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ABSTRACT 

Recently, adding more lanes becomes less and less feasible, which is no longer an 

applicable solution for the traffic congestion problem due to the increment of vehicles. Using the 

existing infrastructure more efficiently with better traffic control and management is the realistic 

solution. An effective traffic management requires the use of monitoring technologies to extract 

traffic parameters that describe the characteristics of vehicles and their movement on the road. A 

three-dimension glass fiber-reinforced polymer packaged fiber Bragg grating sensor (3D GFRP-

FBG) is introduced for the traffic monitoring system. The proposed sensor network was installed 

for validation at the Cold Weather Road Research Facility in Minnesota (MnROAD) facility of 

Minnesota Department of Transportation (MnDOT) in MN.  A vehicle classification system based 

on the proposed sensor network has been validated. The vehicle classification system uses support 

vector machine (SVM), Neural Network (NN), and K-Nearest Neighbour (KNN) learning 

algorithms to classify vehicles into categories ranging from small vehicles to combination trucks. 

The field-testing results from real traffic show that the developed system can accurately estimate 

the vehicle classifications with 98.5 % of accuracy. Also, the proposed sensor network has been 

validated for low-speed and high-speed WIM measurements in flexible pavement. Field testing 

validated that the longitudinal component of the sensor has a measurement accuracy of 86.3% and 

89.5% at 5 mph and 45 mph vehicle speed, respectively. A performed parametric study on the 

stability of the WIM system shows that the loading position is the most significant parameter 

affecting the WIM measurements accuracy compared to the vehicle speed and pavement 

temperature. Also, the system shows the capability to estimate the location of the loading position 

to enhance the system accuracy.  

 



 

iv 

ACKNOWLEDGMENTS 

Firstly, I would like to express my sincere gratitude to my advisor Dr. Ying Huang and co-

advisor Dr. Pan Lu for the continuous support of my graduate study and related research, for their 

patience, motivation, and immense knowledge. Their guidance helped me in all the time of 

research and writing of this dissertation.  

Besides my advisor, I would like to thank the rest of my thesis committee: Dr. Amiy 

Varma, Dr. Raj Bridgelall, and Dr. Zhili” Jerry” Gao, for their insightful comments and 

encouragement. 

Furthermore, I would like to thank the engineers and staffs at MnROAD facility, MnDOT, 

for helping during the field-testing. Acknowledgments also give to the funding provided by the 

U.S. Department of Transportation under the agreement No.69A35517477108 through Mountain-

Plains Consortium Project No. MPC-547, NSF ND EPSCoR DDA Project FAR0030957, and NSF 

Award No. CMMI-1750316.  Also, I would like to thank the Civil and Environmental Engineering 

Department at NDSU. 

Also, I would also like to thank my parents, two elder brothers, elder sister and my little 

sister. They are always supporting me and encouraging me with their best wishes. Finally, I would 

like to thank my family, Shaima’ Almbaidin, Leen, and Karim. They are always there cheering me 

up and stood beside me through the good times and bad. 

 

 

 

 

 



 

v 

DEDICATION  

I dedicate this work to my mother (Amal Al-Tarawneh) soul who believed in me and taught me 

the meaning of life. 

 

  



 

vi 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................................... iii 

ACKNOWLEDGMENTS ............................................................................................................. iv 

DEDICATION ................................................................................................................................ v 

LIST OF TABLES ....................................................................................................................... viii 

LIST OF FIGURES ....................................................................................................................... ix 

1. INTRODUCTION ...................................................................................................................... 1 

1.1. Research Background ........................................................................................................... 1 

1.2. Traffic Monitoring System ................................................................................................... 4 

1.2.1. Weigh-in-Motion (WIM) technology ............................................................................ 6 

1.2.2. Existing WIM technology ............................................................................................. 7 

1.2.3. Fiber optic sensor for traffic monitoring ....................................................................... 9 

1.3. Problem Statement and Significance of This Study ........................................................... 10 

1.4. Objectives and Organization of This Dissertation ............................................................. 11 

2. OPERATIONAL PRINCIPLE AND SENSOR NETWORK DESIGN ................................... 14 

2.1. Sensor Design and Configuration ...................................................................................... 14 

2.1.1. The operational principle of the FBG sensor .............................................................. 14 

2.1.2. The 3D GFRP-FBG sensor geometric layout .............................................................. 15 

2.2. Sensor Networking ............................................................................................................. 16 

2.2.1. Sensor network ............................................................................................................ 16 

2.2.2. Sensor installation and testing set up........................................................................... 18 

2.3. Summary ............................................................................................................................ 20 

3. VEHICLE CLASSIFICATION ................................................................................................ 21 

3.1. Sensor Network .................................................................................................................. 22 

3.2. Vehicle Classification ........................................................................................................ 23 



 

vii 

3.2.1. Vehicle parameters derivation ..................................................................................... 23 

3.2.2. Vehicle classification using SVM Machine Learning Classifier ................................ 26 

3.3. Field Validation and Discussion ........................................................................................ 31 

3.3.1. Vehicle parameters identification ................................................................................ 31 

3.3.2. Vehicle classification results ....................................................................................... 33 

3.4. Vehicle Counts ................................................................................................................... 37 

3.5. Summary ............................................................................................................................ 39 

4. WIM MEASUREMENTS IN FLEXIBLE PAVEMENT ........................................................ 40 

4.1. 3D GFRP-FBG Sensor for WIM Measurements ............................................................... 40 

4.2. Sensitivity Study ................................................................................................................ 43 

4.2.1. Sensor depth (z) ........................................................................................................... 44 

4.2.2. Host material property (E) ........................................................................................... 45 

4.2.3. Load location (l) .......................................................................................................... 47 

4.3. Field Validation of a Case Study ........................................................................................ 49 

4.3.1. Field testing setup ........................................................................................................ 49 

4.3.2. Field testing results ...................................................................................................... 52 

4.3.3. Field test results discussion ......................................................................................... 55 

4.4. Summary ............................................................................................................................ 56 

5. PARAMETRIC STUDY .......................................................................................................... 57 

5.1. Wheel Path ......................................................................................................................... 58 

5.2. Vehicle Speed ..................................................................................................................... 69 

5.3. Host Material Temperature ................................................................................................ 75 

5.4. Traffic Monitoring System ................................................................................................. 78 

6. CONCLUSION AND FUTURE WORKS ............................................................................... 80 

REFERENCES ............................................................................................................................. 82 



 

viii 

LIST OF TABLES 

Table Page 

1.           WIM sensor comparison [30-32] ...................................................................................... 9 

2.           Vehicle classes description ............................................................................................. 27 

3.           Proposed system measurements for the 5-axle truck ...................................................... 32 

4.           Collected data.................................................................................................................. 35 

5.           OAO estimated vehicle classification ............................................................................. 35 

6.           OAA estimated vehicle classification ............................................................................. 35 

7.           NN estimated vehicle classification ................................................................................ 36 

8.           KNN estimated vehicle classification ............................................................................. 37 

9.           Material properties .......................................................................................................... 52 

10.         Estimated theoretic sensitivity (s) [unit: 10-6 nm/Kip] .................................................. 54 

11.         Field WIM measurements from the sensor at 5 mph and 45 mph .................................. 55 

12.         Comparison of the WIM measurements with references ................................................ 56 

13.         KENLAYER model input for all loading positions ........................................................ 67 

14.         WIM measurements error using the assumed loading positions .................................... 67 

15.         WIM measurements error using the estimated loading positions ................................... 68 

16.         KENLAYER model input at a different vehicle speed ................................................... 71 

17.         KENLAYER model input at different pavement temperature ....................................... 77 

 

  



 

ix 

LIST OF FIGURES 

Figure Page 

1.           Bridge collapse in France (1986) due to a traffic accident [3] ......................................... 2 

2.           Truck rollover [3] .............................................................................................................. 3 

3.           Operational WIM station in the USA [24] ........................................................................ 6 

4.           Typical piezoelectric sensor [29] ...................................................................................... 7 

5.           Bending plate scale [27].................................................................................................... 8 

6.           Load cell [27] .................................................................................................................... 8 

7.           The operational principle of an FBG sensor [46] ........................................................... 14 

8.           Geometric design of the 3D GFRP-FBG sensor: (a) Photo of the 3D GFRP-FBG 

sensor, (b) Elevation view, and (c) Plan view (Unit: in.) ............................................... 16 

9.           Sensor networking (3D: three dimensions, 1D: one dimension, CL: center line) .......... 18 

10.         MnROAD facility (a), the sensor installation scene (b), installation scene (c), and      

Cell 17 with embedded sensors after construction (d) ................................................... 19 

11.         FHWA vehicle classification system [61] ...................................................................... 22 

12.         Vehicle classification sensor networking (CL: center line) ............................................ 23 

13.         Operation principle to acquire the GFRP-FBG sensor’s strain signal by convolution    

(a) and (b) the expected strain signal .............................................................................. 24 

14.         Sensor responses for a passing two-axle vehicle ............................................................ 25 

15.         Diagram of binary SVM-OAA region boundaries on a basic problem [67]................... 28 

16.         Diagram of SVM-OAO decision boundaries on a basic problem [67] ........................... 29 

17.         Data fusion strategy scheme ........................................................................................... 30 

18.         MnROAD semi-truck (a), and sensor's response characteristic for five-axle truck (b) .. 31 

19.         S1 sensor’s responses for five-semi axle truck at 11.176 m/sec (25mph), 15.646      

m/sec (35mph), and 18.776 (45mph) ............................................................................. 33 

20.         Real traffic (a), and S1 sensor’s response for 2 minutes of real traffic (b) ..................... 34 



 

x 

21.         Sensor response for different vehicle class ..................................................................... 38 

22.         Sensor response for 250 seconds period ......................................................................... 39 

23.         Flexible pavement cross-section ..................................................................................... 42 

24.         Sensor’s WIM measurement sensitivity changes with sensor depth in longitudinal      

(L), transverse (T) and vertical (V) directions ................................................................ 45 

25.         Sensor’s WIM measurement sensitivity changes with pavement modulus of       

elasticity, E, in longitudinal (L), transverse (T) and vertical (V) directions .................. 47 

26.         Sensor’s WIM measurement sensitivity changes with longitudinal location of the   

wheel in longitudinal (L), transverse (T) and vertical (V) directions ............................. 48 

27.         Cell 17 flexible pavement cross section.......................................................................... 50 

28.         Master curve of Cell 17 HMA dynamic modulus test results ......................................... 51 

29.         The layout of MnROAD loading truck (a) and the truck dimension (b). (1’=1 ft.,          

1” =1 in.) ......................................................................................................................... 53 

30.         3D-2 longitudinal sensor’s response at 5 mph and 45 mph vehicle speed ..................... 54 

31.         Factors affecting the WIM system measurements accuracy ........................................... 57 

32.         Sensor network to determine the loading position .......................................................... 59 

33.         Loading position scenarios ............................................................................................. 59 

34.         Loading position estimation methodology...................................................................... 61 

35.         Vehicle load distribution ................................................................................................. 62 

36.         Loading positions ............................................................................................................ 62 

37.         3D-2 and 1D-3 sensors’ responses for three runs using loading position L1 ................. 63 

38.         3D-2 and 1D-3 sensors’ responses for three runs using loading position L2 ................. 64 

39.         3D-2 and 1D-3 sensors’ responses for three runs using loading position L3 ................. 64 

40.         3D-2 and 1D-3 sensors’ responses for three runs using loading position L4 ................. 65 

41.         Sensor's response changes with load location ................................................................. 66 



 

xi 

42.         Weight measurement error for all loading positions (L1, L2, L3, and L4) using   

assumed loading positions (a) and using corrected loading positions (b) ...................... 69 

43.         Dynamic modulus (E*) changes with vehicle speed ...................................................... 70 

44.         WIM sensitivity changes with vehicle speed .................................................................. 71 

45.         3D-2 and 1D-3 sensors’ response at 10 mph vehicle speed ............................................ 72 

46.         3D-2 and 1D-3 sensors’ response at 20 mph vehicle speed ............................................ 72 

47.         3D-2 and 1D-3 sensors’ response at 30 mph vehicle speed ............................................ 73 

48.         3D-2 and 1D-3 sensors’ response at 40 mph vehicle speed ............................................ 73 

49.         3D-2 and 1D-3 sensors’ response at 50 mph vehicle speed ............................................ 74 

50.         Weight measurements error at vehicle speed (10, 20, 30, 40, and 50) mph using  

assumed loading position (a) and using corrected loading position(b) .......................... 75 

51.         Dynamic modulus changes with pavement temperature ................................................ 76 

52.         WIM measurements sensitivity changes with pavement temperature ............................ 76 

53.         3D and 1D sensor's response at 17.1 °C pavement temperature ..................................... 77 

54.         Weight measurements error at pavement temperature (14.6, 17.1, and 19.9) °C using 

assumed loading position (Avg-B) and using corrected loading position (Avg-A) ....... 78 

55.         Traffic monitoring system............................................................................................... 79 

 

 

 

 

 

 



 

1 

1. INTRODUCTION 

1.1. Research Background 

Recently, adding more lanes becomes less and less feasible, which is no longer an 

applicable solution for the traffic congestion problem due to the increment of vehicles. Using the 

existing infrastructure more efficiently with better traffic control and management is the realistic 

solution. An effective traffic management requires the use of monitoring technologies to extract 

traffic parameters that describe the characteristics of vehicles and their movement on the road (i.e., 

vehicle velocity, traffic flow, travel time, vehicle density, vehicle dimension, length of the traffic 

jam, etc.). Knowing the vehicles type and weight have become very important for various traffic 

management applications, such as surveillance, access control, traffic demand planning, traffic 

congestion prevention, and accidents avoidance. 

Weight data plays an important role in traffic planning, weight enforcement, and pavement 

condition assessment [1]. As a continuous increase of traffic loads, monitoring the overloaded 

trucks has become a more and more critical factor for the management of road networks, since the 

truck weight impacts significantly on the road maintenance costs and the safety of road users [2].  

Overloading on roads would result in increasing deterioration level of the pavement which could 

lead to early pavement failure[3] since the damage of the pavement increases the 4th degree of 

power of exponential geometrics as the increase of vehicle weight [4]. Also, the overloaded truck 

increases the risk of accidents[5]. There are so many issues associated with the overloaded vehicles 

on our roads: 

1. Damage to the road pavement and infrastructure: illegally overloaded vehicle causes 

severe damage to the road body and infrastructure. A study shows that a 10% increase 

in vehicle weight over the permitted weight will accelerate the pavement damage by 
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40% [6] since the overloaded trucks significantly increase pavement wear, cracking 

and rutting, which yields to early pavement failure. Also, another study shows that the 

combination of heavy load repetition is one of the major causes of longitudinal crack 

propagation [6]. Also, overloaded vehicles contribute to bridge fatigue damage. When 

trucks are heavy either carrying abnormal loads (e.g. cranes) or illegal overloads their 

effect on infrastructure (bridge, road, etc.) will be severe, which may yield to severely 

damage or even destroy the infrastructure. For example, In January 1986 in France, 

during a very cold period, a truck loaded with logs skidded on an icy section of the road 

entering the suspended bridge on the Loire river, hitting the bridge cable anchorage. 

This shock resulted in the fallout of the bridge following the failure of a cable 

anchorage, as shown in Figure 1[3].  

 

Figure 1. Bridge collapse in France (1986) due to a traffic accident [3] 

2. Traffic safety: The chance of involving an overloaded vehicle in and accidents is much 

higher than a legally loaded vehicle, also have much more severe consequences, and 

that is due to the face that overloaded vehicle generate large kinetic energy, which 
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results in greater damage and impact either to the road users or to the infrastructure. 

Also, there are so many consequences if the vehicle weight exceeds the permitted limit 

on the vehicle and the user safety, which can be concluded as follow: 1) Braking failure: 

a vehicle braking system failure due to the increasing weight. All breaking system 

components are designed for the maximum allowable weight, if the truck weight 

exceeds the allowable weight that will reduce the braking capacity and may yield to 

braking system failure; 2) Vehicle instability: an overloaded vehicle, especially truck 

is more likely to roll over or depart the road lane, as shown in Figure 2 comparing to 

legally loaded truck, because of the increased height at the center of gravity and more 

inertia of the vehicle bodies; 3) Tire overheat due to the overloads, which increases the 

risk of tire blow out; 4) Loss of maneuverability: a vehicle becomes underpowered due 

to the overloads, which results in loss of control of the vehicle on elevated road sections 

(up-hill and down-hill) [3].    

 

Figure 2. Truck rollover [3] 

3. Environmental impact: there are several environmental issues associated with the 

overloaded vehicle, such as noise and pollution. 
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4. Economic impact: a study shows that the maintenance cost of road calculated per one 

overloaded vehicle is 100% higher compared to the cost of the same legally loaded 

vehicle. Thus, a proper fee for an overloaded vehicle should be applied to recover the 

infrastructure damage cost [7, 8]. Also, overloaded vehicle violates the taxation rules, 

such as vehicle registration fees, axle taxes, and toll infrastructure. 

Currently, law enforcement officer collects the suspected vehicles through visual 

assessment by direct the suspected vehicles into the static weighing station while the vehicles are 

at rest. Stationary weight scales together with weight stations are still the major weight control 

facilities worldwide. In general, there are three types of stationary eight scale [3]: 

1. The fixed system: this system is permanently mounted in the pavement (concrete 

frames or platforms), and it used to measure gross weight and axle loads.  

2. Semi-portable system: this system used permanent road installation (electrical wires, 

connections, etc.), but with a portable weight scale. 

3. Portable system: this system uses weight scales which can be laid on pavement 

surface when it is needed (parking lot, ramps, any weighing area).  

These stationary weight scales have some limitations; staff is needed for both selecting the 

vehicle from the traffic flow and perform static weighing. They are time-consuming with waiting 

time from 10 to 30 minutes, limited spaces for trucks to pass by [9], potentials for missing 

overloaded trucks [5], and accident hazards [10]. Thus, to overcome these limitations, Weight-In-

Motion (WIM) technology has become popular for weight measurements for road networks. 

1.2. Traffic Monitoring System 

Increasing traffic congestion in the United States is a growing problem in many countries. 

The 2014 Urban Mobility Report [11] estimates the total annual cost of congestion for the 471 
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U.S. urban areas in 2013 $153 billion of wasted time and fuel and an extra 6.8 billion hours of 

travel and 3.1 billion gallons of fuel consumed. Also, monitoring regional and national truck fleet 

has become very important for various applications, such as better understanding of freight pattern, 

fuel consumption, road safety, and emissions. Thus, monitoring of traffic is very important. Traffic 

monitoring is performed to collect data that describes the use and performance of the roadway 

system [12]. A system to monitor traffic on the road requires two significant components, 

including sensor networks either on the sides of the roads or inside the pavement and framework 

to analyze the acquired data. For roadside sensors, there are various technologies available, 

including infrared sensors, microwave doppler or radar, passive acoustic sensors, and video image 

detection [13,14]. These roadside sensors are easy to install and repair, however, their 

performances are significantly affected by atmospheric particulates, surrounding environments, 

and weather conditions [13,15–18], which are also subjected to damages from harsh weather 

conditions. To avoid the limitations of the roadside sensors, there are a variety of in-pavement 

electrical and magnetic sensing technologies including inductive loops [13,18,19], magnetic 

sensors [20,21], pneumatic tubes [13], and in-pavement WIM sensing technologies. The inductive 

loop sensors are very cheap but reported to have a high failure rate associated with installation in 

poor road surfaces and the use of substandard installation procedures. The magnetic sensors have 

a better success rate but smaller detection zones and large magnetic field interference from the 

environments. The pneumatic tubes have bigger detection area but were reported to have 

significant interferences from pavement temperature and vehicle speed and may produce 

inaccurate axle counting when truck and bus volumes are very high. In general, most of the 

electrical and magnetic sensors showed a significant dependence on surrounding environments 
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and had limitations for long-term use in the field, which would not last the design life of the 

pavements [13]. 

1.2.1. Weigh-in-Motion (WIM) technology  

The concept of WIM was introduced more than 50 years ago [22]. Currently, there are 

more than 1,000 operational WIM stations on the US highway system [23] as shown in Figure 3. 

 

Figure 3. Operational WIM station in the USA [24] 

A WIM system is defined as a system that used to measure the dynamic axle load of a 

moving vehicle to estimate the static axle weight. An effective WIM system includes at least three 

components: a network of in-pavement sensors, a facility for data acquisition, and an algorithm or 

framework for WIM data extraction. In general, The WIM system can be categorized into two 

types based on the operating vehicle speed: low-speed weigh-in-motion (LS-WIM) for passing the 

speed of up to 25mph, and high-speed weigh-in-motion (HS-WIM) for the vehicle passing speed 

up to 80mph. Both appeared in late of the 1960s [25]. Agencies usually apply LS-WIM sensors in 

combination with stationary weight scales for weight enforcement purposes and pavement design 

and maintenance. With the growing demand to collect real traffic data and weight information, 
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especially after the introduction of weigh-station bypass programs, there is a greater need for an 

HS-WIM system. The WIM can produce a useful traffic data such as wheel weight, axle weight, 

gross vehicle weight, speed, wheelbase, vehicle type (via axle arrangement), lane and direction of 

travel, travel time, sequential vehicle identification number, and equivalent single-axle loads 

(ESALs), according to American Society for Testing and Materials (ASTM) [26]. 

1.2.2. Existing WIM technology 

There are several of in-pavement sensing technologies which can be used for traffic 

monitoring, including piezoelectric sensor, bending plates, load cells, and fiber optic sensors [27]:  

1) Piezoelectric sensor: The most common WIM device. The sensor is embedded in the 

pavement, and when a load is applied to the piezoelectric material, an electrical charge 

is produced. The vehicle weight could be measured by analyzing the produced 

electrical charges. The WIM system based on the Piezoelectric sensors can provide 

gross vehicle weights with a measurement accuracy of 15% for 95% of the measured 

trucks. Figure 4 shows the typical piezoelectric sensor [28]. 

 

Figure 4. Typical piezoelectric sensor [29] 

2) Bending plate scale: The bending plate scale consists of two steel platforms that are (2 

ft. x 6 ft.) in size, placed close to each other in an appropriate distance to cover a 12 ft. 

as shown in Figure 5.  The plates are instrumented with strain gages, which installed at 

critical points in order to measure the generated strain due to the applied tire load. The 
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WIM system based on the bending plate sensors can provide gross vehicle weights with 

a measurement accuracy of 10% for 95% of the measured trucks [28]. 

 

Figure 5. Bending plate scale [27] 

3) Load cell: This device consists of two 6 ft. x 6 ft. weighing platforms, placed close to 

each other in an appropriate distance to cover a 12 ft, as shown in Figure 6.  A single 

hydraulic load cell is installed at the center of each platform to measure the tire load 

induced forces that are then transformed into tire loads.  The WIM system based on the 

load cell can provide gross vehicle weights with a measurement accuracy of 6% for  95 

%. [28]. 

 

Figure 6. Load cell [27] 

These sensors (piezoelectric sensor, bending plate scale, and load cell) generally show 

inversely proportional cost and accuracy characteristics. Table 1 shows that the electrical sensors 

(piezoelectric sensor, bending plate, and load cell) have a relatively high cost and short design life 
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with moderate accuracy. Also, bending plate and load cell sensors require extensive civil 

engineering work for installation, which may yield to some damage to the host material. In general, 

all the electrical sensors have a high level of electromagnetic interference (EMI) and their 

performance significantly affected by the surrounding environmental factors 

Table 1. WIM sensor comparison [30-32] 

 
Piezoelectric 

sensor 
Bending plate Single load cell 

Annual life cycle 

cost 
Low ($ 5,000) Medium ($ 6,000) High ($ 8,000) 

Accuracy +/- 15% +/- 10% +/-6% 

Sensitivity High Medium Low 

Expected life 4 years 6 years 12 years 

 

1.2.3. Fiber optic sensor for traffic monitoring 

In recent years, optic fiber sensors have been used for traffic engineering application due 

to their unique advantages of small size, lightweight, high sensitivity, immunity to electrical 

magnetic interference (EMI), ability to embedded in hostile environment, low cost of less $1,000, 

easy installation, and long design life  [33, 34]. These advantages may provide a potential solution 

for reliable long-term in-pavement traffic monitoring sensors. Currently, Fiber Bragg Grating 

(FBG) sensor are commonly used for civil engineering applications and has been widely accepted 

in field applications in order to measure loads, strain, and temperature [30, 31]. The FBG was 

firstly formatted in an optical fiber in 1978 in Canada [35]. A single FBG sensor could potentially 

provide a lot of traffic parameters, such as vehicle weight, vehicle speed, vehicle type, pavement 

fatigue, and temperature. All these advantages can extend the system’s durability [36]. Hence, it 

can be a potential solution for the traffic monitoring system, and it has been tested for such 

application as follow:  
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1) Wang et al. [37] stated that the experimental results showed good repeatability for WIM 

measurement based on FBG sensor installed on steel plates. 

2) Moyo et al. [38] stated that the assessment of traffic loading on bridges could be 

achieved by using the  FBG sensor; 

3) Berardis et al. [39] indicated that a traffic monitoring system based on FBG sensors is 

good for high-speed road vehicle and high load resolution; 

4) Cass et al. [40] showed that FBG sensors could be used to monitor traffic factors on 

roads such as vehicle speed and its weight; 

5) Udd et al. [41] showed that a single FBG sensor is effective to monitor vehicle speed, 

vehicle type, and  vehicle weight by installing the FBG sensor on a bridge; 

6) Mimbela et al. [42] indicated that a fiber optic sensor in WIM system applications show 

considerable promise for meeting both traffic monitoring needs and as part of the 

national and local ITS architecture plans      

However, the installation process may easily damage the sensor because the construction 

of FBG contains silica material. Thus, the packaging is necessary for FBGs in any field 

applications. Glass-fiber-reinforced polymer (GFRP) material provides durable and reliable 

packaging which has become widely accepted for use in civil engineering applications [43]. Hence, 

researchers used the GFRP material to package a three-dimension (3D) FBG sensor to improve its 

ruggedness. In this study, we will investigate a GFRP packaged FBG sensor for the traffic 

monitoring system to extract traffic parameters, including weight, speed, class, and vehicle count.  

1.3. Problem Statement and Significance of This Study 

From the above literature review, extracting traffic parameters, which describe the 

characteristics of vehicles and their movement on the road (i.e. traffic volume, vehicle speed, 
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vehicle weight, and vehicle class) have become very important for various traffic management 

applications, such as surveillance, access control, traffic demand planning, traffic congestion 

prevention and accidents avoidance. Thus, it is necessary to have a traffic monitoring system which 

can collect such data and analyze them. 

 To construct a traffic monitoring system, sensing units either on the sides of the roads or 

inside the pavement are needed. For roadside sensors, including infrared sensors, microwave 

doppler or radar, passive acoustic sensors, and video image detection, their performances are 

significantly affected by atmospheric particulates, surrounding environments, and weather 

conditions. To avoid the limitations of the roadside sensors, there are a variety of in-pavement 

electrical Weigh-In-Motion (WIM) sensing technologies, including Piezoelectric sensor, bending 

plate scale, load cell, and fiber optic sensor. The unique advantages of the FBG (small size, light 

weight, high sensitivity, low cost, and high accuracy) over the electrical sensors make the FBG 

sensor commonly used for civil engineering applications. In the other hand, the FBG sensor is very 

weak without packaging.   

From the above literature review, it is obvious that there is a need to develop a robust 

approach for a long-term traffic monitoring system. FBG sensor is a potential candidate, but with 

a single FBG which is made up of glass fiber, it is not robust enough to survive during the harsh 

paving process of the pavement construction and the hostile environment (temperature, moisture, 

etc). 

1.4. Objectives and Organization of This Dissertation 

In this study, the main objective is to develop an effective GFRP packaged FBG sensor for 

a robust and cost-effective long-term traffic monitoring system. To achieve this objective, this 

study identifies four specific tasks which can be summarized as follow: 
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1) Construct a traffic monitoring sensor network using GFRP-FBG sensors;  

2) Develop the GFRP-FBG sensor for an effective vehicle classification:  

a) Use the proposed system for speed and wheelbase estimation. 

b) Develop the vehicle classification using SVM Machine Learning Classifier. 

c) Validate the proposed system field testing of case study 

3) Develop the GFRP-FBG sensor for LS-WIM and HS-WIM measurements inside 

flexible pavement in order to estimate the vehicle wheel weight:  

a) Develop the weight transfer function theoretically; 

b) Perform a sensitivity study of the sensor on several key parameters, such as 

sensor depth, load coordination, and host material property on the sensitivity 

of the GFRP-FBG sensor for the WIM measurements; 

c) Validate the developed sensor for WIM measurement through field testing of 

a case study. 

4) Investigate the stability of the proposed system in the flexible pavement with different 

influencing factors: 

a) Investigate the effect of the loading position on the weight measurements, and 

propose a new methodology to determine the loading position; 

b) Study the effect of the vehicle speed on the system accuracy for the weight 

measurements; 

c) Investigate the effect of the pavement temperature on weight measurement 

accuracy; 

d) Propose a traffic monitoring system based on the GFRP-FBG sensors for a 

two-lane highway with a typical lane width of 12 ft. 
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This dissertation is thus organized as follows: in Chapter 1, an introduction of traffic 

monitoring system and a detail literature review are provided; in Chapter 2, the operational 

principle of the FBG sensor, the geometric design of the GFRP-FBG WIM sensor are introduced, 

along with the sensor network establishment ; in Chapter 3, the traffic monitoring system using in-

pavement GFRP-FBG sensor is introduced for vehicle classification, and a part of this chapter is 

delivered from the following journal paper (Vehicle classification system using in-pavement fiber 

Bragg grating sensors. IEEE Sensors Journal. 2018 Feb 7;18(7):2807-15.), and from the following 

conferences paper (In-pavement fiber Bragg grating sensors for high-speed weigh-in-motion 

measurements. In Sensors and Smart Structures Technologies for Civil, Mechanical, and 

Aerospace Systems 2017 2017 Apr 12 (Vol. 10168, p. 101681Y). International Society for Optics 

and Photonics), and (Road vehicle classification using machine learning techniques. In Sensors 

and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019 2019 Mar 

27 (Vol. 10970, p. 109700O). International Society for Optics and Photonics); in Chapter 4, the 

GFRP-FBG sensor is introduced for LS-WIM, and HS-WIM measurements in flexible pavements, 

including  sensitivity study of controlling factors on the sensitivity of the sensor and field testing 

of case study is performed for validation, and a part of this chapter is delivered from the following 

conference paper (In-pavement fiber Bragg grating sensors for high-speed weigh-in-motion 

measurements. In Sensors and Smart Structures Technologies for Civil, Mechanical, and 

Aerospace Systems 2017 2017 Apr 12 (Vol. 10168, p. 101681Y). International Society for Optics 

and Photonics); in Chapter 5, the stability of the WIM system will be introduced; and in Chapter 

6, conclusion and future work have been presented based on the findings from this study.  
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2. OPERATIONAL PRINCIPLE AND SENSOR NETWORK DESIGN 

Glass Fiber Reinforced Polymer Fiber Bragg Grating (GFRP-FBG) sensor has been 

selected to be used for traffic monitoring in flexible pavements. In this chapter, the operational 

principle of the FBG sensor, the geometric design, and the sensor network based on the GFRP-

FBG sensor are introduced in detail. 

2.1. Sensor Design and Configuration 

2.1.1. The operational principle of the FBG sensor 

The formation of FBG in optical fiber was first demonstrated by Hill et al. in 1978 at the 

Canadian Communications Research Centre (CRC), Ottawa, Ont., Canada,[44]. An FBG is made 

by launching intense Argon-ion laser radiation into a Germania-doped fiber [44]. The Bragg 

wavelength is formed due to reflected light from the periodic refraction change, as shown in Figure 

7, which can be described as [45]: 

                                                                          = n2                                                               (1) 

where, n is the effective index of refraction and   is the grating periodicity of the FBG. 

 

Figure 7. The operational principle of an FBG sensor [46] 
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Due to temperature and strain dependence of the grating period,  , the Bragg wavelength 

changes as a function of temperature, Te, and strain, ε. The general expression of the strain–

temperature relationship for the FBG strain sensor and temperature compensation sensor can be 

described as [45]: 
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where, ,


, and Pe are thermal expansion coefficient, thermal-optic coefficient, and the optical 

elasticity coefficient of the optic fiber, respectively. λ1 is the Bragg wavelength from the FBG, 

which experiencing strain and temperature changes, and λ2 is the Bragg wavelength from the FBG 

temperature compensation sensor.  

The temperature and strain may also affect the fiber’s elasto-optict and thermos optic 

properties. However, due to the fact that the testing period is in a short duration for one WIM 

measurement, the changes of elasto-optic and thermo-optic optic effect on strain and temperature 

are neglected. Thus, the strain of the sensor can be calculated by subtracting Equation 2 from 

Equation 3 [45]: 
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2.1.2. The 3D GFRP-FBG sensor geometric layout 

Since the FBG sensor is made by glass fiber and not robust for direct embedment in 

pavements, this study uses GFRP material to package the FBG sensors. The 3D GFRP-FBG sensor 

previously developed by the authors’ research group [45, 47, 48] has been selected to be a sensor 

unit. 
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Figure 8 (a~c) shows the geometric design for the 3D GFRP-FBG sensor with three 

components: one in vertical, one in longitudinal, and one in transverse directions. The short-

gauged component of the sensor intends to detect the vertical strain while the long-gauged 

component used to detect the longitudinal and transverse strains. The FBG used in this study has 

a length of 2.5mm (0.1 in.) and diameter of ~250µm, and it was inserted in the middle of each 

component (both in diameter and length) of the 3D sensor. All the three components of the 3D 

GFRP-FBG sensor share the same diameter of 5mm (0.2 in.). The horizontal and transverse 

components have a length of 4.06 cm (1.6 in.), and the vertical component has a length of 3.05 cm 

(1.2 in.). The center wavelength of the longitudinal, transverse, and vertical gauges in the 3-D 

GFRP-FBG sensor are 1544.292 nm, 1549.493 nm, and 1539.581 nm, respectively. Also, the 

GFRP-FBG sensor has a strain sensitivity of 7.937×10-7 nm/µɛ, which is (1-Pe) term in Equation 

4. 

  

                                             (a)                                             (b)                                               (c) 

Figure 8. Geometric design of the 3D GFRP-FBG sensor: (a) Photo of the 3D GFRP-FBG 

sensor, (b) Elevation view, and (c) Plan view (Unit: in.) 

2.2. Sensor Networking 

2.2.1. Sensor network 

An effective traffic monitoring system requires a sensor network with multiple sensors 

inside the pavements for data collections. To ensure the detection of all vehicle’s axles and 
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estimation the wheelbase and other traffic parameters, accurate vehicle speed estimation is the key. 

Therefore, a sensor network with an acceptable speed estimation error will be needed to construct 

an effective traffic monitoring system. Numbers, locations, and distances between sensors are the 

major factors influencing the accuracy of a sensor network. To effectively estimate the vehicle 

speed and the wheelbase, it requires a minimum of two sensors in the network, which need to be 

installed under the vehicle wheel path for maximum measurement sensitivity. The optimized 

distance between the two in-pavement sensors in the network for vehicle detection and 

classification usually falls between 7 ft. and 20 ft. [49, 50]. Also, the variation caused by the 

inaccurate installation of the sensors (D is the distance between parallel sensors) will cause some 

systematic error in speed estimation. To minimize this systematic installation error, the distance 

between sensors should be large to get maximum speed estimation accuracy [51].  

In this study, a sensor network is formed using the minimum numbers of sensors required, 

which is two 3D GFRP-FBG sensors. A distance of 16 ft. in between the two sensors is used which 

is in between 7 ft. and 20 ft. as suggested by the literature. The sensors are installed under the 

wheel path to be more accurate for vehicle passing measurements. In addition to the two 3D GFRP-

FBG sensors, to eliminate the temperature effects using Equation 4, one temperature compensation 

FBG sensor was installed 2.42 ft. away from the 3D-2 sensor inside Pavement Cell 17 to 

monitoring the pavement temperature variances, which has a temperature sensitivity of 13 pm/oC 

Since there are no tree shades in Cell 17, only one temperature compensation sensor was installed.  

Also, to study the multiple tires and dynamic effects in the future, a 1D GFRP-FBG sensor was 

installed on the side of Sensor 3D-2 as shown in Figure 9. 
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Figure 9. Sensor networking (3D: three dimensions, 1D: one dimension, CL: center line) 

2.2.2. Sensor installation and testing set up 

In order to validate the developed traffic monitoring system based on the 3D GFRP-FBG 

sensor network, field testing was performed at the Cold Weather Road Research Facility in 

Minnesota (MnROAD) facility of Minnesota Department of Transportation (MnDOT) in MN, 

U.S.A. MnROAD consists of two unique roadways: a two-lane low-volume loop that is loaded 

with a 5-axle 40 tons (80 kips) semi-truck and a section of interstate I-94 ‘‘mainline’’ that contains 

two westbound lanes with live traffic. The proposed sensor network in Figure 9 was installed inside 

the Pavement Cell 17, one section if of interstate I-94 at MnROAD, which belongs to the I-94 

‘‘mainline’’ westbound lanes as shown in Figure 10 (a). The 3D GFRP-FBG sensors were installed 

beneath the wheel path on the asphalt pavement as shown in Figure 10 (b), and in Figure 10 (c and 

d) for the photo of the sensor installation scene and Cell 17 after construction. 
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                                                                    (a)                                                                 (b) 

                          

                                            (c)                                                                   (d) 

Figure 10. MnROAD facility (a), the sensor installation scene (b), installation scene (c), and Cell 

17 with embedded sensors after construction (d) 

The two 3D GFRP-FBG sensors were installed under the expected wheel path that was 9 

ft. from the centerline of the road on the right lane of the road, the distance of 9 ft. was chosen to 

guarantee the detection of all rolling vehicles on the right lane, also since the vehicles may not 

pass over the top of the sensor, the sensitivity study in the previous study shows that the 3D GFRP-

FBG longitudinal and vertical components still effectively detect the vehicle’s tire within 6 inches 

range from the sensor installation location . The distance between the two sensors was 16 ft. as 

required by the sensor networking in Figure 9. Installing the vertical component in the asphalt 

layer puts the component at failure risk due to the compaction during the paving process. 
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Therefore, the longitudinal components of the 3D sensors were installed at the bottom of the road 

asphalt layer (5 in. under the road surface) and the vertical components of 3D sensors were 

installed in the base layer and sealed with asphalt sealing to fix it in the desired location (1.6 in. 

beneath the base layer).  

After the installation of the sensor network, the three components of the sensors in the 

network together with a temperature compensation FBG sensor were connected to an FBG 

integrator with 5 KHz sampling rate. The FBG integrator was further connected to a personal 

computer to record the data. 

2.3. Summary 

In this Chapter, the operational principle of the FBG sensor and the geometric design of 

GFRP-FBG sensor are described. FBG sensor is used as a strain sensor. The generated Bragg 

wavelength changes of the FBG sensor depends on the strains on the grating, and the strains can 

be directly related to the applied load (vehicle weight) on the pavement. In this study, GFRP is 

used as packaged material for FBG sensor. The GFRP packaged FBG WIM sensor contains three 

components, one in the longitudinal direction, one in transverse, and one in the vertical direction, 

and it has a strain sensitivity of 7.937×10-7 nm/µɛ. 

Also, an effective sensor network using multiple sensors inside the pavements was 

introduced for data collections. In order to validate the developed traffic monitoring system based 

on the 3D GFRP-FBG sensor network, field testing was performed at the Cold Weather Road 

Research Facility in Minnesota (MnROAD) facility of Minnesota Department of Transportation 

(MnDOT) in MN. 
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3. VEHICLE CLASSIFICATION  

In 1980, Federal Highway Administration (FHWA) of United States developed a vehicle 

classification system [52], which divide vehicle type into 13 categories depending on the number 

of axles and the wheelbase as shown in Figure 11. Establishing a fixed threshold for classifying a 

vehicle is difficult, with the overlapping between vehicles pattern in the system, which needs a 

pattern recognition technique to distinguish between different vehicle categories. Pattern 

recognition is a scientific discipline whose aim is to classify the objects into a lot of categories or 

classes [53]. Pattern recognition algorithms have been widely used for numerous applications, such 

as medicine, weather forecasting, stock exchange forecast, geology, and vehicle classification. 

Many effective pattern recognition methods have been used for vehicle classification in the 

literature, including vision-based preceding vehicle recognition method [54], inductive classifying 

artificial network (ICAN) [55], fuzzy inference system [56, 57], the probabilistic neural network 

method [58,59], and the support vector machines (SVM) learning method [60]. The SVM machine 

learning classifier predicts the output from the given input developed in Russia in the sixties, and 

reported as a well-founded technique in statistical learning theory [60]. In this Chapter, a vehicle 

classification system was developed based on a sensor network from GFRP packaged FBG sensors 

supported by the SVM machine learning method to extract the vehicle classification information. 

The developed vehicle classification system was validated by real field traffic. 
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Figure 11. FHWA vehicle classification system [61] 

3.1. Sensor Network  

In this study, a sensor network of two 3D sensors (3D-1 and 3D-2) was used in the field 

testing, as indicated in Chapter 2, as shown in Figure 12. The performed sensitivity study in the 

previous study [62] shows that the longitudinal component has the largest weigh-in-motion (WIM) 

measurements sensitivity among the other components, followed by the vertical component. Thus, 

to validate that both longitudinal and vertical components of the 3D sensors work well for vehicle 

classification, one longitudinal component of sensor 3D-1 (S1) and one vertical component of 

sensor 3D-2 (S2) were used to feed the vehicle classifier for classification. 
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Figure 12. Vehicle classification sensor networking (CL: center line) 

3.2. Vehicle Classification 

3.2.1. Vehicle parameters derivation  

To classify passing vehicles, an embedded network of sensors inside the pavements will 

need to sense the number of axles, the axle spaces, and the speed of a passing vehicle. When a 

vehicle tire passes over the road, the pavement produces strain signals, and so does the embedded 

3D GFRP-FBG sensor. From Equation 4, it can be seen that the strain changes on an FBG sensor 

will produce corresponding Bragg wavelength changes which can be recorded and analyzed to 

recover the strain information inside the pavements. Thus, all the vehicle classification 

information, including the number of axles and axle spaces are closely related to the induced strains 

inside the pavements by the passing vehicles. 

The strain signal inside the pavement is formed from the convolution of the load from the 

tire contact area and the sensitivity function of the embedded sensors, as shown in Figure 13 (b) 

[63]. Theoretically, for a specific tire with a contact pressure of P(x,y) at a location (x,y) inside the 

contact area with a length of Lo and width of Bo, the contact pressure as shown in Figure 13 (a) is 

[63]: 
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Figure 13. Operation principle to acquire the GFRP-FBG sensor’s strain signal by convolution 

(a) and (b) the expected strain signal 

If the embedded GFRP-FBG sensor has a strain sensitivity function, SL(t), along with the 

length of the sensor as shown in Fig.4(a), the strain signal, I(t), can be obtained as [63]: 
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From Equation 6 and Figure 13, it is clearly demonstrated that a passing vehicle will 

produce a signal in a trapezoidal shape in the strain response, so does the response of the Bragg 

wavelength changes of any component of an embedded 3D GFRP-FBG sensor. Since the size of 

the sensor component is very small between 2.54 cm (1in.) to 5 cm (2 in.) as indicated in Figure 

8, and the passing vehicle has a fast driving speed on a regular highway (with speed higher than 

45mph), the response to axles of a passing vehicle on the signal of any component of an embedded 

3D GFRP-FBG sensor will be more likely in a shape of individual peaks. Figure 14 shows an 

example of the expected responses of a passing two-axle vehicle for the longitudinal component 

of the first 3D sensor and the vertical component of the second 3D sensor using the developed 

sensor network as indicated Figure 12. Figure 14 clearly indicated that each axle of a vehicle would 

induce a peak in the signal of the FBG sensors. Therefore, the occurrence of an individual peak in 
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any components of a 3D GFRP-FBG sensor can be used to identify the occurrence of a passing 

axle and the number of axles of a passing vehicle can then be counted accordingly. 

 

Figure 14. Sensor responses for a passing two-axle vehicle 

To derive the wheelbase of a vehicle, it is very important to accurately estimate the vehicle 

speed. Since the distance between the two sensors in the sensor network, 3D-1 and 3D-2, is a 

known parameter (D) from the design the sensor network, which was selected to be 4.88 m (16 ft.) 

in this study, and the time is recorded together with the sensor signal, the vehicle driving speed 

can then be estimated as: 

                                                              v=D/t.                                                                            (7) 

where, D is the distance between the two sensors in the network (4.88 m (16 ft.) in this study), t is 

the time interval between the peaks of the two sensors for the same axle of a vehicle. Since there 

are a minimum of two axles for a vehicle, the time intervals can be measured twice by using the 

first peaks if the two sensors in the network (t1) and the second peaks of the two sensors (t2). Thus, 

t3

t4
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the accuracy of speed estimation can be improved by taking the average of the two adjective sensor 

peaks as below: 
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Therefore, by knowing the vehicle driving speed, the vehicle’s wheelbase can be estimated 

as: 

                                                           tvWB =                                                                   (9) 

where, t is the time interval detected between two detected peaks of an embedded sensor. 

Also, the accuracy of wheelbase estimation can be improved by taking the time estimation 

average of the two adjective sensor peaks as below: 
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With the estimation of the number of axles and wheelbase distances, the vehicles can then 

be classified based on the Federal Highway Administration (FHWA) standard [46]. 

3.2.2. Vehicle classification using SVM Machine Learning Classifier 

According to the FHWA standard [52], vehicles are categorized into the six classes: 

passenger cars, motorcycles, buses, other 2-axle 4-tire vehicles, single-unit 2-axle 6 tire or more 

trucks, and combination trucks. In this study, the vehicles are sorted into 3 categories depends on 

the flow type in the selected case study, as shown in Table 2. 
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Table 2. Vehicle classes description 

Vehicle type Class Number of 

axles 

Axles 

distribution 

FHWA category 

Small vehicles C1 2 1F+1R Passenger car, 2-axle 4-

tire vehicle 

Medium-large 

trucks 

C2 2 1F+1R 2-axle 4-tire vehicle, 2-

axle 6-tire trucks 

Single unit 

trucks-

combination of 

trucks 

C3 3-6 1F+2R 

1F+2M+2R 

1F+2M+3R 

1F+1M+1R 

1F+1M+2R 

single-unit 2-axle 6-tire 

trucks, or trucks 

combination 

 

To classify a vehicle into the three categories above, in this paper, the SVM machine 

learning classifier is applied. The SVM classifies by mapping the data from an input space with an 

appropriate kernel function into a high dimensional feature space (hypothesis space) where a linear 

decision rule can be found based on observing the principle of maximizing the margin [64, 65].  

Since the vehicle classification is a multi-class problem, as seen in Table 2, two SVM methods can 

be considered, including the One-Against-All (OAA) and the One-Against-One (OAO) method 

[66]. 

The OAA method constructs k SVMs models, where k is the number of classes (vehicle 

classes). The ith SVM is trained with all of the samples in the ith class with positive labels, and all 

other samples with negative labels. Thus, given l training data (xi, yi) i=1,..l, where xi  R and yi 

 k,...,1  which is the class of labels (i.e., vehicle types), the ith SVM solves the following 

problem: 
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where xi is the training data, where, w is a weight vector, b is a bias,  (x) is a nonlinear mapping 

from the input variable into a high dimensional feature space (Kernel function), 

2

2

1 iw
 controls 

the complexity of the model,   is a slack variable measuring the error on xi , and C is a 

regularization parameter. 

 

Figure 15. Diagram of binary SVM-OAA region boundaries on a basic problem [67] 

The basic goal of SVM machine learning is to find a balance between the complexity term 

and training error. After solving Equation 11, k decision functions will be generated. Classification 

of new instances x for the OVA case is done by a winner-takes-all strategy where the classifier 

with the highest output function assigns the class as shown in Figure 15, the final decision function 

(d) is: 
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On the other hand, the OAO method constructs k(k-1)/2 classifiers. For each binary learner, 

one class is positive, another is negative, and the rest are ignored. This design exhausts all 

combinations of class pair assignments, as shown in Figure 16. For training data from ith and jth 

classes, the following binary classification problem is solved: 
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Figure 16. Diagram of SVM-OAO decision boundaries on a basic problem [67] 

For the OAO method, classification is done by Max Wins voting strategy, in which every 

classifier assigns the instance to one of the two classes, then the vote for the assigned class is 

increased by one vote, and finally the class with the most votes determines the instance 

classification, the final decision function (d) is: 
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In order to solve the vehicle classification problem, MATLAB Classification toolbox was 

used in this paper for multi-class classification problems. Using an SVM method requires dividing 

the collected data into two datasets, including the training data to train the classification system 

and the test dataset to validate the trained classification model. From Equations 12 and 14, 

selecting an appropriate kernel function to map the data from input space to high dimension feature 

space is the key. There are many types of Kernel functions, including linear, polynomial, sigmoid, 

and radial basis function (RBF). The RBF was selected in this study due to the facts that the RBF 

samples into a higher dimensional space so that it can do the nonlinear analysis in addition to fewer 
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numerical difficulties and less complex than polynomial [68]. The Gaussian RBF used can be 

expressed as: 
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There are two key parameters for an RBF model, including the penalty (C) and Gaussian 

kernel function parameter () which should be evaluated prior to the model training. Cross-

validation through MATLAB classification toolbox includes partitions data into n randomly 

chosen folds of roughly equal size. One subset is used to validate the model trained using the 

remaining subsets. This process is repeated n times with different values of C and , such that each 

subset is used exactly once for validation. The values of C and  which gave the largest cross-

validation rate will be used to train the whole train dataset model. 

Since the multiple data sources can give a more efficient performance and yield higher 

accuracy, a centralized fusion strategy was used in this paper, as shown in Figure 17. This strategy 

collects parameters from data sources and combines them to form one input dataset; then a multi-

class SVM is trained to decide on vehicle classes. 

 

Figure 17. Data fusion strategy scheme 
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3.3. Field Validation and Discussion  

Following Section 3.1, a sensor network of two 3D GFRP-FBG sensors was used for 

vehicle classification. In addition to the embedded sensor network, a radar gun and a video 

recording camera were installed on the roadside to obtain the reference for comparison to validate 

the developed system. 

3.3.1. Vehicle parameters identification   

Figure 18 (a) shows a five-axle MnROAD semi-truck and Figure 18 (b) shows the S1 

sensor response for the MnROAD semi-truck at passing speed of 35 mph. In Figure 18, the sensor 

clearly identifies each axle of the truck. In addition, the space between peaks is consistent with the 

wheelbase and the magnitude of each peak is proportionate with the axle weight. 

 
                                                                        (a) 

 
          (b) 

Figure 18. MnROAD semi-truck (a), and sensor's response characteristic for five-axle truck (b) 

The speed measurement results from the vehicle classification system were compared with 

the results from a radar gun to validate the system measurement accuracy. The five-axle semi-

truck drove on the top of the sensor network at three different speeds, 11.176 m/sec (25mph), 
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15.646 m/sec (35mph), and 18.776 m/sec (45mph), as shown in Figure 19 for the responses from 

S1 of Sensor 3D-1 in the network. The truck has estimated actually for the wheelbase distances of 

5.194, 1.384, 10.287, and 1.270 meters, respectively. Table 3 shows the comparison of the speeds 

and wheelbase measurements between the estimated values from the developed system and that 

from the reference calculated from the radar gun and the recording camera. The measured results 

from the developed system in Table 3 were obtained using Equations 8 and 10. From Table 3, the 

system can estimate the speed with an accuracy of 99% or higher and estimate the wheelbase with 

accuracy higher than 95%. 

Table 3. Proposed system measurements for the 5-axle truck 

Number V(ft/sec) Actual 

V(ft/sec) 

V-error 

(%) 

WB(ft) Actual 

WB(ft) 

WB-error 

(%) 

1 36.89 36.667 0.61 16.953 17.042 0.52 

2 36.89 36.667 0.61 4.744 4.542 4.45 

3 36.89 36.667 0.61 33.806 33.75 0.17 

4 36.89 36.667 0.61 4.268 4.167 2.42 

5 51.912 51.333 1.13 17.048 17.042 0.04 

6 51.912 51.333 1.13 4.719 4.542 3.90 

7 51.912 51.333 1.13 33.629 33.75 0.36 

8 51.912 51.333 1.13 4.192 4.167 0.60 

9 62.943 61.6 2.18 17.202 17.042 0.94 

10 62.943 61.6 2.18 4.721 4.542 3.94 

11 62.943 61.6 2.18 33.609 33.75 0.42 

12 62.943 61.6 2.18 4.183 4.167 0.38 
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Figure 19. S1 sensor’s responses for five-semi axle truck at 11.176 m/sec (25mph), 15.646 m/sec 

(35mph), and 18.776 (45mph) 

3.3.2. Vehicle classification results   

The sensor network on the Cell 17 of Highway I94 in Fig. 8 was then subjected to real 

traffic for two hours in August 2017, as shown in Figure 20 (a). A total of 477 vehicles were 

recorded during the acquisition period. Figure 20 (b) shows a figure of an example signal for 2 

minutes from the sensor network. 
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    (a) 

 
(b) 

Figure 20. Real traffic (a), and S1 sensor’s response for 2 minutes of real traffic (b) 

The records included a wide variety of vehicle types, ranging from 2-axle passenger cars 

to 6-axle semi-trailer trucks. A video camera was also used to identify the vehicle type as reference 

for validating the proposed system. The vehicle parameters (number of axles, N, and wheelbase 

distances, WB) are extracted from each sensor response. Each sensor in the network has 6 

attributes for the two features (N and WB) from sensor response and a class attribute (3 categories, 

C1, C2, and C3). Therefore, two datasets from S1 and S2 data are constructed: 

                                       ,Category),WB,WB,WB,WB,WBS2:(N
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                                       (16) 
 

The recorded dataset for each vehicle type (C1, C2, and C3) are divided into a training set 

(50% of the data) with 241 vehicles, validation set (25% of the data) with 117 vehicles, and test 

set (25% of the data) with 117 vehicles of randomly selected records. Table 4 shows the detail 

numbers of vehicles in each class for all the three-data set. From Table 4, it is clear that most of 
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the records belong to C1 class because C1 class covers a wider range of vehicle types more than 

C2 and C3. In total, the training set together with the test set, there are 198 C1 vehicles (133 for 

training and 65 for test), 32 C2 vehicles (22 for training and 11 for test), and 128 C3 vehicles (86 

for training and 42 for test). 

Table 4. Collected data 

Class 
Training 

set 

Validation 

set 

Test 

set 

C1 133 65 65 

C2 22 11 11 

C3 86 42 42 

 

In this study, two different multiclass SVM classification algorithms (OAA and OAO) 

were applied. Table 5 shows the estimated vehicle classification from the OAO algorithm. From 

Table 5, it can be seen that by using OAO algorithm, the system predicts 196 vehicles from the 

198 class C1 with 99% accuracy, 31 vehicles from the 33 class C2 with a measurement accuracy 

of 94%, 128 vehicles from the 128 class C3 with 100% accuracy.  

Table 5. OAO estimated vehicle classification 

  Predicted class 

  C1 C2 C3 

Actual 

class 

C1 196 2 0 

C2 2 31 0 

C3 0 0 128 
 

Table 6 shows the estimated vehicle classification from the OAA algorithm using the 

proposed strategy. The OAA has the same prediction accuracy for class C1 and C3 vehicles, but 

for 33 class C2, it predicts 30 class vehicles from the 33 class C2 with an accuracy of 91%.  

Table 6. OAA estimated vehicle classification 

  Predicted class 

  C1 C2 C3 

Actual  

class 

C1 196 2 0 

C2 3 30 0 

C3 0 0 128 
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Tables 5 and 6 show that both the OAO and OAA algorithms work well for the developed 

system to classify vehicles with real traffic. The vehicle classification accuracy of the developed 

system is higher than 90% for both algorithms. The OAO method (>94% accuracy) has slightly 

higher accuracy than OAA method (>90% accuracy). For class C3 vehicles, since they have 

significantly different wheelbase distance, both methods predicted 100% correctly for 

classification. For class C1 and C2, classification error for both algorithms occurred majorly 

because these two categories share the same number of axles with C2 containing medium trucks 

(2-axle) which have an average wheelbase distance close to the average of some vehicles in class 

C1 for the minivan and pick-up trucks (2-axle).  

In order to determine the efficiency of using SVM for vehicle classification. The results 

for the same data input and distribution using SVM are compared with results of using Neural 

Network (NN) and K Nearest Neighbor (KNN) method.  

Neural networks consist of several processing elements called neurons. It is a complicated, 

non-linear, dynamic system. A two-layer feedforward network has been used in this study. From 

Table 7, it can be seen that by using NN algorithm, the system predicts 194 vehicles from the 196 

class C1 with 99% accuracy, 31 vehicles from the 33 class C2 with a measurement accuracy of 

94%, 128 vehicles from the 128 class C3 with 100% accuracy. 

Table 7. NN estimated vehicle classification 

  Predicted class 

  C1 C2 C3 

Actual 

class 

C1 194 2 0 

C2 2 32 0 

C3 0 0 128 

 

A very common non-parametric method is the k-nearest neighbors (kNN) classifier, which 

is simple but proved effective in many cases. For a data record t to be classified, its k nearest 

neighbors are computed. Most of the times, majority voting among the data records in the 
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neighborhood is used to decide the classification for t with or without consideration of distance-

based weighting [69]. From Table 8, it can be seen that by using KNN classifier, the system 

predicts 195 vehicles from the 198 class C1 with 98.5% accuracy, 30 vehicles from the 33 class 

C2 with a measurement accuracy of 90%, 128 vehicles from the 128 class C3 with 100% accuracy. 

Table 8. KNN estimated vehicle classification 

  Predicted class 

  C1 C2 C3 

Actual 

class 

C1 195 3 0 

C2 3 30 0 

C3 0 0 128 

 

The results from SVM-OAO and KNN have slightly higher accuracy than KNN and SVM-

OAA. SVM-OAO and NN based classification system have an average accuracy of 97.5%, 

followed by SVM-OAA and KNN with an average accuracy of 96 %. The difference between 

algorithms performance for vehicle classification is not significantly clear, and that may be 

because of the small data set used in this study. 

3.4. Vehicle Counts 

Accurate traffic volume estimations on various road segments are critical to the appropriate 

roadway features geometric design, traffic demand planning, and administrative purposes. State 

departments of transportation (DOTs) and local transportation agencies traditionally have used 

traffic volume count programs to evaluate the need for appropriate traffic control and geometric 

improvements.   

Vehicle counting can be defined as the activity of measuring and recording traffic 

characteristics such as vehicle volume, classification, speed, weight, or a combination of these 

characteristics [12]. Typically, there are two methods for counting traffic: manual and automatic 

counting. 
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The proposed sensor network has been used for validation. Figure 21 shows the sensor’s 

responses on its vertical and longitudinal components for a range of vehicle categories, including 

passenger car, two-axle vehicle, three-axle vehicle, and five-axle vehicle. The average speed range 

for the identified vehicles was between 65 mph and 75 mph.  It is obvious that the vertical and 

longitudinal components responses show the ability of the sensor to detect each axle of the traveled 

vehicle with different responses proportionate to the tire weight. Also, over 3 months of testing, 

the sensors functioning on the I-94 freeway did not appear to have any deterioration in 

performance. Figure 22 shows the sensor’s response on its longitudinal component for a 250 

second monitoring period. During this period 23 vehicles passed over the sensor, with a total of 

69 axles. The counting of axles and vehicles was done by tracking the peaks through the sensor’s 

response. 

 

Figure 21. Sensor response for different vehicle class 
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Figure 22. Sensor response for 250 seconds period 

3.5. Summary  

In this Chapter, a vehicle classification system based on glass fiber-reinforced polymer 

packaged fiber Bragg grating sensors (3D GFRP-FBG) network. The vehicle’s speed and 

wheelbase can then be estimated according to the different time a vehicle arrived at the sensor 

sites, and speeds monitored from the wavelength changes of the in-pavement sensors. The vehicle 

classification system uses support vector machine (SVM), Neural Network (NN), and K-Nearest 

Neighbor (KNN) learning algorithms to classify vehicles into categories ranging from small 

vehicles to combination trucks. The field-testing results from real traffic show that the results from 

SVM-OAO and KNN have slightly higher accuracy than KNN and SVM-OAA. SVM-OAO and 

NN based classification system have an average accuracy of 97.5%, followed by SVM-OAA and 

KNN with an average accuracy of 96 %. The difference between algorithms performance for 

vehicle classification is not significantly clear, and that may be because of the small data set used 

in this study. Also, the system shows that ability to perform counting of axles and vehicles by 

tracking the peaks through the sensor’s response. 
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4. WIM MEASUREMENTS IN FLEXIBLE PAVEMENT  

Estimation the vehicle’s weight is a controlling factor in flexible pavement design, also 

with significant weight’s effect on the road maintenance costs and the safety of road users. The 

flexible pavement experiences dynamic load rather than static weight which is still used in 

pavement design guide, such as equivalent single axle loads (ESAL) which is used by the 

American Association of State Highway and Transportation Officials (AASHTO) pavement 

design guide to represent the vehicle loads in pavement design [70]. Currently, there are new 

methods that use axle load spectra to represent the vehicle loads in pavement design, such as the 

Mechanistic-Empirical Pavement Design Guide (MEPDG) [71]. Hence, the dynamic load from 

the vehicles have become important to be estimated.   

4.1. 3D GFRP-FBG Sensor for WIM Measurements 

When a vehicle passes over the road, the pavement produces strain signals which will be 

picked up by wavelength changes of the embedded 3D GFRP-FBG sensor as shown in Equation 

4. The strain signal inside the pavement is formed from the convolution of the load from the tire 

contact area and the sensitivity function of the embedded 3D GFRP-FBG sensor, as explained in 

Section 3.2.1.  

Currently, there are three theories to analyze flexible pavement, the simplest way to 

characterize the behavior of the flexible pavement is to consider it as homogenous half-space with 

infinite surface area and depth of the pavement. The original theory by Boussinesq can be used to 

determine the stress, strain, and deflections in the subgrade if the modulus ratio between the 

pavement and subgrade is close to unity but Flexible pavements are layered systems with better 

materials on top and cannot be represented by a homogeneous mass [72]. 
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Since the Hot Mix Asphalt (HMA) is regarded as viscoelastic material whose behavior 

depends on the time of loading, so it is natural to apply the theory of viscoelasticity to analyze the 

flexible pavement. There are two general methods for characterizing viscoelastic materials: one 

by a mechanical model, the other by a creep-compliance curve [72]. 

The flexible pavements are a layered system, so the use of Burmister's layered theory is 

more appropriate. The basic assumptions of this theory are as follows [72]:  

1) Each layer is homogeneous, isotropic, and linearly elastic; 

2) The material is weightless and infinite in areal extent; 

3) Each layer has a finite thickness h, except that the lowest layer is infinite in thickness; 

4) A uniform pressure q is applied on the surface over a circular area of radius a. 

In this study, the multilayer system theory is used to determine stress and strain through 

the flexible pavement, because it is appropriate to characterize the behavior of the flexible 

pavement rather than homogenous mass and simplicity regards to viscoelastic solutions. 

In this study, the 3D GFRP-FBG sensor is assumed to be embedded inside a flexible 

pavement with i layers. The circular contact pressure area of radius a. Each layer has three 

parameters: modulus of elasticity E, Poisson’s ratio v and depth have shown in Figure 23. By 

applying the classical theory of elasticity and considering that x-direction is the longitudinal 

direction of the 3D GFRP-FBG sensor which is parallel to the wheel path, y-direction is the 

transverse direction of the sensor which is perpendicular to the wheel path, and z-direction is the 

vertical direction of the sensor which is beneath the asphalt surface. The strain components under 

the circularly loaded area in the three directions can be found as follow [72]: 
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where V is vertical strain, L   is the longitudinal strain (parallel to the wheel path), T is the 

transverse strain (perpendicular to the wheel path), r and z are the cylindrical coordinates for radial 

and vertical directions, P is the load,  is a/h, A, B, C, and D are constant of integration,  is r/h, 

 is z/h, m is a parameter, and 0J and 1J are Bessel functions.  

 

Figure 23. Flexible pavement cross-section 

As mentioned above, the multi-layer system is used to determine stress and strain in the 

flexible pavement. Since it is hard to analyze flexible pavement theoretically; the KENLAYER 

software is used in this study to determine the strains at the sensor location and to perform 

sensitivity study. The KENLAYER computer program is established by Huang [72] applies only 

to flexible pavements. The fundamental of KENLAYER is the solution for an elastic multilayer 

system under a circularly loaded area. KENLAYER can be applied to determine stress, strain, and 
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deflection at any point in the layered systems under single, dual, dual-tandem, or dual-tridem 

wheels with each layer behaving differently. The theoretical development of KENLAYER software 

is discussed in detail by Huang [72]. 

Thus, the strain transfer function can be obtained by combining Equations 4, Strain results 

from KENLAYER, and the strain transfer rate of the GFRP to host material, φ [45], which is related 

to the modulus of the elasticity of the host material, E. The transfer function of the GFRP-FBG 

sensor for WIM measurement in three directions (longitudinal, transverse, and vertical direction), 

therefore, can be represented as below: 

( ) ( ) ( )Te Te V TeL Tr
L T V

L Te Tr Te V Te

P A A A
    

     

    
= − = − = −                         (20) 

in which, λL, λTr, λV, and λTe are the measured center wavelengths from longitudinal, 

transverse, vertical components of the 3D GFRP-FBG sensor and the temperature compensation 

sensor, respectively. The AL, AT, and AV are the weight sensitivity of the GFRP-FBG sensor for 

WIM measurements in longitudinal, transverse, and vertical directions, respectively. In order to 

get the weight sensitivity functions of the GFRP-FBG sensor for the three components, the strain 

at the locations of the three components are calculated for one-unit load using KENLAYER 

software and represented as ԑL, ԑT, and ԑV for longitudinal, transverse, and vertical component 

respectively. Thus, the weight sensitivity of the GFRP-FBG sensor for WIM measurements for the 

three components can be represented as follows: 
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4.2. Sensitivity Study 

From Equations 21, it is clearly seen that the sensitivity of the 3D GFRP-FBG sensor for 

WIM measurement in all three dimensions will be significantly influenced by different factors 

such as sensor installation depth (z), host material property (E), and the location of the wheel path 
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(l). In this section, the influences of all these parameters on the 3D GFRP-FBG sensor for the WIM 

measurements will be investigated. 

4.2.1. Sensor depth (z) 

Numerical simulations on the sensitivity of the installation depth on the sensor’s 

performance is performed using KENLAYER software and Equations (20 and 21) by changing the 

installation depth, z, and fixing all the other parameters. Figure 24 shows the changes of the 3D 

GFPR FBG sensor’s WIM measurement sensitivity with various installation depths in 

longitudinal, transverse, and vertical directions, respectively. Figure 24 shows that the installation 

depth significantly influences the sensor’s behavior for WIM measurement. The simulation 

assumes the elastic modulus of the asphalt concrete to be 3447.4 Mpa (500 ksi), and the wheel 

path to be directly loaded right above the vertical component of the 3D sensor on the asphalt 

surface.  

The longitudinal and transverse components of the 3D sensor show highest measurement 

sensitivity either on the surface of the pavement or on the bottom of the asphalt layer, and the 

vertical component has the highest sensitivity near to the middle of the HMA layer. If installed on 

the surface of the pavement, the sensor will be vulnerable to damage, resulting in shorter service 

life. Thus, the recommended practice is to install the sensor at the bottom of the asphalt concrete 

layer to secure the best measurement sensitivity. Figure 24 shows that when installing the sensor 

at the bottom of the asphalt layer, all three components of the 3D sensor are very sensitive to WIM 

measurements. The vertical component of the 3D sensor is in compression wherever the 

installation depth is, and it has the largest WIM measurement sensitivity of about -41nm/kips, but 

still has WIM measurement sensitivity of about -28nm/kips at the bottom of the asphalt layer. The 

longitudinal and transverse components will be in tension if their position is on the bottom of the 
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HMA layer with measurement sensitivity around 18nm/kips, which is about 65% of the vertical 

component at the bottom of the asphalt layer.  

 

Figure 24. Sensor’s WIM measurement sensitivity changes with sensor depth in longitudinal (L), 

transverse (T) and vertical (V) directions 

4.2.2. Host material property (E) 

The authors observed that the material property of the host matrix is very important to any 

embedded sensors [45] and affects the sensor stability and reliability in service. The modulus of 

elasticity is the major parameter, which represents the material property of the host matrix. Figure 

25 shows the WIM measurement sensitivity changes of the 3D GFRP-FBG sensor for its 

longitudinal, transverse, and vertical components with a different modulus of elasticity, E, of the 

asphalt materials. The simulation assumes that the sensor is installed at the bottom of the asphalt 

layer, and the wheel load is directly applied directly above the vertical component of the 3D sensor 

on the asphalt concrete surface.  
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As shown in Figure 25, a softer host matrix (HMA materials) yields higher WIM 

measurement sensitivity, and the sensor’s sensitivity would decrease with an increase in the 

modulus of the host materials. At a temperature of 70°F, the asphalt has a typical elastic modulus 

of about 2068.4 Mpa (300 ksi), resulting in measurement sensitivity of -40nm/kips for the vertical 

component and 18nm/kips for longitudinal and transverse components of the 3D sensor. The 

changes in the property of the host matrix would affect the performance of the vertical component 

much more than the other two directions. The sensitivity of the vertical components will 

dramatically drop from -60 nm/kips to -26 nm/kips, almost 60%, if the modulus of the host matrix 

varies from 1206.6 Mpa (175 ksi) to 2757.9 Mpa (400 ksi) respectively. However, the longitudinal 

and transverse components of the sensor show less dependence on the modulus of the host 

materials with less than a 20% drop when the modulus of the host matrix varies from 1206.6 Mpa 

(175 ksi) to 2757.9 Mpa (400 ksi). Because asphalt is a viscoelastic material, its elastic modulus 

changes significantly with temperature and loading rate. The elastic modulus of asphalt will change 

dramatically between different seasons and even during the course of a single day. For an accurate 

WIM measurement in practical applications, the authors recommend that the developed 3D GFRP-

FBG sensor be further studied for temperature compensations considering the material property 

changes with temperature and wheel loading rate. 
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Figure 25. Sensor’s WIM measurement sensitivity changes with pavement modulus of elasticity, 

E, in longitudinal (L), transverse (T) and vertical (V) directions 

4.2.3. Load location (l) 

Because the developed sensor is a localized sensor, the actual wheel paths of the vehicles, 

which determine the loading locations on the sensor, are very important for measurement accuracy, 

stability, and repeatability. Assuming sensors are installed at the bottom of the asphalt concrete 

layer with an elastic modulus of 3447.4 Mpa (500 ksi), Figure 26 shows the WIM measurement 

sensitivity changes of the 3D GFRP-FBG sensor’ longitudinal, transverse, and vertical components 

with various physical longitudinal locations of the wheel load.  

Figure 26 shows that all sensors’ components have maximum WIM sensitivity when the 

load is applied directly over the sensor. The vertical component is very sensitive to loading 

locations. In the simulated case, the vertical component will respond to a wheel load longitudinally 

within 20 cm (8 in.) of the sensor head. The transverse component will respond to a wheel load 

longitudinally within 30 cm (12 in.) away from the sensor head. Thus, because some trucks may 

have double or triple tires, which may be within 30 cm (12 in.) space, the WIM measurement for 
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trucks with multiple tires is a combined effect from the grouped tires. More investigations on the 

influences of neighboring tires are necessary for an accurate WIM in practice. The longitudinal 

component will respond in tension when the wheel load is within the depth of the asphalt layer 

(12. 5cm or 5 in.) and in compression after the wheel load passes the depth of the asphalt layer 

until it is more than 60 cm (24 in. or 2 ft.) away from the sensor. The axle distance of a vehicle is 

much bigger than 60cm (2 ft.), and that leads to little influence from various axles on the sensor’s 

response. Also, in real traffic, especially, in highway traffic, the following distance between 

vehicles will be significantly larger than 60 cm (2 ft.). Therefore, the influence from nearby 

vehicles to the sensor will be negligible.  

 

Figure 26. Sensor’s WIM measurement sensitivity changes with longitudinal location of the 

wheel in longitudinal (L), transverse (T) and vertical (V) directions 

From Figure 25, 25, and 26, it can be seen that although the vertical component of the 3D 

sensor has the largest sensitivity, it also depends significantly on the material property changes 

induced from temperature, loading rates, and loading locations. The vertical component can only 

respond to a wheel load within 20 cm (8in.) of the sensor head, but in practice, it is very challenging 
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to ensure the vehicle will pass directly over the sensor head (within a 20 cm (8in.) radius) when 

driving. The transverse component of the 3D is less dependent on the material property of the host 

matrix. However, it also requires the wheel load to be within a 30 cm (12in.) radius of the sensor. 

On the other hand, the longitudinal component of the 3D sensor has a competitive 

sensitivity, less dependence on property changes of the host matrix from temperature or loading 

rate and is sensitive to loads within a 60 cm (24in.) radius. Thus, the longitudinal component of 

the 3D sensor, which aligns with the traffic wheel path, will be most suitable for WIM 

measurements and warrants further investigation for practical applications. Based on this field 

assessment, the authors selected the longitudinal component of the 3D sensor to test the feasibility 

of the sensor for high-speed WIM measurement. 

4.3. Field Validation of a Case Study 

4.3.1. Field testing setup 

Following Section 3.1, a sensor network of sensor 3D-2 was used for WIM measurements 

validation. All the sensor components show high sensitivity for WIM measurements, as shown 

above in sensitivity study. However, vertical and transverse components have worst field results 

due to the fact that the contact area over the transverse component is much less than longitudinal 

component and the vertical component was installed in a base layer which yields to a higher error 

in a strain transfer rate of the GFRP to host material. Thus, the longitudinal component of the 3D-

2 sensor was used for WIM measurements validation. 

The 3D-2 sensor was installed inside the Pavement, Cell 17. Figure 27 shows the flexible 

pavement cross section of Cell 17. The cross-section consists of 5 in. of HMA as a wearing layer, 

12 in. of gravel base layer, 19 in. of selected material as a sub-base layer, and clay subgrade.  
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Figure 27. Cell 17 flexible pavement cross section 

In order to construct a KENLAYER model for the above cross-section, all the material 

properties should be provided, since the HMA material is a visco-elastic material, which means 

that the modulus of elasticity of the material changes with the load frequency on the material 

(which can be related to the rolling vehicle speed) and the material temperature. For that purpose, 

two HMA samples from Cell 17 have been tested to get the dynamic modulus properties of the 

HMA material following AASHTO standard [73]. The master curve from the dynamic modulus 

test results has been constructed, as shown in Figure 28. The master curve can relate the modulus 

of elasticity (E*) with the reduced frequency (fr) as shown in Equation 22, where fr is a function 

of the shift factor (a (T)) as seen in Equation 23. The shift factor is a function of pavement 

temperature (T) and loading frequency (f) [74].  

log|E∗| = log|Emin| +
log|Emax|−log|Emin|

1+eβ+μ×logfr
                                       (22) 

   fr = f × 10log (a(T))                                                      (23) 

where Emin, Emax, ,  are curve fitting coefficients obtained from the master curve. 

The loading frequency is a function of the vehicle speed (v). In the case we assume that 

there will be no effect when the load is six times contact radius (a) far away from the sensor 
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location, the travel time on the top of the sensor (T) then is equal to 12a/v, the loading frequency 

(f) can be related to the vehicle speed (v) as below: 

f =
1

T
=

v

12a
                                                                (24) 

Thus, the modulus of the flexible pavement can be derived with specific driving speed and 

temperature. 

 Table 9 shows the material properties for the Cell 17 pavement cross section. After the 

installation of the sensor, the 3D-2 longitudinal component was connected to an FBG integrator 

together with a temperature compensation FBG sensor. The FBG integrator was further connected 

to a personal computer to record the data. For WIM measurement at low speed, it is not required 

to have a high sampling frequency of the instrument. Therefore, the sampling rate of the FBG 

integrator was set to be 100 Hz, but for high speed, the sampling rate was set to be > 1200 Hz to 

eliminate the dynamic effect as stated by Zhiming et al. [63].   

 

Figure 28. Master curve of Cell 17 HMA dynamic modulus test results 
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Table 9. Material properties 

Layer Modulus of 

elasticity(E), Ksi 

Poisson’s ratio 

HMA at 25.2 0C and 5 mph speed 749.9 0.3 

HMA at 25.2 0C and 45 mph speed 1349 0.3 

Base 

 

60 0.35 

Sub-base 

 

40 0.35 

Subgrade 12 0.4 

 

4.3.2. Field testing results 

To perform the validation tests, a -5-axle semi-truck with a total gross weight of 80 Kips 

(36.29 tons) was used to generate the weight to be measured in motion. The truck moves on top of 

the sensor back and forth at 5 mph and 45 mph to validate the sensor for low-speed and high-speed 

WIM measurements. Figure 29 (a) shows of the axle load distribution of the truck at each axle, 

and Figure 29 (b) shows the truck dimensions.  

In this study, the right wheels of the truck are the weights to be measured which have the 

flowing weight distribution of 2.63 tons (5.8 kips), 4.11 tons (9.05 kips) , 3.65 tons (8.05 kips), 

3.9 tons (8.6 kips), and 3.72 tons (8.2 kips) for first, second, third, fourth, and fifth right wheel, 

respectively. Since the sensor only measures the weight of a single wheel and estimate the vehicle 

weight based on the assumption that the weight is equally distributed on each wheel. To reduce 

the measurement error from this assumption, more numbers of sensors (four sensors or more in 

parallel) are recommended to be placed as a measurement system for more accurate axle weight 

measurement in practice if budget allows. Since the sensitivity study shows the significant effect 

of the load location on the WIM measurements, the truck’s driver has been asked to take the road 

center line as a reference for the left side of the truck, using the truck dimension and with the 

known distance of the center line from the sensor location, the tire location can be predicted. The 

longitudinal component of the 3D-2 sensor clearly identifies each axle of the truck. 

mailto:HMA@25.2
mailto:HMA@25.2
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Figures 30 shows the sensor’s responses on its longitudinal components for one truck 

passed on the Cell 17 pavement at the MnROAD facility in September 2017 at 5 mph and 45 mph 

vehicle speed. 

  
                                                                (a) 

 
(b) 

Figure 29. The layout of MnROAD loading truck (a) and the truck dimension (b). (1’=1 ft., 1” 

=1 in.) 
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Figure 30. 3D-2 longitudinal sensor’s response at 5 mph and 45 mph vehicle speed 

Equations (20 and 21) and the output from the KENLAYER estimated the theoretic WIM 

measurement sensitivity (S) for each axle of the longitudinal component of the 3D sensor as shown 

in Table 10 (unit: 10-6 nm/kip). From Table 10, the average theoretic WIM measurement sensitivity 

of the longitudinal component of the 3D sensor is 5.19×10-6 nm/kip and 6.98×10-6 nm/kip at 45 

mph and 5 mph, respectively. According to the calculated sensitivity and the measured 

wavelengths in Figure 30, Table 11 summarizes the WIM measurements from the longitudinal 

component of the 3D-2 sensor for each truck axle at 5 mph and 45 mph. 

Table 10. Estimated theoretic sensitivity (s) [unit: 10-6 nm/Kip] 

Speed S1 S2 S3 S4 S5 Avg S 

5 mph 8.25 6.51 6.55 6.86 6.71 6.98 
45 mph 5.47 4.99 5.00 5.31 5.16 5.19 
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Table 11. Field WIM measurements from the sensor at 5 mph and 45 mph 

Speed Axle 1 Axle 2 Axle 3 Axle 4 Axle 5 

5 mph 
Wavelength 

changes (pm) 
60 82 74 74 77 

WIM (kips) 4.5   8.15  7.31  6.98  7.4 
45 mph 

 

Wavelength 

changes (pm) 
42 71 65 58 57 

WIM (kips) 4.37 8.82 8.28 6.94 7.27 
 

4.3.3. Field test results discussion  

Table 12 compares the WIM measurements from the longitudinal of the 3D-2 sensor with 

the reference weights for each truck axle at 5 mph and 45 mph vehicle speed. When compared 

with the reference weight which are the actual weights of the truck tires, the longitudinal 

component of the sensor has a measurement accuracy of 86.3% and 89.5% at 5 mph and 45 mph 

vehicle speed, respectively. This study serves as a preliminary study to investigate the feasibility 

of the GFRP-FBG sensor for WIM system in flexible pavement. It can be seen from Table 12 that 

there is a big variance of measurement error between different axles, which may majorly be 

contributed by the variance of loading position for each axle. Due to the fact that the 3D sensor is 

still categorized as a point sensor and the loading position for each axle is not exactly the same 

when the vehicle is passing the sensor location, this error may be significant. In the future, the 

actual influence of loading positions of each axle on the sensor measurement error should be 

further studied and will be reported later. In addition, there are some other error sources such as 

temperature estimation, driving speed, and dynamic modulus estimation. These contributing 

factors on measurement accuracy will also need to be investigated in a future study.  
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Table 12. Comparison of the WIM measurements with references 

Measured 

Weight 

   Axle 1 Axle 2 Axle 3 Axle 4 Axle 5 

WIM 

(Kips) 

Error  

(%) 

WIM 

(Kips) 

Error 

(%) 

WIM 

(Kips) 

Error 

(%) 

WIM 

(Kips) 

Error 

(%) 

WIM  

(Kips) 

Error 

(%) 

Reference 5.8 - 9.05 - 8.05 - 8.6 - 8.2 - 

5 mph 4.5 21.9 8.15 9.9 7.31 9.14 6.98 18.82 7.4 9.34 

45 mph 4.37 14.32 8.82 1.9 8.28 4.49 6.94 17.8 7.27 12.7 

 

4.4. Summary 

In this Chapter, the proposed sensor network has been validated for low-speed and high-

speed WIM measurements in flexible pavement. The transfer function has been derived using 

strain-wavelength relation and strain results from KENLAYER software, the performed sensitivity 

study shows that the GFRP-FBG sensor is very sensitive to the sensor installation depth and the 

best performance for WIM measurements is to install the sensor at the bottom of the pavement 

sections. Also, the sensor’s WIM measurement sensitivity will decrease with the increase of the 

modulus of the embedded host materials. If the modulus increases twice, the sensitivity of the 

sensor for all the three components will decrease almost half for the WIM measurement. All 

sensor’s components have maximum WIM sensitivity when the load is applied directly over the 

sensor. Also, the WIM sensitivity of all sensor’s components tends to zero after one foot. Field 

testing validated that the longitudinal component of the sensor has a measurement accuracy of 

86.3% and 89.5% at 5 mph and 45 mph vehicle speed, respectively. 
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5. PARAMETRIC STUDY 

At the first stage of the development of the WIM system, the variation in the wheel load of 

a moving vehicle was the only parameter significantly contributes to the inaccuracy of weighing 

measurements. However, an analytical study stated that there were additional factors significantly 

affect the weight measurement of a moving vehicle [75], including, the temperature of the 

pavement, road roughness, vehicle speed, vehicle’s suspension system, weather conditions, etc. 

These factors affect the weight measurements, regardless of the sensor technology. Basically, these 

factors can be divided into two categories according to the source of their occurrence (WIM system 

or vehicle), or the degree of influence on the weight measurements (major or minor) as shown in 

Figure 31. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31. Factors affecting the WIM system measurements accuracy 

 

 

 

Factors 

Major 

Vehicle  WIM 

System 

Minor 

• Pavement temperature  

• Sensor type 

• Pavement type 

 

• Vehicle speed 

• Wheel path 

 

• Vertical bouncing 

• Vehicle class 

• Type of suspension  

 

• Icing 

• Wind 
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From Figure 31 and the performed feasibility study in Chapter 4, it can be seen that to 

apply the new developed 3D-GFRP-FBG sensors for traffic monitoring; it is urgently needed to 

have an insightful study of the significant factors and their effect on the weight measurements. 

Since this study focuses on the newly developed 3D-GFRP-FBG in flexible pavements for weight 

measurements, the influencing factors of sensor type and pavement type are fixed when installed. 

Thus, in this Chapter, the influences of the three major factors on the 3D-GFRP-FBG sensors for 

weight measurements have been studied systematically, including wheel path (vehicle maneuver), 

vehicle speed, and pavement temperature.     

5.1. Wheel Path  

The performed sensitivity in Section 4.2.3 shows that the actual wheel paths of the vehicles, 

which determine the loading locations on the sensor, are very important for the weight 

measurement accuracy. Also, since it cannot be guaranteed that the assumed wheel path location 

is the actual wheel path which the driver has been directed to drive on the sensor location as in a 

system used for LS-WIM as a part of the stationary weight scale, and it might be yield to blonder 

error if the system used for HS-WIM. Thus, the location of the load should be estimated and 

regarded as priority input of the system. 

To determine the location of the load, a minimum of two sensors in the same row with 

known distance (H) are needed. In this study, the longitudinal component of the 3D -2 sensor and 

longitudinal 1D-3 sensor in the proposed sensor network will be used to detect the load locations 

as shown in Figure 32. The distance (H) between the two sensors was chosen to be 1 ft and 8.5 in 

to comply with the 1 ft. sensitivity range of the sensor as stated in Section 4.2.3. The distance of 

the load center is assumed to be X1 from 1D-3 sensor and X2 from the longitudinal component of 

the 3D-2 sensor. Figure 33 shows the possible loading scenario by using the two-sensor network 
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to determine the location of the load at the time of weighing. Figure 33 indicates that there are 

three loading scenarios: Scenario 1) the load is in between of the two sensors, where X1+X2=H; 

Scenario 2) the load is on the right of the sensor 3D-2, where X2=X1-H; Scenario 3) the load in 

on the left of the 1D-3 sensor, where X1=X2-H.  

 

Figure 32. Sensor network to determine the loading position 

 

Figure 33. Loading position scenarios 

In order to investigate the ability of the system to determine the location of the moving 

load, distances X1 and X2 should be estimated for all scenarios from the actual sensor response. 

From Equation 21, the 1D-3 sensor response (S1) and the 3D-2 sensor longitudinal component 

response (S2) can be determined as follow: 

1 1 1 1 (1 )eS P P   =  =     −
                                        (25) 

3D-1

1D-3

1' 8.5''

2' 5''

Traffic

Wheel path

16'

CL

3D-2

FBG-Temp Edge line
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2 2 2 2 (1 )eS P P   =  =     −
                                       (26) 

where, λ1 and λ2 are the center wavelengths of 1D-3 and the longitudinal part of the 3D-2 sensor, 

respectively, P is the measured weight, ε1 and ε2 are the induced strain in the host material due to 

the load P at sensor S1 and sensor S2 location, respectively, φ is the strain transfer rate of the GFRP 

to host material, and (1-Pe) is the strain sensitivity.  Since the strains at the sensor’s location (ε1 

and ε2) are a function of the load location (X1 and X2) and the load P, and it is hard to analyze 

flexible pavement theoretically as shown in Equations (17-19), the KENLAYER software is used 

in this study to determine the strains at the sensor location.  

Figure 34 shows the procedure used to calculate the actual distances X1 and X2 for a given 

load, pavement temperature, and vehicle speed with the measured strains. Estimating the pavement 

dynamic modulus, E*, is a significant input to construct KENLAYER model. For a given 

temperature and speed, Master curve developed in Section 4.3.1 can be used to estimate E*. Then, 

the given load and estimated E* are used to construct KENLAYER model, which can be used to 

calculate the strain at any distance from the load and construct a strain as a function of X (load 

location). The strain function can be used to estimate the sensor response (S1 and S2) using 

Equations (25 and 26). Then, the actual sensors response can be used to determine X1 and X2.  
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Figure 34. Loading position estimation methodology 

In order to validate the system to determine the load location, a two-axle vehicle (Chevrolet 

Suburban) with a total gross weight of 6 Kips as shown in Figure 35 was used to generate the 

weight to be measured in motion. The vehicle moves three times on four different locations at 25 

mph on Sep 25, 2018, to validate the system for load location determination, as shown in Figure 

36. The first location (L1) is 0.75 ft.  to the left of the 1D-3 sensor, the second location (L2) is just 

on the top of the 1D-3 sensor, the third location (L3) is just on top of the 3D-2 sensor, and the 

fourth location (L3) is in the middle of the distance between the 1D-3 sensor and the 3D-2 sensor.  
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Figure 35. Vehicle load distribution      

 

Figure 36. Loading positions 

Figures (37, 38, 39, and 40) show the 3D-2 and the 1D-3 sensors’ responses on locations 

L1, L2, L3, and L4, respectively. Figures (37, 38) indicates that on locations L1 and L2 since the 

vehicle runs near to the 1D-3 sensor, it is obvious that the 1D-3 sensor’s response is much higher 

than that of the 3D-2 sensor. Figure 38 shows that the 3D-2 sensor is still sensitive to the load when 

the load is on location L2, but it seems that the 3D-2 sensor’s response is not sensitive to the load 

when the vehicle is passed on location L1, which complies with the simulation results of the 

performed sensitivity study in Section 4.3.2. Conversely, as shown in Figure (39) on location L3, 

the vehicle is supposed to move on top of the 3D-2 sensor. Therefore, the 3D-2 sensor has a higher 

sensor response, but the 1D-3 sensor is still sensitive to the load. Figure 40 shows that both sensors’ 
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responses (1D and 3D) on Location L4, which lays in between sensors 1D-3 and 3D-2. It clearly 

indicates that the load is moved in between the 1D-3 sensor and the 3D-2 sensor since the response 

is approximately identical. Both sensors show high repeatability accuracy in all three runs, as 

shown in Figures (37, 38, 39, and 40).   

 

Figure 37. 3D-2 and 1D-3 sensors’ responses for three runs using loading position L1 
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Figure 38. 3D-2 and 1D-3 sensors’ responses for three runs using loading position L2 

 

Figure 39. 3D-2 and 1D-3 sensors’ responses for three runs using loading position L3 
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Figure 40. 3D-2 and 1D-3 sensors’ responses for three runs using loading position L4 

Figure 41 shows the simulated sensor’s response (S1 and S2) with the load location (X) for 

tow axle’s right tire of the vehicle passing on location L4. The first axle’s right tire weights 1.57 

Kips and the second axle’s right tire weights 1.43 Kips. In order to construct the sensor response 

function, the temperature was monitored by a FBG temperature compensation sensor, and the 

recorded temperature was 17.9 C°. The speed was recorded using the radar gun, and it was 25 mph. 

The temperature and the speed were used to estimate the dynamic modulus of the pavement, which 

resulted in a dynamic modulus of 1678.9 ksi for the pavement. The first run of the vehicle has an 

actual sensor response for 1D-3 sensor equals to 0.0152 nm and for 3D-2 sensor equals to 0.0192 

nm for the first axle’s tire. Following the procedure in Figure 34 and the simulated sensor response 

in Figure 41, the value of X1 and X2 was determined to be 11.6 in. and 8.9 in., respectively.   
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Figure 41. Sensor's response changes with load location 

In order to investigate the effect of the load location on the weighing measurements, the 

weights were measured on all locations (L1, L2, L3, and L4) based on the assumed location in 

Figure 35 following the proposed procedure in Chapter 4. 

Furthermore, those results are compared with the measured weights using the estimated 

load locations from the measured results. Table 13 summarizes the input of KENLAYER model 

for all locations. Table 14 summarizes the WIM measurements from the longitudinal component 

of the 3D-2 sensor and the 1D-3 sensor for each vehicle axle for all locations before eliminating 

the load location effect for one run. When compared with the reference weights which are the 

actual weights of the vehicle axle, both sensors show measurements inaccuracy greater than the 

acceptable range of 10% error, and that due to the variance of loading position for each axle 

different than the assumed positions.  
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Table 13. KENLAYER model input for all loading positions 

Location Speed (mph) Temperature(C°) E*(Ksi) 

L1 
25 

16.46 1795.1 

L2 16.46 1795.1 
L3 17.08 1747.2 
L4 17.96 1678.9 

 

Table 14. WIM measurements error using the assumed loading positions 

 Axle 1 

Axle 2 

Axle 2 

Axle 4 
Reference weight 1.57 kips 1.43 kips 

Location 3D 1D 3D 1D 

L1 
Wavelength changes (pm) 2.45 23 2.8 20.7 

WIM (kips) 1.95   2.15  2.45  2.12 

Error (%) 24.5 37.3 71.4 48.4 

L2 

Wavelength changes (pm) 7.3 44.9 6 39.7 

WIM (kips) 2.45 1.82 2.21 1.72 

Error (%) 56.2 16 54.7 20.2 

L3 

Wavelength changes (pm) 45 6.3 34.7 6 

WIM (kips) 1.76 2.14 1.66 2.24 

Error (%) 12.7 36.4 16.5 56.5 

L4 
Wavelength changes (pm) 17 17.8 16.9 16.1 

WIM (kips) 1.72 1.82 1.83 1.76 

Error (%) 9.3 15.9 16.4 12.4 

To validate the proposed vehicle location error correction methodology for enhancing the 

weighing measurements accuracy, Table 15 summarizes the weight measurement for the same 

loading positions and the same run which summarized in Table 14 after correction on loading 

positions. It can be clearly seen that the correcting loading positions significantly reduces the 

inaccuracy of the measurement. The average measurements error for all loading positions (L1, L2, 

L3, and L4) based on Table 14 are 45.4%, 36.8%, 30.5%, and 13.5% before applying the proposed 

methodology, respectively.  The measurements inaccuracies for all loading positions (L1, L2, L3, 

and L4) are 6.1%, 5.4%, 5.7%, and 2.9% after loading position corrections, which are all fall in 

the allowable range less than 10% on average.  
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Table 15. WIM measurements error using the estimated loading positions 

 Axle 1 

Axle 2 

Axle 2 

Axle 4 
Reference weight 1.57 kips 1.43 kips 

Location 3D 1D 3D 1D 

L1 
Wavelength changes 

(pm) 

2.45 23 2.8 20.7 

WIM (kips) 1.41   1.65  1.46  

1.52 Error (%) 10.2 5.6 2.4 6.2 

L2 

Wavelength changes 

(pm) 

7.3 44.9 6 39.7 

WIM (kips) 1.49 1.71 1.48 1.36 

Error (%) 4.7 8.9 3.7 4.4 

L3 

Wavelength changes 

(pm) 

45 6.3 34.7 6 

WIM (kips) 1.69 1.68 1.52 1.44 

Error (%) 7.6 7.3 6.8 1.2 

L4 
Wavelength changes 

(pm) 

17 17.8 16.9 16.1 

WIM (kips) 1.61 1.63 1.47 1.46 

Error (%) 2.5 3.5 3.2 2.4 

Since the vehicle moves on each loading position three times, Figure 42 (a) summarized 

the inaccuracy of the measurements for each loading position before loading position correction, 

and Figure 42 (b) shows the measurements error after applying the proposed correction 

methodology. From Figure 42, it can be concluded that the proposed loading position correction 

methodology significantly reduces the measurements inaccuracy to allowable limit less than 10% 

and eliminate the error variances among the two sensors since the sensors have a big variance in 

error measurements as shown in Figure 42 (a). In contrast, Figure 42 (b) shows that both sensors 

have less variances in error measurements. 
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                                                                                   (a)   

 

                                                                                                  (b) 

Figure 42. Weight measurement error for all loading positions (L1, L2, L3, and L4) using 

assumed loading positions (a) and using corrected loading positions (b) 

5.2. Vehicle Speed 

Since the sensor network is installed in the flexible pavement (a visco-elastic material), 

which means that the modulus of elasticity of the material changes with the load frequency. Based 
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on Equation (24), the loading frequency is a function of the vehicle speed (v). Figure 43 shows the 

changes in the pavement dynamic modulus (E*) with a vehicle speed at a fixed pavement material 

temperature. From Figure 43, it can be seen that if the vehicle speed is increased from 10 mph to 

20 mph, the dynamic modulus will be increased by 15% approximately. Also, based on the 

sensitivity study performed in Section 4.2.3, the dynamic modulus is significantly affecting the 

WIM measurements sensitivity. Thus, the vehicle speed is expected to influence the WIM 

measurements sensitivity of the developed system.  

 

Figure 43. Dynamic modulus (E*) changes with vehicle speed 

Figure 44 shows the change of the WIM sensitivity with different vehicle driving speeds. 

The WIM sensitivity is noticed to significantly decrease in the low-speed range from 1 mph to 25 

mph, after 25 mph the WIM sensitivity still decrease but with less effect.  
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Figure 44. WIM sensitivity changes with vehicle speed 

To distinguish the vehicle speed effects from the influence of pavement temperature and 

loading position on the weighing error, the vehicle moves on the top of the 3D-2 sensor using 

loading position (L3) three times at five different speeds of 10 mph, 20 mph, 30 mph, 40 mph, and 

50 mph at a recorded temperature of 14.8 C°. Figures (45, 46, 47, 48, and 49) show the 3D-2 sensor 

responses on its longitudinal component and the 1D-3 sensor responses at 10 mph, 20 mph, 30 

mph, 40 mph, and 50 mph vehicle speed, respectively. Table 16 summarizes the estimated dynamic 

modulus for each vehicle speed, which will be used as the input of KENLAYER model. 

Table 16. KENLAYER model input at a different vehicle speed 

Speed (mph) Location Temperature(C°) E*(Ksi) 

10 

L3 14.8 

1663.4 

20 1861.8 
30 1973.1 
40 2049.4 
50 2106.9 
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Figure 45. 3D-2 and 1D-3 sensors’ response at 10 mph vehicle speed 

 

Figure 46. 3D-2 and 1D-3 sensors’ response at 20 mph vehicle speed 

 



 

73 

 

Figure 47. 3D-2 and 1D-3 sensors’ response at 30 mph vehicle speed 

 

Figure 48. 3D-2 and 1D-3 sensors’ response at 40 mph vehicle speed 
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Figure 49. 3D-2 and 1D-3 sensors’ response at 50 mph vehicle speed 

Figure 50 (a) shows the calculated weighing error based on the assumed loading position 

using the 3D-2 sensor longitudinal component. The 3D-2 sensor has high inaccuracy greater than 

30% on average for all vehicle speed. This blonder error is a result of loading and speed together.  

To eliminate the effect of loading position on the weight measurements, the methodology in 

Section 5.1 is used, and the weighing error is calculated based on the corrected loading position as 

shown in Figure 50 (b). Figure 50 (b) indicates that the inaccuracy in WIM measurements 

decreased significantly less than 10% on average for all vehicle speed. Comparing the results from 

Figure 50 (b) to the results from Figure 50 (a), the loading position is still the major parameter 

affecting the WIM measurements accuracy followed by the vehicle speed. The effect of vehicle 

speed on the WIM measurements accuracy can be eliminated by using a high sampling frequency 

of the integrator and a good estimate of the pavement dynamic modulus.  
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                                                                                   (a) 

 

       (b) 

Figure 50. Weight measurements error at vehicle speed (10, 20, 30, 40, and 50) mph using 

assumed loading position (a) and using corrected loading position(b) 

5.3. Host Material Temperature  

Section 4.1.3. shows the dependency of the flexible pavement dynamic modulus (E*) on 

the pavement temperature, due to the large variance between day and night temperature. Hence, 
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the pavement temperature effect on the accuracy of the WIM measurements should be evaluated. 

Figure 51 shows the changes in the dynamic modulus (E*) with the pavement temperatures. As 

the pavement temperature increased the dynamic modulus decreased, which yields to increase 

the WIM measurements sensitivity, as shown in Figure 52.  

 

Figure 51. Dynamic modulus changes with pavement temperature 

 

Figure 52. WIM measurements sensitivity changes with pavement temperature 
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To distinguish the pavement temperature effect from the influence of vehicle speed and the 

loading position on the weighing error, the vehicle moves on the top of the 3D sensor using loading 

position (L3) three times at three different periods on 9/25/2018 at 25 mph vehicle speed. The 

pavement temperature was monitored using the FBG temperature compensation sensor for the 

three different periods, and recorded as follow 14.6 C°, 17.1 C°, and 19.9 C° for the morning, 

noon, and afternoon periods, respectively. Figure 53 shows the 3D-2 sensor’s responses and the 

1D-3 sensor’s responses at 25 mph vehicle speed in the noon period with a recorded temperature 

of 17.1 C°. Table 17 summarizes the estimated dynamic modulus for each recorded temperatures, 

which were used as the input of KENLAYER model. 

 

Figure 53. 3D and 1D sensor's response at 17.1 °C pavement temperature 

Table 17. KENLAYER model input at different pavement temperature 

Temperature(C°) Location Speed (mph) E*(Ksi) 

14.6 
L3 25 

1940.1 

17.1 1747.2 
19.9 1521.6 
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Figure 54 shows the average calculated weighing error for all vehicle runs based on the 

assumed loading position using the 3D sensor longitudinal component (Avg-B) and based on the 

corrected loading position (Avg-A). From Figure 54, it is obvious that the effect of pavement 

temperature on the weighing error is less significant compared with the effect of the loading 

position. Besides, the average error is within 10% allowable range after eliminating the load 

position effect. 

 

Figure 54. Weight measurements error at pavement temperature (14.6, 17.1, and 19.9) °C using 

assumed loading position (Avg-B) and using corrected loading position (Avg-A) 

5.4. Traffic Monitoring System 

Based on the findings in this study, a cost-effective comprehensive traffic monitoring 

system can be constructed using the proposed GFRP-FBG sensors in order to extract all the 

parameters that describe the characteristics of vehicles and their movement on the road. In this 

section, a sensor network based on the FBG sensor is introduced for two-lane highway with a 

typical lane width of 12 ft. Since the longitudinal component of the GFR- FBG sensor has the 

better performance among other components, a nine 1D-GFRP-FBG sensor (in longitudinal 
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direction) will be installed at the bottom of the pavement wearing layer in one row with 2.4 ft. of 

distance between each other. This will guarantee the detection of all rolling axles and comply with 

the proposed methodology in Section 5.1 to precisely estimate the loading position for weighing 

purposes as shown in Figure 55. Also, a two 1D GFRP-FBG sensor (in the longitudinal direction) 

will be used at 16 ft distance from the longitudinal sensor row for speed, wheelbase, and vehicle 

class estimation. In order to monitor the pavement temperature, three FBG temperature 

compensation sensors will be used, as shown in Figure 55. Also, a weather station will be installed 

on the roadside to monitor other weather conditions such as moisture, humidity, etc. 

 

Figure 55. Traffic monitoring system 

In order to monitor the traffic in real time, a multi-channel wireless integrator with high 

sampling frequency up to 20 KHz will be used. This integrator will be connected with a storage 

device which has the ability to reach the internet. The cost of the proposed system can be estimated 

as follows: $1100 for all GFRP-FBG sensors, $150 for FBG temperature compensation sensors, 

$250 for cables, $4500 for the wireless integrator, $500 for the storage device, and $3500 for the 

weather station. The approximate cost for the proposed system is within $10,000.   
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6. CONCLUSION AND FUTURE WORKS  

This study introduced a traffic monitoring system based on GFRP-FBG sensors which can 

be installed inside flexible pavements. The conclusions of this study can be drawn as follows: 

1) The proposed system can survive the harsh construction process of pavement 

construction and extract various vehicle parameters including vehicle speed, wheelbase 

distances, and number of axles; 

2) The system can accurately estimate the speed and the wheelbase, with an accuracy 

above 98%; 

3) The field-testing results from real traffic show that the developed system can classify 

vehicle very accurately and using SVM-OAO and NN classifier have slightly higher 

accuracy than KNN and SVM-OAA. SVM-OAO and NN based classification system 

has an average accuracy of 97.5%, followed by SVM-OAA and KNN with an average 

accuracy of 96 %; 

4) The system can successfully perform counting of axles and vehicles by tracking the 

peaks through the sensor’s response; 

5) For WIM measurements, the GFRP-FBG sensor is very sensitive to the sensor 

installation depth, the modulus of the embedded host materials, and location of the 

loading. The best performance for WIM measurements is to install the sensor at the 

bottom of the pavement sections, the sensor’s WIM measurement sensitivity will 

decrease with the increase of the modulus of the embedded host materials, and the WIM 

sensitivity of all sensor’s components tends to zero after one foot; 

6) For WIM measurements, field testing validated that the longitudinal component of the 

sensor without any corrections has a measurement accuracy of 86.3% and 89.5% at 5 
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mph and 45 mph vehicle speed, respectively. However, the performed parametric study 

on the stability of WIM system shows that the loading position is the most significant 

parameter affecting the WIM measurements accuracy in addition to the vehicle speed 

and pavement temperature. With the correction in loading locations, the WIM 

measurements error can be lowered to the allowable limit of 10%. 

In the future, efforts will continue to transform the current wired sensing system into a 

wireless system using Internet of-Thing (IoT). Also, other influencing factors measured from 

weather station such as moisture, wind, etc. will be considered in the future. 
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