal[][maxn+2] is upper */
/* Note that top and bottom processes have one less row of interior points */

i_cpu = 4; j_cpu =

4; i_first = 1;

j_left = 1; i_last =

i_cpu; j_right =

j_cpu;

if (rank < i_cpu){ i_first++;
} if (rank >= size-i_cpu){

i_last--;
}

if (rank%i_cpu == 0){ j_left++;}
if (rank%i_cpu == 3){

j_right--;
}

for (i = i_first; i < i_last; i++)
for (j = j_left; j < j_right; j++)

xlocal[i][j] = 6;

for (j = 0; j <= i_cpu; j++)
{ xlocal[i_first - 1][j] = -1;

xlocal[i_last][j] = -1;
}

for (i = 0; i <= j_cpu; i++)

40

{ xlocal[i][j_left -1] = -1;

xlocal[i][j_right] = -1;
}

printf("\nrank = %d\n ", rank); for (i = 0; i

< 5; i++)
{

for (j = 0; j < 5; j++)
{ printf("%f ", xlocal[i][j]);
} printf("\n");

}

itcnt = 0;

do {
/* Send up unless I’m at the top, then receive from below */ /* Note the use of xlocal[i] for &xlocal[i][0]

*/ if(rank >= i_cpu && rank <= size-i_cpu-1 && rank%i_cpu != 0 && rank%i_cpu != i_cpu for (i = 1; i <=

maxn / i_cpu; i++){
MPI_Send(&xlocal[i][maxn/j_cpu], 1, MPI_DOUBLE, rank + 1, 0,

MPI_COMM_WORLD);
MPI_Recv(&xlocal[i][0], 1, MPI_DOUBLE, rank - 1, 0, MPI_COMM_WORLD,

&status);
MPI_Send(&xlocal[i][1], 1, MPI_DOUBLE, rank - 1, 0,

MPI_COMM_WORLD);
MPI_Recv(&xlocal[i][maxn/j_cpu+1], 1, MPI_DOUBLE, rank + 1, 0,

MPI_COMM_WORLD, &status);}

for (j = 1; j <= maxn / j_cpu; j++){
MPI_Send(&xlocal[maxn/j_cpu][j], 1, MPI_DOUBLE, rank + j_cpu, 0, MPI_COMM_WORLD);
MPI_Recv(&xlocal[0][j], 1, MPI_DOUBLE, rank - j_cpu, 0, MPI_COMM_WORLD,

&status);
MPI_Send(&xlocal[1][j], 1, MPI_DOUBLE, rank - j_cpu, 0,

MPI_COMM_WORLD);
MPI_Recv(&xlocal[maxn/j_cpu+1][j], 1, MPI_DOUBLE, rank + j_cpu, 0, MPI_COMM_WORLD,

&status);}
}

if(rank < i_cpu-1 && rank != 0){ for (i = 2; i <=

maxn / i_cpu; i++){
MPI_Send(&xlocal[i][maxn/j_cpu], 1, MPI_DOUBLE, rank + 1, 0,

MPI_COMM_WORLD);
MPI_Recv(&xlocal[i][0], 1, MPI_DOUBLE, rank - 1, 0, MPI_COMM_WORLD,

&status);
MPI_Send(&xlocal[i][1], 1, MPI_DOUBLE, rank - 1, 0,

MPI_COMM_WORLD);
MPI_Recv(&xlocal[i][maxn/j_cpu+1], 1, MPI_DOUBLE, rank + 1, 0,

MPI_COMM_WORLD, &status);}

for (j = 1; j <= maxn / j_cpu; j++){
MPI_Send(&xlocal[maxn/j_cpu][j], 1, MPI_DOUBLE, rank + j_cpu, 0,

MPI_COMM_WORLD);
MPI_Recv(&xlocal[maxn/j_cpu+1][j], 1, MPI_DOUBLE, rank + j_cpu, 0, MPI_COMM_WORLD,

&status);}

41

}

if(rank > size-i_cpu && rank != size-1){ for (i = 1; i <

maxn / i_cpu; i++){
MPI_Send(&xlocal[i][maxn/j_cpu], 1, MPI_DOUBLE, rank + 1, 0,

MPI_COMM_WORLD);
MPI_Recv(&xlocal[i][0], 1, MPI_DOUBLE, rank - 1, 0, MPI_COMM_WORLD,

&status);
MPI_Send(&xlocal[i][1], 1, MPI_DOUBLE, rank - 1, 0,

MPI_COMM_WORLD);
MPI_Recv(&xlocal[i][maxn/j_cpu+1], 1, MPI_DOUBLE, rank + 1, 0,

MPI_COMM_WORLD, &status);}
for (j = 1; j <= maxn / j_cpu; j++){

MPI_Recv(&xlocal[0][j], 1, MPI_DOUBLE, rank - j_cpu, 0, MPI_COMM_WORLD,

&status);
MPI_Send(&xlocal[1][j], 1, MPI_DOUBLE, rank - j_cpu, 0, MPI_COMM_WORLD);}

}

if(rank%i_cpu == 0 && rank != 0 && rank != size-i_cpu){ for (i = 1; i <=

maxn / i_cpu; i++){
MPI_Send(&xlocal[i][maxn/j_cpu], 1, MPI_DOUBLE, rank + 1, 0,

MPI_COMM_WORLD);
MPI_Recv(&xlocal[i][maxn/j_cpu+1], 1, MPI_DOUBLE, rank + 1, 0,

MPI_COMM_WORLD, &status);}
for (j = 2; j <= maxn / j_cpu; j++){

MPI_Send(&xlocal[maxn/j_cpu][j], 1, MPI_DOUBLE, rank + j_cpu, 0,
MPI_COMM_WORLD);

MPI_Recv(&xlocal[0][j], 1, MPI_DOUBLE, rank - j_cpu, 0, MPI_COMM_WORLD,

&status);
MPI_Send(&xlocal[1][j], 1, MPI_DOUBLE, rank - j_cpu, 0,

MPI_COMM_WORLD);
MPI_Recv(&xlocal[maxn/j_cpu+1][j], 1, MPI_DOUBLE, rank + j_cpu, 0, MPI_COMM_WORLD,

&status);}
}

if(rank%i_cpu == i_cpu-1 && rank != i_cpu-1 && rank != size-1){ for (i = 1; i <=

maxn / i_cpu; i++){
MPI_Recv(&xlocal[i][0], 1, MPI_DOUBLE, rank - 1, 0, MPI_COMM_WORLD,

&status);
MPI_Send(&xlocal[i][1], 1, MPI_DOUBLE, rank - 1, 0,

MPI_COMM_WORLD);}
for (j = 1; j < maxn / j_cpu; j++){

MPI_Send(&xlocal[maxn/j_cpu][j], 1, MPI_DOUBLE, rank + j_cpu, 0, MPI_COMM_WORLD);
MPI_Recv(&xlocal[0][j], 1, MPI_DOUBLE, rank - j_cpu, 0, MPI_COMM_WORLD,

&status);
MPI_Send(&xlocal[1][j], 1, MPI_DOUBLE, rank - j_cpu, 0,

MPI_COMM_WORLD);
MPI_Recv(&xlocal[maxn/j_cpu+1][j], 1, MPI_DOUBLE, rank + j_cpu, 0, MPI_COMM_WORLD,

&status);}
}

42

if(rank == 0){ for (i = 2; i <= maxn / i_cpu; i++){
MPI_Send(&xlocal[i][maxn/j_cpu], 1, MPI_DOUBLE, rank + 1, 0,

MPI_COMM_WORLD);
MPI_Recv(&xlocal[i][maxn/j_cpu+1], 1, MPI_DOUBLE, rank + 1, 0,

MPI_COMM_WORLD, &status);}
for (j = 2; j <= maxn / j_cpu; j++){

MPI_Send(&xlocal[maxn/j_cpu][j], 1, MPI_DOUBLE, rank + j_cpu, 0,
MPI_COMM_WORLD);

MPI_Recv(&xlocal[maxn/j_cpu+1][j], 1, MPI_DOUBLE, rank + j_cpu, 0, MPI_COMM_WORLD,

&status);}
}

if(rank == i_cpu-1){ for (i = 2; i <= maxn / i_cpu;

i++){
MPI_Recv(&xlocal[i][0], 1, MPI_DOUBLE, rank - 1, 0, MPI_COMM_WORLD,

&status);
MPI_Send(&xlocal[i][1], 1, MPI_DOUBLE, rank - 1, 0,

MPI_COMM_WORLD);}
for (j = 1; j < maxn / j_cpu; j++){

MPI_Send(&xlocal[maxn/j_cpu][j], 1, MPI_DOUBLE, rank + j_cpu, 0,
MPI_COMM_WORLD);

MPI_Recv(&xlocal[maxn/j_cpu+1][j], 1, MPI_DOUBLE, rank + j_cpu, 0, MPI_COMM_WORLD,

&status);}
}

if(rank == size-i_cpu){ for (i = 1; i < maxn /

i_cpu; i++){
MPI_Send(&xlocal[i][maxn/j_cpu], 1, MPI_DOUBLE, rank + 1, 0,

MPI_COMM_WORLD);
MPI_Recv(&xlocal[i][maxn/j_cpu+1], 1, MPI_DOUBLE, rank + 1, 0,

MPI_COMM_WORLD, &status);}
for (j = 2; j <= maxn / j_cpu; j++){

MPI_Recv(&xlocal[0][j], 1, MPI_DOUBLE, rank - j_cpu, 0, MPI_COMM_WORLD,

&status);
MPI_Send(&xlocal[1][j], 1, MPI_DOUBLE, rank - j_cpu, 0,

MPI_COMM_WORLD);}
}

if(rank == size-1){
for (i = 1; i < maxn / i_cpu; i++){

MPI_Recv(&xlocal[i][0], 1, MPI_DOUBLE, rank - 1, 0, MPI_COMM_WORLD,

&status);
MPI_Send(&xlocal[i][1], 1, MPI_DOUBLE, rank - 1, 0,

MPI_COMM_WORLD);}
for (j = 1; j < maxn / j_cpu; j++){

MPI_Recv(&xlocal[0][j], 1, MPI_DOUBLE, rank - j_cpu, 0, MPI_COMM_WORLD,

&status);
MPI_Send(&xlocal[1][j], 1, MPI_DOUBLE, rank - j_cpu, 0, MPI_COMM_WORLD);}

}

43

/* Compute new values (but not on boundary) */

itcnt++; diffnorm = 0.0; for (i = i_first; i < i_last; i++)

for (j = j_left; j < j_right; j++)
{ xnew[i][j] = (xlocal[i][j + 1] + xlocal[i][j - 1] +

xlocal[i + 1][j] + xlocal[i - 1][j]) /
4.0; diffnorm += (xnew[i][j] -

xlocal[i][j]) *
(xnew[i][j] - xlocal[i][j]);

}
/* Only transfer the interior points */ for (i =

i_first; i < i_last; i++) for (j = j_left; j < j_right;

j++) xlocal[i][j] = xnew[i][j];
MPI_Allreduce(&diffnorm, &gdiffnorm, 1, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD); gdiffnorm =

sqrt(gdiffnorm); if (rank == 0) printf("At iteration %d, diff is

%e\n", itcnt, gdiffnorm);

} while (gdiffnorm > 1.0e-2 && itcnt < 100); FILE *fp;

char filename[80]; sprintf(filename,

"ABprocessor%d.txt", rank); if ((fp = fopen(filename,

"wb")) == NULL)
{ printf("Cannot open file.\n");
} for (i = i_first; i < i_last; i++)
{

for (j = j_left; j < j_right; j++)
{ fprintf(fp, "%f ", xlocal[i][j]);
} fprintf(fp, "\n");

} fclose(fp);
MPI_Finalize(); return 0;

}

Commands to compile and run:
$ mpicc -o both4x4 both4x4.c
$ mpirun -np 16 ./both4x4

44

APPENDIX H. MPI JACOBI ITERATIVE METHOD ON LAPLACE EQUATION GRID

WISE WITH 16 PROCESSES IN 2X16 GRID

#include <stdio.h>
#include <math.h>
#include "mpi.h"
/* This example handles a 32 x 32 mesh, on 16 processors only. */
#define maxn 32 int main(argc,

argv) int argc; char **argv;
{ int rank, value, size, errcnt, toterr, i, j, itcnt, l, m, p; int i_first, i_last, j_left, j_right,

i_cpu, j_cpu; MPI_Status status; double diffnorm, gdiffnorm; double

xlocal[18][6]; double xnew[18][6];
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &size);

if (size != 16)
MPI_Abort(MPI_COMM_WORLD, 1);

/* xlocal[][0] is lower ghostpoints, xlocal[][maxn+2] is upper */
/* Note that top and bottom processes have one less row of interior points */
i_cpu = 2; j_cpu

= 8; i_first = 1;

j_left = 1; i_last

= 16; j_right = 4;

if (rank < j_cpu)
{ i_first++;
} if (rank >= size - j_cpu)
{ i_last--;
}
if (rank % j_cpu == 0)
{ j_left++;
} if (rank % j_cpu == j_cpu-1)
{ j_right--;
}

for (i = i_first; i <= i_last; i++)
for (j = j_left; j <= j_right; j++)

xlocal[i][j] = 6;

for (j = 0; j <= j_right+1; j++)
{ xlocal[i_first - 1][j] = -1;

xlocal[i_last+1][j] = -1;
}

for (i = 0; i <= i_last+1; i++)
{ xlocal[i][j_left-1] = -1;

xlocal[i][j_right+1] = -1;
}

45

printf("\nrank = %d\n ", rank); for (i = 0; i

< 18; i++)
{

for (j = 0; j < 6; j++)
{ printf("%f ", xlocal[i][j]);
} printf("\n");

}

itcnt = 0;

do {
/* Send up unless I’m at the top, then receive from below */ /* Note the use of xlocal[i] for

&xlocal[i][0] */ if (rank >= j_cpu && rank <= size - j_cpu - 1 && rank % j_cpu != 0 && rank %
{

for (i = 1; i <= i_last; i++)
{

MPI_Send(&xlocal[i][j_right], 1, MPI_DOUBLE, rank + 1, 0,
MPI_COMM_WORLD);

MPI_Recv(&xlocal[i][0], 1, MPI_DOUBLE, rank - 1, 0,

MPI_COMM_WORLD, &status);
MPI_Send(&xlocal[i][1], 1, MPI_DOUBLE, rank - 1, 0,

MPI_COMM_WORLD);
MPI_Recv(&xlocal[i][j_right + 1], 1, MPI_DOUBLE, rank + 1, 0

MPI_COMM_WORLD, &status);
}
for (j = 1; j <= j_right; j++)
{

MPI_Send(&xlocal[i_last][j], 1, MPI_DOUBLE, rank + j_cpu, 0,
MPI_COMM_WORLD);

MPI_Recv(&xlocal[0][j], 1, MPI_DOUBLE, rank - j_cpu, 0,

MPI_COMM_WORLD, &status);
MPI_Send(&xlocal[1][j], 1, MPI_DOUBLE, rank - j_cpu, 0,

MPI_COMM_WORLD);
MPI_Recv(&xlocal[i_last + 1][j], 1, MPI_DOUBLE, rank + j_cpu

MPI_COMM_WORLD, &status); }
}

if (rank < j_cpu - 1 && rank != 0)
{

for (i = 2; i <= i_last; i++)
{

MPI_Send(&xlocal[i][j_right], 1, MPI_DOUBLE, rank + 1, 0,
MPI_COMM_WORLD);

MPI_Recv(&xlocal[i][0], 1, MPI_DOUBLE, rank - 1, 0,
MPI_COMM_WORLD, &status);

MPI_Send(&xlocal[i][1], 1, MPI_DOUBLE, rank - 1, 0,
MPI_COMM_WORLD);

MPI_Recv(&xlocal[i][j_right + 1], 1, MPI_DOUBLE, rank + 1, 0
MPI_COMM_WORLD, &status);

}
for (j = 1; j <= j_right; j++)
{

46

MPI_Send(&xlocal[i_last][j], 1, MPI_DOUBLE, rank + j_cpu, 0,

MPI_COMM_WORLD);
MPI_Recv(&xlocal[i_last + 1][j], 1, MPI_DOUBLE, rank + j_cpu

MPI_COMM_WORLD, &status);
}

}

if (rank > size - j_cpu && rank != size - 1)
{

for (i = 1; i < i_last; i++)
{

MPI_Send(&xlocal[i][j_right], 1, MPI_DOUBLE, rank + 1, 0,
MPI_COMM_WORLD);

MPI_Recv(&xlocal[i][0], 1, MPI_DOUBLE, rank - 1, 0,

MPI_COMM_WORLD, &status);
MPI_Send(&xlocal[i][1], 1, MPI_DOUBLE, rank - 1, 0,

MPI_COMM_WORLD);
MPI_Recv(&xlocal[i][j_right + 1], 1, MPI_DOUBLE, rank + 1, 0

MPI_COMM_WORLD, &status);
}
for (j = 1; j <= j_right; j++)
{

MPI_Recv(&xlocal[0][j], 1, MPI_DOUBLE, rank - j_cpu, 0,

MPI_COMM_WORLD, &status);
MPI_Send(&xlocal[1][j], 1, MPI_DOUBLE, rank - j_cpu, 0,

MPI_COMM_WORLD);
}

}

if (rank % j_cpu == 0 && rank != 0 && rank != size - j_cpu)
{

for (i = 1; i <= i_last; i++)
{

MPI_Send(&xlocal[i][j_right], 1, MPI_DOUBLE, rank + 1, 0,
MPI_COMM_WORLD);

MPI_Recv(&xlocal[i][j_right + 1], 1, MPI_DOUBLE, rank + 1, 0
MPI_COMM_WORLD, &status);

}
for (j = 2; j <= j_right; j++)
{

MPI_Send(&xlocal[i_last][j], 1, MPI_DOUBLE, rank + j_cpu, 0,
MPI_COMM_WORLD);

MPI_Recv(&xlocal[0][j], 1, MPI_DOUBLE, rank - j_cpu, 0,

MPI_COMM_WORLD, &status);
MPI_Send(&xlocal[1][j], 1, MPI_DOUBLE, rank - j_cpu, 0,

MPI_COMM_WORLD);
MPI_Recv(&xlocal[i_last + 1][j], 1, MPI_DOUBLE, rank + j_cpu

MPI_COMM_WORLD, &status);
}

}

47

if (rank % j_cpu == j_cpu - 1 && rank != j_cpu - 1 && rank != size - 1)
{

for (i = 1; i <= i_last; i++)
{

MPI_Recv(&xlocal[i][0], 1, MPI_DOUBLE, rank - 1, 0,

MPI_COMM_WORLD, &status);
MPI_Send(&xlocal[i][1], 1, MPI_DOUBLE, rank - 1, 0,

MPI_COMM_WORLD);
}
for (j = 1; j < j_right; j++)
{

MPI_Send(&xlocal[i_last][j], 1, MPI_DOUBLE, rank + j_cpu, 0,
MPI_COMM_WORLD);

MPI_Recv(&xlocal[0][j], 1, MPI_DOUBLE, rank - j_cpu, 0,

MPI_COMM_WORLD, &status);
MPI_Send(&xlocal[1][j], 1, MPI_DOUBLE, rank - j_cpu, 0,

MPI_COMM_WORLD);
MPI_Recv(&xlocal[i_last + 1][j], 1, MPI_DOUBLE, rank + j_cpu

MPI_COMM_WORLD, &status);
}

}

if (rank == 0)
{

for (i = 2; i <= i_last; i++)
{

MPI_Send(&xlocal[i][j_right], 1, MPI_DOUBLE, rank + 1, 0,
MPI_COMM_WORLD);

MPI_Recv(&xlocal[i][j_right + 1], 1, MPI_DOUBLE, rank + 1, 0
MPI_COMM_WORLD, &status);

}
for (j = 2; j <= j_right; j++)
{

MPI_Send(&xlocal[i_last][j], 1, MPI_DOUBLE, rank + j_cpu, 0,

MPI_COMM_WORLD);
MPI_Recv(&xlocal[i_last+ 1][j], 1, MPI_DOUBLE, rank + j_cpu,

MPI_COMM_WORLD, &status);
}

}

if (rank == j_cpu - 1)
{

for (i = 2; i <= i_last; i++)
{

MPI_Recv(&xlocal[i][0], 1, MPI_DOUBLE, rank - 1, 0,

MPI_COMM_WORLD, &status);
MPI_Send(&xlocal[i][1], 1, MPI_DOUBLE, rank - 1, 0,

MPI_COMM_WORLD);
}
for (j = 1; j < j_right; j++)

48

{
MPI_Send(&xlocal[i_last][j], 1, MPI_DOUBLE, rank + j_cpu, 0,

MPI_COMM_WORLD);
MPI_Recv(&xlocal[i_last + 1][j], 1, MPI_DOUBLE, rank + j_cpu

MPI_COMM_WORLD, &status);
}

}

if (rank == size - j_cpu)
{

for (i = 1; i < i_last; i++)
{

MPI_Send(&xlocal[i][j_right], 1, MPI_DOUBLE, rank + 1, 0,
MPI_COMM_WORLD);

MPI_Recv(&xlocal[i][j_right + 1], 1, MPI_DOUBLE, rank + 1, 0
MPI_COMM_WORLD, &status);

}
for (j = 2; j <= j_right; j++)
{

MPI_Recv(&xlocal[0][j], 1, MPI_DOUBLE, rank - j_cpu, 0,

MPI_COMM_WORLD, &status);
MPI_Send(&xlocal[1][j], 1, MPI_DOUBLE, rank - j_cpu, 0,

MPI_COMM_WORLD);
}

}

if (rank == size - 1)
{

for (i = 1; i < i_last; i++)
{

MPI_Recv(&xlocal[i][0], 1, MPI_DOUBLE, rank - 1, 0,

MPI_COMM_WORLD, &status);
MPI_Send(&xlocal[i][1], 1, MPI_DOUBLE, rank - 1, 0,

MPI_COMM_WORLD);
}
for (j = 1; j < j_right; j++)
{

MPI_Recv(&xlocal[0][j], 1, MPI_DOUBLE, rank - j_cpu, 0,

MPI_COMM_WORLD, &status);
MPI_Send(&xlocal[1][j], 1, MPI_DOUBLE, rank - j_cpu, 0,

MPI_COMM_WORLD);
}

}
/* Compute new values (but not on boundary) */

itcnt++; diffnorm = 0.0; for (i = i_first; i <= i_last; i++) for

(j = j_left; j <= j_right; j++)
{ xnew[i][j] = (xlocal[i][j + 1] + xlocal[i][j - 1] +

xlocal[i + 1][j] + xlocal[i - 1][j]) /
4.0;

diffnorm += (xnew[i][j] - xlocal[i][j]) *
(xnew[i][j] - xlocal[i][j]); }

49

/* Only transfer the interior points */ for (i = i_first; i

<= i_last; i++) for (j = j_left; j <= j_right; j++)

xlocal[i][j] = xnew[i][j];
MPI_Allreduce(&diffnorm, &gdiffnorm, 1, MPI_DOUBLE, MPI_SUM,

MPI_COMM_WORLD);
gdiffnorm = sqrt(gdiffnorm); if (rank == 0) printf("At iteration %d,

diff is %e\n", itcnt, gdiffnorm);

} while (gdiffnorm > 1.0e-10 && itcnt < 10000); FILE *fp;

char filename[80]; sprintf(filename, "ABprocessor%d.txt",

rank); if ((fp = fopen(filename, "wb")) == NULL)
{ printf("Cannot open file.\n");
} for (i = i_first; i <= i_last; i++)
{

for (j = j_left; j <= j_right; j++)
{ fprintf(fp, "%f ", xlocal[i][j]);
} fprintf(fp, "\n");

} fclose(fp);

MPI_Finalize();

return 0;
}

Commands to compile and run:
$ mpicc -o both2x16 both2x16.c
$ mpirun -np 16 ./both2x16

50

APPENDIX I. JACOBI

a = [4 2 3; 3 -5 2; -2 3 8]; b= [8 -14 27]; x1= 0;x2=0;x3=0; for

i=1:100 x1_new = (b(1,1) - a(1,2)*x2 - a(1,3)*x3)/a(1,1);

x2_new = (b(1,2) - a(2,1)*x1 - a(2,3)*x3)/a(2,2); x3_new =

(b(1,3) - a(3,1)*x1 - a(3,2)*x2)/a(3,3); x1=x1_new;

x2=x2_new; x3=x3_new; end

p= [x1 x2 x3]

51

APPENDIX J. JACOBI NTH ORDER

function out = jacob1(A, B,iter)
A=rand(10,10); B=rand(10,1);
N=length(A);

AA=A;

for i=1:N
AA(i,i) = 0;
DAA(i,1)=A(i,i);

end Xint = zeros(N,1);

for i=1:iter

out= (B’-AA*Xint)./DAA;
Xint=out;

end

out

52

APPENDIX K. 1D POISON EQUATION

function f = oneDpoison(h,x_int,x_fin,y_int,y_fin)

h=0.1;x_int=0;x_fin=pi;y_int=0;y_fin=0; N =

ceil((x_fin-x_int)/h);

for i=1:N-1 x(i)

= i*h; end

u = zeros(N-1,N-1);

u(1,1) = -2; u(1,2) = 1;

for i=2:N-2
u(i,i-1) = 1; u(i,i) = -2;

u(i,i+1) = 1;
end u(end, end-1)

=1; u(end, end)= -

2; for i=1:N-1
y(i) = (h^2)*sin(x(i));

end

y(1) = y(1)-(y_int); y(end) = y(end)-(y_fin);%solution is known at this

node f= inv(u)*y’;

plot(x’,f,’ok’); hold on

plot(x,-sin(x),’-r’);

53

APPENDIX L. 2D POISON EQUATION

clear all;

N=5;M=N; h =

pi/(N-1);

s2 = 4*ones(M,1); s =

-1*ones(M-1,1);
A = diag(s2,0) + diag(s,1) + diag(s,-1);

A = sparse(A);

I = speye(M);
B = kron(A,I) + kron(I,A); B=

full(B);

for i=1:N
for j=1:N

x(i) = (i-1)*h; y(j) = (j-1)*h; f(i,j) = -

2.*sin(x(i)).*sin(y(j)).*h^2; index = (i-1)*N + j;

der(index) = f(i,j);
end

end

U = -(B/der);
%u_exact solution

for i=1:N
for j=1:N

x(i) = (i-1)*h; y(j) = (j-1)*h; P(i,j) =

sin(x(i)).*sin(y(j)); index = (i-1)*N + j;

u_e(index) = P(i,j);

end
end u_e;

u_e = u_e’;

plot(U, ’- g’); hold

on plot(u_e, ’o r’);

