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ABSTRACT 

Energy efficient memory designs are becoming increasingly important, especially for 

applications related to mobile video technology and machine learning. The growing popularity of 

smart phones, tablets and other mobile devices has created an exponential demand for video 

applications in today’s society. When mobile devices display video, the embedded video 

memory within the device consumes a large amount of the total system power. This issue has 

created the need to introduce power-quality tradeoff techniques for enabling good quality video 

output, while simultaneously enabling power consumption reduction. Similarly, power efficiency 

issues have arisen within the area of machine learning, especially with applications requiring 

large and fast computation, such as neural networks. Using the accumulated data knowledge 

from various machine learning applications, there is now the potential to create more intelligent 

memory with the capability for optimized trade-off between energy efficiency, area overhead, 

and classification accuracy on the learning systems. In this dissertation, a review of recently 

completed works involving video and machine learning memories will be covered. Based on the 

collected results from a variety of different methods, including: subjective trials, discovered data-

mining patterns, software simulations, and hardware power and performance tests, the presented 

memories provide novel ways to significantly enhance power efficiency for future memory 

devices. An overview of related works, especially the relevant state-of-the-art research, will be 

referenced for comparison in order to produce memory design methodologies that exhibit 

optimal quality, low implementation overhead, and maximum power efficiency. 
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 CHAPTER 1. INTRODUCTION 

Recently, research and development of energy-efficient memory for general use or 

application specific designs has become of great interest [1]. The need for devices that are 

capable of saving power intrinsically, while maintaining a robust, minimal failure operation is 

becoming more and more necessary with the growing use of portable electronics [2]. The 

detailed description of multiple techniques to allow for power savings, including partially 

disabling circuitry or minimizing supply voltage and the use of self-correction techniques to 

mitigate errors and provide a high quality output, will be introduced in the different chapters 

within this dissertation. This chapter contains a brief introduction describing the importance of 

the presented designs and related works. The main two topics that will be described in detail in 

this dissertation involve video and deep learning applications. 

 Motivation for Video and Machine Learning Memory Optimization 

According to market research, by the year 2020, the total amount of data that will have 

been created, transmitted, and replicated, will be as large as 40ZB (Zettabyte, or 1021 bytes) [3, 

4]; and more than half of that data will be video data [5]. Video streaming is currently one of the 

most energy-intensive applications on mobile devices, with frequent memory accesses 

contributing to over 30% of the total power consumption [6, 7]. The frequent memory accesses 

required for these types of streaming applications lead to shorter battery life, which is becoming 

one of the largest contributors to user dissatisfaction [5]. One other notable concern is the 

increased memory footprint in mobile video systems. With recent advances to high definition 

video formats, the video decoder memory can occupy more than 65% of the total silicon area [8, 

9]. As the silicon area increases, the total cost to manufacture the memory increases; therefore, 

designing memory with minimal area overhead is of paramount importance to the end user. 
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Similar to video memory design, the growing demand for computing and memory 

resources in machine learning applications has created a need for efficient hardware schemes to 

enable real-time adaptation. For example, deep learning systems such as neural networks require 

extensive computational time and dissipate a large amount of power to calculate a high accuracy 

trained model [10]. In particular, the training process needs continuous model updating and 

requires intensive memory access. For these types of designs, the on-chip SRAM occupies more 

than 56% of the silicon area and contributes to over 60% of the power consumption of the entire 

system [11]. Consequently, improving the energy efficiency of SRAM with low area overhead is 

vital to support future deep learning systems. 

 Memory Design for Video Applications 

Video applications have been shown to inherently possess error resiliency to some extent 

[12]. This error resiliency enables video applications to be redesigned using approximate 

computing methods for power savings. The video memory designs described within the chapters 

of this dissertation deal with mobile video applications in particular; but these designs can be 

adapted for use in devices that are a part of other application types as well. The designed 

memories use CMOS SRAM technology, but the methodologies used to incorporate power 

savings and data correction may prove useful in future technologies as well. 

Voltage scaling techniques have been widely applied to reduce the power consumption of 

memory systems. Researchers have shown that SRAM achieves maximum efficiency at near-

threshold voltage [13]. However, as voltage scales, SRAMs are susceptible to failure due to 

significant process variation. Various techniques have been developed to correct or eliminate 

these memory failures as voltage is scaled. Traditional low power memory techniques can be 

divided into three general categories: (i) assist schemes, such as adjustment of cell voltage [14] 
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and boosted word-line voltage [15]; (ii) large bit cells, such as upsized 6T cell [16], asymmetric 

7T cell [17], single-ended read-decoupled 8T cells [18], read-disturb-free 9T [19], and bit-

interleaving 12T cells [20]; and (iii) error correction techniques spanning from the use of error 

correction codes [21] to data remapping [22]. Unfortunately, almost all existing solutions require 

considerable implementation overhead, as high as 50-100% of the original memory design. 

Recently, a new branch of low voltage embedded memory techniques have been 

developed to embrace the memory faults, instead of avoiding the faults (i.e. assist schemes or 

more than 6T bit cells) or correcting the faults (e.g. ECC). Those techniques aim to mitigate the 

impact of memory faults by minimizing the magnitude of the error due to a faulty cell, based on 

the determined memory fault positions from runtime testing (e.g. BIST). Those techniques are 

referred to as fault-position aware mitigation techniques. For example, in [23], a shifting 

technique was developed to store the LSBs in faulty bit cells, which may lead to a tolerable 

output quality. In [13], a squeezing technique was presented to compress zeros and store them in 

less memory space, thereby avoiding memory failures at low voltages. However, based on the 

predetermined memory fault positions, the existing techniques still involve complex operation 

(e.g. shifting value calculations and storage) and the overhead incurred is still significant (e.g. 

65% in [23]). Several recent efforts have also investigated application resilience of videos to 

approximations with “good enough” output and additional power savings. [24] presented a 

hybrid 6T+8T SRAM to achieve quality-power optimization. In [16], a heterogeneous sizing 

scheme is presented to reduce the failure probability of conventional 6T bit cells. In [25], the 

correlation between the MSBs of video data was utilized to design a hybrid 8T+10T memory for 

power savings. 
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To address the storage challenge of videos as well as other big data, leveraging the assets 

of big data to extract useful knowledge and actionable information for hardware design is 

proposed in chapter 2. Today’s big data applications, including videos, have three common data 

characteristics [26]: redundant inputs, multiple acceptable outputs, and statistical computations. 

Those intrinsic characteristics provide substantial opportunities for data relationship discovery 

and pattern identification. This is turn will enable a new dimension for hardware design space 

and bring exciting innovation opportunities for multi-dimensional innovations in circuits and 

systems. Based on this, an extension of the work done in [27] proposes an efficient SRAM 

design technique for big video data. The design is presented in chapter 2 with negligible area 

overhead (7.94%) and performance penalty. 

Viewer’s experience is one other important design concern that hardware engineers need 

to consider when designing circuitry such as the memory used for storing video. Various studies 

have displayed the impact of contextual influences such as illuminance levels, where an 

increased amount of ambient luminance allows for a larger amount of error to be introduced by 

voltage reduction techniques without noticeable degradation to the viewers. Two low power 

techniques in particular, voltage scaling and bit truncation, have been explored [28, 29, 30] and 

achieve similar PSNR values. However, the video quality degradation caused by bit truncation is 

much less noticeable than that of the voltage scaling technique for viewers. 

Based on previous works [28, 29, 30] and the novel introduction of video content 

characteristics, chapter 3 proposes a video memory design that uses the viewer’s experience to 

enable video content-adaptive functionality with dynamic energy-quality trade-off.  
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 Memory Design for Deep Learning Applications 

Traditional low power memories are implemented to accommodate a large amount of 

data utilizing more than 6T bit cells or assist schemes which usually come with significant 

implementation cost (e.g. silicon area, performance overhead). Although such overhead might be 

acceptable in general-purpose systems, they are not sufficient to satisfy the storage need for deep 

learning applications. Recently in [31], a deep learning specific hybrid 8T-6T synaptic storage 

was presented where varying number of 8T bit cells replace the traditional 6T bit cells to store 

the MSBs because 8T bit cells are more robust at scaled voltages with decoupled read and write 

paths. 

In chapter 4, a systematic data-mining framework that enables a comprehensive 

understanding of synaptic data characteristics is used to develop a low-power synaptic memory 

for deep learning. Using an offline data-mining assisted synaptic relationships study, discovered 

synaptic characteristics including contribution, switching, and association/correlation were used 

to optimize the memory design. A novel data-driven memory design technique is proposed that 

can store synaptic weights efficiently and with the ability for self-recovery under memory 

failures. A 64kbit SRAM is designed that enables considerable power savings of up to 83.2% 

and with negligible area overhead (3.17%) with minimal loss to classification accuracy (0.72%). 

With deep learning becoming popular for developments in artificial intelligence in 

modern applications such as facial identification, automatic translation, computer vision, self-

driving cars, healthcare and education, the need for data privacy is becoming increasingly 

important. For example, collected health care data can be used in deep learning models to 

provide personalized methods of prevention, treatment and care, ultimately aiding people who 

are aging or those with disabilities to address health issues. These learning enabled benefits do 
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however come at a cost, which partially involves the issue of a serious privacy concern. Sharing 

personal data carries inherent risk to the individual. 

To protect the privacy of an individual’s data that are used to train these deep learning 

models, one technique that has recently been proposed is differentially private deep learning 

algorithms. This approach adds random noise to the computation while learning so that the 

output of the model does not significantly depend on any particular training sample. In addition 

to privacy, as deep learning models grow, the energy and resources needed during the inference 

process, particularly the memories, have become a major constraint to resource-limited IoT 

devices. Existing low-power memory design techniques, such as voltage scaling, usually come 

with large memory failures under low power conditions, which further reduce the accuracy of 

deep learning systems. Therefore, new memory hardware techniques are needed to consider the 

trade-off between power efficiency, accuracy, and privacy in order to meet the increasing 

demands of the edge inference storage in these devices. 

In chapter 5, a memory-based technique to enable a suitable accuracy/privacy trade-off 

that will meet the requirement of different AI applications is presented. The proposed technique 

will allow for low power operation to enable power savings, thereby enabling an energy-efficient 

edge inference on edge devices such as IoT sensors. 

 Design Trade-offs and Evaluation 

In order to evaluate how well each of the designed memories perform, simulations were 

performed to calculate values for power, quality, and area overhead. The relationship between 

the main three hardware design metrics is shown in Figure 1. By constraining two of the three 

metrics and improving the third, while also comparing against recent research, it is possible to 

clearly show improvements of each work against the state of the art. The following chapters 
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describe the design process for four unique works, each using novel memory optimization 

techniques, including comparison against the state of the art. 

Power 

Efficiency

Output 

Quality

Silicon 

Area  

Figure 1. Trade-off between hardware evaluation metrics 
 

All information, tables, and figures in chapters 2, 3, 4, and 5 are either directly taken or 

adapted, with permission to re-use, from [32], [33], [34], and [35], respectively. The final chapter 

discusses the comparison of these techniques with state of the art designs in other recent works. 
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CHAPTER 2. DATA-PATTERN ENABLED SELF-RECOVERY LOW-POWER 

STORAGE SYSTEM FOR BIG VIDEO DATA1 

The growing popularity of powerful mobile devices such as smart phones and tablet 

devices has resulted in the exponential growth of demand for video applications. However, due 

to the large video data size and intensive computation, mobile video applications require frequent 

embedded memory access, which consumes a large amount of power and limits battery life. In 

this chapter, a low-cost self-recovery video storage system is presented by investigating 

meaningful data patterns hidden in big video data through introducing data mining techniques to 

the hardware design process. A two-dimensional data-pattern approach is proposed in order to 

explore horizontal data-association and vertical data-correlation characteristics. Such data 

relationship discovery and pattern identification enable a new dimension for the hardware design 

space and bring self-recovery ability to memories in the presence of bit cell failures. Based on 

the identified optimal data patterns, a low-cost and efficient SRAM design to enable data self-

recovery at low voltages is presented. A 45nm 32kb SRAM is implemented that delivers good 

video quality at near-threshold voltage (0.5 V) with negligible area overhead (7.94%). 

 Embedded Memory Failure Analysis at Near-Threshold Voltage 

It has been shown that the computing efficiency is maximized when a circuit is operating 

at near-threshold voltage [13]. However, at 0.5V (the target near-threshold voltage for this 

design), SRAM failures become more severe with the increasing process variation. In particular, 

the RDF effect leads to threshold voltage (Vth) variation and SRAM cell failures [36]. For the 

current manufacturing technologies, the failure probability of an SRAM cell (Pfail) typically 

                                                 
1 The material in this chapter was co-authored by Jonathon Edstrom, Dongliang Chen, and Yifu Gong. Jonathon 
Edstrom was in charge of all pattern discovery, data analysis, and video quality metric and simulation results. 
Dongliang Chen and Yifu Gong, provided the presented SRAM hardware design with power simulation results 
based on the discovered patterns. 
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ranges between 10-3 and 10-2, depending on the bit cell area [13, 37]. The minimum-sized SRAM 

has highest failure rate of 10-2 and larger bit cells have a lower failure probability. With 58% area 

overhead, the failure rate can be reduced from 10-2 to 10-3 [37]. Both 10-2 (minimum-sized 

SRAM) and 10-3 (upsized SRAM) conditions are considered in the design analysis. It should be 

noted that, the failure rate can be further optimized using a recently developed priority based 

sizing technique [38]. 

To further study the SRAM failure characteristics at low voltage, errors maps for 512 

word × 64 bit SRAM were investigated for Pfail equal to 10-2 and 10-3. During the fault injection 

process, the bits that failed were assumed to be located across the memory cells based on the 

failure probabilities according to a uniform distribution, introducing embedded memory failures 

to the decoding process. Using a uniform distribution for simulating the errors is confirmed by 

memory failure measurements in [39]. The results are shown in Figure 2. SRAM faults are 

uniformly distributed in the array.  

0 32 64

Column

0

256

512

R
o

w

0 32 64

Column

0

256

512

R
o

w

(a) (b)  

Figure 2. Error maps in SRAM array at 0.5V. (a) Error rate: 10-3 and (b) error rate: 10-2 
 

The probability of different faults in the same word line (32-bit word) were also analyzed 

and the results are listed in Table 1. It can be seen that a word line has a low number of faulty 

cells. The probability of two faults existing in the same word line is only 3.6% when the SRAM 



 

10 

bit cell failure rate is 10-2. Accordingly, in the presence of a memory fault, SRAM may achieve 

self-recovery based on other bits in the same word line if meaningful bit-level data patterns exist. 

Table 1. Fault probability in a 32-bit SRAM word (109 Monte Carlo simulations) 

Number of faults 

per word-line 

SRAM failure 

rate: 10-3 (0.001) 

SRAM failure 

rate: 10-2 (0.01) 

0 96.8523477% 72.7279953% 

1 3.0992274% 23.2812509% 

2 0.0479198% 3.6012385% 

3 0.0005023% 0.3611914% 

4 0.0000028% 0.0267011% 

5 0% 0.0015432% 

6 0% 0.0000756% 

7 0% 0.000004% 

 

 Data Pattern Investigation for Self-Recovery 

This section presents the data-mining methodology to discover data patterns hidden in 

video data to enable reliable self-recovery. Specifically, a new two-dimensional (2D) data pattern 

approach is proposed to explore horizontal data-association and vertical data-correlation 

characteristics, thereby achieving optimal data patterns. 

 Rule Mining Enabled Horizontal Association 

Today’s mobile video frames are typically stored and processed in YUV format. The 

YUV format includes one luma (Y) component, which contains the brightness information of the 

image, and two chroma components, which contain the blue-difference (Cb) and red-difference 

(Cr) color information. Figure 3 shows a typical frame of video data stored in embedded memory 

using a 352 × 288 resolution YUV 4:2:0 video as an example. As shown, each pixel has 8-bit 

luma data and 8-bit subsampled chroma data. Since video data is stored in on-chip memory as 
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binary bits, using an association data mining technique to identify horizontal bit-level data 

patterns is possible. 

4:2:0 YUV Video Frame

16x16 
Pixels

Y Cb Cr

Luma(Y) data
8 bits/pixel

Chroma (Cb) data
8 bits/4 pixels

Chroma (Cr) data
8 bits/4 pixels

MSB LSB

Cb1 Cb2 Cb3 Cb4 Cb5 Cb6 Cb7 Cb8

MSB LSB

Cr1 Cr2 Cr3 Cr4 Cr5 Cr6 Cr7 Cr8

4:2:0 
Subsampling

MSB LSB

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

2D Data-Pattern

MSB LSB

Cb1 Cb2 Cb3 Cb4 Cb5 Cb6 Cb7 Cb8

MSB LSB

Cb1 Cb2 Cb3 Cb4 Cb5 Cb6 Cb7 Cb8

Vertical Data Pattern:
Correlation

Association Rule 
Mining Enabled 

Horizontal Data Pattern

Transaction 1

Item 1 Item 2 Item 3 ...

Item X ∈ {0,1} 

Dataset/

Database
...

Horizontal Data Pattern: 
Association

Akiyo 364,953,600 (300)

Coastguard 364,953,600 (300)

Container 364,953,600 (300)

Flower 304,128,000 (250)

Foreman 304,128,000 (250)

Hall 304,128,000 (250)

Mobile 304,128,000 (250)

Mother-

Daughter
304,128,000 (250)

News 304,128,000 (250)

Silent 304,128,000 (250)

Tempete 316,293,120 (260)

Waterfall 316,293,120 (260)

4,221,296,640 bits

(3470 frames)

Data-Pattern Analysis Dataset

No. of bits (no. of frames)

(http://trace.eas.asu.edu/yuv/)

Total

 

Figure 3. 2D data-pattern enabled self-correction and data pattern analysis dataset 
 

Association rule mining was introduced in 1993 to discover relationships between 

different variables, called items, in a dataset or database [40]. A complete dataset is made up of 

many transactions where each transaction contains a set of items. Each item can be associated 

with a binary attribute, 0 or 1, that is used to distinguish if that item is present or not in its 

corresponding transaction. This type of data organization is illustrated in Figure 3. Each resulting 

rule, generated from the association rule mining process, is an implication of the form X → Y, 

where X and Y are disjoint sets of, or individual items. Each rule is also accompanied by 

collected statistics from the dataset called support and confidence values. The support value for a 

set of items is the proportion of transactions in the dataset that contains such set of items. The 

confidence value for an association rule X → Y, is the proportion of transactions that contain X 

which also contain Y, or the conditional probability P(Y | X). 
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To enable association data mining, 12 different video benchmarks were used to build a 

dataset [41, 42]. In total, the video data size used was 4,221,296,640 bits from 3470 video 

frames, as shown in Figure 3. Each video data bit was defined as an individual item and Weka 

[43] was used to perform the well-known Apriori association rule mining algorithm on the large 

video dataset. Table 2 lists the horizontal data patterns that were discovered for both luma and 

chroma data based on the video benchmarks. 

Table 2. Discovered association rules. Bit 1 (i.e. Y1, Cb1, Cr1) is the MSB 

From 12 video benchmarks [41, 42] From 10,000 Youtube-8M videos [44] 

Association 

Rules 
Confidence Support 

Confidence 

× Support 
Association 

Rules 
Confidence Support 

Confidence 

× Support 

Y2=1 → 
Y1=0 74.16% 57.15% 42.38% Y2=1 → 

Y1=0 76.92% 50.57% 38.90% 

Y3=1 → 
Y1=0 74.28% 52.23% 38.04% Y3=1 → 

Y1=0 72.17% 51.52% 37.18% 

Y2=0 → 
Y1=1 22.65% 42.85% 9.71% Y2=0 → 

Y1=1 41.51% 71.18% 29.55% 

Y1=1 → 
Y2=0 39.85% 24.22% 9.65% Y1=1 → 

Y2=0 71.18% 41.51% 29.55% 

Y1=1 → 
Y3=0 42.86% 24.22% 10.38% Y1=1 → 

Y3=0 61.82% 37.01% 22.88% 

Cb2=0 → 
Cb1=1 94.75% 23.23% 22.01% Cb2=0 → 

Cb1=1 98.56% 46.53% 45.86% 

Cb2=1 → 
Cb1=0 97.56% 73.64% 71.84% Cb2=1 → 

Cb1=0 98.20% 52.65% 51.71% 

Cb1=0 → 
Cb2=1 98.28% 73.64% 72.38% Cb1=0 → 

Cb2=1 99.26% 52.69% 52.30% 

Cb1=1 → 
Cb2=0 92.65% 23.23% 21.52% Cb1=1 → 

Cb2=0 99.42% 46.56% 46.29% 

Cr2=1 → 
Cr1=0 97.51% 23.52% 22.93% Cr2=1 → 

Cr1=0 95.75% 33.66% 32.23% 

Cr2=0 → 
Cr1=1 100.00% 75.88% 75.88% Cr2=0 → 

Cr1=1 99.34% 65.38% 64.95% 

Cr1=1 → 
Cr2=0 99.22% 75.88% 75.29% Cr1=1 → 

Cr2=0 99.01% 65.43% 64.78% 

Cr1=0 → 
Cr2=1 99.99% 23.52% 23.51% Cr1=0 → 

Cr2=1 99.44% 33.71% 33.52% 

Cr1=1 → 
Cr3=0 97.80% 74.80% 73.16% Cr1=1 → 

Cr3=0 95.21% 62.61% 59.61% 

Cr1=0 → 
Cr3=1 92.23% 21.69% 20.01% Cr1=0 → 

Cr3=1 97.04% 32.62% 31.65% 
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The video data used for determining optimal rules was further expanded to larger-scale 

and real video datasets beyond typical benchmarks in order to emulate the use of mobile devices 

in the environment of big data. Google’s YouTube-8M dataset [44], one of the largest video 

databases to date, was used for this purpose. Specifically, 10,000 unique videos from the 

YouTube-8M dataset, with a total data size of 57.6 gigabytes, representing 500,000 individual 

frames, was analyzed using data mining methods. A script was written that would download the 

10,000 videos from the approximately 7 million available URLs provided in the YouTube-8M 

dataset. After each video was downloaded, 50 contiguous frames were randomly selected from 

the video and were converted from the .mp4 file format to the raw .yuv format using the FFmpeg 

decoder [45] for data mining analysis. In order to support large-scale video data processing, these 

data mining calculations were performed on the Thunder cluster at the Center for 

Computationally Assisted Science and Technology (CCAST) at North Dakota State University, 

which consists of approximately 100 compute nodes with a theoretical peak performance of 

around 150 teraflops. As illustrated in Figure 3, each video data bit is defined as an individual 

item and the well-known Apriori algorithm was used on the video datasets to gather both 

confidence and support metric calculations. The average results obtained for the horizontal data 

patterns are also listed in Table 2. It can be seen that the association rules obtained from the 

video benchmarks are very general and also exist within the large-scale video dataset. 

 Vertical Correlation 

Vertical data correlation characteristics of multimedia applications have been studied by 

many researchers [25, 46]. These works have shown that the MSBs of the video data have a 

strong correlation with neighboring pixels, and their switching probabilities are very low. Based 

on the video benchmarks, Table 3 lists the correlation probability of the MSBs (Y1, Cb1, Cr1) in 
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neighboring pixels is over 93%, while the LSBs have around 53% correlation probability in the 

worst case (i.e. Cb8). A similar trend in probabilities can be seen for the YouTube-8M videos. 

The MSBs in neighboring pixels have a very strong correlation (with probability over 90%), but 

LSBs display more of a random behavior and have little correlation with neighboring pixels. 

Table 3. Vertical correlation probabilities 

Correlation probabilities from 12 video benchmarks 

Y1 96.72% Cb1 93.79% Cr1 93.78% 

Y2 93.22% Cb2 92.87% Cr2 93.58% 

Y3 87.79% Cb3 90.77% Cr3 92.34% 

Y4 80.86% Cb4 85.45% Cr4 88.35% 

Y5 73.97% Cb5 77.95% Cr5 81.56% 

Y6 67.42% Cb6 69.30% Cr6 73.18% 

Y7 61.78% Cb7 59.99% Cr7 63.50% 

Y8 58.52% Cb8 53.25% Cr8 55.16% 

Correlation probabilities from 10,000 YouTube-8M videos 

Y1 91.55% Cb1 90.10% Cr1 90.41% 

Y2 84.64% Cb2 89.87% Cr2 90.12% 

Y3 77.23% Cb3 88.67% Cr3 88.75% 

Y4 68.87% Cb4 84.86% Cr4 85.11% 

Y5 60.05% Cb5 78.11% Cr5 78.72% 

Y6 51.49% Cb6 68.87% Cr6 70.11% 

Y7 44.14% Cb7 58.81% Cr7 60.56% 

Y8 38.78% Cb8 50.84% Cr8 52.62% 

 

Power saving techniques involving the correlation have been used in previous works for 

bit prediction where no transistor switching results in power savings [9] and attempting to load 

the same value (i.e. reading continuous 0s or 1s) from memory bit cells in order to eliminate the 

cost of pre-charging if the correct value is read out from the previous bit-line read [25]. This 

work uses the correlation property of YUV data through the use of a novel bit correction 

technique that attempts to correct memory faults with high precision. By comparing the 
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correlation percentages and the association rules that have been identified, the best combination 

of association rules and correlation between bits can be constructed for an optimal pattern for 

data self-recovery. 

 Optimal Data Patterns for Self-Recovery 

In order to select an optimal data pattern from association and correlation, the Weighted 

Confidence, based on the support and confidence of a particular rule, is defined as follows: 

����ℎ��� 
��
������ = 
��
������������ × ������������� +
                          
��
�������
��������� ����� × ��������
��������� ����� (1) 

For example, the Weighted Confidence of the association rule 
�1����� → 
�2 can be expressed as: 

����ℎ��� 
��
������ �
 �
�1����� → 
�2�
= 
��
�������
�1����� = 0 → 
�2 = 1� × ��������
�1����� = 0 → 
�2 = 1�
+ 
��
�������
�1 = 1 → 
�2 = 0� × ��������
�1 = 1 → 
�2 = 0� 

                                   = 0.9999 × 0.2352 + 0.9922 × 0.7588 = 0.9880                                                (2) 

This parameter is then used to compare to the sum of the correlation values for 0 and 1 non-

switching, which is equal to the correlation. This is equivalent to the Weight Confidence 

calculation, but instead uses the individual bit value (0 or 1) correlation percentages and is 

calculated as follows: 


�����&���� = 
��
������'(��)*+,-./0 = 0 → (��1/**+23 = 04 + 

                                                        
��
�������(��)*+,-./0 = 1 → (��1/**+23 = 1� (3) 

where Bitprevious and Bitcurrent represent the video data bits in the same position of two neighboring 

pixels.  

As an example, the correlation of Cr2 can be calculated as follows: 
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�����&���� �
 
�2 = 
��
������'
�2)*+,-./0 = 0 → 
�21/**+23 = 04 + 

    
��
������'
�2)*+,-./0 = 1 → 
�21/**+23 = 14 

                                        = 0.2091 + 0.726 = 0.935                                                                        (4) 

Accordingly, the optimal bit-level data patterns with high prediction rate to enable self-

recovery were calculated. 25 videos from the YouTube-8M dataset, separate from the 10,000 

videos used in the training dataset, were used to verify the correction prediction percentage 

shown in Table 4. These videos are obtained using the same method as previously used, but are 

unique from the previous 10,000 videos to ensure the rules that are employed work properly for 

correction. An analysis of the different portions of the image show that luma data is more 

random and has less association with other bits in the same pixel, and the optimal data patterns 

are all from correlation. 

Table 4. Optimal data patterns from 25 YouTube-8M videos 

Y 

bits 

Optimal 

Data 

Patterns 

Correct 

Prediction 

Cb 

bits 

Optimal 

Data 

Patterns 

Correct 

Prediction 

Cr 

bits 

Optimal 

Data 

Patterns 

Correct 

Prediction 

Y1 Correlation 
(Y1previous) 

91.53% Cb1 Association 
(
62����� → 
61� 98.60% Cr1 Association 

(
�2����� → 
�1� 96.72% 

Y2 Correlation 
(Y2previous) 

82.67% Cb2 Association 
(
61����� → 
62� 99.79% Cr2 Association 

(
�1����� → 
�2� 97.77% 

Y3 Correlation 
(Y3previous) 

76.27% Cb3 Correlation 
(Cb3previous) 

88.46% Cr3 Association 
(
�1����� → 
�3� 93.86% 

Y4 Correlation 
(Y4previous) 

67.64% Cb4 Correlation 
(Cb4previous) 

84.31% Cr4 Correlation 
(Cr4previous) 

83.64% 

Y5 Correlation 
(Y5previous) 

59.24% Cb5 Correlation 
(Cb5previous) 

78.53% Cr5 Correlation 
(Cr5previous) 

78.35% 

Y6 Correlation 
(Y6previous) 

51.75% Cb6 Correlation 
(Cb6previous) 

69.40% Cr6 Correlation 
(Cr6previous) 

68.80% 

Y7 Correlation 
(Y7previous) 

44.47% Cb7 Correlation 
(Cb7previous) 

59.40% Cr7 Correlation 
(Cr7previous) 

59.73% 

Y8 Correlation 
(Y8previous) 

38.41% Cb8 Correlation 
(Cb8previous) 

51.13% Cr8 Correlation 
(Cr8previous) 

52.96% 
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 Recovery Failure Caused by Double Faults in Data Patterns 

Since the discovered optimal data patterns used for self-recovery exist between two bits 

in the same word line, it may cause recovery failures if both of the two bits in a pattern fail 

simultaneously. Table 5 lists the recovery failure rate. It shows that DPSR has good reliability 

with extremely low self-recovery rates (less than 0.2%). This is due to the fact that there is low 

probability of having multiple faults in the same word line, as discussed earlier. 

Table 5. DPSR recovery failure rates 

Double Word Line Faults SRAM Pfail: 10-3 (0.001) SRAM Pfail: 10-2 (0.01) 

Correlation Faults 0.0010899% 0.1077362% 

Association Faults 0.0005957% 0.0587964% 

DPSR Recovery Failure 0.0016856% 0.1665326% 

 

 DPSR Hardware Implementation 

Utilizing the obtained optimal bit-level data patterns, a simple but efficient DPSR 

hardware design with low implementation cost is presented. Figure 4 shows the array 

architecture of the proposed DPSR SRAM, where the total array size is 32 kbits and there are 

four blocks with 256 words × 32 bits. In the design, both luma data and chroma data will be 

stored in the same SRAM but in different blocks. Block 1 and block 2 will be used to store the 

luma data and each word line will store the luma data of 4 pixels. Block 3 and block 4 will be 

used to store the chroma data and each word line will store the chroma data of 2 pixels. 

Regarding the luma data stored in blocks 1 and 2, based on the optimal luma patterns 

obtained previously, vertical correlation rules (i.e. luma data of the previous pixel) will be used 

for recovering the data of the current pixel. Since SRAM read operations are row-wise, reading 

two physical rows will cause a considerable performance penalty. Accordingly, the vertical 
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correlation based luma self-recovery is adapted to a hardware-friendly design scheme. Each 

word line stores the luma data of 4 pixels and uses its neighboring pixel in the same row for data 

correction in the current pixel. As an example, if a data bit in pixel 1 has a failure (see Figure 4), 

the corresponding bit in pixel 2 is used for recovery; if a bit in pixel 4 has a failure, the 

corresponding bit in pixel 3 is used for recovery (i.e the neighboring pixel in the same row).  
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Figure 4. Proposed DPSR with data self-recovery ability 
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To verify the DPSR design will maximize the correct bit predictions, calculations were 

performed for the correct prediction percentage for predicting each bit using both the previous 

and next pixel’s corresponding bit. These calculations showed that they were approximately 

equal values, with both having ~79.4% average correct prediction for all luma bits based on 

calculations from all samples in the training and verification testing video benchmarks [41, 42].  

Chroma data self-recovery is implemented in SRAM block 3 and block 4 using the 

optimal chroma patterns. As shown in Figure 4, each word line stores two pixels of chroma data 

with both Cr and Cb. Both vertical correlation rules and horizontal data pattern rules are used for 

the chroma data self-recovery (see Table 4). Similarly, for vertical correction based recovery 

rules, the neighboring pixel stored in the same row for data corrections are used to avoid a 

penalty to performance. For example, if Cb1 in pixel 1 has a failure (see Figure 4), the inverted 

value of Cb2 in the same pixel will be used for recovery. If Cr4 in pixel 1 fails, Cr4 in pixel 2, 

which is stored in the same row, will be used for recovery. 

As shown in Figure 4, a hierarchical RBL scheme (i.e. local RBL and global RBL) is 

applied to reduce the access time of the memory. The self-recovery logic of DPSR can be simply 

implemented by connecting MUXs to RBLs of the conventional SRAM design. Each global bit-

line (i.e. gbl in Figure 4) is connected to a MUX which is controlled by the received fault 

positions. If a fault is indicated, self-recovery is enabled by selecting the data pattern. The fault 

position information is used as the select signal of the MUX in order to control which bit value 

will be output. Similar to other existing fault position aware mitigation techniques, DPSR 

receives pre-determined locations of the faulty bits in the SRAM array, which is usually 

executed during post fabrication testing or Power-On Self-Test (POST) [13, 47, 48]. This testing 

process can also be used to track temporal degradation caused by memory failures such as the 
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aging effect. The evaluation results in the following sections show that the DPSR SRAM design 

also achieves smaller silicon area overhead, while delivering good output quality at near 

threshold voltage. 

 Evaluation Methodology and Results 

To evaluate the effectiveness of the proposed technique, a 32kb SRAM was implemented 

using a high-performance 45nm FreePDK CMOS process [49] to meet the multi-megahertz 

performance requirement of today’s mobile video decoders. 

Performance 

The performance of the proposed DPSR design was first evaluated. Due to the added 

MUXs, the read access time of DPSR increases from 0.27ns to 0.31ns, which is fast enough to 

deliver high-quality video formats including 4K and 8K ultra high-definition applications [50]. 

Layout 

As discussed before, embedded SRAMs typically occupy a large portion of silicon area 

within a video chip, and therefore the cost of the embedded SRAM is an important design 

concern. Figure 5 shows the layout of DPSR. Each added self-recovery logic MUX occupies an 

area of 18.79µm × 43.47µm, resulting in 7.94% area overhead. It should also be noted that, the 

self-recovery logic is added to the RBLs and increasing the number of words in a memory is 

beneficial in reducing the overall area overhead. 

Write Decoder

SRAM Block 1 (32×256)

SRAM Block 3 (32×256) SRAM Block 4 (32×256)

SRAM Block 2 (32×256)

Luma MUX

500.80 µm

12
5.

56
 µ

m

Read Decoder 
Chroma MUX

(18.79×43.57µm) each

 

Figure 5. DPSR layout design 
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Power Efficiency 

In order to evaluate the power efficiency of the proposed technique, the power 

consumption of the memory is modeled as follows: 

 7892:;-1 = ∑ ∑ =7>���∙�����+�����@�=0,131>=0
2  (5) 

 7B�&C = ∑ ∑ ∑ B>���-DE,F31>=01023�=0  (6) 

where PDynamic and PLeak are the dynamic and leakage power consumption, respectively. i is the 

value stored in SRAM, j is the bit number in a word, which is from 0 to 31. Pj(i) is the 

probability of a data bit j to be 0 or 1, which is extracted from various video benchmarks. R(i), 

W(i), and L(i) are the read power, write power, and leakage power consumption for a single 

SRAM bit cell, respectively, that stores a particular data bit value i. Figure 6 compares the power 

consumption in different memory operations. As expected, all power components decrease as the 

voltage scales from 1.0V to 0.5V. It should be noted that the power consumption overhead 

caused by the self-correction logic in the proposed technique is negligible as compared to the 

power reduction enabled by reducing voltage to near-threshold voltage, since the dynamic and 

leakage power consumption scale at a quadratic and linear rate with the voltage, respectively. 

 

Figure 6. Power consumption of different memory operations 
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The proposed memory at 0.5V consumes 219µW dynamic power and 193µW leakage 

power. As compared to the conventional memory design at 1.0V, the proposed design has 

81.52% dynamic power savings and 82.45% leakage power savings. 

Video Output Quality Analysis 

Different from the video benchmark datasets used previously for this design, a new video 

benchmark dataset is organized for verification: 3 videos from [41] and 5 videos from [42]. To 

evaluate the video quality, the well-known PSNR metric is adopted, which is defined as [25]: 

 7�G� = 10 ∙ ���FE HIJJK
LMN O (7) 

where MSE is the mean squared error between the original videos (Org) and the degraded videos 

(Deg), expressed as: 

 P�Q = F
;2 ∑ ∑ RS����, >� − U����, >�VI2WFXDE;WF-DE  (8) 

Researchers have shown that a PSNR of 30dB or higher for a video are considered to be 

acceptable [13]. Table 6 compares the PSNR values using different techniques with a Pfail (i.e. 

the failure probability) of 10-2 for minimum-sized SRAM designs and 10-3 for upsized SRAM 

with 58% area overhead [37]. In addition to video benchmarks, 10 YouTube-8M videos from the 

25 videos used for verification earlier in Table 4 (separate from the 10,000 videos used in the 

training dataset) are used for calculating the video metrics presented. Due to the limited space, 

Figure 7 shows six video output images with a memory failure rate of 10-2 when failures are 

injected. It can be seen that DPSR has good recovery precision and can deliver good video 

quality with a PSNR over 35dB, even for minimum sized SRAM. Accordingly, DPSR achieves 

good video output quality at near-threshold voltages. 
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Video Original Video Conventional  (Pfail = 0.01) DPSR  (Pfail = 0.01) Shift (Pfail = 0.01) [23] 

city 

 

PSNR: 36.8039 SSIM: 0.9306 

 

PSNR: 24.5045 SSIM: 0.5739 

 

PSNR: 33.7729 SSIM: 0.9095 

 

PSNR: 36.7801 SSIM: 0.9290 

crew 

 

PSNR: 37.1454 SSIM: 0.9078 

 

PSNR: 24.5212 SSIM: 0.5142 

 

PSNR: 35.5632 SSIM: 0.8901 

 

PSNR: 37.1197 SSIM: 0.9060 

football 

 

PSNR: 36.5037 SSIM: 0.9163 

 

PSNR: 24.4878 SSIM: 0.5542 

 

PSNR: 34.6731 SSIM: 0.9046 

 

PSNR: 36.4816 SSIM: 0.9148 

Concert 

 
- 

 

PSNR: 24.7459 SSIM: 0.6161 

 

PSNR: 39.8358 SSIM: 0.9887 

 

PSNR: 59.4008 SSIM: 0.9988 

Game 

 
- 

 

PSNR: 24.7593 SSIM: 0.5834 

 

PSNR: 39.6992 SSIM: 0.9839 

 

PSNR: 59.4008 SSIM: 0.9987 

Electric 

Guitar 

 
- 

 

PSNR: 24.7528 SSIM: 0.5580 

 

PSNR: 42.5844 SSIM: 0.9884 

 

PSNR: 59.4008 SSIM: 0.9985 

Figure 7. Video output using different video storage techniques 
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The PSNR metric has been used extensively to describe video output quality in a 

quantitative way, but recent efforts to capture the true human perception show that it may not 

accurately describe the actual video quality a human perceives [51]. This is due to the fact that 

PSNR is based on the summation of error for every pixel’s luminance and chrominance 

component values, and this alone is not necessarily a good estimate to the user’s perception of 

the video. Analyzing the video quality using SSIM is a method that is more aware of the user’s 

perception since it includes calculations for luminance, contrast, and structural changes in the 

video. The general form of the SSIM equation is defined as [51]: 

 ��YP�Z, [� = R��Z, [�V\ ∙ R��Z, [�V] ∙ R^�Z, [�V_ = �I`a`bc1d��Ieabc1K�
�`aKc`bK c1d��eaKcebKc1K� (9) 

where l(x,y), the luminance comparison, is a function of the mean intensities, µx and µy, c(x,y), 

the contrast comparison is a function of the standard deviations, σx and σy, and s(x,y), the 

structural comparison, is a function of the correlation between x and y, or σxy. Setting the values 

of α = β = γ = 1 in the original equation results in the second equation. C1 (C2) is a constant that 

is included to avoid instabilities when the sum of the means (standard deviations) squared is 

equal to the values near zero. The value of the SSIM is in the range 0 to 1. As the value of 

SSIM(x,y) gets closer to 1, the quality of the video y more closely matches the quality of video x. 

For our testing purposes, video x is the raw, uncompressed YUV video, before the decoding 

process, and video y is the post decoded YUV video that may or may not have other bit shifting 

or correction changes performed on it. 

 The results of these SSIM calculations for conventional and DPSR are listed in Table 7. 

The video output quality of the proposed DPSR method has a significant increase in SSIM over 

the no failure, conventional memory at scaled voltages. 
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Table 6. Video PSNR metric comparison 

Dataset Videos 
conventional 

(Pfail = 0.001) 

DPSR 

(Pfail = 0.001) 

conventional 

(Pfail = 0.01) 

DPSR 

(Pfail = 0.01) 

Ref. [23] 
(Pfail =0.001) 

Ref. [23] 
(Pfail = 0.01) 

Video  

Benchmarks 

akiyo 33.762219 40.641272 24.676287 36.639433 41.248639 41.185088 

bus 32.102969 35.405863 24.410622 33.373556 35.706569 35.689801 

city 32.550805 36.360825 24.426879 33.772872 36.801408 36.780126 

coastguard 32.090258 35.489524 24.426879 34.265358 35.667736 35.650842 

crew 32.680147 36.928508 24.521212 35.563219 37.142670 37.119667 

football 32.439115 36.255904 24.487795 34.673071 36.501345 36.481558 

foreman 32.71063 36.878115 24.529656 35.022773 37.211848 37.188112 

sign_irene 33.253495 38.980559 24.590776 36.573802 38.976183 38.940649 

YouTube 8M 

Dataset 

Running 34.843802 47.751093 27.751663 37.896356 69.178843 59.400849 

Concert 34.843123 50.617823 24.745933 39.835772 69.178843 59.400849 

Music Video 34.842942 48.993861 24.765553 37.908828 69.178843 59.400849 

Festival 34.843240 45.838237 24.892104 35.958557 69.178843 59.400849 

Game 34.843259 49.286247 24.759353 39.699233 69.178843 59.400849 

Electric Guitar 34.843014 51.566521 24.752845 42.584377 69.178843 59.400849 

Snow 34.844445 50.725480 24.761392 40.861991 69.178843 59.400849 

Flute 34.842227 53.769387 24.755972 44.158630 69.178843 59.400849 

Vehicle 34.843032 50.015065 24.741031 42.251862 69.178843 59.400849 

Planet 34.843295 53.306924 24.760113 44.022668 69.178843 59.400849 

 

Table 7. Video SSIM metric comparison 

Dataset Videos 
Conventional 

(Pfail = 0.001) 

DPSR 

(Pfail = 0.001) 

conventional 

(Pfail = 0.01) 

DPSR 

(Pfail = 0.01) 

Ref. [13] 

(Pfail =0.001) 

Ref. [13] 

(Pfail = 0.01) 

Video  

benchmarks 

akiyo 0.895568 0.960037 0.524455 0.943273 0.961509 0.959164 

bus 0.884369 0.928646 0.615363 0.917352 0.929814 0.928514 

city 0.879284 0.928319 0.573905 0.909453 0.93045 0.929045 

coastguard 0.872335 0.919269 0.587307 0.910952 0.920116 0.918561 

crew 0.850047 0.905746 0.514167 0.890076 0.907585 0.906039 

football 0.863992 0.914951 0.554214 0.904554 0.91613 0.914782 

foreman 0.865366 0.920302 0.539163 0.908825 0.921568 0.919849 

sign_irene 0.879546 0.940751 0.521892 0.928188 0.942161 0.940099 

YouTube 8M 

Dataset 

Running 0.949418 0.997716 0.631449 0.979334 0.999886 0.998972 

Concert 0.945931 0.998801 0.616055 0.988679 0.999874 0.998849 

Music Video 0.945398 0.998251 0.607637 0.980091 0.999876 0.998857 

Festival 0.953149 0.998222 0.660847 0.983623 0.999892 0.998987 

Game 0.941848 0.998281 0.583433 0.983909 0.999855 0.998658 

Electric Guitar 0.937000 0.998636 0.558013 0.988400 0.999842 0.998543 

Snow 0.939508 0.998665 0.573617 0.987401 0.999850 0.998656 

Flute 0.936771 0.999146 0.551228 0.992497 0.999848 0.998629 

Vehicle 0.942345 0.999002 0.588818 0.992204 0.999855 0.998681 

Planet 0.931941 0.998594 0.533084 0.991441 0.999818 0.998322 
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Comparison with Prior Work 

With data-pattern enabled self-recovery ability, DPSR exhibits low implementation cost 

(7.94%) and reliable operation at near-threshold voltage to achieve maximum energy efficiency. 

 Comparing with State-of-the-Art Data-Shifting [23] 

Table 7 also compares the video output quality of the proposed DPSR and the data-

shifting technique presented in [23]. As shown, the data-shifting technique [23] has slightly 

better quality in terms of PSNR and SSIM metrics as compared to the proposed DPSR technique, 

but is realized with large area overhead (~14%). This large overhead is due to the fact that the 

shifting scheme needs to calculate the shift values based on the received fault positions and then 

perform shifting to store LSBs in the identified faulty bit cells. 

 Comparing with State-of-the-Art Data-Squeezing [13] 

The data squeezing technique presented in [13] is another recently developed memory 

failure mitigation technique. Based on the observation that, for many general purpose 

applications, the last-level cache contains large amounts of null data, this technique compresses 

null subblocks so that they can be allocated to memory entries with faulty cells. This technique 

works well for register files and caches for general purpose applications, which store as high as 

79.23% zeros as discussed in [52]. However, it is not suitable for videos because the 8-bit video 

pixel data varies a lot between 0 and 255, which is difficult for zero compression. 

 Comparing with State-of-the-Art Error Correction Code 

ECCs have also been studied in ultra-low voltage contexts to protect against memory 

failures [53]. For similar redundancy based repair mechanisms to implement ECC, the capacity 

of a memory needs to be increased or part of its effective capacity has to be sacrificed to store 

check bits. In addition to memory space overhead, complex logic for ECC encoding and 
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decoding must be added, which brings significant implementation penalty. For example, by 

using orthogonal Latin square codes discussed in [53], half of the memory capacity is used to 

store ECC bits. 

DPSR Concluding Remarks 

In this developed big-data enabled memory technique, the general data patterns existing 

in large scale videos have been identified, which are used to achieve self-correction in the 

presence of memory failures. The overhead of the developed self-correction logic is significantly 

reduced as compared to existing techniques. Table 8 displays a comparison of the performance 

of the proposed DPSR [32] memory design for big video data against other recent state of the art 

techniques. Using data-pattern enabled self-recovery, DPSR has the lowest implementation cost 

(3.97% area overhead) and has reliable operation at near-threshold voltage, allowing for 

maximum energy efficiency. DPSR delivers the best video quality output, except for [23], which 

is realized with large area overhead (~14%). 

Table 8. DPSR comparison with prior works on low power SRAM 

 TCASI’12 [16] DAC’15 [23] TC’16 [13] DPSR [32] 

fault-position 
awareness 

No Yes Yes Yes 

Low-power 
techniques 

bit-cell Sizing data-shifting data-squeezing 
data-pattern 

enabled self-

recovery 

bit-cell modified Yes No No No 

near-threshold 
operation 

No 

(0.9V) 

Yes 

(-) 

Yes 

(0.5V) 

Yes 

(0.5V) 

additional logic 
needed 

No LUTs and shifter 
Rearrangement logic 

and tag array, 
comparator, Mux 

MUX 

performance 
overhead 

- - 
extra clock (for 
decompression) 

0.04 ns 

video quality acceptable good - good 

area overhead 11-65% 14% 6.3% 3.97% 



 

28 

CHAPTER 3. CONTENT-ADAPTIVE MEMORY FOR VIEWER-AWARE ENERGY-

QUALITY SCALABLE MOBILE VIDEO SYSTEMS2 

 
 Mobile devices are becoming ever more popular for streaming videos, which account for 

the majority of all data traffic on the internet. Memory is a critical component in mobile video 

processing systems, increasingly dominating power consumption. Today, memory designers are 

still focusing on hardware-level power optimization techniques, which usually come with 

significant implementation cost (e.g., silicon area overhead or performance penalty). In this 

chapter, a video content-aware memory technique for power-quality trade-off from viewers’ 

perspectives is proposed. Based on the influence of video macroblock characteristics on viewer 

experience, two simple and effective models - decision tree and logistic regression – are 

developed in order to enable hardware adaptation. A novel viewer-aware bit-truncation technique 

has also been implemented, which minimizes the impact on viewer experience, while introducing 

energy-quality adaptation to the video storage. 

 Influence of Video Content on Viewer Experience 

 Mobile Video Memory System 

Video streaming has become the most important energy-intensive application used in 

mobile devices [30]. Figure 8 (a) shows the block diagram of a H.264 video decoding and 

display system [54]. After parsing the compressed bit stream, the inter predictor uses the 

reconstructed frames stored in the reference frame buffer and the transmitted motion vectors to 

construct new frames. After the frames are decoded, the display controller sends them from the 

                                                 
2 The material in this chapter was co-authored by Jonathon Edstrom, Yifu Gong, and Ali Haidous. Jonathon 
Edstrom, was in charge of all data analysis, video quality metric and simulation results. Yifu Gong, provided the 
presented SRAM hardware design with power simulation results based on the data analysis and software 
simulations. Ali Haidous, provided information on the memory architecture and influence of truncation within 
different memories of the video decoder process. 
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frame buffer to the display panel periodically. During this process, multiple memories are needed 

for storing the intermediate and final results of the frame data, as listed in Table 9. 
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Figure 8. Mobile video memory architecture. 
 

To evaluate the contribution of different memories to the output video quality, a video 

decoder and display system was developed, as shown in Figure 8 (b). For the memories listed in 

Table 8, the bit truncation technique from [29] was applied by disabling the LSBs [55, 56] and 

then the output video was captured for quality evaluation. Specifically, LSB truncation starting 

with one bit with a maximum of five bits have been applied to each video memory. The encoded 

bit stream, which resided on an onboard SD card, is decoded using a Xilinx Zynq 7020 FPGA 

based H.264 decoder. An Arduino-based memory controller is implemented to select the specific 

memory for truncation as well as the number of truncated LSBs. A video capture card is utilized 

to capture the video output over the HDMI output for evaluation. 

Table 9. Video memories and their functionality 

Video Memories 
Size in Bits 

(Width×Depth) 
Memory Functionality 

Chroma Level Cb 32 x 8 Stores the blue-difference color space bottom line pixels for up macroblocks 
Chroma Level Cr 32 x 8 Stores the red-difference color space bottom line pixels for up macroblocks 
Luminosity Level 32 x 8 Stores the luminosity color space bottom line pixels for up macroblocks 

Reconstructed Neighboring 32 x 7 Stores neighboring pixels of a luma block after the current macroblock is coded and reconstructed 
Prediction Mode 16 x 7 Stores the current macroblock prediction mode for 4x4 blocks 
Motion Vector X 64 x 7 Stores the horizontal motion vector prediction calculation of surrounding blocks’ motion data 
Motion Vector Y 64 x 7 Stores the vertical motion vector prediction calculation of surrounding blocks’ motion data 

Reference Macroblock 8 x 8 Stores the reference I, SI, P, or SP macroblock used for inter prediction 
Frame buffer 64 x 512 Stores the current and previous decoded frames for prediction and display, respectively 

Y Display 64 x 8 Stores the luma Y component of the display memory for HDMI output buffer 
U Display 64 x 8 Stores the chrominance U component of the display memory for HDMI output buffer 
V Display 64 x 8 Stores the chrominance V component of the display memory for HDMI output buffer 
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It has been shown that, the frame buffer, which is the largest memory, can tolerate three 

truncated LSBs, which provides power saving opportunities for the hardware design. Table 10 

lists the results with LSB truncation in different video memories using the video system shown 

in Figure 8. The standard video sequence aspen_1080p.y4m [42], which has a wide range of 

plain macroblock percentage was 20.90%; the maximum and minimum were 50.89% at frame 

#367 and 3.03% at frame #113, respectively. The video was encoded with the following ffmpeg 

[45] command:  

ffmpeg -i aspen_1080p.y4m -profile:v baseline -pixel_format 

yuv420p -level 3.1 -framerate 30 -preset 1 –cavlc 1 –pix_fmt 

yuv420p aspen_1080p.264 

 Influence of Video Content on Viewer Experience in the Presence of Hardware Noise 

Traditionally, hardware designers have used PSNR for evaluating video quality, which 

has been recently shown to be insufficient to demonstrate the viewer’s experience [57, 58]. 

PSNR does not encompass the necessary information to hardware designers about viewer 

experience, due to the fact that key influencing factors for viewer experience, such as video 

content and environment conditions, are not included in PSNR [58]. This work aims to find a 

better method to analyze videos in a quantitative way that will also be useful to hardware 

researchers. This process begins with the PSNR metric being used to describe video quality. New 

insights to the traditional PSNR metric are introduced with the introduction of content-aware 

information. This new form of information allows for gracefully scaling the video quality with 

enhanced energy efficiency of hardware. 
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Table 10. Results of videos with different LSBs truncated in different memories 

Memories 
Number of 

LSBs Truncated 
PSNR 

(Max MB %) 
PSNR 

(Min MB %) 
Max Plain MB % Frame Min Plain MB % Frame 

Original video 
frames without 
any truncation 

- - - 

  

Chroma Level Cb 5 LSBs truncated 43.0 dB 31.1 dB 

  

Chroma Level Cr 5 LSBs truncated 36.3 dB 27.0 dB 

  

Luminosity Level 5 LSBs truncated 18.0 dB 16.7 dB 

  

Restructured 

Neighboring 
1 LSB truncated 13.7 dB 11.0 dB 

  

Prediction Mode 1 LSB truncated 23.0 dB 19.5 dB 

  

Motion Vector X 1 LSB truncated 29.2 dB 13.5 dB 

  

Motion Vector Y 1 LSB truncated 29.1 dB 13.3 dB 

  

Reference 

Macroblock (MB) 
5 LSBs truncated 42.8 dB 32.8 dB 

  

Frame Buffer 3 LSBs truncated 44 dB 25.5 dB 

  

YUV Display 
2 LSBs truncated 

in each vector 
11.8 dB 13.2 dB 
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 Traditional PSNR Metric 

Although the PSNR metric, described in equation (7), is simple for hardware designers to 

understand, it does not truly capture the effect that errors have on a user’s perception of the 

video. To show the lack of complete information the PSNR provides in terms of user perception, 

the bit truncation technique is applied to two videos and the PSNR values are calculated for 1 to 

4 LSBs truncated within the luma data (i.e. the luminance channel, or Y component in raw YUV 

videos). The bit truncation technique is adopted to enable energy-quality adaption, which is due 

to the following two reasons: (i) bit truncation causes blurring in videos, which is similar to the 

“banding distortion” in the codec-algorithm field, and the video degradation is much less 

noticeable to viewers as compared to other low-power techniques such as voltage scaling [30] 

and (ii) the power/energy savings with bit truncation is much more significant than other low 

power techniques such as voltage scaling [56].  

Table 11 shows two videos that were downloaded from Google’s recently released 

YouTube-8M dataset [44], which is the largest multi-label video dataset to date. To maintain a 

short and consistent size label for all included YouTube video samples, the video tag will be 

included, which is the last portion of the full URL address. These tags are used a s a unique key 

that points to the corresponding YouTube video. For example, the video tag EFv2FvnlLao can be 

used to locate the original video sample on YouTube using the following URL: 

https://www.youtube.com/watch?v= EFv2FvnlLao. As observed in Table 10, using the bit 

truncation technique, the PSNR value is reduced by approximately 7dB, on average, for each 

additional truncated LSB.  
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Table 11. PSNR of different videos with bit truncated applied 

Video output quality with 3 LSBs truncated # LSBs truncated PSNR (dB) 

 

Video #1 (video tag:  
EFv2FvnlLao) 

1 52.868 

2 44.433 

3 37.490 

4 30.985 

 

Video #2 (video tag: 
FNlpA4FME-8) 

1 52.741 

2 44.461 

3 37.693 

4 31.154 

 

Both videos have very similar PSNR values with the same number of LSBs truncated, but 

the visual quality is significantly different. As compared to video #1 (video tag: EFv2FvnlLao), 

the “banding distortion” of video #2 (video tag: FNlpA4FME-8) is much more noticeable to 

viewers. Accordingly, the traditional PSNR video quality metric cannot correlate well with 

viewer experience, and the video-content properties, such as the texture/motion characteristics, 

significantly affect a viewer’s experience. Due to these factors, this work introduces video 

content information to study viewer experience. Specifically, the recently developed macroblock 

characterization is adapted to analyze the pixel-luminance values’ variance [59], as described in 

the next subsection. 

 Video Macroblock Variance Analysis 

The macroblock variance analysis is typically conducted during the video pre-processing 

stage when encoding videos [59, 60]. The analysis used in this work adopts the defined 

calculation for determining whether a given macroblock is considered to be plain or textured, 
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which avoids introducing significant computational overhead. This calculation is based on the 

variance of pixel luminance values of a given macroblock and is defined as [59] 

 
fLg = ∑ ∑ �7��, >� − hLg�I ≫ 8FJ-DEFJ-DE
P( = j 7�&�� �
�fLg ≤ lℎm.n�l�Z����� Q�^�

 (10) 

where hLg and fLg are the average luminance and variance of luminance values in a given 

macroblock (denoted MB in equation 14), respectively. The value used for lℎm.n was 1.25 as 

was determined in [60] through the use of regression analysis. For analysis purposes, this lℎm.n 

value is an arbitrary number used to define the plain macroblock percentages in the model design 

process. This macroblock characterization can be calculated during the encoding process and 

transmitted as metadata in the video bit stream. Currently, an embedded system implementation 

is used to calculate the average plain macroblock calculation. To minimize computational 

overhead, a single, averaged plain macroblock percentage is calculated that represents an entire 

sample. However, it is possible to calculate a per frame macroblock percentage for videos that 

change scenes frequently for dynamic adaptation. Two benchmark videos, Akiyo and News, 

were initially retrieved from [42]; these videos contain static backgrounds with a low amount of 

motion from the reporter(s) in the videos. Both videos display low plain macroblock percentages 

when analyzed. 32 video samples were collected with similar broadcasting characteristics from 

the YouTube-8M dataset [44] and the minimum, maximum, median, and average plain 

macroblock percentages were calculated for each sample. Figure 9 displays two video samples 

with similar PSNR values, but varying plain macroblock percentages for 2 LSBs truncated. The 

distribution of plain macroblocks and the resulting banding distortion effect are visualized within 

the red blocks of Figure 9.  
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Min. Plain MB %: 53.26%;  Max. Plain MB %: 54.56%
Median Plain MB %:53.69%;  Mean Plain MB %: 53.71%

Min. Plain MB %: 18.37%;  Max. Plain MB %: 20.22%
Median Plain MB %: 19.35%;  Mean Plain MB %: 19.34%

PSNR: 48.1 dB PSNR: 47.8 dB

 

Figure 9. Plain macroblock visualization and video output comparison (white = plain) 
 

An important observation is that a noticeable relationship exists between the banding 

distortion and the plain macroblocks; videos with large amounts of plain macroblocks, especially 

where the plain macroblocks are dense, tend to have decreased visual quality to viewers. 

Accordingly, this relationship is utilized to develop a content-adaptive model to predict the 

acceptable number of truncated LSBs for different videos. Specifically, to minimize the 

computational overhead, the average plain macroblock percentage per video frame is used and 

the focus of the video samples is videos with low-motion and a stationary camera, or containing 

a reporter in the analysis. 

 Modeling Process 

To determine the acceptable number of LSBs to truncate for different videos, subjective 

video testing was conducted and based on the collected data, two models were developed using a 
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decision tree and logistic regression methods. For the initial study, only the luma (Y) component 

is considered when truncating LSBs. 

 Subjective Testing Procedure for Data Collection 

Two sets of subjective video studies were conducted to collect viewers’ feedback. Within 

each of the studies designed for subjective analysis of truncation techniques, participants were 

asked to view multiple versions of the same video. The testing procedure follows guidelines 

from the ITU [61] and uses the Degradation Category Rating (DCR) method [57], which is also 

known as the Double Stimulus Impairment Scale (DSIS). The participants were asked to watch 

both the original video and a truncated version of the video and then score them from 1 to 5 

based on their opinion of the quality (imperceptible-5, perceptible but not annoying-4, slightly 

annoying-3, annoying-2, very annoying-1). We used an average score of 4.0 or higher as the 

target for acceptable video quality [61]. The first (second) of two studies contained 10 (13) 

participants who were each asked to view 7 (9) individual videos from the 34 total videos. 

With these averages scores for different amounts of LSBs truncated, the video samples 

were split into different regions. Based on this, models that connect the average plain 

macroblock percentages to the number of LSBs that can be truncated were developed. 

 Modeling Process 

1) Decision Tree Model: From the initial subjective studies, the goal is to model the 

correlations between the calculated average plain macroblock percentages and the largest amount 

of LSBs that can be truncated for a given PSNR that will maintain an acceptable video quality. 

Figure 10 displays the video samples’ average plain macroblock percentage and how many bits 

can be truncated based on the minimum acceptable impairment score of 4.0. The number of 

acceptable bits to be truncated were determined through 2 sets of subjective trials (i.e. Subjective 
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#1 and Subjective #2 in Figure 10) and are indicated by 1T for 1 LSB truncated, 2T for 2 LSBs 

truncated, and 3T for 3 LSBs truncated. 

The high percentage of plain 

MB%, the lower bit truncation 

can be tolerable

Indoor viewing context 
        Subjective #1

        Subjective #2

        Non-Subjective

 

Figure 10. Acceptable truncated bits based on subjective feedback 
 

 From these preliminary results, an inverse relationship can be seen between plain 

macroblock percentage and acceptable number of LSBs to truncate. With this knowledge and 

subjective data gathered from participants, a decision tree model using the Classification Learner 

tool in MATLAB is developed, as shown in Figure 11. By traversing the tree from the top to the 

bottom based on the plain macroblock percentages, the number of truncated LSBs can be 

obtained for different videos. It is worthy to mention that the majority of videos from the 

YouTube-8M dataset have plain macroblock percentages above 1.96405% (see Figure 11) and 

therefore the number of videos with the decision for 3 LSB truncation is much less than that of 1 

LSB and 2 LSB truncation. 
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Plain MB % 

≥ 21.5571%

True False

Truncate 

1 Bit

True False

Truncate 

2 Bits

Truncate 

3 Bits

Plain MB % 

≥ 1.96405%

 

Figure 11. Developed decision tree model for bit truncation 
 

2) Logistic Regression Model: In the model development process, the widely-applied 

statistical modeling method, logistic regression, was also considered, which is represented by 

 o p- = pq exp�u-E + u-FZ� ,   � = 1,2
pq = F

Fcvwx�]dyc]ddz�cvwx�]Kyc]Kdz�
 (11) 

where p- ≔ 7|} = �|Z� indicates the probability that the number of truncated LSBs is � for a 

given average plain MB percentage of Z. MATLAB was used to fit the �� coefficients and 

resulted in the following values: u�FE = −1.6636, u�FF = 12.7929, u�IE = 1.4408, u�IF = 1.0497. 

The corresponding p-values were 0.243, 0.103, 0.111, 0.881, respectively. This implies that all 

four coefficients are not significant in the regression under a 5% significance level. By observing 

the data, one can clearly see that this is due to noise. 

If a user chooses a video as satisfactory that is truncated by C LSBs, then he/she will be 

satisfied by the same video truncated by C′ LSBs where 0 < C� < C. The difference between C 

LSB and C′ LSB truncation is the energy efficiency that can be enabled; the efficiency is higher 

for C LSB truncations. To this end, the ordinal logistic regression is used for modeling, which 

yields 
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 ln H �d�Kc��O = uFE + uFZ (12) 

 ln H �d�Kc��O = uIE + uFZ (13) 

 pF + pI + pq = 1 (14) 

Solving (12), (13), and (14), leads to 

 pF = vwx'u10+u1Z4
Fcvwx'u10+u1Z4 , pI = F

Fcvwx'u10+u1Z4 − F
Fcvwx'u20+u1Z4 , and pq = F

Fcvwx�]Kyc]dz� (15) 

MATLAB is used to fit the ordinal coefficients resulting in u� = =u�FE, u�IE, u�F@ =
R−2.8322, 0.9856, 9.7783V, with p-values � = R0.0039, 0.1710, 0.0156V, respectively. With 

this ordinal logistic regression, only uIE is not significant under a 5% significance level and the 

result is much better than the previous case using the standard logistic regression. Table 12 lists 

the ordinal logistic regression results. From this table it can be seen that there is no decision for 3 

LSB truncation based on the ordinal logistic regression model. This is mainly because very few 

videos with 3 truncated LSBs are considered acceptable by the participants; also, most of the 

video testing results with 3 LSB truncation are considered to be noisy data. When the plain 

macroblock percentage (x) is 0.28504 (i.e., 28.504%), P{1 LSB truncated} = P{2 LSBs 

truncated} = 0.4888. So, if x > 28.504%, 1 LSB is truncated; otherwise, 2 LSBs are truncated. 

Table 12. Results of ordinal logistic regression 

Z 
P 

{1 LSB truncated} 
P 

{ 2 LSBs truncated } 
P 

{ 3 LSBs truncated } 
Decision for 

LSB truncation  

0.05 0.0876 0.7261 0.1863 2 LSBs  
0.10 0.1354 0.7415 0.1231 2 LSBs 
0.15 0.2034 0.7174 0.0793 2 LSBs 
0.20 0.2939 0.6560 0.0502 2 LSBs 
0.25 0.4043 0.5643 0.0314 2 LSBs 

0.28504 0.4888 0.4888 0.0224 2 LSBs 

0.30 0.5253 0.4552 0.0195 1 LSB 
0.35 0.6434 0.3446 0.0120 1 LSB 
0.40 0.7463 0.2463 0.0074 1 LSB 
0.45 0.8275 0.1679 0.0046 1 LSB 
0.50 0.8866 0.1105 0.0028 1 LSB 
0.55 0.9273 0.0710 0.0017 1 LSB 
0.6 0.9541 0.0448 0.0011 1 LSB 
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 Quality Optimized Bit Truncation Design 

This section will cover a newly proposed viewer-aware bit truncation technique, which 

has less visual quality degradation with the same number of LSBs truncated. Based on the 

developed bit truncation technique and models, an energy-quality scalable memory with content 

adaptation is implemented. 

 Quality Optimized Bit Truncation 

Bit truncation can adjust the video data’s bit-depth by disabling LSBs to enable power 

savings and has been applied widely in low power hardware design [55, 56]. Here, viewer 

awareness is introduced to the hardware design process and is used to develop a new hardware 

implementation scheme for bit truncation with a minimized effect on the viewer’s experience. 

Suppose that the goal is to truncate the lowest t LSBs of each luma (Y) byte. For a given 

video, the true numerical value can be calculated for the truncated bits. However, if all videos in 

general are considered, the true (decimal) value of these truncated t LSBs should be considered a 

random variable. These truncated t LSBs may express any decimal numbers among 0, 1, 2, …, 

2t–1, because there is not any general prior knowledge that works for all videos. A crucial 

question is as follows: what value should be set/given after the true value of these lowest t bits 

are truncated? A natural and intuitive method is to make them all zeros. For example, if the true 

value of a byte is 10101���I and three bits are truncated, then the byte’s value after truncation 

is 10101���I. Setting the truncated bits as zeros has been widely adopted by designers [55, 56]. 

However, in the following proposition, it is shown that this value is not the best for minimizing 

the expected mean square error, E(MSE). 
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Proposition 1. Suppose that the lowest t LSBs of a byte are truncated. Without losing 

generality, it is assumed that the true value of these bits is evenly distributed. Then, the best 

value for these t truncated bits, in terms of minimizing E(MSE), is 10…02 (with t – 1 zeros). 

Proof. Let random variable Y indicate the true numerical value which is expressed by the 

truncated t LSBs. Y is evenly distributed, therefore the probability mass function (pmf) for Y is 

shown in Table 13. 

Table 13. Probability mass function for random variable Y 

Y = 0 1 2 ⋯ 2� − 1 

probability 1/2�  1/2� 1/2� ⋯ 1/2� 
 

Let Z be the targeted (decimal) value that is set for these truncated LSBs. The aim is to 

minimize E(MSE), namely to minimize 

 
�Z� = F
I� R�Z − 0�I + �Z − 1�I + ⋯ + �Z − �23 − 1��IV (16) 

Let 

 0 = f ��x� = F
I��d =x + �x − 1� + ⋯ + 'x − �2� − 1�4@ ⇒ x = 2�WF − F

I (17) 

Because x is an integer, x can take the value Z = 23WF = 10 … 0I (with t – 1 zeros) or the value 

Z = 23WF − 1 = 01 … 1I (with t – 1 ones). For the results presented herein, the value 10 … 0I 

was used; however, the value 01 … 1I could also be used. For a hardware implementation, which 

value is better would depend on factors such as power requirements of using 10 … 0I vs. 

01 … 1I. The significance of Proposition 1 is that it shows the dependence between the value set 

for the truncated bits and the expected MSE and that it gives the best value, in general. To verify 

this proposition, 2,000 unique videos, representing 100,000 individual frames, were randomly 

selected from the YouTube-8M dataset [44]. As illustrated in Figure 12, setting the truncated bits 
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to be 10 … 0I (with � − 1 zeros) can enable much higher PSNR values, thereby providing a better 

viewing experience for the same videos in the same surroundings. 

2000 Videos
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3 bits 

truncated

 

Figure 12. Average PSNR values using two different truncation techniques 
 

Content-Adaptation Video Memory Design 

Figure 13 (a) shows the architecture of the proposed viewer-aware dynamic bit-truncation 

memory with 512 words × 64 bits, which contains 32kb of 6T SRAM bit-cells. To enable 

viewer-aware bit truncation for LSBs, two different bit-line conditioning circuits are applied to 

the memory. The normal bit-line conditioning circuits have a pre-charge unit, write driver, and 

sense amplifier, and they are connected to the 4 MSBs in a byte; the remaining bit-lines contain 

extra circuitry to enable bit truncation, and are applied to the 4 LSBs in a byte as shown in Figure 

13 (b). 

The truncation controller is shown in Figure 13 (c). φ1and φ2 are signals generated from 

peripheral circuitry based on the clock signal. φ1 controls read and write operations depending 

on which period it is in; φ2 controls the pre-charging circuity of the memory. The sense signal 
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only turns on for a very short time at the end of the reading operation in order to reduce the 

power consumption during the read operation. The truncation process is controlled by three 

external signals. trunc_en controls whether the truncation function is on, and the other two 

signals, B<0> and B<1>, determine how many bits to truncate. t1 and t2 are generated from 

B<0> and B<1> through two decoders. The decoder for t1 is a normal 2-to-4 decoder. A special 

2-to-4 truncation control decoder is applied for generating t2, and the truth table is also shown in 

Figure 13 (c). When t1 and t2 are both 0s, the normal operations are applied; whenever t1 is 1, the 

pre-charging, writing, and reading operations are suspended; on the basis of t1 being 1, if t2 is 1 

then the output will be 0, otherwise the output will be 1; the data pattern 01 for t1 and t2 will 

never appear. 

. . .

senseout<0>

data<0>

φ2��� 

BLBLBLBL<0><0><0><0>���������� BL<0> 

read_en 

φ2 

φ1 

write_en
φ1 

φ1
wl_en

write

clk

clk

read

Basic

2-to-4

Decoder

trunc_en

B<0>
B<1>

t1<3>

t1<2>

t1<1>

t1<0>

2-to-4 

truncation 

control 

Decoder 

trunc_en

B<0>
B<1>

En B<0> B<1> Y3 Y2 Y1 Y0

0 x x 0 0 0 0

1 0 0 0 0 0 1

1 0 1 0 0 1 1

1 1 0 0 1 1 1

1 1 1 1 1 1 1

Inputs Outputs

truncation control truth table

sense

wl_en

t1

t1�

t2�
t1�

out<4>

data<4>

φ2��� 

BLBLBLBL<0><0><0><0>���������� BL<0> 

t2<3>

t2<2>

t2<1>

t2<0>SRAM

Block 4
(256*32)

SRAM

Block 3
(256*32)

SRAM

Block 2
(256*32)

SRAM

Block 1
(256*32)

Sub_array 2

(32x32)D
ec

o
d

er
 &

 D
ri

v
er

Sub_array 1

(32x32)

Sub_array 8

(32x32)

. . .

b
l[

3
1
:0

]

b
lb

[3
1
:0

]

32

D
ec

o
d

er
 &

 D
ri

v
er

Bit-line conditioning

...

2
5
6

 w
o
rd

li
n

es

SRAM Block 4

Y Y Y Y31 23 15 724 16 8 0

Pixel 4 Pixel 3

MSB LSB

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

Pixel 2 Pixel 1

(a) Memory Structure (b) Bit-line conditioning circuitry (c) Bit truncation controller  

Figure 13. Content-adaptive video memory 
 

 Experimental Results 

The proposed memory is implemented using a 45nm CMOS technology [62]. In addition 

to hardware-level implementation and verification, psychological experiments were conducted to 

test the video output quality from the viewers’ perspective. 
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 Speed 

Figure 14 shows the timing diagram for the proposed memory. To test the functionality 

of the memory, the data: 0xe9, 0xce, 0x62, and 0x71, are written to the addresses: 0x55, 0xb9, 

0xce, and 0x15, respectively, and then read out from the same addresses. For example, during a 3 

bit truncation operation, the values read out are: 0xec, 0xcc, 0x64, and 0x74, where the last 3 

LSBs for these values are 1002. The access delay of the reading operation is about 0.5 ns, which 

is fast enough to deliver the typical mobile video sequences (i.e. 11MHz for CIF/QCIF and 

72MHz for HD720 [63]). 

DATA1
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DATA3

DATA4

DATA5

DATA6

DATA7

read_en

write_en

B<1>

B<0>

trunc_en
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3 bits truncation

e9 ce 62 71

Write read
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Write read
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e8 c8 68 78

Read access time: ~ 0.5ns

0.0 25.0 50.0 75.0 100.0
Time(1e-9s)

 

Figure 14. Timing diagram (DATA7: MSB; DATA0: LSB) 
 

 Layout 

The layout design for 512 words × 64 bits SRAM with viewer-aware bit truncation is 

shown in Figure 15. Only a few gates are added to the bit-line conditioning circuit to enable the 

truncation function. Also, after careful design, the decoders for truncation controlling can be fit 
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into the free space of the original layout, without introducing additional overhead. The proposed 

memory consumes only 0.32% more silicon area as compared to the traditional SRAM, which is 

negligible. 

Decoder & drivers

SRAM Sub Array

32x256

235.57 µm

1
1
1

.9
6

 µ
m

Bit-line conditioning & truncation circuity
 

Figure 15. Physical layout design 
 
 
 Power Savings 

Input patterns that cover all data switching possibilities have been tested for the memory. 

Normal operation, and 1 to 4 LSB truncations, are simulated based on these input patterns, and 

the power consumption for each scenario is shown in Figure 16. As compared to normal 

operation, the average power consumption of reading and writing operations for 1 to 4 LSB 

truncations can enable 13.54%, 20.10%, 26.83%, and 33.31% power savings, respectively. 
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Figure 16. Power Savings 
 
 Video Quality 

Finally, in order to verify the effectiveness of the truncation technique on viewer 

experience, psychological experiments were conducted at the North Dakota State University 

Center for Visual and Cognitive Neuroscience. The psychophysical experiment setup is shown in 

Figure 17. The ambient illumination was provided using a rectangular array of 60 high-intensity 

LEDs capable of emitting a maximum of 64,000 Lux (i.e. Larson Electronics, model LEDP5W-

60-D-1227-F5.15). An illumination meter (i.e. Extech model 401027) was used to accurately 

measure the ambient illumination of the phone used for testing, which was a Samsung Galaxy 

Note 4. In the experiments, the amount of illumination was adjusted for the high-intensity light 

source using neutral-density filters. The luminance level measured by the illumination meter was 

approximately 811 Lux, which is a typical indoor light level. 
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Figure 17. Psychological experiment setup 
 

To assess the degree to which observers can accept the truncated videos as compared to 

the reference videos using the developed models, a total of 20 videos were collected: 10 videos 

were classified as having a stationary camera and 10 videos containing a reporter. Each video 

sample was evaluated at a single quality point encoded using a constant rate factor of 0 (i.e. 

lossless compression), had a 640×360 resolution, was 10 seconds in length, and was downloaded 

from [44]. Based on these videos the average plain macroblock percentages were calculated and 

the developed models were used to predict what the expected amount of acceptable LSBs to 

truncate would be for different videos. Two versions of each video were created from each 

reference video, one with the predicted amount of acceptable bits to truncate and another with 

one bit beyond the predicted acceptable amount. Sequences of numbers were used to represent 

each video and the order they would be presented to viewers was randomized. During testing, 

each participant would compare a total of 40 truncated videos to their original, non-truncated 

version, and give their opinion of whether they would consider the video acceptable for viewing 

on the mobile device.  

The testing results for the developed decision tree model are shown in Figure 18. The 

plain macroblock percentages, the number of bits truncated, and the video quality metric (VQM) 

[64] calculation are included for comparison among samples in Figure 18. VQM is one widely 



 

48 

used objective video quality metric that has been shown to have a strong correlation to the 

subjective viewer ratings. When calculating the VQM for each sample, we used the NTIA 

General Model with Full Reference Calibration, which has been standardized by both the ITU 

and ANSI [65]. The number of participants who considered the samples with a truncation level 

of one bit beyond the predicted acceptable amount is also included in Figure 18 as “Predicted + 

1” under each sample. The developed decision tree model works well for nearly all videos tested. 

There was only one video, with tag wF6lvdXXwc4, out of 20 videos that was considered to not 

be acceptable by the vast majority of participants. As shown in Figure 19 (a), this video displays 

banding distortion, caused by bit truncation, appearing on the reporter’s face, which is likely a 

viewer’s focus point. Due to this particularly noticeable distortion, viewers were less likely to 

accept the displayed degradation. All other samples were considered acceptable by the majority 

of the 15 total participants, with the lowest acceptance rate being 73% for the video with tag 

2AQ6rhVhwRc, another video with banding appearing very close to a viewer’s focus point, the 

kitten playing with a string in the video.  When one bit beyond the predicted bit truncation value 

was used for the videos, only 8 of the 20 videos were considered to be acceptable by the majority 

of participants, and none of the video samples had unanimous acceptability. 
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Figure 18. Video quality testing results using the decision tree model 
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(a) 3 LSBs truncated using decision tree model (b) 2 LSBs truncated using ordinal logistic regression model
 

Figure 19. Output quality of video with tag wF6lvdXXwc4 
 

The results using the ordinal logistic regression were further compared to the decision 

tree model. Those two models achieve the same prediction results for the majority of videos; 

only 4 out of the 20 videos are different. For the 4 videos that differ, the decision tree model 

predicts that 3 LSBs should be truncated and the ordinal logistic regression model predicts that 

only 2 LSBs should be truncated. One of those 3 videos is the video with tag wF6lvdXXwc4; it 

was the only one that was considered to be not acceptable using the decision tree model. With 2 

LSBs truncated predicted by the ordinal logistic regression model, the visual quality is 

significantly improved, as illustrated in Figure 19 (b). For the other 3 videos (with tags 

Lp3H1XOcKCE, dgAu_Wsd7Fo, and lcVPxLFlq1c), the visual output with 3 LSBs truncated are 

acceptable by the majority of participants. Particularly, for the video with tag dgAu_Wsd7Fo, all 

of the participants said it was acceptable. From the above analysis, it can be concluded that as 

compared to the decision tree model, the ordinal logistic regression model is a more conservative 

model, which can avoid the worst video quality degradation case, but it may lose energy 

optimization opportunities for some videos. Another interesting observation that was made 

during the video testing process is that if a viewer’s focus can be detected in different videos 
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(e.g., mobile gaze tracker [66]), noticeable degradation can be removed from those sensitive 

areas of videos in the future. 

 Context-Aware Memory Concluding Remarks 

In this chapter, a video context-aware memory technique for energy-quality tradeoff 

using viewer perspective was presented. Based on the influence of how video content 

characteristics impact viewer experience, two simple, but effective models to enable hardware 

adaptation were developed. A new viewer-aware bit truncation technique with minimized impact 

on a viewer’s experience was presented that introduces energy-quality adaptation to the video 

storage. Future investigations would include incorporating the motions of videos in the viewer 

experience study, as well as combining viewing luminance awareness to further enable energy-

quality adaptation in different viewing surroundings. 

During the hardware implementation process, a single percentage for the entire video was 

used in order to minimize the overhead of the design. In order to better suit the applicability and 

energy-quality scalability, future research could investigate the capability of calculating the 

macroblock percentage for each frame. This per frame calculation could allow for real-time 

adjustment of truncated bits at the cost of additional area overhead. Expanding the number of 

participants and video samples in order to create a more comprehensive model could also be 

used to improve the model results. Finally, further studying the relationship between the content 

information and the psychophysical human visual system models could be used to better 

understand what other metrics could be used to support the hardware design. 
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 CHAPTER 4. DATA-DRIVEN INTELLIGENT EFFICIENT SYNAPTIC STORAGE 

FOR DEEP LEARNING3 

Nowadays, with the exponential growth of readily available information, deep learning is 

becoming the go to solution for various engineering problems. Autonomous vehicles, drug 

discovery, natural language processing, image recognition, and healthcare, are a few notable 

areas that have a great deal to gain from the use of these deep learning systems. The necessary 

deep learning models used to help perform tasks in these disciplines need continuous parameter 

updates during the training process, which require intensive synaptic weight read and write 

operations. The use of SRAM for training these types of models is critical for these systems to be 

able to meet performance and energy efficiency requirements. In order to achieve an optimal 

tradeoff between energy efficiency, area overhead, and model classification accuracy, this 

chapter introduces an offline data mining method in order to optimize the hardware design 

process. This technique will help to relieve machine learning hardware designers of the large 

burden of data storage in deep learning systems. A 45 nm 64 kbits SRAM for synaptic weight 

storage is presented that can enable 45.6% active power savings and 83.2% leakage power 

savings, with low area overhead (3.17%) and 0.72% loss in model classification accuracy. 

 Synaptic Storage and Memory Failure Overview 

The use of neural networks has been adopted for a wide variety of applications, 

including: image recognition, finance, medicine, pattern discovery, and autonomous vehicles. 

The memory failures in synaptic storage, specifically for artificial neural networks (ANNs) will 

be analyzed in this section. 

                                                 
3 The material in this chapter was co-authored by Jonathon Edstrom, Yifu Gong, and Dongliang Chen. Jonathon 
Edstrom held the primary responsibilities of writing the simulation code, extracting data from software simulations, 
analyzing the data and verifying results. Yifu Gong and Dongliang Chen, provided the presented SRAM hardware 
design with simulation results based on the software implementation results. 
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 Synaptic Storage in Artificial Neural Networks 

The operation of neural networks is based on the many intricately connected, biological 

pathways that are present within animals, such as the brain or visual cortex. Figure 20 shows the 

general architecture of an ANN, which contains multiple hidden layers in between an input and 

output layer. Each computational unit, or neuron, within the neural network has a set of signals 

that are passed from the input layer, through multiple hidden layers, and eventually to the output 

layer. 
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Figure 20. (a) ANN architecture; (b) Single neuron with synaptic weights 
 

These signals begin at the input as a vector that represents the data used to train or test the 

neural network. The signals at each connection between layers are modified by the weight values 

that are associated with each pathway. Those weight values are dynamically adjusted when 

training the network using backpropagation, or minimizing the calculated error through an 

optimization method, after each batch of inputs has finished flowing through the network [67]. 

Accordingly, the majority of memory usage by neural networks comes from these synaptic 

weights that are repeatedly updated throughout the training process. 
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 Impact of Synaptic Memory Failures on ANN Classification Accuracy 

In this subsection, the SRAM failure mechanism, and its impact on the classification 

accuracy of ANNs will be discussed. Among various SRAM bit cells developed by researchers, 

6T and 8T are the two most widely applied SRAM bit cells. Considering the impact of 

technology scaling on device sizing, Lambda-based rules are used, where, one Lambda (1λ) is 

equivalent to half the minimum feature size for a particular SRAM technology. Figure 21 shows 

6T and 8T bit cells with 3λ width using 45nm technology. The left SRAM bit cell schematic in 

Figure 21 (a) displays a 3λ-6T SRAM bit cell; the pull-up transistors (PU) are minimum size, the 

widths of the pull-down (PD) and access transistors (AX) are 3λ. The right SRAM bit cell 

schematic in Figure 21 (b) displays a 3λ-8T SRAM bit cell, based on 3λ-6T SRAM bit cell; two 

read port transistors with 3λ widths are connected to QB. The left layout shown in Figure 2 (b) is 

an upsized 9λ-6T bit cell and the right layout is a 3λ-8T bit cell. Conventional 6T bit cells have 

the advantage of providing low static power dissipation, but exhibit stability problems when 

operating at scaled voltages. When performing a read operation, a 6T bit cell can overwrite the 

stored bit value with its inverted value if the voltage at QB reaches the threshold voltage of the 

NMOS transistor on the Q side of the bit cell [68]. By including two additional transistors, 8T bit 

cells separate the read and write paths so that each path can be independently optimized for its 

respective operation. This allows for 8T bit cells to mitigate the risk of reading incorrect data 

when voltage scaling. In general, 6T bit cells can be used to achieve an optimized area cost; and 

8T bit cells can be used for effectively reducing the memory failures due to its decoupled read 

and write paths.  
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Figure 21. (a) Schematic and (b) layout design of 6T and 8T SRAM bit cells 
In (b), the 6T bit cell layout on the left has been upsized (9λ-6T) to approximately match the size 
of the minimum sized 8T bit cell layout (3λ-8T) shown on the right. Using similar sized bit cell 
layouts in this way is useful to compare the failure rate due to voltage scaling between designs. 

Memory failures are mainly caused by process variation in SRAM bit cells. Specifically, 

these types of failures are caused by threshold voltage variations (σVth), which can be expressed 

as follows [69]: 

 �f3� = �� √¢m (18) 

where AVT is a technology dependent constant, and W and L represent the width and length of the 

transistor, respectively. The σVth for transistors with W equal to the minimum LEFF for 45 nm 

predictive technology is 46.9mV for NMOS and 41.8mV for PMOS. From (1), σVth is inversely 

proportional to √�B, therefore, as W and L increase, the deviation of Vth, the voltage threshold of 

the SRAM bit cell, is reduced.  

Based on a Monte-Carlo simulation with 1,000,000 trials, the read and write failure rates 

were estimated at the five separate process corners, including: “ss” (slow NMOS and slow 

PMOS), “sf” (slow NMOS and fast PMOS), “fs” (fast NMOS and slow PMOS), “ff” (fast 

NMOS and PMOS), and “tt” (typical NMOS and typical PMOS). At the same voltage, the failure 

rate decreases as the size of the SRAM bit cell increases. The failure rates of 3λ-6T and 3λ-8T 

SRAM bit cells in different process corners are shown in Figure 22 (a) and (b), respectively. 

Figure 22 (c) displays the failure rates of 6T bit cells with various sizes, from 3λ to 16λ, and an 

8T bit cell with 3λ width, in their worst process corners (i.e. “fs” for 6T bit cells and “sf” for 8T 

bit cell). 
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Figure 22. 45nm SRAM bit cell failure rates based on Vdd voltage scaling 
 

The failure rates of the 8T bit cell for the simulated 45nm technology are much smaller 

than 10-5 and are not displayed in Figure 22. However, the additional two transistors in 8T 

SRAM bit cells induce a 27.7% area overhead, as compared to 6T SRAM bit cells. 

Due to the significant area overhead 8T SRAM bit cells induce on the overall design, it is 

useful to compare an upsized 6T SRAM bit cell with similar area, which was found to have 9λ 

width for 45nm technology. Based on Figure 22, with similar layout area, 3λ-8T bit cells have 

significantly lower failure rate than 9λ-6T bit cells at the same operating voltage. Therefore, 3λ-

8T bit cells are used for the sign bit and the second MSB, W30, in order to minimize the failure 

rate of these two bits. 

A neural network was simulated on the widely used digit recognition dataset – MNIST 

[70]. A large range of bit cell failure rates were tested in order to obtain the largest possible 

failure rate the memory could endure for ~1% degradation to the network’s classification 

accuracy. It was found that a maximum memory failure rate of 10-5 allows for less than 1% loss 

to the accuracy. In order to achieve minimum area overhead, 4λ-6T sizing was adopted to be the 

baseline synaptic memory at 1.0V in the memory analysis. 
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 Data Characteristics of Synaptic Storage 

In this subsection, the data characteristics for synaptic storage will be analyzed. While 

fixed point synaptic weight representations allow for reduced resource requirements as compared 

to floating point representations, they introduce loss of precision and added design complexity. 

The designed neural networks use the IEEE 754 single precision floating point representation, 

which has been used widely in previous works [71, 72]. An investigation of data contribution, bit 

switching statistics, and association/correlation characteristics of synaptic weights will be 

discussed. 

 Data Contribution Characteristics 

First, the contribution of each bit within the synaptic weights to output precision is 

analyzed. Based on the MNIST handwritten digits benchmark [70], a typical ANN was created 

that contained two hidden layers. This model was used to test the contribution of different bits 

within the separate layers of the neural network architecture. Using the Python library Keras 

[73],  a variety of neural network configurations were developed for testing and verification. 

Data for the neural network model was stored in memory using the IEEE single precision 

floating point format as shown in Figure 23. In this floating point format, the sign bit indicates 

whether the number is positive or negative, the exponent bits determine the exponent of the 

number modified by a bias, and the significand represents the significant digits of the number 

following the binary point (i.e., mantissa = 1.significand, such that the mantissa’s leading 1 is 

implied, not stored as part of the 32-bit floating point number).  
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IEEE 754 Single Precision Float

w31 w30 w29 w28 w27 w26 w25 w24 ... w0

sign bit exponent bits
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w24w23 w22

significand
 

Figure 23. IEEE 754 Single Precision Floating Point Representation 
 

A random number generator and user specified failure rate for memory bit cells were 

used to test each of the 32 bit positions for their impact on training the entire system. Failures 

were injected one layer at a time to explore the data contribution to the entire system. The 

network model designed for analyzing bit injection training degradation is described in Table 14.  

Table 14. ANN architecture and configurations 

Dataset 
# of Neurons per 

Hidden Layer 
Epochs Batch Size Failure Rate 

MNIST 20 20 128 1.0 (100%) 

 

The classification accuracy of a neural network, with 100% failure rate for a specific bit 

position can be seen in Figure 24. The testing accuracy of this neural network with no faults 

injected was approximately 96%. As shown, the 7 MSBs of the 8 exponent bits have a noticeable 

impact on the overall test accuracy regardless of which layer they are in; whereas a sign bit error 

only severely degrades the network accuracy when occurring on a transition from the second 

hidden layer to the output (i.e., sign bit errors from the input to the first hidden layer and between 

hidden layers have much less impact on overall accuracy). 
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Figure 24. Influence of synaptic weight bit position on ANN classification accuracy 
 

 Data Switching Characteristics 

A further analysis of the individual bits within the synaptic weights reveal useful 

information about the bit switching characteristics. In an ANN model with 5 neurons per hidden 

layer, the weights and bias values that are stored between each of the layers were extracted 

between each update. Figure 25 shows the average bit switching percentage for each bit position. 

Based on these results, the MSBs of each weight, especially: the sign bit, all exponent bits, and 

the 5 MSBs of the significand, regardless of which layer they were present in, all tended to have 

very low switching characteristics (< 10%) between each batch update in the memory. 
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Figure 25. MNIST average bit switching percentage of each bit position 
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Since the first eight MSBs have the largest impact on the optimization calculations during 

the training process and also exhibit low switching probabilities, the use of association and/or 

correlation relationships between bits have the potential to be exploited through the use of offline 

association rule mining techniques. 

 Data Association / Correlation Characteristics 

Association rule mining was introduced in 1993 to discover relationships between 

different variables, called items, in a dataset or database [74]. A complete dataset is made up of 

many transactions where each transaction contains a set of items. Each item can be associated 

with a binary attribute, 0 or 1, that is used to distinguish if that item is present or not in the 

corresponding transaction. This type of data organization is illustrated in Figure 26. Each 

resulting rule, generated from the association rule mining process, is an implication of the form 

X → Y, where X and Y are disjoint sets of, or individual, items. Each rule is also accompanied 

by collected statistics from the dataset called support and confidence values. The support value 

for a set of items is the proportion of transactions in the dataset that contains such set of items. 

The confidence value for an association rule, X → Y, is the proportion of transactions that 

contain X which also contain Y, or the conditional probability P(Y | X). 
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Figure 26. Offline data-mining assisted synaptic data relationships study 
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Association data mining techniques were used to analyze the extracted MSBs from the 

MNIST [70] and Abalone [75] benchmarks, to study the relationship among each neuron’s 

corresponding weights. The discovered association rules are also shown in Figure 26. From these 

results, within the first 8 MSBs, multiple MSBs (W29-W26) have strong association to the 

exponent MSB, W30 (see Figure 26). If the value of W30 is stored in robust memory bit cells, in 

the presence of memory failures in W29-W26 bits, the SRAM may achieve self-recovery based on 

the discovered data association or correlation rule. Since the sign bit (i.e. W31) also significantly 

contributes to the classification precision as discussed in the previous subsection, the sign bit and 

W30 will be protected by being stored in robust bit cells. Based on these data characteristics, a 

data-driven memory is proposed, which will be discussed in the next section. 

 Proposed Data-Driven Synaptic Memory 

This section provides a detailed explanation of the proposed hardware design. The 

simulation results for performance, area cost, and power efficiency are discussed. An overall 

comparison of the memory design compared against the state-of-the-art is also displayed. 

 Implementation 

Figure 27 shows the architecture of the proposed synaptic memory with 256 words × 256 

bits, for a total of 64 kbits. A hierarchical readout bit line scheme (local RBL and global RBL) is 

applied to reduce the access time. For each 32-bit synaptic weight stored in the memory, two 8T 

bit cells are used to store the sign bit and exponent MSB.  
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Figure 27. Data-driven efficient synaptic storage 
 

A multiplexer-based scheme is adapted from [76] and used to implement a self-healing 

synaptic memory. Specifically, based on the obtained data association and correlation 

relationships between W29-W26 bits and W30, the global bit-lines of W29-W26 are connected to a 

self-recovery MUX. The MUX is controlled by the pre-determined locations of the faulty bits, 

which are usually identified either during post-fabrication testing or Power-On Self-Test (POST). 

Such testing processes can also be used to track temporal degradation caused memory failures 

such as those caused by the aging effect. If a fault is indicated, the self-recovery process is 

enabled by selecting a specific data bit in the identified data relationship. 

 Results 

To evaluate the effectiveness of the proposed data-driven technique, a synaptic memory 

with 256 words × 256 bits is implemented in a 45nm technology [49]. Figure 28 shows the 

layout design. The parasitic parameters were extracted using the Cadence Virtuoso tool and 

included within the simulation. Based on the requirement for a worst case precision accuracy 
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loss of ~1%, using the proposed technique, the supply voltage can be reduced from 1V to 

0.825V. 

 1) Performance 

Due to the added MUXs, the read access time of the proposed synaptic storage increases 

from 1.154ns to 1.415ns. Based on the read access time, the calculated frequency of the proposed 

design is 706.7 MHz, which is fast enough to meet the high speed demands of neural network 

weight updates. 

 2) Layout 

As discussed previously, embedded SRAMs usually occupy a large portion of area in 

deep learning chips, and therefore the area cost of SRAM is an important design concern. Based 

on the layout design of the proposed memory in Figure 28, the added self-recovery logic (MUX) 

results in a 3.17% area overhead. It should be noted that, the self-recovery logic is added to 

readout bit lines, so a memory containing more words would have even smaller area overhead. 

385.12 μm

1
3

2
.7

 μ
m

D
ec

o
d

e
r 

&
 D

ri
v

er

Sub 
array

Self-Recovery MUX  

Figure 28. Layout of the proposed synaptic memory in 45 nm technology 
 

 3) Power Efficiency 

To evaluate the power efficiency of the proposed synaptic memory, the active power and 

leakage power consumption was modelled as follows: 
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 7¸���¹� = ∑ ∑ R76���∙�����+�����V�=0,1316=0 2  (19) 

 7B�&C = ∑ ∑ B�>�31>=0255�=0  (20) 

where Ptotal is the power consumption of both the read and write operations; b is the bit number; I 

is the value stored in the SRAM; P(i) is the probability of a particular bit to be 0 or 1; R(i), W(i), 

and L(j) are the read, write and leakage power consumption, respectively, based on the values i 

and j, which are shown in Figure 29. The bit value probabilities are extracted based on a 2 hidden 

layer MNIST neural network with 100 nodes per hidden layer. 

 

Figure 29. Power consumption of synaptic storage 
 

Based on equations (19) and (20), the conventional SRAM at 1V consumes 154.5µW 

active power and 138.9µW leakage power, respectively. The proposed design at 0.825V 

consumes 106.1µW active power and 75.83µW leakage power, enabling 45.6% and 83.2% 

savings in active power and leakage power, respectively. 

 Data-Driven Synaptic Memory Concluding Remarks 

In this chapter, a data-driven self-correction technique was presented for neural network 

synaptic storage. Using data-mining discovered data characteristics, as compared to traditional 

memory, the proposed memory enables 45.6% and 83.2% reduction in active and leakage power 
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savings, respectively, with low implementation cost (3.17% area overhead) and less than 1% 

degradation in classification accuracy. Table 15 shows a comparison between the proposed 

synaptic storage system [34] against the previous state of the art design technique presented in 

[31]. All memories are operated at the same voltage (0.825V), indicating similar power 

efficiency. Based on 30 independent trials using the MNIST benchmark, the classification 

accuracy for a varying number of 8T cells based on [31] was evaluated, as well as the proposed 

data-driven technique. The averaged results of these trials compared against the fault free 

network, which had 96.121% classification accuracy on average, are shown in Table 15. It can 

be seen that the conventional 6T SRAM results in significant degradation of classification 

accuracy (86.321% loss) at 0.825V. In terms of [31], the larger number of 8T cells will improve 

the accuracy of the network, while introducing larger area overhead. For example, with 5 MSBs 

stored in 8T, the average loss is reduced to 1.685% with 4.015% area overhead. It can also be 

seen that, with similar power efficiency at 0.825V, the proposed data-driven technique exhibits a 

lower implementation cost with the best classification accuracy (95.401%). 

Table 15.  Synaptic storage comparison with existing 8T+6T hybrid design 

Memory Techniques 
Average 

Accuracy 

Average 

Loss 

Area 

Overhead 

Traditional 
@1V 

All 6T 96.121% 0% 0% 

Traditional 
@0.825V 

All 6T 9.8% 86.321% 0% 

DATE’16 [31] 
@0.825V 

2 MSBs 8T 92.993% 3.128% 1.606% 
3 MSBs 8T 93.120% 3.001% 2.409% 
4 MSBs 8T 94.369% 1.752% 3.212% 
5 MSBs 8T 94.436 % 1.685% 4.015% 

Presented Work 
[34] @0.825V 

2 MSBs 8T + 

correction 
95.401% 0.72% 3.171% 
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 CHAPTER 5. ENABLING ENERGY-EFFICIENT DIFFERENTIALLY PRIVATE EDGE 

INFERENCE FOR DEEP LEARNING4 

With the advent of IoT technologies and availability of a large amount of data, deep 

learning has been applied in a variety of applications. However, sharing personal data using IoT 

edge devices carries inherent risks to individual privacy. Meanwhile, the energy and memory 

resources needed during the inference process becomes a constraint to the resource-limited IoT 

edge devices. This chapter describes the process of bringing memory hardware optimization to 

these IoT edge devices by considering the privacy/accuracy/efficiency tradeoff in differentially 

efficient deep learning systems. Simulation results show that the proposed technique can enable 

near-threshold memory operation, and less than 1% degradation in classification accuracy. 

 Learning with Differential Privacy 

 Why do we need Deep Learning with Privacy? 

Privacy research has drawn attention in both industry and research communities. Large 

industry leaders, including: Apple, Facebook, and Google, have concluded that these types of 

threats can be accomplished by invasive analysts even when the data has been anonymized [77, 

78, 79]. For example, in 2006 AOL released a list of 20 million web search queries which was 

found to have leaked the identity of a woman [80]. Similarly, Netflix held an open competition in 

2006 that released a dataset that also leaked private data [81, 82]. One other area with potential 

privacy issues is biomedical research studies, specifically in genome wide association studies 

where your identity and any diseases you have could be revealed based on results included in 

research papers [83]. Due to privacy risks such as these, a conscious effort to reduce data leaks 

                                                 
4 The material in this chapter was co-authored by Jonathon Edstrom and Hritom Das. Jonathon Edstrom held the 
primary responsibilities of writing the simulation code, extracting data from software simulations, analyzing the data 
and verifying results. Hritom Das provided the presented SRAM hardware design with simulation results based on 
the software implementation results. 
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has become of great interest, especially for companies using machine learning algorithms on 

collected big data. 

The privacy of deep learning models, such as neural networks, have recently come into 

question due to weaknesses and attack models that have been previously exploited [84]. Due to 

high requirements of computation and storage resources, today’s deep learning systems are 

typically built upon large, centralized data repositories. Many cloud providers also provide 

computing platforms and learning frameworks for model training, such as Amazon Sagemaker 

and Google Cloud ML Engine. Based on this centralized-training paradigm, data owners need to 

upload their private data to the cloud provider and they do not have control over how their 

private data is being used. For instance, if a deep learning model was trained on the records of 

patients with a certain disease, learning that an individual’s record was part of the training data 

directly affects their privacy and it opens the door to potential misuse (e.g., exploitation for the 

purpose of recruitment, insurance pricing or granting loans) due to the following three potential 

privacy threats: (i) it is very easy for a malicious provider to steal the data if the provider has full 

access to the data [85]; (ii) even without full access to the data, the malicious provider can 

extract sensitive data from the trained models [86]; and (iii) a malicious remote user can also 

retrieve information of the training data by carefully querying the training models [87]. 

This has been demonstrated in a variety of different ways. To protect privacy, one 

popular type of technique is differentially private deep learning algorithms, which adds random 

noise to the computation so that the output does not significantly depend on any particular 

training sample. 
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 Differentially Private Deep Learning and State of the Art 

Differential privacy [88] is becoming the gold standard for protecting an individual’s data 

by introducing randomness, typically in the form of noise. The formal definition is as follows: a 

randomized mechanism M is considered to be �ε, δ�-differentially private if, for two adjacent 

inputs d and d′, it holds that PrRM�d� ϵ SV ≤ e¾ ∙ PrRM�d′� ϵ SV + δ, where S is any subset of 

outputs. The privacy cost parameter ε is used to control the tradeoff between privacy and 

accuracy, where smaller values of ε provide more privacy. The guarantee of differential privacy 

is: if an individual’s data is used in a differentially private calculation, the probability of any 

result of the calculation changes by at most a factor of �¾ in comparison to if that individual’s 

data is not used in the calculation [89]. The parameter δ is the probability of failure where the 

given differentially private mechanism may violate an individual’s privacy. This δ value explains 

the possibility of “bad events” that may result in a large loss in privacy. Specifically when 

training an �ε, δ�-differentially private neural network, the probability of violating the privacy, δ, 

is calculated after each step for a given privacy cost, ε. 

Recent works have adopted the use of �ε, δ�-differential privacy in order to protect 

individual’s data. In [90], the authors presented a technique involving an ensemble of teachers 

that could train on subsets of a sensitive dataset. After training, the teachers would further train a 

student model based on public data that was labeled using the ensemble. The student model is 

trained based on the noisy voting of various teachers that were trained using the model so that a 

stronger privacy guarantee can be enabled by the system. In [91], a method creating generative 

adversarial networks (GANs) that include differentially private mechanisms to provide privacy 

guarantees was presented. This technique for training a differentially private GAN only allows 

the analyst to inspect a model that already guarantees some level of differential privacy. Both the 
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teacher ensemble and differentially private GAN training techniques employ the use of a privacy 

accountant (i.e. the moments accountant), described in [92], in order to compute a tighter bound 

on the differential privacy. 

In order to ensure differential privacy, perturbation can be introduced at various parts of 

the workflow, including: input, output, and objective perturbation [93]. Also, different types of 

noise can be added to the training and test datasets. The moments accountant shows how if the 

noise mechanism is Gaussian (i.e. ~N�0, σI�) and if the value of sigma for this noise mechanism 

is chosen to be: 

 σ = F
¾ �2 log F.IJ

Â �F/I (21) 

then the noise mechanism will satisfy �ε, δ�-differentially privacy for a given sensitivity, SÃ. 
Using this moments accountant technique to compute a tight bound on the privacy allows for 

each step in the training algorithm to result in �ε, δ�-differential privacy with respect to the lot. 

 The proposed system in this work uses the moments accountant to train a differentially 

private ConvNet model on the server (cloud) where sensitive data is used for training. By 

enabling the moments accountant for training, privacy can be guaranteed to some extent, but at 

the cost of some accuracy loss. This trained, differentially private model will then be 

downloaded to edge computing devices for inference tasks. A diagram of the proposed system 

design can be seen in Figure 30. Since inference is taken care of on the local devices, the privacy 

of the testing data being presented to the devices is not a big concern. 
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Figure 30. Proposed deep learning system with energy-efficiency/privacy/accuracy 
 
 

The energy and resources needed during the inference process has become another 

constraint to resource-limited IoT devices. Deep learning models can take up a large portion of 

an embedded device’s memory space and inference tasks, especially data movements on these 

devices can consume the majority of the total power [94]. Software compression techniques for 

reducing the size of each weight in deep learning models have been introduced, such as the 

TensorFlow Lite API [95], which allows for 4× reduction in total model size. For hardware 

improvements, one of the most important issues that has been focused on is the intensive 

memory access of embedded IoT devices. Very recently, [96] presented a memory-based deep 

edge inference technique, illustrating the significance of embedded memory to edge inference. 

However, this technique adopted the traditional memory design, which misses out on many 

optimization opportunities for tradeoffs among privacy, accuracy, and efficiency. 

This work aims to optimize memory design to better support differentially private deep 

learning algorithms in local devices. To enhance the power efficiency of memories, voltage 

scaling can be introduced, which causes memory failures due to process variations. Analyzing 

the impact of memory failures on accuracy and privacy will allow for conclusions to be drawn 
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for the guidelines of how to optimize the memory for privacy/efficiency/accuracy in AI 

applications with different requirements. 

 Impact of Memory Failures in Differentially Private Deep Learning Systems 

In this section, dataset quality and local memory design will be used to study the impact 

on accuracy of the differentially private learning process. A convolutional neural network model 

was defined using the TensorFlow framework [97], and will be used to gain insight on how 

different types and levels of noise may influence the privacy-accuracy tradeoff. The model 

involves using an objective perturbation through additive Gaussian noise, and uses the moments 

accountant [92] to compute accuracy the privacy cost after each step in the training process. The 

ConvNet model that was tested in this work was based on the architecture described in [96], with 

a single convolutional layer, and can be seen in Figure 31. 
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Figure 31. Differentially private convolutional neural network used for analysis 
 

The source code used to generate models, including differential privacy calculations, can 

be found under github.com/tensorflow/models, and was provided by the authors of [92]. The 

MNIST dataset [70] is used as the dataset in the neural network simulations. 

 Impact of Image Quality on Classification Accuracy 

In order to analyze the relationship between the quality of the test dataset and its impact 

on the test classification accuracy, bit level errors are injected at varying memory failure rates to 
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each image in the test dataset. Since the MNIST dataset consists of images, the well-known peak 

signal-to-noise ratio (PSNR) metric, described in equation (7), is used to evaluate quality. 

Accordingly, by evaluating the PSNR values for a wide range of error injected test 

datasets using MNIST and comparing the test classification accuracy, we identify that the higher 

the image quality in the test dataset, the higher the output accuracy of the system will be overall. 

This relationship between PSNR and test classification accuracy is illustrated in Figure 32. 
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Figure 32. Influence of dataset quality on test accuracy (MNIST dataset results)  
 

Based on this monotonically increasing behavior, if the PSNR of the test data is 

maximized, it is possible to achieve better system performance. In other words, during the 

memory design process, optimizing the hardware to maximize the quality of the dataset will 

improve accuracy accordingly. As shown in Figure 32, as the PSNR values of the MNIST test 

dataset are increased from 5dB to 15dB, test accuracy is increased from 10% to 90% using the 

differentially private deep learning system. It should be noted that, the samples within the 

MNIST datasets are images, and PSNR is an effective quality evaluation metric. If the data form 
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is changed, the metric will need to be adapted accordingly (e.g. SNR would be a suitable option 

for a sound based dataset). 

 Impact of Dataset Memory in Edge Devices 

The amount of Gaussian noise used during training influences how accurate the inference 

of the finalized model performs. Therefore, many different models were tested with varying 

amounts of noise (i.e. sigma values) and epsilon values with a set delta value of 10-5. For sigma, 

4 unique noise levels were tested, specifically � ∈ ℤc ∶ 1 ≤ σ ≤ 4, and for each sigma value, 6 

unique epsilon values, specifically Æ ∈ ℤc ∶ 5 ≤ Æ ≤ 10, for a total of 24 combinations of values. 

For the MNIST dataset, the results within 1% of the floating point test accuracy for each pair that 

was tested can be seen in Figure 33. 
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Figure 33. Impact of errors on privacy/accuracy. MSBs protected: (a) None (b) 2 
 

The best ��, Æ� pair (i.e. the values of sigma and epsilon that provided the best test 

classification accuracy) for the MNIST dataset was found to be � = 2, Æ = 8 as error rates were 

increased. When training using these values for the parameters, the probability of violating the 

privacy is recalculated after each step in the training process until the end delta value Ç = 10WJ 

to stay within a modest privacy budget [92]. 
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One method for increasing the PSNR of the test dataset when errors are present is to 

protect the MSBs of the data from faults. By investigating the individual cases of protecting 1, 2, 

or 3 MSBs and comparing against the case without protecting any bits, it is possible to measure 

the influence of the MSBs on the test classification accuracy. Figure 34 displays the test 

classification accuracy of the � = 2, Æ = 8 differentially private ConvNet with the varying 

amount of MSBs protected. The protection of 2 or 3 bits has a significant influence on boosting 

the accuracy of the system to acceptable levels. 
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Figure 34. Impact of memory failure rate on the accuracy of the learning system 
 

Impact of Hardware on Privacy/Accuracy Trade-off 

The impact of the memory failure on the privacy/accuracy trade-off is further examined 

within this subsection. From Figure 33 (a), it can be seen that the parameter Æ represents the 

general trade-off between privacy level and accuracy of the differentially private deep learning 
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system. A larger value can potentially enable higher accuracy. In most cases, as the value of � 

(i.e. the amount of noise) increases, the accuracy decreases. 

By comparing (a) and (b) from Figure 33, it can be seen that for an optimized memory 

with MSBs protected, the accuracy/privacy tradeoff can be significantly improved. For example, 

if considering the specific case where � = 2 and Æ = 8, if the failure rate is 0.23, without 

protection the accuracy will be ~50%, an unacceptable amount. By introducing protection to 2 

MSBs, at this same failure rate, the accuracy will be increased to >96%, which is within 1% of 

the fault free differentially private model. 

Optimization Model based Memory Design 

Based on the above analysis, developing the memory hardware to optimize the dataset 

quality will allow for the highest prediction accuracy. Accordingly, the problem has become an 

energy-quality-cost tradeoff design problem. Recently, in [98] three optimization models were 

presented to design the memory to provide the minimized MSE within a specific cost constraint. 

Model 2 in particular is useful for optimizing the dataset memory design in this work due to the 

quality of the dataset having a direct impact on the output accuracy. Model 2 specifically 

includes a method for optimizing the sizing for hybrid 8T+6T SRAM without bit cell integration 

cost, and is expressed in (22-25): 

 minÉ ∑ ∑ ∑ ∑ 4ÊË-XÊÌZ-XÊÌ*ÌDFÍÊDE2XDF;-DF  (22) 

 s.t.   ∑ Z-XÊÌ*ÌDF ≥ 1, � = 1, … , �; > = 1, … , �; C = 0, … ,7 (23) 

 ∑ ∑ ∑ ∑ ^-XÊÌZ-XÊÌ*ÌDFÍÊDE2XDF;-DF ≤ ^3.3:Ì  (24) 

 Z-XÊÌ ∈ |0,1�, � = 1, … , �; > = 1, … , �; C = 0, … ,7 (25) 
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Here, m and n are the number of pixels in a row and column in the dataset, respectively, 

and each pixel is composed of 8 bits. The objective function (22) is used to minimize the 

expected MSE of the entire dataset. Constraint (23) guarantees that for each memory bit cell, the 

memory designer can choose exactly one design option among the total r options. The total-area 

constraint, (24), assures that the total area of the design cannot exceed the limit stotal, where sijkl is 

a known parameter indicating the area cost of the ijkth bit cell if it is selected to apply the lth 

design option. The total area cost is calculated by directly summing the area cost of each bit cell, 

since different SRAM bit cells typically can be laid out in a mirrored fashion, and usually there is 

no area overhead for bit cell integration in a hybrid SRAM design [98]. Finally, constraint (25) 

states that all values of xijkl are binary variables. 

 Embedded Memory Design for Deep Learning 

To evaluate the effectiveness of the proposed technique, memory designs in different 

conditions are designed considering efficiency, accuracy, and privacy. 0.5V is used as the target 

voltage, considering the maximum energy efficiency enabled at near-threshold voltage. The 

target accuracy is 96%, which is approximately 1% less than the privacy model with no errors 

from voltage scaling. 

For deep learning systems, memory accesses usually consume several orders of 

magnitude higher energy than computation, making memory performance the bottleneck for 

processing [94]. For example, in the deep learning IC named DianNao, the SRAM occupies 56% 

of the silicon area and contributes to 60% of the power consumption for the entire deep learning 

system [11]. Consequently, enhancing the energy efficiency of the memory is one of the key 

design considerations for supporting deep learning edge inference on IoT devices. 
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Traditional low-power memories often utilize more than 6T bit cells or use bit cell sizing 

to reduce memory failures induced by process variations, thereby achieving power savings at low 

voltages. Figure 35 shows the 6T bit cell and 8T bit cell width in a 45nm technology. 6T bit cells 

can achieve optimized area cost and 8T bit cells effectively reduce memory failures due to the 

decoupled read and write paths using two extra transistors. However, the 8T bit cell has about 

9.6% area overhead compared to the 6T bit cell. 
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Figure 35. SRAM bit cells. Minimum sized 45nm schematic and layout: (a) 6T (b) 8T 
 

Upsizing can also reduce the memory failure at low voltages. This is due to process 

variation induced threshold voltage (f3�), which can be effectively reduced, and is expressed as 

follows: 

 σf3� = σf3�EÐ¢ÑÒÓ∙mÑÒÓ¢∙m  (26) 

where σf3�E is the standard deviation of f3�, and � and B represent the width and length of the 

transistor, respectively. σf3� for an NMOS and PMOS transistor with � equal to the minimum 

BNÔÔ  in the 45nm predictive technology is 46.9mV and 41.8mV, respectively. According to (26), 
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σf3� is inversely proportional to √�B, which means as the width and length increase, the 

deviation of f3� is reduced. 

 10,000 Monte-Carlo simulations were performed to estimate the read and write failure 

rates at the worst process corners for 6T and 8T: “fs” (i.e. fast NMOS and slow PMOS) for 6T 

and “sf” (i.e. slow NMOS and fast PMOS) for 8T bit cells, respectively. The memory bit cell 

data used for analysis is shown in Table 16, with � = �F + �I = 4 + 3 = 7 bit cell design 

options. It is assumed that all pixels within the memory will use the same set of design options. 

Compared with the 6T options, the 8T cells require larger area, but have much lower failure rate. 

Table 16. 6T and 8T bit cell design options for 45nm technology at 0.5V 

Memory Type Height (μm) Width (μm) Area (μm2) Area Ratio sk Failure Rate 

6T: C61 0.45 1.523 0.685 1 0.3436 
6T: C62 0.45 1.563 0.703 1.026 0.3074 
6T: C63 0.45 1.603 0.721 1.053 0.2771 
6T: C64 0.45 1.643 0.739 1.079 0.2521 
8T: C81 0.45 1.663 0.751 1.096 0.00082 
8T: C82 0.45 1.700 0.765 1.117 0.00009 
8T: C83 0.45 1.740 0.783 1.143 0.00002 

 

 Optimized Memory Design 

The optimal values for the bit cell options based on various area constraints are shown in 

Table 17. The result of the proposed optimal design is compared against the traditional design. 

The optimized design (i.e. 8.7) has an MSE improvement of approximately 99.95% compared to 

the traditional 6T SRAM of an equal overall memory size (i.e. all C64 bit cells). It should be 

noted that if the memory area constraint is larger than 8.7, 8T bit cells could be used for all bits 

within each pixel. 
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Table 17. Optimal design results and comparison 

¸3.3:Ì Optimal Design Traditional Scenario Improvement P�Q.)3. �Í �Õ �J �Ö �q �I �F �E P�Q×*Ø. U�^..)32. 
8.0 7505.94 C61 C61 C61 C61 C61 C61 C61 C61 7505.94 C61 0.00% 
8.1 1889.83 C81 C61 C61 C61 C61 C61 C61 C61 7505.94 C61 74.82% 
8.3 134.80 C81 C81 C81 C61 C61 C61 C61 C61 6715.15 C62 97.99% 
8.5 25.11 C81 C81 C81 C81 C81 C61 C61 C61 6053.25 C63 99.59% 
8.7 2.50 C83 C83 C82 C81 C81 C81 C61 C61 5507.13 C64 99.95% 

8.9 0.7814 C83 C83 C82 C81 C81 C81 C81 C81 17.91 C81 95.64% 
9.1 0.4373 C83 C83 C83 C83 C83 C83 C82 C82 1.97 C82 77.76% 

 

 Power Consumption 

The power efficiency of the optimized memory design is listed in Table 18. Operating the 

memory at 0.5V enables significant power savings as compared to the traditional supply voltage 

of 1.0V. As the total area constraint Atotal increases, the power consumption increases as well, 

due to more 8T bit cells being included in the optimized design solution. 

Table 18. Power consumption of optimized 45nm memory design at 0.5V 

¸3.3:Ì Optimal 
Design 

Traditional Scenario 7*+Ø/13-.2 
0.5V 

(opt.) vs. 
1v (Trd.) 

7.)3.(W) 
at 0.5V 

7×*Ø. (W) 
at 0.5V 

7×*Ø. (W) 
at 1.0V 

8.0 2.07E-06 2.07E-06 9.28E-06 77.69% 
8.1 2.53E-06 2.07E-06 9.28E-06 72.74% 
8.3 3.01E-06 2.15E-06 1E-05 69.9% 
8.5 3.50E-06 2.29E-06 1.16E-05 69.83% 
8.7 3.55E-06 2.42E-06 1.41E-05 74.82% 
8.9 4.09E-06 4.22E-06 1.02E-04 95.99% 
9.1 3.85E-06 3.87E-06 1.02E-04 96.23% 

 

 Dataset Quality and Accuracy 

The video quality and prediction accuracy based on the optimized memory is presented in 

Table 19. The MNIST dataset [70], which was used as the original dataset for training the CNN 

model, displays close to no accuracy loss (0.01%) as compared to the fault free test samples. In 
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order to verify this design works properly for other datasets as well, a new dataset, Fashion [99], 

was introduced. The Fashion dataset serves as a drop-in replacement to MNIST as it shares the 

same image sizes and number of classes. Training a CNN model with the same architecture on 

the Fashion dataset, and later testing, results in a negligible accuracy loss (0.04%) when voltage 

scaling to 0.5V using the optimized memory design.  

Table 19. Dataset quality and accuracy for MNIST and Fashion 

 
No Error 
(1.1V) 

1V 
Traditional 

0.5V 
Traditional 

This Work 
@ 0.5V 

MNIST 
Dataset 

    

    

    

    

    
Test Accuracy 
(� = 2, Æ = 8) 

96.7% 96.67% 42.3% 96.69% 

Fashion 
Dataset 

    

    

    

    

    
Test Accuracy 
(� = 2, Æ = 8) 

87.1% 87.06% 31.75% 87.07% 
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The results in Table 19 are based on the specific privacy level case where maximum 

accuracy is enabled for the MNIST dataset (i.e. � = 2, Æ = 8). This privacy level still works well 

for the Fashion dataset, but also has potential for different tradeoff opportunities, which can be 

seen in Figure 36. The Fashion dataset displays higher accuracy for lower levels of Æ, but still 

performs well for varying levels of noise. 
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Figure 36. Verification of errors on privacy/accuracy. MSBs protected: (a) None (b) 2 
 

 Accuracy at Different Privacy Levels 

Based on CNN model simulations at varying σ and ε values, the privacy level has a 

noticeable impact on the inference accuracy of the model. The MNIST and Fashion datasets 

were used to determine the impact of the privacy level on the inference accuracy. In general, the 

higher the privacy level is, the lower the test accuracy becomes. This relationship can be seen in 

Table 20, which includes both high and low levels of privacy for comparison of test accuracy 

calculations. When the test accuracy is severely degraded by the voltage scaling process, (e.g. 

0.5V traditional memory design) the system does not necessarily follow the trend of higher 

accuracy with lower noise. However, those cases are irrelevant since they do not provide 

adequate quality. 
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As displayed in Table 20, the proposed memory design at 0.5V performs similarly to the 

1V traditional design, and is capable of achieving inference accuracy within 1% of the fault free 

model at both low and high privacy levels. 

Table 20. Impact of privacy level on test accuracy 

Dataset 
Privacy 

Parameters 

Privacy / 

Noise Level 

1V 

Traditional 

0.5V 

Traditional 

This Work 

@ 0.5V 

MNIST 
� = 4, Æ = 5 High 95.89% 35.36% 95.91% � = 2, Æ = 10 Low 96.52% 48.49% 96.39% 

Fashion 
� = 4, Æ = 5 High 86.33% 27.53% 86.4% � = 2, Æ = 10 Low 87.54% 20.14% 87.64% 

 

 Differential Private Edge Inference Memory Concluding Remarks 

Previously, in [96], an SRAM design was presented in 28nm technology that allowed for 

voltage scaling from the nominal voltage of 0.8V to 0.5V with 5.0× and 2.8× power reduction 

for leakage and memory access power savings, respectively, while allowing for an estimated 

(ε,δ)-differential privacy of (9, 10-5). In this chapter, a memory-based deep learning system with 

efficiency/accuracy/privacy has been presented for IoT devices. The proposed technique can 

enable near-threshold memory operation at 0.5V with 74.82% power savings as compared to the 

traditional memory at 1.0V, and less than 1% degradation in classification accuracy with 8.75% 

area overhead. The presented 45nm SRAM also allows for the best inference accuracy at the 

(ε,δ)-differential privacy level of (8, 10-5).   
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 CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

This chapter gives a brief summary of the research results presented within this 

dissertation, the relevance of the presented works, and how they improve over the state of the art. 

Potential future works for further improvements will also be discussed relating to both video and 

machine learning memory design. 

In Chapter 2, a data-pattern enabled SRAM with self-recovery ability for big video data 

was presented. Based on the data patterns obtained using data-mining techniques, a simple 

circuit-level design technique was applied to enable memory bit cell self-recovery at near 

threshold voltage with a low area overhead of 7.94%. The proposed design provides 81.52% 

dynamic power savings and 82.45% leakage power savings as compared to the conventional 

nominal voltage memory. Comparing to the recently developed bit cell sizing [16], data-shifting 

[23], ECC [53], and data-squeezing techniques [13], the presented SRAM is capable of 

delivering the best video quality for the least area overhead. 

In Chapter 3, a video context-aware memory technique for energy-quality tradeoff using 

viewer perspectives was presented. Based on the influence of how video content characteristics 

impact the viewer experience, two simple, but effective models to enable hardware adaptation 

were developed. A new viewer-aware bit-truncation technique with minimized impact on viewer 

experience was also implemented, which introduces optimized energy-quality adaption to the 

video storage. As compared to recent efficient video memory designs completed in [28, 29, 30], 

the newly introduced bit truncation technique provides better video quality with similar power 

savings. 

In Chapter 4, a data-driven self-correction technique was presented for neural network 

synaptic storage. Using data-mining discovered data characteristics, as compared to the 



 

84 

traditional memory design of the same size, the proposed memory enables 45.6% and 83.2% 

reduction in active power savings and leakage power savings, respectively. The design has a low 

implementation cost of 3.17% and less than 1% degradation to the classification accuracy of the 

neural network architecture. As compared to the recent existing low power synaptic memory 

introduced in [31], the presented memory exhibits similar power efficiency with less area 

overhead and better classification accuracy at 95.4%. 

In Chapter 5, a memory based deep learning system with efficiency/accuracy/privacy 

optimization was presented for IoT devices. The proposed technique can enable near-threshold 

operation at 0.5V with 74.82% power savings as compared to the memory operating at the 

nominal voltage. The design also provides less than 1% degradation to the classification 

accuracy with 8.75% area overhead. As compared to the recent voltage scaling technique 

presented in [96], the proposed memory allows for higher levels of privacy with similar power 

savings. 

Future investigations for video memories could include: incorporating motion within 

videos into the viewer experience study, combining luminance with other viewing factors such as 

distance or movement of viewer, and calculating macroblock percentages for each frame within 

videos to adjust truncation levels in real-time. For machine learning memories, future work could 

include an extension of the proposed data-driven memory design technique to alternative 

representations of synaptic weights, such as fixed point or a single bit to represent each weight. 

For privacy based machine learning memories, exploring alternative power saving techniques 

(e.g. bit truncation or ECC) and their impact on the privacy/accuracy/efficiency tradeoff may 

lead to significant improvements to the memory design process. 
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APPENDIX A. YOUTUBE-8M VIDEO DOWNLOAD SCRIPT 

# Python script for downloading YouTube-8M videos for running evaluation on 

# Author: Jonathon Edstrom 

# Department: NDSU ECE Graduate Research 

# Project: Data-Pattern Enabled Self-Recovery Low-Power Storage System for Big Video Data 

 

import random, os 
from pytube import YouTube 

from subprocess import call, check_output 
import pandas as pd 

import numpy as np 

 

# variables 

video_count = 0 

label_str = None 

 

# read the provided vocabulary.csv file from the YouTube-8M dataset 

vocab_df = pd.read_csv('vocabulary.csv') 

 

# download 10,000 unique videos from the YouTube-8M dataset 

while video_count < 10000: 
  try: 

    full_str = random.choice(list(open('train_labels.csv'))) 
    url_str = full_str.split(',')[0] 

    label_val = full_str.split(',')[1] 
    label_num = label_val.split(' ')[0] 

    label_str = vocab_df.loc[int(label_num),'Name'] 

    youtube_str = 'https://www.youtube.com/watch?v=' + url_str 
    print(youtube_str) 

    yt = YouTube(youtube_str) 
    video = yt.get('mp4', '360p') 

    video.download('/home/jedstrom/data/tmp/video{}_{}.mp4'.format(video_count,label_str)) 
    total_frames = int(check_output(["ffprobe", "-v", "error", "-count_frames", "- 

                       select_streams", "v:0", "-show_entries", "stream=nb_read_frames", "-of",  
                       "default=nokey=1:noprint_wrappers=1",  

                       'tmp/video{}_{}.mp4'.format(video_count,label_str)])) 
    print('no. of frames: {}'.format(total_frames)) 

    randomFrame = int(random.randrange(0,total_frames-51)) 
    print('starting frame: {}'.format(randomFrame)) 

    call(["ffmpeg", "-ss", '{}'.format(randomFrame/30), "-i",  
          'tmp/video{}_{}.mp4'.format(video_count,label_str), "-vf", "scale=320:240", "-vframes",  

          "50", "-vcodec", "rawvideo", "-pix_fmt", "yuv420p",  
          'tmp/video{}_{}.yuv'.format(video_count,label_str)]) 

    os.remove('tmp/video{}_{}.mp4'.format(video_count,label_str)) 
    video_count += 1 

  except: 
    if os.path.isfile('tmp/video{}_{}.mp4'.format(video_count,label_str)): 

      os.remove('tmp/video{}_{}.mp4'.format(video_count,label_str)) 
    if os.path.isfile('tmp/video{}_{}.yuv'.format(video_count,label_str)): 

      os.remove('tmp/video{}_{}.yuv'.format(video_count,label_str)) 

    pass 
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APPENDIX B. YOUTUBE-8M VIDEO CLIPPED TIMING SCRIPT 

# Python script used to download videos 

# from https://research.google.com/youtube8m/ 

# Author: Jonathon Edstrom (2018) 

# Project: Content-Adaptive Memory for Viewer-Aware  

# Energy-Quality Scalable Mobile Video Systems 

 

import random, os 

from pytube import YouTube # PyTube 6.2.2 
rom subprocess import call, check_output 

 

# Prompt user for YouTube video tag 

url_str = raw_input("Enter the url tag for the video to download: ") 

 

# Create video url string 

youtube_str = 'https://www.youtube.com/watch?v=' + url_str 

 

# Get video using PyTube API 

yt = YouTube(youtube_str) 
yt.filename = 'url={}'.format(url_str) 

video = yt.get('mp4', '360p') 
print(youtube_str) 

 

# Create directory for videos to be stored and download 

if not os.path.exists('videos'): 
 os.makedirs('videos') 

video.download('videos') 

 

# Calculate the total number of frames and display to user 

total_frames = int(check_output(["ffprobe", "-v", "error", "-count_frames", "-select_streams", 
"v:0", "-show_entries", "stream=nb_read_frames", "-of", "default=nokey=1:noprint_wrappers=1", 

'videos/url={}.mp4'.format(url_str)])) 
print('no. of frames: {}'.format(total_frames)) 

 

# Prompt user for when they would like the clipped video to begin 

skip = raw_input("How long to skip (i.e. 00:00:00): ") 

 

# Prompt user on how many frames they would like to be in the clipped video 

frames_to_process = raw_input("Frames to process: ") 

 

# Convert the downloaded .mp4 to raw .yuv and remove the .mp4 file 

call(["ffmpeg", "-ss", '{}'.format(skip), "-i", 'videos/url={}.mp4'.format(url_str), "-vf", 
"scale=640:360", "-vframes", "{}".format(frames_to_process), "-vcodec", "rawvideo", "-pix_fmt", 

"yuv420p", 'videos/url={}.yuv'.format(url_str)]) 
os.remove('videos/url={}.mp4'.format(url_str)) 
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APPENDIX C. MACROBLOCK ANALYSIS AND TRUNCATION PROGRAM 

/* 

    YUV420p Macroblock Luminance Truncation Program 

    Jonathon Edstrom - 2017-2019 

    Truncates LSBs from luminance portion of YUV 4:2:0 frames with MB level analysis 

    Department: NDSU ECE Graduate Research 

    Project: Content-Adaptive Memory for Viewer-Aware Energy-Quality  

             Scalable Mobile Video Systems 

*/ 

 

// includes 

#include <unistd.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <stdint.h> 

#include <math.h> 

#include <stdbool.h> 

 

// instantiate globals 

FILE*    fileptr;    // pointer for YUV data input/output files 
FILE*    csvFilePtr; // CSV file pointer that will contain plain macroblock percentages per frame 

uint8_t* buffer;     // pointer for YUV data allocated memory 
uint8_t* reset;      // pointer value to reset the buffer to the beginning 

uint8_t* compare;    // pointer for YUV data to compare to (PSNR) 
uint8_t* rstCompare; // pointer to beginning of comparison data (PSNR) 

uint64_t filelen;    // length of the input file (total bytes) 

uint32_t xres;       // width of the YUV video 
uint32_t yres;       // height of the YUV video 

uint8_t  plain;      // # of bits to truncate in plain conditions 
uint8_t  textured;   // # of bits to truncate in textured conditions 

uint64_t lumsize;    // luminance bytes per frame 
uint64_t chromsize;  // chrominance bytes per frame 

uint64_t framecount; // total number of frames 
double lowVarTh = 1.25; // low variance threshold used for determining if a MB is plain/textured 

// (default value is 1.25 - from table on page 5 of "An HVS-based Adaptive Computational 

// Complexity Reduction Scheme for H.264/AVC Video Encoder using Prognostic Early Mode Exclusion"  

// (Shafique et. al)) 

double psnrValue = 0; // for later calculating the PSNR of the output video 

uint8_t newTruncMethod = 1; // default to true 
uint8_t outputTruncatedFile = 1; // default to true 

uint8_t outputCSV = 1; // default to true 
uint32_t plainMBCount = 0; // increments each time a MB is determined to be 'plain' 

uint32_t totalMBCount = 0; // increments for each MB in the input video 

 

uint8_t truncationAmount(double variance) 
{ 

    // perform truncation based on luminance scenario and variance of MBs 

    if( variance <= lowVarTh ) // plain MB 

    { 

        return plain; 
    } 

    else // textured MB 
    { 

        return textured; 
    } 

} 

 

// helper function to truncate bits on YUV frames 

uint8_t truncateBits( uint8_t byte, uint8_t bitsToTruncate ) 

{ 
    uint8_t returnByte; 

    switch( bitsToTruncate ) { 
        case 0: 

            return byte; // don't truncate anything 
            break; 

        case 1: 
            return ( byte & 254 ); 

            break; 
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        case 2: 

            returnByte = byte & 252; 
            if(newTruncMethod == 1) 

            { 
                returnByte |= 2; 

            } 
            return returnByte; 

            break; 
        case 3: 

            returnByte = byte & 248; 
            if(newTruncMethod == 1) 

            { 
                returnByte |= 4; 

            } 
            return returnByte; 

            break; 
        case 4: 

            returnByte = byte & 240; 
            if(newTruncMethod == 1) 

            { 
                returnByte |= 8; 

            } 
            return returnByte; 

            break; 

        case 5: 
            returnByte = byte & 224; 

            if(newTruncMethod == 1) 
            { 

                returnByte |= 16; 
            } 

            return returnByte; 
            break; 

        case 6: 
            returnByte = byte & 192; 

            if(newTruncMethod == 1) 
            { 

                returnByte |= 32; 
            } 

            return returnByte; 
            break; 

        case 7: 
            returnByte = byte & 128; 

            if(newTruncMethod == 1) 
            { 

                returnByte |= 64; 
            } 

            return returnByte; 
            break; 

        default: 

            printf( "Truncation bit value entered (%u) not valid. Exiting.\n", bitsToTruncate ); 
            exit( EXIT_FAILURE ); 

    } 
} 

 

// modified by J.E. using: https://fador.be/highlighter.php?file=psnr.c 

double psnr( uint8_t *video1, uint8_t *video2 ) 
{ 

    double MSE = 0.0; 
    double MSEtemp = 0.0; 

    unsigned int index; 

 

    // Calculate MSE 

    for( index = 0; index < ( framecount * ( 3 * ( xres * yres ) / 2 ) ); index++ ) 

    { 
        MSEtemp = abs( video1[index] - video2[index] ); 

        MSE += MSEtemp * MSEtemp; 
    } 

    MSE /= ( framecount * ( 3 * ( xres * yres ) / 2 ) ); 

 

    // Avoid division by zero 

    if( MSE == 0 ) 
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    { 

        return 99.0; 
    } 

    else 
    { 

        return ( 10 * log10( ( 255.0 * 255.0 ) / MSE) ); 
    } 

} 

 

// application entry point 

int main(int argc, char * argv[]) 

{ 
    printf( "\nYUV420p Luminance Byte Truncation Program Using MB Analysis (J.E. 2017-2019)\n" ); 

    printf( "-------------------------------------------------------------------------------\n\n" 
); 

 

    if( argc != 10 ) // argc should be 9 for correct execution 

    { 

        // print argv[0] assuming it is the program name with the following usage hint to user 

        printf( "usage: %s filename xres yres plain textured lowVarTh newTruncMethod  
                 outputTruncatedFile outputCSV\n\n", argv[0] ); 

        printf( "\tfilename: the path to the YUV file to process\n" ); 
        printf( "\txres: width of the YUV video in pixels\n" ); 

        printf( "\tyres: height of the YUV video in pixels\n" ); 

        printf( "\tplain: # of bits to truncate in plain Macroblocks\n" ); 
        printf( "\ttextured: # of bits to truncate in textured Macroblocks\n" ); 

        printf( "\tlowVarTh: threshold to determine if a MB is plain or textured (default:  
                 1.25)\n" ); 

        printf( "\tnewTruncMethod: (0 or 1) 0 = use old (all dropped bits to zero), 1 = use new  
                 truncation (median value)\n" ); 

        printf( "\toutputTruncatedFile: (0 or 1) Output the truncated version of the video\n" ); 
        printf( "\toutputCSV: (0 or 1) Output the calculated plain macroblock percentages for  

                 each frame to a .csv file\n\n" ); 
        printf( "Please correct your arguments and retry. Now Exiting..."); 

        exit( EXIT_FAILURE ); 
    } 

    else // correct number of arguments 
    { 

        printf( "Setting things up...\n" ); 

 

        // initialize settings (global variables) 

        xres = atoi( argv[2] ); 

        yres = atoi( argv[3] ); 
        plain = atoi( argv[4] ); 

        textured = atoi( argv[5] ); 
        lowVarTh = atof( argv[6] ); 

 

        // check threshold value is valid 

        if( lowVarTh < 0.0f ) 

        { 
            printf( "Invalid value for low variance threshold (lowVarTh). Exiting program.\n" ); 

            exit( EXIT_FAILURE ); 
        } 

        // check to see if old truncation method should be used (all dropped bits to zero) 

        newTruncMethod = atoi( argv[7] ); 

        // check threshold value is valid 

        if( newTruncMethod != 0 && newTruncMethod != 1  ) 

        { 
          printf( "Invalid value for using new truncation method. Exiting program.\n" ); 

          exit( EXIT_FAILURE ); 
        } 

 

        // see if the user wants the truncatd version of the YUV file to be output 

        outputTruncatedFile = atoi( argv[8] ); 
        if( outputTruncatedFile != 0 && outputTruncatedFile != 1  ) 

        { 
          printf( "Invalid outputTruncatedFile value (valid: 0 or 1). Exiting program.\n" ); 

          exit( EXIT_FAILURE ); 
        } 

        // see if the user wants a .csv file containing the plain macroblock percentage for each  

        // frame in the video 
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        outputCSV = atoi( argv[9] ); 

        if( outputCSV != 0 && outputCSV != 1  ) 
        { 

          printf( "Invalid value for outputCSV input, please input 0 or 1. Exiting program.\n" ); 
          exit( EXIT_FAILURE ); 

        } 

 

        // check resolution parameters are natural numbers 

        if( !( xres > 0 && yres > 0 ) ) 

        { 
            printf( "Invalid value entered for the resolution parameter(s) (i.e. xres/yres).  

                     Exiting program.\n" ); 
            exit( EXIT_FAILURE ); 

        } 

 

        // check that bit truncation values are valid 

        if( !( plain >= 0 && plain <= 7 && textured >= 0 && textured <= 7 ) ) 

        { 
            printf( "The value entered for one of the bit truncation parameter is not valid.  

                     Exiting program.\n" ); 
            exit( EXIT_FAILURE ); 

        } 

 

        // create output file name string 

        int32_t len = strlen( argv[1] ); // get length of input file name 
        char filename[len]; 

        strcpy( filename, argv[1] ); // get input file name 
        filename[len-4] = '\0'; // chop off the ".yuv" extension 

        len = len + 100; // add correct amount for output file naming 
        char plain_data[len]; 

        strcpy( plain_data, filename ); // store video filename for later 
        strcat( plain_data, "_plainPercentagesPerFrame.csv"); // add description & file extension 

        if( outputCSV == 1 ) 
        { 

        // overwrite file if it exists 

          csvFilePtr = fopen( plain_data, "w" ); 

          if ( csvFilePtr != NULL ) 
          { 

            fputs( "", csvFilePtr ); 
            fclose( csvFilePtr ); 

          } 
          else 

          { 
            printf( "The CSV file could not be opened for writing. Make sure the file is not in  

                     use. Exiting program.\n" ); 
            exit( EXIT_FAILURE ); 

          } 
        } 

        char outputstr[len]; 

        strcpy( outputstr, filename ); 
        strcat( outputstr, "_" ); 

        char str[100]; 
        strcat( outputstr, "p=" ); 

        sprintf( str, "%u", plain ); 
        strcat( outputstr, str ); 

        strcat( outputstr, "_t=" ); 
        sprintf( str, "%u", textured ); 

        strcat( outputstr, str ); 
        strcat( outputstr, "_lvt=" ); 

        sprintf( str, "%f", lowVarTh ); 
        strcat( outputstr, str ); 

        if(newTruncMethod == 1) 
        { 

          strcat( outputstr, "_t" ); 
          sprintf( str, "%u", plain ); 

          strcat( outputstr, str ); 
        } 

        else if(newTruncMethod == 0) 
        { 

          strcat( outputstr, "_d" ); 
          sprintf( str, "%u", plain ); 
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          strcat( outputstr, str ); 

        } 
        strcat( outputstr, ".yuv" ); 

 

        // calculate Y (luminance) and UV (chrominance) byte component sizes 

        lumsize = xres * yres; 
        chromsize = lumsize / 2; 

 

        // assume argv[1] is the filename to open 

        // open file using "rb" = read binary file access mode 

        fileptr = fopen( argv[1], "rb" ); 

 

        // if fopen returns a NULL pointer it failed to open the file 

        if( fileptr == NULL ) 
        { 

            printf( "Could not open file. Exiting program.\n" ); 
            exit( EXIT_FAILURE ); 

        } 
        else // file opened successful -> allocate memory buffer space 

        { 
            printf( "YUV input file opened successfully!\n" ); 

            fseek( fileptr, 0, SEEK_END ); // jump to end of file 
            filelen = ftell( fileptr ); // get current byte offset in file 

            framecount = ( 2 * filelen ) / ( xres * yres * 3 ); 

            printf( "Size of YUV file: %lu\n# of frames in video: %lu\n", filelen, framecount ); 
            rewind( fileptr ); // jump to beginning of file 

 

            // calculate the total size of the input file in bytes 

            uint64_t totalSizeOfInputFile = xres * yres * framecount * 3 / 2; 

 

            buffer = ( uint8_t * ) malloc( filelen + 1 ); // enough memory for file + \0 (EOF) 
            compare = ( uint8_t * ) malloc( filelen + 1 ); // enough memory for file + \0 (EOF) 

            reset = buffer; 
            rstCompare = compare; 

            if( buffer == NULL || compare == NULL ) 
            { 

                printf( "Failed to allocate memory. Exiting program.\n" ); 
                exit( EXIT_FAILURE ); 

            } 
            else 

            { 
                printf( "Memory allocated successfully!\n" ); 

            } 

 

            uint64_t bytesReadIntoBuffer = fread( buffer, 1, filelen, fileptr ); // read file 

 

            rewind( fileptr ); // jump to beginning of file 

 

            uint64_t bytesReadIntoCompare = fread( compare, 1, filelen, fileptr ); // read file 

 

            if( bytesReadIntoBuffer != bytesReadIntoCompare || bytesReadIntoBuffer !=  

                totalSizeOfInputFile || bytesReadIntoCompare != totalSizeOfInputFile ) 
            { 

              printf( "Input file size error. Exiting program.\n" ); 
              exit( EXIT_FAILURE ); 

            } 

 

            printf( "File read into memory!\n" ); 

 

            buffer = reset;          // reset buffer pointer address to beginning 
            compare = rstCompare;    // reset compare buffer pointer address to beginning 

            uint64_t index = 0;      // current array index (keeps track of traversing the video) 
            uint64_t frameIndex = 0; // keeps track of current frame number 

            double macroblock[256]; // all luminance bytes for current macroblock 

 

            while( index < filelen ) // loop until EOF 
            { 

                // report the progress of the program to the user 

                if( index % ( lumsize / 2 ) == 0 ) 

                { 
                    frameIndex++; 
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                    double percent = (double)frameIndex / (double)framecount * 100.0; 

                    printf( "\rFrame: %lu/%lu (%.2f%%)", frameIndex, framecount, percent ); 
                } 

 

                uint8_t *currentFrame = buffer; // remember start of frame for truncating data 

 

                // will contain how many bits to truncate for each byte in the frame 

                uint8_t frameTruncationValues[xres][yres]; 

 

                // move 1D array into a 2D array (frame) of luminance data 

                uint8_t luminanceFrame[xres][yres]; 

                for( uint32_t yIdx = 0; yIdx < yres; yIdx++ ) 
                { 

                    for( uint32_t xIdx = 0; xIdx < xres; xIdx++ ) 
                    { 

                        luminanceFrame[xIdx][yIdx] = *buffer; 
                        buffer++; 

                        index++; 
                    } 

                } 

 

                uint32_t xpos = 0; // x position of top left pixel of current MB on current frame 
                uint32_t ypos = 0; // y position of top left pixel of current MB on current frame 

                bool continueLoop = true; 

                // count plain MBs for the current frame for reporting to user via .csv file 
                uint32_t plainMacroblocksForCurrentFrame = 0; 

                uint32_t totalMBForCurrentFrame = 0; // the total MB in the current frame 
                while( continueLoop ) 

                { 
                    uint32_t totalElementsInMB = 0; 

 

                    // get all bytes from the current macroblock 

                    uint32_t mbIndex = 0; 
                    for( uint32_t j = ypos; j < ypos + 16; j++ ) 

                    { 
                      if( j < yres ) // ensure we are within the vertical bounds of the frame 

                      { 
              for( uint32_t i = xpos; i < xpos + 16; i++ ) 

              { 
                if( i < xres ) // ensure we are within the horizontal bounds of the frame 

                { 
                  macroblock[mbIndex] = (double) luminanceFrame[i][j]; 

 

                  // use calculated power function to map to real world luminance value 

                  macroblock[mbIndex] = 0.0001560911143834408 * pow( macroblock[mbIndex],  
                                        2.628389343175764); 

 

                  mbIndex++; 

                  totalElementsInMB++; 

                } 
              } 

                      } 
                    } 

 

                    // calculate average luminance for the current macroblock 

                    double luminanceSum = 0; 
                    for( uint16_t idx = 0; idx < totalElementsInMB; idx++ ) 

                    { 
                        luminanceSum += macroblock[idx]; 

                    } 
                    double averageMBLuminance = luminanceSum / (double) totalElementsInMB; 

 

                    // calculate the variance of the luminance values for the current macroblock 

                    double variance = 0.0f; 
                    for( uint16_t idx = 0; idx < totalElementsInMB; idx++ ) 

                    { 
                        variance += ( pow( macroblock[idx] - averageMBLuminance, 2 ) / (double)  

                                    totalElementsInMB ); 
                    } 

 

                    totalMBForCurrentFrame++; 
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                    totalMBCount++; 

                    if(variance <= lowVarTh) 
                    { 

                      plainMacroblocksForCurrentFrame++; 
                        plainMBCount++; 

                    } 

 

                    // decide amount of bits to truncate based on luminance variance and scenario 

                    for( uint32_t j = ypos; j < ypos + 16; j++ ) 

                    { 
                      if( j < yres ) // ensure we are within the vertical bounds of the frame 

                      { 
              for( uint32_t i = xpos; i < xpos + 16; i++ ) 

              { 
                if( i < xres ) // ensure we are within the horizontal bounds of the frame 

                { 
                  frameTruncationValues[i][j] = truncationAmount(variance); 

                } 
              } 

                      } 
                    } 

 

                    // adjust xpos and ypos for next macroblock 

                    if(xpos + 16 < xres) 

                    { 
                        xpos += 16; 

                    } 
                    else 

                    { 
                        xpos = 0; 

                        if(ypos + 16 < yres) 
                        { 

                            ypos += 16; 
                        } 

                        else 
                        { 

                            continueLoop = false; 
                        } 

                    } 
                } 

 

                // output plain macroblock percentage to a .csv file if the user wants it output 

                if( outputCSV ) 
                { 

                  // open file using "a" = append file access mode 

                  csvFilePtr = fopen( plain_data, "a" ); 

                  if ( csvFilePtr != NULL ) 
                  { 

                     fprintf( csvFilePtr, "%f%%\n", plainMacroblocksForCurrentFrame * 100.0f /  

                     totalMBForCurrentFrame ); 
                     fclose( csvFilePtr ); 

                  } 
                  else 

                  { 
                    printf("Error opening .csv file..."); 

                  } 
                } 

 

                // truncate bits for each byte in the video based on truncation values calculated 

                for( uint32_t yIdx = 0; yIdx < yres; yIdx++ ) 
                { 

                    for( uint32_t xIdx = 0; xIdx < xres; xIdx++ ) 
                    { 

                        *currentFrame = truncateBits( luminanceFrame[xIdx][yIdx],  
                                        frameTruncationValues[xIdx][yIdx] ); 

                        currentFrame++; 
                    } 

                } 

 

                // skip the chrominance bytes (we are only using luma bytes currently) 

                if( index < filelen ) 
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                { 

                    buffer += chromsize; // adjust pointer address to next set of luminance bytes 
                    index += chromsize; // adjust index to next set of luminance bytes 

                } 
            } 

            // completed! 
            printf( "\rProcessing frame: %lu/%lu (100.00%%)\n", framecount, framecount ); 

 

            buffer = reset; 

            compare = rstCompare; 
            psnrValue = psnr( buffer, compare ); 

            if( psnrValue == 99.0f ) 
            { 

                printf( "\nThe output video is exactly the same as the original video.\n\n" ); 
            } 

            else 
            { 

                printf( "\nPSNR of output video: %f dB (p=%u, t=%u, lvt=%f)\n\n", psnrValue,  
                        plain, textured, lowVarTh ); 

            } 

 

            if(outputTruncatedFile) 
            { 

        // open file using "w+b" = write/update binary file access mode 

        fileptr = fopen( outputstr, "w+b" ); 

 

        // if fopen returns NULL pointer it failed to open the file 

        if( fileptr == NULL ) 

        { 
          printf( "Could not write output file. Exiting program.\n" ); 

          exit( EXIT_FAILURE ); 
        } 

        else // file opened successful -> write back YUV data 
        { 

          buffer = reset; // reset buffer pointer address to write data 
          printf( "Created file name: %s, now writing data...\n", outputstr ); 

          fwrite( buffer, 1, filelen, fileptr ); // write the data to the file 
          fclose( fileptr ); // close the file 

        } 

 

        printf( "Data was successfully output!\n" ); 
      } 

 

      printf( "Freeing up allocated memory\n" ); 

      buffer = reset; // reset buffer pointer address to free memory 
      free( buffer ); // deallocate memory block 

    } 
  } 

 

  printf( "\nLow Variance (Plain) MB Count: %u / %u (%f%%)\n", (uint32_t) plainMBCount,  
          totalMBCount, plainMBCount * 100.0f / totalMBCount ); 

 

  printf( "\nPSNR of truncated video: %f dB\n\n", psnrValue ); 

 

  if(outputCSV) 

  { 
    printf( "Plain %% per frame was output to .csv file!\n\n" ); 

  } 

 

  return 0; // program success 
} 
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APPENDIX D. SYNAPTIC STORAGE FOR DEEP LEARNING MODEL CODE 

# Synaptic Storage for Deep Learning Neural Network Model Code 

# Jonathon Edstrom - 2017 

# Allows for adjusting 6T and 8T cells, their failure rates, 

# ability to inject faults, and correct bits based on patterns 

# Department: NDSU ECE Graduate Research 

# Project: Data-Driven Intelligent Efficient Synaptic Storage for Deep Learning 

 

import random 
import sys, os, struct, datetime, time 

import h5py 
import numpy as np 

from ctypes import * 

 

#define parameters 

batch_size = 128 

num_epochs = 20 
hidden_size = 20 

failure_rate_6T = float(sys.argv[1]) 
failure_rate_8T = 0 

seed_value = int(sys.argv[3]) 
correction = int(sys.argv[2]) 

weights_seed = seed_value + int(failure_rate_6T * 1000) 
corr_bit_num = int(sys.argv[4]) 

 

np.random.seed(seed_value) 

 

from keras.datasets import mnist # subroutines for fetching the MNIST dataset 
from keras.models import Model # basic class for specifying and training a neural network 

from keras.models import load_model 
from keras.layers import Input, Dense # the two types of neural network layer we will be using 

from keras.utils import np_utils # utilities for one-hot encoding of ground truth values 
from keras.callbacks import Callback, EarlyStopping 

from keras import initializers 

 

 

# Convert float32 to binary (IEEE 754 single precision floating point number) 

def binary(num): 
  return ''.join(bin(ord(c)).replace('0b', '').rjust(8, '0') for c in struct.pack('!f', num)) 

 

# Inject Faults into a dataset of weights 

def inject_faults_weights(dataset): 
  if correction == 0: 

    i = 0 
    j = 0 

    for rows in dataset: 
      for cols in rows: 

        for bit in range(0,30): 
          randomNum = random.random() 

          # inject failures based on failure rate 

          if randomNum <= failure_rate_6T: 
            bits = cast(pointer(c_float(dataset[i][j])), POINTER(c_int32)).contents.value 

            bits ^= (1 << bit) 
            dataset[i,j] = cast(pointer(c_int32(bits)), POINTER(c_float)).contents.value 

 

        j += 1 

      i += 1 
      j = 0 

 

  if correction == 1: 

    i = 0 
    j = 0 

    for rows in dataset: 
      for cols in rows: 

        for bit in range(0,30): 
          randomNum = random.random() 

          # inject failures based on failure rate 

          if randomNum <= failure_rate_6T: 

            bits = cast(pointer(c_float(dataset[i][j])), POINTER(c_int32)).contents.value 
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            pre_fault_bits = bits 

            post_fault_bits = 0 
            if bit >= corr_bit_num: 

              bits ^= (1 << bit) 
              w1 = (bits >> 30) & 1 

              if w1 == 0: 
                bits |= (1 << bit) 

                post_fault_bits = bits 
            else: 

              bits ^= (1 << bit) 
            if post_fault_bits != 0 and post_fault_bits != pre_fault_bits: 

              with open('ERRORS_failure={}_correction={}.txt'.format(failure_rate_6T,  
                        correction), 'a') as f: 

                pre_float = cast(pointer(c_int32(pre_fault_bits)),  
                                 POINTER(c_float)).contents.value 

                post_float = cast(pointer(c_int32(post_fault_bits)),  
                                  POINTER(c_float)).contents.value 

                f.write("w{},{},{},{},{},{}\n".format(bit, pre_fault_bits, pre_float,  
                        post_fault_bits, post_float, post_float/pre_float)) 

            dataset[i,j] = cast(pointer(c_int32(bits)), POINTER(c_float)).contents.value 
        j += 1 

      i += 1 
      j = 0 

 

# Inject Faults into a dataset of biases 

def inject_faults_bias(dataset): 

  if correction == 0: 
    i = 0 

    for rows in dataset: 
      for bit in range(0,30): 

        randomNum = random.random() 

 

        # inject failures based on failure rate 

        if randomNum <= failure_rate_6T: 

          bits = cast(pointer(c_float(dataset[i])), POINTER(c_int32)).contents.value 
          bits ^= (1 << bit) 

          dataset[i] = cast(pointer(c_int32(bits)), POINTER(c_float)).contents.value 
      i += 1 

 

  if correction == 1: 

    i = 0 
    for rows in dataset: 

      for bit in range(0,30): 
        randomNum = random.random() 

 

        # inject failures based on failure rate 

        if randomNum <= failure_rate_6T: 
          bits = cast(pointer(c_float(dataset[i])), POINTER(c_int32)).contents.value 

          pre_fault_bits = bits 

          post_fault_bits = 0 
          if bit >= corr_bit_num: 

            bits ^= (1 << bit) 
            w1 = (bits >> 30) & 1 

            if w1 == 0: 
              bits |= (1 << bit) 

              post_fault_bits = bits 
          else: 

            bits ^= (1 << bit) 
          if post_fault_bits != 0 and post_fault_bits != pre_fault_bits: 

              with open('ERRORS_failure={}_correction={}.txt'.format(failure_rate_6T,  
                        correction), 'a') as f: 

                pre_float = cast(pointer(c_int32(pre_fault_bits)),  
                                 POINTER(c_float)).contents.value 

                post_float = cast(pointer(c_int32(post_fault_bits)),  
                                  POINTER(c_float)).contents.value 

                f.write("b{},{},{},{},{},{}\n".format(bit, pre_fault_bits, pre_float,  
                        post_fault_bits, post_float, post_float/pre_float)) 

          dataset[i] = cast(pointer(c_int32(bits)), POINTER(c_float)).contents.value 
      i += 1 
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def main(): 

 

  if corr_bit_num != 26 and corr_bit_num != 28: 

    print('bad corr_bit_num!!!') 
    exit() 

 

  print('Weights seed: {}\n\n'.format(weights_seed)) 

 

  class TrainingHistory(Callback): 

 

    def on_train_begin(self, logs={}): 

      self.i = 0 
      with open('ERRORS_failure={}_correction={}.txt'.format(failure_rate_6T, correction), 'a')  

                as f: 
        f.write("bit,pre_fault_bits,pre_float,post_fault_bits,post_fault,error\n") 

 

    def on_epoch_begin(self, epoch, logs={}): 

      with open('ERRORS_failure={}_correction={}.txt'.format(failure_rate_6T, correction), 'a')  
                as f: 

        f.write("\nEPOCH {} of {}:\n\n".format(epoch+1, num_epochs)) 

 

    def on_batch_end(self, batch, logs={}): 
      self.i += 1 

 

      # save the weights into a file 

      model.save_weights('new_model_weights.h5') 

 

      # access weights memory locations 

      wf = h5py.File('new_model_weights.h5', 'r+') 
      data_w_1 = wf['dense_1/dense_1/kernel'] 

      data_b_1 = wf['dense_1/dense_1/bias'] 
      data_w_2 = wf['dense_2/dense_2/kernel'] 

      data_b_2 = wf['dense_2/dense_2/bias'] 
      data_w_3 = wf['dense_3/dense_3/kernel'] 

      data_b_3 = wf['dense_3/dense_3/bias'] 

 

      # seed random number generator to keep faults in same position 

      random.seed(int(seed_value)) 

 

      # inject faults into weights/biases directly 

      inject_faults_weights(data_w_1) 
      inject_faults_bias(data_b_1) 

      inject_faults_weights(data_w_2) 
      inject_faults_bias(data_b_2) 

      inject_faults_weights(data_w_3) 
      inject_faults_bias(data_b_3) 

     

      # close the file containing the editted weights 

      wf.close() 

 

      # load editted weights into the model 

      model.load_weights('new_model_weights.h5') 

 

  num_train = 60000 # there are 60000 training examples in MNIST 
  num_test = 10000 # there are 10000 test examples in MNIST 

 

  height, width, depth = 28, 28, 1 # MNIST images are 28x28 and greyscale 

  num_classes = 10 # there are 10 classes (1 per digit) 

 

  (X_train, y_train), (X_test, y_test) = mnist.load_data() # fetch MNIST data 

 

  X_train = X_train.reshape(num_train, height * width) # Flatten data to 1D 
  X_test = X_test.reshape(num_test, height * width) # Flatten data to 1D 

  X_train = X_train.astype('float32')  
  X_test = X_test.astype('float32') 

  X_train /= 255 # Normalise data to [0, 1] range 
  X_test /= 255 # Normalise data to [0, 1] range 

 

  Y_train = np_utils.to_categorical(y_train, num_classes) # One-hot encode the labels 

  Y_test = np_utils.to_categorical(y_test, num_classes) # One-hot encode the labels 
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  inp = Input(shape=(height * width,)) # Our input is a 1D vector of size 784 

  hidden_1 = Dense(hidden_size, activation='relu', init=initializers.random_normal(mean=0.0,  
                   stddev=0.05, seed=weights_seed))(inp) # First hidden ReLU layer 

  hidden_2 = Dense(hidden_size, activation='relu', init=initializers.random_normal(mean=0.0,  
                   stddev=0.05, seed=weights_seed))(hidden_1) # Second hidden ReLU layer 

  out = Dense(num_classes, activation='softmax', init=initializers.random_normal(mean=0.0,  
              stddev=0.05, seed=weights_seed))(hidden_2) # Output softmax layer 

 

  model = Model(input=inp, output=out) # Define the model by specifying input and output layers 

 

  model.compile(loss='categorical_crossentropy', # using the cross-entropy loss function 

        optimizer='adagrad', # using the Adagrad optimiser 
        metrics=['accuracy']) # reporting the accuracy 

 

  history = TrainingHistory() 

 

  hist = model.fit(X_train, Y_train, # Train the model using the training set... 

      batch_size=batch_size, nb_epoch=num_epochs, 
      verbose=1, validation_split=0.1, callbacks=[history]) 

   

  with open('output_failure={}_correction={}.txt'.format(failure_rate_6T, correction), 'a') as f: 

    f.write("acc:\n") 
    f.write('\n'.join(str(element) for element in hist.history["acc"])) 

    f.write("\n\nval_acc:\n") 

    f.write('\n'.join(str(element) for element in hist.history["val_acc"])) 
    f.write("\n\nloss:\n") 

    f.write('\n'.join(str(element) for element in hist.history["loss"])) 
    f.write("\n\nval_loss:\n") 

    f.write('\n'.join(str(element) for element in hist.history["val_loss"])) 

   

  scores = model.evaluate(X_test, Y_test, verbose=0) # Evaluate trained model on the test set 
  with open('output_failure={}_correction={}.txt'.format(failure_rate_6T, correction), 'a') as f: 

    f.write("\n\nAccuracy: %.2f%%\n" % (scores[1]*100)) 
  print("\nAccuracy: %.2f%%" % (scores[1]*100)) 

 

# if running directly from command line 

if __name__ == "__main__": 
  if(True): 

    main() 
  else: 

    print('Incorrect number of arguments... Exiting.') 
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APPENDIX E. MNIST BIT FAULT INJECTION PROGRAM 

/* 

  MNIST Bit Fault Injection Program 

  Jonathon Edstrom – 2018-2019 

  Injects faults to MNIST Training/Test Dataset 

  Department: NDSU ECE Graduate Research 

*/ 

 

// includes 

#include <unistd.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <time.h> 

#include <string.h> 

#include <math.h> 

// Mersenne Twister Random Number Generator 

#include "twister.h" // https://www.mcs.anl.gov/~kazutomo/hugepage-old/twister.c 

 

typedef enum { false, true } bool; 

 

// instantiate globals 

FILE *fileptr; // pointer for YUV data input/output files 

unsigned char *buffer; // pointer for YUV data allocated memory 
unsigned char *reset; // pointer value to reset the buffer to the beginning 

unsigned char temp; // holds the byte value while faults are injected 
unsigned long long int filelen; // length of the input file (total bytes) 

// decimal that sets how often a bit has a fault 

long double s7_error, s6_error, s5_error, s4_error, s3_error, s2_error, s1_error, s0_error;  

// for counting the amount of errors we actually apply for each bit 

long int s7_errorCount, s6_errorCount, s5_errorCount, s4_errorCount,  
         s3_errorCount, s2_errorCount, s1_errorCount, s0_errorCount; 

long double randomNumber; // used for storing random numbers for inputting faults 
unsigned int seedValue; // seed value for random number generator 

unsigned int sramWidth, sramHeight; // dimensions of the SRAM in terms of bit-cells 
unsigned long long int errorCounter = 0, totalCounter = 0; // verify error rate works 

double s7_errorPercentage, s6_errorPercentage, s5_errorPercentage, s4_errorPercentage,  
       s3_errorPercentage, s2_errorPercentage, s1_errorPercentage, s0_errorPercentage; 

 

// function definitions 

unsigned char applyFaults( unsigned char ); 
unsigned char injectFault( unsigned char, long double ); 

 

// application entry point 

int main(int argc, char * argv[]) 
{ 

  printf( "\nMNIST Training Data Bit Fault Injection Program (J.E. 2018-2019)\n" ); 

 

    // seed the Mersenne Twister PRNG 

    seedMT((unsigned) time(NULL)); 

     

  if( argc != 14 && argc != 15 ) // argc should be 13 or 14 for correct execution 
  { 

    // print argv[0] assuming it is the program name with the following usage hint to user 

    printf ( "usage: %s filename sramWidth sramHeight outputFile? s7_error s6_error s5_error  

              s4_error s3_error s2_error s1_error s0_error unique_id [optional]seedValue\n",  
              argv[0] ); 

  } 
  else // correct number of arguments 

  { 

    // initialize global variables 

    sramWidth = atoi( argv[2] ); // test chip from paper uses 256 
    sramHeight = atoi( argv[3] ); // test chip from paper uses 256 

    s7_error = atof( argv[5] ); 
    s6_error = atof( argv[6] ); 

    s5_error = atof( argv[7] ); 
    s4_error = atof( argv[8] ); 

    s3_error = atof( argv[9] ); 
    s2_error = atof( argv[10] ); 

    s1_error = atof( argv[11] ); 
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    s0_error = atof( argv[12] ); 

        unsigned int unique_id = atoi( argv[13] ); 

         

        printf( "Unique ID: %u\n", unique_id ); 

 

    // set up random number generator 

    if( argc == 15 ) 

    { 
      seedValue = atoi( argv[14] ); 

      srand(seedValue); // seed to user specified argument value 
    } 

    else 
    { 

      seedValue = (unsigned) time(NULL); 
      srand( seedValue ); // seed to random number using time 

    } 

 

    // assume argv[1] is the filename to open 

    // open file using "rb" = read binary file access mode 

    fileptr = fopen( argv[1], "rb" ); 

 

    // if fopen returns a NULL pointer it failed to open the file 

    if( fileptr == NULL ) 

    { 

      printf( "Could not open file: %s. Exiting program.\n", argv[1] ); 
      exit( EXIT_FAILURE ); 

    } 
    else // files opened successfully -> allocate memory buffer space 

    { 
      printf( "Input file opened successfully!\n" ); 

      fseek( fileptr, 0, SEEK_END ); // jump to end of file 
      filelen = ftell( fileptr ); // get current byte offset in file compare file 

 

      //printf( "Size of input file in bytes: %llu\n", filelen ); 

 

      // verify that the file is the correct size 

      if( filelen != 47040016 && filelen != 7840016 ) 
      { 

        printf( "Input file should be 47,040,016 bytes (training images) or 7,840,016 bytes (test  
                 images) in size. Please check the input file. Exiting program.\n" ); 

        exit( EXIT_FAILURE ); 
      } 

 

      rewind( fileptr ); // jump to beginning of file 

 

      buffer = ( unsigned char * ) malloc( filelen + 1 ); // enough memory for file + \0 (EOF) 

      reset = buffer; 
      if( buffer == NULL ) 

      { 

        printf( "Failed to allocate memory for file. Exiting program.\n" ); 
        exit( EXIT_FAILURE ); 

      } 
      else 

      { 
        printf( "Memory allocated successfully!\n" ); 

      } 

 

      fread( buffer, 1, filelen, fileptr ); // read file into memory 

 

      fclose( fileptr ); // close the file 

 

      buffer = reset; // reset buffer pointer address to beginning 
      buffer += 16; // skip first 16 bytes (header info = not part of the training/test dataset) 

 

      unsigned long long int dataset_index = 16; // current array index (skip 16 byte header) 

      unsigned long long int sram_index = 0; // keeps track of SRAM byte index 
      while( dataset_index < filelen ) // loop until EOF 

      { 
        srand(seedValue); // reset location of faults for each frame 

        // loop until we hit the maximum size the 'SRAM prototype' can hold         

        while( sram_index < (sramWidth * sramHeight / 8) && dataset_index < filelen )  
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        { 

          temp = *buffer; // store current byte 
          *buffer = applyFaults( temp ); // truncate 

 

          // increment buffer address, dataset_index and sram_index variables 

          buffer++; 
          dataset_index++; 

          sram_index++; 
        } 

 

        sram_index = 0; // reset SRAM byte index 

 

        // calculate progress and print 

        //printf( "\rProgress: %f%%", dataset_index * 100.0f / filelen ); 

      } 

 

      //printf( "\n" ); 

 

      // calculate the actual error percentages 

      s7_errorPercentage = (float)s7_errorCount / ( (float)totalCounter / 8 ); 
      s6_errorPercentage = (float)s6_errorCount / ( (float)totalCounter / 8 ); 

      s5_errorPercentage = (float)s5_errorCount / ( (float)totalCounter / 8 ); 
      s4_errorPercentage = (float)s4_errorCount / ( (float)totalCounter / 8 ); 

      s3_errorPercentage = (float)s3_errorCount / ( (float)totalCounter / 8 ); 

      s2_errorPercentage = (float)s2_errorCount / ( (float)totalCounter / 8 ); 
      s1_errorPercentage = (float)s1_errorCount / ( (float)totalCounter / 8 ); 

      s0_errorPercentage = (float)s0_errorCount / ( (float)totalCounter / 8 ); 

 

      // create output file name string 

      int len = strlen( argv[1] ); // get length of input file name 

      char filename[len]; 
      strcpy( filename, argv[1] ); // get input file name 

      len = len + 100; // add correct amount for output file naming 
      char outputstr[len]; 

      strcpy( outputstr, filename ); 
      strcat( outputstr, "_faults_" ); 

            strcat( outputstr, argv[13] ); 

             

            //printf( "Output filename: %s\n", outputstr ); 

 

      // output to file 

      if( atoi( argv[4] ) == 1 ) 

      { 

        // open file using "w+b" = write/update binary file access mode 

        fileptr = fopen( outputstr, "w+b" ); 

 

        // if fopen returns NULL pointer it failed to open the file 

        if( fileptr == NULL ) 

        { 

          printf( "Could not write output file. Exiting program.\n" ); 
          exit( EXIT_FAILURE ); 

        } 
        else // file opened successful -> write back YUV data 

        { 
          buffer = reset; // reset buffer pointer address to write data 

          //printf( "Created file: %s, now writing data...\n", outputstr ); 

          fwrite( buffer, 1, filelen, fileptr ); // write the data to the file 

          fclose( fileptr ); // close the file 
        } 

      } 

 

      //printf( "Freeing up allocated memory...\n" ); 

      buffer = reset; // reset buffer pointer address to free memory 

      free( buffer ); // deallocate memory block 

 

      if( atoi( argv[4] ) == 1 ) 
      { 

        printf( "Data was successfully output!\n" ); 
      } 

 

      printf( "S7 Error Rate: %.10f\n", s7_errorPercentage ); 
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      printf( "S6 Error Rate: %.10f\n", s6_errorPercentage ); 

      printf( "S5 Error Rate: %.10f\n", s5_errorPercentage ); 
      printf( "S4 Error Rate: %.10f\n", s4_errorPercentage ); 

      printf( "S3 Error Rate: %.10f\n", s3_errorPercentage ); 
      printf( "S2 Error Rate: %.10f\n", s2_errorPercentage ); 

      printf( "S1 Error Rate: %.10f\n", s1_errorPercentage ); 
      printf( "S0 Error Rate: %.10f\n", s0_errorPercentage ); 

    } 
  } 

 

  return 0; // program success 

} 

 

// helper function to apply faults to MNIST data byte 

unsigned char applyFaults( unsigned char byte ) 

{ 

  // instantiate local variables 

  unsigned int bit_position; 
  unsigned char value, bit1, bit2, bit3, bit4, bit5, bit6, bit7, bit8, newbit1, newbit2, newbit3,  

                newbit4, newbit5, newbit6, newbit7, newbit8, output; 

 

  // get individual bits from byte 

  for( bit_position = 0; bit_position < 8; bit_position++) 

  { 

    switch( bit_position ) { 
      case 0: 

        value = ( byte & 128 ); // bitwise AND with 10000000 
        if( value > 0 ) 

        { 
          bit1 = 1; 

        } 
        else 

        { 
          bit1 = 0; 

        } 
        newbit1 = injectFault( bit1, s7_error ); 

        if( bit1 != newbit1 ) 
        { 

          s7_errorCount++; 
        } 

        break; 
      case 1: 

        value = ( byte & 64 ); // bitwise AND with 01000000 
        if( value > 0 ) 

        { 
          bit2 = 1; 

        } 
        else 

        { 

          bit2 = 0; 
        } 

        newbit2 = injectFault( bit2, s6_error ); 
        if( bit2 != newbit2 ) 

        { 
          s6_errorCount++; 

        } 
        break; 

      case 2: 
        value = ( byte & 32 ); // bitwise AND with 00100000 

        if( value > 0 ) 
        { 

          bit3 = 1; 
        } 

        else 
        { 

          bit3 = 0; 
        } 

        newbit3 = injectFault( bit3, s5_error ); 
        if( bit3 != newbit3 ) 

        { 
          s5_errorCount++; 
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        } 

        break; 
      case 3: 

        value = ( byte & 16 ); // bitwise AND with 00010000 
        if( value > 0 ) 

        { 
          bit4 = 1; 

        } 
        else 

        { 
          bit4 = 0; 

        } 
        newbit4 = injectFault( bit4, s4_error ); 

        if( bit4 != newbit4 ) 
        { 

          s4_errorCount++; 
        } 

        break; 
      case 4: 

        value = ( byte & 8 ); // bitwise AND with 00001000 
        if( value > 0 ) 

        { 
          bit5 = 1; 

        } 

        else 
        { 

          bit5 = 0; 
        } 

        newbit5 = injectFault( bit5, s3_error ); 
        if( bit5 != newbit5 ) 

        { 
          s3_errorCount++; 

        } 
        break; 

      case 5: 
        value = ( byte & 4 ); // bitwise AND with 00000100 

        if( value > 0 ) 
        { 

          bit6 = 1; 
        } 

        else 
        { 

          bit6 = 0; 
        } 

        newbit6 = injectFault( bit6, s2_error ); 
        if( bit6 != newbit6 ) 

        { 
          s2_errorCount++; 

        } 

        break; 
      case 6: 

        value = ( byte & 2 ); // bitwise AND with 00000010 
        if( value > 0 ) 

        { 
          bit7 = 1; 

        } 
        else 

        { 
          bit7 = 0; 

        } 
        newbit7 = injectFault( bit7, s1_error ); 

        if( bit7 != newbit7 ) 
        { 

          s1_errorCount++; 
        } 

        break; 
      case 7: 

        value = ( byte & 1 ); // bitwise AND with 00000001 
        if( value > 0 ) 

        { 
          bit8 = 1; 
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        } 

        else 
        { 

          bit8 = 0; 
        } 

        newbit8 = injectFault( bit8, s0_error ); 
        if( bit8 != newbit8 ) 

        { 
          s0_errorCount++; 

        } 
        break; 

      default: 
        printf( "Something went wrong. Exiting program.\n" ); 

        exit( EXIT_FAILURE ); 
    } 

  } 

 

  // construct byte from bits after faults were applied 

  output = ( ( newbit1 << 7 ) | ( newbit2 << 6 ) | ( newbit3 << 5 ) | ( newbit4 << 4 ) |  

             ( newbit5 << 3 ) | ( newbit6 << 2 ) | ( newbit7 << 1 ) | newbit8 ); 

 

  return output; 
} 

 

// function that will inject a fault to the input bit according to the error rate 

unsigned char injectFault( unsigned char bit, long double errorRate ) 

{ 
    bool fault = false; 

     

  // Don't divide by 0 

  if( errorRate != 0.0 ) 
  { 

      // get a random number based on the Mersenne Twister Algorithm 

      unsigned long twisterRandomNumber = randomMT(); 

      long double randomFloat = (double)twisterRandomNumber/4294967295; 
      if(randomFloat <= errorRate) 

      { 
        fault = true; 

      } 
  } 

 

  if( fault ) 

  { 
        totalCounter++; 

    // apply fault 

    if( bit == 0 ) 

    { 
      return 1; 

    } 

    else 
    { 

      return 0; 
    } 

  } 
  else 

  { 

    // no fault 

    totalCounter++; 
    return bit; 

  } 
} 

 

 


