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ABSTRACT 

The vulnerability of complex networks to unexpected disruptive events could be reduced 

by increasing network resilience through the efficient recovery of the damaged network. To find 

the most efficient recovery strategy among the existing variety of strategies, a resilience-based 

framework was proposed and implemented for both localized attacks and cascading failures. For 

localized attacks, preferential recovery based on nodal weights (PRNW), periphery recovery (PR) 

and localized recovery (LR) were assessed. Additionally, probability-based recovery (RS1) and 

recovery of neighboring or boundary nodes (RS2) methods were evaluated for cascading failures. 

Considering the advantages and disadvantages of these strategies, a hybrid recovery strategy was 

proposed to achieve high network resilience in a timely manner with a manageable amount of cost. 

Overall, this study aids in the assessment and the development of a cost-effective resilience-based 

recovery strategy.  
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1. INTRODUCTION 

1.1. Current State and Challenges 

Critical infrastructure systems, such as power distribution network, water distribution 

network, gas network, communication network, etc. plays a crucial role in the successful 

functioning of modern society. These networks are often interconnected and interdependent for 

their proper functioning. The collection of such interconnected networked infrastructure systems 

could be viewed as complex networks. These networks are often vulnerable to failure due to 

unexpected natural, technological or intentional disruptive events. Natural disasters, such as 

earthquakes, hurricanes, flood, etc. are quite unpredictable and have devastating effects on the 

networked infrastructure systems resulting in negative impacts on the social and economic 

structure of a country. For instance, damage from hurricanes hitting the U.S. between 1980 and 

April 6, 2018 cost totals $862 billion, where, the cost of an average hurricane is $21.6 billion [1]. 

Hurricane Harvey was predicted to be the most expensive natural disaster in the history of the 

United States at over $180 billion, surpassing $160 of Hurricane Katrina [2]. In April 2015, Nepal 

experienced the most devastating earthquake in its history causing the damage of $10 billion, 

which is half of its gross domestic product (GDP) [3]. Moreover, the interconnection and 

interdependency between networks make the systems more vulnerable. Because damage in one 

network might cause damage to the other dependent network resulting in the collapse of the total 

system. In September 2003 a tree fell on a transmission line in Switzerland and triggered a cascade 

of failure all the way to Italy that left more than 53 million people in the dark [4, 5]. In order to 

reduce the undesirable consequences and mitigate the follow-up risks, there is no alternative to 

preparing for the post-disaster recovery.  
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An efficient recovery strategy aids the achievement of system resilience. Resilience is a 

multidimensional concept that refers to the ability of a system to be prepared for any unexpected 

disruption, withstand adapt to such events and recover from its damaged state to normal operating 

condition [6, 7]. It is known to be one of the most important metrics for measuring the capability 

of a system to cope with changes [8, 9]. The resilience of complex networks is highly associated 

with the recoverability of the system. That is why the successful implementation of recovery 

strategies is essential to make complex networks more disaster resilient. The necessity of studying 

the vulnerability and the resilience of complex networks has influenced many researchers to focus 

on resilience-based network recovery. A variety of recovery strategies were developed considering 

failure patterns and network properties. Hu et al. [10] proposed two recovery strategies from 

natural disasters, modeled as localized attacks in a two-dimensional lattice network application. 

Di Muro et al. [5] proposed a recovery strategy for two interdependent infrastructure networks 

under a cascading failure. The devastating effects of cascading failures have encouraged many 

other researchers to work on this field. Hong et al. [11] developed recovery strategies against 

cascading failures in interdependent networks. A further extended version of it was developed for 

spatially interdependent networks [12]. Wang and Quyang [13] proposed a joint recovery model 

to support interdependent systems’ resilience assessment. A localized recovery method was 

proposed by Shang [14] which could be beneficial to recover from any failure. Some recovery 

strategies were developed based on recovery priorities. Sun and Zeng [15] proposed a target 

recovery method where the most important nodes are selected for recovery. Moreover, many real-

world dynamic complex systems are said to be able to spontaneously recover after an inactive 

period of time. For example, stock market pricing, or sudden economic crashes in finance. 

Majdandzic et al. [16] developed a framework for understanding the mechanism of spontaneous 
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recovery in dynamic networks. Most of the existing recovery strategies are compiled in ref. [17]. 

Although these proposed methods could be very effective in different circumstances, many other 

factors, like, recovery cost, resources, recovery time, etc. are necessary to be considered before 

implementation. This increases the complexity of choosing a suitable recovery strategy. To address 

this challenge, many optimization models were developed to design resilience-based recovery. 

Almoghathawi [18] developed a resilience-driven restoration model for interdependent networks. 

A resilience optimization model was proposed by Liao et al. [19] for transportation network 

recovery. For post-disaster recovery, a stochastic optimization model was introduced by Turnquist 

and Vugrin [20]. Figueroa-Candia et al. [21] formulated a resilience-based optimization model for 

the evaluation of restoration policies. A resilience-based model designed for a supply chain 

network by Margolis et al. [22]. Fang and Sansavini [23] investigated the effects of several 

uncertainties on post-disaster restoration and proposed a two-stage optimization model to solve 

this problem. To minimize resilience loss during the restoration plan, Chen [24] solved a 

restoration scheduling problem. 

1.2. Scope of the Study 

Based on the current state of research, the damage-specific recovery strategies are yet to 

be evaluated on the scale of resilience. Although, a variety of recovery strategies have been 

proposed by researchers in different circumstances, evaluating them through resilience assessment 

is crucial before the implementation. From the assessment of the recovery strategies considering 

the goal of recovery, the most efficient recovery strategy could be selected. In this purpose, a 

framework for the assessment and comparison of the recovery strategies could be developed. 
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Moreover, the assessment of recovery strategies could be a significant way of identifying 

the drawbacks of the current methods. It would also encourage improving recovery methods and 

developing a more efficient recovery strategy.  

1.3. Objectives of the Study   

In this study, an attempt has been made to address all the scopes identified and intend to 

achieve the following goals: (i) to propose a resilience-based general comparison framework, (ii) 

implement the proposed framework for both localized attacks and cascading failures, (iii) identify 

the major drawbacks of the existing recovery strategies, and (iv) develop an improved and resilient 

recovery strategy. 

The rest of the study is detailed in four chapters. Literature review containing basic 

complex network properties, failure patterns in complex networks, recovery strategies against 

different failures and network resilience is presented in Chapter 2. The proposed methods applied 

in this study are given in Chapter 3. Chapter 4 provides the implementation of the proposed 

methods through three case studies. Finally, Chapter 5 summarizes the key findings and suggests 

future research directions in the same field of study. 

 

 

 

 

 

 



5 

 

2. LITERATURE REVIEW 

This study is mainly focused on the achievement of resilience in complex networked 

infrastructure systems through restoration after failure. This review attempts an in-depth analysis 

of basic complex network properties, failure mechanisms that occur in complex networks, different 

strategies to recover from such failure, and network resilience. 

2.1. Properties of Complex Networks 

Infrastructure systems, such as power distribution networks, transportation networks, water 

distribution network are often represented by complex networks in the form of a graph consisting 

of nodes and edges, where nodes represent the entities of the system, and edges represent 

information interactions or other relations among entities [25]. The significance of network 

components may vary according to the system properties. Nodes can represent sources and 

demands in distribution networks, service stations in a supply network, locations in a transportation 

network, suppliers or distributors in a supply chain, genders in a social media network, components 

in a product, and so on. On the other hand, the edges in a network represent the connection between 

the nodes primely, while carrying edge weights. These weights could represent the rate of flow to 

the given directions (unidirectional or bidirectional), geographical distance between locations, etc. 

However, networks can be more complex than just a set of nodes and edges in many ways. The 

properties of network structures may vary both in different ways. Some networks can have several 

hierarchical structures that are commonly known as ‘multi-leveled or multi-layered networks’[26]. 

The difference between the structure of a single-layered network and a multi-layered network is 

shown in Figure 1. Additionally, more than one types of a node or more than one type of edges 

could be present in a network. For instance, the multi-layered network shown in Figure 1 has two 

types of edges, edges within a layer and between layers. The complexity of multi-layered networks 
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could also be increased through the interdependency between interconnected components. In the 

sociology applications, networks that have edges categorized by their types, are also known as 

‘multiplex networks’ or ‘multi-relational networks’ [27].  

 

Figure 1: General network structures [17] 

In reality, most infrastructure networks work together to perform and deliver services that 

are crucial to the community wellbeing. For example, both the telecommunication network and 

internet/cyber network are dependent upon the power grid network. That is why representing 

current infrastructure system configuration through interconnected and interdependent networks 

would be the most realistic representation of modern complex systems. However, the 

interconnectedness and interdependency in complex networks have caused some unforeseen 

challenges to the surface. One of the most threatening parts is that when any kind of damage occurs 

in a network, other interconnected networks could also be affected leading to the breakdown of 

the total system. This phenomenon has influenced researchers to analyze the relationship of the 

components in complex networks and their behavior under different circumstances.  
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To understand the structural and operational behavior of the network properly, it is 

necessary to have knowledge of the basic terms related to networks. Some of the commonly used 

terms in defining and analyzing network systems are:  

Degree: The degree of a node in a network is the number of connections or edges of a node 

to other nodes. In this study, the degree of a node is denoted as k. For example, in Figure 2, node 

1 is connected to 2 other nodes. Thus, the degree of node 1, kn1 is 2 and the degree of node 2, 3, 4, 

5 and 6 is respectively 5, 3, 4, 2 and 1. 

Degree distribution: The degree distribution, P(k), of a network is the fraction of nodes 

in the network with degree k. If there are a total of n nodes in a network and nk of them have degree 

k, P(k)=nk /n. This indicates the probability of a randomly selected node to have degree k. For 

example, in Figure 2, the probability of a randomly selected node to have degree 3, P(3) is 1/6. 

 

Figure 2: Illustration of the fundamental terms of a network [17] 

Betweenness centrality: For each node, the number of shortest paths that pass through the 

node is known as betweenness centrality. The betweenness centrality of a node n, g(v), is given 

by:  

 𝑔(𝑣) =  ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠𝑣≠𝑡

 (1) 

where σst is the total number of shortest paths from node s to node t and σst(v) is the number of 

those paths that pass through node v [15]. For example, in Figure 2 the total number of the shortest 



8 

 

path from node 1 to node 5 is 2. And the number of those paths that pass through node 3 is 1. The 

betweenness centrality of node 3 is ½. 

Giant component: The largest connected component of a network that contains the 

majority (more than half) of the nodes of the entire graph's nodes.  

2.2. Failures in Complex Networks 

Failures in complex networks may occur in various ways due to distinct network properties 

and unpredictable attacks. Typical failure behaviors that are commonly observed in complex 

networks are summarized in Figure 3. Failures in the network are the results of attacks that have 

devastating impacts on both structures and network performance.  

 

Figure 3: Commonly observed failure scenarios in complex networks 

The attack scenarios could also vary under different circumstances. One of the most 

common attacks are localized attacks (LA) which occur geographically specific areas. These are 

mostly natural disasters (earthquake, hurricane, etc.), internal critical components failures, or 

mass/multiple attacks in a specific location [10]. From the point of complex networks, localized 

attacks could be demonstrated by the failure of a group edges concentrated in a particular 

geographical domain resulting adjacent isolated nodes. The failure mechanism of localized attack 

is illustrated in Figure 4. 
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Figure 4: A typical aftermath of localized attacks [10] 

Secondly, there are malicious attacks (MA) that disrupt the most important parts of a 

network and may cause severe damage by resulting heavily impaired the networked system’s 

functionality [10]. This type of attack is typically identified by the state where the edges in a 

complex network are removed in order of the largest betweenness centrality leading to the 

emergence of several separated sub-networks, as shown in Figure 5. 

 

Figure 5: A typical aftermath of malicious attacks [10] 

Thirdly, failures in a complex network may occur randomly due to random attacks (RA). 

In RA, the edges are damaged randomly following an attack as shown in Figure 6 [10].  
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Figure 6: A typical aftermath of random attacks [10] 

Generally, failures in a network could occur in two ways: random failure or targeted failure. 

If any of the network components (nodes/edges) fails randomly after a disruptive event, it is known 

as a random failure. On the other hand, a targeted failure is the outcome of any intentional attacks 

that could be intruded into a network from outside. These result in the removals of or damages to 

certain nodes or edges.  

One of the most discussed network failures in recent times is known as cascading failure. 

A cascading failure is a failure process in which the failure of one or more components in a 

network (edges/nodes) can trigger the failure propagation to the overall network. Cascading 

failures are commonly observed in interdependent networks where the components of a network 

are dependent on the components of other networks [4]. Most infrastructure networks (power, 

water, transportation, communication, etc.) are often connected to each other and interdependent 

for their proper functioning. The main reason behind the initiation of such failure could be the 

overloading of nodes and the interdependency between networks. When one node in a complex 

network fails, its load is redistributed among the neighboring nodes. This extra load may cause 

overloading of the neighboring nodes leading to failure of them. If this continues, the failure could 

propagate to the whole system. Due to the interdependency between networks, the cascade of 

failure may also spread from one network to another. To model cascading failure, Watts and 



11 

 

Strogatz [28] generated two networks Network A and Network B based on the spatial proximity of 

nodes in the same two-dimensional area. Interdependence across the two networks are modeled 

with the dependency matrix,  

 

𝐼𝐴→𝐵: 𝐼𝑖𝑗 = {
1,  𝑖𝑓 𝑛𝑜𝑑𝑒 𝑗 𝑖𝑛 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐵 𝑖𝑠 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡

𝑜𝑛 𝑛𝑜𝑑𝑒 𝑖 𝑖𝑛 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐴
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                        

 

 

(2) 

 

 

Figure 7: Redistribution of loads [29] 

The capacity of each node is assumed to be linearly proportional to its initial load. If the 

initial load of node i is Li(0), the capacity of that node would be  

 𝐶𝑖 = (1 + 𝛽)𝐿𝑖(0),   𝑖 = 1,2, … . , 𝑁𝐴 (3) 

where β (β ≥ 0) is a variable called tolerance parameter. It limits the node load so that it does not 

become infinite. If a node fails, its load becomes 0 and a load of failed node redistributes among 

the neighboring nodes in the manner shown in Figure 7. The amount of this extra load could be 

expressed as, 

 ∆𝐿𝑖𝑗(𝑡) = 𝐿𝑖(𝑡)
𝐿𝑗(𝑡)

∑ 𝐿𝑙(𝑡)𝑙
 (4) 
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If 𝐿𝑗(𝑡 + 1) > 𝐶𝑗 ,  node j fails and the nodes of Network B, linked to the lost node are failed 

due to dependency link and failure propagates through the total system [29]. From the cascading 

failure, a secondary failure could also occur, which is explained in Ref. [30]. 

As an aftermath, a failure could cause structural damage as well as the performance 

degradation of a network. The failure affecting network structure had been observed as any of 

these three ways: (1) edges failures, (2) nodes failures, and (3) both edges and nodes failures.  

2.3. Recovery Strategies  

Restoration of a system after the occurrence of any disruptive event is one of the most 

important parts of a resilient system. In order to recover a system faster, a proper recovery strategy 

should take into account the recovery order, allocated time and resources, and other significant 

network properties. To restore a damaged network from different kind of attacks or failures, a 

variety of recovery strategies have been developed in recent years. These recovery strategies could 

be categorized according to their applicability for given failure scenarios. In this subsection, the 

existing recovery strategies against both localized attacks and cascading failures will be discussed. 

2.3.1. Recovery Strategies against Localized Attacks 

Many researchers have worked on developing recovery strategies against localized attacks. 

Hu et al. [10] proposed periphery recovery (PR) and preferential recovery based on nodal weight 

(PRNW), and Shang [[10, 14] proposed the localized recovery (LR) method. The three strategies 

are illustrated in Figure 8. After localized attacks occurred, a group of edges failed and removed 

from the network. In Figure 8 (A) the edges colored red, blue and yellow were the failed edges. 

Consequently, the nodes connected through those edges become isolated, as shown in Figure 8 

(B). The three recovery strategies for localized attack can be summarized as: 
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Periphery recovery (PR): In this method, recovery priorities are given to the most 

populated isolated node at the boundary of the functional component. In Figure 8 (C1) the blue 

edges with arrowhead are the damaged edges adjacent to the functional components of the 

network. The red node n1 is the most populated boundary node of the functional network. 

According to this recovery strategy, either edge m1 or m2 would be repaired first randomly. In this 

case, m1 is selected to be restored first and colored green. After all the isolated nodes are 

connected, m2 is repaired and colored yellow. At the next step, the node n2 in Figure 8 (C2) is the 

most populated boundary node of the functional network, and either edges m3 or m4 is supposed 

to be repaired randomly. The process would be iterated until all the isolated nodes were connected 

to the functional network, as shown in Figure 8 (C3). In the end, the yellow edges are repaired 

randomly one by one until all are repaired. 

Preferential recovery based on nodal weight (PRNW): The edges that could connect the 

most populated isolated nodes to the functional component of the network are preferred to be 

repaired. In Figure 8 (D1), the red node n3 has the largest population among all the isolated nodes, 

and edge m5 connects n3 to the network. According to the PRNW algorithm, the edge m5 is 

repaired first and colored green. Following the same procedure, the most populated node n5 is 

connected to the functional network through the edges m6 and m7. The steps are iterated until all 

the isolated nodes are connected to the network, as shown in Figure 8 (D4). At last, the yellow 

edges are repaired randomly one by one until all edges are repaired. PRNW could be highly 

efficient in connecting the most populated area while reducing the recovery time. It can also 

provide a rational solution with limited available resources. 
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Figure 8: The illustration of various strategic repair processes after a localized attack on a two-

dimensional square lattice network with heterogeneously populated nodes [10, 14] 

Localized recovery (LR): In the localized recovery process, the priority of being 

recovered is given to the edges of a root node as well as its neighboring nodes respectively [10, 

14]. This recovery process begins with the selection of root nodes. The rest of the nodes are listed 

in order of their distance from the root node as shown in Figure 8 (E1). Nodes being in the same 

distance from the root node are placed in the same shell. The edges of the root node are recovered 

first with the edges connected to it. Then the nodes in the same shell h are randomly selected and 

their edges are further recovered. After all the nodes in the first shell h=1 are recovered, recovery 

in the next shell h +1 starts. The recovery process stops when all the edges are recovered, as shown 

in Figure 8 (E2). 
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2.3.2. Recovery Strategies against Cascading Failures 

The severity of the effect of such failure could be easily comprehensible from this. That is 

why finding possible strategies to prevent the breakdown of the total system is crucial. So far a 

variety of recovery strategies against such failures have been proposed. These strategies mostly 

follow either a probability based recovery or neighboring node recovery rule. Some of these 

strategies can be summarized as:  

Probability-based recovery: Hong et al. [11, 12] analyzed cascading failure and proposed 

an active in-process recovery strategy in interdependent networks. In this purpose, two isolated 

networks with the same number of nodes were investigated where the networks were connected 

with interdependent edges. Figure 9 represents the interdependent network model, where the edges 

in Network A and B are shown as green and red lines respectively and the interdependent edges 

between two networks are shown as black short dash lines [11].  

 

Figure 9: Interdependent network model [11] 

The recovery action starts as soon as the cascading failure process begins. In this process, 

the recovery priority is given for coupled nodes. It was assumed that the recovery probability for 

uncoupled nodes is pri and for coupled nodes, the probability is, 
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 𝑝𝑟𝑐 = 𝜇 𝑝𝑟𝑖 (5) 

 

where µ is used to adjusting the recovery priority. A higher value of µ indicates higher priority and 

probability of being restored. If a node is restored, its edges and load are restored to its initial 

status. In the meantime, the remaining nodes suffer the recovery disturbance as loads of the failed 

nodes are redistributed to the remaining nodes according to the same redistribution strategy. The 

failure propagation to the interconnected network ends if no nodes are overloaded. The process 

repeats unless the cascading failure stops.  

 

Figure 10: The cascading failure process with recovery [12] 

Hong et al. [12] also demonstrated a method for the recovery of spatially interdependent 

networks which is illustrated in Figure 10. Two single spatially interdependent Networks A and B 

were considered. As the failure propagates in both networks and a pair of failed nodes connected 
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to the giant component is recovered with probability γ. This process was repeated until the steady 

state of the fully recovered network had been achieved.  

Recovery of neighboring or boundary nodes: Di Muro et al. [5] proposed a recovery 

approach that repairs failed nodes in the boundary of the functional network and reconnect the 

failed nodes to the network. According to them, the recovery process should be applied 

immediately after the cascading failure was identified in order to avoid or delay the collapsing of 

the total system. In this recovery model, the pair of failed nodes that belongs to the mutual 

boundary of both networks were recovered. The boundary of a network here denotes the nodes at 

a distance l = 1 from its giant component. When a node of the boundary is restored, its connections 

with both the giant component and other restored nodes from the same network are recovered. 

These steps repeat until a steady state is reached. On the other hand, the failed node pairs will not 

be recovered immediately if the interdependent failed node does not belong to the boundary l >1. 

The whole process could be illustrated in Figure 11. 

 

Figure 11: A recovery strategy for interdependent networks [5] 

This recovery process could be more practical because in many real systems it is 

convenient to repair boundary nodes. It is also claimed to be able to prevent further failures of the 

nodes that are not in the boundary. However, the load distribution of the nodes is not considered 
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in this model. The after-recovery effect on load distribution could make the boundary nodes to be 

more vulnerable to failure. That is why considering load distribution while repairing failing nodes 

is crucial [5]. 

2.4. Network Resilience 

Resilience is the ability of a system to withstand any kind of disruptive event while 

maintaining a certain level of performance and recover immediately from a failed state to a normal 

operating state. In other words, resilience is a characteristic that represents system performance 

under unusual conditions, recovery speed, and required actions for recovery to its original 

functional state [31]. It is a component importance measure related to network reliability and 

recovery after an attack or failure [32, 33]. According to C. Whitson et al. [34], resilience is a 

composite of (1) the ability of a network to provide service despite external failures, and (2) the 

time to restore service when in the presence of such failures. Bruneau et al. [35, 36] defined 

resilience with four dimensions: robustness (the ability to withstand extreme events and deliver a 

certain level of service after the occurrence of disruptive events), rapidity (the speed of recovering 

from a disaster), redundancy (the substitutable components within the system), and resourcefulness 

(the availability of resources to respond to a disaster). Ouyang et al. [37] described the resilience 

of an infrastructure system as its joint ability to resist, prevent, and withstand any possible hazards, 

absorb the initial damage, and recover to normal operation. 

 

Figure 12: Resilience-based system state transitions [38] 



19 

 

A system experiences three distinct states (stable original, disrupted, and stable recovered) 

and two state transitions (degradation and recovery) if any unexpected disruptive event occurs. 

The trend of state transitions could be explained in Figure 12.  

To portray both distinct and transitions states of the system a resilience curve is often 

employed, as shown in Figure 13. A system performance function P(t) is introduced as a measure 

to describe different system states at time t. The pre-disaster operating condition of a system is 

denoted as the original state S0. Once the disruptive event e occurs at time te, the system 

performance degrades gradually until it converges to a stable disrupted state Sd at time td. The 

system performance function corresponding to this disrupted state is denoted as P(td), which is 

typically lower than its original value P(to). After a duration of ts – td, the recovery action is taken 

at time ts. Through a recovery strategy, the system restores from the disrupted state Sd to a new 

stable state Sr with system performance function value P(tr) at time tr [39].  

 

Figure 13: Concept of system resilience [39] 

According to Ouyang et al., the resilience assessment framework for most networked 

systems can be divided into various stages: (1) a disaster prevention stage (to ≤ t ≤ te), (2) a damage 

propagation stage (te ≤ t ≤ td), and (3) an assessment and recovery stage (td ≤ t ≤ tr) and (4) a stable 

state after the recovery process is fully completed (tr ≤ t ≤ T), as shown in Figure 14.   
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Figure 14: Performance process of an infrastructure system during disruptive events [37] 

From this three-stage framework, resilience can be quantified by the ratio of the area under 

the real performance curve PR(t) (AR) and the targeted performance curve PT(t) (AT) and as:  

 𝑅(𝑡) =  
∫ 𝑃𝑅  (𝑡) 𝑑𝑡

𝑇

𝑡0

∫ 𝑃𝑇 (𝑡) 𝑑𝑡
𝑇

𝑡0

=
𝐴𝑅

𝐴𝑇
 (6) 

The above-mentioned perspective of resilience indicates that the recovery of a complex 

network after the damage is the most important part of the network resilience scheme. A networked 

system could become disaster resilient if it could recover from particular damage and resumes 

proper functionality within the desired time. This is one of the reasons where an effective recovery 

strategy is crucial in order to achieve a higher resilience level. It should be noted that the network 

resilience in this section is associated with infrastructure applications. Although a variety of 

resilience metrics were developed with different applications [8, 40-43]. more detailed information 

regarding resilience property or resilient systems could be found in some of system resilience 

literature in reference [32, 39, 44-48].   
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3. METHODOLOGY 

This study is mainly focused on the resilience assessment of the existing recovery strategy 

for a given failure scenario and finding the most efficient strategy. A resilience-based assessment 

framework was proposed here in this purpose. After analyzing the limitations of the current 

strategies, a hybrid recovery strategy was also proposed. In this chapter, the proposed methods are 

described in detail.    

3.1. Resilience-Based Recovery Assessment Framework 

The proposed resilience-based assessment framework could be found in Figure 15. At the 

beginning of the assessment of the recovery process, the failure characteristics and the reasons 

behind such failure are analyzed. Different types of attacks (localized, malicious, random, etc.), as 

well as their resulting failure patterns (random, targeted, cascading, secondary, etc.), are taken into 

account in this step.  

The next step is to build a comparison matrix to perform the comparison among the recovery 

strategies for the given failure pattern. According to the goal of recovery, multiple objective 

functions could be formulated. For example, while achieving the highest system resilience could 

be the main aim of an optimum recovery strategy, it can be achieved with the combination of 

maximizing performance, minimizing recovery time, and minimizing recovery cost. There are 

many other factors that should be considered during the recovery process, such as, recovery cost, 

budget, allowable time, available resources, etc. With the presence of all these constraints, the 

formulated objective valued could be calculated to find the most suitable recovery strategy for the 

given circumstances. This could lead to the formulation of a multi-objective optimization problem. 

A recovery strategy that could achieve the maximum possible resilience level and satisfies other 

objectives should be considered as an efficient strategy.  
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Figure 15: General resilience-based recovery assessment framework  

While evaluating a recovery process the optimality and feasibility analysis are crucial prior 

to the implementation stage. A recovery strategy could increase the recovery speed with a high 

cost and enormous resources. Due to the limitations in budget and available resources, it might not 

be possible to provide the required amount of resources and expenses for a faster recovery. On the 

other hand, a recovery process could be cost-effective and implemented with minimum resources 

but typically it could be time-consuming. A trade-off between these factors is needed while 

selecting a recovery strategy for further implementation. Considering cost, resource, and time 

constraints, it is possible to find an optimum recovery strategy. The strategy that satisfies all the 
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given constraints could be considered as the optimal solution. Among all the optimal solutions, 

only the one that satisfies the objective values should be selected. 

After performing the optimality and feasibility analysis, the desired network recovery 

strategy could be chosen for the implementation. The results found from the implementation of 

the selected recovery strategy might provide insight towards further improvement in the current 

method and developing a more robust and efficient recovery strategy. Thus, an adaptive learning 

process can be introduced in each step of the assessment to preserve significant information that 

might affect the recovery process. This information might include but not limited to the root causes 

and patterns of failures, applicability, effectiveness/ineffectiveness and limitations of the strategies 

selected for implantation. Through the adaptive learning capability, the scopes for possible 

advancements could be identified and implemented. Another objective of adaptive learning is that 

it could be useful in compiling the recovery strategies and the condition associated with them. This 

could be beneficial in protecting complex networks in the future while similar circumstances are 

observed. Although the proposed is a generalized framework, it could be modified according to 

the given circumstances. 

3.2. A Hybrid Recovery Strategy 

The implementation of the proposed comparison framework provides a clear vision of the 

advantages and disadvantages of employing the existing recovery strategies. Some strategies are 

efficient for faster recovery while being quite expensive. These strategies could be more effective 

in achieving higher system resilience. On the other hand, some strategies could be slower but cost-

effective. In a real scenario, while choosing a recovery strategy after any disruptive event, many 

factors are needed to be considered together, such as recovery time, overall cost, available 

resources, percentage of performance recovered, system resilience, and so on. It is quite 
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challenging to consider all these factors while employing a single recovery strategy throughout the 

recovery time. To address this challenge, a two-stage time-dependent hybrid recovery strategy was 

proposed. 

3.2.1. Algorithm and Mathematical Model 

When a disaster occurs in the lifetime of a networked infrastructure system, immediate 

recovery is required to maintain a certain level of performance so that the system is functional. 

Even if the network is not recovered fully, an immediate faster recovery for a time being may aid 

to achieve that goal. As employing a faster recovery process throughout the recovery time requires 

more resources and so, expensive. That is why switching the recovery strategy from a faster and 

expensive process to a slower and cost-effective process after recovering a critical percentage of 

performance would be an optimized method of employing the existing recovery strategy. 

Considering this, a two-stage optimized hybrid recovery method was proposed. The algorithm of 

the proposed hybrid recovery is shown in Figure 16. The objective of the first stage recovery is set 

on minimizing the recovery time which indicates a faster recovery is required immediately after 

the failure. This would retrieve most of the lost network performance and increase network 

resilience as well. After applying a faster recovery strategy for a given time duration until the 

network performance in retrieved to a given percentage, the method of recovery will switch to a 

cost-effective process. This point is named as the switching point. If the switching point is set to 

more than 50%, this could be more effective in achieving system resilience. Because, in this way, 

most lost performance will be recovered fast and lesser performance will be recovered slowly. 

Although it will depend on the requirements of specific circumstances. This is the second stage of 

the hybrid recovery. The objective of this stage is to minimize recovery cost. A strategy with the 

lowest recovery cost will be employed here. During the total recovery period, other constraints, 
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such as time, cost, budget, resources, etc. are considered. An optimization model was developed 

in this purpose. All the variables and parameters could be found in Table 1. The general multi-

objective formulation for resilience can be expressed as: 

 

Figure 16: Algorithm for hybrid recovery 
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Table 1: Symbols and descriptions of parameters and variables 

Sets Parameters Decision 

Variables 

r Set of 

recovery 

strategies 

R Resilience γr Binary 

variable 

 

(1 if 

strategy r is 

selected, 0 

otherwise) 

t Set of time 

steps 

td Time after the disaster stop propagating or 

the start of the recovery strategy 

tr Time at which the recovery is completed 

tt Total recovery time required 

T Maximum allowable time 

Ctr Cost of recovery at time t for strategy r 

Ert Network efficiency at time t after applying 

strategy r 

Eo Network efficiency at the original stage 

Ptr Recovered performance by strategy r at time t 

e Set of edges to 

be repaired 

Nert Number of edges recovered by strategy r at 

time t 

Nnrt Number of nodes recovered by strategy r at 

time t 

Ce Cost for repairing edge e 

C Total cost for strategy r 

B Budget 

n Set of nodes to 

be repaired 

Cn Cost for repairing node n   

s Set of 

resources 

Vse The required amount of resources to recover 

each edge 

Vsn The required amount of resources to recover 

each node 

S The amount of available resources at time t   

w Switching 

point 

Cw Cost for switching recovery strategy   

Pw Recovered performance at the switching 

point 

  

Model Formulation: 

Stage 1: 

 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛,                 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑡𝑡 (7) 

                                      

          𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜,                           𝑃𝑡𝑟 =
𝐸𝑟𝑡

𝐸𝑜
 (8) 
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 𝑡𝑑 + ∑ 𝛾𝑟

𝑟

(𝑡𝑟 − 𝑡𝑑) = 𝑡𝑡 (9) 

 

 𝑡𝑡 ≤ 𝑇 (10) 

 

 𝐶𝑡𝑟 = 𝐶𝑒𝐸𝑟𝑡 + 𝐶𝑛𝑁𝑟𝑡 (11) 

 

 𝐶 = ∑ 𝐶𝑡𝑟𝛾𝑟

𝑡

 (12) 

 

 𝐶 ≤ 𝐵 (13) 

 

 𝑉𝑒𝑁𝑒𝑟𝑡 + 𝑉𝑒𝑁𝑛𝑟𝑡 ≤ 𝑆 (14) 

 

 𝛾𝑅 = 0,1 (15) 

The objective function, Eq. (7) minimizes the total time. The percentage of recovered 

performance can be quantified by Eq.(8). Eq.(9) defines the total recovery time required when 

applying recovery strategy r. Eq. (10)  indicates that the total time cannot exceed the maximum 

allowable given time, T. Eq. (11) is the constraint that measures the cost of recovery at time step t 

while implementing strategy r. The total cost of recovery includes the cost of recovering both the 

nodes and the edges. Eq. (12) is the total cost of recovery and Eq.(13) is the budget constraint. 

Eq.(14) is the resource constraint. Finally, Eq. (15) is the binary decision variable constraint. 

Stage 2: 

 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛,               𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑡𝑟 (16) 

                                       

               𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜,                    𝑃𝑡𝑟 =
𝐸𝑟𝑡

𝐸𝑜
 (17) 

                    

 𝑡𝑑 + ∑ 𝛾𝑟

𝑟

(𝑡𝑟 − 𝑡𝑑) = 𝑡𝑡 (18) 

                                                     

 𝑡𝑡 ≤ 𝑇 (19) 
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 𝐶𝑡𝑟 = 𝐶𝑒𝐸𝑟𝑡 + 𝐶𝑛𝑁𝑟𝑡 (20) 

                                                             

 𝐶 = 𝐶𝑤 + ∑ 𝐶𝑡𝑟𝛾𝑟

𝑡

 (21) 

                                                              

 𝐶 ≤ 𝐵 (22) 

 

 𝑉𝑒𝑁𝑒𝑟𝑡 + 𝑉𝑒𝑁𝑛𝑟𝑡 ≤ 𝑆 (23) 

 

 𝛾𝑅 = 0,1 (24) 

 

In the second stage, the objective function Eq. (16) minimizes the total recovery cost. 

However, the constraints of Eq. (17)-(20) and Eq. (22)-(24)are identical to the constraints of the 

first stage except for the total cost of Eq (21). Unlike the first stage, the recovery cost includes a 

switching cost which refers to the expenses due to the change in recovery arrangements. After 

solving the two-stage optimization problem, a combination of two recovery strategies, one for each 

will be selected, which refers to the hybrid recovery. The next step is to verify whether the found 

combination of recovery strategies would result in the highest resilience or not. 

3.2.2. Resilience Assessment 

The main goal of recovery is to achieve network resilience. From the hybrid recovery, a 

combination of two recovery methods is selected. At each stage, a recovery strategy is selected to 

employ considering the objectives and the constraints. The reason behind designing the selection 

criterion in such a way is to achieve maximum network resilience at minimum cost. To verify this 

claim, resilience assessment for strategy combinations are necessary. The algorithm for the 

resilience assessment of the hybrid recovery process is shown in Figure 17.  
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Figure 17: Algorithm for resilience assessment of hybrid recovery 

According to the algorithm, the resilience assessment for combinations starts with forming 

combinations of two recovery strategies from the list of existing strategies. From n number of 

recovery strategies, a combination of two will be selected and tested for resilience at each time 

until all the combinations are taken into account. All of the formed combinations are ranked 

according to the resilience value and the combination with the highest resilience will be selected 

to be applied.  
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4. CASE STUDIES 

The efficiency of the proposed comparison framework and the application of the hybrid 

recovery process could be better comprehensible through case studies. In this chapter, three 

different case studies will be presented. Case study I and case study II explains the resilience 

assessment and comparison of the existing recovery strategies against localized attacks and 

cascading failures respectively. And finally, case study III portrays the application of the proposed 

hybrid recovery method.  

4.1. Case I: Resilience Assessment and Comparison of Strategies under Different Failures – 

Localized Attack, Lattice Network 

This case study was designed for the resilience assessment of recovery strategies against 

localized attacks in the context of the proposed comparison framework. In this subsection, a 

description of the designed case study will be presented, and the results found will be discussed.  

 

Figure 18: A water distribution network case study 

Many of the real infrastructure systems are often modeled with lattice networks. Although 

this type of networks may seem too ideal, the weights of both nodes and edges resemble the real 

scenario. Inspired by the water distribution network used in Ref. [49] a lattice network consisting 
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of 36 nodes and 60 edges were considered for this case study, which is shown in Figure 18. The 

weights of the nodes represent the demand of the nodes. Both the length of each edge and the 

amount of flow in each edge were considered as edge weight. The failure of the network was 

modeled as localized attacks, initiated at a random node and the impact of the attack propagated 

over time. As a result, 8 nodes were isolated randomly, and 24 edges connected to them were 

damaged and removed to result in a region of isolated nodes. 

To illustrate the challenges in resilience assessment, there are two critical performance 

measures considered in this case study, the maximum flow and the shortest path distance. The 

maximum flow path and the shortest distance path from node 1 to node 36 are highlighted in Figure 

19. The maximum flow quantifies the amount of load this network can carry from a source node 

to a target node and follows the concept of “the more, the better”. The shortest path indicates the 

best route with the least travel distance. Opposite from the maximum flow, the shortest path 

distance follows the concept of “the least, the better”. Due to the damage caused by localized 

attacks, the maximum flow decreases from 75 to 48 units, and the shortest path length increases 

from 192 to 229 units. The transition of network performance from its original state to after attack 

state is shown in Table 2. 

Table 2: Degradation propagation from original to degraded state 

Time Critical Performance Description 

Max flow Shortest path 

0 75 192 Original state 

1* 75 206 1 node was isolated 

2 75 206 2 nodes were isolated 

3 75 206 3 nodes were isolated 

4 75 229 4 nodes were isolated 

5 75 229 5 nodes were isolated 

6 75 229 6 nodes were isolated 

7 75 229 7 nodes were isolated 

8** 48 229 8 nodes were isolated 

* Failure occurred at time step 1. ** Failure stopped propagating at time step 8 
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Figure 19: The assessment model in different stages of resilience 

As mentioned in subsection 2.3.1, there are three recovery strategies that could be 

appropriate for recovering network that suffers from a localized attack: (1) preferential recovery 

based on nodal weight (PRNW), (2) periphery recovery (PR), and (3) localized recovery (LR). All 

three recovery strategies are implemented on the damaged network. It is assumed that the network 

will recover fully (100%) after implementing any recovery strategy, given that the iteration 

properties could differ. As the damage propagation stopped at time step 8, and the recovery starts 

immediately at time step 9. The changes in system performance during the recovery stage are 

shown in Table 3and the transitions in the structure of networks at different stages are shown in 

Figure 19.  
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Table 3: Changes of max flow and shortest path distance during recovery (shaded area indicates 

that the recovered state was reached) 

Time PRNW** PR** LR*** 

Max Flow Shortest 

Path 

Max Flow Shortest 

Path 

Max Flow Shortest 

Path 

9* 48 229 48 229 75 229 

10 48 229 48 229 75 192 

11 73 229 48 229 75 192 

12 73 229 75 229 75 192 

13 73 229 75 215 75 192 

14 75 229 75 192 75 192 

15 75 215 75 192 75 192 

16 75 192 75 192 75 192 

17 75 192 75 192 75 192 

18 75 192 75 192 75 192 

19 75 192 75 192 75 192 

20 75 192 75 192 75 192 

* Recovery started at time step 9, ** Recovery stops at time step 17-fully recovered state reached,  

*** Recovery stopped at time step 12- fully recovered state reached. 

The main aim of repairing the damaged network is to achieve system resilience by 

regaining the highest possible percentage of initial network performance. Here the system 

resilience R is quantified by using Eq. (6), which can be defined as the ratio of the area below the 

targeted performance curve (AT) and the real curve (AR). The resulting resilience curves after 

employing all three recovery strategies are shown in Figure 20(a) for maximum flow, and Figure 

20(b) for the shortest path. 

Table 4: Resilience assessment of recovery strategies 

 
PRNW PR LR 

Max 

flow 

Shortest 

path 

Max 

flow 

Shortest 

path 

Max 

flow 

Shortest 

path 

AR 1413 4312 1392 4238 1473 4104 

AT 1500 3840 1500 3840 1500 3840 

R 0.94 1.12 0.93 1.1 0.98 1.07 
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Figure 20: Resilience curve based on (a) maximum flow and (b) shortest path 

All the results found from the resilience assessment of recovery strategies are summarized 

in Table 4. For maximum flow, the area under the real performance curve (AR) values are 1413, 

1392, and 1473 respectively for PRNW, PR, and LR and the area under the targeted performance 

curve (AT) value is 1500. As the value of AR is always lesser than AT, the resilience value should 

be less than 1. The found resilience values are 0.94, 0.93 and 0.98 for PRNW, PR, and LR 

indicating LR showing the highest resilience. Because the maximum flow follows ‘the larger the 

better’ concept. On the other hand, AR values for the shortest path are 4312, 4238, 4104 

respectively for PRNW, PR, and LR and AT value is 3840. As AR is always greater than AT, in this 
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case, the resilience values 1.12, 1.1, and 1.07, greater than 1. However, this also indicates that LR 

is the most resilient strategy as the shortest path follows “the smaller the better” concept. 

One of the most important factors that affect the recovery process is the recovery cost. 

Before going for the implementation, the probable expenses should be analyzed. Because there are 

always budget constraints that could restrict the recovery process in various ways. While 

considering system resilience, the recovery strategy with the lowest cost should be selected. The 

results found from cost analysis are summarized in Table 5. 

Table 5: Recovery cost during each recovery step 

Time Steps Cost ($) 

PRNW PR LR 

1-8 Damage Propagation Stage 

9 7,300 7,300 42,300 

10 4,700 7,300 24,400 

11 13,100 7,700 3,400 

12 3,300 8,700 0 

13 6,300 9,800 0 

14 12,600 4,700 0 

15 15,100 10,000 0 

16 8,700 15,600 0 

Total 71,100 71,100 70,100 

 

For cost analysis, the recovery cost at each time step was calculated based on the weight 

of the edges that need to be recovered. For each time step of the recovery process, an amount of 

$200 was assumed to be the fixed cost. Additionally, the repair cost for each unit of recovered 

edges was assumed to be $100 and added to the fixed cost to find the total cost. From the cost 

analysis, it is observed that the total recovery cost for PRNW and PR is $71,100, while for LR it 

is $70,100 indicating LR is the most cost-effective strategy. However, the initial recovery cost for 

LR is higher than both PRNW and PR. In the initial two steps recovery cost for LR are $42,300 

and $24,400, for PRNW are $7,300 and $4,700, and for PR are $7,300 and $7,300. Although the 
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overall cost for LR is lower, the higher initial costs may exceed the budget resulting in the selection 

of a different recovery strategy. The changes in costs at each time step can be compared with the 

cost vs time graph given in Figure 21. 

 

Figure 21: Changes in recovery cost in each time step 

In many real cases, immediate recovery is needed after any disaster which contributes to 

the system resilience in a significant manner. That is why a faster recovery should also be taken 

into account while considering system resilience and recovery cost. Considering these facts, the 

recovery strategies were evaluated based on the restoration sequence and the amount of time 

required for complete recovery. In Table 6, the found results are summarized. It is observed that 

PRNW and PR take 8-time steps and LR takes only 3-time steps to restore the network completely. 

It is also observed from Table 6 that the water supply infrastructure network system performances, 

maximum flow, and shortest path, were restored prior to the network being connected fully. The 

maximum flow for PRNW was restored at time step 14, and the shortest distance was restored at 

time step 16 while the overall network connection was restored at time step 17. Although PR 

required an equal amount of time step to reconnecting the network completely, the maximum flow 

based was restored at time step 12 and the shortest path performance was regained at time step 14 
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by PR. Considering the ability to restore the individual network performance, it can be claimed 

that PR is capable of faster recovery than the PRNW. Additionally, LR managed to restore the 

network’s maximum flow and shortest path at time step 9 and 10, respectively indicating LR would 

be a much faster process compared to PRNW and PR strategies. Although not as fast as LR, PRNW 

and PR are two recovery strategies that could be quite effective for post-disaster recovery in a 

shorter time period. Because of their low computational complexity, it is easy to employ PRNW 

and PR immediately.  

Table 6: Iteration details of recovery strategies 

Time 

step 

PRNW PR LR 

Recovered 

edges* 

Sum of 

weights 

Recovere

d edges* 

Sum of 

weights 

Recovered 

edges* 

Sum of 

weights 

9 23,15 71 23,15 71 28,36,38,39,25,

27,26,30,37,47,

41,49 

421 

10 26,36 45 40,41 71 14,16,15,17,19,

23,29,34,40,50 

242 

11 38,40,41 129 26,34,37 75 6 32 

12 34,37 31 47,49,50 85 
 

13 25,28 61 6,14,16 96 

14 39,47,49,50 124 19,29,30 45 

15 6,14,16,17 149 36,38,39 98 

16 19,27,29,30 85 17,25,27,2

8 

154 

17-20 Stable State 

* Restoration sequence was sorted from the first to the last node restored 

Considering the results, it is clear that the localized recovery (LR) process should be 

selected from the perspective of network resilience, overall recovery cost and recovery time. 

However, at the presence of budget constraint at each time step PRNW or PR would be more 

appropriate in keeping the initial cost in the lower range. More details of this case study will be 

found in ref. [50]. 
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4.2. Case II: Resilience Assessment and Comparison of Strategies under Different Failures 

– Cascading Failures, Interdependent Network 

To evaluate the recovery strategies against cascading failures and find the most efficient 

strategy, the proposed comparison framework was employed in a case study. The efficiency of the 

framework for comparing different strategies and resilience assessment could be easily 

comprehensible through the case study. For this case study, two interdependent power-water 

networks were considered. Both the networks are consist of 30 nodes each with an average node 

degree of <k>=3. Each node in the water network depends on the geographically nearest power 

nodes. The power network is denoted as Network A and the water distribution network is denoted 

as Network B 

 

Figure 22: Interdependent power-water networks 

To measure network performance, network efficiency was used. The network efficiency 

can be measured with the average shortest path length. To avoid the infinity caused by the 

disconnection between two nodes, the average reciprocal shortest path length is can be used as 
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 𝐸 =
1

𝑁(𝑁 − 1)
∑

1

𝑑𝑖𝑗𝑖≠𝑗
 (25) 

where E is the network efficiency, N is the number of nodes and dij is the shortest path length 

connecting node i and j. It quantifies the effectiveness of flow within nodes. Low efficiency 

indicates that the flow between any two nodes in this network will take a longer path and more 

time or resources. 

Table 7: Changes in network efficiency during failure and recovery 

Time 

steps 

Efficiency Description 

 Probability-Based Recovery 

(RS1) 

Recovery of neighboring 

or boundary nodes (RS2) 

 

 Network A Network B Network A Network B  

0 0.537 0.527 0.537 0.527 Original state 

1 0.537 0.527 0.537 0.527 

2 0.537 0.527 0.537 0.527 

3 0.537 0.527 0.537 0.527 

4 0.163 0.175 0.163 0.175 Failed state 

5 0.226 0.231 0.417 0.359 Recovery 

starts 

6 0.288 0.285 0.537 0.527  

7 0.328 0.326 0.537 0.527  

8 0.376 0.339 0.537 0.527  

9 0.386 0.426 0.537 0.527  

10 0.448 0.443 0.537 0.527  

11 0.480 0.455 0.537 0.527  

12 0.495 0.489 0.537 0.527  

13 0.511 0.502 0.537 0.527  

14 0.523 0.502 0.537 0.527  

15 0.535 0.516 0.537 0.527  

16 0.537 0.527 0.537 0.527  

17 0.537 0.527 0.537 0.527 Stable state 

At the normal operating condition, the efficiency for Network A is 0.537 and Network B is 

and 0.527 respectively. After the cascading failure occurs, The efficiency degrades to 0.163 and 
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0.175 for Network A and Network B respectively. The recovery starts in between the cascading 

process. Two existing recovery strategies: probability based recovery (RS1) and neighboring 

nodes recovery (RS2) are implemented. In the RS1 process, all the nodes are randomly assigned 

with a probability of recovery which indicates the restoration priority. In the RS2 process, the 

neighboring nodes of the connected components are recovered. For both, the network and the 

change in the network structures, are shown in Figure 23. The change in network efficiency during 

failure and recovery is shown in Table 7. 

 

Figure 23: Network structures in different stages 

After implementing both of the strategies it is observed that RS1 takes 13 steps and RS2 

takes only 2 steps to recover completely. This indicates that RS2 is a faster process compared to 

RS1. As the recovery time is lesser for RS2 than RS1, RS2 would be more resilient. To verify this, 

a resilience assessment of recovery strategies was performed. Resilience metric R from Eq 1 was 

used again for this purpose. Resilience curves for both recovery strategies for Network A and 

Network B are shown in Figure 24.  

 

Initial 
Network

Damaged 
Network

Recovered 
Network
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Table 8: Resilience assessment for recovery strategies against cascading failures 

 Strategy 1(RS1) Strategy 2(RS2) 

 Network A Network B Network A Network B 

AR 7.9783 7.6497 9.1723 8.9591 

AT 9.6660 9.4788 9.6660 9.4788 

R 0.8254 0.8070 0.9489 0.9452 

 

 

 

Figure 24: Resilience curve for (a) Network A and (b) Network B under RS1 and RS2 

The results from the resilience assessment are summarized in Table 8.  In the case of RS1, 

the area under the real performance curve are 7.9783 and 7.6497 for Network A and Network B 

respectively and the area under the targeted performance curve are 9.6660 and 9.4788. This results 

in the resilience value of 0.8254 and 0.8070 for RS1. For RS2,  the area under the real performance 

curve is 9.1723 and 8.9591 for Network A and Network B respectively. The resulting resilience 

value  Network A and Network B are 0.9489 and 0.9452 respectively. The results from the 

resilience assessment verify the previous claim indicating RS2 is more resilient compared to RS1.  
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Table 9: Recovery cost at each time step with RS1 and RS2 

 RS1 RS2 

Time Network A Network B Network A Network B 

5 800 900 3900 3700 

6 800 700 4200 4100 

7 800 800 0 0 

8 700 700 0 0 

9 400 700 0 0 

10 800 800 0 0 

11 700 600 0 0 

12 800 600 0 0 

13 700 700 0 0 

14 700 700 0 0 

15 600 600 0 0 

16 300 0 0 0 

17 0 0 0 0 

Although, RS2 is more resilient that RS1, it could be costly for the time being. Because in 

RS2, many nodes and edges are recovered at each time step. As a result, it recovers most network 

components in a lesser time period. In a real scenario, it is hardly possible to implement such kind 

of recovery method due to budget and resource limitation. To find the trend of cost while 

implementing both recovery strategies, a cost analysis was performed. The recovery cost for each 

node and each edge was assumed to be $200 and $100 respectively. The total recovery cost at each 

time step under both recovery strategies are summarized in Table 9 and the trend of the cost could 

be found in Figure 25. 

It is observed that the recovery cost at each time step is below $1000 over the recovery 

period with RS1. On the other hand, the cost for recovering Network A and Network B with RS2 

was $3900 and $3700 at the first step of recovery and $4200 and $4100 in the second step. In this 

process, the recovery cost at each time step is significantly higher, which may not satisfy the budget 

limitations. Although, the total cost would be the same as the number of recovered components 

are equal. 
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Figure 25: Changes of recovery cost for (a) Network A and (b) Network B with both recovery 

strategies 

4.3. Case III: Implementation of Hybrid Recovery 

To validate the proposed hybrid recovery, a case study was developed. In this subsection, 

a description of the designed case study will be presented, and the results found will be discussed. 

In this case study, an IEEE-14 bus system and a 20 nodes gas system was considered as 

shown in Figure 26. Between these two networks, bidirectional interdependency is present. The 

power distribution network is dependent on the gas network for electricity generation and the gas 

network consumes electricity to operate the compressors. The gas system consists of 17 load 

nodes, 2 compressor stations, and 1 supply node and the power network consists of 14 busses and 

5 generators. 
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Figure 26: Interdependent power-gas network 

In the gas network, the supply of gas starts at the supply node (19) to the other demand 

nodes. Between these nodes, there are edges which represent gas pipelines to transport gas from 

the supply node to demand nodes.  There are 2 compressors (18, 11) that help in transporting gas 

from one node to another through the pipelines by pressurizing it constantly. These compressors 

need a power supply which is provided by the power node 12 and 5 of the power distribution 

network. In the power distribution network, there are 14 busses to which other components, like, 

generator, loads, transformers, etc. are connected. Generators at nodes 1,2,3,6 and 8 get gas supply 

from gas nodes 13, 16, 17, 9 and 7 to generate power. Each node of both networks can carry 

different loads and have different capacity levels. 

Table 10: Degradation propagation due to cascading failure 

Time State Description Efficiency 

Gas Network Power Network 

0 Original operating 

state 

0.4459 0.5223 

1 0.4459 0.5223 

2 0.4459 0.5223 

3 Cascading failure 0.0741 0.1447 

4 Recovery starts 
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The cascading of failure was initiated in node 9 of the gas network. Due to the 

interdependency, the failure propagated from the gas network to the power distribution network. 

To measure network performance, network efficiency was used as (25) The change of network 

efficiency due to the cascading of failure could be found in Table 10. Both the networks are in 

normal operating condition during the time step 0-2. The failure is initiated at time step 3 resulting 

degradation of the efficiency of the gas network from 0.4459 to 0.0741. Due to the cascade of 

failure the power distribution network efficiency degrades from 0.5223 to 0.1447. As the cascading 

process continues, it was stopped forcefully at time step 4 and the recovery starts here. The 

damaged network is shown in Figure 27. 

 

Figure 27: The damaged network  

Both the previously mentioned recovery strategies against cascading failures: probability-

based (RS1) and neighboring nodes recovery (RS2) were considered for the hybrid recovery. The 

parameter values used for solving the problem for hybrid recovery could be found in Table 11. 
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Table 11: Parameter values 

Parameter Value 

T 20 

Ps 60% 

Ce 200 

B 3000 

Cn 100 

Vse 5 

Vsn 2 

S 15 

Cw 100 

Table 12: Change of network efficiency at each recovery step with an individual recovery 

strategy 

Time RS1 RS2 

Gas 

Network 

Power 

Network 

Gas 

Network 

Power 

Network 

4 0.0873 0.2601 0.1406 0.3123 

5 0.1374 0.3491 0.2836 0.5090 

6 0.2059 0.3929 0.4459 0.5223 

7 0.2634 0.4822 0.4459 0.5223 

8 0.3200 0.5057 0.4459 0.5223 

9 0.3327 0.5223 0.4459 0.5223 

10 0.4459 0.5223 0.4459 0.5223 

11 0.4459 0.5223 0.4459 0.5223 

12 0.4459 0.5223 0.4459 0.5223 

* Shaded area = stable state reached 

Table 13: Change of network efficiency at each recovery step with hybrid recovery 

Time RS1-RS2 RS2-RS1 

Gas 

Network 

Ptr Power 

Network 

Ptr Gas 

Network 

Ptr Power 

Network 

Ptr 

4 0.0873 0.1957 0.2601 0.4979 0.1406 0.3153 0.3123 0.5978 

5 0.1374 0.3082 0.3491 0.6683 0.3155 0.6360 0.4579 0.8766 

6 0.2059 0.4618 0.3929 0.8766 0.4266 0.8744 0.5223 1 

7 0.2634 0.5908 0.5223 1 0.4459 1 0.5223 1 

8 0.4459 1 0.5223 1 0.4459 1 0.5223 1 

9 0.4459 1 0.5223 1 0.4459 1 0.5223 1 

10 0.4459 1 0.5223 1 0.4459 1 0.5223 1 

11 0.4459 1 0.5223 1 0.4459 1 0.5223 1 

12 0.4459 1 0.5223 1 0.4459 1 0.5223 1 
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RS1 and RS2 were also implemented individually to observe the changes in network 

efficiency. It was observed that RS1 requires the highest time and RS2 requires the lowest time to 

recover completely. The changes in network efficiency with both individual and hybrid recovery 

are summarized in Table 12 and Table 13. 

For the second stage, the aim is to select a strategy that would be cost effective. Cost 

analysis was performed in this purpose. The recovery cost at each time step with both individual 

and hybrid recovery is summarized in Table 14.  

Table 14: Recovery cost at each time step 

 RS1 RS1-RS2 RS2-RS1 RS2 

Time Gas  Power  Gas  Power  Gas  Power  Gas  Power  

4 400 500 400 500 1200 1300 1200 1300 

5 400 500 400 500 1800 1200 1800 1300 

6 900 500 900 500 800 400 1200 300 

7 1000 1200 1000 1200 400 - - - 

8 900 1000 1500 - - - - - 

9 400 500 - - - - - - 

10 200 - - - - - - - 

11 - - - - - - - - 

It was observed that with RS1, the recovery cost is quite low at each time step. But with 

RS2 it is always high. The costs for the combinations of recovery strategies are also analyzed. As 

the gas network reaches the switching point the recovery cost reaches to $1000 an $1800 with RS1 

and RS2. After switching, it becomes $1500 and $1200 with RS2 and RS1. The same trend occurs 

for power network from $500 and $1300 to $1200 and $400. The trend indicates that For RS1-

RS2 combination, the cost increases after switching point. On the other hand, the recovery cost 

decreases after switching point for RS2-RS1 combination. The trend of recovery cost could be 

found in Figure 28. Considering the two objectives, RS2-RS1 should be selected. 
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Figure 28: Cost analysis for (a) Gas network and (b) Power network 

As the main goal of hybrid recovery was to find a recovery pattern that would achieve the 

highest possible resilience with a balance on cost and time. In this purpose, resilience assessment 

was performed by using Eq. (6) The found results are summarized in Table 15. For RS1, the 

resilience values are 0.6822 and 0.8405 for gas and power network and for RS2, these values 

become 0.8431 and 0.9040. The resilience value Gas network with combination RS1-RS2 is 

0.7269, which increases to 0.8326 with RS2-RS1. For power network, this value increases from 

0.8496 with RS1-RS2 to 0.8959 with RS2-RS1. It should be noticed that both the combinations 

lie between the individual values.  
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Figure 29: Resilience curve for hybrid recovery 

Table 15: Resilience Assessment for hybrid recovery 

 RS1 RS1-RS2 RS2-RS1 RS2 

 Gas  Power  Gas  Power  Gas  Power  Gas  Power  

AR 3.6503 5.2685 3.8896 5.3252 4.4555 5.6157 4.5114 5.6667 

AT 5.3511 6.2681 5.3511 6.2681 5.3511 6.2681 5.3511 6.2681 

R 0.6822 0.8405 0.7269 0.8496 0.8326 0.8959 0.8431 0.9040 

The resilience curves for both networks with both combinations and individual strategies 

are shown in Figure 29. For both networks, the overall recovery time is lowest for RS2 and so, 

results in the highest resilience value. Among both the combinations, RS2-RS1 requires lesser time 
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and so, results in higher resilience. Although it shows lesser resilience value than RS2, it is more 

cost-effective. This validates the results found from the proposed algorithm. 
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5. CONCLUSIONS AND FUTURE WORKS 

The focus of this study was to analyze the resilience assessment of recovery strategies 

against localized attacks and cascading attacks failures and propose a cost-effective resilient 

recovery method. In this purpose, a general framework for evaluating and assessing the existing 

recovery strategies was proposed in the first place. This framework was implemented for both 

localized attacks and cascading failures through two different case studies. For the localized 

attacks, a lattice network inspired by a water distribution network was considered. The localized 

attacks followed by three recovery strategies (PR, PRNW, and LR) were simulated and resilience 

assessment was performed. An optimization model was also developed in order to consider 

recovery time and cost. The localized recovery (LR) was found to be the most resilient method. 

Although LR could be expensive if the recovery cost at each time step is considered. On the other 

hand, PR and PRNW could be cost-effective at individual time steps. The investigation continued 

with the implementation of the framework on cascading failure. Two interdependent power-water 

networks were considered in this purpose. The cascading failure with two recovery strategies 

named probability-based (RS1) and neighboring nodes or boundary recovery (RS2) were 

simulated. After a resilience assessment, it was found that neighboring nodes recovery method 

would be more resilient as it is a faster method compared to the probability-based method. 

Although it could not be cost effective.  

Considering the advantages and disadvantages of the existing recovery strategies a time-

dependent hybrid recovery method was proposed. Applying a recovery strategy over the total 

recovery period would not be efficient if other important factors (cost, time, resources, etc.) are to 

be considered. That is why the hybrid recovery aims to employ a faster strategy until 60% of the 

performance is not recovered and switch to a cost-effective strategy. An algorithm along with an 
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optimization model was developed in this purpose. In this way, a balance between recovery time 

and cost as well as the system resilience were maintained. To perform the resilience assessment, 

an algorithm was also developed so that the right combination of strategies could be selected. The 

proposed hybrid recovery was implemented on two interdependent power-gas networks after 

cascading failure. The RS2-RS1 combination was found to be the most resilient. 

5.1. Future Works 

The present study provides a list of directions towards which the future research could be 

conducted. The potential research directions include: 

(i) One disruptive event was considered in this study. Although multiple disruptions 

could occur during the study period and so, affect the recovery process. The impact of multiple 

disruptions on recovery could be analyzed covering the prediction of occurring multiple hazards.  

(ii) The hybrid recovery could also be improved in terms of a more efficient search 

scheme for the resilient combination of strategies. Moreover, finding an optimum switching point 

could also be a great improvement.  

(iii) The variety of different resilience metrics values could be investigated to determine 

the standard for a sophisticated resilience metric that can be applied in a wide range of 

infrastructure applications. Further analysis could be conducted for resilience values in using 

performance metrics with “smaller the better” concept. 

(iv) A degradation model based on failure patterns of the networks could be developed 

in order to prevent the damage of the network from propagating and planning for an optimal 

recovery strategy. 

(v) Finally, the network specific criticality analysis could be performed. Because the 

criticality of network components could affect network failure as well as the recovery process. 
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