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ABSTRACT 

Variable rate prescription maps can improve nitrogen use efficiency within a field by 

directing N applications where it is needed. If NDVI collected with a drone could be used to 

predict yield, it also could be used to develop N rate prescription maps. Experiments on wheat 

were carried out in farmer fields and in small plots.  Small plot experiments consisted of six rates 

of nitrogen and NDVI was collected from sensors on a drone and was correlated to yield and 

protein after harvest. NDVI measurements were also collected from farmer fields that had a 

nitrogen rich strip applied to the field along with a nitrogen poor strip to induce crop growth 

variability and were compared to the farmer’s fertilizer rate.  NDVI did not always predict yield. 

The best time to predict yield was after anthesis. Additional research is needed to determine 

factors that affect the prediction of NDVI in wheat.  
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INTRODUCTION 

Modern farms and agricultural operations work far differently than those a few decades 

ago, primarily because of advancements in technology. Farmers no longer have to apply water, 

fertilizers, and pesticides uniformly across entire fields. Instead, they can use the minimum 

quantities required and target specific areas. Nitrogen is an essential macronutrient that impacts 

yield and quality in crop production, plays a critical role in the process of photosynthesis, is of 

vital importance to the physiology of plants, and is required in comparatively large amounts. 

Varying the rate of nitrogen based on zones that vary in their productivity can be an important 

component of a precision agricultural program. Determining production zones is a first step in 

variable nitrogen rate application programs. NDVI maps from drones have been used to direct 

in-season fertilizer applications on corn and other crops. Perhaps drone-generated NDVI maps 

developed from drone-mounted sensors could also be used to determine productivity zones that 

could be used to develop nitrogen rate prescription maps. The objectives of this research were to 

determine if mid-season NDVI or other sensor data collected from drone can be an effective 

method of developing these maps when coupled with N rich and N poor strips. 
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LITERATURE REVIEW 

Wheat in the World 

Some of the earliest humans discovered that wheat held a special value, as food, 

something mankind has been researching and working to improve ever since. Back in the Stone 

Age, humans discovered that they could use rocks to grind grains of wheat to make flour. 

Between 3,000 to 5,000 years ago, the Egyptians discovered bread (Pruitt, 2018). Over time, 

researchers have developed significant improvements in the production practices of wheat and 

the consumption habits of US and global consumers have turned wheat into the food staple that 

we know today (Oder, 2016).  

Norman Borlaug, a University of Minnesota plant pathologist and microbiologist, 

sparked the “Green Revolution,” (1950s – 1960s). This revolution helped improve wheat yields 

in much of the world. Borlaug developed successive generations of wheat varieties with broad 

and stable disease resistance with exceedingly high yield potential. He was awarded the 1970 

Nobel Peace Prize for a lifetime of work to feed a hungry world (Oder, 2016).  

Today, the United States is the world’s fourth leading producer of wheat. China, the 

European Union and India produce more wheat than U.S farmers. Wheat research is especially 

important in the effort to ensure a sustainable global food supply for current and future 

generations because more foods are made with wheat than any other cereal grain (Oder, 2016). 

Importance of Nitrogen in Wheat 

Nitrogen (N) is a building block of enzymes that are key catalysts and are essential for all 

known forms of life. Nitrogen acts as a key component of molecules used in photosynthesis and 

in enzymes that catalyze other important biochemical reactions in plants. It is also an important 

elemental component in chlorophyll, the biomolecule which allows plants to absorb energy from 
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light to promote growth. In addition, N is a component of amino acids, the building blocks of 

proteins (Bell, 2016). Without nitrogen, plants would not be able to reproduce, create new cells, 

repair damaged cells, or be able to carry out important functions for survival. When nitrogen is 

limiting, plants are unable to carry out internal functions sufficiently or efficiently, which 

reduces growth, vigor and productivity and when extreme may result in the death of the plant 

(Tajer, 2016). 

Nitrogen is the most important nutrient in terms of quantity used by crops. Furthermore, 

it is the most difficult to efficiently manage in the cropping system. Nitrogen fixation, 

assimilation, ammonification, nitrification, and denitrification are all components of what is 

called the Nitrogen Cycle that illustrates the complexity of the chemistry of nitrogen and how it 

can be lost from crop use. N2 can be converted into inorganic nitrogen compounds through 

nitrogen fixation through the process of ammonification, the remains of living things are 

decomposed by microorganisms. Nitrification involves transforming soil ammonia into nitrates 

which plants can incorporate into their own tissues. Nitrates can also be metabolized by 

denitrifying bacteria, resulting in gaseous forms of nitrogen, including NO2 and N2 lost from the 

soil (Rafferty, 2014). 

The form of N a farmer chooses should depend on how serious a problem he has with 

denitrification, leaching, or surface volatilization. Cost of N, labor, equipment and power 

availability are other considerations when choosing a fertilizer source (Vitosh et al., 2000). 

Leaching losses of N occur when soils have more incoming water (rain or irrigation) than the soil 

can hold. Surface volatilization of N occurs when urea forms of N break down and form 

ammonia gases and where there is little soil water to absorb them (Sawyer, 2007). High soil pH 

and high temperatures cause higher rates of volatilization because they increase soil 
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concentrations of ammonia dissolved in soil water and warm soil water cannot hold as much 

ammonia gas (Jones et al., 2013). 

The timing of N fertilizer applications is an important factor affecting the efficiency of 

fertilizer N because the interval between application and crop uptake determines the length of 

exposure of fertilizer N to loss processes such as leaching and denitrification. Timing N 

applications to reduce the chance of N losses through these processes can increase the efficiency 

of fertilizer N use (Vitosh et al., 2000). 

The efficacy of time of application depends on soil texture, drainage characteristics of the 

soil, amount and frequency of rainfall or irrigation, soil temperature and, in some situations, the 

fertilizer N source (Sawyer, 2007). Putting nitrogen down in the fall is a common practice for 

farmers. The fertilizer is less expensive and there is not as much demand allowing for it to be 

applied within the desired timeframe. Some apply the fertilizer at planting. The current 

recommendation is for farmers to apply some or most of it in-season (Vitosh et al., 2000). If 

farmers apply N in-season, they are able to take into account more of the current season’s 

weather when deciding on the amount to apply. If the field doesn’t need it, you save money. 

With benefits can come challenges. There are challenges with doing in-season applications as 

well. If a farmer waits and the field became too wet to make an application, they may miss out 

completely (Jackson, 2018). 

Many variables involved in soil and crop management can influence N cycling and the 

availability of N for plant use in the ecosystem. Decision-making regarding N application to land 

must consider adjustments to crop requirements based on efficiency of N uptake (particularly in 

the case of production agriculture) and other aspects such as soil, climate, and management 

practices (Tajer, 2016). The difference between the crop N requirement and the available soil N 
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from the various sources is normally corrected by fertilization. However, a major problem exists 

in determining what constitutes sufficient fertilizer N. One must consider the crop, weather, soil 

properties, fertilization practices (time of application, rate, and placement), and the N source 

(Hermanson et al., 2000). 

To aid farmers with N management decisions, many different N recommendation tools 

have been developed over the years. Traditionally, farmers have applied enough nitrogen to carry 

them through the growing season, based on previous experience. However, we’ve learned 

through various research that having a management plan is key to nitrogen management 

(Jackson, 2018). For example, in dryland systems, higher rates of available N per bushel was 

necessary to maximize production, compared to well-managed irrigated wheat which required a 

lower rate of available N for each bushel (Bell, 2016). Typically, the more productive the 

system, the greater the N use efficiency and the less N required per bushel to maximize yield, 

even though more total N would be required (Jackson, 2018).  Nitrogen is one of the highest 

input costs for farmers, but it is incredibly difficult to know how much nitrogen to put on a field, 

as well as when it should be used in order to optimize yield and the net return on investment. If 

you put on too much, you’re not going to increase the yield beyond the optimum yield point, at 

which point, the farmer is paying for something that isn’t benefitting the operation. The same 

goes for applying too little nitrogen on. In that scenario, the farmer is not achieving optimum 

yield. It is a balancing act (Hudson, 2015). A grower could also have a large variation in the 

amount of N needed to optimize yield within one field. More nitrogen may be needed in one area 

and not as much in another; it’s a complex issue (Jackson, 2018). 

Applying N at the right rate is one of the most critical management practices farmers can 

implement to improve NUE. While it is not possible to achieve 100% NUE, applying less N 
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fertilizer improves NUE. Applying too little N fertilizer, however, will limit yields, while 

excessive N rates result in low NUEs. One method to optimize the N fertilizer applications is to 

apply N close to the economical optimal N rate (EONR), or the rate at which any additional N 

starts to decrease profitability (Lu and Petkova, 2014). However, this is challenging due to the 

uncertainty of the EONR value for any given environment. This uncertainty arises due to the 

number of abiotic and biotic factors. One of these factors is the uncertainty of around how much 

N will be supplied by mineralization in a given season. Nitrogen mineralization is the process by 

which microorganisms’ breakdown organic-N to inorganic-N. Soils with sufficient 

mineralization can provide adequate N, so there is little or no response to N fertilizer applications 

(Cassman et al., 2002).  

When soil available N is low, yield and protein content can be impacted. As more N 

becomes available, yield typically increases first in wheat. When the maximum yield is reached, 

protein will then increase with little increase in yield. As N is applied beyond these levels the 

wheat plant will use the excess required to support the environmentally-dictated yield to increase 

grain protein concentration. If high yields and protein are desired by the farmer, high levels of N 

fertilizer must be applied. Proper timing of nitrogen fertilizer applications to high yielding 

varieties might be another means in attempting to achieve high yield and high protein, 

particularly in wetter years on soils susceptible to leaching or denitrification (Brown et al., 

2005). Wheat is thought to have a protein-yield threshold, meaning that at some level of soil 

nitrogen, increased levels of N fertilizer will result in higher protein but will not increase yield 

(Abedi et al., 2011). Research in Saskatchewan suggested that it is possible to increase the grain 

protein content up to a maximum of 160 g kg-1%, while maintaining or increasing the yield, but 

beyond 160 g kg-1%, protein, yield increases would cease (Jones and Olson, 2012).  
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A general procedure in developing a set of fertilizer N recommendations is to evaluate 

the relationship between yield and N application rate in situations where no other nutrients or 

pest problems limit yield. Soil testing is used to determine the adequacy of plant nutrients and to 

determine background levels of N. Once the relationship has been determined for a variety of 

situations over a number of years, yield response curves can be developed. From these curves, 

the researcher can determine the crops EONR. In the past, recommendations were made for yield 

goals at or near maximum yield. More recently, the idea of targeting the economic optimum 

yield (which is generally less than the maximum yield) has become more popular. Using the 

economic maximum yield approach requires including fertilizer costs when making fertilizer 

recommendations by converting the yield response curve to a set of recommendations 

(Hermanson et al., 2000). 

Growing wheat with high grain protein begins with selecting an appropriate variety 

followed by management practices that increase N availability late in the season. Using cultural 

practices or adding other nutrients to increase yield without adding additional N can reduce 

rather than increase protein. Drought-stressed wheat may have higher protein content because of 

lower yield. Even in irrigated systems, withholding water late-season generally increases protein 

(Abedi et al., 2011). However, there are times when withholding late-season moisture can reduce 

N availability and uptake, which can reduce protein.  With high yields, more in-season N per 

acre is required to increase protein than with low yields; that is, the protein increase from a given 

amount of N is less for high yielding scenarios than for low yielding ones (Jones and Olson, 

2012).  
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Precision Agriculture 

Precision agriculture (PA) is considered a new approach to farming that requires new 

technologies and skills. Precision agriculture is conceptualized by a system approach to re-

organize the total system of agriculture towards a low-input, high-efficiency, sustainable 

agriculture. The impact of precision agriculture technologies on agricultural production is 

expected in two areas: profitability for the producers and ecological and environmental benefits 

to the public. Agricultural industry is now capable of gathering more comprehensive data on 

production variability in both space and time. The desire to respond to such variability on a fine 

scale has become the goal of precision agriculture (Canis, 2015). Whether farm managers decide 

to adopt new technologies or not is complex, but most account for the full costs and benefits of 

the proposed investment (Tey et al., 2012).  A significant investment of capital and time are 

needed to incorporate PA into a farming operation but adopting the new technologies may offer 

cost savings and higher yield through more precise management of inputs (Schimmelpfennig et 

al., 2011). These benefits derive from the efficient use of yield-monitoring harvesters and yield 

mapping with Global Positioning Systems (GPS), tractor guidance systems, soil mapping, and 

variable-rate input application. These are the most popular PA technologies and although they 

have the potential to aid farmers in reaching higher profits, the adopting rates of these 

technologies are low with variable-rate technology (VRT) the lowest. The profits on these 

technologies may be small yet positive, which may help explain the slow adoption rate. Taking 

farm size into consideration, large farms are more likely to adopt PA technologies. VRT 

adoption is lower than for the other technologies on all farm sizes (Schimmelpfennig, 2016).  

Uniform application of crop production inputs does not allow optimum efficiency or 

profitability because factors that affect crop production are rarely uniform within fields. Properly 
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implemented, variable rate technology (VRT) more precisely applies required inputs. It has the 

potential to improve, or ideally maximize efficiency of inputs and profitability of individual 

fields by targeting application where needed at optimum rates (Sawyer, 2018). 

Using variable rate fertilizer application technologies producers apply different rates of 

fertilizer to define zones across fields. Customized application of fertilizer is accomplished with 

machinery attachments that can vary the rate of application from GPS controls in the cab of 

tractors. Geolocated data from yield and soil maps or from guidance systems can be used to pre-

program application equipment to apply desired levels of inputs at different locations in a field. 

Controllers adjust the levels of inputs coming from each nozzle on command from a computer 

program that uses the geo-referenced data points (Schimmelpfennig, 2016). 

No definitive answer exists as to whether VRT should be used in every field or if it is the 

best crop input management for all farmers. Whether to use VRT or not depends on the expected 

crop response to nutrients, value of the crop, characteristics of variability, capability to manage 

the new technology, importance of benefits, environmental improvement and many more factors 

(Sawyer, 2018).  

The capital cost of farm implements equipped with VRT capabilities is considerable, 

especially when specialized machinery with integrated sprayer or seeding equipment must be 

scrapped (Liu et al., 2006).  For this reason, many producers, particularly on smaller operations, 

have opted to hire service providers when choosing VRT. Only 21 percent of the PA studies 

reviewed by Griffin et al. (2004) included human capital costs, but operator time and effort were 

found to be a substantial cost for VRT and a likely reason for outsourcing the service 

(Schimmelpfennig, 2016). 
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Research shows VRT can improve input efficiency and field profitability, but it indicates 

that positive economic return to VRT application does not always occur (Liu et al., 2006).  

Several possible shortcomings affect potential benefits, which include (i) the crop is not 

responsive to the input (ii) the crop-input response function used is not specific or appropriate 

(iii) within-field variation is in a range that does not affect yield (iv) variation is small or does 

not exist, and therefore VRT cannot improve upon results from a uniform rate (v) variation is not 

correctly (or at least adequately) identified, measured, or delineated (mapped) (vi) measurement 

and recommendation practices available today are neither adequately accurate or reliable for 

VRT (vii) identified variation is not correctly managed or there is incorrect interpretation of 

expected crop response and (viii) costs of implementing VRT (sampling, mapping, equipment, 

and personnel) outweigh the value of crop yield increase or input saving (Sawyer, 2018). 

At today's crop value and cost of technology, VRT may not always be economical. It 

must improve profitability of fields and provide environmental benefits, or it should not be used 

by farmers. Many technological innovations have been presented but development of agronomic 

and ecological principles for optimized recommendations for inputs at the localized level is 

generally lagging. Many farmers are uncertain as to whether to adopt available precision 

agriculture technologies on their farms. Variable rate technology is one of many management 

tools with the potential to optimize crop yield and profitability. If no other benefit occurs, at least 

the VRT process demands critical field evaluation and management (Sawyer, 2018).  

An unmanned aircraft vehicle comprises an aircraft with no onboard pilot, controlled 

from a remote operating station. The aircraft is sometimes referred to as an unmanned aerial 

vehicle (UAV) or a drone (Canis, 2015). Currently, the way to get aerial images of a field are 

either satellite images or possibly airplanes. These are limited by the resolution of their images 
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and how often they fly over a field. The 15-cm resolution of UAV cameras is over 40,000 times 

better than the most commonly available satellite data and even 44 times better than the best 

commercial satellite images. Planes and satellites also fly above the cloud level and images can 

be obstructed in bad weather. Drones have the advantage of being able to monitor a field every 

week throughout the growing season. Satellites have a week or two delay before the images are 

available. Drone operators runs on their own schedule and do not need to rely on the satellite 

flight path. This also means they have the flexibility to re-fly over trouble spots or move in for a 

closer look (Zhang et al., 2002). 

Crop scouting is often done by interns on foot. At the ground level, it is hard to cover the 

entire field, especially late in the season for a crop like corn when the plants are taller than a 

person’s head. Farms continue to increase in size, so more acres per enterprise must be scouted. 

Once an entire field is covered by a drone, trouble spots can be identified and targeted for 

scouting on foot (Stehr, 2015).   Insurance companies can use drones to get a better idea on the 

extent of damage after a hail storm, easily determining whether a field has 70% compared with 

90% loss.  

Yield monitors were first used on combines in the 1990s and have not changed much 

since, but their popularity has. New grain combines are marketed with GPS-linked yield 

monitors as standard equipment (Schimmelpfennig, 2016).  More than 70 percent of U.S. 

farmers have GPS-linked yield monitors on their harvest equipment (Franzen, 2018). Famers use 

GPS-based computer mapping of yield to help customize crop management in fields. When areas 

in the field are lower yielding, the farmer either adds inputs to raise yields or reduces inputs on 

areas that are lower yielding and are less likely to be profitable (Schimmelpfennig, 2016). Yield 

monitor maps can be a powerful tool to explain the yield drag in salty areas of the field and the 
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need to management these areas differently. Yield maps also are a valuable archive of field 

performance and the changes that management might have had on the fields. The archived maps 

can be shared with bankers or passed down to the next generation so that the things farmers learn 

about in their fields will not be lost to heirs. Yield maps are also useful in product testing or any 

on-farm research worthwhile. When strips of treatments, such as N, are applied across a field, the 

stream of yield data from the strips can be analyzed statistically. Yield data from multiple years 

results in a good tool on which to base nutrient management zones for variable-rate nutrient 

application (Franzen, 2018). 

Although a variety of information can be helpful, yield maps will provide the backbone 

of most successful for VRT prescriptions. Yield maps over time are an excellent starting place 

for developing management zones. Soil series information is readily available but should not be 

used alone to create management zones. Remote sensing imagery, software systems (SMS), soil 

tests, or soil type maps could be useful in creating fertilizer maps (Schimmelpfennig, 2016). 

A more advanced camera filter for crop scouting is one that takes near-infrared images. 

Healthy plants reflect both green and infrared wavelengths of light. When they are stressed from 

pest, nutrient, or drought, the type of light reflected changes and can be picked up by the 

cameras. On the pictures, healthy plants will appear bright red, while stressed plants or weeds 

will look darker red. These bands of light can be used to calculate a normalized difference 

vegetative index (NDVI). The formula for NDVI is the ratio of near-infrared light (NIR) minus 

visible light (VIS) over near-infrared light plus visible light, as shown NDVI = (NIR – VIS)/ 

(NIR + VIS) (Taipale, 2018). Overall, NDVI is a standardized way to measure healthy 

vegetation (Grassi, 2016). 
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Though many will argue that ground-based inspections combined with satellite imagery 

along with a dedicated grid soil sampling program is more practical for refining nitrogen, 

phosphorus and potassium applications in agriculture, drones do have a fit. A drone service start-

up company in the United States has used NDVI maps to direct in-season fertilizer applications 

on corn and other crops (Grassi, 2016). By using drone-generated variable-rate application 

(VRA) maps to determine the strength of nutrient uptake within a single field, the farmer can 

apply 300 kg/ha of fertilizer to struggling areas, 200 kg/ha to medium quality areas, and 150 

kg/ha to healthy areas, decreasing fertilizer costs and increasing yield (Veroustraete, 2015).  

Tailoring nitrogen application rates to more exactly meet crop needs should increase 

profitability, reduce environmental risk, and may result in higher and more consistent grain 

quality. The key to success and eventual adoption of variable-rate nitrogen management will be 

the development of decision-making criteria that can accurately predict nitrogen rates that are 

economically optimum and environmentally sustainable (Grisso et al., 2011).   

For nitrogen applications, the concept is that the amount of fertilizer needed at a 

particular location within the field can be determined by implementing a nitrogen-rich strip at 

planting or shortly thereafter and comparing spatial variability of crop growth across the field to 

crop growth from the nitrogen strip (Lowenberg et al., 2019). The nitrogen-rich strip provides an 

area in which nitrogen is not the yield-limiting factor nitrogen application at planting. NDVI 

readings are collected from the nitrogen-rich strip. Subsequently, as the fertilizer applicator 

covers the field, the sensors read NDVI values, compare them to the NDVI values from the 

nitrogen-rich strip, and apply an adjusted amount of nitrogen. Instead of the nitrogen-rich strip 

consisting of one rate across the field, a range of nitrogen rates is applied across the field. This 

provides a benefit in that growers can see actual response to a range of nitrogen rates and when 
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they are setting ranges for variable-rate application, they have more information about how to 

appropriately establish the breaks for the assorted nitrogen rates (Grisso et al., 2011).   

Mixed results indicated that although there may have been some positive net returns, 

Lambert and Lowenberg-DeBoer did not have enough confidence to support the general 

assertion that similar results could be achieved under similar circumstances. Oftentimes, 

conclusions in these reports indicated that more research needed to be done in order to reach a 

valid conclusion (Lowenberg et al., 2019). 

Currently, most of the VRA technologies are commercially available, but they need an 

investment of time and thought of how to implement the prescription maps. The decision to use 

VRA and the prescriptions for varying inputs are truly site-specific. Not every farm or field will 

show an economic benefit from VRA, but these technologies offer opportunities for growers to 

increase both the production and environmental efficiencies of crop production and should be 

carefully evaluated (Grisso et al., 2011). 

There have been numerous studies documenting the correlation between NDVI and crop 

yield at the national, regional, and county level (Maselli & Rembold, 2002). Tucker (1979) 

determined that the time integrated NDVI is largely correlated with crop yields when the 

vegetation is at the maximum level of greenness. Some studies focus on intra-annual variability, 

how the correlation between the vegetation index and crop yields varies by the planting date 

(Basnyat et al., 2004). D.M. Johnson (2014) found that the week where the association of yield 

and NDVI is at its peak in the beginning of August. A study conducted by Chang Xu at Ohio 

state university found that the response of yield to NDVI is different across locations, showing 

spatial heterogeneity of responses. For some counties in the Northern states, yield is highly 
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related with July NDVI, whereas for other counties located in the south, August NDVI is a better 

indicator of yield.  

A study in Japan showed strong correlations between NDVI and yield that were observed 

at the early reproductive stage or the late ripening stage for the direct-seeded rice, and at the 

middle reproductive stage of the early ripening stage for the wheat. The result that the NDVI 

values were highly responsive to fertilizer application levels indicated the potential for early 

detection of nitrogen deficiency (Guan et al., 2019). 

Similarly, a study in Australia suggest the possibility of using NDVI measurements at 

maturity as a potential tool to identify areas with higher or lower defoliant application needs to 

make prescriptive applications in order to increase harvest efficiency. Nevertheless, further 

definition of relationships for this purpose are required (Ballester et al., 2017). 

In the subsequent studies on UAV-based yield estimates, rape and barley crops were 

investigated. High correlations between NDVI and GNDVI values and the respective yield 

reference data were found. These results were obtained despite a very late flight which had been 

carried out shortly before harvest (Nebiker et al., 2016). 
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OBJECTIVE 

The objective of this research is to determine if NDVI data collected with UAVs and/or 

other sources can be used to define zones within a field that require specific management 

practices in order to optimize yield and nitrogen fertilizer inputs. Ultimately, the data collected in 

this project will be used to generate prescription maps that will guide the application rates of 

nitrogen within a field. 
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MATERIALS AND METHODS 

Experiments were carried out in small plots in 2018 and 2019 and in farmer fields in 

2019. 

Small Plot Experiments 

The small plot experiments were established at North Dakota State University’s Seed 

Farm, near Casselton, ND and on a farmer’s field near Ada, MN, in 2018 and in Steele County, 

near the town of Mayville and in Grand Forks county near Thompson, ND, in 2019. These 

experiments were designed as randomized complete blocks (RCBD) with four replications. 

Treatments consisted of six rates of N (0, 44, 89, 134, 179 and 224) kg ha-1. Urea, the fertilizer 

used to supply N was applied by hand which was then incorporated to about 10 cm using a light 

cultivator.  In 2018, the soil test showed Casselton, ND had 44 kg ha-1 N, 22 kg ha-1 P, and 5% 

organic matter in the soil. In Ada, MN the soil test showed 30 kg ha-1 N, 10 kg ha-1 P, and 3% 

organic matter. In 2019, the soil test showed Steele Co. had 52 kg ha-1   N, 20 kg ha-1 P, and 5% 

organic matter. Grand Forks had 31 kg ha-1   N, 6 kg ha-1 P, and 5% organic matter. The wheat 

was then seeded in plots that consisted of 7 row spaced 18 cm apart and 3.7 m long. Planting 

dates were May 30th in 2018 and May 17th, in 2019. The seeding rate was 3.46 million seeds ha-

1 and the variety used in all experiments was Faller. Weeds were controlled with a mixture of 

fenoxaprop, pyrasulfotole, bromoxynil octanoate, and bromoxynil heptanoate (Wolverine 

Advanced™ at 1.9 L ha-1) applied at the 4-leaf stage of wheat development. 

After emergence and before the 3-leaf stage stand counts were made to ensure that plant 

stand was representative of farmers’ fields. Plant height was also taken from soil to tip of plant 

just prior to harvest. Reflectance data were collected with a Micasense camera sensor mounted 

on a drone. The sensor collected RGB and NIR color images which were used to calculate 
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normalized difference vegetation index (NDVI). NDVI has been found to be useful for a variety 

of agricultural purposes. Low NDVI values can clearly distinguish areas of the field where a crop 

is growing poorly when compared to those where it is not, enabling zones to be created to target 

the right amount of fertilizer to be applied to each spot on the field (Guan,2019). The drone used 

was manufactured by AGBOT, an Aerial Technology International company in Oregon City, 

OR. The drone was flown at 60 m with flights having a 75% overlap. NDVI data were collected 

at multiple stages throughout the growing season starting at the 6-leaf stage and ending at 

heading. The data was stitched using Pix4D, a unique photogrammetry software for drone 

mapping based in Denver, Colorado and processed in ArcMap using python code written by Joao 

Paulo Flores, a Precision Agricultural specialist at the Carrington Research Extension Center in 

North Dakota. 

Plots were harvested with a Wintersteiger Classic plot combine and yield was measured 

with a combine-mounted weighing system. A sub sample of the harvested grain was used to 

determine test weight and moisture which were measured with a GAC 2100 moisture analyzer 

(Dickey John) from Auburn, Illinois. Grain protein concentration was measured on a subsample 

by NIR using a Diode Array 7200, an analyzer instrument manufactured by Perten Instruments 

NA, Inc in Springfield IL and was converted to protein percent on a 12% moisture basis. 

Data were analyzed using ANOVA with Proc GLM in SAS™. Means were separated 

using LSD at the 5% level of probability. Regression analysis was used to explore the 

relationships between NDVI and yield and NDVI and protein to determine if NDVI could be 

useful in predicting either of these two values. 
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Grower Managed Experiments 

Wheat fields near Campbell, MN, Breckenridge, MN, Walcott, ND Colfax, ND, and East 

Grand Forks MN, were selected for inclusion in the research in 2019. In order to identify fields 

that were relatively uniform and representative of the area, NDVI and geographical feature of 

potential fields were examined from satellite imagery that was available from previous years. 

These data were accessed using GK Technology software, based in Halstad, MN and databases 

and were selected after entering the section and township data from 2015, 2016, 2017, and 2018. 

These values were taken into account from previous years when selecting the field and areas 

within a field that would be included in the experiment. We wanted to include fields that induced 

variability for the trials. Finally, a visit was made with each farmer at each site to communicate 

how the experiment was to be set up prior to the growing season. 

In each experimental field, a nitrogen rich strip was applied to the field, along with a 

nitrogen poor strip. These strips were applied by the farmers preferred method and 

approximately two-three times the width of the combine header. Both of the strips were 

compared to the farmer’s regular rate of fertilizer rate. Depending on the farmer’s normal rate of 

fertilizer, the rich strip was 1.2-1.5 times the original rate and the poor strip was 0.75 times the 

normal rate. The seeding rate, variety, weed control methods and other management practices 

were based upon the grower’s personal preference. An “as applied” fertilizer map was collected 

from the growers who had access to one in order to geo-reference these strips. This allowed for 

the exact coordinates in the field where each strip was applied to be identified. For fields without 

“as applied” maps, the strips were flagged out and GPS coordinates were taken for the corners of 

the strips using a Garmin GPS tracker. The drone and sensors described above were used to 

collect the spectral data used in this research. The wheat fields were flown at various stages 
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throughout the growing season, including: three-six leaf, flag leaf, boot and heading. A specific 

time in the growing season was not set as we were unsure as to which stage would provide the 

optimal data to predict yield at the end of the season. The intent was to fly early enough in the 

season so an in-season application of nitrogen might be possible. Flying early enough to make an 

application, yet late enough so nitrogen deficiencies are visible was considered to be the ideal 

timing. Therefore, more than one flight was planned. Weather was also taken into consideration. 

Clear skies are optimal for minimal shadowing in the imagery. The drone was flown at 121m 

(75% overlap) to optimize the area of ground covered for the best picture possible and is the 

maximum altitude a drone can be flown. Mission Planner, a ground control station for the UAV, 

compatible with Windows, developed by Michael Oborne, was the program used to fly the 

drone.  

In addition to flying the drone throughout the growing season, prior to harvest, samples 

from the various strips within the wheat fields were collected for protein analysis. Three wheat 

samples were taken from rich, poor and normal nitrogen strips in the field for a total of nine 

samples per field. Heads were cut from the wheat plant using a sharp knife. A sufficient number 

of heads (50-100) were taken to result in an accurate protein reading. The samples were threshed 

and run through the Diode Array 7200 NIR analyzer to measure protein. 

After collecting imagery with the drone, the images were stitched together using a 

computer program called Pix4D. The drone takes a picture every second and stitching all the 

images together creates one solid mosaic. The drone data imagery was analyzed using 

Geographic Information Systems (GIS) software. Through GIS, I was able to upload the stitched 

map, and visually compare the differences in NDVI throughout different stages of the growing 

season (6-leaf, flag leaf, boot, and heading stage).  
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A yield map was collected from each grower at harvest from the yield monitor on their 

combine. Using GK technology, a yield map layer was compared to the stitched NDVI layer 

created from the data collected by the drone. For further analysis, the mapped data were broken 

up into 140 cells with equal number of cells from each of the nitrogen strips created in the 

farmers’ fields. Each cell holds an average yield and NDVI value for that particular location of 

the field. NDVI and yield were then compared using regression and correlation analysis. The 

imagery was also provided to a local company, GK Technology, to make the prescription maps 

that can be used by the farmer when deciding where to apply additional (or less) nitrogen. 

ADMS is the software used to design several different imagery file types like JPG, TIF, BMP, 

SID, for instance, and data formats including ECW, DAT, LAZ and many others. ADMS can 

crop these large image and data types by simply using a shape file such as a field or county 

boundary, drastically reducing file sizes for easy filing and exporting. The zone creation methods 

in ADMS take image and yield data to the next level for a grower’s soil sampling and zone 

management needs. The data put into the zone creation method in ADMS creates management 

zones that more accurately represent the field. ADMS creates several mathematical options for 

helping you to create these zones and customize them based on your knowledge of the field. 

Variable rate mapping starts with a process of taking one or a combination of input maps for a 

field. Input maps can come from many different sources such as satellite images, UAV stitched 

data, and yield maps. Input data can be merged together based off of GK algorithms creating 

management zones.  

Data were analyzed to determine if the various nitrogen strips varied for yield and NDVI. 

In most cases, these strips were not replicated, so farms served as replicates. Additionally, 

ADMS software generates correlations between the various layers on the map created for the 
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selected fields. These correlations were used for further analyses and to attempt to determine the 

predictive value of NDVI from a single season on yield. 
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RESULTS AND DISCUSSION 

Challenges of Collecting Data with Drone-Mounted Sensors 

The primary objective of this research project was to determine if NDVI data collected by 

a drone-mounted sensor could be used to help create prescription maps for variable rate 

applications of nitrogen. This type of data might be an efficient way for farmers that do not have 

yield maps to develop production zones within a field. Yield maps created from combine 

mounted yield monitors have been a traditional source of information used in creating these 

maps. For farmers that do not have historical maps, NDVI maps might serve as a quick and 

inexpensive way to guide the development of prescription maps, if NDVI can effectively predict 

yield. Drones are now relatively inexpensive to purchase and easy to operate. Nevertheless, I 

found that collecting the desired data with the drone presented many challenges in this project. 

Optimal weather conditions for collecting date are completely clear skies, to prevent shadowing 

from clouds in the imagery, and no wind, allowing the drone to fly more uniformly. Given the 

weather conditions we had this past summer (wind, clouds, and rain) there were very few 

opportunities to fly the drone. Nevertheless, each field was flown three times (flag leaf, boot, and 

heading) under the best weather conditions possible. 

Even though currently available software makes operating a drone relatively easy, 

operational errors still presented significant challenges throughout this project. Unfortunately, 

drones do not always fly perfectly. There were multiple times that I would create the drone’s 

route in the computer, sync the drone to the computer, and send it off, later to find that the 

internal compass in the drone was incorrect, therefore, the drone flew a completely different 

route than that programmed. Occasionally this would result in the drone crashing. Searching for 

a downed drone required many hours looking for it. Battery life also presented challenges. Not 
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every field was small enough so that one battery pack was enough to power the flight duration 

needed to cover the entire field. This had to be planned for otherwise the drone could have run 

out of power and fall from however high it had been programmed to fly. Additionally, battery 

packs had to be checked regularly as damaged batteries may explode in the air, catching on fire, 

and causing the drone to crash. An important lesson learned is that collecting good data with a 

drone requires patience, reliable equipment and vigilance when maintaining it and while flying. 

Managing and manipulating the data can also be time consuming and learning how to process it 

and interpret it requires a significant investment and assistance from others with relevant 

experience. Though a drone may be inexpensive and easy to fly, I found the challenge of 

collecting and analyzing useful data, at least the type that we required for this project, to be 

significant and probably beyond the interest, available time and skills of most farmers. 

Small Plots 

Small plot research was included in this overall project in order to determine if NDVI 

data collected with a drone could be used to predict yield and or protein when rates of nitrogen 

were strictly controlled within a relatively small area of the field where field conditions were 

likely to be uniform. This would allow us to test the hypothesis that NDVI can be a good 

predictor of yield when nitrogen is the main factor controlling yield. Experiments were 

conducted in two locations each year. Since the response to nitrogen varied between years, the 

data from each year are reported separately. Experimental error within a location and year were 

found to be homogeneous, and so data for the locations within a year were combined. Therefore, 

the results for each year are reported separately, but are combined over locations. In 2018, 

increasing the N rate from 0 to 89 kg ha-1 resulted in a linear increase in yield. With N additions 

above 89 kg ha-1, however, there was no additional yield increase (Table 1). These data suggest 
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that only 89 kg ha-1 of added N was needed to optimize yield. The relationship between N rate 

and yield was best described by a quadratic relationship when regression analysis was employed. 

Protein, on the other hand, increased with each increment of added N, and did not reach a 

plateau. This relationship illustrates the need to consider protein as well as yield when 

developing N recommendations for spring wheat, as the price farmers get when they market their 

wheat is often determined to some extent by its protein content. There was no response of NDVI 

to added N. Therefore, there was no significant correlation between NDVI and yield or NDVI 

and protein. The data suggest that NDVI was saturated and therefore could not distinguish the 

plots that would ultimately have different yields and protein levels. In 2019, increasing the N rate 

from 0 to 44 kg ha-1 resulted in an increase in yield. This is unlike 2018, where yield increased 

up to the 89 kg ha-1 rate (Table 2). These data suggest that only 44 kg ha-1 of added N was 

needed to optimize yield. Protein unlike 2018 did not increase with each increment of added N. 

Instead, there were little differences in protein levels regardless of the amount of N applied. In 

general, however, protein levels were much higher in 2019 than in 2018 even though the yield 

levels, at least at the lower N rates, were similar. Perhaps one of the reasons for the elevated 

protein level in 2019 was due to the restricted grain filling rate due to a heavy incident of 

Bacterial Leaf Streak. There was no response of NDVI to added N. There was no significant 

correlation between NDVI and yield or NDVI and protein. Planting was delayed in 2019 and 

Bacterial Leaf Streak was problematic. These both could be factors limiting the response of 

NDVI, yield and protein and resulting in limited or no correlation between these traits.  
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Table 1. The effect of nitrogen rates on NDVI, protein, and yield average of two locations in 

2018.  

  Treatment NDVI (6-leaf) Protein Yield  

   Mg/ha-1 

0 0.79 13.7 1.74 

44 0.80 13.7 1.98 

89 0.79 14.3 2.13 

134 0.78 14.3 2.12 

179 0.79 14.6 2.15 

224 0.79 14.8 2.09 

Mean 0.79 14.2 2.04 

CV 4.62 3.61 6.36 

LSD05 N/S 0.52 0.13 

 

Table 2. The effect of nitrogen rates on NDVI, protein, and yield average of two locations in 

2019. 

  Treatment NDVI (6-leaf) NDVI 

(heading) 

Protein Yield  

    Mg/ha-1 

0 0.92 0.92 15.4 1.75 

44 0.91 0.90 14.9 1.92 

89 0.92 0.91 14.8 1.91 

134 0.91 0.92 15.0 1.86 

179 0.91 0.91 14.6 1.85 

224 0.92 0.92 14.7 1.92 

Mean 0.92 0.91 14.9 1.87 

CV 1.99 2.54 5.04 9.59 

LSD05 0.01 0.02 0.77 0.18 

 

In a similar study in corn (2017) increasing fertilizer-N applications did not change the 

yield (Olson et al., 2019).  In the northern Great Plains, corn response to N rate studies 

consistently showed a quadratic response and the greatest yield increase per unit of applied N 

was greatest at lower yields (Franzen 2015).  
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Grower Managed Trials 

Yield 

Data from drones and yield monitors were collected from five wheat production fields in 

North Dakota and Minnesota in 2019. In each of these fields, N-rich and N-poor strips were 

included to increase the likelihood of being able to measure greater variability in yield and NDVI 

in these fields. Even though there was excessive moisture often during the season, wheat yields 

this season were comparable to the yields from previous wheat crop planted in the grower’s 

rotation plan (Table 3). These yields are within the range of yields obtained in the counties, but 

generally below the trend line for yield the last five years according to the online National 

Agricultural Statistics Service (NASS). The wheat yields in the fields that were included in this 

research are likely lower than is the potential for the area due to late planting and excessive 

moisture at times during the season. 

The average yields for the high, low, and farmer’s rate fertilizer strips are shown in Table 

4 along with the overall average for each of the fields monitored. Yields averaged over all the 

treatments within a farm ranged from 0.83 Mg ha-1 in Breckenridge, MN (Wilkin County) to 

2.33 Mg ha-1 in East Grand Forks, MN (Polk County).  
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Table 3. Wheat yield (average and range of values) and past field wheat yields for the five wheat 

fields monitored in 2019. Data were from combined-mounted yield monitors. Years in 

parenthesis were the last year wheat was grown in this field. 

Location of field Yield 

range in 

2019 

Average 

yield of 

whole field 

2019  

Yield from 

field when 

last grown 

(year) to 

wheat 

 ---(Mg ha-1)--- 

Campbell, MN 0.14-1.62 1.30 1.63 (2016) 

Breckenridge, MN 0.11-1.89 0.91 1.03 (2015) 

Colfax, ND 1.39-2.63 2.01 1.91 (2017) 

Walcott, ND 0.14-2.62 1.81 1.91 (2018) 

East Grand Forks, MN 1.38-2.98 2.29 2.42 (2013) 

 

Table 4. Average wheat yields from N-rich, N-poor and grower’s rate strips, at five farms in 

North Dakota and Minnesota, 2019. 

Location N-poor strip  N-rich strip  Growers Rate  Average of 

field 

  --- (Mg ha-1)--- 

Campbell, MN 1.35 1.40 1.34 1.36 

Walcott, ND 1.84 1.93 1.55 1.72 

Colfax, ND 2.16 2.04 2.08 2.09 

Breckenridge, MN 0.95 1.00 1.00 0.83 

East Grand Forks, MN 2.14 2.53 2.33 2.33 

 

Data from all five fields were collected and analyzed the same way. However, only the 

field maps from Campbell, MN are included in the thesis in order to give an example of how 



 

29 

these maps were developed. Data from the other locations will be characterized and summarized 

in tables only.  

 

Figure 1. Yield monitor map for 2019 wheat field, with farmer rate, N-poor, N-rich strips and 

drainage ditch indicated in Campbell, MN. 

Fields with the greatest variability are the ones that will benefit most from variable rate 

management practices. Though the farmers included in this study were located within the Red 

River Valley where soils are considered to be the most uniform in the state due to the limited 

slope and similar parent material. The greatest variability in yield between the N-rich strip and 

N-poor strip was in East Grand Forks, MN (Table 4). The N-rich strip yielded 0.39 Mg ha-1 

higher than the N-poor strip. This information suggests that adding more N to the field would 

likely increase yield. The other fields only showed an average of 0.06 Mg ha-1 yield increase in 
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the N-rich strip compared to the N-poor strip. There was one case in Colfax, ND (Table 4) where 

the N-poor strip yielded 0.12 Mg ha-1 higher than the N-rich strip. The variability in yield within 

the field and between the strips with different N levels is graphically illustrated in Figure 1. 

Protein 

Three samples were taken from the high N rate strip, low N rate strip, and farmer’s rate 

areas. Higher rates of N did not consistently result in higher protein levels, nor did lower rates of 

N result in lower protein level (Table 5). For some fields, this was the case, but not all. In 

Walcott, ND, the farmer rate and the N-rich rate significantly increase protein levels compare to 

the N-poor rate. 

Table 5. Average grain protein level for the N-rich, N-poor, and farmers rate N strips in 2019. 

Location 2019 N-Rich 

Rate 

N-poor Rate Farmers N Rate LSD 

0.05 

Campbell, MN 11.5 11.9 12.3 N/S 

East Grand Forks, MN 15.2 14.9 15.0 N/S 

Breckenridge, MN 14.8 14.3 14.5 N/S 

Walcott, ND 12.3 11.7 12.3 0.53 

Colfax, ND 11.3 10.0 10.8 N/S 

†N/S = not statistically different at the 0.05 level of significance. 

NDVI 

Nitrogen reference strips provide guidance to farmers to help prevent over-application or 

under-application of N fertilizer. These strips can help identify areas where plants have enough 

N or areas where soil N resources are insufficient and the addition of N could increase yield 

(Cornell, 2015). An N-rich strip is where extra N was applied to ensure sufficient N was applied 

so that N would not be limiting production. A strip of at least 100 feet long per representative 

area is ideal. It is important to avoid headlands, wet areas, or other problematic areas in the field 

when deciding where to place the N strips. Plant response in the N-rich strips is used as a basis to 
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determine the maximum yield potential of the specific field for that year. A N-poor strip (or 

check) is a strip in the field where no N, or a reduced amount of fertilizer N is applied at planting 

and where readings will reflect the soil N supply capacity from past manure applications, 

rotation credits, and soil organic matter. It provides the yield potential if no further N fertilizer 

was added. If there are no visible differences between the N-rich and the N-poor or farmer 

applied rates reference strips, it indicates that soil levels of N are adequate for optimum yield and 

no N fertilizer addition is needed. On the other hand, if the plants in the N-rich area look much 

more advanced and healthier, it is clear in the N-poor strips that the available N is not sufficient 

for the crop to reach its full yield potential and side-dressing N is advised. In our study, we 

wanted to use the varied N-rate strips to induce variability that could provide insight into 

whether variable rate programs might be more efficient than the currently used, single N rate 

application of the farmers. 

 

 

 

 

 

 

 

 

 

 

 

 



 

32 

Table 6. Average and the range NDVI values from the N-poor, N-rich, and farmer’s nitrogen rate 

at the 6-leaf, boot, and heading stage of wheat of sensing. 

Location Crop 

Growth 

Stage 

N- 

poor 

Rate  

N- rich 

Rate  

Growers N 

Rate  

Range  Average   

Campbell, MN 6-Leaf 0.92 0.93 0.93 0.63-0.94  0.79 

 Boot 0.87 0.89 0.89 0.41-0.92  0.66 

 Head 0.51 0.52 0.54 0.34-0.55  0.44 

Walcott, ND 6-Leaf 0.94 0.94 0.94 0.86-0.97  0.91 

 Boot 0.54 0.57 0.56 0.48-0.56  0.52 

 Head 0.53 0.53 0.53 0.48-0.57  0.53 

Colfax, ND 6-Leaf 0.94 0.93 0.94 0.70-0.95  0.82 

 Boot 0.53 0.54 0.52 0.38-0.56  0.47 

 Head 0.46 0.47 0.47 0.35-0.56  0.46 

Breckenridge, MN 6-Leaf 0.87 0.92 0.88 0.53-0.92  0.73 

 Boot 0.92 0.91 0.92 0.74-0.94  0.84 

 Head 0.52 0.53 0.52 0.41-0.54  0.48 

East Grand Forks, MN 6-Leaf 0.87 0.88 0.87 0.73-0.90  0.81 

 Head 0.54 0.55 0.53 0.47-0.58  0.52 

Average  0.71 0.72 0.72   0.64 

 

NDVI varied within fields, between crop growth stages when data were collected, and 

with strips that varied in N rate (Figures 2-4). 
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Figure 2. NDVI of N-rich, N-poor, and farmer applied N-rate strips at the 6-leaf stage of wheat 

in Campbell, MN 2019  



 

34 

 

Figure 3. NDVI of N-rich, N-poor, and farmer applied N-rate at the boot stage of wheat in 

Campbell, MN 2019 
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Figure 4. NDVI of N-rich, N-poor, and farmer applied N-rate at heading stage of wheat in 

Campbell, MN 2019. 

There are similar results in our study and research done by others that monitoring NDVI 

values earlier in season for an early detection of nitrogen deficiency allows for a better prediction 

of yield.  Guan et al. (2019) Found very good correlations between drone NDVI and yield in 

both wheat and rice, with the best timing near flowering. Similarly, with cotton, later stages were 

more predictive of N need (Ballester et al., 2017). 

Correlations 

In order to quantify the value of NDVI collected from drone mounted sensors and NDVI 

collected from satellite imagery that was available from public sources, correlation analysis 

between these variables and the georeferenced yield data collected by farmers during the harvest 
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of 2019 was performed. The correlation matrixes were developed from output from EZAnalyze 

tool that is used by the GK Technology software that was used for generating prescription maps. 

The correlation matrixes contain only r values but not statistical probabilities. Given the very 

large number of values that were used to calculate these correlations (not estimated, but many 

thousands) no level of significance was indicated. Given the very large number of values used, 

most if not all the r values in the following tables would be considered statistically significant. 

The fact that they are statistically significant, however, does not mean that these values have a 

practical significance. The larger the correlation coefficient, the more the relationship between 

the two variables is explained. A correlation of less than 0.3 would be considered very weak, a 

correlation between 0.3 and 0.5 is considered “weak,” a correlation between 0.5 and 0.7 is 

considered “moderate,” and a correlation greater than 0.7 is considered to be quite strong. In the 

following correlation matrixes, wheat yield was derived from the yield data collected by the 

yield monitor. These data were provided by the grower from his combine. Data points were 

converted to image files with the GK software at one-meter resolution. NDVI obtained from the 

UAV were collected at 0.08-meter resolution. The 8 cm data was resampled back to 3 meters, 

outliers were trimmed, and resampled back to a 1-meter resolution. The All merged zones 

variable was calculated by combining Landsat (30-meter satellite imagery) and the Sentinel (10 

meter satellite imagery) collected from these fields from 2008 through 2017. Only NDVI values 

greater than 0.35 were used in these averages. Images were interpolated to 3 meters (default 

resolution of software) and merged using an Equalize/Normalize equation. Images use were from 

any crop other than soybeans, as Iron Clorosis and Cyst Nematodes that are common issues in 

the Red River Valley, were known to greatly impact NDVI values. The 2018 data was 

configured the same way. The Sentinel (10-meter satellite imagery) was merged together from 
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only 2018 images with NDVI values greater than a 0.35 average. Images were interpolated to 3 

meter (default resolution of software) and merged using an Equalize/Normalize equation. 

Table 7. Correlation coefficients between various variables and wheat yield in 2019, 

Breckenridge, MN farm location.  

Variable 

name 

Wheat 

Yield 2019 

NDVI from 

UAV 6-25 

NDVI from 

UAV 7-2 

NDVI from 

UAV 7-11 

Merged 

zones† 

N app. ‡ Corn 18 

zones § 

Wheat yield - -0.29 -0.21 -0.17 -0.44 -0.47 -0.44 

UAV 6-25 -0.29 - 0.54 0.45 0.45 0.39 0.45 

UAV 7-2 -0.21 0.54 - 0.52 0.48 0.44 0.48 

UAV 7-11 -0.17 0.45 0.52 - 0.58 0.5 0.58 

Merged 

zones 

-0.44 0.45 0.48 0.58 - 0.89 - 

N app. -0.47 0.39 0.44 0.50 0.89 - 0.89 

Corn 18 

zones 

-0.44 0.45 0.48 0.58 - 0.89 - 

†Merged zones is a composite of NDVI values collected from several satellite images over the 

past few season, irrespective of crop. 

 ‡N app is the N rate map developed from merged zone data using GK mapping software  

§ Corn 18 zones are N application zones derived from NDVI values from satellite images 

collected in the previous corn crop grown on this field (in 2018). 

At the Breckenridge location (Table 7) the variables exhibited a negative correlation with 

yield in 2019. This was the only field were NDVI and NDVI exhibited correlations that were 

opposite of what is normally expected. Why higher NDVI values would predict lower yields is 

not understood unless there were some factors that impacted the crop’s growth after these data 

were collected, like lodging or severe disease development that was more pronounced in the 

more favorable parts of the field. NDVI values from the three different dates were moderately 

correlated with each other. NDVI collected from drone-based sensors was moderately correlated 

with merged zones (NDVI from several satellite images collected over several seasons) and corn 

18 zones (NDVI from satellite images collected from the corn crop grown in 2018), with the last 



 

38 

data collected being the most strongly correlated of the UAV collected NDVI than the earliest 

collected data, suggesting that data collected later in the season is better able to detect difference 

in crop performance than earlier data. 

Table 8. Correlation coefficients between various variables and wheat yield in 2019 farm 

location in Walcott, ND 

Variable 

Name 

Wheat 

Yield 2019 

NDVI from 

UAV 6-25 

NDVI from 

UAV 7-2 

NDVI from 

UAV 7-11 

Merged 

zones† 

N app. ‡ 18 soy 

zones§ 

Wheat 

yield 

- 0.28 0.22 0.11 0.10 0.19 -0.10 

UAV 6-25 0.28 - 0.64 0.45 0.23 0.31 0.31 

UAV 7-2 0.22 0.64 - 0.52 0.27 0.38 0.31 

UAV 7-11 0.11 0.45 0.52 - 0.21 0.27 0.19 

Merged 

zones 

0.10 0.23 0.27 0.21 - 0.83 0.42 

N app. 0.19 0.30 0.38 0.27 0.83 - 0.61 

18 soy 

zones 

-0.10 0.32 0.31 0.19 0.42 0.61 - 

†Merged zones is a composite of NDVI values collected from several satellite images over the 

past few season, irrespective of crop. 

 ‡N app is the N rate map developed from merged zone data using GK mapping software  

§ Soy 18 zones are N application zones derived from NDVI values from satellite images 

collected in the previous corn crop grown on this field (in 2018). 

At the Walcott location (Table 8), correlations coefficients between drone-based NDVI 

values and wheat yield decreased and were less predictive of yield the later in the season that 

they were collected. The later flights were poorly predictive of wheat yield. Even given the poor 

predictability of the UA-based NDVI values, they were more predictive than merged zones and 

the soybean 2018 zones. In fact, the limited correlation between the soybean zones and yield was 

also negative, indicating that higher NDVI values in the soybean in 2018 predicted a lower yield 

for wheat in 2019. It is not obvious what might have been the reason for this negative 

relationship. 
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Table 9. Correlation coefficients between various variables and wheat yield in 2019 farm 

location in East Grand Forks, MN 

Variable 

Name 

Wheat Yield 

2019 

NDVI from 

UAV 6-25 

NDVI from 

UAV 7-11 

Merged 

zones† 

N app. ‡ 18 soy 

zones§ 

Wheat yield - 0.05 0.24 0.18 0.12 -0.08 

UAV 6-25 0.05 - 0.25 0.19 0.27 0.08 

UAV 7-11 0.24 0.28 - 0.37 0.39 0.08 

Merged zones 0.18 0.21 0.38 - 0.90 0.27 

N app. 0.12 0.25 0.38 0.90 - 0.39 

18 soy zones -0.08 0.08 0.08 0.27 0.39 - 

†Merged zones is a composite of NDVI values collected from several satellite images over the 

past few season, irrespective of crop. 

 ‡N app is the N rate map developed from merged zone data using GK mapping software  

§ Soy 18 zones are N application zones derived from NDVI values from satellite images 

collected in the previous corn crop grown on this field (in 2018). 

At the East Grand Forks location (Table 9), correlations coefficients between drone-based 

NDVI values and wheat yield increased and were more predictive of yield the later in the season 

that they were collected. Since the NDVI from the last date was the most strongly correlated with 

yield, these data suggest that NDVI collected later in the season is better able to detect 

differences that affect yield than earlier in the season. The UA-based NDVI values, were more 

predictive than merged zones and the soybean 2018 zones. The NDVI values in East Grand 

Forks, MN were much less predictive of yield than Campbell, MN (Table 11).  In fact, the 

coefficients were about half those we observed in Campbell, MN. Nevertheless, these values 

were consistently positive unlike those at Breckenridge, MN (Table 7). 
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Table 10. Correlation coefficients between various variables and wheat yield in 2019 farm 

location in Colfax, ND 

Variable 

Name 

Wheat 

Yield 2019 

NDVI from 

UAV 6-25 

NDVI from 

UAV 7-2 

NDVI from 

UAV 7-11 

Merged 

zones 

N app. 18 soy 

zones 

Wheat yield - 0.42 0.47 0.47 0.36 0.31 0.29 

UAV 6-25 0.42 - 0.61 0.56 0.33 0.33 0.37 

UAV 7-2 0.47 0.61 - 0.66 0.43 0.40 0.43 

UAV 7-11 0.47 0.56 0.66 - 0.82 0.79 0.48 

Merged 

zones 

0.36 0.33 0.43 0.82 - 0.95 0.49 

N app. 0.31 0.34 0.40 0.79 0.95 - 0.49 

18 soy 

zones 

0.29 0.37 0.42 0.49 0.49 0.49 - 

†Merged zones is a composite of NDVI values collected from several satellite images over the 

past few season, irrespective of crop. 

 ‡N app is the N rate map developed from merged zone data using GK mapping software  

§ Soy 18 zones are N application zones derived from NDVI values from satellite images 

collected in the previous corn crop grown on this field (in 2018). 

At the Colfax location (Table 10), correlations coefficients between drone-based NDVI 

values and wheat yield increased and were more predictive later in the season. However, this 

field showed that NDVI values became stagnant from 7-2-2019 to 7-11-2019. UA-based NDVI 

values, they were more predictive than merged zones and the soybean 2018 zones. This location 

presents the strongest correlations values of any other location. The results were quite similar to 

the Campbell location (Table 11) and there were much stronger correlations between NDVI, and 

yield compared to East Grand Forks. Of the five fields included, four of the five had positive 

correlations, two were weak, and two moderate. 
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Table 11. Correlation coefficients between various variables and wheat yield in 2019 farm 

location in Campbell, MN 

Variable 

name 

Wheat 

Yield 2019 

NDVI from 

UAV 6-25 

NDVI from 

UAV 7-2 

NDVI from 

UAV 7-11 

Merged 

zones† 

N app. ‡ Soy 18 

zones§ 

Wheat yield - 0.41 0.55 0.62 0.47 0.45 0.39 

UAV 6-25 0.41 - 0.77 0.50 0.21 0.19 0.18 

UAV 7-2 0.55 0.77 - 0.60 0.32 0.28 0.25 

UAV 7-11 0.62 0.49 0.60 - 0.36 0.33 0.35 

Merged 

zones 

0.47 0.21 0.32 0.36 - 0.93 0.50 

N app. 0.45 0.19 0.28 0.34 0.93 - 0.44 

Soy 18 

zones 

0.39 0.18 0.25 0.35 0.50 0.44 - 

†Merged zones is a composite of NDVI values collected from several satellite images over the 

past few season, irrespective of crop. 

 ‡N app is the N rate map developed from merged zone data using GK mapping software  

§ Soy 18 zones are N application zones derived from NDVI values from satellite images 

collected in the previous corn crop grown on this field (in 2018). 

At Campbell, MN drone-based NDVI values were moderately predictive of wheat yield 

in the 2019 season. Furthermore, NDVI values became more predictive as the season progressed. 

The late season NDVI values from the drone were more predictive than the merged zones 

(merged together from 2008 through 2017 imaged with NDVI values greater than 0.35 average) 

and the NDVI values obtained from satellite imagery from the soybean crop in 2018. The NDVI 

values from the first date was highly correlated with the data from the second date, but only 

modestly correlated with the NDVI collected on the last date. Since the NDVI from the last date 

was the most strongly correlated with yield, these data suggest that NDVI collected later in the 

season is better able to detect differences that affect yield than data collected earlier in the 

season. This seems logical, as factors that will likely impact yield will be more manifest as the 

season progresses (there are more chances nitrogen and water availability to impact a crop the 
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longer it is growing, as an example). Nevertheless, one challenge with NDVI is that it tends to 

saturate after full canopy closure and others have found it difficult to detect differences in crop 

yield after canopy closure. As was noted in the earlier section, NDVI values tended to decrease 

as the season progress (rather than saturate and remain stable). Differences in NDVI values 

collected from a drone-based sensor can be due to a number of factors, such as angle of sun at 

the time of the flight, haze, and presence of spikes, etc. since these data are based on passive 

reflectance (unlike the GreenSeeker or Crop Circle that collect NDVI reflectance from an active 

light source). 

In order to look at the relationship between NDVI and yield at Campbell, MN, data from 

the yield map and UAV maps were broken up into 140 cells using GK Technology. Each cell 

holds an average yield and NDVI value for that particular location of the field. The graph 

indicates NDVI being most predictive later in the season. The slope is stronger than the other 

two graphs and shows a strong linear equation. When expressed as an exponential equation, there 

was little difference compared to the linear equation. The grouping on all three equations is 

strongly noticeable with the grouping occurring with higher NDVI and yield. Based upon the R 

squared value, NDVI is not a perfect indicator of yield, but on certain fields, NDVI could be a 

useful tool in predicting yield.  
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Figure 5. NDVI to yield correlation in Campbell, MN.  

Overall, majority of the grower’s fields showed the last data collected being most 

strongly correlated of the UAV collected NDVI than the earliest collected data. This suggests 

that data collected later in the season is better able to detect difference in crop performance than 

earlier data. This is likely due to factors that impact a crop the longer it is growing such as N and 

water availability. There were different responses at different locations, which is to be expected. 

Perhaps if this study were to be extended, taking soil conditions into account would be helpful in 

understanding why such differences occurred. At this time, we can say that the differences 

occurred due to geographical differences, weather conditions including heavy moisture, and the 

fields ability to hold adequate N. NDVI was not always predictive of yield. Unfortunately, many 
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Conclusions 

The purpose of the small plot research was to determine if we could detect differences in 

NDVI when N level varied in a smaller and controlled area. In this study we did not find any 

response of NDVI to added N in the small plots. In 2019, increasing the N rate from 0 to 44 kg 

ha-1 resulted in an increase in yield, unlike 2018, where yield increased up to the 89 kg rate 

(Table 1 and 2). Therefore, we were unsuccessful as there was no significant correlation between 

NDVI and yield or NDVI and protein. The data suggests that NDVI was saturated and therefore 

could not distinguish the plots that would ultimately have different yields and protein levels. 

Planting was delayed in 2019 and Bacterial Leaf Streak was problematic. These both could be 

factors limiting the response of NDVI, yield and protein and resulting in limited or no correlation 

between the traits.  

In the grower managed study, N strips were used to introduce more variability in yield 

and NDVI in order to determine if sufficient variability can be obtained to allow potential 

variable rate N prescriptions. The N-rich, N-poor, and grower’s rate of N did not consistently 

differ in yield, protein and NDVI. NDVI for the whole field was the greatest early on in the 

growing season and dropped significantly later season. Generally, the varied N strips were not 

consistently helpful in determining N adequacy as they only infrequently differed from the 

farmer’s rate of fertilizer for any of the traits measured.  

In the correlation graphs, we did find NDVI could assist in predicting yield. As stated in 

the literature and based off of this study, NDVI values at this point in time would not “solely” be 

useful in developing N prescription maps.  Most growers will likely plant a different crop 

following wheat, therefore making it difficult to use a drone map from a single year to create the 

prescription. Crop rotation, previous year’s NDVI, yield maps, and potentially soil maps are all 
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components necessary to create the most accurate prescription map. Based off of the results from 

figure five, NDVI is approximately 60% predictive of yield. It would be up to the grower’s 

preference if 60% is a strong enough value to use NDVI to predict yield.  

Overall, we concluded that there are cases where yield can be predicted with NDVI from 

a drone. Four out of five fields showed consistency that the best time to collect NDVI is later in 

the growing season. Additional research is needed to determine factors that affect the predictions 

of yield by NDVI in different environments. 
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APPENDIX 

 

Figure A1. Relationship between NDVI at 6-leaf stage and protein in Grand Forks 2018 

 

Figure A2. Relationship between NDVI at 6-leaf stage and yield in Grand Forks 2018 
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Figure A3. Relationship between yield and NDVI at 6-leaf, boot, and heading stages in Grand 

Forks 2019 

 

Figure A4. Relationship between yield and NDVI at flag leaf and heading stages in Steele Co. 

2019 
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Figure A5. Relationship between protein and NDVI at flag leaf and heading stages in Steele Co. 

2019 

 

Figure A6. Relationship between protein and NDVI at 6-leaf, boot, and heading stages in Grand 

Forks 2019 
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