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ABSTRACT 

In the recent years, deep learning has shown to have a formidable impact on image 

classification and has bolstered the advances in machine learning research. The scope of image 

recognition is going to bring big changes in the Information Technology domain. This paper aims 

to classify medical images by leveraging the advantages of Transfer Learning over Conventional 

methods. Three types of approaches are used namely, pre-trained CNN as a Feature Extractor, 

Feature Extractor with Image Augmentation, and Fine-tuning with Image Augmentation. The best 

pre-trained network architectures such as VGG16, VGG19, ResNet50, Inception, Xception and 

DenseNet are used for classification with each being applied to all the three approaches mentioned. 

The results are captured to find the best combination of pre-trained network and an approach that 

classifies the medical datasets with a higher accuracy. 
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1. INTRODUCTION 

Image classification has become of increasing importance recently. With the rapid growth 

in Artificial Intelligence and Deep Learning, the necessity of computer vision is one of the top 

priorities. The future of Image recognition and analysis is gaining momentum and is surely going 

to change the world in the days to come. 

1.1. Understanding of a Neural Network 

Neural Networks is one of the most popular machine learning algorithms at present. It 

outpaces many other peer algorithms in solving complex problems with speed and accuracy. 

1.1.1. Basic Building Block of Neural Networks – “Neuron” 

From the biological definition, a neuron is the basic working unit of the brain that takes 

sensory input from the external world and transmits the response to other nerve cells, muscle or 

gland cells to perform the respective action [2]. In simple terms, it receives an input signal, process 

it and delivers an output signal. 

Similarly, a neuron in machine learning is defined as a placeholder for a mathematical 

function, that takes input and performs the given function on them to provide an output [2][3]. The 

function used in neuron is generally termed as activation function. 

Figure 1 describes X1, X2, X3 as inputs fed to a neuron. It delivers a result output after 

applying the function on the inputs given. 

 

Figure 1: Basic Neuron [2] 
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1.1.2. Neural Network 

The fundamental blocks in Neural networks are called layers. A layer is a collection of 

neurons that takes an input and provide an output. Each neuron has its own function and the inputs 

are processed layer by layer [2]. 

Figure 2 describes the leftmost layer as the input layer, rightmost layer is the output layer 

and the middle layer is called hidden layer. The number and type of hidden layers differ according 

to the problem. If the neural network has more than 3 or 4 hidden layers, it is called as Deep Neural 

Network. 

 

Figure 2: Simple Neural Network [2] 

1.2. Composition of a Convolution Neural Network 

The general activation functions used in most neural networks are step, sigmoid, tanh, 

ReLU and leaky ReLU. Instead of these activation functions, if we use convolution and pooling 

functions as activation functions in the hidden layers of the neural network, then it is called as 

Convolution Neural Network.  
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The hidden layers that use convolution or pooling function as activation function is called 

convolution layer or pooling layer respectively. Figure 3 describes the convolution layers, pooling 

layers and fully connected layer together that forms a Convolution Neural Network. 

 

Figure 3: Convolution Neural Network Layers [2] 

1.3. Transfer Learning 

Using the conventional model for Image classification, we need lots of data to train the 

network. Although, there is the ImageNet dataset with millions of data available, we may not find 

the necessary amount of data for all domains. In this scenario, we can use the Transfer Learning 

technique, which uses pre-trained Neural Networks and uses the obtained weights on new data [4]. 

The idea of Transfer Learning is that, if we need to classify Task1 images but do not have enough 

data to train the neural network, then we find a related Task2 that has vast data and train the neural 

network on it [4][6]. Then, we use the whole model or few layers as desired from the Task 2 to 

solve Task 1. 
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Figure 4 describes the earlier layers of ConvNet that deals with generic features such as 

edge detectors, texture detectors, patterns, etc. The later layers to the end of the network become 

more specific to the details of the image dataset [7]. Here come the advantages of Transfer 

Learning. We will fix/freeze the earlier layers of the pre-trained network and retrain the rest of the 

layers with fine tuning of backpropagation. Instead of training our network from the first layer, we 

just transfer the weights already learned by a pre-trained network such as VGG16 and save time 

and efforts [8][9]. 

 

 

Figure 4: Difference between Initial Layers and Later Layers [4] 
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2. RELATED WORK 

The growing medical usability of Image classification attracts the attention of many 

researchers to do further investigation on the concepts of Convolution Neural Networks. One of 

the ways of investigation is the detection of pneumonia from X-ray chest images using Transfer 

Learning technique. Kermany et al. in [10] presented medical diagnoses and treatable diseases by 

using image-based deep learning models to detect or classify different medical datasets. They used 

the Inception V3 architecture for pre-training the model on the ImageNet dataset. Here, the 

convolution layers were frozen and used as fixed feature extractors. Initially generated bottleneck 

features from training on the ImageNet dataset and utilized them to train and classify X-ray images. 

The testing accuracy for chest X-rays for pneumonia detection was 92.80 %. 

Stephen et al. in [11] presented an efficient deep learning approach to pneumonia 

classification in healthcare. The authors proposed a deep learning model with 4 convolutional 

layers and 2 dense layers in addition to classical image augmentation. They did not use any pre- 

trained networks rather developed a CNN from scratch to extract features from a given chest X- 

ray image and classify it to determine if a person is infected with pneumonia. They used the image 

augmentation concept to mitigate the reliability and interpretability challenges often faced when 

dealing with medical imagery and achieved 93.73% testing accuracy. 

Wu et al. in [12] presented a model to predict pneumonia with chest X-ray images based 

on convolutional deep neural learning networks and random forest. Initially, the authors used 

adaptive median filtering to improve the quality of images. Then, established the CNN architecture 

based on Dropout to extract deep activation features from each chest X-ray image. Finally, 

employed the Random Forest classifier based on GridSearchCV class as a classifier for deep 

activation features in CNN model. The authors achieved 97 % testing accuracy. 
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Liang and Zheng in [13] presented a transfer learning method with a deep residual network 

for pediatric pneumonia diagnosis. The authors a deep learning model with 49 convolutional layers 

and 2 dense layers and achieved 96.70% testing accuracy. Their paper has shown that deep learning 

does not require feature processing of input data compared to traditional supervised pattern 

recognition methods, and model performance is not limited by the medical diagnostic experience 

owned by the designer, thus having an unparalleled advantage. 

Lung cancer accounts for 26 % of all cancer deaths in 2017, accounting for more than 1.5 

million deaths. Thus, Nobrega et al. in [14] proposed to explore the performance of deep transfer 

learning to classify pulmonary nodule malignancies. In this work, they have used a convolutional 

neural network such as VGG16, VGG19, MobileNet, Xception, InceptionV3, ResNet50, 

Inception-ResNet-V2, DenseNet169, DenseNet201, NASNetMobile and NASNetLarge, where 

they were used to extract parameters from an image database of the lung. The characteristics were 

classified using Naive Bayes, Perceptron multilayer, support vector machine, Near Neighbors and 

Random Forest and achieved 95.3% testing accuracy. 

All the above-related works used the chest X-ray images for pneumonia classification in 

different methodologies. The main difference between our proposed model and other related works 

according to literature surveys; this paper considered one of the methods to use the data 

augmentation to generate more images and make the proposed model immune from a smaller 

number of datasets. We used feature extraction with fine-tuning that re-trains the weights in 

‘unfreeze layers’ by backward propagation. Also, we showed the implementation using the top 

best pre-trained networks of Transfer Learning and compared all of them in terms of accuracy, 

precision, sensitivity, specificity and F1-score. 
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3. APPROACH 

3.1. How a Computer See an Image 

A computer understands an image using numbers for each pixel. The smallest element of 

an image is called a pixel, which is basically a dot as shown in Figure 5. If an image is said to have 

resolution 250*350, it means it’s 250 pixels wide and 350 pixels high [16]. We can describe images 

into two types according to their color, namely colored and gray scale (black and white). 

 

Figure 5: Color Pixel Visualization [16] 

3.1.1. Colored Images 

In color images, pixels are represented in the RGB color model. RGB stands for Red Green 

Blue and represents a tuple of three components. Each component can take a value between 0 and 

255, where the tuple (0,0,0) represents black and (255,255,255) represents white [17]. All colors 

that humans perceive are various combinations of red, green and blue. Figure 6 describes a few 

more examples of color notations in RGB model. If an image is represented as 250*350*3 pixels, 

the last pixel indicates the three components of the RGB tuple. We can convert  a colored image 

to gray scale and vice-versa by applying transformation on the tuple values respectively.
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Figure 6: Color Code Composition [1] 

3.1.2. Gray Scale Images 

In grayscale (black and white) images, each pixel is a single number representing the 

amount of light, or intensity, it carries. In most of the cases, the range of intensities are used which 

are from 0(black) to 255(white). Everything between 0 and 255 is various shades of gray. Figure 

7 describes the clear view of a gray scale image as seen by a computer. Colored images can be 

converted to gray scale and vice-versa by altering the RGB tuple components [18]. 

 

Figure 7: Gray Scale Representation of Images [19] 
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3.2. Convolution Neural Networks 

CNNs are a combination of convolution, ReLU, pooling and fully connected layers [19]. 

If we need to predict ‘X’ vs ‘O’ images, there can be trickier cases where images are deformed. 

We need to classify all images to either ‘X’ or ‘O’ irrespective of deformations. Using normal 

techniques, computers compare images for classification and the deformed images cannot be 

classified. Here comes the use of CNNs that can classify normal as well as deformed. 

 

Figure 8: Deformed Images of ‘X’ and ‘O’ [19] 

3.2.1. Assigning Values According to Color 

As the computer understands an image using numbers at each pixel and the intensity is 

same throughout the ‘X’ or ‘O’, let’s use value 1 for black pixel and -1 for white pixel as shown 

in Figure 9 [19]. 

 

Figure 9: Assigned Values for ‘X’ [19] 
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3.2.2. Selecting Features for Convolution 

CNN compares images piece by piece. The pieces that it looks for are called features. By 

finding rough feature matches, in roughly the same position in two images, CNN gets a lot better 

at seeing similarity than whole-image matching schemes. Figure 10 describes the three features or 

filters used in this case [19]. 

 

Figure 10: Selecting Features for Convolution [19] 

3.2.3. Convolution Layer 

Here we will move each feature/filter to every possible position on the image. Multiply 

each image pixel by the corresponding feature pixel and finish a result matrix as described in 

Figure 11. The next step is to add all the elements in the result matrix and divide by total number 

of pixels in the feature. To create a map put the value of a filter at that respective place as shown 

in Figure 12. 

Similarly, move the filter/feature to every other positions of the image and will see how 

the feature matches that area. Finally, we will get an output as shown in Figure 13 for one feature. 

After performing the same process for the other two filters as well, we get the convolution results 

for all the features as shown in Figure 14. 
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Figure 11: Convolution Step 1 [19] 

 

Figure 12: Convolution Step 2 [19] 

 

Figure 13: Convolution Step 3 [19] 
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Figure 14: Convolution Step 4 [19] 

3.2.4. ReLU Layer 

Rectified Linear Unit (ReLU) is an activation function that activates a node if the input is 

above a certain quantity. While the input is below zero, the output is zero, but when the output 

rises above a certain threshold, it has a linear relationship with the dependent variable as shown in 

Figure 15 [20]. 

In this layer we remove every negative value from convolution results and replace it with 

zeros. This is done to avoid the values from summing up to zero. The output for one feature looks 

like as shown in Figure 16. Likewise, we must calculate ReLU activation results for all features. 

 

Figure 15: ReLU Function [19] 



 

 
13 

 

Figure 16: ReLU Step [19] 

3.2.5. Pooling Layer 

In this layer, the image stack is shrunk into a smaller size. We use the max pooling function 

here. The steps include picking a window size (usually 2 or 3), pick a stride (usually 2), walk the 

window across the ReLU results, from each window take the maximum value. Let us see results 

after performing pooling with a window size 2 and a stride 2 on first filtered image. 

In the first window the maximum or highest value is 1, so we track that and move the 

window two strides. Figure 17 describes the pooling of one 2*2 window. 

After doing the pooling for entire image, we get the result as shown in Figure 18. We can 

see that the result matrix got reduced from 7*7 to 4*4 of size. Repeat the process for all three 

outputs that we got after ReLU layer and we get 4*4 matrix for each respectively. 

 

Figure 17: Pooling Layer Step 1 [19] 
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Figure 18: Pooling Layer Step 2 [19] 

3.2.6. Stacking Up the Layers 

After passing through Convolution, ReLU and Pooling we get the 4*4 matrices from the 

input image [21] as shown in Figure 19. 

 

Figure 19: Stacking Up of Layers Step1 [19] 
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Figure 20: Stacking Up of Layers Step 2 [19] 

3.2.7. Fully Connected Layer 

This is the final layer where the actual classification happens. Here we take our filtered and 

shrunk images and put them into a single list or a vector as shown in Figure 21. 

 

Figure 21: Fully Connected Layer [19] 

3.2.8. Output 

We can see that certain values in the list are high for ‘X’ and if we repeat the entire process 

for ‘O’ there will be certain different values which are high. For ‘X’ 1, 4, 5, 10, 11 vectors are high 

and for ‘O’ 2, 3, 9, 12 element vectors are high. Now, as shown in Figure 22, the model is trained 

with the vectors to classify between ‘X’ and ‘O’. 
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Consider we have given a new input image for classification. That image passes through 

all the layers and got the corresponding 12 element vector as shown in Figure 23. We compare 

with the list of ‘X’ and ‘O’. For ‘X’ there are certain values which are high (1,4,5,10,11) and sum 

these vectors which is 5. Sum the corresponding vectors of input image which is 4.96. Divide by 

5 and we get 0.91. Similarly, for ‘O’ we get 0.51. As 0.91 is greater than 0.51, the input image is 

classified as ‘X’. 

 

Figure 22: Output Step 1 [19] 

      

Figure 23: Output Step 2 [19] 

 

 



 

 
17 

3.3. Transfer Learning 

In context of deep learning, most models need lots of data, and obtaining a large amount 

of labeled data for a variety of domains can be difficult, considering the time and effort it takes to 

label the data. Although there is ImageNet dataset with millions of data, getting data for every 

domain is tough. While there are state-of-the-art models which give high accuracy, they would be 

only on specific datasets and when used on new similar task, they suffer a significant loss. This 

forms the basis for transfer learning which used knowledge gained from pre-trained networks and 

use it to solve new similar problems [22]. 

3.3.1. Why to Use Transfer Learning 

Consider Figure 24 for training with label as an elephant. It is of size 225*150 pixels taking 

color pixel as a single component. As ‘X’ and ‘O’ are simple, we just used three filters. Here, we 

must take hundreds or even thousands of filters for convolution. If each filter is of size 3*3, it must 

perform convolution on the given image which is 225*150 pixels. That is, each feature generates 

a 75*50 size matrix. All filters together generate thousands of similar matrices which takes lot of 

computational time and memory. Figure 25 shows the sample computations visual for each layer. 

Apart from this, there is still ReLU and pooling functions in each block as shown in Figure 26. In 

summary, if we have 3000 training images of 228*150 pixels each, the computations for the initial 

block are as shown in Table 1. 

The initial layers perform a lot of computations and as passed to the next block the number 

of computations decreases due to the convolution and pooling in the previous blocks. To train the 

model on one image, the computations of first block are as shown in Table 1. If the training images 

are around 3,000, these computations are multiplied by the same amount which need huge 

memory, time and computational power. 
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Here comes the use of pre-trained networks which are already trained on millions of 

ImageNet datasets and can be used instantly for classification. However, all types of images are 

not available in ImageNet and the pre-trained networks become obsolete if they need to classify 

new set of images which are out of scope of the ImageNet datasets. 

The solution for this is to use Transfer Learning. It enables us to utilize knowledge from 

previously learned tasks and apply on new similar tasks. In computer vision domain, the initial 

blocks of CNN extract certain low-level features such as edges, shapes, corners, intensity etc. As 

we know that initial blocks use more computational power, we transfer the knowledge (features, 

weights) of them from a pre-trained network and utilize to classify new images. The last blocks in 

CNN are more specific to image details and hence we freeze the top layers and use the bottom 

layers as per the problem. 

 

Figure 24: A Sample Image 
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Figure 25: Deep Neural Network [21] 

 

 

Figure 26: Complete Picture of CNN [41] 

Table 1: Demonstration of Layers in Convolution Neural Network 

Block 1 
For One 
training 
image of 
225*150 
pixels 

 Input Output 

Convolution Layer let 100 number of filters Hundred 75*50 matrices 

ReLU Layer Hundred 75*50 matrices Hundred 75*50 matrices 

Pooling layer Hundred 75*50 matrices Hundred 36*25 matrices 
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3.4. Architectures of Pre-trained Models 

In all pre-trained networks, we use all the convolution layers for feature extraction. We 

then replace the fully connected and dense layer with our own layers to classify the images as 

normal or pneumonia. With fine-tuning in place, we unfreeze last couple of blocks before fully 

connected layers. These blocks adjust their weights with respect to loss function using 

backpropagation technique. Let us have a look at a couple of architectures [25]. 

3.4.1. VGG16 Architecture 

This is a 16-layer (convolution and fully connected) network built on the ImageNet 

database for the purpose image classification. Figure 27 describes the architecture of the model. 

From the image, we can see that there are 13 convolution layers using 3*3 filters along 

with max pooling and two fully connected hidden layers of 4,096 units in each layer followed by 

a dense layer of 1,000 units, where each unit represents one of the image categories in the 

ImageNet database. 

 

Figure 27: VGG16 Architecture [43] 
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3.4.2. VGG19 Architecture 

This is a 19-layer network with 16 convolution layers along with pooling layers, two fully 

connected layers and a dense layer as shown in Figure 28. 

 

Figure 28: VGG19 Architecture [42] 

3.4.3. ResNet50 Architecture 

Figure 29 describes the architecture of ResNet50, which is a 50-layer deep neural network. 

Similarly, Inception, Xception and DenseNet pre-trained networks have their respective 

convolution and pooling layers with subtle changes in number of layers, pixels of filters and layers. 

 

Figure 29: ResNet50 Architecture [42] 
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3.5. Leveraging Transfer Learning with Pre-trained CNN Models 

Let us consider the transfer learning with the pre-trained VGG-16 model. We perform the 

classification using three approaches as follows [26]. 

3.5.1. Feature Extractor 

In this method, we just use it as a simple feature extractor by freezing all the five 

convolution blocks to make sure their weights do not get updated after each epoch. 

3.5.2. Feature Extractor with Image Augmentation 

To overcome small training data problem in the first approach, we use the advantage of 

Image Augmentation here. It is the process in which we apply image transformation operations 

such as rotation, shearing, translation, zooming, andso on, to produce new, altered versions of 

existing images. Due to these random transformations, we do not get the same images each time 

and this results in more training image datasets. With more training data we perform the feature 

extraction and image classification [27]. 

3.5.3. Fine-Tuning with Image Augmentation 

For the last model, we will apply fine-tuning to the model, where we will unfreeze the last 

two blocks (Block 4 and Block 5 in case of VGG-16 shown in Figure 30) so that their weights get 

updated in each epoch. This is a more involved technique as we selectively retrain some of the 

previous layers instead of just replacing the final layer [28]. 

Thus, we are mostly concerned with leveraging the convolution blocks of the pre-trained 

model and then flattening the output (from the feature maps) so that we can feed it into our own 

dense layers for our classifier. Figure 30 describes a better block diagram visual perspective [29]. 
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Figure 30: Block Diagram Showing Transfer Learning Strategies on VGG16 Model [43] 
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4. EXPERIMENTS AND RESULTS 

4.1. Data Composition 

4.1.1. Initial Datasets 

The initial raw datasets are unlabeled images with the number of images in each category 

as described in Table 2. 

Table 2: Initial Datasets 

Number of Images 

Data type NORMAL PNEUMONIA 

Test 234 390 

Train 1341 3875 

Val 8 8 

4.1.2. Labelled and Organized Datasets 

In neural networks, better accuracies can be achieved with more training data. A good 

number of validation data is required to calculate the accurate validation loss after each epoch and 

backpropagate the error to correct the weights in the desired layers. The test data should be 

maintained to check the results and performance accuracy. Neural networks need the label dataof 

each image to train, validate and test them appropriately. With these points in mind, the data is 

split proportionally as shown in Table 3, and the images are labelled as NORMAL and 

PNEUMONIA, respectively. 

Considering the VGG-16 model to demonstrate the experiments, the datafile has test, train 

and validation data in the test, train and val subfolders. Each category (test/train/val) of the data 

folder has NORMAL/PNEUMONIA subfolders that contain the respective images. 

Create train, test and validation lists. Append images locations to these lists according to 

labels. Example: x_train contains all NORMAL Images from training dataset and y_train contains 

all PNEUMONIA images of training dataset. Figure 31 describes datasets count for each category. 
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Resize and convert the images to array using the python inbuilt library ‘array_to_img’. 

Store the arrays in separate lists for training and validation. Split the labels and store in labels list. 

Training dataset shape and Validation dataset shape now is: (5000, 150, 150, 3) and (80, 150, 150, 

3) respectively. 

Scale the images and transform the labels using ‘LabelEncoder’ library. Import and Load 

the chosen model with ‘imagenet’ as weights. 

Table 3: Labelled and Organized Datasets 

Number of Images 

Data type NORMAL PNEUMONIA Total 

Test 300 390 690 

Train 1200 3800 5000 

Val 80 80 160 

 

 

 

Figure 31: Datasets 
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4.2. Performance Metrics Setup 

The labels of all test data are available for the classification. The new predicted labels are 

then compared with the existing labels [33]. From the comparison we find the measures as 

described in Table 4. 

• True positive: Pneumonia images correctly identified as pneumonia 

• False positive: Normal images incorrectly identified as pneumonia 

• True negative: Normal people correctly identified as Pneumonia 

• False negative: Pneumonia people incorrectly identified as Normal 

Table 4: True Positive, True Negative, False Positive, False Negative 

 Predicted Class 

NORMAL PNEUMONIA 

True 

Class 

NORMAL True Negative (TN) False Positive (FP) 

PNEUMONIA False Negative (FN) True Positive (TP) 

 

4.2.1. Accuracy and Precision 

Accuracy is how close a measured value is to its true value. Precision is how close all the 

measured values are to each other. In other words, accuracy is the ratio of the number of correct 

classifications to the number of all classifications. Precision is the ratio of true Pneumoniaimages 

to all Pneumonia predictions. Figure 32 describes the difference of the same. 

 

Figure 32: Accuracy vs. Precision [44] 
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4.2.2. Recall/Sensitivity and Specificity/Selectivity 

Sensitivity, also called as true positive rate is the ratio of true positives to total number of 

actual positives [34]. Similarly, specificity, also called as true negative rate is the ratio of true 

negatives to total number of actual negatives. In simple terms, if 100 images are of pneumonia and 

we predict 90 of them as pneumonia (true positive), sensitivity is said to be 90%. Similarly, if 100 

images are healthy and we predict 85 of them as healthy (true negative), specificity is 85%. 

4.2.3. F1-Score 

If a model accuracy is 90%, it is high enough to consider it as an accurate model. Yet, there 

are 10% patients whose pneumonia results are incorrect, and this is too high a cost. Hence, we also 

consider F1-score as a metric that gives a better measure of incorrectly classified cases [35]. This 

is calculated as a harmonic mean of precision and recall. Accuracy is used when true positives and 

true negatives are more important. While the F1-score is a better metric when the class distribution 

is unequal and false positives and false negatives are more crucial [36]. Figure 33 describes all the 

metrics formulae. 

 

Figure 33: Accuracy, Precision, Recall, Specificity, F1-Score Formulae [34] 
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4.2.4. Confusion Matrix 

A Confusion Matrix in a classification problem is the tabular representation of prediction 

results with count values broken down by each class [37]. As the name suggests, it shows how a 

classification model performs when making predictions. It gives insight into the errors being made 

by the classifier and the type of errors. For instance, Figure 34 shows a confusion matrix with 5 

different classes and 12 images of Asphalt that are falsely classified as Building images [39]. 

 

Figure 34: Confusion Matrix Demonstration [45] 

4.2.5. ROC Curve 

A receiver operating characteristics curve, or ROC curve, is a graphical representation of 

the true positive rate (sensitivity) vs. the false positive rate (1 - specificity) [38]. It depicts the 

trade-offs between true positives (benefits) and true negatives (costs). As shown in Figure 35, the 

best possible prediction would yield a point on the upper left coordinate (0, 1) representing 100% 

sensitivity (no false negatives) and 100% specificity (no false positives) [40]. The diagonal line 

that divides the ROC space from the left bottom to the right corners is called line of no- 

discrimination. A random guessing of classification would yield results on this line. The points 

above and below the line represent better and worse classification results, respectively. 
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Figure 35: ROC Curve Example [40] 

4.3. Three Methodologies of Classification 

4.3.1. Pre-trained CNN Model as Feature Extractor 

Freeze all the convolution layers using the python libraries and use the pre-trained network 

as just for feature extraction of the images. 

The output is as shown in Figure 36. It shows all the layers are frozen as expected. The last 

activation feature map is the output from ‘block5_pool’ that gives the bottleneck features. All the 

training and validation dataset features are extracted, flattened and fed as input to the classifier. 

Build a classifier that takes the flattened bottleneck features as input and performs the 

classification. Train the model using ‘model.fit’ selecting the number of epochs, batch size, 

training data and validation data. Save the model to use for classifying the testing images. 

model.save(‘chest_xray_fulldataset/NORMAL_PNEUMONIA_tlearn_basic_cnn.h5’) 
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Figure 36: Illustration of Frozen Layers 

4.3.2. Pre-trained CNN Model as a Feature Extractor with Image Augmentation 

Perform image augmentation on training and validation datasets. We keep layers of CNN 

network frozen and generate image data using python library ‘ImageDataGenertor’. Build training 

model on the data generators rather on the bottleneck features as in Method 1. Save the model as 

h5 file to be used for classifying the training data. 

model.save(‘chest_xray_fulldataset/NORMAL_PNEUMONIA_tlearn_img_aug_cnn.h5’) 
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4.3.3. Pre-trained Model with Fine-Tuning and Image Augmentation 

Unfreeze the last two layers – ‘block5_conv1’ and ‘block4_conv1’. 

for layer in cnn_model.layers: 

if layer.name in [‘block5_conv1’, 

‘block4_conv1’]: set_trainable = True 

if set_trainable: 

layer.trainable 

= True 

else: 

layer.trainable = False 

Figure 37 describes that the block4 and block5 are now trainable backwards after each 

epoch. Use the same model with the Image generators as in Section 4.1.2 to train the model. Save 

the model for classifying the testing data. 

model.save(‘chest_xray_fulldataset/NORMAL_PNEUMONIA_tlearn_finetune_img_aug_cnn.h5’) 

Plot the changes of the validation accuracy after each epoch. Load the test images. Scale 

them, split the labels and save them to separate lists. Load the ‘.h5’ file and input the test data to 

get the classification. Choose random test images and show their actual and predicted labels. Plot 

confusion matrix that shows the True Normal and True Pneumonia classification. Calculate the 

accuracy, precision, sensitivity, specificity and F-1 score. Create a 2d array with all the accuracies 

updated to it. Visualize it as a DataFrame and plot the bar diagram of all accuracies for each pre- 

trained network. 
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Figure 37: Illustration of Unfrozen Layers for Fine-tuning 
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4.4. Evaluation Results 

4.4.1. Random Test Images Classification 

Choose random images from test dataset. The image can be either ‘NORMAL’ or 

‘PNEUMONIA’. Classify the image using the pre-trained models and plot the image with its actual 

label and predicted label. Figure 38 describes the random generation of test images and their 

classification using the VGG16 model with Image Augmentation and Fine-Tuning method.  

 

 

Figure 38: Classified Images 
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4.4.2. Accuracy 

The prediction accuracies of all pre-trained networks with the corresponding method of the 

classification is listed in Table 5. From the three approaches used, Feature Extraction with Image 

Augmentation gave the best results, out of which the ‘Xception’ model achieved the best accuracy 

with 92.5%. Figure 39 shows the bar plot visual of all accuracies. 

Table 5: Accuracy Results 

Model Conv Method Image Augm Fine Tuning 

VGG16 84.75 92.15 87.17 

VGG19 76.118 91.42 88.52 

ResNet50 79.82 90.11 63.17 

InceptionV3 78.217 88.521 68.04 

Xception 83.594 92.57 67.46 

DenseNet 81.56 88.98 56.66 

 

 

Figure 39: Bar plot of Accuracy Values Obtained 
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4.4.3. Precision 

As Precision describes the true Pneumonia images out of predicted Pneumonia, Table 6 

and Figure 40 represents the percentage measures of the same. From the three approaches, the 

Feature Extraction with Image Augmentation gave the best results, out of which the ‘VGG16’ 

model achieved the best precision value of 94.55%. Figure 40 shows the bar plot visual of all the 

precision. 

Table 6: Precision Results 

Model Conv Method Image Augm Fine Tuning 

VGG16 90.66 94.559 90.45 

VGG19 84.16 93.5 94.1 

ResNet50 89.68 93.42 76.07 

InceptionV3 85.26 90.95 80.16 

Xception 89.7 94.11 81.57 

DenseNet 88.28 92.4 77.16 

 

 

 

Figure 40: Bar Plot of Precision 
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4.4.4. Recall/Sensitivity 

As Sensitivity is the probability of being tested positive when the disease is present, Table 

7 and Figure 41 represents the results of the test to correctly classify an individual as ‘diseased’. 

From the three approaches used in this paper, Feature Extraction with Image Augmentation gave 

the best results, out of which the ‘Xception’ model achieved the best Sensitivity of 94.35%. 

Table 7: Recall/Sensitivity Results 

Model Conv Method Image Augm Fine Tuning 

VGG16 87.17 93.58 87.43 

VGG19 81.79 92.3 90 

ResNet50 80.25 91.02 73.06 

InceptionV3 83.07 90.25 76.66 

Xception 87.17 94.35 77.17 

DenseNet 88.07 90.51 75.38 

 

 

Figure 41: Bar Plot of Sensitivity 
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4.4.5. Specificity 

As Specificity is the probability of being tested negative when the disease is not present, 

Table 8 and Figure 42 represents the results of the test to correctly classify an individual as ‘not 

diseased’. From the three approaches used, Feature Extraction with Image Augmentation gave the 

best results, out of which the ‘VGG16’ model achieved the best Specificity of 93%. 

Table 8: Specificity Results 

Model Conv Method Image Augm Fine Tuning 

VGG16 88.33 93 88 

VGG19 80 91.66 92.66 

ResNet50 88 91.66 71 

InceptionV3 81.33 88.33 75.33 

Xception 87 92.33 77.33 

DenseNet 85.66 90.33 71 

 

 

 

Figure 42: Bar Plot of Specificity 
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4.4.6. F1-score 

As the dataset classes distribution are unbalanced, the F-1 score shows the better accuracy 

values compared to normal accuracy measured. From the three approaches used in this paper, 

Feature Extraction with Image Augmentation gave the best results, out of which the ‘VGG16’ 

model achieved the best F1-Score of 94%. Table 9 and Figure 43 shows the DataFrame and Bar 

plot visual of F1-scores. 

Table 9: F1-Score Results 

Model Conv Method Image Augm Fine Tuning 

VGG16 88.33 94 88 

VGG19 82 92.66 92.66 

ResNet50 84 92.66 74 

InceptionV3 84.33 90.33 78.33 

Xception 88 93.75 79.33 

DenseNet 85.66 91.33 76 

 

 

Figure 43: Bar Plot of F1-Score 
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4.4.7. Confusion Matrix to Show True Normal and True Pneumonia 

Majority of True Normal and True Pneumonia are classified well in all cases. Normal is 

indicated by ‘0’ and Pneumonia is indicated by ‘1’. As the Feature Extraction with Image 

Augmentation achieved best results, Figure 44 shows confusion matrices of that approach [31]. 

  

  

Figure 44: Confusion Matrices of All Models 
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Figure 44: Confusion Matrices of All Models (continued) 

4.4.8. ROC Curve for Best and Worst Model 

Figure 45 describes the Receiving Operating Characteristic curve for the best and worst 

models, respectively [32]. 

 

Figure 45: ROC Curve 
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5. CONCLUSION 

The project work compares the performance of six pre-trained convolutional neural 

networks with three types of approaches, namely CNN as feature extraction, CNN as feature 

extraction with image augmentation, and CNN with fine-tuning and image augmentation. The 

dataset includes chest X-rays of Normal and Pneumonia patients. 

With the help of transfer learning and the approaches mentioned above, better accuracy 

values are achieved with almost all the pre-trained networks for the classification of medical 

images. In all the pre-trained networks used, Feature extraction with Image augmentation method 

delivered the best results. Of all the networks the ‘Xception’ model with Image Augmentation as 

feature extraction method returned the highest accuracy of 92.5% followed by VGG16, VGG19, 

ResNet 50, InceptionV3 and DenseNet201 with 92.1%, 91.42%, 90%, 88% and 88%, respectively. 

The same method showed better indication in terms of Sensitivity where as the ‘VGG16’ model 

showed better results in specificity, precision, recall and F1 score. Hence, when the datasets are 

balanced and unbalanced, the Feature Extraction with Image Augmentation approach with the pre- 

trained networks ‘Xception’ and ‘VGG16’ performed well respectively. 
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