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ABSTRACT 

Railroads are playing pivotal role to the economic growth of United States and trackbeds 

ensure their safe and smooth operations. However, reliable trackbed performance prediction has 

always been challenging due to many reasons, for instance materials characterization, 

deteriorations of materials and geometries due to railways operation and environmental changes 

etc. All these factors exhibit varying levels of intrinsic variabilities and uncertainties. These 

variations and uncertainties are completely ignored in most of the state-of-the-practice problems 

due to lack of availability of robust models that can characterize variations in materials, 

geometries, and/or loadings. In this study, a Random Finite Element based three-dimensional 

numerical model, named ADYTrack, is developed for structural analysis of railroad trackbeds. 

Uniqueness of this model is the inclusion of materials’ intrinsic variabilities, geometric 

imperfections and/or uncertainties in axle loadings. The ADYTrack results, when compared with 

the analytical solution of a cantilever beam model, produced a maximum percentage difference of 

0.7%; and 6% difference when compared with ANSYS software results for a single layer trackbed 

model; and a range of 5-20% difference was observed when validated against the actual field 

measurements. Sensitivity studies using RFEM based ADYTrack revealed that with the increasing 

variations in input parameters, measured by coefficient of variations (COV), the variations in 

output parameter also increased, and generally followed a bilinear trend with first linear 

component relatively insensitive up to around 30% COV of input parameters. However, beyond 

this limit, a considerable increase was observed in COVs of output parameters. For a COV of 80% 

in subgrade resilient modulus, a COV of 65% in vertical stress at the top of subgrade layer was 

observed. Additionally, the performance of any substructure layer found to be more sensitive to 

the variations in its own resilient modulus values. Furthermore, resilient modulus of subgrade layer 
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was found to be the most influential input parameter, as revealed by many other studies, and so 

was its variations. To conclude, ADYTrack model can serve as a robust supplemental tool for 

railroad trackbed analysis, especially at locations that exhibit higher degrees of uncertainties and 

thus pose higher risk of public or infrastructure safety. 
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1. INTRODUCTION 

1.1. Research Background 

Railroad has always been considered as an efficient mode of transportation due the fact 

that it reduces friction between the moving wheels and rails. This consideration led the invention 

of animal driven carts and wagons and their use date back to 6th century BC in Greece. The 

invention of steam engine laid the foundation of modern days’ railways in early 19th century in 

Great Britain. Railways soon became the most preferable mood of transportation, in big 

metropolitans for public transportation and in industries like mining or ports for freight. Even in 

modern days’ transportation, railway is the most fuel efficient, environment friendly, safest, time 

saving and reliable mode of transportation.  

Safe, economical and reliable operation of railways heavily depends on construction 

quality and subsequent maintenance. In both these processes, estimation of material responses due 

to train movement is a considerable challenge. This challenge was first countered using some rules 

of thumb and empirical relationships. These empirical relationships were then improved in the 

light of theory, field and laboratory testing. Many full-scale field and laboratory studies conducted 

over the course of time to study the railroad trackbed performance in more realistic manner. Broad 

categories of solutions used in the railroad analysis and design are empirical (or semi-empirical), 

analytical and numerical solution. Each of these solutions have their own merits and demerits.  

Empirical solutions are usually site specific therefore have limited widespread 

applications. Analytical solutions are relatively easy and reliable to apply but these solutions 

cannot accommodate geometric changes. Numerical solutions generally have a widespread 

application in almost all fields, mainly due to their ability to characterize different materials, 

flexibility to generate different geometric shapes, and producing results with acceptable accuracy. 



2 
 

In addition, it allows to study the responses at any given location within the model which is 

sometimes not practically possible in the field or laboratory studies. As the railroad trackbed 

consists of widely different materials including steel, wood, concrete, and soils, and experiences 

complex interactions at their interfaces, numerical solutions are generally preferred over other 

methods.  

1.2. Literature Review  

1.2.1. Structural Modeling of Railroad Trackbeds 

Many researchers have proposed different models to predict the stresses and strains (or 

displacements) in different components of the railroad trackbed structure. The Beam on Elastic 

Foundation (BOEF) theory provided the earliest theoretical solution framework [1]–[5] for 

analysis and design of pavements. Winkler [6] used the Euler-Bernoulli beam supported by elastic 

foundation. He assumed the reaction forces are function of beam deflection at any given point 

along the beam under the application of externally applied loads. Burmister then introduced 

multilayer elastic theory [7], which facilitated many researchers to model the substructure with 

different materials.  

The BOEF theory upgraded by incorporating the multilayer elastic theory [7], brought the 

earliest railroad numerical models including MULTA [8]. MULTA model used Burmister’s 

multilayers elastic theory in conjunction with structural analysis models to solve a three-

dimensional model for tie-ballast reactions [9]. Some of its limitations included the inability to 

allow relative displacement between tie and ballast and all forces were in vertical direction only 

ignoring shear forces.  

Another breakthrough was the introduction of Finite Element (FE) methods [10]–[14] and 

its applications for pavement designs. Chang et. al. built a model, named PSA, on the fundamentals 
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of FE methods with prismatic element types for substructure [15]–[18]. It also separated the 

substructure from superstructure for the response calculations while maintaining the continuity 

conditions, baseline of FE analysis. This offered some advantage over MULTA including allowing 

to change the material properties along the tie and across the rail beam and computational 

economical when compared with models using brick elements. 

In addition, ILLITRACK [19], [20] combined the two-dimensional analysis and 

longitudinal direction followed by traverse direction two-dimensional analysis, thus formulating a 

quasi-three-dimensional finite element analysis. The model attempted to analyze the non-linearity 

and stress dependent response of materials to simulate the physical problem more accurately. The 

resilient modulus (Er), a ratio of cyclic stress to the corresponding recoverable strain, as given by 

Equation (1.1), was used to model the nonlinearity of ballast and subballast [21], [22]: 

 
2

1

K

r K = E   (1.1) 

where, K1 and K2 are soil parameters obtained from the laboratory testing. The major drawback 

of the model was its pseudo-three-dimensional assumption. 

Later, GEOTRACK was proposed by Chang et al.[23], which was a multilayer theory 

based three-dimensional model which was recently upgraded GEOTRACK for railroad track 

analysis [24] with Graphical User Interface (GUI) features. GEOTRACK was built on the 

fundamentals of multilayer theory with quasi-dynamic loading conditions [25], [26]. It also 

considered the nonlinear and stress dependent behavior of materials and kept ties separated from 

the substructure. The model’s primary focus was on the geotechnical response of the trackbed. The 

model considered eleven ties with wheel load applied at the mid-tie, assuming complete 

distribution of applied stresses by the fifth tie [27]. Rail and ties were modelled as linear elastic 
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beams, whereas substructure was modelled as linear elastic layers. This model was developed 

based on PSA and MULTA code while introducing some improvements. 

Huang et al. introduced KENTRACK based on same multilayer theory and FEA to 

calculate stresses and strains in substructure. KENTRACK is finite element based multi-layered 

elastic model developed in the University of Kentucky [28]–[34]. The model was capable of 

prediction not only the response of the trackbed but also the cumulative damage caused by the 

cyclic loadings of the train operations. This model was also capable of analyzing three different 

types of trackbeds: a) all granular layers trackbed (typical), b) asphalt layered trackbed (replacing 

subballast with asphalt), and c) combined (subballast plus asphalt) layered trackbed. The failure 

criteria for the design procedure was cumulative vertical stresses at the top of subgrade or tensile 

stain at the bottom of asphalt layer, whichever occurred first. The material properties were 

considered as stress dependent nonlinear as presented by Equation (1.1). The bottom most layer 

was assumed to be incompressible to simulate the bedrock conditions.  

3D20N is another three-dimensional linear elastic FEA based model [35]. This model also 

considered the full geometry of the railways track. This model used 20-noded isoparametric 

hexahedral (aka brick) elements for substructure layered materials, whereas rail and ties were 

modelled as 1-D beam elements. All the interfaces were modelled as zero thickness 16-noded 

surface elements to allow relative movement between different materials and surfaces. The model 

used only one fourth of the model due symmetric loading conditions and geometry and spans over 

five ties only. The boundary conditions were set such that the surfaces along axis of symmetries 

and the bottom most surface were constraint for normal movements while allowing movement in 

other two directions.  
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Huang [36] compared several models for their advantages, disadvantages and their 

predictions. Of all these models, GEOTRACK and KENTRACK are the most common among 

researchers and practitioners. Both these programs have their merits and demerits. However, some 

of their limitations based on Huang’s study [36] are as below: 

1) While using GEOTRACK, it is likely to miss the maximum stresses due the fact that 

loads are applied directly above the supports; 

2) GEOTRACK assumes rail as a beam of finite length and do not consider the jointing 

effects; 

3) Neither of these models account for time dependent response of materials; 

4) None of these models consider dynamic effects of rail operations; 

5) Use of linear elastic models to similar soil behaviour can cause considerable errors; 

6) The effects of lateral forces are neglected altogether. 

The variability of different materials has gain momentum over the past four to five decades. 

And many studies have reported and compiled the statistical parameters of a variety of material 

properties. The use of probabilistic analysis in civil engineering is very limited primarily due to its 

complexity, high computational demand (significant number of iterations), and lake of amount of 

data available (e.g., number of tension tests on steel for Young’s modulus) to perform reliable 

statistical analysis. Many attempts have been made to propose simplified versions of different 

methods but at the cost of accuracy of the results. Much work has been done to apply probabilistic 

methods (Monte Carlo) on the design of retaining wall and slope stability problems, which can be 

solved analytically in few steps.  
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1.2.2. Model Evaluation and Validation  

To evaluate and validate the performance of a new structural railroad track model, there 

are many ways which can be used. Generally, these methods can be categorized into three major 

groups: a) analytical solutions, b) numerical solutions (commercial software’s), and c) other well-

known similar models and/or full scale filed test measurements. 

Keeping in view the significance of the evaluation of any newly developed model, many 

researchers have proposed some standard set of problems and their analytical solutions [37]–[40]. 

These tests include patch test, straight cantilever beam, curved beam, twisted beam, rectangular 

plate, spherical shell and thick-walled cylinder. Among those standard tests, patch test and straight 

cantilever beam model under variety of different in-plane and out-of-plane loading conditions, are 

considered quite reliable among the researchers’ due to their simplicity and versatility. By varying 

the loading directions and elements shapes, different deformation modes can be examined.  

Another means of evolution to validate a newly developed model is using commercial 

software that has widely been accepted and used. These programs must have passed all kinds of 

rigorous evaluations and validations. There is a long list of such software in the market and some 

commonly used names are Abaqus, ANSYS, Advance Design, DEFORM, Nastran, LS-DYNA, 

SAP2000, AutoDesk Mechanical, RFEM, Visual FEA etc. among these programs, Abaqus and 

ANSYS are the most common programs, especially among the researchers working with FE 

models.  

1.2.3. Soil Variability 

There are various methods available in the literature to compute the intrinsic variability of 

the materials using standard deviation, depending upon the amount of data available. Most 

commonly used four methods are briefly explained below. 
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1.2.3.1. Direct Estimation Method 

The direct estimation method uses the basic definition of the standard deviation to estimate 

the soil property. This method is applicable when there is enough and reliable data available. When 

there is not enough data available to estimate standard deviation, or correlations, or judgements 

are used to determine the values of the variables, then it is convenient to look for published 

literature for estimates of coefficient of variance (COV). It is common to report variables’ COV 

instead of standard deviation, as it is normalized by the mean, thus making it a dimensionless 

quantity. Duncan [41] has compiled a list of COV values suggested by many researchers for 

different soil properties and presented in 
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Table 1.1. Values of coefficient of variance (COV) for various soil properties and in-situ 

tests (Source: [41]) 

Property or in situ test result Coefficient of 

Variation (COV) 

Source 

Unit weight () 3–7% Harr (1984), Kulhawy (1992) 

Buoyant unit weight (b) 0–10% Lacasse and Nadim (1997), Duncan 

(2000) 

Effective stress friction angle 

(’) 

2–13% Harr (1984), Kulhawy (1992) 

Undrained shear strength (Su) 13–40% Harr (1984), Kulhawy (1992), Lacasse 

and Nadim (1997), Duncan (2000) 

Undrained strength ratio  

(Su /’) 

5–15% Lacasse and Nadim (1997), Duncan 

(2000) 

Compression index (Cc) 10–37% Harr (1984), Kulhawy (1992), Duncan 

(2000) 

Preconsolidation pressure (Pp) 10–35% Harr (1984), Lacasse and Nadim (1997), 

Duncan (2000) 

Coefficient of permeability of 

saturated clay (k) 

68–90% Harr (1984), Duncan (2000) 

Coefficient of permeability of 

partly saturated clay (k) 

130–240% Harr (1984), Benson et al. (1999) 

Coefficient of consolidation 

(cv) 

33–68% Duncan (2000) 

Standard penetration test blow 

count (N) 

15–45% Harr (1984), Kulhawy (1992) 

Electric cone penetration test 

(qc) 

5–15% Kulhawy (1992) 

Mechanical cone penetration 

test (qc) 

15–37% Harr (1984), Kulhawy (1992) 

Dilatometer test tip resistance 

(qDMT) 

5–15% Kulhawy (1992) 

Vane shear test undrained 

strength (Sv) 

10–20% Kulhawy (1992) 

1.2.3.2. Three Sigma Rules 

When there is not enough data available that direct estimation method can be applied, then 

the Three Sigma Rule is quite helpful. This rule was first introduced by Dai and Wang [42], who 

used a fact from probabilistic theory that 99.72% of all values of a normally distrusted parameter 

fall within plus or minus three standard deviations (three sigma) from the average value. They 
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proposed that standard deviation can be estimated by dividing the difference of potentially extreme 

high and low values by six Equation (1.2) as below: 

 
( )

6

LCVHCV
= 

−
  (1.2) 

where HCV and LOCV are highest and lowest conceivable values, respectively. Accuracy of this 

estimation will certainly depend on the accuracy of HCV and LCV values.  

1.2.3.3. N-Sigma Rules 

Estimation of HCV and LCV is not an easy task, as it first appears [43], as the ranges of 

these values cover leave only 0.27% possibility that a value can fall outside of this range. Keeping 

in mind of this difficulty, Foye et al., [44]suggested a modified version of the Three Sigma Rule 

and named it “N-Sigma Rule” as shown in Equation (1.3) below. 

 
( )




N

LCVHCV
= 

−
 (1.3) 

where N is the number smaller than 6 that reflects the fact that estimates of LCV and HCV cannot 

be expected to span +. There is not any specific value proposed for N, however, N =  seems 

appropriate for many conditions [45]. 

1.2.4. Random Field Generators 

Various random field generator algorithms have been proposed with varying level of 

accuracies and ease of implementations. The most commonly used algorithms are Moving Average 

(MA), Discrete Fourier Transformation (DFT), Covariance Matrix Decomposition (CMD), Fast 

Fourier Transformation (FFT), Turning Band (TB), and Local Average Subdivision (LAS). The 

first three methods (MA, DFT, and CMD) are potentially more accurate but computationally 

expensive. On the other hand, other three methods (FFT, TB, and LAS) are more convenient to 
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implement but at the cost of accuracy loss. The short description of all these methods are presented 

below. 

1.2.4.1. Moving Average (MA) method 

The MA method is very accurate in terms of accuracy of results but at the cost of high 

computational power requirements. In this method, a random field Z(x) is constructed as a 

weighted average of a white noise process defined by Equation (1.4). 

)()()(  dWfxZ 


−

=  (1.4) 

where dW() is the mean zero of the incremental white-noise process, df is the variance of the 

process, and f is the weighting function. The size and mesh density of this field will define the 

accuracy of the field generated. More information on the method is available [46], [47]. 

1.2.4.2. Discrete Fourier Transformation (DFT) method  

The DFT method produces a continuous random filed (Z(x)) using spectral representation 

of homogeneous mean square, as formulated in Equation (1.5). 

)()(  dWexZ ix




−

=  
(1.5) 

where W(d) is the mean zero of the interval white-noise process, and d is the variance of the 

process. During implantation, the number of integrals will be equal to the number of dimensions. 

The summation is evaluated at each node of the random filed mesh, which will add to the accuracy 

of the results but computations become very slow for a reasonable size and/or higher dimensional 

problems [48].  
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1.2.4.3. Covariance Matrix Decomposition (CMD) method  

The CMD method generates a homogeneous random filed using a direct approach by 

defining a covariance structure, also known as spatially correlation function. Some commonly used 

spatially correlation functions are presented in section 4.2.2. If B is representing a positive definite 

covariance matrix, such that Bij = () = (xj-xi), then the required random field (Z) can be 

generated using Equation (1.6).  

LUZ =  (1.6) 

where L is the lower triangular matrix that satisfy LLT = B (generally Cholesky decomposition is 

used for this purpose), and U is a matrix of values with zero mean and unit standard deviation for 

a given distribution. Apparently this method, in its standard formulation, is very simple and 

accurate but requires a lot of computation memory, for instance for a field of 100x100x100 size in 

3-D space will have a covariance matrix of size 1002x1002x1002 = 1012 elements, which would be 

not only resource intensive and time consuming but also add to the round-off errors [49].  

1.2.4.4. Fast Fourier Transformation (FFT) method 

The FFT method employs the Fourier Transformation like Discrete Fourier 

Transformation, but by introducing some additional assumptions to make it more efficient. The 

most important assumption is the to assume the field as mean zero, real and discrete [50]. This 

helps improving the efficiency of implementing the algorithm and generating the field with 

relatively less computational effort and time but at the cost of compromising on accuracy.  

1.2.4.5. Turning Band (TB) method  

The TB method was originally introduced by Matheron [51]. This method can only be 

implemented in two- or higher dimensional problems, along the lines that are crossing the field 

domain. During the implementation, the field is generated along the lines using 1-D FFT algorithm. 
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The final output field depends on the number of these lines, a greater number of lines produce high 

quality field, as is evident in Figure 1-1. 

 

1.2.4.6. Local Averaging Subdivision (LAS) method 

The LAS method is believed to be the most difficult to implement [49]. In this method, 

local averaging is implemented in a top-down repetitive fashion in multiple stages as shown in 

Figure 1-2.  

Stage-0 is started with given average (or mean) for the field, which is then subdivided into 

two regions while maintaining the global (or parent) average same. This process continues until 

the required level of accuracy and precision. More detailed description on the method can be found 

at [52] and [53]. 

 

 

Figure 1-1. (Left) Sample function of 3D field via TBM using 16 lines. (Right) 

Sample function of 3D field via TBM using 64 lines. (Source: Fenton, 1994) 
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1.2.5. Risk and Reliability Analysis 

1.2.5.1. Basics and Fundamentals  

To perform risk and reliability analysis, there are some basic yet fundamental terminologies 

and definitions which are explained below in the context of civil or geotechnical applications. 

i. Variables: Any physical, geometric or even loading condition can be a variable, for 

instance density of subgrade or wheel load or thickness of subgrade layer.  

ii. Correlated and Uncorrelated Variables: Correlated variables are those which are not 

independent of each other, meaning changes in one variable affect the magnitudes of 

the other variable too. Uncorrelated variables are independent of each other.  

iii. Standard Deviation (): It is a measure of scatter in the values of a variable. 

Mathematically, it is defined as square root of the average of squared values of the 

difference between each of the measured values (xi) and the average () and is 

expressed as Equation (1.7).  

 
( )

1−

−
=

n

x

 = 

n

i

i 

  
(1.7) 

 

Figure 1-2. Top-Down approach to implement LAS to generate 

random field (Source: Fenton & Vanmarcke, 1990) 
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iv. Coefficient of Variation (COV): It is measure of the degree of scatter in the values of 

a variable. Mathematically, it is a ratio of standard deviation to the average Equation 

(1.8). 

 



= COV  (1.8) 

v. Probability Density Function (PDF): This is also known as Probability Distribution 

Function. This is a continuous distribution that indicates the probability of occurrence 

of any value of the variable, within the range covered by the distribution. The two most 

commonly used distributions are normal distribution and log-normal distribution. 

vi. Cumulative Density Function (CDF): It is the integral of the PDF or in other words, 

it is the area under PDF curve.  

vii. Probability of Failure: It is the probability that failure will occur.  

viii. Reliability: It is the additive complement of the probability of failure. For example, if 

the probability of failure for a given condition is 5% then the reliability will be 95%. 

ix. Reliability Index (): It is the number of standard deviations between a value and its 

mean or most likely value. Mathematically, it can be expressed as Equation (1.9). 

 





−x
=  (1.9) 

1.2.5.2. Methods for Reliability Analyses 

Three are numerous reliability analysis methods available in the literature but here only 

four most common methods will be discussed., namely Taylor Series Method, Point Estimate 

Method, Hasofer Lind Method, Monte Caro Simulation analysis. These methods differ primarily 

on their underlying assumptions and number of calculations required.  
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i. Taylor Series Method 

The Taylor Series method is fundamentally based on first-order second moment (FOSM) 

analysis, which means only first two moments (the mean and standard deviations) are used 

in this analysis. Many researchers have described this method in the literature [41], [54]–

[56]. This method is widely used due to its simplicity, ease to use and lesser calculation 

cycles requirement. This method assumes the distribution of the output variable (usually 

the factor of safety, settlement or stress). This method requires only 2N+1 calculation 

cycles, where N is number of variables involved. In this method, COV of the output 

variable is first computed and then its probability of failure (or conversely reliability) is 

calculated using assumed distribution. The complete calculation steps are explained in the 

following four steps: 

1) Estimate the standard deviations of the input variables involved using an appropriate 

method; 

2) Estimate the standard deviation of the output variable using Equation (1.10), 
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



F
V F

F =  (1.11) 

where F1 = (F1
+ - F1

-). F1
+  and F1

- are the outputs calculated using the value of the 

first parameter (variable) increased and decreased by one standard deviations, 

respectively. The subscripts 1, 2, … n represent that there are “n” number of variables 

involved in the analysis; 

3) Calculate the mean most likely value of the output (F) variables by performing 

deterministic analysis, i.e., using the mean values of all the variables; 



16 
 

4) With both mean and standard deviation of the output know, and assumed distribution, 

probability of failure can be estimated using either of the Equation (2.1) or (2.2).  

ii. Point Estimate Method (PEM) 

The PEM method is also a FOSM reliability method and was first introduced by 

Rosenblueth [57] whereas its application in geotechnical engineering was presented by 

Baecher and Christian [54], Harr [56] and Wolff [58]. This method is an extension of Taylor 

Series Method in which output variable is calculated using input variables such that they 

are either means plus one standard deviation or mean minus one standard deviation. By 

employing all possible combinations for N variables, there will be 2N calculations cycles. 

This method also assumes the distribution of the output variable. Step by step procedure to 

apply this method is presented below: 

1) Estimate the standard deviations of the input variables involved, using an appropriate 

method; 

2) Calculate both values mean plus one standard deviation and mean minus one standard 

deviation for all the variables. Then perform the analysis for 2N cases satisfying all the 

possible combinations of these values;  

3) Assign the probability weight to each case. For uncorrelated variables, all cases will 

carry the same weight, i.e., 1/N; 

4) Calculate the mean or most likely value of the output (F) variables by performing 

deterministic analysis, i.e., using the mean values of all the variables; 

5) Calculate the standard deviation of the output variable using the basic definition 

Equation (1.2). The mean output values are calculated in step-4, whereas individual 

output values are calculated in step-2; 
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6) Probability of failure can be computed using Equation (2.1) or (2.2) depending on the 

assumed distribution for the output variable.  

iii. Hasofer Lind Method 

The Hasofer Lind method was first introduced by Hasofer Lind [59] but this method could 

not get much attention due to its complication and more number of cycle requirements. On 

the other hand, however, Filz and Vavin [60] found this method more accurate than Taylor 

Series and Point Estimate Methods. This method is relatively more accurate since it does 

not assume the distribution of the output variable, which is hard to predict and thus subject 

to much variations. However, it assumes the distribution of the inputting variable, which is 

relatively easier to predict and assume with reasonable accuracy. A brief description of the 

step by step procedure of this method is presented below: 

1) Estimate the standard deviations of the input variables involved;  

2) Assume the distribution of each input variable and indicate their category, load or 

resistance. Variables categorized as load will use negative value of standard deviations 

in the analysis; 

3) Stage one of this method use an initial trial value of the reliability index () to calculate 

the input variables using Equation (1.12) (for normally distributed variables). Use these 

values to calculate the output variable. If the output variable comes out to be greater 

than one, then a higher value of the b should be used next trial and vice versa. Repeat 

this process until factor of safety becomes equal to 1, 

 xixiix  +−= * ; (1.12) 

4) At stage first select the final values of all the variables at the end of stage one and 

increase and decrees the load and resistance related variables, respectively, by 10%. 
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Apply this change on one variable in each category at one time. And then perform the 

analysis and calculate the output variable for each variation in input variables. Now 

calculate the change (gradient=dg/dxi) in output variable for a given change in input 

variable using Equation (1.13) and (1.14), 

 
'
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5) This stage (3rd) is like first stage where reliability index value is assumed, and values 

of input variables are then calculated but his time using Equation (1.15). Then calculate 

the factor of safety. If the factor of safety is not equal to one, then keep reliability index 

changing and repeating the process until factor of safety becomes equal to one, 

 xixiiix  +−= *  (1.15) 
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6) The final value of reliability index in stage 3 will represent the final reliability index of 

the failure mechanics. Probability of failure can then be calculated using probability 

charts. 

iv. Monte Carlo Method 

The Monte Carlo method is quite different from other three methods presented earlier in 

three ways [45], including a) it require way more calculation cycles than any other method 

(in the range of N=5000 or even 10,000), b) it assigns a specific distribution to each input 

variable, and c) special program/codes are required to apply this method automatically due 
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to very high number of calculation cycles. This method randomly picks the values of each 

input variable based on the distribution assigned to it and perform the analysis. The analysis 

is performed for required number of iterations while keeping the track of the values of 

output variable. At the end of the simulations, there will be N values of output variable 

which can be used to determine mean, standard deviation and best fit distribution.  

Accuracy of the results strongly depends on the accuracy of the input parameters of the 

variables and number of iterations. Reliable input parameters will certainly produce much 

more reliable results than that of uncertain parameters. Similarly, higher the number of 

iterations will produce better and consistent results. It is seen that for a given problem, 

probabilities of failure do not vary much after certain number of iterations. Considering the 

required consistency which would be needed for practical study in railroad trackbed 

analysis, in this study, the Monte Carlo Method is selected to perform the reliability 

analysis based on the new developed railroad trackbed model. 

1.3. Problem Statement and Significance of This Study 

Based on all the review above, it can be seen that structural analysis of railroad trackbed is 

one of the unique problems in civil engineering due to several factors, for instance, that it consists 

of a diverse group of materials, spatial extent of the structure, geological changes, environmental 

changes and loading conditions are just to name a few. Currently, finite element (FE) method is 

widely used to perform structural analysis for a wide range of problems involving continuums with 

acceptable level of accuracy. Many researchers have developed software that can perform 

deterministic analysis the railroad trackbed using FE method. However, the current challenges yet 

to be investigated still exist, including: 
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1) Most of the commercial programs assume a single representative or most likely value 

of the material properties, geometric dimensions or loading magnitudes. However, 

there exists a wide range of variations and heterogeneities in all these quantities which 

are completely ignored in all these programs by assuming a uniform, homogeneous and 

isotropic materials.  

2) Limited evaluation and validation were performed for models that will be developed to 

perform structural analysis of railroad trackbed while using principles of random field 

generation and probabilistic methods.  

3) Few studies on performing structural analysis using material, geometric and loading 

variabilities while employing risk and reliability principles to study a more realistic 

performance of a railroad trackbeds. 

Keeping in view of the shortcoming of deterministic analysis and considerable variations 

in substructure materials of railroad trackbed, there is a great need to build a robust, efficient 

numerical model in 3-D space that can take the advantage of FE method and employ material 

variability through probabilistic method (random field and Monte Carlo) to simulate the model as 

close to real life conditions as practical with improved accuracy and judgement.  

1.4. Objectives and Organization of This Dissertation 

In this study, the main objective is to develop a numerical model based on RFEM method 

to analyze railroad trackbed using probabilistic method(s) to incorporate the material variabilities. 

To achieve this objective, following specific tasks have been delineated:  

1) Incorporate the random field generation of the ADYTrack model using random finite 

element method. 
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2) Develop the basic numerical model of the ADYTrack based on FE method to perform 

deterministic analysis of railroad tracked with a user-friendly graphical user interface 

(GUI). 

3) Evaluate and validate the newly developed (FE component) numerical model. 

4) Conduct a sensitivity study to determine the quantitative response evaluation of 

structural performance railroad trackbed under more realistically assumptions of 

heterogeneous substructure layers (ballast, subballast, and subgrade).  

The organization of this dissertation is such that Chapter 1 explains the introduction and 

literature review of railroad trackbed models, problem statement and objectives of this study; 

Chapter 2 describes the random finite element method of the ADYTrack and generates the random 

fields, Chapter 3 details the development of the basic numerical model of the ADYTrack, its salient 

features, mechanics involved, and graphical user interface; Chapter 4 presents evaluation and 

validation of the ADYTrack against analytical solutions, commercial numerical software 

predictions, and field test results; Chapter 5 presents the sensitivity study, conducted to evaluate 

the structural performance of railroad trackbed under heterogeneously modelled substructure 

layers under varying levels and combinations of intrinsic variations; Chapter 6 summarizes the 

contributions of this study, the research findings and recommends the future work. 
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2. RANDOM FINITE ELEMENT METHOD AND RANDOM FIELD GENERATION 

Random Finite Element method (RFEM), also known as Stochastic FEM (SFEM), is an 

extension of standard FE method that include the uncertainties in the material properties, loading 

conditions, and geometric imperfections in the problems. RFEM employs the principles of 

probability theories and reliability analyses to model the inherent variations in the input parameters 

to determine the uncertainty in the response parameters. This method is generally coupled with 

Monte Carlo simulations to enhance the confidence in the results as well as to avoid any biasedness 

in the input parameters.  

The usage of RFEM is gaining momentum in recent years and is being recognized as a 

powerful tool to challenge the very basic assumption of uniformity and homogeneity in parameters 

to model various materials, loading conditions and geometries. Based on its widespread 

acceptance, Oden et. al. [61] argue that it will be gaining more importance and interest in next 

decade. A state of the art review of its past, present and future is provided by [62] with some future 

directions. A wide range of problems in civil engineering has been published where intrinsic 

variations in material properties, geometric imperfections, and/or uncertainties in applied loading 

conditions were included [58], [63], [72]–[81], [64], [82]–[91], [65], [92]–[101], [66], [102]–

[109], [67]–[71].  

In this study, a finite element model based on the RFEM method and probability analysis, 

named ADYTrack model, is developed to include the variations of the sublayers’ material 

properties for the performance evaluation of the railroad trackbed. A functional RFEM analysis 

will include three steps, including generating random fields, establishing a standard FEM, and 

performing Monte Carlo simulations for probability analysis. To generate random fields, first of 

all, a probability function needs to be selected for each random finite element; second, a spatial 
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correlation function is required to correlate the random finite elements together; and third, a 

random field generator algorithm is needed to generate the random fields.  

For railroad track, the most material variation comes from the variance of the subgrade, 

subballast, and ballast. The steel rail, when compared to other components in a railroad track is 

very small. Due to the fact that this study is focused on setting up a RFM analysis prototype 

railroad trackbed analysis, the random field generation of various sub-layers beneath the steel rail 

including subgrade, subballast, and ballast are described in the following sections.  

2.1. Probability Distributions 

To generate a random finite element for the sub-layers beneath the steel rail for a railroad 

track, probability distributions need to be considered for each finite element. Normal and 

lognormal distributions are very common types of continuous probability distributions in many 

natural and social sciences. Most soil/ballast related variables follow either normal or lognormal 

distribution which are introduced as follows.  

2.1.1. Normal Distribution 

Normal distribution is also known as Gaussian or Laplace-Gaussian Distribution. It is 

symmetric bell-shaped curve, with its peak at the mean value while standard deviation defines its 

lateral spreading. Mathematically, it is expressed in Equation (2.1).  
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where p(x) is the probability of occurrence a value of x with its mean  and standard deviation .  
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2.1.2. Log-Normal Distribution 

The lognormal distribution is another common type of continuous probability distribution. 

It is unsymmetrical (left skewed) bell-shaped curve, with its peak at the left of the mean value 

while standard deviation defines its lateral spreading. Mathematically, it is calculated using 

Equations (2.2) – (2.4).  
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where p(x) is the probability of occurrence of a value of x with its natural logarithmic mean 𝜆 and 

natural logarithmic standard deviation 𝜍 (zeta). 

In this study, the Log-Normal distribution is selected to generate the material variations of 

each random finite element for the sub-layers of railroad trackbed. 

2.2. Spatial Correlation Functions 

Although random numbers generated using any distributions are generally uncorrelated, 

however, the distribution of parameter, say density of soil in the field, is not uncorrelated. In 

reality, although each finite element of the sub-layers for a railroad track is random, they still 

follow certain spatial distribution. For instance, the elements within a very small area will not vary 

too significant to each other. Therefore, there is a need to introduce the spatial correlation function 

to correlate the magnitudes of soil parameter(s) over space and/or time. These parameters are 

correlated over a specified distance or time, known as Spatial Correlation Length or Spatial 
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Correlation Time. As in this study, only spatial extent is targeted, therefore, only spatial correlation 

length and corresponding functions will be discussed hereafter.   

The correlation length is a measure of rate of fluctuation in the input parameters for 

generating a random field. Larger the correlation length is, coarser (compared with FE mesh) the 

random field (RF) discretization mesh will be. In other words, larger correlation length will reduce 

the number of RF nodes, which will subsequently affect the results of random field [96], [110]–

[112]. The parameter ‘a’ in Equations (2.5) - (2.8) is spatial correlation length. Many correlation 

functions can be used to generate the correlation length of numbers of random elements, which 

have been introduced in the literature. However, four most commonly used analytical models are 

presented below. 

2.2.1. Triangular Correlation Function 

The simplest correlation function () is triangular function, which decreases linearly from 

1 to 0 as presented in Equation (2.5): 
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where  the distance between two points in random space, and a is the spatial correlation length.  

2.2.2. Exponential (Markovian) Correlation Function  

The exponential correlation function is one of the most commonly used spatial correlation 

functions, also known as Markovian correlation function. This is calculated using Equation (2.6): 
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2.2.3. Second Order Correlation Function  

The second order spatial correlation function is associated with second order autoregressive 

processes and is calculated using Equation (2.7): 
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2.2.4. Gaussian (Squared Exponential) Correlation Function 

The gaussian correlation function is another very commonly used spatial correlation 

functions, also known as Squared Exponential correlation function and can be calculated using 

Equation (2.8):  
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In this study, the exponential correlation function is used to generate the spatial correlation 

between the random finite elements due to its ease to use and good stability. 

2.3. Random Field Generation 

With selected probability model and spatial correlation function, the random field can then 

be generated following specific generation algorithms. As shown in Chapter 1, various random 

field generator algorithms have been proposed with varying level of accuracies and ease of 

implementations. The most commonly used algorithms are Moving Average (MA), Discrete 

Fourier Transformation (DFT), Covariance Matrix Decomposition (CMD), Fast Fourier 

Transformation (FFT), Turning Band (TB), and Local Average Subdivision (LAS). The first three 

methods (MA, DFT, and CMD) are potentially more accurate but computationally expensive. On 

the other hand, other three methods (FFT, TB, and LAS) are relatively convenient to implement 

but at the cost of accuracy loss. A brief description of all these methods is presented in section 

1.2.4.4 to 1.2.4.6.  



27 
 

Following a detailed comparison of complexity of implementation, accuracy, 

computational and time requirements, Covariance Matrix Decomposition (CMD) is incorporated 

in the newly developed ADYTrack model. CMD is one of the most accurate method, however, it 

required huge computational memory. This shortcoming was overcome by a recently proposed 

Stepwise CMD (SW-CMD) method [113]. The correlation matrix R in 3-D space is disassembled 

into three 1-D correlation matrices Rx, Ry, Rz by a Kronecker product using Equation (2.9). Rx, Ry, 

Rz are much smaller 1-D vectors as compared global correlation matrix R. Following this 

disassemble, a matrix of random field, X can be calculated using same Equation (1.6). 

xxx RRRR =  (2.9) 

For the same 100x100x100 field in 3-D space, the size of covariance matrix in case of SW-

CMD would be (100x100x100) x 1 = 106 elements, as opposed to 1012 elements in standard CMD. 

This substantial reduction in matrix size requirement, higher accuracy of this method, ease of 

implementation, and easier handling of matrices in MATLAB are the reasons to adopt this method 

for ADYTrack model. The MATLAB code for the implementation of this SW-CMD is shown in 

Figure 2-1.  

 

Figure 2-1. Implementation of stepwise CMD in MATLAB (Source: Li et.al., 2019) 



28 
 

Spatial correlation length and coefficient of variation play significant role in the generation 

of random fields. Using an example mean modulus of sub-layers of 2,000 MPa (the actual modulus 

of the sub-layers will change based on the actual measurements or literatures if any), the effect of 

spatial correlation length on the random field generation is investigated, as shown in Figure 2-2, 

Figure 2-3, and Figure 2-4 for spatial correlation lengths of 0.01, 1.0, and 2.5, respectively, while 

keeping the COVs constant at 30%. These figures have two plots, the upper plots show the 

variation in magnitudes along the x-direction at the middle of y-direction, as shown by the red line 

in lower contour maps. The lower colored contour maps show the variation in the random 

parameter in 2-space. These figures are for illustration purpose only. The actual random field 

generations in ADYTrack model to incorporate the variation in substructure layers is in 3-D space.  

Figure 2-2 shows a contour map with almost no sign of correlation in space domain due to 

relatively smaller spatial correlation length (i.e., 0.01). However, the variation in the magnitudes 

of random parameter (upper plot) is quite significant due to considerable value of COV of 30%.  

Some signs of correlation among random field parameter can be seen on the contour plot 

with relatively moderate value of spatial correlation length 1.0 in Figure 2-3. Also, the variations 

in the magnitudes of random parameter (upper plot) are of the same order as in Figure 2-2 since 

same intrinsic variations are considered in both the cases. 
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Figure 2-2. Effect of spatial correlation length (Lc) on the random field 

generation with COV = 30% and Lc = 0.01. 
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The effect of spatial correlation length is much more pronounced in Figure 2-4 with 

relatively higher value of 2.5. In this case, there exists a stronger correlation in space with relatively 

bigger pockets of similar values of random parameter, as can be seen in the contour map. 

 

 

 

Figure 2-3. Effect of spatial correlation length (Lc) on the random field 

generation with COV = 30% and Lc = 1.0. 
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 Similarly, the effect of COV on the random field generation is presented in Figure 2-5, 

Figure 2-6, and Figure 2-7, while keeping the spatial correlation length constant at a relatively 

moderate value of 1.0. A random field with almost negligible variation (COV = 1%), as can been 

in the line chart (upper plot) is presented in Figure 2-5. Whereas the contour map is considerably 

correlated in 2-D space. 

Figure 2-4. Effect of spatial correlation length (Lc) on the random field 

generation with COV = 30% and Lc = 2.5. 
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The upper plot in Figure 2-6 shows a considerable variation in random field magnitudes as 

compared to upper plot of Figure 2-5 due to higher COV value considered in this case. However, 

the contour maps in both these figures are much different, as both have same spatial correlation 

length of 1.0.  

  

Figure 2-5. Effect of spatial correlation length (Lc) on the random field 

generation with COV = 1% and Lc = 1.0. 
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Figure 2-7 shows the random field generated with even higher value of COV of 50%, and 

therefore higher crests and deeper troughs can be seen in the upper plot. Whereas, the contour map 

is again similar to that of Figure 2-5 and Figure 2-6 except with stronger colors that represent the 

higher orders of magnitudes of random parameter.  

 

 

Figure 2-6. Effect of spatial correlation length (Lc) on the random field 

generation with COV = 30% and Lc = 1.0. 
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2.4. Selection of Random Field Mesh and its Overlapping with Finite Element Mesh 

The size of random field mesh plays an important role, like finite element (FE) mesh, to 

the quality and accuracy of the random filed generated. The random field mesh size is primarily 

depending on the spatial correlation length parameter, whereas, the FE mesh usually depends on 

the geometry and response (stress or strain) concentrations. Der Kiureghian & Ke [114] suggested 

Figure 2-7. Effect of spatial correlation length (Lc) on the random field 

generation with COV = 50% and Lc = 1.0. 
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that as both these meshes are depending on different criteria, so two different meshes should be 

defined, if possible, and this may improve the efficiency of the results.  

For strongly correlated random field, the random mesh should be considerably coarser than 

the FE mesh, which will significantly reduce the number of random variables in the model. This 

will make the model simpler and less computationally demanding. Ideally, a mesh should 

accurately describe the geometry, gradients of the responses (stresses and strains), and intrinsic 

variability in the substructure layers, all at the same time.  

Der Kiureghian & Ke [114] suggests that the element size of a random field should be one 

half to one quarter of the correlatio length parameter. They proposed this  range based on repeated 

evalution of reliability index of their numerical experiments on a randomly distribuited rigid beam. 

This proposed range also confirmed by Li and Der Kiureghian [115] and Zeldin and Spanos [110] 

based on the their evalutions of power spectra of the random fields.  

In the devloped ADYTrack model, a fraction of 1/4 of spatially correlation length is 

adopted to generate random field mesh, which will produce finer mesh to produce better quality 

random field, using the leverage of efficient Stepwise Covariance Matrix Decomposition (SW-

CMD) method in 3-D space. In addition, the user is provided with an option to change the fraction 

in x-, y-, and z-directions dpending on the on-site conditions.  

2.5. Summary 

This chapter covers the introduction and fundamental components of random finite element 

analysis. In addition, it describes in details and highlights the advantages of the selected probability 

distributions, spatial correlation function and random field generators, to include in the ADYTrack 

model. With the successful incorporation of random finite element analysis capability, the random 

fields of sub-layers of railroad trackbed can be generated.   
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3. DEVELOPMENT OF ADYTRACK MODEL 

After generating the random fields of the sublayers’ material properties of railroad 

trackbed, a standard railroad track finite element model needs to be set up to interpolate the random 

fields for the sublayers, followed by the Monte Carlo simulation (MSC) for probability analysis. 

This chapter describes the development of the basic FEM based numerical model of the 

ADYTrack, which can be used to study the structural response of railroad trackbeds. The basic 

FEM model of the ADYTrack can generate a full geometry of the trackbed including side slopes 

and shoulders for each layer. It is completely based on continuum mechanics including 

substructure unlike many other well-known models that are based on uniform half space theory. 

In addition, there is no constraints in defining the extent of the model, however, longer and wider 

model would require more computational power. Furthermore, the model can perform analyses for 

special cases like track on horizontal and/or vertical curves with little modification in the program. 

With the development of the basic FEM model, the generation the random fields of the materials, 

the Monte Carlo simulation is applied to perform a valid probability analysis based on the 

ADYTrack. In addition, the development of its graphical user interface (GUI) is also performed. 

The details of underlying theories in the development of the model are presented in the following 

sections. 

3.1. ADYTRACK Basic Finite Element Model Setup 

The ADYTrack is based on a three-dimensional (3-D) model with a typical geometry (the 

detail code of the model and the user guideline are provided in Appendix A and Appendix B). Its 

cross section with all its components is shown in Figure 3-1. A user can choose any finite number 

of substructure layers and ties, material and cross-sectional properties of rail and tie, gauge length, 

tie spacing, wheel load application location, shoulder width, side slopes etc. to model a trackbed. 
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The model is built with half geometry while taking advantage of track center line symmetry to 

save computational efforts.  

 

Figure 3-1. Cross section of the trackbed 

The model is fundamentally based on finite element analysis, the details of which can be 

found in the literature [Chandrupatla and Belegundu (1997)]. The rails and ties are modelled as 2-

nodal beam elements with six degrees of freedom (ux, uy, uz, σx, σy, σz) at each node. The rail 

elements transmit the load to ties through a 1-D spring element with single degree of freedom, 

capable of withstanding both tensions and compressions.  

 

Figure 3-2. Full model considered by the ADYTrack after discretization 
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All the sub granular layers (ballast, subballast, subgrade and natural soil) are modelled as 

8-nodal isoperimetric hexahedral (aka brick) elements. User can define as many main layers 

(ballast, sub-ballast etc.) as he needs to and can further uniformly divide each main layer into any 

number of sublayers. The thickness of each sublayer is considered as the thickness of brick 

elements in that corresponding sublayer. User can also choose material properties, including 

Young’s modulus of elasticity and Poison’s ratio, of these layers as linear or non-linear and elastic. 

Instead of assuming homogeneous half space for all these layers, a more realistic geometry is 

considered including shoulder width at the top and side slope for each main layer (Figure 3-1). A 

full scaled model considered by the ADYTrack after discretization is shown in Figure 3-2. 

Node numbering plays an important role in the generation of stiffness matrix. An efficient 

node numbering can reduce the band width of the stiffness matrix which help reduce the 

computational efforts in solving the system of equations. ADYTrack creates nodes and number 

them such as to generate the global stiffness matrix with min bank width. First, the nodes are 

created along the rail then along the first tie (in y-direction at x=0) then next tie and so on. After 

creating nodes along rail and ties, they are then created for the complete first cross section (along 

y-direction at each sublayer and at x=0) and then for the next cross section and so on. Local 

(corner) nodes of a brick element are numbered systematically to minimize the efforts of 

constructing node-element connectivity table and is shown in Figure 3-3. 
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Figure 3-3. Node numbering of brick element 

Like node numbering, element connectivity and their corresponding numbering is equally 

important to reduce the stiffness matrix band width and thus computational effort. Element 

connectivity followed the same route as node numbering did. Starting from rail, then ties and then 

cross sections in a sequential manner along each cross section.  

3.2. Stiffness Matrices 

Two different types of elements are used in the ADYTrack, beam and brick elements with 

six and three degrees of freedoms at each node respectively. Global stiffness matrix for beam 

element is calculated using Equation (3.1).  

 ,' LKL = K T
 (3.1) 

where, L is the coordinate transformation matrix from local to global coordinate system and K’ is 

beam element stiffness matrix in local coordinates system which can be calculated using Equation 

(3.2) and (3.3), respectively. 
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(3.3) 

 

where AS=EA/le, le=length of the element, TS=GJ/le, az’=12EIz’/le3, bz’=6EIz’/le2, cz’=4EIz’/le, 

dz’=2EIz’/le, ay’=12EIy’/le3, and so on. In these expressions, E, A, G, J, Iy’, Iz’ are Young’s elastic 

modulus, cross sectional area, shear modulus, polar moment of inertia, second moment of area 

along y- and z-axis respectively. 

The element stiffness matrix for brick elements is calculated using Equation (3.4) as below: 

 ijkijk

p
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111

)(   (3.4) 

where, p1, p2 and p3 denote the number of Gauss points (using a product rule of integration and 

same number of points in every direction, i.e., 2) in the neutral axis directions respectively, whereas 

wijk, Bijk, E and Jijk are weight of Gauss integration, Strain-Displacement matrix, Stress-Strain 

matrix and determinant of Jacobian matrix respectively.  
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Equation (3.5) presents the strain-displacement relationship which is used to calculate 

element strains after the whole system is solved for nodal displacements. The B matrix is calculated 

by taking partial derivatives of shape function with respect to global coordinates (x, y, and z). 

These partial derivatives are calculated using Equation (3.6). 
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Jacobian matrix (J), presented in Equation (3.7) is a product of nodal values presented in 

Table 3.1 and partial derivatives of shape function w.r.t. to natural axis (ξ, η, μ). 
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The shape function (N) of brick elements in its indicial form is presented in Equation (3.9), 

whereas values of ith node (corner) of the elements are presented in Table 3.1. 

 )1)(1)(1(
8

1
iii

e

iN  +++=  (3.9) 

Table 3.1. Natural coordinates at the corners of brick elements 

Node   


 

  Node   


 


 

1 -1 -1 -1  2 +1 -1 -1 

3 +1 +1 -1  4 -1 +1 -1 

5 -1 -1 +1  6 +1 -1 +1 

7 +1 +1 +1  8 -1 +1 +1 

 

The stress-strain matrix (E) is a symmetric material matrix which remains constant for each 

element and can be calculated using Equation (3.10).  
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(3.10) 

where, Ec is Young’s modulus (or Elastic modulus) and v is Poison’s ratio. Finally, the global 

stiffness matrix is constructed, which will be used for solving nodal displacements using the 

equation, F=Kd.  

3.3. Loading and Boundary Conditions 

User can define the wheel load of any magnitude and can also specify the location of its 

application in terms of tie numbering. Boundary conditions are applied such that x-direction 

movement (ux) is restricted at all cross sectional nodes of first tie (x=0) and last tie (x=xmax); 
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movement in y-direction (uy) is restricted at the center line plane (XZ-plane at y=0) and the far 

right end of the model (y=ymax); and z-directional movement (uz) is for the bottom most nodes 

(z=zmax). 

3.4. Solution and Post Processing 

Various built-in functions of MATLAB were tried to solve the system of linear equations 

including back operator (\), matrix inverse function (inv), LU factorization (lu), Cholesky 

factorization (chol), however the back operator (\) provided the most computational economical 

and accurate solution. After solving the system of linear equations for nodal displacements, stress 

in brick elements are calculated using Equation (3.11). 
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where, E, B, and d, are stress-strain, strain-displacement and deformation matrices, respectively. 

Young’s modulus of all substructure materials is modelled using Equation (3.12).  

 ,2

1

K

c K = E   (3.12) 

where K1 and K2 are material constants and  = (x+y+z)/3. 

In case of non-linear analysis, next step is to check the assumed Young’s modulus (Ec) for 

each non-linear material and see if it falls within the user defined tolerance limit. In case this check 

fails, Ec will be recalculated and the whole systems will be solved again with modified Ec values. 

And this process repeat until Ec falls within the user defined tolerance limit.  

After successfully passing the non-linearity check, the vertical displacements and stresses 

are plotted along three lines, (a) along the depth the below, (b) along the tie and (c) along the rail. 

User can choose any specific tie number and/or layer to see the displacement and/or stress plot.  
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3.5. Monte Carlo Simulations (MCS) 

After setting up a standard finite element model, the random fields described in Chapter 2 

can be interpolated into the standard finite element model. However, for a valid probability 

analysis related to random fields, large numbers of case analysis (also known as repeatability 

analysis which can obtain the deterministic approach multiple time, Nsim) are needed to be analyzed 

to cover presence of various random events. The MCS method is considered the most powerful 

and robust tool to solve complex nature of probabilistic and stochastic problems. More details on 

the MCS method please refer to [116][92][62][95]. In this method, equations of equilibrium are 

solved using deterministic approach multiple times (Nsim) while generating random fields of 

variable for specified input parameter(s) in each cycle of calculations. This generates a vector of 

output variables of size Nsim, which is then used to extract statistics of the output variables, for 

instance, unbiased estimate of mean, standard deviation and/or coefficient of variation (COV). 

Larger value of Nsim, e.g., Nsim ~500, yields good results with higher confidence level but require 

more computational resources [117]. One of the drawbacks of MCS is its resource intensiveness, 

which is covered by increased computational powers of latest computers with higher memories 

and processor speeds. In this study, Nsim =5,000 is used, which is sufficiently large size for 

reproducibility and to avoid any biasedness in the results. 

3.6. Flow Chart  

Figure 2-4 shows the flow chart of the developed ADYTrack model analysis of railroad 

track’e performances. The ADYTrack follows a sequential processing by first reading the user 

inputs which include the basic material property of the track, the COV to be analyzed, and all the 

geometric parameters such as tie length, size, depth of ballast and subballast, etc., then creating 

coordinates, nodal numbering and node-elements connectivity table. The code then applies user-
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defined loading and pre-defined boundary conditions. For the first cycles of calculation, user 

defined Ec will be assumed, and the random field generated based on the assigned mean and COV 

for the sublayers and continued to solve for displacements and stress calculations. Then non-

linearity check is applied to see if assumed Ec falls within tolerance limits. In case of linear analysis 

or passing the check, the program proceeds to results, as shown in Figure 3-4. After the completion 

of one cycle analysis, Monte Carlo Simulation will be performed to include 5,000 times of analysis 

to generate the probability analysis of the ADYTrack. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3-4. Flow chart of the ADYTrack model analysis 

Monte Carlo 

Simulation 

[5,000 times] 

Results

Check for Non-Linearity

Linear Analysis or Pass Fail

Calculate Stresses

Solve for Displacements

Generate Stiffness Matrices

Assumed “Ec” Modified “Ec”

Apply Boundary Conditions

Create Nodes and Elements

Read Inputs



46 
 

3.7. User Interface 

In this era of technological advancement, the ease of using a model is equally important as 

that of its accuracy and reliability of results. In this regards, graphical user interfaces (GUI) plays 

an important role. GUIs act like a bridge to bypass the requirements of in-depth knowledge of 

technical theories or programing logics. These interfaces simply take the user input and returns the 

desired outputs in the form of numerical figures, graphs, charts, contour plots or even animations. 

Figure 3-5 shows an example of the initial version of the GUI of the model with inputs and outputs. 

The final inputs and outputs will be changed based on the feedback from the industry and the GUI 

interface will be improved to be more user friendly. 

 

Figure 3-5. Initial version of the graphical user’s interface of ADYTrack model 
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3.8. Summary 

The development of ADYTrack is presented in this chapter in details. The basic FEM 

model of the ADYTrack is built such that the user can build a typical geometry of trackbed of any 

practical size. The model can generate quarter, half or even full trackbed geometry by taking 

advantage of axis of symmetry along the track centerline and along traverse direction. Rail and 

ties are modelled as 2 nodal beam elements with six degrees of freedom at each node, whereas 

granular layers are modelled as 8 nodal brick elements. Users can define the meshing density and 

can see the results along the depth below the wheel and along the ties and rail at the top of any 

sub-layer. The base code of ADYTrack and its user manual with detailed commentary are 

presented in Appendix-A and -B, respectively.  
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4. VALIDATION OF ADYTRACK MODEL COMPARED TO ANALYTICAL 

SOLUTIONS, COMMERCIAL SOFTWARE, AND FIELD MEASUREMENTS 

Evaluation and validation of any newly developed program is an essential first step before 

its widely acceptance and usage. Various methods to evaluate and validate a program are presented 

in Chapter 1. Three different methods, namely analytical, numerical and field measurements are 

employed to evaluate the ADYTrack performance and validate its credibility. Straight cantilever 

beam model is picked for the evaluation of ADYTrack using analytical methods. Whereas 

academic version of ANSYS software is used to compare the numerical solutions of two models, 

one relatively simpler and other full scaled trackbed model. Lastly, ADYTrack predictions are 

compared with field measurements as well as against the prediction of other well-known models 

of similar nature.  

4.1. Evaluation of ADYTrack against Analytical Solutions 

MacNeal and Hazader [39] suggested a set of problems, the brief description of which is 

provided in Chapter 1, to satisfactorily evaluate a newly developed FEM based algorithm. The 

straight cantilever beam model is selected to test the ADYTrack performance using three different 

element shapes including rectangular, trapezoidal and parallelogram, as shown in Figure 4-1. 

The length, width (our-of-plane) and depth (in-plane) of the beam are 6.0, 0.2 and 0.1 

respectively. The material properties are selected as modulus of elasticity equals 1.0×107 Pa and 

poisons ratio equals 0.30 with standard mesh of 6×1. The beam is tested for three types of loadings, 

namely extension, in-plane shear and out-of-plane shear, applied at the tip of the beam. 
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Figure 4-1. Geometry and element shapes of benchmark cantilever beam model 

[41]. (a) Rectangular brick elements, (b) Trapezoidal brick elements and (c) 

Parallelogram brick elements. 

Table 4.1 summarizes the normalized tip displacements calculated by ADYTrack using 

hexahedral 8-noded brick elements, MSC/NASTRAN using HEXA (8) element [39] and ANSYS 

(APDL) using Solid185 element type. The results showed that ADYTrack model captured the 

response with more than 99% accuracy with all three types of elements against axial loadings. 

Also, both ADYTrack and HEXA unreliably predicted (with less than 20%) the tip deformations 

against shear loadings using non-rectangular element shapes with the standard mesh. However, 

ADYTrack and APDL heavily under predicted the response with rectangular element and non-

extension loading conditions, i.e., 41.2% and 2.6% for in-plane shear and 10.3% and 10% for out-

of-plane shear respectively. This under-prediction substantially jumped to more than 75% by 

slightly refining the mesh of ADYTrack model, for both cases of shear loadings, which reveals 

that the convergence capability of ADYTrack is relatively slower in shearing dominated 

environment.  

  

(c) 

(b) 

(a) 
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Table 4.1. Normalized tip displacement in the direction of the load 

 Loading Condition ADYTrack HEXA (8) APDL 

Rectangular 

Extension 0.993 0.993 0.988 0.995 

In-Plane Shear 0.760* 0.412 0.981 0.026 

Out-of-Plane Shear 0.798** 0.103 0.981 0.100 

Trapezoidal 

Extension 0.998 0.998 0.989   

In-Plane Shear 0.135* 0.093 0.069   

Out-of-Plane Shear 0.048** 0.014 0.051   

Parallelogram 

Extension 0.998 0.998 0.989   

In-Plane Shear 0.369* 0.206 0.080   

Out-of-Plane Shear 0.164** 0.025 0.055   

*   meshing size ( 7 x 1 x 1) 

** meshing size (10 x 1 x 1) 

4.2. Evaluation of ADYTrack Against Commercial Numerical Solutions 

Academic version of ANSYS (APDL) is used to gauge ADYTrack performance reliability 

in the category of commercial numerical solutions. Two models were developed, a simple unit 

cube with four different loading and boundary conditions and a full-fledged single layered railroad 

trackbed model.  

Unit cube model was built in APDL using an 8-nodal isotropic hexahedral solid element 

(SOLID185) identical to ADYTrack brick element with three degrees of freedom (ux, uy, uz) at 

each node. Young’s modulus is taken as 100,000 Pa and poison’s ratio as 0.3. The units of these 

properties do not matter for the sake of comparisons. Four set of calculations are presented in Table 

4.2, where two different loading conditions (uniform and non-uniform) and two different boundary 
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conditions (bottom completely constraint and bottom optimally constraint) are applied to the 

model. A uniform load of 25 was applied in z-direction at nodes 1 to 4 for Case 1 and 2. Whereas 

a non-uniform loading conditions with magnitudes of 20, 25, 30 and 35 in z-direction were applied 

at nodes 1 to 4 respectively for Case 3 and 4. On the other hand, fully constrained conditioned, in 

which all bottom nodes (5-8) were restricted to move in any direction, were applied to Case 1 and 

3. Whereas optimal boundary conditions, in which all bottom nodes were restricted to move in z-

direction and additional restrictions included node 5 in x and y-direction and node 6 y-direction, 

were applied in Case 2 and 4. Contour plot of vertical stress in z-direction for loading case 4 in 

APDL is shown in Figure 4-2. 

 

Figure 4-2. Contour plot of vertical stress in z-direction for loading case 4 (non-uniform 

loading and optimal boundary conditions) using APDL. 
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Table 4.2. Normalized tip displacement in the direction of the load 

*   Uniform –Loading of magnitude of 25 in z-direction at node 1 to 4 (FZ1 = FZ2 = FZ3 = FZ4 = 25) 

** Non-Uniform – Loading of magnitude of 20, 25, 30 and 35 in z-direction at node 1, 2, 3 and 4, 

respectively (FZ1 = 20, FZ2 = 25, FZ3 = 30, FZ4 = 35) 

#  Fully Constraint – Restricted movement in all three directions at nodes 5 to 8 (ux = uy = uz = 0) 

##Optimally Constraint – Restricted movements in all directions for node 5, in z-direction for 

nodes 6 to 8, and in y-direction for node 6. (ux5 = uy5 = uz5 = uy6= uz6 = uz7 = uz8 = 0) 

 

Table 4.2 also provides a direct comparison of maximum displacement and stresses 

produced by APDL and ADYTrack models. It is evident from the table that uniform loading 

conditions produced minimum percentage difference in the results, whereas non-uniform loading 

conditions tend to cause higher percentage differences in the results. Percentage difference of -6% 

was observed in maximum displacement calculations by both the models for Case 1 while keeping 

same different equal to 0% for maximum stress calculations. The maximum percentage differences 

were observed for Case 4 (Non-Uniform loading and Optimal boundary conditions), where -19% 

difference was observed for maximum displacements and -7% for maximum stress calculations. 

Case 2 (Uniform loading and Optimal boundary conditions) produced absolutely no difference in 

the results of both the models.  

  

Case 

No. 

Loading 

Condition 

Boundary 

Condition 

Max. Displacements (10-3) Max. Stress 

ADYTrack APDL % Diff. ADY-

Track 

APDL % 

Diff. 

1 Uniform* Fully uZ4=0.91 0.97 − Z4=113 113  

2 Uniform* Optimally## uZ4=1.00 1.00 0% Z4=100 100  

3 Non-

Uniform** 

Fully# uZ4=1.59 2.04 -22% Z4=162 168  

4 Non-

Uniform** 

Optimally## uZ4=1.74 2.15 -19% Z4=147 158 − 
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Second model in this category was a single layered yet full-fledged railroad trackbed 

model, developed on identical grounds in both the programs. The model was spanned on 9 ties 

with 0.55 m of tie spacing and 1.65 m gauge length. Main components of the model and its 

geometry as drawn in APDL software is shown in Figure 4-3. Rail and ties are modelled as 2-node 

beam elements with six degrees of freedom at each node (BEAM188). Whereas rail-tie links were 

modelled as spring elements, transmitting only uniaxial forces (COMBIN14) and substructure 

layer was modelled using 8-node isotropic hexahedral elements with three degrees of freedom at 

each node (SOLID185).  

 

 

Figure 4-3. Main components and geometry of the model using APDL. 
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Table 4.3 summarizes other important geometric and material properties of the track used 

in both the models. A comparison of vertical displacements below the wheel load along the depth 

below the rail, as calculated by both the models is presented in Figure 4-4. It is evident from the 

figure that vertical displacement calculated by both the models are identical with a maximum 

percentage difference of 5.3%. 

Table 4.3. Important track properties for evaluation of single layer model in ADYTrack 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-5 represents a comparison of vertical stress below the wheel load along the depth 

calculated by both the models. Again, it is clear from the figure that both the models calculated 

the vertical stress with a maximum percentage difference of 6 %. The stresses were calculated at 

the mid depth of each element by taking the average of all the upper and lower nodes along the 

depth below the wheel loading.  

  

Property Magnitude 

Rail   

    Modulus, Er 207,000 MPa 

    Poison’s Ratio 0.30 

Tie  

    Modulus, Er 10,550 MPa 

    Poison’s Ratio 0.37 

    Spacing 550 mm 

    Length 2750 mm 

    Width 250 mm 

    Thickness 210 mm 

Substructure Layer  

    Depth 3025 mm 

    Modulus, Es 480 MPa 

    Poison’s Ratio 0.37 

Rail-Tie Spring Constant 1,200 kN/mm 

Wheel Load  145 kN 
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Figure 4-4. Comparison of vertical displacement below the wheel load along the depth. 

 

 

 

 

 

 

 

 

 

Figure 4-5. Comparison of vertical stress below the wheel load along the depth. 

A contour plot of the vertical displacement at the intersection of below the rail plane and 

below the loaded tie plane using APDL is shown in Figure 4-6. The figure clearly helps understand 

the distribution of displacement in all three directions. This plot showed the displacement 

variations in substructure layer only and not in the rail, tie or rail-tie link elements.  
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Figure 4-6. Contour plot of vertical displacement at the intersection of below the rail plane 

and below the loaded tie plane using APDL. 

4.3. Validation of ADYTrack Against Field Measurements and Other Models Predictions 

In this section, validation of the ADYTrack model is presented against two full scale field 

tests performed in different substructure conditions and published in the literature [23], [24], [28], 

[35]. Its results are further compared with the predictions of other well-known models 

(GEOTRACK, MULTA, 3D20N) in the railways industry. For this purpose, two separate models, 

named Model 1 and Model 2 were developed in ADYTrack. Summary of the material properties 

used in both these models are summarized in Table 4.4. Whereas the magnitudes of material 

properties, used in others’ model calculations can be found in their respective publications. 

  



57 
 

Table 4.4. Summary of magnitudes of material properties used in the ADYTrack model 

 Properties Model-1 Model-2 

Rail   
   Modulus, Er (MPa) 207,000 207,000 

   Poison’s Ratio 0.3 0.3 

   Gauge Length (mm) 1,435 1,650 

Tie 
 

 
   Modulus, Er (MPa) 10,340 10,550 

   Poison’s Ratio 0.37 0.37 

   Spacing (mm) 550 500 

   Length (mm) 2,500 2,750 

   Width (mm) 225 250 

   Thickness (mm) 175 210 

Ballast 
 

 
   Depth (mm) 350 350 

   Modulus, Es (MPa) 207 400 

   Poison’s Ratio 0.37 0.37 

Subballast 
 

 
   Depth (mm) 150 150 

   Modulus, Esb  (MPa) 138 200 

   Poison’s Ratio 0.37 0.37 

Subgrade 
 

 
   Depth (mm) 2,000 1,000 

   Modulus, Esg (MPa) 35 90 

   Poison’s Ratio 0.33 0.4 

Rail-Tie Spring Constant 

(kN/mm) 

 

1,225 

 

1,200 
Wheel Load (kN) 160 145 
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4.3.1. Case Study 1 

Selig et. al [8], and Steward and Selig [118] measured stresses and deformations using an 

extensive instrumentation program at a test track section at the Facility for Accelerated Service 

Testing (FAST) Pueblo Colorado. This study helped creating models and comparing their 

prediction with the actual measurements. On the same lines, Shahu et. al. [35] also evaluated their 

model, 3D20N, against the same field measurements and predictions by Selig et. al [8] using 

MULTA model. Similarly, the ADYTrack model results are compared with both these model 

results, which include the vertical stress and vertical deformation along the depth and vertical stress 

along the loaded tie. 

First of all, an identical geometry is created in ADYTrack as provided in Shahu et al. [35], 

including size of rail, gauge length; spacing, type and size of tie, substructure layer thicknesses 

and applied loading. However, authors analyzed this track section as a four layered substructure 

with one addition layer of natural soil, extending up to 10 m depth with Young’s modulus of 35 

MPa and poison’s ratio of 0.4. Then the model was calibrated against vertical displacements along 

the depth as predicted by other models results (MULTA and 3D20N) using hit and trial method 

by varying the layer properties and mesh size. And the final values of the layer properties are 

summarized in Table 4.4. Then vertical stress along the depth and tie are calculated using the same 

mesh and material properties. 

Figure 4-7 shows vertical displacements below the wheel and along the depth of the test 

track, predicted by MULTA, 3D20N and ADYTrack models. As this plot was used to calibrate the 

ADYTrack results, the predictions are simply duplicating.  
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Figure 4-7. Vertical displacement below the wheel and along the depth of the trackbed. 

Figure 4-8 explains the variations of vertical stresses below the wheel and along the depth 

of the trackbed right as predicted by all three models. ADYTrack calculations followed the typical 

trend of vertical stress reduction along the depth. In addition, ADYTrack overestimated the 

maximum vertical stress by almost 15% at the ballast surface. One of the possible reasons of this 

overestimation can be the 8-nodal brick elements, representing the layer structure, that make the 

structure relatively rigid.  
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Figure 4-8. Vertical stress below the wheel and along the depth of the trackbed. 

Vertical stresses calculated along the tie and below the wheel at two different depths, i.e., 

at the top of ballast (18 cm below the wheel load) and at the top of subgrade layer (71cm below 

the wheel load) are shown in Figure 4-9. ADYTrack successfully captured the overall response 

and distributed the vertical stress along the tie at different depths. The maximum vertical stress 

below the rail beam at the top of ballast layer, calculated by MULTA, 3D20N and ADYTrack are 

215 MPa, 233 MPa and 230MPa respectively. The percentage difference in the estimation of the 

maximum stress at the ballast surface by ADYTrack was less than 10%. The figure further 

highlights the fact that though ADYTrack underestimated the stress at the top of ballast, whereas 

it slightly overestimated the stress at the top of subgrade, which was in consistent with the 

observation in Figure 4-8. 
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Figure 4-9. Vertical stress along the loaded tie at ballast and subgrade surfaces. 

4.3.2. Case Study 2 

CW Adegoke [119] studied in detail the response of ballast and subgrade in a trackbed test 

section at the Department of Transportation Facility for Accelerated Service Testing (FAST) 

through an intensive instrumentation program. Out of this comprehensive testing program, Chang 

et al. [23] selected only one test section results for the validation of the results of their model, 

GEOTRACK. The same field measurements and the predictions made by GEOTRACK model 

were used here for the purpose of validation of ADYTrack results. These results included the 

vertical displacements along the depth below the wheel load and the vertical stress distributions 

along the depth, ties, and rail.  

Similar to Model-1, first of all, an identical railroad trackbed geometry and a double axel 

loading with axle spacing of 72 inch was generated in ADYTrack, as provided by Chang et al. 
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[23], the numerical values of which are summarized in Table 4.4. GEOTRACK assumed the last 

layer of infinite depth, however authors modelled the last layer, natural soil layer, with a depth of 

8.5m, Young’s modulus of 20 MPa and Poison’s ratio of 0.4 in ADYTrack. Later, the ADYTrack 

model calibrated against vertical deformations along the depth below the wheel load as predicted 

by GEOTRACK model while changing the layer material properties and mesh size. Then the 

vertical stress analysis was performed (a) below the wheel load along the depth, (b) at the ballast 

surface along the tie under and adjacent to the wheel load, and (c) at the subgrade surface along 

the rail in ADYTrack.  

Figure 4-10 shows the vertical displacement distribution against depth below the wheel 

load, as measured in the field and predicted by GEOTRACK and ADYTrack models. This plot 

was used to calibrate the Model-2 results in ADYTrack. It is clear from the figure that maximum 

vertical displacement (approximately 2.15 mm) and its variation along the depth as predictions by 

both the models are matching with less than 10% variations. Furthermore, both the model 

predictions are falling in the range of field measurements.  

After successful calibration of the model, the vertical stress analysis along the depth below 

the wheel load was performed, the results of which are shown in Figure 4-11. The field 

measurement and GEOTRACK model predictions are also plotted in the same figure. Again, it is 

clear from the figure that both the model predictions are matching convincingly with a percentage 

difference of less than 10% and are falling in the range of field measurements. The vertical stresses 

at the ballast and subgrade surfaces as predicted by both the models are approximately 190 kPa 

and 50 kPa respectively. 
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Figure 4-10. Vertical displacement below the wheel load and along the depth of the trackbed. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-11. Vertical stress below the wheel load and along the depth of the trackbed. 
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Figure 4-12 shows the variations in vertical stress at the ballast surface along the tie under 

the wheel load (Tie-1) and two adjacent ties (Tie-2 and Tie-3). The vertical stress predictions by 

both the models are plotted in this figure. ADYTrack precisely captured the overall response 

including maximum stress and variation in stress along the ties, as predicted by the GEOTRACK, 

however it consistently and slightly underestimated the vertical stresses along the ties. For the Tie-

1, Tie-2 and Tie-3, on average ADYTrack under predicted the stresses by around 15 %, 13% and 

20%. Similarly, ADYTrack underestimated the vertical stress at the ballast surface and over 

predicted the stress at the subgrade surface in Figure 4-9 as well. These stress underestimations at 

the top layer can be since the substructure layers are modelled in ADYTrack as rigidly connected 

brick elements that can cause relatively faster and broader load distribution. 

Vertical stress distribution along the rail beam at the top of subgrade due to a double axel 

railways bogie, as measured in the field and subsequently predicted by GEOTRACK and 

ADYTrack is shown in Figure 4-13. Overall response of the stress distribution is precisely 

predicted by both the models with a significant accuracy. The maximum vertical stress right below 

the wheel locations as calculated by ADYTrack and GEOTRACK are 57 kPa and 56 kPa 

respectively, as compared to field measurement of 55 kPa, with less than 5% difference.  
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Figure 4-12. Vertical stress at the ballast surface along the tie under and adjacent to wheel 

load. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-13. Vertical stress at the subgrade surface along the rail. 
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4.4. Summary 

This chapter evaluated the newly built model, ADYTrack, to validate its applicability and 

accuracy. To verify its accuracy and reliability, it is evaluated against analytical solutions, 

commercial numerical solution and full scaled field measurements. A straight cantilever beam 

model with different loading conditions and element shapes was developed in ADYTrack and their 

response was compared with analytical solutions. Then ADYTrack calculations were examined 

against ANSYS results for a) a unit cube model and b) a single layered trackbed model. Finally, 

the capacity of ADYTrack was checked against full scale field test measurements at two different 

locations with different ground conditions. The results of both these ADYTrack models were 

further compared with the prediction by other renowned models developed. Comparison of results 

in all these models revealed that ADYTrack can capture the response of any physical phenomenon 

with considerable accuracy and reliability. 
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5. SENSITIVITY STUDY OF A RAILROAD TRACKBED USING ADYTRACK 

Following the development of the random finite element based ADYTrack model and its 

successful validation and evaluation of results, a sensitivity study is conducted to learn the extent 

of the influence of intrinsic variability in various substructure layers on the performance of the 

railroad trackbed. The intrinsic variability is modelled such that the coefficient of variation (COV) 

is changed from 0-80% for each layer, one at a time while keeping all other layers’ COVs at 10%. 

The performance of the trackbed is measured by calculating vertical displacements and stresses 

right below the wheel at various levels. Each analysis comprised of 5,000 realization (iterations) 

of Monte Carlo simulations, which was very resource (computing) intensive, therefore, the 

assistance of Center of Computational Assisted Science and Technology (CCAST) at NDSU was 

sought. The procedure of using CCAST facility is explained in the following section. 

5.1. Usage of CCAST Facility at NDSU 

For a single cycle of deterministic analysis of up to 1000 nodes using ADYTrack takes 

about little less than 3 seconds using a 16 GB random access memory on Intel(R) Core (TM) i7-

7700 CPU@3.6GHz processor. This simply means that to perform a probabilistic analysis with 

10,000 iterations, it should take more than 8 hours for the same sized FEM model. Therefore, 

assistance was sought from Center of Computationally Assisted Science and Technology 

(CCAST) facility at the University (NDSU). Below are the step by step procedures to run the 

simulations over the CCAST network. 

1) Open an account with CCAST to get a user ID and password. 

2) Install PuTTY and winSCP on your computer. 

3) Log in to PuTTY and winSCP using CCAST ID and password. 

mailto:CPU@3.6GHz
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4) Change the directory using “cd” command to get to the working directory over the 

CCAST network. 

5) Copy the main code and script file in your working directory over the CCAST network. 

Script file is a set of user requirements and main instructions to convey to the CCAST 

network. User requirements will include the number of CPUs, estimated wall time, 

memory allocation, and main instruction may include loading a specific module (for 

instance, MATLAB) and name of the input file or main code to run.  

6) Submit the job using “qsub” command followed by the name of the script file, for 

instance “qsub trail_1.pbs”.  

5.2. Selection of Trackbed Parameters  

To perform the sensitivity study using RFEM based ADYTrack, the same case study 2 

(explained in section 4.3.2 and used for the validation and evaluation of ADYTrack) is used. The 

important deterministic and probabilistic parameters used for the sensitivity analysis are presented 

in the following sections: 

5.2.1.  Deterministic Parameters 

A quarter (one fourth) model spanning over seven ties is considered for this study as Shahu 

et. al., [35] Feng Huang [36] and Mishra et.al. [24] have reported that boundary effects and stresses 

considerably dissipate beyond five ties. The full tie length is taken as 2.75m with shoulder width 

of 0.3m for ballast with side slope of 1V:1.5H and 6.5m horizontal shoulder at the natural ground 

surface level, which marks the lateral extent of the model. The substructure is divided into four 

layers, namely ballast, subballast, subgrade and natural soil of 350mm, 150mm 1000mm and 

6500mm, respectively with a total depth of 8.0m. The other important properties used for rail, tie 

and substructure layers are presented in Table 4.4 (Model-2). 



69 
 

5.2.2. Coefficient of Variation of Intrinsic Substructure Variability 

Coefficient of variation is the ratio of mean to the standard deviation and expressed in 

percentage. Phoon and Kulhawy [120] studied the variability in resilient modulus (E) of soils using 

correlations with pressuremeter test, dilatometer test and SPT N value test. The inherent 

variabilities (COV) reported in literature range between 15% and 68% [120], [121]. The range of 

E-values for substructure layers, adopted in the present study is 0% - 80%, which is slightly higher 

than reported values. The justification for this higher value is that given the variability of soil 

depends on the ratio of sampling volume to the sampling domain volume [89], meaning fewer 

samples over a large domain can significantly increase the COV, which is highly likely in case of 

railroad trackbed design. Another reason for choosing higher value is to meet the objective of this 

study (i.e., sensitivity analysis) and to quantify the variability in output fields due to a wide range 

of input variabilities. 

The probabilistic structural performance of the trackbed was evaluated through the 

variations in vertical displacements, vertical stresses and track modulus against the variations in 

substructure layers, for 5,000 realizations of Monte Carlo simulations in each case using 

MATLAB, the details of which are explained previously. A range of 0-80% COVs in resilient 

modulus was covered, with five discrete COV values, for each substructure layer while keeping 

COV in resilient modulus of other layers at 10% in each realization, as presented in Table 5.1. 

Vertica responses (displacement and stress) are calculated at the center of top layered elements in 

each substructure layer, right below the wheel load.  

The results are discussed separately for vertical displacements, vertical stresses and track 

modulus in the following sections. 
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Table 5.1. Combinations of COVs for different input variables used in this study. 

 

 

 

 

5.3. Results and Discussions 

5.3.1. Vertical Displacements 

Unlike deterministic analysis, a series of calculations were performed using Monte Carlo 

simulations for every single variation in the input variable parameter, using RFEM based version 

of ADYTrack. In this study, 5,000 realizations were selected to calculate the structural 

performance of the railroad. In other words, vertical displacements were calculated at the top of 

each layer 5,000 times for each set of variations, presented in Table 5.1.  

The results of vertical stress at the top of ballast layer for only one set of variations, i.e., in 

the resilient modulus of ballast layer with COVs of 10%, 20%, 40, and 80% are presented in Figure 

5-1. The complete set of reliability plot at the top of substructure layers due to variations in resilient 

modulus of each layer are presented in Appendix-C. The histograms of vertical stress values are 

represented in gray color bars, whereas the equivalent normal distribution of these results is shown 

in red colored bell shape curve on the secondary y-axis (red in color). The same equivalent normal 

distribution curve can be used to calculate the reliability (inverse of probability of failure) or 

probability of occurrence or exceedance of any given stress magnitude. Alternatively, for any 

given probability of occurrence, for instance 1%, 5%, or 10%., the corresponding vertical stress 

can also be calculated.  

COV in Ballast 

Modulus 

(%) 

COV in Subballast 

Modulus 

(%) 

COV in Subgrade 

Modulus 

(%) 

0, 10, 20, 40, 80 10 10 

10 0, 10, 20, 40, 80 10 

10 10 0, 10, 20, 40, 80 
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Variations in COV of vertical displacement at the top of each substructure layer including 

rail beam due to variations (COV) in ballast layer is shown in Figure 5-2. The results show that 

COVs in vertical displacement increased with increasing COVs in ballast layer’s resilient modulus 

values at the top of each substructure layers including rail. The range of variations in the response 

variable is observed between 1-19% for the selected range of variations in the ballast layer’s 

resilient modulus values. Similar trend was also observed by Fernandes et. al. [109]. Additionally, 

at around 30% and beyond of COV in resilient modulus of ballast layer, the increase in vertical 

response becomes more pronounced and steeper for all the substructure layers including rail. 

Furthermore, the difference in response of all the substructure layers among themselves, for any 

given value of COV in resilient modulus of ballast layer, is less than 5%. The output variable 

Figure 5-1. Reliability plot for vertical displacement at the top ballast layer due to 

variations (A=10%, B=20%, C=40%, and D=80%) in resilient modulus of ballast layer 

using Monte Carlo simulations. 
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response in ballast layer is found to be most sensitive to variations in its own layer’s resilient 

modulus values. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2. COVs (%) in vertical displacement at the top of substructure layers below the 

wheel load for a range of COVs (%) in the resilient modulus of ballast layer. 

Similar trend is observed for the COVs in vertical displacements against COVs in resilient 

modulus of subballast layer, with relatively shorter range of 1-14% in the COVs of the vertical 

response, as shown in Figure 5-3. This short range may be attributed to the relatively smaller 

volume of the layer (150mm thick) compared to total volume of the model. 
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Figure 5-3. COVs (%) in vertical displacement at the top of substructure layers below the 

wheel load for a range of COVs (%) in the resilient modulus of subballast layer. 

Figure 5-4 represents the variations in vertical displacements at the top of substructure 

layers below the wheel load against the variations in resilient modulus in subgrade layer. The 

results in this case are like the cases of ballast and subballast layers, except with a higher range of 

variations in the response variable, i.e., 1-26%. Variations in vertical displacements are found to 

be most sensitive to the variations in its own layer’s resilient modulus values. 
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Figure 5-4. COVs (%) in vertical displacement at the top of substructure layers below the 

wheel load for a range of COVs (%) in the resilient modulus of subgrade layer. 

5.3.2. Vertical Stresses 

The vertical stresses were calculated using the same procedure as that of vertical 

displacements at the top of each layer due to variations in resilient modulus of each substructure 

layer. Figure 5-5 shows the reliability plot for vertical stress calculations at the top of ballast layer 

due to variations in resilient modulus in the same layer against COVs of 10%, 20%, 40%, and 80% 

in subplots of A, B, C, and D, respectively. Gray colored histogram shows the frequency of 

occurrence of a value of vertical stress. And red line represents the equivalent normal distribution 

of the results, which will be used to calculate the probabilities in various conditions to interpret 

the results. For more reliability plots, refer to Appendix-C.  
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Vertical stresses were calculated at the center of elements situated at the top layer of each 

substructure layer below the wheel load for a range of COVs in the ballast layer’s resilient modulus 

values. The variations in these stresses for each layer were then plotted against variations in the 

resilient modulus values of substructure layers (Figure 5-6). The variations in the stress increases 

with the increasing variations in the input variable. This increase switches the slope and takes a 

steeper slope at around 30% and above COV in ballast layer’s resilient modulus. It is also noted 

that output response is relatively more sensitive to the variations in input variable of its own layer, 

i.e., ballast layer. Furthermore, the range of output variable observed is between 1-43% for given 

range of variations in input variable 

Figure 5-5. Reliability plot for vertical stress at the top ballast layer due to variations 

(A=10%, B=20%, C=40%, and D=80%) in resilient modulus of ballast layer using Monte 

Carlo simulations. 
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Figure 5-6. COVs (%) in vertical stresses at the top of substructure layers below the wheel 

load for a range of COVs (%) in the resilient modulus of ballast layer. 

Figure 5-7 shows the COV in vertical stresses at the top of various substructure layers due 

to COVs in the resilient modulus of subballast layer. The results are again like that of ballast layer 

for the same response. However, the range of COVs in response variable is between 4-59% for the 

same range of variations in input variable, i.e., resilient modulus of subballast layer. The sensitivity 

level for variations in vertical stresses in both subballast and subgrade layers found to be identical 

at higher values of COVs in input variables, whereas ballast layer behavior remained relatively 

passive for the same higher values. 
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Figure 5-7. COVs (%) in vertical stresses at the top of substructure layers below the wheel 

load for a range of COVs (%) in the resilient modulus of subballast layer. 

Figure 5-8 represents the case of vertical stress response against COVs in the resilient 

modulus of subballast layer. The range of COVs of response variable is observed between 1-66% 

for the same range of variations in the resilient modulus of subgrade layer. The variation in output 

variable is found to be more sensitive for the selected range of variations in input variables of 

subgrade layer (COVoutput=66%) and this is the highest variation observed in all the cases 

considered in this study. The response of subballast layer remained relatively less pronounced 

(COVoutput=47%), followed by even lesser pronounced response from ballast layer 

(COVoutput=17%), at the 80% COV for input variable considered in this work. 
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Figure 5-8. COVs (%) in vertical stresses at the top of substructure layers below the wheel 

load for a range of COVs (%) in the resilient modulus of subgrade layer. 

5.3.3. Track Modulus 

Track modulus, u, is a measure of trackbed performance including the effect of vertical 

stiffness of the foundation system including rail, ties and substructure and is calculated using 

Equation (5.1). 

where P is the applied wheel load, u is the vertical displacement at the rail below wheel load, Er is 

the Young’s modulus of rail and Ir is its second moment of area. Many including Steward and 

Selig [118], Raymond [122], Cai et. al. [123], Selig and Li [124] and recently Mishra et. al. [24] 

have used it as a trackbed performance indicator. The major factor influencing track modulus is 

subgrade resilient modulus, followed by subgrade thickness [124]. Track modulus in the current 
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study is calculated such that P is the wheel load, and u is vertical displacement at the node of rail 

beam below the wheel load. 

Figure 5-9 explains probability distribution of track modulus due to variations in subgrade 

layer’s resilient modulus for COV values of 10%, 20%, 40%, and 80% in subplots of A, B, C, and 

D, respectively. The complete set of reliability plots for variations in all substructure layers are 

appended in Appendix-C. 

 

Track modulus is plotted in Figure 5-10 for all cases against COV in resilient modulus (E) 

values of various substructure layers. Like the cases of vertical displacements and vertical stresses, 

variations in track modulus also increases with the increasing variation in substructure layers’ E 

values. It also shows that the variations in subgrade E values are most influential to the variations 

Figure 5-9. Reliability plot for track modulus due to variations (A=10%, B=20%, C=40%, 

and D=80%) in resilient modulus of Subgrade layer using Monte Carlo simulations. 

A B 

C D 



80 
 

of track modulus values, followed by the variations in E values of ballast and subballast layers. At 

the maximum COV in E value, i.e., 80%, considered in this study, the COVs in the track modulus 

are calculated as 37.2%, 21.0% and 12.1% for subgrade, ballast and subballast layer, respectively. 

One reason for this order of influence can be the proportional volumetric contribution of 

corresponding layers in the trackbed, for instance, the thickness of subgrade, subballast, and ballast 

layers adopted for this analysis were 1000mm, 350m, and 150mm, respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 5-10. COVs (%) in track modulus for a range of COVs (%) in the resilient modulus of 

different substructure layer. 
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5.4. Summary 

The results of sensitivity study, conducted to understand the influence of intrinsic 

variability in substructure layers on the performance of railroad trackbed, showed that with the 

increase in variability in the resilient modulus of substructure layers, there is a bilinear increase in 

the variability of the trackbed’s responses, measured as vertical displacements and stresses, and 

track modulus. Also, it is observed that this increase in response changes the slope at COV of about 

30-35%.   
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6. CONCLUSIONS AND FUTURE WORK 

This chapter summarizes the conclusion and main outcomes of the studies performed under 

this dissertation, the major contributions of this study, and the potential future work. 

6.1. Conclusions  

The important conclusions based on this study can be drawn as follows: 

1) A new numerical model, named ADYTrack, is developed based on the principles of 

random finite element (RFEM) to include the intrinsic variations in the material 

properties including built-in capability of performing reliability analysis using Monte 

Carlo simulations. This model can also incorporate the variations in geometric 

properties and loading conditions with some modifications in the base code. 

2) The displacements of a straight cantilever beam model using eight nodal isoparametric 

hexahedral (brick) element in ADYTrack predicted the response in compression with 

99.3% of accuracy when compared with analytical solutions, with a percentage 

difference of less than 10% when compared with the well-known models including 

GEOTRACK, and with 5-20% error when compared with the field measurements of 

full-scale experiments of test tracks with different subgrade conditions at the Facility 

for Accelerated Service Testing (FAST) Pueblo Colorado. 

3) The sensitivity study of a trackbed model, using the RFEM based ADYTrack model 

revealed that the variations in vertical displacements, vertical stresses and track 

modulus in different layers increased with the increasing variations in resilient modulus 

(E) values of substructure layers, as expected, in all the cases considered in this study. 

However, this increases in variations of output variables remained somewhat less than 

the variations in their corresponding input variables. The reason behind this reduction 
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can be the mechanism of smooth and systematic load distribution of trackbed to the 

below layers with smaller E values.  

4) An increase in rate of change is observed in output variables at around COV of 30% 

and above in the input variables, in most of the cases studied in this work.  

5) The response of any substructure layer is mostly influenced by the variations in its own 

layer’s E values for the complete range of COVs selected in this study.  

6) The variations in subgrade E values are found to be strongly influential for the output 

variables considered in this study, especially track modulus. 

6.2. Key Contributions 

The key contribution of this study is the development of the new numerical model, 

ADYTrack, which is easy enough to be used by the railroad engineering practitioners yet robust 

enough to include any or all kinds of variations in the trackbed materials, and potentially also 

variations of the geometries and loadings with future development. These variations may include 

the materials’ inherent variations; variations in the geometries of trackbed due to construction 

imperfections, rail operations or even weather conditions; or even the variations in loadings that 

might be caused by different car loads and/or their operating speeds.  

The model with its integrated graphical user interface, is very easy to use by a railroad 

design engineer with minimal knowledge of FEM or probabilistic theories. As this model is 

specifically designed for trackbeds’ structural analysis, it saves a lot of time first in building a 

finite element model, then in editing any or all parts of the trackbed, if required. This can 

significantly help design engineers to come up with the most economical and reliable trackbed 

design in short period of time. Furthermore, this model is validated against some field 

measurements, it is least prone to human mistakes in building a model. 
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This model can also significantly contribute in the field of cutting-edge research, for 

instance the trackbed performance can be evaluated under the anisotropic nature of trackbed 

construction materials, especially the subgrade or wooden ties etc. Also, design charts can be 

proposed for various combinations of variations in different substructure layers, for most generic 

trackbed shapes or geometries. More potential research topics are presented in next section. 

Another key contribution of this study is building a numerical code from scratch in 

MATLAB. This will allow the researchers to modify the base code by adding or modifying a part 

of the algorithm to study the required aspect of trackbed.  

6.3. Future Work 

There is huge potential of future works using RFEM based ADYTrack due to its vibrancy 

and robustness to simulate the variations in different aspects of trackbed using principles of 

standard FEM as well as theories of probability and reliability. Some of the future work are 

outlined below: 

The study of anisotropic behavior of materials is greatly underworked, primarily due to 

lack of modeling abilities, as most of the available models assume homogenous, and isotropic 

materials. However, ADYTrack has built-in capability of generating anisotropic conditions in all 

three directions, i.e., longitudinal, lateral, and/or traverse direction.  

Track transition zone is another hot area of study these days in railways engineering due to 

chronical issues of riders’ comfort and trackbed maintenance in these zones. The transition of track 

support due to the presence of structures like bridge decks or change of tie types etc., are difficult 

to model in standard packages of FEM models. However, ADYTrack has the potential to simulate 

these transitional conditions and analyze the performance of track due various loading types.  
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The studies of exploring critical spatially correlated length are reported in other 

applications of geotechnical engineering including retaining wall design, shallow bearing capacity 

and slope stability problems, using the principles of probability and reliability. A similar study can 

be performed for railroad trackbed. The identification of critical spatial correlation length can 

significantly contribute towards the site characterization and trackbed designs. 

Another future work may be the development of design charts for various combinations of 

a range of variations in different components of the trackbed for some most common trackbed 

geometries and loading. This can be of great value in comparing different design options at 

preliminary or conceptual stage of trackbed designs. Last, but not the least, it can also help 

document different case studies with varying levels of variations in substructure layer properties, 

especially the moisture content which directly and significantly affect the resilient modulus.  
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APPENDIX A. BASE CODE OF ADYTRACK MODEL 

A.1. Reading the User Defined Inputs Parameters 

 

Figure A-1. Screen shot of Microsoft Excel sheet to read the inputs for RFEM based analysis 

using ADYTrack model. 

 

A.2. Main Program ‘ADYTrack_4’ 

clear; clc; tic; 

%Half scaled Model | Material Non-Linearity | Monte Carlo Simulations 

 

global C NECT LoE GTN L1n nLN nLE NSL GSM Fex AnType MdSz WLd 

global ToE GTE StrMat TnoL Nr D3 Er LD NL nnr Nitr NTEG Set1 

global Uzrl Uzbl Uzsb Uzsg Szbl Szsb Szsg Tmod 

 

% profile on 

Prepare             % Read Inputs, Build Coord and NECT Table 

disp(GTN)           % Display Grand Total of Nodes in the system 

 

%% 

COVs=[0 10 20 40 80]/100;   % COV Values ????????????????????? 

nSet= length(COVs);         % nSet = set of calcs,  COV=0,10,20,40,.. 
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OutputAll=zeros(32,nSet); 

for set= 1:nSet 

  LD(12, 2) = COVs(set);            % WHICH LAYER ???????????????????? 

  OutputPrint(1,1); 

   

 for i=1 : 1+(Nitr-1)*AnType    % Iterations of Monte Carlo 

Simulations 

  if AnType==1; GenRandE;   end % Generate Random E (Young Modulus) 

values 

   

  StifMat;      % Construct Stress-Strain, Loc & Glob Stiff. Matrices 

  BCond;        % Apply Boundary Cond.s & Displacement Vectors 

  Solve         % Solve simulteneous equations for Nodal Displacements 

  if sum(LD(7,:)) >0;   ChkNonLin; end     % Check Material Non-

Linearity  

   

  OutputPrint(i,2); 

%   if mod(i,50)==0;      disp([i toc ]);      end 

 end 

 

%% 

% Plots               %Plot Displacement, Stresses & Risk-Reliability 

Graphs 

OutputPrint(0,3); 

OutputAll(:,set)= Set1; 

set 

end 

% profreport; 

toc 

A.3. All Main and Nested-Functions 

i. Function ‘Prepare’ 

function Prepare        %Read Inputs, Build Coord and NECT Table 

 

%% ****************************** INPUTS 

********************************* 

%*********************************************************************

**** 

global RTK NoT TTk TWd TLn TSpc RG Nr NTE1 NTEG lre ltec lteo LD NL 

AnType 

global nnr nnto nnt StrMat TnoL WLd TcD Tol Nitr Pzr GTN GTE MdSz 

StrAna 

global NECT nLE L1n T LoE ToE Er 

A = xlsread('Input_4_SI.xlsx'); % Read the user inputs from Excel 

 

StrMat = zeros(2,6);    % [E A G J Iy Iz].. Row1=Rail.. Tow2=Tie 

Pzr = zeros(1,2);       % Poison's Ratio  

MdSz = A(26,1);         % Model size (Half or Quarter) 

%GENERAL 

  StrAna=A(31,1);       % Stress analysis to performed? Yes=1, No=0 
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  AnType=A(32,1);       % Analysis Type? Deterministic=0, 

Probabilistic=1 

  Nitr=A(33,1);         % Number of itrations to perfrom problstic 

analysis 

 

%RAIL 

  RG= A(1,1)/2;         % Rail Gauge (m) 

  StrMat(1,:)= [A(2:3,1)' 1 1 A(4,1) 3.5e-6];   %RAIL Strength Matrix 

  Pzr(1)= A(5,1);       % Rail Poison's ratio 

  Nr= A(6,1);           % No.of Elem between 2-Ties 

  RTK= A(7,1);          % Rail-Tie Spring Stiffness Coefficient (kN/m) 

 

%TIE 

  NoT= A(12,1);         % No. of Ties to consider 

  TTk= A(13,1);         % Tie Thickness 

  TWd= A(14,1);         % Tie Width 

  TLn= A(15,1)/2;       % Tie Length 

  TSpc=A(16,1);         % Tie C/C Spacing 

  StrMat(2,:)= [A(17,1) TTk*TWd  1  1 ...       %Tie Strength Matrix,  

                TWd*TTk^3/12  TTk*TWd^3/12];        

  Pzr(2)=A(18,1);       % Tie Poison's ratio 

  NTE1=A(19,1);         % #of Elem in 1/2 Tie 

  NTEG=round(RG/TLn*NTE1);% #of Elem w/in Rail & CL 

  TcD= 0.21;            % Tie center depth (m) 

  switch MdSz;  case 2; TnoL=fix(NoT/2)+1;      % TnoL= Tie# to put 

load on  

                case 4; TnoL=1;                 end 

  iry=A(20,1)+1;        %Incremental Rate beyond Tie Length (y-coord. 

only) 

  irz=A(21,1)+1;        %Incremental Rate in Last Layer(z-coord. only) 

 

%LOAD 

  WLd= 2*A(24,1)/MdSz;  % Wheal_Load (kN) 

  Tol= A(25,1);         % Tolerance in Young's Mod. /NonLinear 

analysis 

 

%Soil 

  NL= A(1,4);           % No of main Layers  

  LD= A(3:20, 6:5+NL);  % LD= Layers Data 

 

%Assign and store Node and Element numbers for the whole model. 

lre = TSpc/Nr;                  % Length of Rail Elments 

ltec= RG/NTEG;                  % Length of Tie element within Rails 

(C/C) 

lteo= (TLn-RG)/(NTE1-NTEG);     % Length of Tie elements outside Rails 

nnr = (NoT-1)*Nr+1;             % Number of Nodes along each Rail 

nnto= (NTE1-NTEG);              % No. of Nodes along Tie outside each 

Rail 

nnt = NTE1+1;                   % No. of Nodes along each Tie 
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%% ***************************** COORDINATES 

***************************** 

%*********************************************************************

**** 

% This function creates Coordinates for 1/4 model with in the 

following  

% sequence; Rails, Ties and Bricks. Node numbering was croocked to 

adjust 

% Tie nodes at their respecitve locations. This mechanism help all 

Lines 

% (DoF=6) at the top right of the Global K matrix (GSM) and all Bricks  

% (DoF=3) at lower right corner of GSM. 

% C(x, y, z) }..............{row# =node#....col= x,y,z coord} 

global C nnSL nLN NSL v mGS 

    QW=zeros(NoT,nnt);          o=0;      

    xV=0:lre:(nnr-1)*lre;       %All X-Coord in single vector 

 

    NSL=sum(LD(4,1:NL));        %No of Sub-Layers 

    nnSL=zeros(1,NSL+1);        %No of Nodes in each Sub-Layer 

    zTh=zeros(1,NSL+1);          

    th=LD(3,:)./LD(4,:);        %Thickness of each Sub-Layer 

    zTh(1)=TcD;                 c=1; 

    for i=1:NL-1 

        zTh(c+1: c+LD(4,i))=th(i);  %Store thickness of each SL but 

Last 

        c=c+LD(4,i); 

    end 

    %Incremental Z-coordinates for LAST LAYER (Natural SOIL) 

    zL= LD(3,end)/((1-irz^LD(4,end))/(1-irz))/irz; 

    for i=1:LD(4,end)           %Run for all sublayers of Last main 

Layer 

        zTh(c+1)= irz^i *zL;         

        c=c+1; 

    end 

    zV= cumsum(zTh);            %All Z-Coord in single vector 

%-------------------------------------------------------------- 

%RAILS 

    C(1:nnr,:)=[xV; repmat(RG,[1 nnr]); zeros(1,nnr)]';       c=nnr; 

%-------------------------------------------------------------- 

%TIES 

    y22=cat(2, repmat(ltec,[1 ,NTEG]), repmat(lteo,[1 nnto])); 

    y2 =cat(2,0,cumsum(y22));        

    z2 =repmat(TcD,[1 nnt]); 

    for i=1:NoT 

        x2= repmat(0+(i-1)*TSpc,[1 nnt]);    

        QW(i,:)= c+1: c+nnt; 

        C(c+1:c+nnt,:) =[x2; y2; z2]';       

        c=c+nnt; 

    end 

%-------------------------------------------------------------- 

%Build a X-section of Nodes in YZ-Plane with full Trapizoidal Geometry 

    lc=0;   Ye=0;   Ze=0;   np=nnt;     %Starting values 
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    % Y-coordinates (vector form) along the tie 

    yp =cat(2,repmat(ltec,[1 NTEG]),repmat(lteo,[1 nnto])); 

for i = 1:NL            %Jump for each main-layers 

     

  for j = 1:LD(4,i)     %Run for each sub-layer (TOP OF EACH SUB-

LAYER)!!!! 

    lc=lc+1;            %Loop counter,  

    % Calculate Additional Length on the (SHOULDER and/or SLOPE) 

    if i==1 && j==1;    dl= LD(1,i);                        %Only 

Shoulder 

    elseif j==1;        dl= LD(2,i-1)*th(i-1) +LD(1,i);     

%Slope+Shoulder 

    else;               dl= LD(2,i)*th(i);                  %Slope 

Only 

    end 

 %Calculate No. of New Nodes and their distances 

    if dl>0 

        nn0=log(1-dl*(1-iry)/iry/lteo)/log(iry); 

        nn= max(1, floor(nn0));             %Number of NEW NODES 

        ln0=dl/iry/((1-iry^nn)/(1-iry));    %Length of 1st NEW ELEMENT 

        yn= ln0*iry.^(1:nn);                %Length vector for new 

nodes 

    else 

        nn=0; 

        yn=[]; 

    end 

    n =np +nn;          %Total # of nodes @TOP of ith Sub Layer 

    if i==1 && j==1 

        q=nn;           % q= new nodes at top shoulder 

    end     

 

    y2= cat(2,yp,yn);               %Length vector @TOP of ith Sub 

Layer 

    y = cat(2,0,cumsum(y2)); 

    Ye= [Ye y];          

    Ze= [Ze repmat(zV(lc),[1 n])];  %Cumm Vectors of coord 

     

    %Store data for next loops [nnSL => no@ nodes on top@ each Sub-

Layer] 

    nnSL(1,lc) =n;       

    yp=y2;       

    np=n;    

    %REPEAT 2ND-LAST SUB-LAYER of NODES TO ACCOUNT FOR THE LAST SUB-

LAYER 

    if i==NL && j==LD(4,i) 

        Ye= [Ye y];    

        Ze= [Ze repmat(zV(end),[1 n])]; 

    end 

  end 

end 

    Ye=Ye(2:end);    

    Ze=Ze(2:end);                               %Remove 1st zeros 
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    nnSL(end)=max(nnSL); 

    n1x =length(Ye)+1;                          %Total Nodes/X-section 

    L1n= zeros(length(nnSL), nnSL(end), nnr);   %Nodes #s for all X-

sec 

 

%RUN ALONG X-AXIS (for each X-section) 

for i=1:nnr                 %Run for each X-section 

%1st Layer 

    if mod(xV(i),TSpc)==0     %Tie X-section           

        x3= repmat(xV(i),[1 n1x-1-nnt]);    o=o+1; 

        y3= Ye;     y3(1:nnt)=[];       %First and Last node# of ith 

X-sec 

        z3= Ze;     z3(1:nnt)=[];       n1=c+1;          

        n2=c+n1x-1-nnt; 

        C(n1:n2,:)=[x3;y3;z3]';                         

        n9= n1 :n1+q-1;             %Node# at the 1st layers of each 

X-sec 

        L1n(1,1:nnSL(1),i)=[QW(o,:) n9];                c=n2; 

 

    else                      %NON-Tie X-section 

        x3=repmat(xV(i),[1 n1x-1]); 

        n1=c+1;          

        n2=c+n1x-1;                 %First and Last node# of ith X-sec 

        C(n1:n2,:)=[x3;Ye;Ze]';                          

        n9=n1+nnt+q-1; 

        L1n(1,1:nnSL(1),i)=n1:n9;   c=n2; 

    end 

%2nd to (End-1) Layers 

    for j=2:length(nnSL)-1    %Store node numbers in layered 

sequence/X-sec  

        L1n(j,1:nnSL(j),i)= max(n9)+1 :max(n9)+nnSL(j);         

        n9=max(n9)+nnSL(j); 

    end 

%Last Layer 

    L1n(end,:,i)= n9+1 :n9+nnSL(end); 

end 

    % GTE=[ Rail  TIe      R/T    Brick]          [Grand Total 

Elements] 

    GTE=[(nnr-1) NoT*NTE1  NoT (sum(nnSL(1:end-1))-NSL)*(nnr-1)];    

    GTN=c;                      %GRAND TOTAL NODES 

    nLN= nnr+ (NTE1+1)*NoT;     %Number of LINE NODES 

    nLE=sum(GTE(1:3));          %Number of LINE ELEMENTS 

 

%% **************** NODE - ELEMENT CONNECTIVITY (NECT) 

******************* 

%*********************************************************************

**** 

% 1-Creats Node-Element Connectivity Table 

% 2-Store Type of Elements in "ToE" (1=Rail, 2=Tie, 3=Rail-Tie, 4-

n=Brick) 

% 3-Store Length of Elements in "LoE" 

% 4-Creats k-Node coordinates for Element X-sec orientation 
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% NECT(n1,n2,n3, ...,n8) ...{row# =elem#....col=Node #s } 

    LoE= zeros(nLE,1);          %Length of Elements 

    ToE=zeros(sum(GTE),1);      %NECT(n1 n2 ..n8) 

    NECT=zeros(sum(GTE),8);  

    Ck=zeros(3);             

    T=zeros(12,12,3);   %K-node Coord |Transformation 

 

% Rial Elements 

    NECT(1:GTE(1),1:2)=[1:nnr-1; 2:nnr]';    

    ToE(1:GTE(1))=1;         

    c=GTE(1); 

 

% TIE Elements 

for i = 1:NoT       %Jump on each Tie along the Rail 

 ni= nnr+(i-1)*nnt +1  : nnr+(i-1)*nnt +NTE1;    

    NECT(c+1:c+NTE1,1:2)= [ni;  ni+1]';    

    ToE(c+1:c+NTE1)=2;       

    c=c+NTE1; 

end 

 

% RAIL-TIE ELEMENTS 

    NECT(c+(1:NoT),1:2)=[((1:NoT)-1)*Nr+1;  nnr+((1:NoT)-

1)*nnt+NTEG+1]'; 

    ToE(c+1:c+GTE(3))=3;     

    c=c+GTE(3); 

 

% BRICK ELEMENTS 

for i= 1:(nnr-1)                %Run for each X-Section but Last 

  for z= 1:length(zV)-1         %Run for each sub-layer (SL)on ith X-

sec 

    for y= 1:nnSL(z)-1          %Run for each node on jth SL & ith X-

sec 

      c=c+1; 

      NECT(c,:)= [L1n(z,y,i) L1n(z,y,i+1) L1n(z,y+1,i+1)   

L1n(z,y+1,i)... 

              L1n(z+1,y,i) L1n(z+1,y,i+1) L1n(z+1,y+1,i+1) 

L1n(z+1,y+1,i)]; 

    end 

  end 

end 

 

%Type of Element        Material of Elements [BRICKS] 

n6=cumsum(nnSL(1:end-1)-1);      

n7=[0 n6(cumsum(LD(4,:)))];                 %Elem no..... 

for i= 1:nnr-1          %Run along all X-section along the Rail but 

Last 

  for z=1:NL            %Run for all main layers 

    es= nLE +(i-1)*n7(end) +n7(z) +1;       %Starting  Element 

    ef= nLE +(i-1)*n7(end) +n7(z+1);        %Finishing Element 

    ToE(es:ef) =3+z;    %Typer of Elements = Material of Elements 

  end 

end 
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% LENGTH of Elemetns    (Rail, Tie & Spring Elements) 

LoE(1:nLE) =vecnorm( C(NECT(1:nLE,2),:) -C(NECT(1:nLE,1),:), 2, 2)'; 

 

% TRANSFORMATION of COORD from LOCAL to GLOBAL 

  Ck(1,:)=[C(1,1) C(1,2)+1 C(1,3)];                   %K-Node for Rail 

  Ck(2,:)=[C(nnr+1,1)-1 C(nnr+1+1,2) C(nnr+1,3)];     %K-Node for Tie 

  Ck(3,:)=[C(1,1) C(1,2)+1 C(1,3)];                   %K-Node for 

Spring 

  en=[1  GTE(1)+1  GTE(1)+GTE(2)+1];  %First Element# of [Rail  Tie  

Spring] 

  for i =1:3 

    ni=NECT(en(i),1); nj=NECT(en(i),2);               %Node-i #;  

Node-j # 

    p1=C(ni,:);     p2=C(nj,:);     p3=Ck(i,:);       %Coord of Node-

i,j,k 

    V1=p2-p1;       V21= p3-p1;      

    V3= cross(V1,V21);V2= cross(V3,V1); 

    e1=V1/norm(V1);                  

    e2= V2/norm(V2);   

    e3= V3/norm(V3); 

    t =[e1' e2' e3'];                

    T(:,:,i)= kron(eye(4),t); 

  end 

   

% Run for each material (Rail, Tie, Spring, Each main layer) 

                        %( 1     2    3      4 5 6 7 ...) 

Ei= [StrMat(:,1)' 0 LD(5,:)];           %Array of E/Moduus /all 

Materials 

Er(1:sum(GTE),1)= Ei(ToE(1:sum(GTE)));  %Array of E/Moduus /all 

Elements 

v=[Pzr(:)' 1 LD(6,:)];                  %Array of P/ratio  /all 

Materials 

mGS=[0 0 0 LD(10,:)];                   %Array of Gibson Soil Coeff. 

end 

 

 

ii. Function ‘GenRandE’ 

function GenRandE 

% Generate Random E (Young's Modulus) values for all elements of each 

% probabilistic layer 

 

global NL LD L1n NECT nLE C nnr Er 

  for j=1:NL                        % Run for All Main Layers 

    if LD(11,j)==1                  % If this Main Layer is 

Hetrogenious ? 

      sLt= sum(LD(4,1:j-1)) +1;     % Top layer of j'th Main Layer 

      sLb= sum(LD(4,1:j)) +1;       % Bottom layer of j'th Main Layer 

      Ldn=find(L1n(sLb,:,1), 1, 'last' ); 
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      %A=1st Node#s vector in Layer_j including null/dummy and .... 

      A= L1n(sLt:sLb-1, 1:Ldn-1, 1:end-1);  % extreme right edge nodes 

      A= permute(A, [3, 2, 1]); 

      A=A(:);                               % Realign the matrix with 

CMD.. 

       

      % Real Challenge here is the segretation (finding indices) of  

      % nodes in 'A' beyond slopes (Zero-valued)and Loc-Nod-4 of 

extreme  

      % right elements 

      CD=zeros(1,length(A));                % CD= Null Element Indices 

      for k=1:length(A)                     % Elements above Slopes 

        ind= find(NECT(nLE+1:end,1) == A(k) );  %Match Node-1 (local) 

#s 

        %comparing 'A' with the 1st column of NECT removes all Node-4 

#s 

         

        if isempty(ind) ==1         %If 'ind' represents Zero(dummy) 

node- 

            CD(k)= 0;               % & extreme right edge nodes 

(Node-4#s)  

        else                        %If 'ind' represents 1st nodes of  

            CD(k) =1;               %all relevant elements 

        end 

      end 

      % CD contains 0,1 values. 0=indices of extreme right nodes and 

      % null/dummy nodes. And 1=indices of valid nodes. 

       

      nulIndx= find(~CD);           % Indices of null Node 

      A(A==0)=[]; 

       

      [Eln, ~]= find(A'==NECT(nLE+1:end,1));    %Elem#s vector in 

Layer_j 

      Eln=Eln'+nLE; 

 

      xCnod=C(1:nnr, 1);            %x-Coordinates vector along the 

Rail 

      yCnod=C(L1n(sLb,1:Ldn,1), 2); %y-Coordinates vector along the 

Tie 

      zCnod=C(L1n(sLt:sLb,1,1), 3); %z-Coordinates vector along the 

Tie 

       

      E = GenRandE_1(j,xCnod,yCnod,zCnod);  % Generate Random 'E' 

/Layer_j 

      E(nulIndx)=[];                % Remove 'E' values for Null 

Elemenets 

      Er(Eln)=E; 

    end 

  end 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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function E2 = GenRandE_1(mL,xCnod,yCnod,zCnod) 

global LD 

% INPUTS:   mL = Main Layer number 

%           x,y,zCnod = x-,y-,z-Coordinates of FEM Mesh Nodes  

%           x,y,zCrnd = x-,y-,z-Coordinates of Random Mesh 

Elem_centers  

%           x,y,zElemPos = x-,y-,z-Position of Random Mesh Elements 

 

% OUTPUTS:  E = Young Modulus of 'mL' Layer at all Element Centers 

 

Distr="N";          % "N" = Normal      "LN" = Log_Normal 

Mu=LD(5,mL);        % MEAN Young Modulus of Considered Layer (mL) 

COV=LD(12,mL);      % Coefficient of Variation 

theta=LD(13:15,mL); % Spacial correlation length (x,y,z-dir.s) 

Rscal=LD(16:18,mL); % Scaling factor for Random field (FEM/Randscal 

=RFEM) 

 

%Generate Random Field COORDINATES 

[xCrnd, xElemPos] = GenRandCoord(xCnod, theta(1), Rscal(1)); 

[yCrnd, yElemPos] = GenRandCoord(yCnod, theta(2), Rscal(2)); 

[zCrnd, zElemPos] = GenRandCoord(zCnod, theta(3), Rscal(3)); 

%xCrnd   = Coord. of Random points in x-direction 

%xElemPos= Positon (index #) of FEM element center in Random Field 

 

N = [length(xCrnd) length(yCrnd) length(zCrnd)]; 

% Generate Spacially Correlated Random E values at All Random 

Coordinates 

% using Covariance Matrix Decomposition method Step-Wise procedure in 

3D 

E = CMD_SW_3D(N, xCrnd, yCrnd, zCrnd, theta, Distr, Mu, COV); 

E2= E(xElemPos, yElemPos, zElemPos);    %Rand-E values @ FEM Elem. 

centers 

 

% plottings(E, Mu, COV, prod(N)) 

% make_video(N, E) 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% GENERATE RANDOM FIELD COORDINATES 

function [Crnd, ElemPos] = GenRandCoord(x, tht, Rscal) 

% x= FEM nodal coordinates in x-, y- or z-direcction 

Ce= zeros(1,length(x)-1);               %Ce= Random Element Center 

coord. 

  for i=1:length(x)-1                   %Generate Element center 

Coord.s 

      Ce(i) = ( x(i)+ x(i+1) )/2; 

  end 

 

  Crnd=Ce(1); 

  ElemPos=1; 

  for i=2:length(Ce)                %Generate Random Field Coordinates 

    % Number of random points between 2-Element Centers 
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    n= ceil( (Ce(i)-Ce(i-1))/ (tht/Rscal) ); 

    % Distance of random points between 2-Elements 

    d= ( Ce(i) -Ce(i-1) )/n;            

    Crnd= [Crnd repelem(d,n)]; 

    ElemPos= [ElemPos n]; 

  end 

Crnd = cumsum(Crnd); 

ElemPos=cumsum(ElemPos); 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function E = CMD_SW_3D(N,x,y,z,tha,Distr,Mu,COV) 

% Random Field Generation using "Stepwise Covariance Matrix 

Decomposition" 

% Refernce: Li et. al. 2019 

% Discretization of Correlation Function to Generate Correlation 

Matrix 

Rx=zeros(N(1),N(1)); 

Ry=zeros(N(2),N(2)); 

Rz=zeros(N(3),N(3)); 

    for i=1:N(1)            % Markovian Correlation Function in 3D 

        for j=1:N(1) 

            rx=abs(x(i)-x(j)) /tha(1);          %'tau /theta' ratio 

            Rx(i,j) = exp(-2*sqrt(rx^2)); 

        end 

    end 

     

    for i=1:N(2)            % Markovian Correlation Function in 3D 

        for j=1:N(2) 

            ry=abs(y(i)-y(j)) /tha(2);          %'tau /theta' ratio 

            Ry(i,j) = exp(-2*sqrt(ry^2)); 

        end 

    end 

     

    for i=1:N(3)            % Markovian Correlation Function in 3D 

        for j=1:N(3) 

            rz=abs(z(i)-z(j)) /tha(3);          %'tau /theta' ratio 

            Rz(i,j) = exp(-2*sqrt(rz^2)); 

        end 

    end 

Lx=chol(Rx,'lower');        % Lower Triangle of Cholskey Factorization 

Ly=chol(Ry,'lower'); 

Lz=chol(Rz,'lower'); 

 

% Stepwise Covariance Matrix Decomposition (Referebce: D.Q. Li, 2019) 

    U=randn(N(1), N(2), N(3)); 

 

    G= Lx* reshape(U, N(1), N(2)*N(3)); 

    G= reshape(G, N(1), N(2), N(3)); 

    G= permute(G, [2, 3, 1]); 

 

    G= Ly* reshape(G, N(2), N(3)*N(1)); 



105 
 

    G= reshape(G, N(2), N(3), N(1)); 

    G= permute(G, [2, 3, 1]); 

 

    G= Lz* reshape(G, N(3), N(1)*N(2)); 

    G= reshape(G, N(3), N(1), N(2)); 

    G= permute(G, [2, 3, 1]); 

 

% Transformation of LN_Distribution to underlying Norm_Distribution 

if Distr=="LN" 

    SigLN= sqrt( log(1+COV^2)); 

    MuLN = log(Mu)- 0.5*SigLN; 

end 

    %Calculate the Spatially Correlated Random E values based on 

    %their Distribution Type 

    if      Distr=="LN";    E= exp(MuLN+ SigLN *G); 

    elseif  Distr=="N";     E= Mu + COV*Mu*G; 

    end 

% RESULTS & PLOTS 

% disp("Actual  vs  Given -> Means");     disp([mean(E(:)) Mu]); 

% disp("Actual  vs  Given -> COV's");     disp([std(E(:))/mean(E(:)) 

COV]); 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function plottings(E,Mu,COV,n) 

    figure(1) 

    plot(E(:));         hold on;        ylim([Mu-6*COV*Mu 

Mu+6*COV*Mu]); 

        set(gca,{'YDir'},{'reverse'});       

        set(gca,{'XAxisLocation'},{'top'}); 

    plot([0 n],[Mu Mu]);   hold off;    grid on; 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function make_video(N,E)                % Create the Video 

    for k = 1: N(3) 

        figure(2)   

        imagesc(E(:,:,k));              %colormap gray 

        caxis([min(E(:)) max(E(:))]); 

        colorbar('Direction','reverse'); 

        set(gca,{'XAxisLocation'},{'top'}); 

        F(k) = getframe(gcf) ;          drawnow 

    end 

    writerObj = VideoWriter('Spatial_Variation_Video.avi'); 

    writerObj.FrameRate = 10;           % set the frames per second 

    open(writerObj);                    % open the video writer 

    for k=1:length(F)                   % write the frames to the 

video 

        frame = F(k) ;                  % convert the image to a frame 

        writeVideo(writerObj, frame); 

    end 

    close(writerObj);                  % close the writer object 
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end 

 

 

iii. Function ‘StifMat’ 

% Creates all types of Stiffness Matrices [Local, Global, Overall 

Global] 

function StifMat 

global GSM GTN GTE C NECT ToE StrMat T nLN RTK LoE Er v mGS 

nG= nLN*6+(GTN-nLN)*3;    

GSM=zeros(nG,nG);       %Size of Global Stif matrx(GSM) 

 

%% Create Global Stiffness matrix (GSM) & Material Stiffness (E) 

matrix 

c=0; 

for i = 1 : sum(GTE)        %RUN FOR EACH ELEMENT 

  if ToE(i) <4              %LINE ELEMENTS ONLY 

    Kloc= KLine(i);                             %Local Stiffness 

Matrix      

    Kglo= T(:,:,ToE(i))* Kloc *T(:,:,ToE(i))';  %Global Stiffness 

Matrix  

     

    n1= NECT(i,1);          %1st node of elem i 

    n2= NECT(i,2);          %2nd node of elem i 

    el= [(n1*6-5):(n1*6) (n2*6-5):(n2*6)];      %Indeces for placing 

'K' 

    GSM(el,el)= GSM(el,el)+ Kglo; 

     

  else                      %BRICK ELEMENTS ONLY 

    c=c+1;                               

    e=zeros(1,24); 

    n8= NECT(i,:); 

    Ei = GenEmat(i,n8);                 %With GIBSON SOIL 

    C8= [C(n8,1) C(n8,2) C(n8,3)];      %Coord of all 8 nodes 

    Kbe = K_Brick(C8,Ei);               %Local Stiffness matrix 

     

    for j=1:8               %Make arrangement for placing K into GSM 

      if n8(j)<=nLN 

          em= n8(j)*6-5 :n8(j)*6-3;              

      else 

          em= nLN*6+ ((n8(j)-nLN)*3-2 :(n8(j)- nLN)*3); 

      end 

      e(1, j*3-2:j*3)= em;              %Seeding positions 

    end 

    GSM(e,e)= GSM(e,e)+ Kbe;            %Global Stiffness matrix 

  end 

end 

 

%% 

********************************************************************* 

% Generate Stress-Strain (E) Matrix incorporating Gibson Soil Coeff. 
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  function Ej = GenEmat(j,n8) 

 Erj= Er(j) +mGS(ToE(j))*mean(C(n8,3));  %E= Eo +m*z (GIBSON SOIL) 

    u = v(ToE(j)); 

    Ej= Erj/((1+u)*(1-2*u))* [[1-u u u; u 1-u u; u u 1-u] zeros(3);  

                                            zeros(3) (1/2-u)*eye(3)]; 

  end 

%% 

********************************************************************* 

%Create Stiffness Matrix for LINE elements in LOCAL Coordinates 

  function Kl = KLine(k) 

    if ToE(k) ==3           %Rail-Tie Spring Elements 

      AS=RTK;                

      [TS, ay, by, cy, dy, az, bz, cz, dz] = deal(0); 

    else                    %For both Rail (ToE=1) & Tie (ToE=2) 

Elements 

      t=ToE(k);             l=LoE(k); 

      Ev=StrMat(t,1);       A=StrMat(t,2); 

      G=StrMat(t,3);        J=StrMat(t,4); 

      Iy=StrMat(t,5);       Iz=StrMat(t,6); 

      AS= Ev*A/l;           TS = G*J/l; 

      ay=12*Ev*Iy/l^3;      by=6*Ev*Iy/l^2; cy=4*Ev*Iy/l;   

dy=2*Ev*Iy/l; 

      az=12*Ev*Iz/l^3;      bz=6*Ev*Iz/l^2; cz=4*Ev*Iz/l;   

dz=2*Ev*Iz/l; 

    end 

    m1=[AS 0 0; 0 az 0; 0 0 ay];  m2=[0 0 0;  0 0 bz; 0 -by 0];   

m3=m2'; 

    m4=[TS 0 0; 0 cy 0; 0 0 cz];  m5=[-TS 0 0;0 dy 0; 0 0  dz]; 

    Kl= [m1 m2 -m1 m2;  m3 m4 -m3 m5;  -m1 -m2 m1 -m2;  m3 m5 -m3 m4]; 

  end 

%% 

********************************************************************* 

%Create Stiffness Matrix for BRICK elements in 

LOCAL(+Global)Coordinates 

  function Ke = K_Brick(C8,E)   

    ng=2;               % ng=# of Gauss Intergration Points 

    w=ones(3,8);        % weight of Gauss Integ. Points 

    Ke=zeros(24);       % Stiffness matrix 

    Bb=zeros(6,24);     % Strain-Displacement matrix 

    Cn=[-1 -1 -1; 1 -1 -1; 1 1 -1; -1 1 -1;... 

         -1 -1  1; 1 -1  1; 1 1  1; -1 1  1]'*sqrt(1/3);     

    for h= 1:ng^3 

                    L=Cn(1,h);      m=Cn(2,h);      n=Cn(3,h); 

      dNL=[-(1-m)*(1-n)  (1-m)*(1-n)  (1+m)*(1-n) -(1+m)*(1-n)... 

           -(1-m)*(1+n)  (1-m)*(1+n)  (1+m)*(1+n) -(1+m)*(1+n)]/8; 

 

      dNm=[-(1-L)*(1-n) -(1+L)*(1-n)  (1+L)*(1-n)  (1-L)*(1-n)... 

           -(1-L)*(1+n) -(1+L)*(1+n)  (1+L)*(1+n)  (1-L)*(1+n)]/8; 

 

      dNn=[-(1-L)*(1-m) -(1+L)*(1-m) -(1+L)*(1+m) -(1-L)*(1+m)... 

            (1-L)*(1-m)  (1+L)*(1-m)  (1+L)*(1+m)  (1-L)*(1+m)]/8; 

 



108 
 

      J= [dNL; dNm; dNn] *C8; 

      B3= J\[dNL; dNm; dNn];        % B3(3x8) = inv(J) *Diff(N,Lmn) 

         

        for t=1:8                   % Construct Bb(6x24) from B3(3x8) 

         Bb(:,t*3-2:t*3)=  [B3(1,t)     0           0      ; 

                            0           B3(2,t)     0      ; 

                            0           0           B3(3,t); 

                            B3(2,t)     B3(1,t)     0      ; 

                            0           B3(3,t)     B3(2,t); 

                            B3(3,t)     0           B3(1,t) ]; 

        end 

      we=w(1,h)*w(2,h)*w(3,h);       

      Kb= we* Bb'*(E*Bb) *det(J);     

      Ke=Ke+Kb;            %Cumulative over Guass Intg Points 

    end 

  end 

end 

 

 

iv. Function ‘BCond’ 

%Create Force & Disp vectors for 6-DOF (Line) & 3-DOF (Brick) Elements 

%Force vector = External/Applied Forces 

%Displacement vector (Nodal Movements allowed?  Yes=1,  No=0) 

function BCond 

global C D Fex GTN nLN TnoL Nr WLd 

cmax=[max(C(:,1)) max(C(:,2)) max(C(:,3))];     %Coord. of farthest 

point 

nG=nLN*6+(GTN-nLN)*3; 

D= ones(nG,1);          %Disp. vector 

Fex=zeros(nG,1);        %Exteral Force vectrs 

%% DISPLACEMENT CONSTRAINTS (Ux,Uy,Uz) on Sp. Nodal Planes(GLOBAL 

COORD) 

  for i= 1:GTN 

%FRONT+BACK planes  (YZ-plane) - Nodes at x=0  OR  x=max 

    if C(i,1)==0 || C(i,1)==cmax(1) %First and Last Tie Locations 

      if i<=nLN;    nx=6*i-5;                       %Line node 

      else;         nx=nLN*6+(i-nLN)*3-2;           %Brick Node 

      end 

      D(nx)=0;      %Ux =0 

    end 

   

%CENTER LINE plane  (XZ-plane) - Nodes at y=0 

    if C(i,2)==0 

      if i<=nLN;    ny=6*i-4;                       %Line node 

      else;         ny=nLN*6+(i-nLN)*3-1;           %Brick Node 

      end 

      D(ny)=0;      % Uy =0 

    end 

 

%FAR-LATERAL plane  (XZ-plane) - Nodes at y=max 
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    if C(i,2)==cmax(2)       

      if i<=nLN;    nxyz= 6*i+(-5:-3);              %Line node 

      else;         nxyz= nLN*6 +(i-nLN)*3 +(-2:0); %Brick Node 

      end 

      D(nxyz)=0;    %[Ux Uy Uz] =0 

    end 

     

%BOTTOM Plane       (XY-Plane) - Nodes at z=max 

    if C(i,3)==cmax(3) 

        nxyz =nLN*6 +(i-nLN)*3 +(-2:0); 

        D(nxyz)=0;  %[Ux Uy Uz] =0 

    end 

  end 

   

%% External Force Vector (Wheel Loads) 

    tx1=(TnoL-0-1)*Nr +1;               %Node# below 1st Wheel Load 

%     tx2=(TnoL+2-1)*Nr +1;               %Node# below 2nd Wheel Load 

    Fex(6*tx1-3)= 1.0*WLd; 

%     Fex(6*tx2-3)= 1.0*WLd; 

end 

 

 

v. Function ‘Solve’ 

%Solve for Nodal Displacmnts & Forces (Reactions)in GLOBAL coordinates 

%Apply Global and Local Equilibrium Checks 

 

function Solve 

  global D Fex GSM  

  d1=find(D);           %Nodes with NON-ZERO Displacements 

  d0=find(~D);          %Nodes with ZERO Displacements (B/Cond) 

  F1=Fex;          

  GSM(d0,:)=[];    

  GSM(:,d0)=[];         %Condense GSM for zero displacements 

  F1(d0) =[];           %Condense F   for zero displacements 

 

  D(d1) =GSM\F1;        %D =inv(K) *F 

  if sum(find(isnan(D)))>0 

    'Pinv in progress' 

    D(d1)= pinv(GSM)*F1; 

  end 

  StifMat;              %Recalculate GSM to save space of memory 

  F =GSM*D;             %Nodal Force vector 

  Fex(d0)=F(d0);        %External Force vector (External + Reactions) 

 

% **************************   

  Reshape;              %Reshape 'D' &  'F' vectors for future 

processing 

%   TrackModulus(max(D))  %Calculate Track Modulus 

%   Equilibrium_Checks(1) %Check Global and Local Equilbrum @Specific 

Node 
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                        % Node# must be a RAIL Node { <= GTE(1)+2 } 

end 

 

 

%% 

********************************************************************* 

function Reshape                    %Reshape 'D' & 'F' vectors 

global nLN D GTN Fex D3 Fex3 D6l 

    g1=nLN*6;   g2=numel(D);                 

    D6l=reshape(D(1:g1),[6,nLN])'; 

    Db=reshape(D(g1+1:g2),[3,GTN-nLN])'; 

    D3= vertcat(D6l(:,1:3),Db); 

 

    Fex6=reshape(Fex(1:g1),[6,nLN])'; 

    Fexb=reshape(Fex(g1+1:g2),[3,GTN-nLN])'; 

    Fex3 =vertcat(Fex6(:,1:3),Fexb); 

end 

 

function TrackModulus(d)            %Calculate Track Modulus 

global WLd StrMat 

  Kd= WLd/d; 

  E= StrMat(1,1); 

  I= StrMat(1,5); 

  K= (Kd^(4/3))/(64*E*I)^(1/3); 

  strcat('Track Modulus = ',num2str(K/1000,'%5.1f'),' MPa',' = ', ... 

      num2str(K/6.895,'%6.0f'),' psi') 

end  

 

function Equilibrium_Checks(nod)    %Check If Equilibrium holds ??? 

global C NECT ToE T GTE LoE StrMat RTK Fex3 D6l 

 

%Check GLOBAL EQUILIBRIUM 

  Sum_F_Glo= sum(Fex3);                 %Sum(Fx,Fy,Fz)~=0 

  Sum_M_Glo= sum(Fex3(:,3).*C(:,1));    %About N1 by Fz 

 

%Check LCOAL EQUILIBRIUM at Node "nod"     nod <=#/Rail 

Elements{GTE(1)+1} 

    Fz=0;    

    My=0;        

    [r,~]=find(NECT==nod);      %Find all Element #s connected with 

'nod' 

    for i=1:numel(r) 

        e=r(i);                 %Line Element # in question 

        a=NECT(e,1);            %1st Node of Element 'e' 

        b=NECT(e,2);            %2nd - - - - - - - - - - 

        f= KLine(e)* (T(:,:,ToE(e))'*[D6l(a,:) D6l(b,:)]');    %Calc 

F_loc 

 

        if e<=GTE(1) && a==nod;     k=3;                l=5; 

        elseif e>GTE(1);            k=1;                l=5; 

        else;                       k=9;                l=11; 

        end;                        Fz=Fz+f(k);         My=My+f(l); 
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    end 

    strcat('Equilibrium Check___', ...          %Chk=[Fz My Fz2 My2] 

@node2 

      num2str([Sum_F_Glo(3)  Sum_M_Glo  Fz  My],'%12.2E')) 

%   [Sum_F_Glo(3)  Sum_M_Glo  Fz  My] 

%% Create 'K' Matrix for LINE elements in LOCAL Coordinates 

    function Kl = KLine(k) 

        if ToE(k) ==3           %Rail-Tie Spring Elements 

          AS=RTK;                

          [TS, ay, by, cy, dy, az, bz, cz, dz] = deal(0); 

        else                    %For both Rail (ToE=1) & Tie (ToE=2) 

Elements 

          t=ToE(k);         y=LoE(k); 

          Ev=StrMat(t,1);   A=StrMat(t,2); 

          G=StrMat(t,3);    J=StrMat(t,4); 

          Iy=StrMat(t,5);   Iz=StrMat(t,6); 

          AS= Ev*A/y;       TS = G*J/y; 

          ay=12*Ev*Iy/y^3;  by=6*Ev*Iy/y^2; cy=4*Ev*Iy/y;   

dy=2*Ev*Iy/y; 

          az=12*Ev*Iz/y^3;  bz=6*Ev*Iz/y^2; cz=4*Ev*Iz/y;   

dz=2*Ev*Iz/y; 

        end 

    m1=[AS 0 0; 0 az 0; 0 0 ay];  m2=[0 0 0;  0 0 bz; 0 -by 0];   

m3=m2'; 

    m4=[TS 0 0; 0 cy 0; 0 0 cz];  m5=[-TS 0 0;0 dy 0; 0 0  dz]; 

    Kl= [m1 m2 -m1 m2;  m3 m4 -m3 m5;  -m1 -m2 m1 -m2;  m3 m5 -m3 m4]; 

    end 

end 

 

 

vi. Function ‘ChkNonLin’ 

%1)Check the Non-Linearity (Stress dependent) of Brick Elements 

%2)Repeat the calculations until Non-Linearity holds within Tolerance 

function ChkNonLin 

global ToE Er Tol GTE LD 

c=1; 

Erp = RevisedYmod; 

while max(abs(Erp-Er)) > Tol 

%     disp('Repetition cycle #') 

    c=c+1; 

    StifMat; 

    BCond; 

    Solve; 

    Erp = RevisedYmod; 

end 

 

%********************************************************************* 

    function Erl = RevisedYmod           %Calc Revised Young's 

Modulus 
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      Erl = Er;                             %Store Er for comparison 

later 

      Pa=101.325;                           %Atmospheric Pressure in 

kPa 

      for j= sum(GTE(1:3))+1 :GTE(4)        %For Brick elements only 

          if LD(7, ToE(j)-3)== 1            %If jth Element is Non-

Linear ? 

              Sij= Stress1(j); 

              Soct= abs(sum(sum(Sij(:,1:3)/3))); 

              K34= LD(8:9, ToE(j)-3);       %Recall Non-Linear Coeff. 

K3,K4 

              Er(j)= K34(1)*Pa*(Soct/Pa)^K34(2); 

          end 

      end 

    end 

 

end 

 

 

vii. Function ‘Stress1’ 

function Sige = Stress1(b)      %Calc. Stresses for given Brick elem 

'b' 

    global Er v ToE NECT C D3 mGS 

    Sige=zeros(8,6);                 

    n8= NECT(b,:);                  %All 8 Node #s of Elemenet 'b' 

    C8= [C(n8,1) C(n8,2) C(n8,3)];  %Corner Coord. wrt Origin 

    Cnm=[-1 -1 -1; 1 -1 -1; 1 1 -1; -1 1 -1;... 

         -1 -1  1; 1 -1  1; 1 1  1; -1 1  1]'*sqrt(1/3);     

    d=reshape(D3(NECT(b,:),:)', [24,1]);    %Deformation vector (24x1) 

    Ei = GenEmat(b);                        %With GIBSON SOIL 

  for j= 1:8 

                        L= Cnm(1,j);    m= Cnm(2,j);   n= Cnm(3,j); 

    dNL=[-(1-m)*(1-n)  (1-m)*(1-n)  (1+m)*(1-n) -(1+m)*(1-n) ... 

         -(1-m)*(1+n)  (1-m)*(1+n)  (1+m)*(1+n) -(1+m)*(1+n)]/8; 

        

    dNm=[-(1-L)*(1-n) -(1+L)*(1-n)  (1+L)*(1-n)  (1-L)*(1-n) ... 

         -(1-L)*(1+n) -(1+L)*(1+n)  (1+L)*(1+n)  (1-L)*(1+n)]/8; 

        

    dNn=[-(1-L)*(1-m) -(1+L)*(1-m) -(1+L)*(1+m) -(1-L)*(1+m)... 

          (1-L)*(1-m)  (1+L)*(1-m)  (1+L)*(1+m)  (1-L)*(1+m)]/8; 

      

    J= [dNL; dNm; dNn] *C8; 

    B3=J\[dNL; dNm; dNn];           %B3(3x8)=inv(J)*Diff(N,Lmn) 

    for k=1:8 

      Be(:,k*3-2:k*3)=  [B3(1,k)     0           0      ; 

                         0           B3(2,k)     0      ; 

                         0           0           B3(3,k); 

                         B3(2,k)     B3(1,k)     0      ; 

                         0           B3(3,k)     B3(2,k); 
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                         B3(3,k)     0           B3(1,k) ];   

%Be(6x24) 

    end 

    strn= (Be*d);               %e = (exx, eyy, ezz, exy, eyz, ezx) 

    Sige(j,:) = Ei *strn;       %sig= E*strn = E*B*d 

  end 

   

% Generate Stress-Strain (E) Matrix incorporating Gibson Soil Coeff. 

  function Ej = GenEmat(j) 

 Erj= Er(j) +mGS(ToE(j))*mean(C(n8,3));  %E= Eo +m*z (GIBSON SOIL) 

    u = v(ToE(j)); 

    Ej= Erj/((1+u)*(1-2*u))* [[1-u u u; u 1-u u; u u 1-u] zeros(3);  

                                            zeros(3) (1/2-u)*eye(3)]; 

  end   

end 

 

 

viii. Function ‘Plots’ 

function Plots                  % Plot Deformation Graphs 

% If its Deterministic Analysis, Plot Displacement Graphs 

% Else PROCEED to plot Risk and Reliability Plots 

global AnType 

 

% Plot_Disp                       %Plot Displacements along DEPTH, TIE 

& RAIL 

% Plot_Stress                     %Plot Stresses along DEPTH, TIE & 

RAIL 

if AnType==1;   Plot_Risk; end  %Plot Risk & Reliability Graph 

 

end 

 

 

%% 

********************************************************************* 

function Plot_Disp      % Plot Displacements along DEPTH, TIE & RAIL 

global C D3 L1n LD NTE1 NTEG NL nnr TnoL 

    xn= TnoL;           %Select Cross Section (default =1 =Loaded Xn) 

    Ly= NTEG+1;         %Location of Uz~Depth plot [1=CL, 

NTEG+1=Wheel] 

    nLyer= LD(4,:); 

    nLyer= [1 nLyer(1:end-1)]; 

 nLyer= cumsum(nLyer);           %Layer #s @top of ALL Main Layers 

 

%% Along the DEPTH 

 NNPDaDpth =L1n(:, Ly, xn)      %Node numbers @selected 

Xn/Location 

    x2= D3(NNPDaDpth,3);            %Uz at selected nodes 

    y2= C(NNPDaDpth,3);             %Cz at selected nodes 

figure(52); 

    plot(x2*1000,y2,'-*b'); 
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    title('Vertical Deformation Below WHEEL');   

    xlabel('Vertical Deformation (U_{z} / mm)'); 

    ylabel('Depth below WHEEL (m)');        grid 'on'; 

    set(gca,{'YDir'},{'reverse'}); 

    set(gca,{'XAxisLocation'},{'top'}); 

     

%% Along the TIES 

    NNPDaTie =L1n(nLyer, 1:NTE1+1, xn); %Node #s @selected Xn 

    x1= C(NNPDaTie(1,:),2);             %Cy at selected nodes 

    y1= D3(NNPDaTie(:,:),3);           %Uz at selected nodes 

    y1=reshape(y1, [NL,NTE1+1]); 

figure(51); 

    plot(x1,y1*1000,'-*'); 

    %ylim([0 inf]); 

    title('U_{z} / mm along Loaded Tie'); 

    xlabel('Distance from Center of Tie (m)'); 

    ylabel('Vertical Deformation (U_{z} /mm)'); 

    set(gca,{'YDir'},{'reverse'});          grid 'on'; 

    legend('Top of Ballast','Top of Subballast', 'Top of Subgrade'... 

        , 'Top of Natural Soil','location','best') 

 

%% Along the RAIL 

    nnR= L1n(nLyer, NTEG+1, :);         %Node #s @top of ALL Main 

Layers 

        x3=C(1:nnr,1)'; 

        y32=reshape(D3(nnR,3),[NL,nnr]); 

        y3=D3(1:nnr,3)';               %Without flipping the data  

%       x3= [-fliplr(x3) x3];y32=[fliplr(y32) y32];y3=[fliplr(y3) y3]; 

figure(53); 

    plot(x3,y3*1000,'-*', x3,y32*1000,'-*'); 

    %ylim([0 inf]); 

    title('Deformation along the Rail-Uz (mm)'); 

    xlabel('Distance along the RAIL(m)'); 

    ylabel('Vertical Deformation (U_{z} / mm)'); 

    set(gca,{'YDir'},{'reverse'});          grid 'on';   

    legend('Top of Rail','Top of Ballast','Top of Subballast',... 

           'Top of Subgrade', 'Top of Natural Soil','location','best') 

end 

 

%% 

********************************************************************* 

function Plot_Stress    % Plot Stresses along DEPTH, TIE & RAIL 

global C NSL L1n NTEG TnoL nLE NECT NL NTE1 LD nnr MdSz StrAna 

if StrAna==0;   return; end         % Return if Stresses Are NOT 

Required 

 

%% BELOW WHEEL          (VERTICLE STRESS) 

    VSW=zeros(1,NSL); 

    NnW =L1n(1:end, NTEG+1, TnoL);  %Node#s below Wheel(except last) 

    zc=zeros(1,length(NnW)-1); 

    for i = 1 : length(NnW)-1 

      zc(i)= (C(NnW(i),3)+C(NnW(i+1),3))/2; 
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      [r,c]= find(NECT(nLE+1:end,1:4) ==NnW(i));%[Elem#, Loc/Node#] 

      Sav=zeros(4,1); 

      % Run 2-times for Quarter-sized model & 4-times for Half-sized 

Model 

      for ii=1:8/MdSz                

        Sij= Stress1(r(ii)+nLE);                %Calc Stress matrix 

        Sav(ii)= mean(Sij([c(ii) c(ii)+4],3));  

%mean(Stress(LocNode#s) 

      end 

      VSW(i)=mean(Sav);             %Mean/Ver/Stress @middle of 

SubLayers 

    end 

    Plot_Str(-VSW,zc,1,'Vertical'); %[X, Y, Wheel, Verticle/Deviator] 

     

%% ALONG TIE            (VERTICLE STRESS) 

    %Due to symmetry, Stress is calculated only one side of the tie 

    VST = zeros(NL,NTE1);            

    Lns= cumsum([1 LD(4,:)]);        

    Lns=Lns(1:end-1);               %SubLayer#s @top of Main Layer 

    NnT =L1n(Lns, 1:NTE1+1, TnoL);  %Node#s along Loaded Tie@top 

/MainLyr 

    yc= (C(NnT(1,1:end-1),2) + C(NnT(1,2:end),2) )/2; 

    for i=1:NL 

      for j=1:NTE1 

        et= find(NECT(nLE+1:end,1)==NnT(i,j))+nLE;  %Elem# 

        Sij= Stress1(et); 

        VST(i,j)= mean(Sij([2 3], 3));      %Mean(Stress(LocNode#s) 

      end 

    end 

    Plot_Str(yc,-VST,2,'Vertical'); %[X, Y, Wheel, Verticle/Deviator] 

     

%% ALONG RAIL           (VERTICLE STRESS) 

    %Stress is calculated on both sides of the Rail and then averaged 

    VSR = zeros(NL,nnr-1); 

    NnR(:,:) =L1n(Lns, NTEG+1, :);  %Node#s along Rail@top /MainLyr 

    xc= (C(NnR(1,1:end-1),1) + C(NnR(1,2:end),1) )/2; 

    for i=1:NL 

      for j=1:nnr-1 

        ei=find(NECT(nLE+1:end,4)==NnR(i,j))+nLE;  %Elem# inside of 

Rail 

        eo=find(NECT(nLE+1:end,1)==NnR(i,j))+nLE;  %Elem# outside of 

Rail 

        Si= Stress1(ei);    Savi=mean(Si([3 4], 3)); 

        So= Stress1(eo);    Savo=mean(So([1 2], 3)); 

        VSR(i,j)= (Savi+Savo)/2;                 

%Mean(Stress(LocNode#s) 

      end 

    end 

    Plot_Str(xc,-VSR,3,'Vertical'); %[X, Y, Wheel, Verticle/Deviator] 

end 

%********************************************************************* 

function Plot_Str(X,Y,dir,VD)   %Plot Stresses along DEPTH, TIE & RAIL 
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%ALONG THE DEPTH (BELOW THE WHEEL) 

    if dir == 1 

    figure(62); 

      plot(X,Y,'-b*'); 

      set(gca,{'YDir'},{'reverse'});   grid on 

      set(gca,{'XAxisLocation'},{'top'}); 

      xlabel(strcat(VD,' Stress (kPa)')) 

      ylabel('Depth below the Rail (m)'); 

         

%ALONG THE TIE 

    elseif dir == 2 

    figure(64); 

      plot(X,Y,'-*'); 

      xlabel('Distance from Center of Tie (m)'); 

      ylabel(strcat(VD,' Stress (kPa)'));   grid on;     

      legend('Top of Ballast','Top of Subballast', 'Top of 

Subgrade'... 

        , 'Top of Natural Soil','location','best') 

 

%ALONG THE RAIL 

    elseif dir == 3 

    figure(66); 

      plot(X,Y,'-o'); 

      set(gca,{'YDir'},{'reverse'}); 

      xlabel('Distance along the RAIL (m)'); 

      ylabel(strcat(VD,' Stress (kPa)'));   grid on;  

      legend('Top of Ballast','Top of Subballast', 'Top of 

Subgrade'... 

        , 'Top of Natural Soil','location','best') 

    end 

end 

 

%% 

********************************************************************* 

function Plot_Risk      %Plot Risk & Reliability Graph 

global Uzbl 

D=Uzbl; 

Ddt=5.626; 

 

    xs=min(D): 0.001 :max(D); 

%   [max(D) min(D) mean(log(D)) std(log(D))] 

%   [max(D) min(D) mean(D)      std(D)] 

 

%  yp=normpdf(xs, mean(D), std(D));            %Generate Equiv. N-

distr. 

%  yc=normcdf(xs, mean(D), std(D));            %Generate Cummu. N-

distr. 

%  uz10= norminv(0.90,mean(D),std(D))          %Uz @ 10% Pf 

%     Pfx=1-normcdf(Ddt,mean(D),std(D))          %Pf @ given 

settlement 

   

  yp=lognpdf(xs, mean(log(D)), std(log(D)));  %Equivalent  Log_N-dist. 



117 
 

  yc=logncdf(xs, mean(log(D)), std(log(D)));  %Cummulative Log_N-dist. 

  uz10= logninv(0.9, mean(log(D)),std(log(D)));%Uz @ 10% Pf 

  Pfx=1-logncdf(Ddt,mean(log(D)),std(log(D)));%Pf @ given settlement 

 

  %   disp([uz10 Pfx mean(log(D)) std(log(D))]'); 

  disp([uz10 Pfx mean(D) std(D)   std(D)/mean(D)*100]); 

   

  figure(201);                %Compare Actual Results ~ Equ. N-Distr. 

  hist(D,50);          

  set(gca,'YTick', [])    

  hold on;            grid on 

  ax1=gca;            ax1p=ax1.Position;   

  ax2=axes('Position',ax1p,'YAxisLocation','right','Color','none'); 

  ax3=axes('Position',ax1p,'YAxisLocation','left','Color','none'); 

  line(xs, yc,'Parent',ax2,'Color','r','LineWidth',2.5);  grid on 

  line(xs, yp,'Parent',ax3,'Color','m','LineWidth',2.5); 

  % title('Distribution of Maximum Settlement (mm)', ... 

  %                   'FontName','Times New Romen'); 

  ylabel(ax2,'Cummulative Density Function (CDF)'); 

  ylabel(ax3,'Probability Density Function (PDF)');      

  xlabel('Max. Settlement (mm)');  

  % legend('PDF (Lognormal)', 'CDF (Lognormal)') 

  set(ax2,'YColor','r'); 

  set(ax3,'YColor','m'); 

 

%  figure(202);                    %Plot Actual Results ~ Cumm. N-

Distr. 

%  hist(D,20);         

%  hold on;            grid on 

%  ax1=gca;            ax1p=ax1.Position;   

%  ax2=axes('Position',ax1p,'YAxisLocation','right','Color','none'); 

%  line(xs, yc,'Parent',ax2,'Color','r'); 

end 

 

 

ix. Function ‘OutputPrint’ 

function OutputPrint(i, id) 

global L1n NTEG TnoL D3 LD NSL C NECT nLE MdSz WLd StrMat Nitr 

global Uzrl Uzbl Uzsb Uzsg Szbl Szsb Szsg Tmod Set1 

 

if id==1                 % Define the variables for Outputs 

    Uzrl= zeros(Nitr,1); % Settlement @top of Rail in each iteration 

    Uzbl= zeros(Nitr,1); % Settlement @top of Ballast in each 

iteration 

    Uzsb= zeros(Nitr,1); % Settlement @top of Subballast in each 

iteration 

    Uzsg= zeros(Nitr,1); % Settlement @top of Subgrade in each 

iteration 

    Szbl= zeros(Nitr,1); % Ver.Stress @top of Ballast in each 

iteration 
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    Szsb= zeros(Nitr,1); % Ver.Stress @top of Subballast in each 

iteration 

    Szsg= zeros(Nitr,1); % Ver.Stress @top of Subgrade in each 

iteration 

    Tmod= zeros(Nitr,1); % Track Modulus in each iteration 

end 

 

if id==2 

    NnW =L1n(:, NTEG+1, TnoL);  % Node numbers below Wheel along Depth 

    Uzrl(i)= D3(NnW(1), 3)*1000; 

    Uzbl(i)= D3(NnW(2), 3)*1000; 

    Uzsb(i)= D3(NnW(2+sum(LD(4,1:1))), 3)*1000; 

    Uzsg(i)= D3(NnW(2+sum(LD(4,1:2))), 3)*1000; 

   

    VSW=zeros(NSL,1); 

    zc=zeros(1,length(NnW)-1); 

    for ie = 1 : length(NnW)-1 

      zc(ie)= (C(NnW(ie),3)+C(NnW(ie+1),3))/2; 

      [r,c]= find(NECT(nLE+1:end,1:4) ==NnW(ie));%[Elem#, Loc/Node#] 

      Sav=zeros(4,1); 

   % Run 2-times for Quarter-sized model & 4-times for Half-sized 

Model 

     for ii=1:8/MdSz 

         Sij= Stress1(r(ii)+nLE);                %Calc Stress matrix 

         Sav(ii)= mean(Sij([c(ii) c(ii)+4],3));  

%mean(Stress(LocNode#s) 

     end 

     VSW(ie)=mean(Sav);          %Mean/Ver/Stress @middle of SubLayers 

    end 

    Szbl(i)= -VSW(1);  

    Szsb(i)= -VSW(1+sum(LD(4,1:1)));  

    Szsg(i)= -VSW(1+sum(LD(4,1:2)));  

   

    Kd= WLd/(Uzrl(i)/1000); 

    EI= StrMat(1,1) * StrMat(1,5); 

    Tmod(i)= ( (Kd^4) /(64*EI ) )^(1/3); 

end 

 

if id==3 

    %Delete Outliers (-ve displacements and extreme values)(Rarely 

happens) 

    Uzrl(Uzrl<=0)=[];   Uzrl(abs(Uzrl)> 2*mean(Uzrl) )=mean(Uzrl);    

    Uzbl(Uzbl<=0)=[];   Uzbl(abs(Uzbl)> 2*mean(Uzbl) )=mean(Uzbl);    

    Uzsb(Uzsb<=0)=[];   Uzsb(abs(Uzsb)> 2*mean(Uzsb) )=mean(Uzsb);    

    Uzsg(Uzsg<=0)=[];   Uzsg(abs(Uzsg)> 2*mean(Uzsg) )=mean(Uzsg);    

     

 Szbl(abs(Szbl)> 2*mean(Szbl) )=mean(Szbl);    

    Szsb(abs(Szsb)> 2*mean(Szsb) )=mean(Szsb);    

    Szsg(abs(Szsg)> 2*mean(Szsg) )=mean(Szsg);    

    Tmod(abs(Tmod)> 2*mean(Tmod) )=mean(Tmod);    

 

    Set1=[max(Uzrl) min(Uzrl) mean(Uzrl) std(Uzrl)/mean(Uzrl) ... 
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      max(Uzbl) min(Uzbl) mean(Uzbl) std(Uzbl)/mean(Uzbl) ... 

      max(Uzsb) min(Uzsb) mean(Uzsb) std(Uzsb)/mean(Uzsb) ... 

      max(Uzsg) min(Uzsg) mean(Uzsg) std(Uzsg)/mean(Uzsg) ... 

      max(Szbl) min(Szbl) mean(Szbl) std(Szbl)/mean(Szbl) ... 

      max(Szsb) min(Szsb) mean(Szsb) std(Szsb)/mean(Szsb) ... 

      max(Szsg) min(Szsg) mean(Szsg) std(Szsg)/mean(Szsg) ... 

      max(Tmod) min(Tmod) mean(Tmod) std(Tmod)/mean(Tmod) ]'; 

 

%     disp(Set1); 

end 

 

end 
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APPENDIX B. USER GUIDE OF ADYTRACK MODEL 

This appendix describes in detail the variables, procedures and schemes employed in 

ADYTrack program, which is a computer code to perform the structural analysis of railroad 

trackbed using Stochastic Finite Element method (SFEM). The program is written in MathWorks’s 

MATLAB language using academic licensed version. The main program is named 

“ADYTrack_4.m” from where various functions are called. Four (4) in the file names represents 

the version number of the program.  

There are some Nested Functions that are called from within the Parent functions and 

therefore described under the heads of those Parent functions. The reasons of using Nested 

functions include the limited use, generally once only, of those functions, ease of calling variables 

(local and global) across the Parent functions and improving efficiency of the overall program. 

Also note that length, longitudinal and x-axis mean the same dimension/direction, and traverse, 

width and y-axis mean the same dimension/direction, and vertical, depth, height and z-axis mean 

the same dimension/direction.  

First, the important variables are described in detail, including their purpose, nature, size 

and other relevant information. Then a detailed explanation is followed for all the functions used 

in the program including their purpose, and details of schemes and procedures employed. 

B.1. Important Variables 

In order to smoothly understand the code of ADYTrack, the description of important 

variables is presented is presented herein. 

AnType: It stores the decision of whether to perform Deterministic or Probabilistic 

analysis. It is scaler quantity with 0 or 1 value. Zero (0) means perform the Deterministic analysis 

whereas one (1) means perform the Probabilistic analysis. 
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C: It stores the coordinates of the nodes. It is a 2-D matrix with three columns, for x-, y- 

and z-coordinates of the nodes, and number of rows equals the total number of nodes in the model. 

The coordinates are stored such that the row numbers exactly match with the node numbers.  

D: It is a displacement vector for the whole system. Its size is equal to the total degree of 

freedom of the system [ux1 uy1 uz1 x1 y1 z1, ux2 uy2 uz2 x2 y2 z2, …….]. As such, this variable 

is difficult to read and process, therefore another variable D3 and D6 are extracted using ‘reshape’ 

function to read and plot the displacements at critical planes and lines.  

D3: It represents the displacements of all the nodes in all three dimensions. It is 2-D matrix, 

the rows of which represents the node numbers and columns store the nodal displacements in all 

3 direction (ux uy uz).  

D6: It represents the displacements of all the line nodes in all six degrees of freedom. It is 

2-D matrix, the rows of which represents the node numbers and columns store the nodal 

displacements and rotations in all 3 direction (ux uy uz x y z). 

Er: It is an array of Young’s modulus values for all the elements in the system. Its size is 

same as the sum of GTE vector. 

F: It is a force vector for the whole system. Its size is equal to the total degree of freedom 

of the system [fx1 fy1 fz1 x1 My1 Mz1, fx2 fy2 fz2 x2 My2 Mz2, …….]. As such, this variable is 

difficult to read and process, therefore another variable F3 and F6 are extracted using ‘reshape’ 

function to read and plot the displacements at critical planes and lines, the details of which are 

exactly like variables D3 and D6. 

Fex: It is an array of forces externally applied to the system and that includes the wheel 

loads at their corresponding degree of freedom. the size of this array is same as that D or F 

variables. The remaining elements of this array are filled with zeros.  
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GSM: It represents the global stiffness matrix of the model. It is a 2-D square matrix with 

a size of total degrees of freedom in the whole system.  

GTE: It stores the individual number of elements (of all types) in the model. It is a vector 

quantity with its size equal to four, storing number of rails, ties, springs and bricks elements 

respectively.  

GTN: It stores the grand total of nodes in the model, which is a scalar quantity. 

iry: It is the rate of increase in width (in traverse or y-direction) using a geometric sequence 

beyond the edge of the ties. It is a scaler quantity. It helps generating a coarser mesh close the 

boundaries (least stress regions) and finer mesh close to rail and ties (high stress region).  

irz: It is the rate of increase in depth (in vertical or z-direction) using a geometric sequence 

for the last substructure layer only. It is a scaler quantity. It helps generating a coarser mesh close 

the bottom of the model (least stress regions) and finer mesh close to track structure (high stress 

region). 

L1n: It stores the node numbers of all the nodes in the system but in a systematic manner 

as they physically situated in space. It is 3-D matrix with its third dimension along x-axis. In other 

words, this will show all the nodes numbers in YZ-plane at x=0. And all the empty spaces are 

filled with zeros. This variable is of great importance in tracing the nodes and corresponding 

elements at specific locations. 

LD: It stores layers data, which includes a bundle of information for all the layers in the 

substructure. It is a 2-D matrix with 18 rows and numbers of columns equal to the maximum 

number of layers defined by the user. Each row asks for a specific parameter for all the main layers 

to generate. These parameters include shoulder widths, side slopes, thicknesses, number of 

sublayers, initial Young’s modulus, poison’s ratios, linear or non-linear constitutive models 



123 
 

(power function) and related parameters, Gibson soil coefficients, deterministic or probabilistic 

models and its related parameters.  

LoE: It stores the length of all the elements in the model. It is a vector with its row numbers 

matching with the element numbers.  

lre: It represents the length of a single rail elements. The same length will later be used for 

brick elements length.  

ltec: It represents the length of the tie elements between centerline and rail.  

lteo: It represents the length of the tie elements between rail and edge of the tie.  

MdSz: It represents the scale of the model, i.e., half or quarter scale model. It is a scaler 

quantity. Half scale model employs only one axis of symmetry along the longitudinal direction at 

the center of rails, whereas quarter scale model employs additional axis of symmetry along the 

traverse direction as well right below the wheel load application.  

mGS: It is an array of Gibson soil coefficients for all the main layers in the system. First 

three entries are zero to represent zero coefficient for rail, tie and spring elements. Other entries 

are user-defined for substructure layers.  

NECT: It is Node-Element connectivity table. It is a 2-D matrix with eight columns, for 

node numbers to be stored in a sequence explained in Section 1.3: Node Numbering, and number 

of rows equals the total number of elements in the model. The NECT is constructed such that the 

row numbers exactly match with the element numbers. 

Nitr: It represents the number of Monte Carlo simulations or iterations to perform the 

probabilistic analysis.  

NL: It represents the number of main layers in the substructure, for instance ballast, 

subballast, subgrade, natural soil etc. It is a scaler quantity.  
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nLE: It represents the number of line elements including rail, ties and spring. 

nLN: It represents the number of line nodes, meaning nodes connected to line elements 

(rail and ties).  

nnr: It represents the total number of nodes along the rail.  

nnSL: It represents number of nodes in each sublayer. It is a vector with its size equal to 

NSL+1 to account for bottom most layer of nodes as well. 

nnt: It represents the total number of nodes along a single tie.  

nnto: It represents the number of nodes along the tie between rail and edge of the tie 

excluding the common node at the junction of rail and tie.  

NoT: It represents the number of ties to consider and is a scaler quantity. It also represents 

the extend of the model in longitudinal direction (along x-axis).  

Nr: It stores the information of number of elements between two ties. This is also a scaler 

quantity. This information is critical because this will determine the length (in longitudinal or x-

axis direction) of all the rail and brick elements in the model. 

NSL: It represents total number (sum) of sublayers in all the main layers. It is a scaler 

quantity.  

NTE1: It stores the number of tie elements to generate along a tie (half-tie in this case) 

from center line to the edge of the tie.  

NTEG: It stores the number of tie elements to generate along a tie segment between center 

line and rail. 

StrAna: It stores the decision of whether to perform Stress analysis or not. It is scaler 

quantity with 0 or 1 value. Zero (0) means skip the stress analysis whereas one (1) means perform 

the analysis and plot the results. 
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StrMat: It stores geometric and material properties for rail and ties. It is a 2x6 matrix, first 

row is for rail properties and second row is for ties properties. Properties for both materials are 

stored in a sequence of Young’s modulus, cross-sectional area, shear modulus, polar moment of 

inertia, area moment of inertia in y- and z-axis.  

T: It is a set of transformational matrices to transform local stiffness matrices to global 

stiffness matrices for all three elements (rail, tie and spring). It is a 3-D matrix of size 6x6x3.  

TcD: It represents the distance between tie mid-height to the rail mid-height. This height 

is just a number and not affecting anything in the analysis, that’s why not included in the user 

inputs.  

TnoL: It represents the tie number upon which the wheel load is applied. This variable 

help assign the vertical loading at the correct degree of freedom. Also, it helps in changing the 

scale of the model from half to quarter and vice versa.  

ToE: It stores the types of all the elements in the model. It is a vector with its row numbers 

matching with the element numbers. Different types of elements are assigned different numbers, 

for instance 1 for rail elements, 2 for tie (sleeper) elements, 3 for spring elements connecting rails 

with the ties, 4 for ballast, 5 for subballast and 6 for subgrade and so on. 

B.2. All Main and Nested-Functions 

The purpose and detailed description of all the main and nested functions are presented in 

the following sections: 

i. Main Program ‘ADYTrack_4‘ 

Purpose: This is the main program, which call all the Parent functions and serves as main 

control room of the code. 
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Details: Being the main code, this first call some built-in function ‘clear’, ‘clc’, ‘tic’ to 

clear the existing variables (if any), clear the screen and start a new timer, respectively. 

Then required global variables are called using ‘global’ statement to make them available 

for other functions and calculations.  

All the functions (GenRandE, StifMat, BCond, Slove, Stress) required to perform Random 

Finite Element Method (RFEM) are called within a for-loop, running for ‘Nitr’ times, 

where ‘Nitr’ is user-defined number of iterations (Monte Carlo simulation). At the end 

RRPlot function is called to plot the risk and reliability plot.  

ii. Function ‘Prepare’ 

Purpose: It reads the inputs parameters, store them in variables, generate geometry of the 

railroad trackbed, generate finite element mesh while assigning numbers to the nodes and 

elements. 

Details: This function can be divided into three components, first reading and storing the 

input parameters in different variables, second generating the geometry and creating a 

coordinates matrix, and lastly generating a mesh and creating a node-element connectivity 

table. All three components are explained in detail in the following passages: 

First component of ‘Prepare’ function is straightforward, reading the user defined inputs 

from Microsoft Excel file using ‘xlsread’ function and then storing the parameters in 

variables, the details of which is provided earlier in section Important Variables. 

Second component of the function is generating geometry using nodes and assigning them 

x-, y- and z-coordinates. User can either build the half geometric model using the axis of 

symmetry along the longitudinal direction (along centerline of the rails or x-axis) or a 

quarter geometric model using both axis of symmetries along longitudinal and traverse 
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directions (along the ties or in y-axis). Nodes generation starts along the rail (x-axis), then 

along the ties (y-direction) starting from x=0 and moving towards x=max. Then a whole 

cross section of nodes is generated at x=0 and moving first along the y-direction followed 

by an incremental downward movement (z-direction). 

Distances between the nodes in traverse direction (y-axis) at all depths right below the ties 

is kept constract, whereas nodal distrance in traverse direction beyond the edge of ties 

increases at a user-defined rate by following the geometric sequence. This help gradually 

change the mesh from fine to coarse towards the edge of the model. Similar scheme is 

emplyed for the nodal distance along the depth for only the bottom most layer.  

The side slope of the track is generated using stepwise brick elements instead of smooth 

trapozoidal elements. Width (in y-direction) of the element  at the farthest edge is decided 

such that slope passes through mid-height of the element. 

Third component is the generation of Node-Element connectivity table (NECT matrix). 

Rail, ties and spring elements are modelled using 2-nodal line elemnts with 6-degrees of 

freedom (dof), whereas substructure is modelled using 8-nodal hexahedral brick elements 

with 3-dof. Element numbering followed similar proedure of numbering as that of nodes, 

i.e., rail elements are numbered first, followed by ties and springs, whereas bricks are 

numbered in the last in a similar manner as that of nodes. Alongside generating NECT 

matrix, two vectors namely type of elements (ToE) and length of elements (LoE) are also 

generated.  

Also a 3-D transformational matrix with three 2-D matrics is generated along rail, tie and 

spring elements to transform the local stiffness matrix into global stiffness matrix and vice 

versa using a methodoly described in section 8.8 of [125]. In addition, a vector of Young’s 
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modulus (Er) is generated for all elements by repeating the magnitude of each 

material/layer. This Er will later be used to generate randomized values of Young’s 

modulus for all the elements using random field theories. Furthermore, an array of Gibson 

soil coefficient (G) is stored in mGS, which is used to calculate the modified (generally 

improved) Young’s modulus with depth, (E=Eo+G*z), where E and Eo are the modified 

and basic Young’s modulus values, and z is the depth below the ground surface.  

iii. Function ‘StifMat’ 

Purpose: This function first calculates the local stiffness matrices for all the elements and 

then assemble them into a global stiffness matrix.  

Details: The function first sorts the line and brick elements to calculate their respective 

local stiffness matrices using nested Kline and K_Brick functions, respectively. The 

stiffness matrix of line elements in local coordinates system is then transformed into global 

coordinates using equation 2.1. For brick elements, already in global coordinates system, 

another nested function GenEmat is called to generated Stress-Strain (E) matrix, the details 

of which are provided in the following passages. After creating element stiffness matrices 

in global coordinates, these matrices are carefully weaved in global stiffness matrix at their 

respective locations. An important aspect of this global stiffness matrix is that it has mixed 

degrees of freedoms (dof), for instance, the line nodes have 6-dof (around top left corner 

of matrix) whereas brick elements composed of 3-dof.  

iv. Function ‘Kline’ 

Purpose: This function calculates element stiffness matrix in local coordinates (x-axis 

along the length of the elements) for all kinds of line elements.  
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Details: Element stiffness matrices for rail and tie elements as 2-nodal line elements with 

6-dof (ux uy uz x y z) are calculated using equation-2.3, whereas element stiffness 

matrix for spring elements connecting rail and ties as 2-nodal line element with 1-dof (ux) 

and spring constant k is  calculated Equation (3.3). 

v. Function ‘GenEmat’ 

Purpose: This function creates stress-strain matrix while incorporating the Gibson soil 

effect.  

Details: First, the magnitude of corrected Young’s modulus (Ec) for Gibson soil effect 

(with coefficient, G) for each element with initial Young’s modulus Eo and depth z, is 

calculated using the expression Ec = Eo + G*z. Then the stress-strain matrix is calculated 

using equation 2.10. 

vi. Function ‘K_Brick’ 

Purpose: This function calculates element stiffness matrix directly in global coordinates 

for the brick element with 3-dof (ux uy uz). 

Details: The details of this function are presented in section 2.2 of this dissertation with all 

the relevant equations and references.  

vii. Function ‘BCond’ 

Purpose: This function assigns the boundary conditions at respective nodes including the 

displacement constraints and external (wheel) loadings.  

Details: First, the selected displacement constraints are applied at five different plans to 

ensure local and global stability of the structure. To play a trick here, the displacement 

variable D was initially filled with ones and replace the specific constraint locations 



130 
 

(boundary conditions) with zeros. This helped differentiate nodes that are constraint or free 

to move.  

All the nodes on the front (x=0) and back (x=max) cross sectional plane (YZ-plane) are 

constraints against longitudinal movement (ux). Then lateral constraint (uy) is applied on 

all the nodes at the centerline plane (XZ-plane) at y=0. In addition, all the nodes at the 

farthest plane (XZ-plane) at y=max are constraint in all three directions (ux, uy, uz) to 

represent fix support system. This plane can be of any substructure layer, i.e., ballast, 

subballast, subgrade or natural soil, depending on the geometry of the trackbed. The model 

is also constraint using fixed supports by restricting the movement of all the bottom 

(z=max) most nodes in all three directions (ux, uy, uz). Lastly, the wheel load (fz) is placed 

in Fex variable at proper degree of freedom. 

viii. Function ‘Solve’ 

Purpose: This function solves the system of liner equations in the system to calculate the 

nodal displacements and nodal forces.  

Details: First, the indices of zero displacements are identified to condense the global 

stiffness and force matrices by eliminating the corresponding rows and columns. Then the 

system of linear equations is solved using built-in ‘\’ operator in Matlab. In order to save 

memory, the original GSM variable was condensed (deleted some rows and columns) and 

recalculated by calling StifMat function later to calculate the nodal forces and reactions at 

supports/constraints (F and Fex). Finally, some nested functions are called, the purpose 

and details of which are presented in the following paragraphs. 
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ix. Reshape 

Purpose: As name implies, this function reshapes some arrays into matrices for convenient 

post processing (plotting).  

Details: Two variables D and Fex are reshaped such that they transformed from arrays into 

matrices of D3 and Fex3 that are relatively easier to read and process (plotting). These 

matrices consist are three columns storing (ux, uy, uz) or (fx, fy, fz), while rows representing 

the node numbers.  

x. Function ‘TrackModulus’ 

Purpose: This function calculates Track Modulus. 

Details: This function calculates the Track Modulus using Equation (5.1) 

xi. Function ‘Equilibrium_Checks’ 

Purpose: This function applies local and global equilibrium checks on sum of forces and 

moments.  

Details: This function first check the global equilibrium of forces and moments, using 

F=0 in all three directions and taking sum of moments about node-1, M1=0. Then it 

applies local equilibrium check at node-1 by taking sum of forces and moments concurrent 

at the node. Although one can input any other node as well for local equilibrium check, but 

that node must be connected to the rail beam. Finally, the results of these checks are 

displayed in the command window.  

xii. Function ‘NonLinCheck’ 

Purpose: This function checks the material nonlinearity (Stress dependent Young’s 

modulus) of all the elements and calculates their correct Young modulus, if required.  
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Details: This function is only called from the main program /code (ADYTrack_4) if use 

defined stress dependent nonlinear constitutive for one or more substructure layers with a 

tolerance limit stored in variable Tol. To implement this nonlinear constitutive model, this 

function calls another nested function ‘RevisedYmod’ that store the current Young’s 

modulus values (in variable Erl) and calculate the stresses in all the brick (substructure) 

elements and use these stresses in the use defined constitutive model to calculate the 

revised Young’s modulus. Then this revised modulus is compared with Erl to find the 

maximum absolute difference. If the difference falls within tolerance limit, it proceeds to 

plotting the results else it performs structural analysis again using new modulus values and 

calling ‘StifMat’, ‘BCond’ and ‘Solve’ functions and then recalculate the revised modulus 

values using ‘RevisedYmod’ function. And this cycle repeats until the maximum absolute 

difference of modulus values fall within tolerance limits.  

xiii. Function ‘RevisedYmod’ 

Purpose: This function calculates the revised Young’s modulus for all the elements with 

material nonlinearity.  

Details: This function first stores the current modulus values for all the elements into 

another variable (Erl) for comparison purpose at the end of running cycle of calculations. 

Then this function calculates stresses in all brick elements using another function ‘Stress1’ 

to calculate the revised Young’s modulus values for these brick elements using nonlinear 

constitutive model. And finally return vectors of both modulus values to the parent function 

(NonLinCheck). 
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xiv. Function ‘Plots’ 

Purpose: This function plots the displacement, stress and risk analysis graphs for 

deterministic and probabilistic analysis.  

Details: This function calls two nested functions, ‘Plot_Disp’ and ‘Plot_Stress’ to plot the 

nodal displacements and element stresses at predefined paths, respectively. For 

probabilistic analyses only, it also calls ‘Plot_Risk’ function to plot the probability of 

failure (or reliability or risk) plots. The details of all these three nested functions is provided 

in below passages. 

xv. Function ‘Plot_Disp’ 

Purpose: This function plots the displacements graphs along predefined paths and lines.  

Details: This function plots three displacement graphs, first along the depth (vertical or z-

direction) below wheel load, second along the loaded tie (traverse or y-direction) at the top 

of all main substructure layers (ballast, subballast, subgrade, natural soil etc.), and third 

along the rail (longitudinal or x-direction) at the top all main substructure layers.  

xvi. Function ‘Plot_Stress’ 

Purpose: This function performs two operations, first, check (whether stress calculations 

required or not?) and calculate the element stresses (if required) and second, plot the 

vertical stresses (z) at predefined paths.  

Details: If user chooses to skip the stress calculations (StrAna=0), it will return to the 

parent function (Plots), otherwise it will proceed to the stresses calculations and plot their 

respective graphs. It will calculate the vertical stresses (z) along three paths, first along 

the depth (vertical or z-direction) below wheel load, second along the loaded tie (traverse 

or y-direction) at the top of all main substructure layers (ballast, subballast, subgrade, 
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natural soil etc.), and third along the rail (longitudinal or x-direction) at the top all main 

substructure layers. 

For vertical stress calculations below the wheel, the stresses are calculated at the mid-

height (depth) of each element. The stresses are first averaged out for two nodes of each 

element right below the wheel load and then further averaged out for the adjacent elements 

(2 in case of quarter-model and 4 in case of half-model) at the same depth right below the 

wheel to get a single stress point at the center of sublayer. Following the same procedure, 

the vertical stresses are calculated for the all the sublayers and are plotted using Plot_Str 

function.  

For vertical stress calculations along the loaded tie at the top of all main substructure layers, 

the stresses are calculated at the center (mid-width) of each element. The vertical stresses 

are averaged out for 1st and 4th node (local numbering of elements) of the elements. Due to 

symmetrical loading and geometric conditions, there is no need of averaging the stresses 

from the adjacent elements. Following the same procedure, the vertical stresses are 

calculated for the all the sublayers and are plotted using Plot_Str function. 

For vertical stress calculations along the rail at the top all main substructure layers, the 

stresses are calculated at the center (mid-length) of each element. The vertical stresses are 

first averaged out for nodes 3 and 4 (local numbering of elements) of the elements inside 

the rail and nodes 1 and 2 of the elements outside the rail. Then both these averaged stresses 

are again averaged to get a single stress point along the rail at each element. Following the 

same procedure, the vertical stresses are calculated for the all the sublayers and are plotted 

using Plot_Str function. 
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xvii. Function ‘Plot_Str’ 

Purpose: This function plots the vertical stress graphs along predefined paths and lines. 

Details: This function plots three vertical stress graphs, first along the depth (vertical or z-

direction) below wheel load, second along the loaded tie (traverse or y-direction) at the top 

of all main substructure layers (ballast, subballast, subgrade, natural soil etc.), and third 

along the rail (longitudinal or x-direction) at the top all main substructure layers. 

xviii. Function ‘Plot_Risk’ 

Purpose: This function plots the risk and reliability (probability of failure) plot for the 

maximum vertical displacement (settlement) that takes place right below the wheel at the 

rail.  

Details: This function plots the probability of failure (or risk and reliability) plot such that 

the maximum vertical displacement for all the simulations/iterations is plotted in the form 

of bar charts. These bar charts are then transformed into a continuous function (Probability 

Density Function or PDF) resembling the trend of bar charts and plotted onto the same 

graph.  Using the same PDF function, its Cumulative Density Function (CDF) is plotted 

against secondary vertical axis. This plot can be red in two ways, first, find the maximum 

settlement against a given probability of failure/occurrence/exceedance (CDF value) and 

second, find the probability of failure (area under PDF curve or value against CDF curve) 

for a given maximum settlement. 
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APPENDIX C. RISK AND RELIABILITY PLOTS 

 

 

 

 

 

 

 

 

 

 

Figure C-1. Probability distribution of vertical displacement at the top of 

ballast layer due to variations in ballast layer. 

Figure C-2. Probability distribution of vertical displacement at the top of 

subballast layer due to variations in ballast layer. 
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Figure C-3. Probability distribution of vertical displacement at the top of 

subgrade layer due to variations in ballast layer. 

Figure C-4. Probability distribution of vertical displacement at the top of ballast 

layer due to variations in subballast layer. 
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Figure C-5. Probability distribution of vertical displacement at the top of 

subballast layer due to variations in subballast layer. 

Figure C-6. Probability distribution of vertical displacement at the top of 

subgrade layer due to variations in subballast layer. 
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Figure C-7. Probability distribution of vertical displacement at the top of ballast 

layer due to variations in subgrade layer. 

Figure C-8. Probability distribution of vertical displacement at the top of 

subballast layer due to variations in subgrade layer. 
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Figure C-9. Probability distribution of vertical displacement at the top of 

subgrade layer due to variations in subgrade layer. 

Figure C-10. Probability distribution of vertical stress at the top of ballast layer 

due to variations in ballast layer. 
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Figure C-11. Probability distribution of vertical stress at the top of subballast layer 

due to variations in ballast layer. 

Figure C-12. Probability distribution of vertical stress at the top of subgrade layer 

due to variations in ballast layer. 
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Figure C-13. Probability distribution of vertical stress at the top of ballast layer 

due to variations in subballast layer. 

Figure C-14. Probability distribution of vertical stress at the top of subballast layer 

due to variations in subballast layer. 
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Figure C-15. Probability distribution of vertical stress at the top of subgrade layer 

due to variations in subballast layer. 

Figure C-16. Probability distribution of vertical stress at the top of ballast layer 

due to variations in subgrade layer. 
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Figure C-17. Probability distribution of vertical stress at the top of subballast layer 

due to variations in subgrade layer. 

Figure C-18. Probability distribution of vertical stress at the top of subgrade layer 

due to variations in subgrade layer. 



145 
 

 

 

Figure C-19. Probability distribution of track modulus due to variations in ballast 

layer. 

Figure C-20. Probability distribution of track modulus due to variations in 

subballast layer. 
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Figure C-21. Probability distribution of track modulus due to variations in 

subgrade layer. 


