
EMBRACING VISUAL EXPERIENCE AND DATA KNOWLEDGE: EFFICIENT

EMBEDDED MEMORY DESIGN FOR BIG VIDEOS AND DEEP LEARNING

A Thesis
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Jonathon David Edstrom

In Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Major Department:
Electrical and Computer Engineering

May 2019

Fargo, North Dakota

North Dakota State University

Graduate School

Title
 EMBRACING VISUAL EXPERIENCE AND DATA KNOWLEDGE:

EFFICIENT EMBEDDED MEMORY DESIGN FOR BIG VIDEOS AND
DEEP LEARNING

 By

Jonathon David Edstrom

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 DOCTOR OF PHILOSOPHY

 SUPERVISORY COMMITTEE:

Scott Smith

 Chair

Na Gong

Sudarshan Srinivasan

Yiwen Xu

Mijia Yang

 Approved:

 5/3/19 Benjamin D. Braaten
 Date Department Chair

iii

ABSTRACT

Energy efficient memory designs are becoming increasingly important, especially for

applications related to mobile video technology and machine learning. The growing popularity of

smart phones, tablets and other mobile devices has created an exponential demand for video

applications in today’s society. When mobile devices display video, the embedded video

memory within the device consumes a large amount of the total system power. This issue has

created the need to introduce power-quality tradeoff techniques for enabling good quality video

output, while simultaneously enabling power consumption reduction. Similarly, power efficiency

issues have arisen within the area of machine learning, especially with applications requiring

large and fast computation, such as neural networks. Using the accumulated data knowledge

from various machine learning applications, there is now the potential to create more intelligent

memory with the capability for optimized trade-off between energy efficiency, area overhead,

and classification accuracy on the learning systems. In this dissertation, a review of recently

completed works involving video and machine learning memories will be covered. Based on the

collected results from a variety of different methods, including: subjective trials, discovered data-

mining patterns, software simulations, and hardware power and performance tests, the presented

memories provide novel ways to significantly enhance power efficiency for future memory

devices. An overview of related works, especially the relevant state-of-the-art research, will be

referenced for comparison in order to produce memory design methodologies that exhibit

optimal quality, low implementation overhead, and maximum power efficiency.

iv

ACKNOWLEDGEMENTS

I would like to thank Dr. Na Gong for her time, guidance, and knowledge in completing

all the works presented in this dissertation. I would also like to thank my other committee

members, Dr. Scott Smith, Dr. Yiwen Xu, Dr. Sudarshan Srinivasan, and Dr. Mijia Yang for

their feedback and assistance in presentations, papers and other advice given during my doctoral

study. I am thankful for all the help provided by the other members of my lab, especially Yifu

Gong, Dongliang Chen, and Hritom Das. Their help with preparing experiments, calculating

simulation results, and verifying designs was paramount in completing the necessary work for

conferences, journals, and the completion of my doctoral requirements.

I am grateful to Dr. Mark McCourt and the Department of Psychology at NDSU for

allowing us to use their facility for psychophysical tests. I would specifically like to thank

Ganesh Padmanabhan and Enrique Alvarez Vazquez for the assistance in analyzing video

samples, preparing a mobile application testing environment for subjective trials, and preparing

results for further discussion. Without their help, the process for obtaining results would have

taken much longer and been much more difficult.

Last, I would like to recognize and thank the National Science Foundation and ND

EPSCoR for the financial support that made the included research possible. I am grateful to

NDSU’s Center for Computationally Assisted Science and Technology (CCAST) for allowing

me access to their high power computing servers for computing simulation results; without this,

a lot of my research relating to data-mining and machine learning would not have been possible.

In reference to IEEE copyrighted material, which is used with permission in this

dissertation, the IEEE do not endorse any of North Dakota State University’s products or

services. Internal or personal use of this material is permitted.

v

DEDICATION

To my parents, Fred and Terri, who have always been there to support me in everything I do.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

DEDICATION .. v

LIST OF TABLES .. x

LIST OF FIGURES ... xi

LIST OF ABBREVIATIONS .. xiii

CHAPTER 1. INTRODUCTION ... 1

Motivation for Video and Machine Learning Memory Optimization ... 1

Memory Design for Video Applications ... 2

Memory Design for Deep Learning Applications ... 5

Design Trade-offs and Evaluation ... 6

CHAPTER 2. DATA-PATTERN ENABLED SELF-RECOVERY LOW-POWER
STORAGE SYSTEM FOR BIG VIDEO DATA ... 8

Embedded Memory Failure Analysis at Near-Threshold Voltage .. 8

Data Pattern Investigation for Self-Recovery ... 10

Rule Mining Enabled Horizontal Association ... 10

Vertical Correlation ... 13

Optimal Data Patterns for Self-Recovery .. 15

Recovery Failure Caused by Double Faults in Data Patterns.. 17

DPSR Hardware Implementation .. 17

Evaluation Methodology and Results ... 20

Performance ... 20

Layout .. 20

Power Efficiency ... 21

Video Output Quality Analysis ... 22

vii

Comparison with Prior Work .. 26

DPSR Concluding Remarks .. 27

CHAPTER 3. CONTENT-ADAPTIVE MEMORY FOR VIEWER-AWARE ENERGY-
QUALITY SCALABLE MOBILE VIDEO SYSTEMS .. 28

Influence of Video Content on Viewer Experience .. 28

Mobile Video Memory System ... 28

Influence of Video Content on Viewer Experience in the Presence of Hardware
Noise .. 30

Modeling Process .. 35

Subjective Testing Procedure for Data Collection .. 36

Modeling Process .. 36

Quality Optimized Bit Truncation Design .. 40

Quality Optimized Bit Truncation ... 40

Content-Adaptation Video Memory Design ... 42

Experimental Results ... 43

Speed ... 44

Layout .. 44

Power Savings ... 45

Video Quality .. 46

Context-Aware Memory Concluding Remarks ... 51

CHAPTER 4. DATA-DRIVEN INTELLIGENT EFFICIENT SYNAPTIC STORAGE
FOR DEEP LEARNING .. 52

Synaptic Storage and Memory Failure Overview ... 52

Synaptic Storage in Artificial Neural Networks .. 53

Impact of Synaptic Memory Failures on ANN Classification Accuracy 54

Data Characteristics of Synaptic Storage .. 57

viii

Data Contribution Characteristics ... 57

Data Switching Characteristics.. 59

Data Association / Correlation Characteristics .. 60

Proposed Data-Driven Synaptic Memory ... 61

Implementation .. 61

Results ... 62

Data-Driven Synaptic Memory Concluding Remarks .. 64

CHAPTER 5. ENABLING ENERGY-EFFICIENT DIFFERENTIALLY PRIVATE
EDGE INFERENCE FOR DEEP LEARNING .. 66

Learning with Differential Privacy ... 66

Why do we need Deep Learning with Privacy? .. 66

Differentially Private Deep Learning and State of the Art .. 68

Impact of Memory Failures in Differentially Private Deep Learning Systems 71

Impact of Image Quality on Classification Accuracy ... 71

Impact of Dataset Memory in Edge Devices ... 73

Impact of Hardware on Privacy/Accuracy Trade-off .. 74

Optimization Model based Memory Design ... 75

Embedded Memory Design for Deep Learning .. 76

Optimized Memory Design ... 78

Power Consumption .. 79

Dataset Quality and Accuracy ... 79

Accuracy at Different Privacy Levels ... 81

Differential Private Edge Inference Memory Concluding Remarks ... 82

CHAPTER 6. CONCLUSIONS AND FUTURE WORK .. 83

REFERENCES ... 85

APPENDIX A. YOUTUBE-8M VIDEO DOWNLOAD SCRIPT .. 94

ix

APPENDIX B. YOUTUBE-8M VIDEO CLIPPED TIMING SCRIPT 95

APPENDIX C. MACROBLOCK ANALYSIS AND TRUNCATION PROGRAM 96

APPENDIX D. SYNAPTIC STORAGE FOR DEEP LEARNING MODEL CODE................ 104

APPENDIX E. MNIST BIT FAULT INJECTION PROGRAM ... 108

x

LIST OF TABLES

Table Page

1. Fault probability in a 32-bit SRAM word (109 Monte Carlo simulations) 10

2. Discovered association rules. Bit 1 (i.e. Y1, Cb1, Cr1) is the MSB 12

3. Vertical correlation probabilities ... 14

4. Optimal data patterns from 25 YouTube-8M videos .. 16

5. DPSR recovery failure rates .. 17

6. Video PSNR metric comparison ... 25

7. Video SSIM metric comparison .. 25

8. DPSR comparison with prior works on low power SRAM .. 27

9. Video memories and their functionality .. 29

10. Results of videos with different LSBs truncated in different memories 31

11. PSNR of different videos with bit truncated applied .. 33

12. Results of ordinal logistic regression .. 39

13. Probability mass function for random variable Y .. 41

14. ANN architecture and configurations ... 58

15. Synaptic storage comparison with existing 8T+6T hybrid design .. 65

16. 6T and 8T bit cell design options for 45nm technology at 0.5V .. 78

17. Optimal design results and comparison .. 79

18. Power consumption of optimized 45nm memory design at 0.5V ... 79

19. Dataset quality and accuracy for MNIST and Fashion ... 80

20. Impact of privacy level on test accuracy ... 82

xi

LIST OF FIGURES

Figure Page

1. Trade-off between hardware evaluation metrics ... 7

2. Error maps in SRAM array at 0.5V. (a) Error rate: 10-3 and (b) error rate: 10-2 9

3. 2D data-pattern enabled self-correction and data pattern analysis dataset 11

4. Proposed DPSR with data self-recovery ability .. 18

5. DPSR layout design ... 20

6. Power consumption of different memory operations .. 21

7. Video output using different video storage techniques ... 23

8. Mobile video memory architecture. .. 29

9. Plain macroblock visualization and video output comparison (white = plain) 35

10. Acceptable truncated bits based on subjective feedback .. 37

11. Developed decision tree model for bit truncation ... 38

12. Average PSNR values using two different truncation techniques .. 42

13. Content-adaptive video memory ... 43

14. Timing diagram (DATA7: MSB; DATA0: LSB) ... 44

15. Physical layout design ... 45

16. Power Savings ... 46

17. Psychological experiment setup .. 47

18. Video quality testing results using the decision tree model .. 49

19. Output quality of video with tag wF6lvdXXwc4 ... 50

20. (a) ANN architecture; (b) Single neuron with synaptic weights ... 53

21. (a) Schematic and (b) layout design of 6T and 8T SRAM bit cells .. 55

22. 45nm SRAM bit cell failure rates based on Vdd voltage scaling .. 56

23. IEEE 754 Single Precision Floating Point Representation ... 58

xii

24. Influence of synaptic weight bit position on ANN classification accuracy 59

25. MNIST average bit switching percentage of each bit position ... 59

26. Offline data-mining assisted synaptic data relationships study .. 60

27. Data-driven efficient synaptic storage .. 62

28. Layout of the proposed synaptic memory in 45 nm technology ... 63

29. Power consumption of synaptic storage .. 64

30. Proposed deep learning system with energy-efficiency/privacy/accuracy 70

31. Differentially private convolutional neural network used for analysis 71

32. Influence of dataset quality on test accuracy (MNIST dataset results) 72

33. Impact of errors on privacy/accuracy. MSBs protected: (a) None (b) 2 73

34. Impact of memory failure rate on the accuracy of the learning system 74

35. SRAM bit cells. Minimum sized 45nm schematic and layout: (a) 6T (b) 8T 77

36. Verification of errors on privacy/accuracy. MSBs protected: (a) None (b) 2 81

xiii

LIST OF ABBREVIATIONS

CMOS ..Complementary Metal-Oxide-Semiconductor

SRAM ..Static Random Access Memory

ECC ..Error Correcting Code

BIST ...Built-In Self-Test

LSB ..Least Significant Bit

MSB ...Most Significant Bit

IoT ..Internet of Things

PSNR..Peak Signal-To-Noise Ratio

NMOS ..N-Type Metal-Oxide-Semiconductor

PMOS ...P-Type Metal-Oxide-Semiconductor

Vdd ..Supply Voltage

RBL ..Readout Bit Line

MUX ..Multiplexer

POST ..Power-On Self-Test

RDF ..Random Dopant Fluctuation

URL..Uniform Resource Locator

DPSR..Data Pattern Self-Recovery

MSE ...Mean Squared Error

SSIM ..Structural Similarity

ANN ...Artificial Neural Network

CNN ...Convolutional Neural Network

1

 CHAPTER 1. INTRODUCTION

Recently, research and development of energy-efficient memory for general use or

application specific designs has become of great interest [1]. The need for devices that are

capable of saving power intrinsically, while maintaining a robust, minimal failure operation is

becoming more and more necessary with the growing use of portable electronics [2]. The

detailed description of multiple techniques to allow for power savings, including partially

disabling circuitry or minimizing supply voltage and the use of self-correction techniques to

mitigate errors and provide a high quality output, will be introduced in the different chapters

within this dissertation. This chapter contains a brief introduction describing the importance of

the presented designs and related works. The main two topics that will be described in detail in

this dissertation involve video and deep learning applications.

 Motivation for Video and Machine Learning Memory Optimization

According to market research, by the year 2020, the total amount of data that will have

been created, transmitted, and replicated, will be as large as 40ZB (Zettabyte, or 1021 bytes) [3,

4]; and more than half of that data will be video data [5]. Video streaming is currently one of the

most energy-intensive applications on mobile devices, with frequent memory accesses

contributing to over 30% of the total power consumption [6, 7]. The frequent memory accesses

required for these types of streaming applications lead to shorter battery life, which is becoming

one of the largest contributors to user dissatisfaction [5]. One other notable concern is the

increased memory footprint in mobile video systems. With recent advances to high definition

video formats, the video decoder memory can occupy more than 65% of the total silicon area [8,

9]. As the silicon area increases, the total cost to manufacture the memory increases; therefore,

designing memory with minimal area overhead is of paramount importance to the end user.

2

Similar to video memory design, the growing demand for computing and memory

resources in machine learning applications has created a need for efficient hardware schemes to

enable real-time adaptation. For example, deep learning systems such as neural networks require

extensive computational time and dissipate a large amount of power to calculate a high accuracy

trained model [10]. In particular, the training process needs continuous model updating and

requires intensive memory access. For these types of designs, the on-chip SRAM occupies more

than 56% of the silicon area and contributes to over 60% of the power consumption of the entire

system [11]. Consequently, improving the energy efficiency of SRAM with low area overhead is

vital to support future deep learning systems.

 Memory Design for Video Applications

Video applications have been shown to inherently possess error resiliency to some extent

[12]. This error resiliency enables video applications to be redesigned using approximate

computing methods for power savings. The video memory designs described within the chapters

of this dissertation deal with mobile video applications in particular; but these designs can be

adapted for use in devices that are a part of other application types as well. The designed

memories use CMOS SRAM technology, but the methodologies used to incorporate power

savings and data correction may prove useful in future technologies as well.

Voltage scaling techniques have been widely applied to reduce the power consumption of

memory systems. Researchers have shown that SRAM achieves maximum efficiency at near-

threshold voltage [13]. However, as voltage scales, SRAMs are susceptible to failure due to

significant process variation. Various techniques have been developed to correct or eliminate

these memory failures as voltage is scaled. Traditional low power memory techniques can be

divided into three general categories: (i) assist schemes, such as adjustment of cell voltage [14]

3

and boosted word-line voltage [15]; (ii) large bit cells, such as upsized 6T cell [16], asymmetric

7T cell [17], single-ended read-decoupled 8T cells [18], read-disturb-free 9T [19], and bit-

interleaving 12T cells [20]; and (iii) error correction techniques spanning from the use of error

correction codes [21] to data remapping [22]. Unfortunately, almost all existing solutions require

considerable implementation overhead, as high as 50-100% of the original memory design.

Recently, a new branch of low voltage embedded memory techniques have been

developed to embrace the memory faults, instead of avoiding the faults (i.e. assist schemes or

more than 6T bit cells) or correcting the faults (e.g. ECC). Those techniques aim to mitigate the

impact of memory faults by minimizing the magnitude of the error due to a faulty cell, based on

the determined memory fault positions from runtime testing (e.g. BIST). Those techniques are

referred to as fault-position aware mitigation techniques. For example, in [23], a shifting

technique was developed to store the LSBs in faulty bit cells, which may lead to a tolerable

output quality. In [13], a squeezing technique was presented to compress zeros and store them in

less memory space, thereby avoiding memory failures at low voltages. However, based on the

predetermined memory fault positions, the existing techniques still involve complex operation

(e.g. shifting value calculations and storage) and the overhead incurred is still significant (e.g.

65% in [23]). Several recent efforts have also investigated application resilience of videos to

approximations with “good enough” output and additional power savings. [24] presented a

hybrid 6T+8T SRAM to achieve quality-power optimization. In [16], a heterogeneous sizing

scheme is presented to reduce the failure probability of conventional 6T bit cells. In [25], the

correlation between the MSBs of video data was utilized to design a hybrid 8T+10T memory for

power savings.

4

To address the storage challenge of videos as well as other big data, leveraging the assets

of big data to extract useful knowledge and actionable information for hardware design is

proposed in chapter 2. Today’s big data applications, including videos, have three common data

characteristics [26]: redundant inputs, multiple acceptable outputs, and statistical computations.

Those intrinsic characteristics provide substantial opportunities for data relationship discovery

and pattern identification. This is turn will enable a new dimension for hardware design space

and bring exciting innovation opportunities for multi-dimensional innovations in circuits and

systems. Based on this, an extension of the work done in [27] proposes an efficient SRAM

design technique for big video data. The design is presented in chapter 2 with negligible area

overhead (7.94%) and performance penalty.

Viewer’s experience is one other important design concern that hardware engineers need

to consider when designing circuitry such as the memory used for storing video. Various studies

have displayed the impact of contextual influences such as illuminance levels, where an

increased amount of ambient luminance allows for a larger amount of error to be introduced by

voltage reduction techniques without noticeable degradation to the viewers. Two low power

techniques in particular, voltage scaling and bit truncation, have been explored [28, 29, 30] and

achieve similar PSNR values. However, the video quality degradation caused by bit truncation is

much less noticeable than that of the voltage scaling technique for viewers.

Based on previous works [28, 29, 30] and the novel introduction of video content

characteristics, chapter 3 proposes a video memory design that uses the viewer’s experience to

enable video content-adaptive functionality with dynamic energy-quality trade-off.

5

 Memory Design for Deep Learning Applications

Traditional low power memories are implemented to accommodate a large amount of

data utilizing more than 6T bit cells or assist schemes which usually come with significant

implementation cost (e.g. silicon area, performance overhead). Although such overhead might be

acceptable in general-purpose systems, they are not sufficient to satisfy the storage need for deep

learning applications. Recently in [31], a deep learning specific hybrid 8T-6T synaptic storage

was presented where varying number of 8T bit cells replace the traditional 6T bit cells to store

the MSBs because 8T bit cells are more robust at scaled voltages with decoupled read and write

paths.

In chapter 4, a systematic data-mining framework that enables a comprehensive

understanding of synaptic data characteristics is used to develop a low-power synaptic memory

for deep learning. Using an offline data-mining assisted synaptic relationships study, discovered

synaptic characteristics including contribution, switching, and association/correlation were used

to optimize the memory design. A novel data-driven memory design technique is proposed that

can store synaptic weights efficiently and with the ability for self-recovery under memory

failures. A 64kbit SRAM is designed that enables considerable power savings of up to 83.2%

and with negligible area overhead (3.17%) with minimal loss to classification accuracy (0.72%).

With deep learning becoming popular for developments in artificial intelligence in

modern applications such as facial identification, automatic translation, computer vision, self-

driving cars, healthcare and education, the need for data privacy is becoming increasingly

important. For example, collected health care data can be used in deep learning models to

provide personalized methods of prevention, treatment and care, ultimately aiding people who

are aging or those with disabilities to address health issues. These learning enabled benefits do

6

however come at a cost, which partially involves the issue of a serious privacy concern. Sharing

personal data carries inherent risk to the individual.

To protect the privacy of an individual’s data that are used to train these deep learning

models, one technique that has recently been proposed is differentially private deep learning

algorithms. This approach adds random noise to the computation while learning so that the

output of the model does not significantly depend on any particular training sample. In addition

to privacy, as deep learning models grow, the energy and resources needed during the inference

process, particularly the memories, have become a major constraint to resource-limited IoT

devices. Existing low-power memory design techniques, such as voltage scaling, usually come

with large memory failures under low power conditions, which further reduce the accuracy of

deep learning systems. Therefore, new memory hardware techniques are needed to consider the

trade-off between power efficiency, accuracy, and privacy in order to meet the increasing

demands of the edge inference storage in these devices.

In chapter 5, a memory-based technique to enable a suitable accuracy/privacy trade-off

that will meet the requirement of different AI applications is presented. The proposed technique

will allow for low power operation to enable power savings, thereby enabling an energy-efficient

edge inference on edge devices such as IoT sensors.

 Design Trade-offs and Evaluation

In order to evaluate how well each of the designed memories perform, simulations were

performed to calculate values for power, quality, and area overhead. The relationship between

the main three hardware design metrics is shown in Figure 1. By constraining two of the three

metrics and improving the third, while also comparing against recent research, it is possible to

clearly show improvements of each work against the state of the art. The following chapters

7

describe the design process for four unique works, each using novel memory optimization

techniques, including comparison against the state of the art.

Power

Efficiency

Output

Quality

Silicon

Area

Figure 1. Trade-off between hardware evaluation metrics

All information, tables, and figures in chapters 2, 3, 4, and 5 are either directly taken or

adapted, with permission to re-use, from [32], [33], [34], and [35], respectively. The final chapter

discusses the comparison of these techniques with state of the art designs in other recent works.

8

CHAPTER 2. DATA-PATTERN ENABLED SELF-RECOVERY LOW-POWER

STORAGE SYSTEM FOR BIG VIDEO DATA1

The growing popularity of powerful mobile devices such as smart phones and tablet

devices has resulted in the exponential growth of demand for video applications. However, due

to the large video data size and intensive computation, mobile video applications require frequent

embedded memory access, which consumes a large amount of power and limits battery life. In

this chapter, a low-cost self-recovery video storage system is presented by investigating

meaningful data patterns hidden in big video data through introducing data mining techniques to

the hardware design process. A two-dimensional data-pattern approach is proposed in order to

explore horizontal data-association and vertical data-correlation characteristics. Such data

relationship discovery and pattern identification enable a new dimension for the hardware design

space and bring self-recovery ability to memories in the presence of bit cell failures. Based on

the identified optimal data patterns, a low-cost and efficient SRAM design to enable data self-

recovery at low voltages is presented. A 45nm 32kb SRAM is implemented that delivers good

video quality at near-threshold voltage (0.5 V) with negligible area overhead (7.94%).

 Embedded Memory Failure Analysis at Near-Threshold Voltage

It has been shown that the computing efficiency is maximized when a circuit is operating

at near-threshold voltage [13]. However, at 0.5V (the target near-threshold voltage for this

design), SRAM failures become more severe with the increasing process variation. In particular,

the RDF effect leads to threshold voltage (Vth) variation and SRAM cell failures [36]. For the

current manufacturing technologies, the failure probability of an SRAM cell (Pfail) typically

1 The material in this chapter was co-authored by Jonathon Edstrom, Dongliang Chen, and Yifu Gong. Jonathon
Edstrom was in charge of all pattern discovery, data analysis, and video quality metric and simulation results.
Dongliang Chen and Yifu Gong, provided the presented SRAM hardware design with power simulation results
based on the discovered patterns.

9

ranges between 10-3 and 10-2, depending on the bit cell area [13, 37]. The minimum-sized SRAM

has highest failure rate of 10-2 and larger bit cells have a lower failure probability. With 58% area

overhead, the failure rate can be reduced from 10-2 to 10-3 [37]. Both 10-2 (minimum-sized

SRAM) and 10-3 (upsized SRAM) conditions are considered in the design analysis. It should be

noted that, the failure rate can be further optimized using a recently developed priority based

sizing technique [38].

To further study the SRAM failure characteristics at low voltage, errors maps for 512

word × 64 bit SRAM were investigated for Pfail equal to 10-2 and 10-3. During the fault injection

process, the bits that failed were assumed to be located across the memory cells based on the

failure probabilities according to a uniform distribution, introducing embedded memory failures

to the decoding process. Using a uniform distribution for simulating the errors is confirmed by

memory failure measurements in [39]. The results are shown in Figure 2. SRAM faults are

uniformly distributed in the array.

0 32 64

Column

0

256

512

R
o

w

0 32 64

Column

0

256

512

R
o

w

(a) (b)

Figure 2. Error maps in SRAM array at 0.5V. (a) Error rate: 10-3 and (b) error rate: 10-2

The probability of different faults in the same word line (32-bit word) were also analyzed

and the results are listed in Table 1. It can be seen that a word line has a low number of faulty

cells. The probability of two faults existing in the same word line is only 3.6% when the SRAM

10

bit cell failure rate is 10-2. Accordingly, in the presence of a memory fault, SRAM may achieve

self-recovery based on other bits in the same word line if meaningful bit-level data patterns exist.

Table 1. Fault probability in a 32-bit SRAM word (109 Monte Carlo simulations)

Number of faults

per word-line

SRAM failure

rate: 10-3 (0.001)

SRAM failure

rate: 10-2 (0.01)

0 96.8523477% 72.7279953%

1 3.0992274% 23.2812509%

2 0.0479198% 3.6012385%

3 0.0005023% 0.3611914%

4 0.0000028% 0.0267011%

5 0% 0.0015432%

6 0% 0.0000756%

7 0% 0.000004%

 Data Pattern Investigation for Self-Recovery

This section presents the data-mining methodology to discover data patterns hidden in

video data to enable reliable self-recovery. Specifically, a new two-dimensional (2D) data pattern

approach is proposed to explore horizontal data-association and vertical data-correlation

characteristics, thereby achieving optimal data patterns.

 Rule Mining Enabled Horizontal Association

Today’s mobile video frames are typically stored and processed in YUV format. The

YUV format includes one luma (Y) component, which contains the brightness information of the

image, and two chroma components, which contain the blue-difference (Cb) and red-difference

(Cr) color information. Figure 3 shows a typical frame of video data stored in embedded memory

using a 352 × 288 resolution YUV 4:2:0 video as an example. As shown, each pixel has 8-bit

luma data and 8-bit subsampled chroma data. Since video data is stored in on-chip memory as

11

binary bits, using an association data mining technique to identify horizontal bit-level data

patterns is possible.

4:2:0 YUV Video Frame

16x16
Pixels

Y Cb Cr

Luma(Y) data
8 bits/pixel

Chroma (Cb) data
8 bits/4 pixels

Chroma (Cr) data
8 bits/4 pixels

MSB LSB

Cb1 Cb2 Cb3 Cb4 Cb5 Cb6 Cb7 Cb8

MSB LSB

Cr1 Cr2 Cr3 Cr4 Cr5 Cr6 Cr7 Cr8

4:2:0
Subsampling

MSB LSB

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

2D Data-Pattern

MSB LSB

Cb1 Cb2 Cb3 Cb4 Cb5 Cb6 Cb7 Cb8

MSB LSB

Cb1 Cb2 Cb3 Cb4 Cb5 Cb6 Cb7 Cb8

Vertical Data Pattern:
Correlation

Association Rule
Mining Enabled

Horizontal Data Pattern

Transaction 1

Item 1 Item 2 Item 3 ...

Item X ∈ {0,1}

Dataset/

Database
...

Horizontal Data Pattern:
Association

Akiyo 364,953,600 (300)

Coastguard 364,953,600 (300)

Container 364,953,600 (300)

Flower 304,128,000 (250)

Foreman 304,128,000 (250)

Hall 304,128,000 (250)

Mobile 304,128,000 (250)

Mother-

Daughter
304,128,000 (250)

News 304,128,000 (250)

Silent 304,128,000 (250)

Tempete 316,293,120 (260)

Waterfall 316,293,120 (260)

4,221,296,640 bits

(3470 frames)

Data-Pattern Analysis Dataset

No. of bits (no. of frames)

(http://trace.eas.asu.edu/yuv/)

Total

Figure 3. 2D data-pattern enabled self-correction and data pattern analysis dataset

Association rule mining was introduced in 1993 to discover relationships between

different variables, called items, in a dataset or database [40]. A complete dataset is made up of

many transactions where each transaction contains a set of items. Each item can be associated

with a binary attribute, 0 or 1, that is used to distinguish if that item is present or not in its

corresponding transaction. This type of data organization is illustrated in Figure 3. Each resulting

rule, generated from the association rule mining process, is an implication of the form X → Y,

where X and Y are disjoint sets of, or individual items. Each rule is also accompanied by

collected statistics from the dataset called support and confidence values. The support value for a

set of items is the proportion of transactions in the dataset that contains such set of items. The

confidence value for an association rule X → Y, is the proportion of transactions that contain X

which also contain Y, or the conditional probability P(Y | X).

12

To enable association data mining, 12 different video benchmarks were used to build a

dataset [41, 42]. In total, the video data size used was 4,221,296,640 bits from 3470 video

frames, as shown in Figure 3. Each video data bit was defined as an individual item and Weka

[43] was used to perform the well-known Apriori association rule mining algorithm on the large

video dataset. Table 2 lists the horizontal data patterns that were discovered for both luma and

chroma data based on the video benchmarks.

Table 2. Discovered association rules. Bit 1 (i.e. Y1, Cb1, Cr1) is the MSB

From 12 video benchmarks [41, 42] From 10,000 Youtube-8M videos [44]

Association

Rules
Confidence Support

Confidence

× Support
Association

Rules
Confidence Support

Confidence

× Support

Y2=1 →
Y1=0 74.16% 57.15% 42.38% Y2=1 →

Y1=0 76.92% 50.57% 38.90%

Y3=1 →
Y1=0 74.28% 52.23% 38.04% Y3=1 →

Y1=0 72.17% 51.52% 37.18%

Y2=0 →
Y1=1 22.65% 42.85% 9.71% Y2=0 →

Y1=1 41.51% 71.18% 29.55%

Y1=1 →
Y2=0 39.85% 24.22% 9.65% Y1=1 →

Y2=0 71.18% 41.51% 29.55%

Y1=1 →
Y3=0 42.86% 24.22% 10.38% Y1=1 →

Y3=0 61.82% 37.01% 22.88%

Cb2=0 →
Cb1=1 94.75% 23.23% 22.01% Cb2=0 →

Cb1=1 98.56% 46.53% 45.86%

Cb2=1 →
Cb1=0 97.56% 73.64% 71.84% Cb2=1 →

Cb1=0 98.20% 52.65% 51.71%

Cb1=0 →
Cb2=1 98.28% 73.64% 72.38% Cb1=0 →

Cb2=1 99.26% 52.69% 52.30%

Cb1=1 →
Cb2=0 92.65% 23.23% 21.52% Cb1=1 →

Cb2=0 99.42% 46.56% 46.29%

Cr2=1 →
Cr1=0 97.51% 23.52% 22.93% Cr2=1 →

Cr1=0 95.75% 33.66% 32.23%

Cr2=0 →
Cr1=1 100.00% 75.88% 75.88% Cr2=0 →

Cr1=1 99.34% 65.38% 64.95%

Cr1=1 →
Cr2=0 99.22% 75.88% 75.29% Cr1=1 →

Cr2=0 99.01% 65.43% 64.78%

Cr1=0 →
Cr2=1 99.99% 23.52% 23.51% Cr1=0 →

Cr2=1 99.44% 33.71% 33.52%

Cr1=1 →
Cr3=0 97.80% 74.80% 73.16% Cr1=1 →

Cr3=0 95.21% 62.61% 59.61%

Cr1=0 →
Cr3=1 92.23% 21.69% 20.01% Cr1=0 →

Cr3=1 97.04% 32.62% 31.65%

13

The video data used for determining optimal rules was further expanded to larger-scale

and real video datasets beyond typical benchmarks in order to emulate the use of mobile devices

in the environment of big data. Google’s YouTube-8M dataset [44], one of the largest video

databases to date, was used for this purpose. Specifically, 10,000 unique videos from the

YouTube-8M dataset, with a total data size of 57.6 gigabytes, representing 500,000 individual

frames, was analyzed using data mining methods. A script was written that would download the

10,000 videos from the approximately 7 million available URLs provided in the YouTube-8M

dataset. After each video was downloaded, 50 contiguous frames were randomly selected from

the video and were converted from the .mp4 file format to the raw .yuv format using the FFmpeg

decoder [45] for data mining analysis. In order to support large-scale video data processing, these

data mining calculations were performed on the Thunder cluster at the Center for

Computationally Assisted Science and Technology (CCAST) at North Dakota State University,

which consists of approximately 100 compute nodes with a theoretical peak performance of

around 150 teraflops. As illustrated in Figure 3, each video data bit is defined as an individual

item and the well-known Apriori algorithm was used on the video datasets to gather both

confidence and support metric calculations. The average results obtained for the horizontal data

patterns are also listed in Table 2. It can be seen that the association rules obtained from the

video benchmarks are very general and also exist within the large-scale video dataset.

 Vertical Correlation

Vertical data correlation characteristics of multimedia applications have been studied by

many researchers [25, 46]. These works have shown that the MSBs of the video data have a

strong correlation with neighboring pixels, and their switching probabilities are very low. Based

on the video benchmarks, Table 3 lists the correlation probability of the MSBs (Y1, Cb1, Cr1) in

14

neighboring pixels is over 93%, while the LSBs have around 53% correlation probability in the

worst case (i.e. Cb8). A similar trend in probabilities can be seen for the YouTube-8M videos.

The MSBs in neighboring pixels have a very strong correlation (with probability over 90%), but

LSBs display more of a random behavior and have little correlation with neighboring pixels.

Table 3. Vertical correlation probabilities

Correlation probabilities from 12 video benchmarks

Y1 96.72% Cb1 93.79% Cr1 93.78%

Y2 93.22% Cb2 92.87% Cr2 93.58%

Y3 87.79% Cb3 90.77% Cr3 92.34%

Y4 80.86% Cb4 85.45% Cr4 88.35%

Y5 73.97% Cb5 77.95% Cr5 81.56%

Y6 67.42% Cb6 69.30% Cr6 73.18%

Y7 61.78% Cb7 59.99% Cr7 63.50%

Y8 58.52% Cb8 53.25% Cr8 55.16%

Correlation probabilities from 10,000 YouTube-8M videos

Y1 91.55% Cb1 90.10% Cr1 90.41%

Y2 84.64% Cb2 89.87% Cr2 90.12%

Y3 77.23% Cb3 88.67% Cr3 88.75%

Y4 68.87% Cb4 84.86% Cr4 85.11%

Y5 60.05% Cb5 78.11% Cr5 78.72%

Y6 51.49% Cb6 68.87% Cr6 70.11%

Y7 44.14% Cb7 58.81% Cr7 60.56%

Y8 38.78% Cb8 50.84% Cr8 52.62%

Power saving techniques involving the correlation have been used in previous works for

bit prediction where no transistor switching results in power savings [9] and attempting to load

the same value (i.e. reading continuous 0s or 1s) from memory bit cells in order to eliminate the

cost of pre-charging if the correct value is read out from the previous bit-line read [25]. This

work uses the correlation property of YUV data through the use of a novel bit correction

technique that attempts to correct memory faults with high precision. By comparing the

15

correlation percentages and the association rules that have been identified, the best combination

of association rules and correlation between bits can be constructed for an optimal pattern for

data self-recovery.

 Optimal Data Patterns for Self-Recovery

In order to select an optimal data pattern from association and correlation, the Weighted

Confidence, based on the support and confidence of a particular rule, is defined as follows:

����ℎ���
��
������ =
��
������������ × ������������� +

��
�������
��������� ����� × ��������
��������� ����� (1)

For example, the Weighted Confidence of the association rule
�1����� →
�2 can be expressed as:

����ℎ���
��
������ �
 �
�1����� →
�2�
=
��
�������
�1����� = 0 →
�2 = 1� × ��������
�1����� = 0 →
�2 = 1�
+
��
�������
�1 = 1 →
�2 = 0� × ��������
�1 = 1 →
�2 = 0�

 = 0.9999 × 0.2352 + 0.9922 × 0.7588 = 0.9880 (2)

This parameter is then used to compare to the sum of the correlation values for 0 and 1 non-

switching, which is equal to the correlation. This is equivalent to the Weight Confidence

calculation, but instead uses the individual bit value (0 or 1) correlation percentages and is

calculated as follows:

�����&���� =
��
������'(��)*+,-./0 = 0 → (��1/**+23 = 04 +

��
�������(��)*+,-./0 = 1 → (��1/**+23 = 1� (3)

where Bitprevious and Bitcurrent represent the video data bits in the same position of two neighboring

pixels.

As an example, the correlation of Cr2 can be calculated as follows:

16

�����&���� �

�2 =
��
������'
�2)*+,-./0 = 0 →
�21/**+23 = 04 +

��
������'
�2)*+,-./0 = 1 →
�21/**+23 = 14

 = 0.2091 + 0.726 = 0.935 (4)

Accordingly, the optimal bit-level data patterns with high prediction rate to enable self-

recovery were calculated. 25 videos from the YouTube-8M dataset, separate from the 10,000

videos used in the training dataset, were used to verify the correction prediction percentage

shown in Table 4. These videos are obtained using the same method as previously used, but are

unique from the previous 10,000 videos to ensure the rules that are employed work properly for

correction. An analysis of the different portions of the image show that luma data is more

random and has less association with other bits in the same pixel, and the optimal data patterns

are all from correlation.

Table 4. Optimal data patterns from 25 YouTube-8M videos

Y

bits

Optimal

Data

Patterns

Correct

Prediction

Cb

bits

Optimal

Data

Patterns

Correct

Prediction

Cr

bits

Optimal

Data

Patterns

Correct

Prediction

Y1 Correlation
(Y1previous)

91.53% Cb1 Association
(
62����� →
61� 98.60% Cr1 Association

(
�2����� →
�1� 96.72%

Y2 Correlation
(Y2previous)

82.67% Cb2 Association
(
61����� →
62� 99.79% Cr2 Association

(
�1����� →
�2� 97.77%

Y3 Correlation
(Y3previous)

76.27% Cb3 Correlation
(Cb3previous)

88.46% Cr3 Association
(
�1����� →
�3� 93.86%

Y4 Correlation
(Y4previous)

67.64% Cb4 Correlation
(Cb4previous)

84.31% Cr4 Correlation
(Cr4previous)

83.64%

Y5 Correlation
(Y5previous)

59.24% Cb5 Correlation
(Cb5previous)

78.53% Cr5 Correlation
(Cr5previous)

78.35%

Y6 Correlation
(Y6previous)

51.75% Cb6 Correlation
(Cb6previous)

69.40% Cr6 Correlation
(Cr6previous)

68.80%

Y7 Correlation
(Y7previous)

44.47% Cb7 Correlation
(Cb7previous)

59.40% Cr7 Correlation
(Cr7previous)

59.73%

Y8 Correlation
(Y8previous)

38.41% Cb8 Correlation
(Cb8previous)

51.13% Cr8 Correlation
(Cr8previous)

52.96%

17

 Recovery Failure Caused by Double Faults in Data Patterns

Since the discovered optimal data patterns used for self-recovery exist between two bits

in the same word line, it may cause recovery failures if both of the two bits in a pattern fail

simultaneously. Table 5 lists the recovery failure rate. It shows that DPSR has good reliability

with extremely low self-recovery rates (less than 0.2%). This is due to the fact that there is low

probability of having multiple faults in the same word line, as discussed earlier.

Table 5. DPSR recovery failure rates

Double Word Line Faults SRAM Pfail: 10-3 (0.001) SRAM Pfail: 10-2 (0.01)

Correlation Faults 0.0010899% 0.1077362%

Association Faults 0.0005957% 0.0587964%

DPSR Recovery Failure 0.0016856% 0.1665326%

 DPSR Hardware Implementation

Utilizing the obtained optimal bit-level data patterns, a simple but efficient DPSR

hardware design with low implementation cost is presented. Figure 4 shows the array

architecture of the proposed DPSR SRAM, where the total array size is 32 kbits and there are

four blocks with 256 words × 32 bits. In the design, both luma data and chroma data will be

stored in the same SRAM but in different blocks. Block 1 and block 2 will be used to store the

luma data and each word line will store the luma data of 4 pixels. Block 3 and block 4 will be

used to store the chroma data and each word line will store the chroma data of 2 pixels.

Regarding the luma data stored in blocks 1 and 2, based on the optimal luma patterns

obtained previously, vertical correlation rules (i.e. luma data of the previous pixel) will be used

for recovering the data of the current pixel. Since SRAM read operations are row-wise, reading

two physical rows will cause a considerable performance penalty. Accordingly, the vertical

18

correlation based luma self-recovery is adapted to a hardware-friendly design scheme. Each

word line stores the luma data of 4 pixels and uses its neighboring pixel in the same row for data

correction in the current pixel. As an example, if a data bit in pixel 1 has a failure (see Figure 4),

the corresponding bit in pixel 2 is used for recovery; if a bit in pixel 4 has a failure, the

corresponding bit in pixel 3 is used for recovery (i.e the neighboring pixel in the same row).

R
ea

d
 D

ec
o
d

er

R
ea

d
 D

ec
o
d

erW
ri

te
 D

ri
v
er

W
ri

te
 D

ri
v

er

Self-Recovery

MUX & Readout

SRAM

Block 1

(256*32)

SRAM

Block 2

(256*32)

SRAM

Block 4

(256*32)

SRAM

Block 3

(256*32)

Sub_array 1

(32 x 32)

Sub_array 2

(32 x 32)

Sub_array 8

(32 x 32)

..
.

w
b

l[
3

1
:0

]

w
b

lb
[3

1
:0

]

32

g
b

lx
[3

1
:0

]

PRE

32

32

lbl1[31:0]

S

32

32gbl[31:0]

lbl2[31:0]

SRAM

Block X

(256*32)

Luma31 23 15 724 16 8 0

Pixel 1 Pixel 3. . .

2
5
6
 w

o
rd

li
n

es

SRAM Block 1 & 2

Luma Luma Luma

Pixel 2 Pixel 4

Cr31 23 15 724 16 8 0

Pixel 1 . . .

2
5
6

 w
o

rd
li

n
es

SRAM Block 3 & 4

Cb Cr Cb

Pixel 2

Luma Self-Recovery MUX

Chroma Self-Recovery MUX

Y31 Y30 Y0

Self-Recovery

MUX

g
b

l3
1

g
b

l3
0

g
b

l0

S31 S30 S0...

g
b

lx
3
1

g
b

lx
2
3

g
b

lx
3
0

g
b

lx
2
2

g
b

lx
0

g
b

lx
8

Cr1 Cr2 Cb8

g
b

l3
1

g
b

l3
0

g
b

l0

S31 S30 S0...

g
b

lx
3

1

g
b

lx
3

0

g
b

lx
3

0

g
b

lx
3

1

g
b

lx
0

g
b

lx
1

6

Figure 4. Proposed DPSR with data self-recovery ability

19

To verify the DPSR design will maximize the correct bit predictions, calculations were

performed for the correct prediction percentage for predicting each bit using both the previous

and next pixel’s corresponding bit. These calculations showed that they were approximately

equal values, with both having ~79.4% average correct prediction for all luma bits based on

calculations from all samples in the training and verification testing video benchmarks [41, 42].

Chroma data self-recovery is implemented in SRAM block 3 and block 4 using the

optimal chroma patterns. As shown in Figure 4, each word line stores two pixels of chroma data

with both Cr and Cb. Both vertical correlation rules and horizontal data pattern rules are used for

the chroma data self-recovery (see Table 4). Similarly, for vertical correction based recovery

rules, the neighboring pixel stored in the same row for data corrections are used to avoid a

penalty to performance. For example, if Cb1 in pixel 1 has a failure (see Figure 4), the inverted

value of Cb2 in the same pixel will be used for recovery. If Cr4 in pixel 1 fails, Cr4 in pixel 2,

which is stored in the same row, will be used for recovery.

As shown in Figure 4, a hierarchical RBL scheme (i.e. local RBL and global RBL) is

applied to reduce the access time of the memory. The self-recovery logic of DPSR can be simply

implemented by connecting MUXs to RBLs of the conventional SRAM design. Each global bit-

line (i.e. gbl in Figure 4) is connected to a MUX which is controlled by the received fault

positions. If a fault is indicated, self-recovery is enabled by selecting the data pattern. The fault

position information is used as the select signal of the MUX in order to control which bit value

will be output. Similar to other existing fault position aware mitigation techniques, DPSR

receives pre-determined locations of the faulty bits in the SRAM array, which is usually

executed during post fabrication testing or Power-On Self-Test (POST) [13, 47, 48]. This testing

process can also be used to track temporal degradation caused by memory failures such as the

20

aging effect. The evaluation results in the following sections show that the DPSR SRAM design

also achieves smaller silicon area overhead, while delivering good output quality at near

threshold voltage.

 Evaluation Methodology and Results

To evaluate the effectiveness of the proposed technique, a 32kb SRAM was implemented

using a high-performance 45nm FreePDK CMOS process [49] to meet the multi-megahertz

performance requirement of today’s mobile video decoders.

Performance

The performance of the proposed DPSR design was first evaluated. Due to the added

MUXs, the read access time of DPSR increases from 0.27ns to 0.31ns, which is fast enough to

deliver high-quality video formats including 4K and 8K ultra high-definition applications [50].

Layout

As discussed before, embedded SRAMs typically occupy a large portion of silicon area

within a video chip, and therefore the cost of the embedded SRAM is an important design

concern. Figure 5 shows the layout of DPSR. Each added self-recovery logic MUX occupies an

area of 18.79µm × 43.47µm, resulting in 7.94% area overhead. It should also be noted that, the

self-recovery logic is added to the RBLs and increasing the number of words in a memory is

beneficial in reducing the overall area overhead.

Write Decoder

SRAM Block 1 (32×256)

SRAM Block 3 (32×256) SRAM Block 4 (32×256)

SRAM Block 2 (32×256)

Luma MUX

500.80 µm

12
5.

56
 µ

m

Read Decoder
Chroma MUX

(18.79×43.57µm) each

Figure 5. DPSR layout design

21

Power Efficiency

In order to evaluate the power efficiency of the proposed technique, the power

consumption of the memory is modeled as follows:

 7892:;-1 = ∑ ∑ =7>���∙�����+�����@�=0,131>=0
2 (5)

 7B�&C = ∑ ∑ ∑ B>���-DE,F31>=01023�=0 (6)

where PDynamic and PLeak are the dynamic and leakage power consumption, respectively. i is the

value stored in SRAM, j is the bit number in a word, which is from 0 to 31. Pj(i) is the

probability of a data bit j to be 0 or 1, which is extracted from various video benchmarks. R(i),

W(i), and L(i) are the read power, write power, and leakage power consumption for a single

SRAM bit cell, respectively, that stores a particular data bit value i. Figure 6 compares the power

consumption in different memory operations. As expected, all power components decrease as the

voltage scales from 1.0V to 0.5V. It should be noted that the power consumption overhead

caused by the self-correction logic in the proposed technique is negligible as compared to the

power reduction enabled by reducing voltage to near-threshold voltage, since the dynamic and

leakage power consumption scale at a quadratic and linear rate with the voltage, respectively.

Figure 6. Power consumption of different memory operations

22

The proposed memory at 0.5V consumes 219µW dynamic power and 193µW leakage

power. As compared to the conventional memory design at 1.0V, the proposed design has

81.52% dynamic power savings and 82.45% leakage power savings.

Video Output Quality Analysis

Different from the video benchmark datasets used previously for this design, a new video

benchmark dataset is organized for verification: 3 videos from [41] and 5 videos from [42]. To

evaluate the video quality, the well-known PSNR metric is adopted, which is defined as [25]:

 7�G� = 10 ∙ ���FE HIJJK
LMN O (7)

where MSE is the mean squared error between the original videos (Org) and the degraded videos

(Deg), expressed as:

 P�Q = F
;2 ∑ ∑ RS����, >� − U����, >�VI2WFXDE;WF-DE (8)

Researchers have shown that a PSNR of 30dB or higher for a video are considered to be

acceptable [13]. Table 6 compares the PSNR values using different techniques with a Pfail (i.e.

the failure probability) of 10-2 for minimum-sized SRAM designs and 10-3 for upsized SRAM

with 58% area overhead [37]. In addition to video benchmarks, 10 YouTube-8M videos from the

25 videos used for verification earlier in Table 4 (separate from the 10,000 videos used in the

training dataset) are used for calculating the video metrics presented. Due to the limited space,

Figure 7 shows six video output images with a memory failure rate of 10-2 when failures are

injected. It can be seen that DPSR has good recovery precision and can deliver good video

quality with a PSNR over 35dB, even for minimum sized SRAM. Accordingly, DPSR achieves

good video output quality at near-threshold voltages.

23

Video Original Video Conventional (Pfail = 0.01) DPSR (Pfail = 0.01) Shift (Pfail = 0.01) [23]

city

PSNR: 36.8039 SSIM: 0.9306

PSNR: 24.5045 SSIM: 0.5739

PSNR: 33.7729 SSIM: 0.9095

PSNR: 36.7801 SSIM: 0.9290

crew

PSNR: 37.1454 SSIM: 0.9078

PSNR: 24.5212 SSIM: 0.5142

PSNR: 35.5632 SSIM: 0.8901

PSNR: 37.1197 SSIM: 0.9060

football

PSNR: 36.5037 SSIM: 0.9163

PSNR: 24.4878 SSIM: 0.5542

PSNR: 34.6731 SSIM: 0.9046

PSNR: 36.4816 SSIM: 0.9148

Concert

-

PSNR: 24.7459 SSIM: 0.6161

PSNR: 39.8358 SSIM: 0.9887

PSNR: 59.4008 SSIM: 0.9988

Game

-

PSNR: 24.7593 SSIM: 0.5834

PSNR: 39.6992 SSIM: 0.9839

PSNR: 59.4008 SSIM: 0.9987

Electric

Guitar

-

PSNR: 24.7528 SSIM: 0.5580

PSNR: 42.5844 SSIM: 0.9884

PSNR: 59.4008 SSIM: 0.9985

Figure 7. Video output using different video storage techniques

24

The PSNR metric has been used extensively to describe video output quality in a

quantitative way, but recent efforts to capture the true human perception show that it may not

accurately describe the actual video quality a human perceives [51]. This is due to the fact that

PSNR is based on the summation of error for every pixel’s luminance and chrominance

component values, and this alone is not necessarily a good estimate to the user’s perception of

the video. Analyzing the video quality using SSIM is a method that is more aware of the user’s

perception since it includes calculations for luminance, contrast, and structural changes in the

video. The general form of the SSIM equation is defined as [51]:

 ��YP�Z, [� = R��Z, [�V\ ∙ R��Z, [�V] ∙ R^�Z, [�V_ = �I`a`bc1d��Ieabc1K�
�`aKc`bK c1d��eaKcebKc1K� (9)

where l(x,y), the luminance comparison, is a function of the mean intensities, µx and µy, c(x,y),

the contrast comparison is a function of the standard deviations, σx and σy, and s(x,y), the

structural comparison, is a function of the correlation between x and y, or σxy. Setting the values

of α = β = γ = 1 in the original equation results in the second equation. C1 (C2) is a constant that

is included to avoid instabilities when the sum of the means (standard deviations) squared is

equal to the values near zero. The value of the SSIM is in the range 0 to 1. As the value of

SSIM(x,y) gets closer to 1, the quality of the video y more closely matches the quality of video x.

For our testing purposes, video x is the raw, uncompressed YUV video, before the decoding

process, and video y is the post decoded YUV video that may or may not have other bit shifting

or correction changes performed on it.

 The results of these SSIM calculations for conventional and DPSR are listed in Table 7.

The video output quality of the proposed DPSR method has a significant increase in SSIM over

the no failure, conventional memory at scaled voltages.

25

Table 6. Video PSNR metric comparison

Dataset Videos
conventional

(Pfail = 0.001)

DPSR

(Pfail = 0.001)

conventional

(Pfail = 0.01)

DPSR

(Pfail = 0.01)

Ref. [23]
(Pfail =0.001)

Ref. [23]
(Pfail = 0.01)

Video

Benchmarks

akiyo 33.762219 40.641272 24.676287 36.639433 41.248639 41.185088

bus 32.102969 35.405863 24.410622 33.373556 35.706569 35.689801

city 32.550805 36.360825 24.426879 33.772872 36.801408 36.780126

coastguard 32.090258 35.489524 24.426879 34.265358 35.667736 35.650842

crew 32.680147 36.928508 24.521212 35.563219 37.142670 37.119667

football 32.439115 36.255904 24.487795 34.673071 36.501345 36.481558

foreman 32.71063 36.878115 24.529656 35.022773 37.211848 37.188112

sign_irene 33.253495 38.980559 24.590776 36.573802 38.976183 38.940649

YouTube 8M

Dataset

Running 34.843802 47.751093 27.751663 37.896356 69.178843 59.400849

Concert 34.843123 50.617823 24.745933 39.835772 69.178843 59.400849

Music Video 34.842942 48.993861 24.765553 37.908828 69.178843 59.400849

Festival 34.843240 45.838237 24.892104 35.958557 69.178843 59.400849

Game 34.843259 49.286247 24.759353 39.699233 69.178843 59.400849

Electric Guitar 34.843014 51.566521 24.752845 42.584377 69.178843 59.400849

Snow 34.844445 50.725480 24.761392 40.861991 69.178843 59.400849

Flute 34.842227 53.769387 24.755972 44.158630 69.178843 59.400849

Vehicle 34.843032 50.015065 24.741031 42.251862 69.178843 59.400849

Planet 34.843295 53.306924 24.760113 44.022668 69.178843 59.400849

Table 7. Video SSIM metric comparison

Dataset Videos
Conventional

(Pfail = 0.001)

DPSR

(Pfail = 0.001)

conventional

(Pfail = 0.01)

DPSR

(Pfail = 0.01)

Ref. [13]

(Pfail =0.001)

Ref. [13]

(Pfail = 0.01)

Video

benchmarks

akiyo 0.895568 0.960037 0.524455 0.943273 0.961509 0.959164

bus 0.884369 0.928646 0.615363 0.917352 0.929814 0.928514

city 0.879284 0.928319 0.573905 0.909453 0.93045 0.929045

coastguard 0.872335 0.919269 0.587307 0.910952 0.920116 0.918561

crew 0.850047 0.905746 0.514167 0.890076 0.907585 0.906039

football 0.863992 0.914951 0.554214 0.904554 0.91613 0.914782

foreman 0.865366 0.920302 0.539163 0.908825 0.921568 0.919849

sign_irene 0.879546 0.940751 0.521892 0.928188 0.942161 0.940099

YouTube 8M

Dataset

Running 0.949418 0.997716 0.631449 0.979334 0.999886 0.998972

Concert 0.945931 0.998801 0.616055 0.988679 0.999874 0.998849

Music Video 0.945398 0.998251 0.607637 0.980091 0.999876 0.998857

Festival 0.953149 0.998222 0.660847 0.983623 0.999892 0.998987

Game 0.941848 0.998281 0.583433 0.983909 0.999855 0.998658

Electric Guitar 0.937000 0.998636 0.558013 0.988400 0.999842 0.998543

Snow 0.939508 0.998665 0.573617 0.987401 0.999850 0.998656

Flute 0.936771 0.999146 0.551228 0.992497 0.999848 0.998629

Vehicle 0.942345 0.999002 0.588818 0.992204 0.999855 0.998681

Planet 0.931941 0.998594 0.533084 0.991441 0.999818 0.998322

26

Comparison with Prior Work

With data-pattern enabled self-recovery ability, DPSR exhibits low implementation cost

(7.94%) and reliable operation at near-threshold voltage to achieve maximum energy efficiency.

 Comparing with State-of-the-Art Data-Shifting [23]

Table 7 also compares the video output quality of the proposed DPSR and the data-

shifting technique presented in [23]. As shown, the data-shifting technique [23] has slightly

better quality in terms of PSNR and SSIM metrics as compared to the proposed DPSR technique,

but is realized with large area overhead (~14%). This large overhead is due to the fact that the

shifting scheme needs to calculate the shift values based on the received fault positions and then

perform shifting to store LSBs in the identified faulty bit cells.

 Comparing with State-of-the-Art Data-Squeezing [13]

The data squeezing technique presented in [13] is another recently developed memory

failure mitigation technique. Based on the observation that, for many general purpose

applications, the last-level cache contains large amounts of null data, this technique compresses

null subblocks so that they can be allocated to memory entries with faulty cells. This technique

works well for register files and caches for general purpose applications, which store as high as

79.23% zeros as discussed in [52]. However, it is not suitable for videos because the 8-bit video

pixel data varies a lot between 0 and 255, which is difficult for zero compression.

 Comparing with State-of-the-Art Error Correction Code

ECCs have also been studied in ultra-low voltage contexts to protect against memory

failures [53]. For similar redundancy based repair mechanisms to implement ECC, the capacity

of a memory needs to be increased or part of its effective capacity has to be sacrificed to store

check bits. In addition to memory space overhead, complex logic for ECC encoding and

27

decoding must be added, which brings significant implementation penalty. For example, by

using orthogonal Latin square codes discussed in [53], half of the memory capacity is used to

store ECC bits.

DPSR Concluding Remarks

In this developed big-data enabled memory technique, the general data patterns existing

in large scale videos have been identified, which are used to achieve self-correction in the

presence of memory failures. The overhead of the developed self-correction logic is significantly

reduced as compared to existing techniques. Table 8 displays a comparison of the performance

of the proposed DPSR [32] memory design for big video data against other recent state of the art

techniques. Using data-pattern enabled self-recovery, DPSR has the lowest implementation cost

(3.97% area overhead) and has reliable operation at near-threshold voltage, allowing for

maximum energy efficiency. DPSR delivers the best video quality output, except for [23], which

is realized with large area overhead (~14%).

Table 8. DPSR comparison with prior works on low power SRAM

 TCASI’12 [16] DAC’15 [23] TC’16 [13] DPSR [32]

fault-position
awareness

No Yes Yes Yes

Low-power
techniques

bit-cell Sizing data-shifting data-squeezing
data-pattern

enabled self-

recovery

bit-cell modified Yes No No No

near-threshold
operation

No

(0.9V)

Yes

(-)

Yes

(0.5V)

Yes

(0.5V)

additional logic
needed

No LUTs and shifter
Rearrangement logic

and tag array,
comparator, Mux

MUX

performance
overhead

- -
extra clock (for
decompression)

0.04 ns

video quality acceptable good - good

area overhead 11-65% 14% 6.3% 3.97%

28

CHAPTER 3. CONTENT-ADAPTIVE MEMORY FOR VIEWER-AWARE ENERGY-

QUALITY SCALABLE MOBILE VIDEO SYSTEMS2

 Mobile devices are becoming ever more popular for streaming videos, which account for

the majority of all data traffic on the internet. Memory is a critical component in mobile video

processing systems, increasingly dominating power consumption. Today, memory designers are

still focusing on hardware-level power optimization techniques, which usually come with

significant implementation cost (e.g., silicon area overhead or performance penalty). In this

chapter, a video content-aware memory technique for power-quality trade-off from viewers’

perspectives is proposed. Based on the influence of video macroblock characteristics on viewer

experience, two simple and effective models - decision tree and logistic regression – are

developed in order to enable hardware adaptation. A novel viewer-aware bit-truncation technique

has also been implemented, which minimizes the impact on viewer experience, while introducing

energy-quality adaptation to the video storage.

 Influence of Video Content on Viewer Experience

 Mobile Video Memory System

Video streaming has become the most important energy-intensive application used in

mobile devices [30]. Figure 8 (a) shows the block diagram of a H.264 video decoding and

display system [54]. After parsing the compressed bit stream, the inter predictor uses the

reconstructed frames stored in the reference frame buffer and the transmitted motion vectors to

construct new frames. After the frames are decoded, the display controller sends them from the

2 The material in this chapter was co-authored by Jonathon Edstrom, Yifu Gong, and Ali Haidous. Jonathon
Edstrom, was in charge of all data analysis, video quality metric and simulation results. Yifu Gong, provided the
presented SRAM hardware design with power simulation results based on the data analysis and software
simulations. Ali Haidous, provided information on the memory architecture and influence of truncation within
different memories of the video decoder process.

29

frame buffer to the display panel periodically. During this process, multiple memories are needed

for storing the intermediate and final results of the frame data, as listed in Table 9.

B
it

st
re

a
m

 I
n

p
u

t

Circular bitstream
buffer

Residual

Inter Predictor

Intra Predictor

Motion Vector X

F
ra

m
e

bu
ff

er

Luma
Level su

m

Intra Pred Engine

YUV
4:2:0�4:4:4
translation

YUV
Display
Memory

YUV�RGB
translation

YUV

RGB

Display
controller

LCD monitor

Exp-Golomb

Decoder

CAVLC

Decoder

Bitstream Parser

Bitstream Parser Reconstruction Data Path

Inter Pred Engine

Bits

Chroma
Level Cr

Chroma
Level Cb

Motion Vector Y Reference MB

Reconstructed
Neighboring

Prediction
Mode

Decoded
video

Loop thru

Video capture
card

SD
card

H.264
decoder

Memory
controller

Decoded
video

Encoded
video

(a) (b)
Figure 8. Mobile video memory architecture.

To evaluate the contribution of different memories to the output video quality, a video

decoder and display system was developed, as shown in Figure 8 (b). For the memories listed in

Table 8, the bit truncation technique from [29] was applied by disabling the LSBs [55, 56] and

then the output video was captured for quality evaluation. Specifically, LSB truncation starting

with one bit with a maximum of five bits have been applied to each video memory. The encoded

bit stream, which resided on an onboard SD card, is decoded using a Xilinx Zynq 7020 FPGA

based H.264 decoder. An Arduino-based memory controller is implemented to select the specific

memory for truncation as well as the number of truncated LSBs. A video capture card is utilized

to capture the video output over the HDMI output for evaluation.

Table 9. Video memories and their functionality

Video Memories
Size in Bits

(Width×Depth)
Memory Functionality

Chroma Level Cb 32 x 8 Stores the blue-difference color space bottom line pixels for up macroblocks
Chroma Level Cr 32 x 8 Stores the red-difference color space bottom line pixels for up macroblocks
Luminosity Level 32 x 8 Stores the luminosity color space bottom line pixels for up macroblocks

Reconstructed Neighboring 32 x 7 Stores neighboring pixels of a luma block after the current macroblock is coded and reconstructed
Prediction Mode 16 x 7 Stores the current macroblock prediction mode for 4x4 blocks
Motion Vector X 64 x 7 Stores the horizontal motion vector prediction calculation of surrounding blocks’ motion data
Motion Vector Y 64 x 7 Stores the vertical motion vector prediction calculation of surrounding blocks’ motion data

Reference Macroblock 8 x 8 Stores the reference I, SI, P, or SP macroblock used for inter prediction
Frame buffer 64 x 512 Stores the current and previous decoded frames for prediction and display, respectively

Y Display 64 x 8 Stores the luma Y component of the display memory for HDMI output buffer
U Display 64 x 8 Stores the chrominance U component of the display memory for HDMI output buffer
V Display 64 x 8 Stores the chrominance V component of the display memory for HDMI output buffer

30

It has been shown that, the frame buffer, which is the largest memory, can tolerate three

truncated LSBs, which provides power saving opportunities for the hardware design. Table 10

lists the results with LSB truncation in different video memories using the video system shown

in Figure 8. The standard video sequence aspen_1080p.y4m [42], which has a wide range of

plain macroblock percentage was 20.90%; the maximum and minimum were 50.89% at frame

#367 and 3.03% at frame #113, respectively. The video was encoded with the following ffmpeg

[45] command:

ffmpeg -i aspen_1080p.y4m -profile:v baseline -pixel_format

yuv420p -level 3.1 -framerate 30 -preset 1 –cavlc 1 –pix_fmt

yuv420p aspen_1080p.264

 Influence of Video Content on Viewer Experience in the Presence of Hardware Noise

Traditionally, hardware designers have used PSNR for evaluating video quality, which

has been recently shown to be insufficient to demonstrate the viewer’s experience [57, 58].

PSNR does not encompass the necessary information to hardware designers about viewer

experience, due to the fact that key influencing factors for viewer experience, such as video

content and environment conditions, are not included in PSNR [58]. This work aims to find a

better method to analyze videos in a quantitative way that will also be useful to hardware

researchers. This process begins with the PSNR metric being used to describe video quality. New

insights to the traditional PSNR metric are introduced with the introduction of content-aware

information. This new form of information allows for gracefully scaling the video quality with

enhanced energy efficiency of hardware.

31

Table 10. Results of videos with different LSBs truncated in different memories

Memories
Number of

LSBs Truncated
PSNR

(Max MB %)
PSNR

(Min MB %)
Max Plain MB % Frame Min Plain MB % Frame

Original video
frames without
any truncation

- - -

Chroma Level Cb 5 LSBs truncated 43.0 dB 31.1 dB

Chroma Level Cr 5 LSBs truncated 36.3 dB 27.0 dB

Luminosity Level 5 LSBs truncated 18.0 dB 16.7 dB

Restructured

Neighboring
1 LSB truncated 13.7 dB 11.0 dB

Prediction Mode 1 LSB truncated 23.0 dB 19.5 dB

Motion Vector X 1 LSB truncated 29.2 dB 13.5 dB

Motion Vector Y 1 LSB truncated 29.1 dB 13.3 dB

Reference

Macroblock (MB)
5 LSBs truncated 42.8 dB 32.8 dB

Frame Buffer 3 LSBs truncated 44 dB 25.5 dB

YUV Display
2 LSBs truncated

in each vector
11.8 dB 13.2 dB

32

 Traditional PSNR Metric

Although the PSNR metric, described in equation (7), is simple for hardware designers to

understand, it does not truly capture the effect that errors have on a user’s perception of the

video. To show the lack of complete information the PSNR provides in terms of user perception,

the bit truncation technique is applied to two videos and the PSNR values are calculated for 1 to

4 LSBs truncated within the luma data (i.e. the luminance channel, or Y component in raw YUV

videos). The bit truncation technique is adopted to enable energy-quality adaption, which is due

to the following two reasons: (i) bit truncation causes blurring in videos, which is similar to the

“banding distortion” in the codec-algorithm field, and the video degradation is much less

noticeable to viewers as compared to other low-power techniques such as voltage scaling [30]

and (ii) the power/energy savings with bit truncation is much more significant than other low

power techniques such as voltage scaling [56].

Table 11 shows two videos that were downloaded from Google’s recently released

YouTube-8M dataset [44], which is the largest multi-label video dataset to date. To maintain a

short and consistent size label for all included YouTube video samples, the video tag will be

included, which is the last portion of the full URL address. These tags are used a s a unique key

that points to the corresponding YouTube video. For example, the video tag EFv2FvnlLao can be

used to locate the original video sample on YouTube using the following URL:

https://www.youtube.com/watch?v= EFv2FvnlLao. As observed in Table 10, using the bit

truncation technique, the PSNR value is reduced by approximately 7dB, on average, for each

additional truncated LSB.

33

Table 11. PSNR of different videos with bit truncated applied

Video output quality with 3 LSBs truncated # LSBs truncated PSNR (dB)

Video #1 (video tag:
EFv2FvnlLao)

1 52.868

2 44.433

3 37.490

4 30.985

Video #2 (video tag:
FNlpA4FME-8)

1 52.741

2 44.461

3 37.693

4 31.154

Both videos have very similar PSNR values with the same number of LSBs truncated, but

the visual quality is significantly different. As compared to video #1 (video tag: EFv2FvnlLao),

the “banding distortion” of video #2 (video tag: FNlpA4FME-8) is much more noticeable to

viewers. Accordingly, the traditional PSNR video quality metric cannot correlate well with

viewer experience, and the video-content properties, such as the texture/motion characteristics,

significantly affect a viewer’s experience. Due to these factors, this work introduces video

content information to study viewer experience. Specifically, the recently developed macroblock

characterization is adapted to analyze the pixel-luminance values’ variance [59], as described in

the next subsection.

 Video Macroblock Variance Analysis

The macroblock variance analysis is typically conducted during the video pre-processing

stage when encoding videos [59, 60]. The analysis used in this work adopts the defined

calculation for determining whether a given macroblock is considered to be plain or textured,

34

which avoids introducing significant computational overhead. This calculation is based on the

variance of pixel luminance values of a given macroblock and is defined as [59]

fLg = ∑ ∑ �7��, >� − hLg�I ≫ 8FJ-DEFJ-DE
P(= j 7�&�� �
�fLg ≤ lℎm.n�l�Z����� Q�^�

 (10)

where hLg and fLg are the average luminance and variance of luminance values in a given

macroblock (denoted MB in equation 14), respectively. The value used for lℎm.n was 1.25 as

was determined in [60] through the use of regression analysis. For analysis purposes, this lℎm.n

value is an arbitrary number used to define the plain macroblock percentages in the model design

process. This macroblock characterization can be calculated during the encoding process and

transmitted as metadata in the video bit stream. Currently, an embedded system implementation

is used to calculate the average plain macroblock calculation. To minimize computational

overhead, a single, averaged plain macroblock percentage is calculated that represents an entire

sample. However, it is possible to calculate a per frame macroblock percentage for videos that

change scenes frequently for dynamic adaptation. Two benchmark videos, Akiyo and News,

were initially retrieved from [42]; these videos contain static backgrounds with a low amount of

motion from the reporter(s) in the videos. Both videos display low plain macroblock percentages

when analyzed. 32 video samples were collected with similar broadcasting characteristics from

the YouTube-8M dataset [44] and the minimum, maximum, median, and average plain

macroblock percentages were calculated for each sample. Figure 9 displays two video samples

with similar PSNR values, but varying plain macroblock percentages for 2 LSBs truncated. The

distribution of plain macroblocks and the resulting banding distortion effect are visualized within

the red blocks of Figure 9.

35

Min. Plain MB %: 53.26%; Max. Plain MB %: 54.56%
Median Plain MB %:53.69%; Mean Plain MB %: 53.71%

Min. Plain MB %: 18.37%; Max. Plain MB %: 20.22%
Median Plain MB %: 19.35%; Mean Plain MB %: 19.34%

PSNR: 48.1 dB PSNR: 47.8 dB

Figure 9. Plain macroblock visualization and video output comparison (white = plain)

An important observation is that a noticeable relationship exists between the banding

distortion and the plain macroblocks; videos with large amounts of plain macroblocks, especially

where the plain macroblocks are dense, tend to have decreased visual quality to viewers.

Accordingly, this relationship is utilized to develop a content-adaptive model to predict the

acceptable number of truncated LSBs for different videos. Specifically, to minimize the

computational overhead, the average plain macroblock percentage per video frame is used and

the focus of the video samples is videos with low-motion and a stationary camera, or containing

a reporter in the analysis.

 Modeling Process

To determine the acceptable number of LSBs to truncate for different videos, subjective

video testing was conducted and based on the collected data, two models were developed using a

36

decision tree and logistic regression methods. For the initial study, only the luma (Y) component

is considered when truncating LSBs.

 Subjective Testing Procedure for Data Collection

Two sets of subjective video studies were conducted to collect viewers’ feedback. Within

each of the studies designed for subjective analysis of truncation techniques, participants were

asked to view multiple versions of the same video. The testing procedure follows guidelines

from the ITU [61] and uses the Degradation Category Rating (DCR) method [57], which is also

known as the Double Stimulus Impairment Scale (DSIS). The participants were asked to watch

both the original video and a truncated version of the video and then score them from 1 to 5

based on their opinion of the quality (imperceptible-5, perceptible but not annoying-4, slightly

annoying-3, annoying-2, very annoying-1). We used an average score of 4.0 or higher as the

target for acceptable video quality [61]. The first (second) of two studies contained 10 (13)

participants who were each asked to view 7 (9) individual videos from the 34 total videos.

With these averages scores for different amounts of LSBs truncated, the video samples

were split into different regions. Based on this, models that connect the average plain

macroblock percentages to the number of LSBs that can be truncated were developed.

 Modeling Process

1) Decision Tree Model: From the initial subjective studies, the goal is to model the

correlations between the calculated average plain macroblock percentages and the largest amount

of LSBs that can be truncated for a given PSNR that will maintain an acceptable video quality.

Figure 10 displays the video samples’ average plain macroblock percentage and how many bits

can be truncated based on the minimum acceptable impairment score of 4.0. The number of

acceptable bits to be truncated were determined through 2 sets of subjective trials (i.e. Subjective

37

#1 and Subjective #2 in Figure 10) and are indicated by 1T for 1 LSB truncated, 2T for 2 LSBs

truncated, and 3T for 3 LSBs truncated.

The high percentage of plain

MB%, the lower bit truncation

can be tolerable

Indoor viewing context
 Subjective #1

 Subjective #2

 Non-Subjective

Figure 10. Acceptable truncated bits based on subjective feedback

 From these preliminary results, an inverse relationship can be seen between plain

macroblock percentage and acceptable number of LSBs to truncate. With this knowledge and

subjective data gathered from participants, a decision tree model using the Classification Learner

tool in MATLAB is developed, as shown in Figure 11. By traversing the tree from the top to the

bottom based on the plain macroblock percentages, the number of truncated LSBs can be

obtained for different videos. It is worthy to mention that the majority of videos from the

YouTube-8M dataset have plain macroblock percentages above 1.96405% (see Figure 11) and

therefore the number of videos with the decision for 3 LSB truncation is much less than that of 1

LSB and 2 LSB truncation.

38

Plain MB %

≥ 21.5571%

True False

Truncate

1 Bit

True False

Truncate

2 Bits

Truncate

3 Bits

Plain MB %

≥ 1.96405%

Figure 11. Developed decision tree model for bit truncation

2) Logistic Regression Model: In the model development process, the widely-applied

statistical modeling method, logistic regression, was also considered, which is represented by

 o p- = pq exp�u-E + u-FZ� , � = 1,2
pq = F

Fcvwx�]dyc]ddz�cvwx�]Kyc]Kdz�
 (11)

where p- ≔ 7|} = �|Z� indicates the probability that the number of truncated LSBs is � for a

given average plain MB percentage of Z. MATLAB was used to fit the �� coefficients and

resulted in the following values: u�FE = −1.6636, u�FF = 12.7929, u�IE = 1.4408, u�IF = 1.0497.

The corresponding p-values were 0.243, 0.103, 0.111, 0.881, respectively. This implies that all

four coefficients are not significant in the regression under a 5% significance level. By observing

the data, one can clearly see that this is due to noise.

If a user chooses a video as satisfactory that is truncated by C LSBs, then he/she will be

satisfied by the same video truncated by C′ LSBs where 0 < C� < C. The difference between C

LSB and C′ LSB truncation is the energy efficiency that can be enabled; the efficiency is higher

for C LSB truncations. To this end, the ordinal logistic regression is used for modeling, which

yields

39

 ln H �d�Kc��O = uFE + uFZ (12)

 ln H �d�Kc��O = uIE + uFZ (13)

 pF + pI + pq = 1 (14)

Solving (12), (13), and (14), leads to

 pF = vwx'u10+u1Z4
Fcvwx'u10+u1Z4 , pI = F

Fcvwx'u10+u1Z4 − F
Fcvwx'u20+u1Z4 , and pq = F

Fcvwx�]Kyc]dz� (15)

MATLAB is used to fit the ordinal coefficients resulting in u� = =u�FE, u�IE, u�F@ =
R−2.8322, 0.9856, 9.7783V, with p-values � = R0.0039, 0.1710, 0.0156V, respectively. With

this ordinal logistic regression, only uIE is not significant under a 5% significance level and the

result is much better than the previous case using the standard logistic regression. Table 12 lists

the ordinal logistic regression results. From this table it can be seen that there is no decision for 3

LSB truncation based on the ordinal logistic regression model. This is mainly because very few

videos with 3 truncated LSBs are considered acceptable by the participants; also, most of the

video testing results with 3 LSB truncation are considered to be noisy data. When the plain

macroblock percentage (x) is 0.28504 (i.e., 28.504%), P{1 LSB truncated} = P{2 LSBs

truncated} = 0.4888. So, if x > 28.504%, 1 LSB is truncated; otherwise, 2 LSBs are truncated.

Table 12. Results of ordinal logistic regression

Z
P

{1 LSB truncated}
P

{ 2 LSBs truncated }
P

{ 3 LSBs truncated }
Decision for

LSB truncation

0.05 0.0876 0.7261 0.1863 2 LSBs
0.10 0.1354 0.7415 0.1231 2 LSBs
0.15 0.2034 0.7174 0.0793 2 LSBs
0.20 0.2939 0.6560 0.0502 2 LSBs
0.25 0.4043 0.5643 0.0314 2 LSBs

0.28504 0.4888 0.4888 0.0224 2 LSBs

0.30 0.5253 0.4552 0.0195 1 LSB
0.35 0.6434 0.3446 0.0120 1 LSB
0.40 0.7463 0.2463 0.0074 1 LSB
0.45 0.8275 0.1679 0.0046 1 LSB
0.50 0.8866 0.1105 0.0028 1 LSB
0.55 0.9273 0.0710 0.0017 1 LSB
0.6 0.9541 0.0448 0.0011 1 LSB

40

 Quality Optimized Bit Truncation Design

This section will cover a newly proposed viewer-aware bit truncation technique, which

has less visual quality degradation with the same number of LSBs truncated. Based on the

developed bit truncation technique and models, an energy-quality scalable memory with content

adaptation is implemented.

 Quality Optimized Bit Truncation

Bit truncation can adjust the video data’s bit-depth by disabling LSBs to enable power

savings and has been applied widely in low power hardware design [55, 56]. Here, viewer

awareness is introduced to the hardware design process and is used to develop a new hardware

implementation scheme for bit truncation with a minimized effect on the viewer’s experience.

Suppose that the goal is to truncate the lowest t LSBs of each luma (Y) byte. For a given

video, the true numerical value can be calculated for the truncated bits. However, if all videos in

general are considered, the true (decimal) value of these truncated t LSBs should be considered a

random variable. These truncated t LSBs may express any decimal numbers among 0, 1, 2, …,

2t–1, because there is not any general prior knowledge that works for all videos. A crucial

question is as follows: what value should be set/given after the true value of these lowest t bits

are truncated? A natural and intuitive method is to make them all zeros. For example, if the true

value of a byte is 10101���I and three bits are truncated, then the byte’s value after truncation

is 10101���I. Setting the truncated bits as zeros has been widely adopted by designers [55, 56].

However, in the following proposition, it is shown that this value is not the best for minimizing

the expected mean square error, E(MSE).

41

Proposition 1. Suppose that the lowest t LSBs of a byte are truncated. Without losing

generality, it is assumed that the true value of these bits is evenly distributed. Then, the best

value for these t truncated bits, in terms of minimizing E(MSE), is 10…02 (with t – 1 zeros).

Proof. Let random variable Y indicate the true numerical value which is expressed by the

truncated t LSBs. Y is evenly distributed, therefore the probability mass function (pmf) for Y is

shown in Table 13.

Table 13. Probability mass function for random variable Y

Y = 0 1 2 ⋯ 2� − 1

probability 1/2� 1/2� 1/2� ⋯ 1/2�

Let Z be the targeted (decimal) value that is set for these truncated LSBs. The aim is to

minimize E(MSE), namely to minimize

�Z� = F
I� R�Z − 0�I + �Z − 1�I + ⋯ + �Z − �23 − 1��IV (16)

Let

 0 = f ��x� = F
I��d =x + �x − 1� + ⋯ + 'x − �2� − 1�4@ ⇒ x = 2�WF − F

I (17)

Because x is an integer, x can take the value Z = 23WF = 10 … 0I (with t – 1 zeros) or the value

Z = 23WF − 1 = 01 … 1I (with t – 1 ones). For the results presented herein, the value 10 … 0I

was used; however, the value 01 … 1I could also be used. For a hardware implementation, which

value is better would depend on factors such as power requirements of using 10 … 0I vs.

01 … 1I. The significance of Proposition 1 is that it shows the dependence between the value set

for the truncated bits and the expected MSE and that it gives the best value, in general. To verify

this proposition, 2,000 unique videos, representing 100,000 individual frames, were randomly

selected from the YouTube-8M dataset [44]. As illustrated in Figure 12, setting the truncated bits

42

to be 10 … 0I (with � − 1 zeros) can enable much higher PSNR values, thereby providing a better

viewing experience for the same videos in the same surroundings.

2000 Videos

P
S

N
R

 (
d

B
)

3 bits

truncated

Figure 12. Average PSNR values using two different truncation techniques

Content-Adaptation Video Memory Design

Figure 13 (a) shows the architecture of the proposed viewer-aware dynamic bit-truncation

memory with 512 words × 64 bits, which contains 32kb of 6T SRAM bit-cells. To enable

viewer-aware bit truncation for LSBs, two different bit-line conditioning circuits are applied to

the memory. The normal bit-line conditioning circuits have a pre-charge unit, write driver, and

sense amplifier, and they are connected to the 4 MSBs in a byte; the remaining bit-lines contain

extra circuitry to enable bit truncation, and are applied to the 4 LSBs in a byte as shown in Figure

13 (b).

The truncation controller is shown in Figure 13 (c). φ1and φ2 are signals generated from

peripheral circuitry based on the clock signal. φ1 controls read and write operations depending

on which period it is in; φ2 controls the pre-charging circuity of the memory. The sense signal

43

only turns on for a very short time at the end of the reading operation in order to reduce the

power consumption during the read operation. The truncation process is controlled by three

external signals. trunc_en controls whether the truncation function is on, and the other two

signals, B<0> and B<1>, determine how many bits to truncate. t1 and t2 are generated from

B<0> and B<1> through two decoders. The decoder for t1 is a normal 2-to-4 decoder. A special

2-to-4 truncation control decoder is applied for generating t2, and the truth table is also shown in

Figure 13 (c). When t1 and t2 are both 0s, the normal operations are applied; whenever t1 is 1, the

pre-charging, writing, and reading operations are suspended; on the basis of t1 being 1, if t2 is 1

then the output will be 0, otherwise the output will be 1; the data pattern 01 for t1 and t2 will

never appear.

. . .

senseout<0>

data<0>

φ2���

BLBLBLBL<0><0><0><0>���������� BL<0>

read_en

φ2

φ1

write_en
φ1

φ1
wl_en

write

clk

clk

read

Basic

2-to-4

Decoder

trunc_en

B<0>
B<1>

t1<3>

t1<2>

t1<1>

t1<0>

2-to-4

truncation

control

Decoder

trunc_en

B<0>
B<1>

En B<0> B<1> Y3 Y2 Y1 Y0

0 x x 0 0 0 0

1 0 0 0 0 0 1

1 0 1 0 0 1 1

1 1 0 0 1 1 1

1 1 1 1 1 1 1

Inputs Outputs

truncation control truth table

sense

wl_en

t1

t1�

t2�
t1�

out<4>

data<4>

φ2���

BLBLBLBL<0><0><0><0>���������� BL<0>

t2<3>

t2<2>

t2<1>

t2<0>SRAM

Block 4
(256*32)

SRAM

Block 3
(256*32)

SRAM

Block 2
(256*32)

SRAM

Block 1
(256*32)

Sub_array 2

(32x32)D
ec

o
d

er
 &

 D
ri

v
er

Sub_array 1

(32x32)

Sub_array 8

(32x32)

. . .

b
l[

3
1
:0

]

b
lb

[3
1
:0

]

32

D
ec

o
d

er
 &

 D
ri

v
er

Bit-line conditioning

...

2
5
6

 w
o
rd

li
n

es

SRAM Block 4

Y Y Y Y31 23 15 724 16 8 0

Pixel 4 Pixel 3

MSB LSB

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

Pixel 2 Pixel 1

(a) Memory Structure (b) Bit-line conditioning circuitry (c) Bit truncation controller

Figure 13. Content-adaptive video memory

 Experimental Results

The proposed memory is implemented using a 45nm CMOS technology [62]. In addition

to hardware-level implementation and verification, psychological experiments were conducted to

test the video output quality from the viewers’ perspective.

44

 Speed

Figure 14 shows the timing diagram for the proposed memory. To test the functionality

of the memory, the data: 0xe9, 0xce, 0x62, and 0x71, are written to the addresses: 0x55, 0xb9,

0xce, and 0x15, respectively, and then read out from the same addresses. For example, during a 3

bit truncation operation, the values read out are: 0xec, 0xcc, 0x64, and 0x74, where the last 3

LSBs for these values are 1002. The access delay of the reading operation is about 0.5 ns, which

is fast enough to deliver the typical mobile video sequences (i.e. 11MHz for CIF/QCIF and

72MHz for HD720 [63]).

DATA1

DATA2

DATA3

DATA4

DATA5

DATA6

DATA7

read_en

write_en

B<1>

B<0>

trunc_en

φ2

φ1

clk

DATA0

Addr

Data

55 b9 ce 15

Original video data

e9 ce 62 71

Write read

55 b9 ce 15

e9 ce 62 71

55 b9 ce 15

1 bit truncation

e9 ce 62 71

Write read

55 b9 ce 15

e9 cf 63 71

55 b9 ce 15

2 bits truncation

e9 ce 62 71

Write read

55 b9 ce 15

ea ce 62 72

55 b9 ce 15

3 bits truncation

e9 ce 62 71

Write read

55 b9 ce 15

ec cc 64 74

55 b9 ce 15

4 bits truncation

e9 ce 62 71

Write read

55 b9 ce 15

e8 c8 68 78

Read access time: ~ 0.5ns

0.0 25.0 50.0 75.0 100.0
Time(1e-9s)

Figure 14. Timing diagram (DATA7: MSB; DATA0: LSB)

 Layout

The layout design for 512 words × 64 bits SRAM with viewer-aware bit truncation is

shown in Figure 15. Only a few gates are added to the bit-line conditioning circuit to enable the

truncation function. Also, after careful design, the decoders for truncation controlling can be fit

45

into the free space of the original layout, without introducing additional overhead. The proposed

memory consumes only 0.32% more silicon area as compared to the traditional SRAM, which is

negligible.

Decoder & drivers

SRAM Sub Array

32x256

235.57 µm

1
1
1

.9
6

 µ
m

Bit-line conditioning & truncation circuity

Figure 15. Physical layout design

 Power Savings

Input patterns that cover all data switching possibilities have been tested for the memory.

Normal operation, and 1 to 4 LSB truncations, are simulated based on these input patterns, and

the power consumption for each scenario is shown in Figure 16. As compared to normal

operation, the average power consumption of reading and writing operations for 1 to 4 LSB

truncations can enable 13.54%, 20.10%, 26.83%, and 33.31% power savings, respectively.

46

Figure 16. Power Savings

 Video Quality

Finally, in order to verify the effectiveness of the truncation technique on viewer

experience, psychological experiments were conducted at the North Dakota State University

Center for Visual and Cognitive Neuroscience. The psychophysical experiment setup is shown in

Figure 17. The ambient illumination was provided using a rectangular array of 60 high-intensity

LEDs capable of emitting a maximum of 64,000 Lux (i.e. Larson Electronics, model LEDP5W-

60-D-1227-F5.15). An illumination meter (i.e. Extech model 401027) was used to accurately

measure the ambient illumination of the phone used for testing, which was a Samsung Galaxy

Note 4. In the experiments, the amount of illumination was adjusted for the high-intensity light

source using neutral-density filters. The luminance level measured by the illumination meter was

approximately 811 Lux, which is a typical indoor light level.

6
.4

2
E

-0
3

5
.7

7
E

-0
3

5
.4

2
E

-0
3

5
.1

2
E

-0
3

5
.2

4
E

-0
3

4
.5

0
E

-0
3

5
.0

5
E

-0
3

3
.8

7
E

-0
3

4
.8

7
E

-0
3

3
.2

6
E

-0
3

13.54%

20.10%

26.83%

33.31%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

6.00E-03

7.00E-03

write read write read write read write read write read

normal 1 bit 2 bits 3 bits 4 bits

P
o

w
e
r

sa
v

in
g

P
o

w
e
r(

W
)

47

Subject

Phone

Neutral Density

Filters (2 dark)

Checkboard

Ambient illumination

LEDs (Larson

Electronics)

Phone Screen

Figure 17. Psychological experiment setup

To assess the degree to which observers can accept the truncated videos as compared to

the reference videos using the developed models, a total of 20 videos were collected: 10 videos

were classified as having a stationary camera and 10 videos containing a reporter. Each video

sample was evaluated at a single quality point encoded using a constant rate factor of 0 (i.e.

lossless compression), had a 640×360 resolution, was 10 seconds in length, and was downloaded

from [44]. Based on these videos the average plain macroblock percentages were calculated and

the developed models were used to predict what the expected amount of acceptable LSBs to

truncate would be for different videos. Two versions of each video were created from each

reference video, one with the predicted amount of acceptable bits to truncate and another with

one bit beyond the predicted acceptable amount. Sequences of numbers were used to represent

each video and the order they would be presented to viewers was randomized. During testing,

each participant would compare a total of 40 truncated videos to their original, non-truncated

version, and give their opinion of whether they would consider the video acceptable for viewing

on the mobile device.

The testing results for the developed decision tree model are shown in Figure 18. The

plain macroblock percentages, the number of bits truncated, and the video quality metric (VQM)

[64] calculation are included for comparison among samples in Figure 18. VQM is one widely

48

used objective video quality metric that has been shown to have a strong correlation to the

subjective viewer ratings. When calculating the VQM for each sample, we used the NTIA

General Model with Full Reference Calibration, which has been standardized by both the ITU

and ANSI [65]. The number of participants who considered the samples with a truncation level

of one bit beyond the predicted acceptable amount is also included in Figure 18 as “Predicted +

1” under each sample. The developed decision tree model works well for nearly all videos tested.

There was only one video, with tag wF6lvdXXwc4, out of 20 videos that was considered to not

be acceptable by the vast majority of participants. As shown in Figure 19 (a), this video displays

banding distortion, caused by bit truncation, appearing on the reporter’s face, which is likely a

viewer’s focus point. Due to this particularly noticeable distortion, viewers were less likely to

accept the displayed degradation. All other samples were considered acceptable by the majority

of the 15 total participants, with the lowest acceptance rate being 73% for the video with tag

2AQ6rhVhwRc, another video with banding appearing very close to a viewer’s focus point, the

kitten playing with a string in the video. When one bit beyond the predicted bit truncation value

was used for the videos, only 8 of the 20 videos were considered to be acceptable by the majority

of participants, and none of the video samples had unanimous acceptability.

49

80%

20%

Acceptable Not Acceptable

100%

0%

Acceptable Not Acceptable

100%

0%

Acceptable Not Acceptable

80%

20%

Acceptable Not Acceptable

100%

0%

Acceptable Not Acceptable

100%

0%

Acceptable Not Acceptable

100%

0%

Acceptable Not Acceptable

87%

13%

Acceptable Not Acceptable

20%

80%

Acceptable Not Acceptable

73%

27%

Acceptable Not Acceptable

100%

0%

Acceptable Not Acceptable

100%

0%

Acceptable Not Acceptable

80%

20%

Acceptable Not Acceptable

100%

0%

Acceptable Not Acceptable

100%

0%

Acceptable Not Acceptable

87%

13%

Acceptable Not Acceptable

93%

7%

Acceptable Not Acceptable

100%

0%

Acceptable Not Acceptable

100%

0%

Acceptable Not Acceptable

93%

7%

Acceptable Not Acceptable

Tag: Fjclf1Wy__0

Plain MB %: 2.737681%

Bits Truncated: 2

VQM: 0.0572

Predicted + 1: 9 / 15

Tag: iFbtfQCRIlg

Plain MB %: 17.78587%

Bits Truncated: 2

VQM: 0.0305

Predicted + 1: 3 / 15

Tag: lWRLlYnRmL4

Plain MB %: 7.411957%

Bits Truncated: 2

VQM: 0.0679

Predicted + 1: 4 / 15

Tag: -PknNC7jwdM

Plain MB %: 12.42138%

Bits Truncated: 2

VQM: 0.0699

Predicted + 1: 4 / 15

Tag: VPfz7ENFUB0

Plain MB %: 36.70471%

Bits Truncated: 1

VQM: 0.0228

Predicted + 1: 5 / 15

Tag: vQuFB98IX14

Plain MB %: 2.200000%

Bits Truncated: 2

VQM: 0.0758

Predicted + 1: 13 / 15

Tag: WH6ctrzpxZ8

Plain MB %: 6.111957%

Bits Truncated: 2

VQM: 0.0513

Predicted + 1: 8 / 15

Tag: BlAq7bYHlcc

Plain MB %: 5.440435%

Bits Truncated: 2

VQM: 0.0731

Predicted + 1: 7 / 15

Tag: uPXMOO1EiN0

Plain MB %: 9.264783%

Bits Truncated: 2

VQM: 0.0802

Predicted + 1: 5 / 15

Tag: wF6lvdXXwc4

Plain MB %: 0.660435%

Bits Truncated: 3

VQM: 0.2823

Predicted + 1: 0 / 15

Tag: 2AQ6rhVhwRc

Plain MB %: 4.832246%

Bits Truncated: 2

VQM: 0.0938

Predicted + 1: 3 / 15

Tag: 2X-2rEWlAUs

Plain MB %: 33.82790%

Bits Truncated: 1

VQM: 0.0118

Predicted + 1: 8 / 15

Tag: 5bhFKVzLvyQ

Plain MB %: 4.765942%

Bits Truncated: 2

VQM: 0.0925

Predicted + 1: 1 / 15

Tag: -gK97YpQj84

Plain MB %: 7.384420%

Bits Truncated: 2

VQM: 0.0376

Predicted + 1: 8 / 15

Tag: ibP2eUkdIuE

Plain MB %: 7.384420%

Bits Truncated: 2

VQM: 0.0422

Predicted + 1: 13 / 15

Tag: KW2uqQCSV3o

Plain MB %: 3.725435%

Bits Truncated: 2

VQM: 0.0364

Predicted + 1: 11 / 15

Tag: Lp3H1XOcKCE

Plain MB %: 1.932971%

Bits Truncated: 3

VQM: 0.2759

Predicted + 1: 2 / 15

Tag: qsRlZr3rklg

Plain MB %: 66.21812%

Bits Truncated: 1

VQM: 0.0056

Predicted + 1: 3 / 15

Tag: dgAu_Wsd7Fo

Plain MB %: 1.131739%

Bits Truncated: 3

VQM: 0.1429

Predicted + 1: 10 / 15

Tag: lcVPxLFlq1c

Plain MB %: 0.224348%

Bits Truncated: 3

VQM: 0.1289

Predicted + 1: 11 / 15

Figure 18. Video quality testing results using the decision tree model

50

(a) 3 LSBs truncated using decision tree model (b) 2 LSBs truncated using ordinal logistic regression model

Figure 19. Output quality of video with tag wF6lvdXXwc4

The results using the ordinal logistic regression were further compared to the decision

tree model. Those two models achieve the same prediction results for the majority of videos;

only 4 out of the 20 videos are different. For the 4 videos that differ, the decision tree model

predicts that 3 LSBs should be truncated and the ordinal logistic regression model predicts that

only 2 LSBs should be truncated. One of those 3 videos is the video with tag wF6lvdXXwc4; it

was the only one that was considered to be not acceptable using the decision tree model. With 2

LSBs truncated predicted by the ordinal logistic regression model, the visual quality is

significantly improved, as illustrated in Figure 19 (b). For the other 3 videos (with tags

Lp3H1XOcKCE, dgAu_Wsd7Fo, and lcVPxLFlq1c), the visual output with 3 LSBs truncated are

acceptable by the majority of participants. Particularly, for the video with tag dgAu_Wsd7Fo, all

of the participants said it was acceptable. From the above analysis, it can be concluded that as

compared to the decision tree model, the ordinal logistic regression model is a more conservative

model, which can avoid the worst video quality degradation case, but it may lose energy

optimization opportunities for some videos. Another interesting observation that was made

during the video testing process is that if a viewer’s focus can be detected in different videos

51

(e.g., mobile gaze tracker [66]), noticeable degradation can be removed from those sensitive

areas of videos in the future.

 Context-Aware Memory Concluding Remarks

In this chapter, a video context-aware memory technique for energy-quality tradeoff

using viewer perspective was presented. Based on the influence of how video content

characteristics impact viewer experience, two simple, but effective models to enable hardware

adaptation were developed. A new viewer-aware bit truncation technique with minimized impact

on a viewer’s experience was presented that introduces energy-quality adaptation to the video

storage. Future investigations would include incorporating the motions of videos in the viewer

experience study, as well as combining viewing luminance awareness to further enable energy-

quality adaptation in different viewing surroundings.

During the hardware implementation process, a single percentage for the entire video was

used in order to minimize the overhead of the design. In order to better suit the applicability and

energy-quality scalability, future research could investigate the capability of calculating the

macroblock percentage for each frame. This per frame calculation could allow for real-time

adjustment of truncated bits at the cost of additional area overhead. Expanding the number of

participants and video samples in order to create a more comprehensive model could also be

used to improve the model results. Finally, further studying the relationship between the content

information and the psychophysical human visual system models could be used to better

understand what other metrics could be used to support the hardware design.

52

 CHAPTER 4. DATA-DRIVEN INTELLIGENT EFFICIENT SYNAPTIC STORAGE

FOR DEEP LEARNING3

Nowadays, with the exponential growth of readily available information, deep learning is

becoming the go to solution for various engineering problems. Autonomous vehicles, drug

discovery, natural language processing, image recognition, and healthcare, are a few notable

areas that have a great deal to gain from the use of these deep learning systems. The necessary

deep learning models used to help perform tasks in these disciplines need continuous parameter

updates during the training process, which require intensive synaptic weight read and write

operations. The use of SRAM for training these types of models is critical for these systems to be

able to meet performance and energy efficiency requirements. In order to achieve an optimal

tradeoff between energy efficiency, area overhead, and model classification accuracy, this

chapter introduces an offline data mining method in order to optimize the hardware design

process. This technique will help to relieve machine learning hardware designers of the large

burden of data storage in deep learning systems. A 45 nm 64 kbits SRAM for synaptic weight

storage is presented that can enable 45.6% active power savings and 83.2% leakage power

savings, with low area overhead (3.17%) and 0.72% loss in model classification accuracy.

 Synaptic Storage and Memory Failure Overview

The use of neural networks has been adopted for a wide variety of applications,

including: image recognition, finance, medicine, pattern discovery, and autonomous vehicles.

The memory failures in synaptic storage, specifically for artificial neural networks (ANNs) will

be analyzed in this section.

3 The material in this chapter was co-authored by Jonathon Edstrom, Yifu Gong, and Dongliang Chen. Jonathon
Edstrom held the primary responsibilities of writing the simulation code, extracting data from software simulations,
analyzing the data and verifying results. Yifu Gong and Dongliang Chen, provided the presented SRAM hardware
design with simulation results based on the software implementation results.

53

 Synaptic Storage in Artificial Neural Networks

The operation of neural networks is based on the many intricately connected, biological

pathways that are present within animals, such as the brain or visual cortex. Figure 20 shows the

general architecture of an ANN, which contains multiple hidden layers in between an input and

output layer. Each computational unit, or neuron, within the neural network has a set of signals

that are passed from the input layer, through multiple hidden layers, and eventually to the output

layer.

...

Input Layer
(784 neurons)

Hidden Layers
Output Layer
(10 neurons)

...

Input Image

(784 pixels)

...

...

...

(a)

In
p

u
ts

Individual

Computational Unit

(Artificial Neuron)

∑

Summing

Junction

x = b + ∑wixi
i=1

n

x

w1

w2

b

...

wn

x1

x2

x3

xn

+1

...

bias

w3

Synaptic

weights

Activation

Function

y = Φ(x) = max(0, x)

y

O
u

tp
u

t

(b)

Figure 20. (a) ANN architecture; (b) Single neuron with synaptic weights

These signals begin at the input as a vector that represents the data used to train or test the

neural network. The signals at each connection between layers are modified by the weight values

that are associated with each pathway. Those weight values are dynamically adjusted when

training the network using backpropagation, or minimizing the calculated error through an

optimization method, after each batch of inputs has finished flowing through the network [67].

Accordingly, the majority of memory usage by neural networks comes from these synaptic

weights that are repeatedly updated throughout the training process.

54

 Impact of Synaptic Memory Failures on ANN Classification Accuracy

In this subsection, the SRAM failure mechanism, and its impact on the classification

accuracy of ANNs will be discussed. Among various SRAM bit cells developed by researchers,

6T and 8T are the two most widely applied SRAM bit cells. Considering the impact of

technology scaling on device sizing, Lambda-based rules are used, where, one Lambda (1λ) is

equivalent to half the minimum feature size for a particular SRAM technology. Figure 21 shows

6T and 8T bit cells with 3λ width using 45nm technology. The left SRAM bit cell schematic in

Figure 21 (a) displays a 3λ-6T SRAM bit cell; the pull-up transistors (PU) are minimum size, the

widths of the pull-down (PD) and access transistors (AX) are 3λ. The right SRAM bit cell

schematic in Figure 21 (b) displays a 3λ-8T SRAM bit cell, based on 3λ-6T SRAM bit cell; two

read port transistors with 3λ widths are connected to QB. The left layout shown in Figure 2 (b) is

an upsized 9λ-6T bit cell and the right layout is a 3λ-8T bit cell. Conventional 6T bit cells have

the advantage of providing low static power dissipation, but exhibit stability problems when

operating at scaled voltages. When performing a read operation, a 6T bit cell can overwrite the

stored bit value with its inverted value if the voltage at QB reaches the threshold voltage of the

NMOS transistor on the Q side of the bit cell [68]. By including two additional transistors, 8T bit

cells separate the read and write paths so that each path can be independently optimized for its

respective operation. This allows for 8T bit cells to mitigate the risk of reading incorrect data

when voltage scaling. In general, 6T bit cells can be used to achieve an optimized area cost; and

8T bit cells can be used for effectively reducing the memory failures due to its decoupled read

and write paths.

55

LRBL

Vdd Vdd

WL
BL

Q
QB

WL

BLB
WPU/LPU

=50/50

WPD/LPD

=68/50

WAX/LAX

=68/50

WAX/LAX

=68/50

WL

BL

Q QB

WL

BLB
RWL

WRP/LRP

=68/50

6T storage cell

(a)

1.75 µm 1.7425 µm

0.4465 µm

(b)

Figure 21. (a) Schematic and (b) layout design of 6T and 8T SRAM bit cells
In (b), the 6T bit cell layout on the left has been upsized (9λ-6T) to approximately match the size
of the minimum sized 8T bit cell layout (3λ-8T) shown on the right. Using similar sized bit cell
layouts in this way is useful to compare the failure rate due to voltage scaling between designs.

Memory failures are mainly caused by process variation in SRAM bit cells. Specifically,

these types of failures are caused by threshold voltage variations (σVth), which can be expressed

as follows [69]:

 �f3� = �� √¢m (18)

where AVT is a technology dependent constant, and W and L represent the width and length of the

transistor, respectively. The σVth for transistors with W equal to the minimum LEFF for 45 nm

predictive technology is 46.9mV for NMOS and 41.8mV for PMOS. From (1), σVth is inversely

proportional to √�B, therefore, as W and L increase, the deviation of Vth, the voltage threshold of

the SRAM bit cell, is reduced.

Based on a Monte-Carlo simulation with 1,000,000 trials, the read and write failure rates

were estimated at the five separate process corners, including: “ss” (slow NMOS and slow

PMOS), “sf” (slow NMOS and fast PMOS), “fs” (fast NMOS and slow PMOS), “ff” (fast

NMOS and PMOS), and “tt” (typical NMOS and typical PMOS). At the same voltage, the failure

rate decreases as the size of the SRAM bit cell increases. The failure rates of 3λ-6T and 3λ-8T

SRAM bit cells in different process corners are shown in Figure 22 (a) and (b), respectively.

Figure 22 (c) displays the failure rates of 6T bit cells with various sizes, from 3λ to 16λ, and an

8T bit cell with 3λ width, in their worst process corners (i.e. “fs” for 6T bit cells and “sf” for 8T

bit cell).

56

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
(f

)

3 -6T-ss

3 -6T-sf

3 -6T-fs

3 -6T-ff

3 -6T-tt

0.3 0.35 0.4 0.45 0.5

V

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
(f

)

3 -8T-ss

3 -8T-sf

3 -8T-fs

3 -8T-ff

3 -8T-tt

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V

10
-6

10
-4

10
-2

10
0

P
(f

)

(a) (b) (c)

Figure 22. 45nm SRAM bit cell failure rates based on Vdd voltage scaling

The failure rates of the 8T bit cell for the simulated 45nm technology are much smaller

than 10-5 and are not displayed in Figure 22. However, the additional two transistors in 8T

SRAM bit cells induce a 27.7% area overhead, as compared to 6T SRAM bit cells.

Due to the significant area overhead 8T SRAM bit cells induce on the overall design, it is

useful to compare an upsized 6T SRAM bit cell with similar area, which was found to have 9λ

width for 45nm technology. Based on Figure 22, with similar layout area, 3λ-8T bit cells have

significantly lower failure rate than 9λ-6T bit cells at the same operating voltage. Therefore, 3λ-

8T bit cells are used for the sign bit and the second MSB, W30, in order to minimize the failure

rate of these two bits.

A neural network was simulated on the widely used digit recognition dataset – MNIST

[70]. A large range of bit cell failure rates were tested in order to obtain the largest possible

failure rate the memory could endure for ~1% degradation to the network’s classification

accuracy. It was found that a maximum memory failure rate of 10-5 allows for less than 1% loss

to the accuracy. In order to achieve minimum area overhead, 4λ-6T sizing was adopted to be the

baseline synaptic memory at 1.0V in the memory analysis.

57

 Data Characteristics of Synaptic Storage

In this subsection, the data characteristics for synaptic storage will be analyzed. While

fixed point synaptic weight representations allow for reduced resource requirements as compared

to floating point representations, they introduce loss of precision and added design complexity.

The designed neural networks use the IEEE 754 single precision floating point representation,

which has been used widely in previous works [71, 72]. An investigation of data contribution, bit

switching statistics, and association/correlation characteristics of synaptic weights will be

discussed.

 Data Contribution Characteristics

First, the contribution of each bit within the synaptic weights to output precision is

analyzed. Based on the MNIST handwritten digits benchmark [70], a typical ANN was created

that contained two hidden layers. This model was used to test the contribution of different bits

within the separate layers of the neural network architecture. Using the Python library Keras

[73], a variety of neural network configurations were developed for testing and verification.

Data for the neural network model was stored in memory using the IEEE single precision

floating point format as shown in Figure 23. In this floating point format, the sign bit indicates

whether the number is positive or negative, the exponent bits determine the exponent of the

number modified by a bias, and the significand represents the significant digits of the number

following the binary point (i.e., mantissa = 1.significand, such that the mantissa’s leading 1 is

implied, not stored as part of the 32-bit floating point number).

58

IEEE 754 Single Precision Float

w31 w30 w29 w28 w27 w26 w25 w24 ... w0

sign bit exponent bits

MSB LSB

w24w23 w22

significand

Figure 23. IEEE 754 Single Precision Floating Point Representation

A random number generator and user specified failure rate for memory bit cells were

used to test each of the 32 bit positions for their impact on training the entire system. Failures

were injected one layer at a time to explore the data contribution to the entire system. The

network model designed for analyzing bit injection training degradation is described in Table 14.

Table 14. ANN architecture and configurations

Dataset
of Neurons per

Hidden Layer
Epochs Batch Size Failure Rate

MNIST 20 20 128 1.0 (100%)

The classification accuracy of a neural network, with 100% failure rate for a specific bit

position can be seen in Figure 24. The testing accuracy of this neural network with no faults

injected was approximately 96%. As shown, the 7 MSBs of the 8 exponent bits have a noticeable

impact on the overall test accuracy regardless of which layer they are in; whereas a sign bit error

only severely degrades the network accuracy when occurring on a transition from the second

hidden layer to the output (i.e., sign bit errors from the input to the first hidden layer and between

hidden layers have much less impact on overall accuracy).

59

012345678910111213141516171819202122232425262728293031 Bit Position
0%

20%
40%
60%
80%

100%
Test

 Acc
urac

y
Input to Hidden 1Hidden 1 to Hidden 2Hidden 2 to Output

Figure 24. Influence of synaptic weight bit position on ANN classification accuracy

 Data Switching Characteristics

A further analysis of the individual bits within the synaptic weights reveal useful

information about the bit switching characteristics. In an ANN model with 5 neurons per hidden

layer, the weights and bias values that are stored between each of the layers were extracted

between each update. Figure 25 shows the average bit switching percentage for each bit position.

Based on these results, the MSBs of each weight, especially: the sign bit, all exponent bits, and

the 5 MSBs of the significand, regardless of which layer they were present in, all tended to have

very low switching characteristics (< 10%) between each batch update in the memory.

012345678910111213141516171819202122232425262728293031 Bit Position
0%

10%
20%
30%
40%
50%

Swi
tchi

ng P
erce

ntag
e Input to Hidden 1Hidden 1 to Hidden 2Hidden 2 to Output

Figure 25. MNIST average bit switching percentage of each bit position

60

Since the first eight MSBs have the largest impact on the optimization calculations during

the training process and also exhibit low switching probabilities, the use of association and/or

correlation relationships between bits have the potential to be exploited through the use of offline

association rule mining techniques.

 Data Association / Correlation Characteristics

Association rule mining was introduced in 1993 to discover relationships between

different variables, called items, in a dataset or database [74]. A complete dataset is made up of

many transactions where each transaction contains a set of items. Each item can be associated

with a binary attribute, 0 or 1, that is used to distinguish if that item is present or not in the

corresponding transaction. This type of data organization is illustrated in Figure 26. Each

resulting rule, generated from the association rule mining process, is an implication of the form

X → Y, where X and Y are disjoint sets of, or individual, items. Each rule is also accompanied

by collected statistics from the dataset called support and confidence values. The support value

for a set of items is the proportion of transactions in the dataset that contains such set of items.

The confidence value for an association rule, X → Y, is the proportion of transactions that

contain X which also contain Y, or the conditional probability P(Y | X).

w29=1

w30=0

Neural Network

Transaction 1

Item
1

Item
2

Item
3 ...

Item X ∈∈∈∈ {0,1}

Dataset/

Database

...

@attribute w31 {0,1}

@attribute w30 {0,1}

@attribute w29 {0,1}

@attribute w28 {0,1}

@attribute w27 {0,1}

@data

1,0,1,1,1,1,0,0,1,1,1,0,1,0,1,0

0,0,1,1,1,1,0,0,1,1,1,0,0,1,0,0

1,0,1,1,1,0,1,1,1,1,0,1,1,1,0,1

0,0,1,1,1,0,1,1,1,1,0,1,1,0,0,0

1,0,1,1,1,1,0,1,1,1,0,1,0,0,1,1...

Item Definitions

Transaction

 Item

 Dataset

...
...

Offline association rule miningSynaptic weights data

Neuron

w28=1 w27=1

w26=1

Association rules Conf. Supp.

w30 = 0 → w29 = 1

w30 = 0 → w28 = 1

w30 = 0 → w27 = 1

w30 = 0 → w26 = 1

99.95% 99.95%

99.95% 99.95%

99.89% 99.89%

86.45% 86.45%

The confidence percentages indicate the

probability of correctly predicting the bit

Data association

IEEE 754 Single Precision Float

w31 w30 w29 w28 w27 w26 w25 w24 ... w0

sign bit exponent bits

MSB LSB

w24w23 w22

significand

Figure 26. Offline data-mining assisted synaptic data relationships study

61

Association data mining techniques were used to analyze the extracted MSBs from the

MNIST [70] and Abalone [75] benchmarks, to study the relationship among each neuron’s

corresponding weights. The discovered association rules are also shown in Figure 26. From these

results, within the first 8 MSBs, multiple MSBs (W29-W26) have strong association to the

exponent MSB, W30 (see Figure 26). If the value of W30 is stored in robust memory bit cells, in

the presence of memory failures in W29-W26 bits, the SRAM may achieve self-recovery based on

the discovered data association or correlation rule. Since the sign bit (i.e. W31) also significantly

contributes to the classification precision as discussed in the previous subsection, the sign bit and

W30 will be protected by being stored in robust bit cells. Based on these data characteristics, a

data-driven memory is proposed, which will be discussed in the next section.

 Proposed Data-Driven Synaptic Memory

This section provides a detailed explanation of the proposed hardware design. The

simulation results for performance, area cost, and power efficiency are discussed. An overall

comparison of the memory design compared against the state-of-the-art is also displayed.

 Implementation

Figure 27 shows the architecture of the proposed synaptic memory with 256 words × 256

bits, for a total of 64 kbits. A hierarchical readout bit line scheme (local RBL and global RBL) is

applied to reduce the access time. For each 32-bit synaptic weight stored in the memory, two 8T

bit cells are used to store the sign bit and exponent MSB.

62

B
it

-l
in

es
 a

n
d

 p
re

-c
h

a
rg

e
 c

ir
cu

it

D
ec

o
d

er

SRAM Block

(128×128)
SRAM

Sub

array

Self-Recovery MUX

(64x32) . . .

SRAM

Sub array

31 15 0

MSB LSB

Self Recovery

31 30 . . .2829 0

LSBMSB
27 26

6T bitcells to minimize

the area overhead

Two 8T bitcells to protect two

bits: sign bit and W30

282930

6
4

 w
o

rd
li

n
es

g
b

lx
2

9

g
b

l3
0

g
b

l2
9

S3

g
b

lx
2

8
g

b
l2

8

g
b

lx
2

7
g

b
l2

7

g
b

lx
2

6
g

b
l2

6

g
b

l3
1

g
b

l2
5

. . .

g
b

l0

S2S1S0

PRE

gblx[31:0]

Self-Recovery

MUX
memory fault

position4

32 gbl[31:0]

g
b

l1
[3

1
:0

]
g

b
l2

[3
1

:0
]

32

32

Sub array 5

(64x32)

Sub array 1

(64x32)

w
b

l[
3

1
:0

]

PRE

lbl1[31:0]

PRE

g
b

l1
[3

1
:0

]

PRE

w
b

lb
[3

1
:0

]

lbl2[31:0]

32

. . .

Sub array 8

(64x32)

Sub array 4

(64x32)

w
b

l[
1

2
7
:9

6
]

PRE

lbl1[127:96]

PRE

g
b

l1
[1

2
7

:9
6

]

PRE

w
b

lb
[1

2
7

:9
6

]

32

lbl2[127:96]

Figure 27. Data-driven efficient synaptic storage

A multiplexer-based scheme is adapted from [76] and used to implement a self-healing

synaptic memory. Specifically, based on the obtained data association and correlation

relationships between W29-W26 bits and W30, the global bit-lines of W29-W26 are connected to a

self-recovery MUX. The MUX is controlled by the pre-determined locations of the faulty bits,

which are usually identified either during post-fabrication testing or Power-On Self-Test (POST).

Such testing processes can also be used to track temporal degradation caused memory failures

such as those caused by the aging effect. If a fault is indicated, the self-recovery process is

enabled by selecting a specific data bit in the identified data relationship.

 Results

To evaluate the effectiveness of the proposed data-driven technique, a synaptic memory

with 256 words × 256 bits is implemented in a 45nm technology [49]. Figure 28 shows the

layout design. The parasitic parameters were extracted using the Cadence Virtuoso tool and

included within the simulation. Based on the requirement for a worst case precision accuracy

63

loss of ~1%, using the proposed technique, the supply voltage can be reduced from 1V to

0.825V.

 1) Performance

Due to the added MUXs, the read access time of the proposed synaptic storage increases

from 1.154ns to 1.415ns. Based on the read access time, the calculated frequency of the proposed

design is 706.7 MHz, which is fast enough to meet the high speed demands of neural network

weight updates.

 2) Layout

As discussed previously, embedded SRAMs usually occupy a large portion of area in

deep learning chips, and therefore the area cost of SRAM is an important design concern. Based

on the layout design of the proposed memory in Figure 28, the added self-recovery logic (MUX)

results in a 3.17% area overhead. It should be noted that, the self-recovery logic is added to

readout bit lines, so a memory containing more words would have even smaller area overhead.

385.12 μm

1
3

2
.7

 μ
m

D
ec

o
d

e
r

&
 D

ri
v

er

Sub
array

Self-Recovery MUX

Figure 28. Layout of the proposed synaptic memory in 45 nm technology

 3) Power Efficiency

To evaluate the power efficiency of the proposed synaptic memory, the active power and

leakage power consumption was modelled as follows:

64

 7¸���¹� = ∑ ∑ R76���∙�����+�����V�=0,1316=0 2 (19)

 7B�&C = ∑ ∑ B�>�31>=0255�=0 (20)

where Ptotal is the power consumption of both the read and write operations; b is the bit number; I

is the value stored in the SRAM; P(i) is the probability of a particular bit to be 0 or 1; R(i), W(i),

and L(j) are the read, write and leakage power consumption, respectively, based on the values i

and j, which are shown in Figure 29. The bit value probabilities are extracted based on a 2 hidden

layer MNIST neural network with 100 nodes per hidden layer.

Figure 29. Power consumption of synaptic storage

Based on equations (19) and (20), the conventional SRAM at 1V consumes 154.5µW

active power and 138.9µW leakage power, respectively. The proposed design at 0.825V

consumes 106.1µW active power and 75.83µW leakage power, enabling 45.6% and 83.2%

savings in active power and leakage power, respectively.

 Data-Driven Synaptic Memory Concluding Remarks

In this chapter, a data-driven self-correction technique was presented for neural network

synaptic storage. Using data-mining discovered data characteristics, as compared to traditional

memory, the proposed memory enables 45.6% and 83.2% reduction in active and leakage power

65

savings, respectively, with low implementation cost (3.17% area overhead) and less than 1%

degradation in classification accuracy. Table 15 shows a comparison between the proposed

synaptic storage system [34] against the previous state of the art design technique presented in

[31]. All memories are operated at the same voltage (0.825V), indicating similar power

efficiency. Based on 30 independent trials using the MNIST benchmark, the classification

accuracy for a varying number of 8T cells based on [31] was evaluated, as well as the proposed

data-driven technique. The averaged results of these trials compared against the fault free

network, which had 96.121% classification accuracy on average, are shown in Table 15. It can

be seen that the conventional 6T SRAM results in significant degradation of classification

accuracy (86.321% loss) at 0.825V. In terms of [31], the larger number of 8T cells will improve

the accuracy of the network, while introducing larger area overhead. For example, with 5 MSBs

stored in 8T, the average loss is reduced to 1.685% with 4.015% area overhead. It can also be

seen that, with similar power efficiency at 0.825V, the proposed data-driven technique exhibits a

lower implementation cost with the best classification accuracy (95.401%).

Table 15. Synaptic storage comparison with existing 8T+6T hybrid design

Memory Techniques
Average

Accuracy

Average

Loss

Area

Overhead

Traditional
@1V

All 6T 96.121% 0% 0%

Traditional
@0.825V

All 6T 9.8% 86.321% 0%

DATE’16 [31]
@0.825V

2 MSBs 8T 92.993% 3.128% 1.606%
3 MSBs 8T 93.120% 3.001% 2.409%
4 MSBs 8T 94.369% 1.752% 3.212%
5 MSBs 8T 94.436 % 1.685% 4.015%

Presented Work
[34] @0.825V

2 MSBs 8T +

correction
95.401% 0.72% 3.171%

66

 CHAPTER 5. ENABLING ENERGY-EFFICIENT DIFFERENTIALLY PRIVATE EDGE

INFERENCE FOR DEEP LEARNING4

With the advent of IoT technologies and availability of a large amount of data, deep

learning has been applied in a variety of applications. However, sharing personal data using IoT

edge devices carries inherent risks to individual privacy. Meanwhile, the energy and memory

resources needed during the inference process becomes a constraint to the resource-limited IoT

edge devices. This chapter describes the process of bringing memory hardware optimization to

these IoT edge devices by considering the privacy/accuracy/efficiency tradeoff in differentially

efficient deep learning systems. Simulation results show that the proposed technique can enable

near-threshold memory operation, and less than 1% degradation in classification accuracy.

 Learning with Differential Privacy

 Why do we need Deep Learning with Privacy?

Privacy research has drawn attention in both industry and research communities. Large

industry leaders, including: Apple, Facebook, and Google, have concluded that these types of

threats can be accomplished by invasive analysts even when the data has been anonymized [77,

78, 79]. For example, in 2006 AOL released a list of 20 million web search queries which was

found to have leaked the identity of a woman [80]. Similarly, Netflix held an open competition in

2006 that released a dataset that also leaked private data [81, 82]. One other area with potential

privacy issues is biomedical research studies, specifically in genome wide association studies

where your identity and any diseases you have could be revealed based on results included in

research papers [83]. Due to privacy risks such as these, a conscious effort to reduce data leaks

4 The material in this chapter was co-authored by Jonathon Edstrom and Hritom Das. Jonathon Edstrom held the
primary responsibilities of writing the simulation code, extracting data from software simulations, analyzing the data
and verifying results. Hritom Das provided the presented SRAM hardware design with simulation results based on
the software implementation results.

67

has become of great interest, especially for companies using machine learning algorithms on

collected big data.

The privacy of deep learning models, such as neural networks, have recently come into

question due to weaknesses and attack models that have been previously exploited [84]. Due to

high requirements of computation and storage resources, today’s deep learning systems are

typically built upon large, centralized data repositories. Many cloud providers also provide

computing platforms and learning frameworks for model training, such as Amazon Sagemaker

and Google Cloud ML Engine. Based on this centralized-training paradigm, data owners need to

upload their private data to the cloud provider and they do not have control over how their

private data is being used. For instance, if a deep learning model was trained on the records of

patients with a certain disease, learning that an individual’s record was part of the training data

directly affects their privacy and it opens the door to potential misuse (e.g., exploitation for the

purpose of recruitment, insurance pricing or granting loans) due to the following three potential

privacy threats: (i) it is very easy for a malicious provider to steal the data if the provider has full

access to the data [85]; (ii) even without full access to the data, the malicious provider can

extract sensitive data from the trained models [86]; and (iii) a malicious remote user can also

retrieve information of the training data by carefully querying the training models [87].

This has been demonstrated in a variety of different ways. To protect privacy, one

popular type of technique is differentially private deep learning algorithms, which adds random

noise to the computation so that the output does not significantly depend on any particular

training sample.

68

 Differentially Private Deep Learning and State of the Art

Differential privacy [88] is becoming the gold standard for protecting an individual’s data

by introducing randomness, typically in the form of noise. The formal definition is as follows: a

randomized mechanism M is considered to be �ε, δ�-differentially private if, for two adjacent

inputs d and d′, it holds that PrRM�d� ϵ SV ≤ e¾ ∙ PrRM�d′� ϵ SV + δ, where S is any subset of

outputs. The privacy cost parameter ε is used to control the tradeoff between privacy and

accuracy, where smaller values of ε provide more privacy. The guarantee of differential privacy

is: if an individual’s data is used in a differentially private calculation, the probability of any

result of the calculation changes by at most a factor of �¾ in comparison to if that individual’s

data is not used in the calculation [89]. The parameter δ is the probability of failure where the

given differentially private mechanism may violate an individual’s privacy. This δ value explains

the possibility of “bad events” that may result in a large loss in privacy. Specifically when

training an �ε, δ�-differentially private neural network, the probability of violating the privacy, δ,

is calculated after each step for a given privacy cost, ε.

Recent works have adopted the use of �ε, δ�-differential privacy in order to protect

individual’s data. In [90], the authors presented a technique involving an ensemble of teachers

that could train on subsets of a sensitive dataset. After training, the teachers would further train a

student model based on public data that was labeled using the ensemble. The student model is

trained based on the noisy voting of various teachers that were trained using the model so that a

stronger privacy guarantee can be enabled by the system. In [91], a method creating generative

adversarial networks (GANs) that include differentially private mechanisms to provide privacy

guarantees was presented. This technique for training a differentially private GAN only allows

the analyst to inspect a model that already guarantees some level of differential privacy. Both the

69

teacher ensemble and differentially private GAN training techniques employ the use of a privacy

accountant (i.e. the moments accountant), described in [92], in order to compute a tighter bound

on the differential privacy.

In order to ensure differential privacy, perturbation can be introduced at various parts of

the workflow, including: input, output, and objective perturbation [93]. Also, different types of

noise can be added to the training and test datasets. The moments accountant shows how if the

noise mechanism is Gaussian (i.e. ~N�0, σI�) and if the value of sigma for this noise mechanism

is chosen to be:

 σ = F
¾ �2 log F.IJ

Â �F/I (21)

then the noise mechanism will satisfy �ε, δ�-differentially privacy for a given sensitivity, SÃ.
Using this moments accountant technique to compute a tight bound on the privacy allows for

each step in the training algorithm to result in �ε, δ�-differential privacy with respect to the lot.

 The proposed system in this work uses the moments accountant to train a differentially

private ConvNet model on the server (cloud) where sensitive data is used for training. By

enabling the moments accountant for training, privacy can be guaranteed to some extent, but at

the cost of some accuracy loss. This trained, differentially private model will then be

downloaded to edge computing devices for inference tasks. A diagram of the proposed system

design can be seen in Figure 30. Since inference is taken care of on the local devices, the privacy

of the testing data being presented to the devices is not a big concern.

70

Privacy-Enabled

Training

AlgorithmSensitive Data

Server (Cloud)

Smartphones Wearable Devices IoT Sensors

Edge inference process

Target: efficiency and

accuracy

Download Model Parameters

Large Inference
Dataset

Edge inference on devices with limited resources & battery life

0
1
2
3
4
5
6
7
8
9

5

Differentially Private Model Parameters

Cloud training process

Target: Privacy

Figure 30. Proposed deep learning system with energy-efficiency/privacy/accuracy

The energy and resources needed during the inference process has become another

constraint to resource-limited IoT devices. Deep learning models can take up a large portion of

an embedded device’s memory space and inference tasks, especially data movements on these

devices can consume the majority of the total power [94]. Software compression techniques for

reducing the size of each weight in deep learning models have been introduced, such as the

TensorFlow Lite API [95], which allows for 4× reduction in total model size. For hardware

improvements, one of the most important issues that has been focused on is the intensive

memory access of embedded IoT devices. Very recently, [96] presented a memory-based deep

edge inference technique, illustrating the significance of embedded memory to edge inference.

However, this technique adopted the traditional memory design, which misses out on many

optimization opportunities for tradeoffs among privacy, accuracy, and efficiency.

This work aims to optimize memory design to better support differentially private deep

learning algorithms in local devices. To enhance the power efficiency of memories, voltage

scaling can be introduced, which causes memory failures due to process variations. Analyzing

the impact of memory failures on accuracy and privacy will allow for conclusions to be drawn

71

for the guidelines of how to optimize the memory for privacy/efficiency/accuracy in AI

applications with different requirements.

 Impact of Memory Failures in Differentially Private Deep Learning Systems

In this section, dataset quality and local memory design will be used to study the impact

on accuracy of the differentially private learning process. A convolutional neural network model

was defined using the TensorFlow framework [97], and will be used to gain insight on how

different types and levels of noise may influence the privacy-accuracy tradeoff. The model

involves using an objective perturbation through additive Gaussian noise, and uses the moments

accountant [92] to compute accuracy the privacy cost after each step in the training process. The

ConvNet model that was tested in this work was based on the architecture described in [96], with

a single convolutional layer, and can be seen in Figure 31.

Convolutional Layer 1 Max Pool 1

0

1

2

3

4

5

6

7

8

9

5

Dense (Logits) Layer Softmax

(28×28 Image)
9×9 Filters (×10)

2×2 Max
Pooling

Figure 31. Differentially private convolutional neural network used for analysis

The source code used to generate models, including differential privacy calculations, can

be found under github.com/tensorflow/models, and was provided by the authors of [92]. The

MNIST dataset [70] is used as the dataset in the neural network simulations.

 Impact of Image Quality on Classification Accuracy

In order to analyze the relationship between the quality of the test dataset and its impact

on the test classification accuracy, bit level errors are injected at varying memory failure rates to

72

each image in the test dataset. Since the MNIST dataset consists of images, the well-known peak

signal-to-noise ratio (PSNR) metric, described in equation (7), is used to evaluate quality.

Accordingly, by evaluating the PSNR values for a wide range of error injected test

datasets using MNIST and comparing the test classification accuracy, we identify that the higher

the image quality in the test dataset, the higher the output accuracy of the system will be overall.

This relationship between PSNR and test classification accuracy is illustrated in Figure 32.

5 10 15 20 25 30 35

PSNR (dB)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
e

st
 A

cc
u

ra
cy

Higher PSNR =

higher test accuracy

Figure 32. Influence of dataset quality on test accuracy (MNIST dataset results)

Based on this monotonically increasing behavior, if the PSNR of the test data is

maximized, it is possible to achieve better system performance. In other words, during the

memory design process, optimizing the hardware to maximize the quality of the dataset will

improve accuracy accordingly. As shown in Figure 32, as the PSNR values of the MNIST test

dataset are increased from 5dB to 15dB, test accuracy is increased from 10% to 90% using the

differentially private deep learning system. It should be noted that, the samples within the

MNIST datasets are images, and PSNR is an effective quality evaluation metric. If the data form

73

is changed, the metric will need to be adapted accordingly (e.g. SNR would be a suitable option

for a sound based dataset).

 Impact of Dataset Memory in Edge Devices

The amount of Gaussian noise used during training influences how accurate the inference

of the finalized model performs. Therefore, many different models were tested with varying

amounts of noise (i.e. sigma values) and epsilon values with a set delta value of 10-5. For sigma,

4 unique noise levels were tested, specifically � ∈ ℤc ∶ 1 ≤ σ ≤ 4, and for each sigma value, 6

unique epsilon values, specifically Æ ∈ ℤc ∶ 5 ≤ Æ ≤ 10, for a total of 24 combinations of values.

For the MNIST dataset, the results within 1% of the floating point test accuracy for each pair that

was tested can be seen in Figure 33.

0.9566

0.9576

0.9586

0.9596

0.9606

0.9616

0.9626

0.9636

0.9646

0.9656

0.9666

In
fe

re
n
c
e
 A

c
c
u
ra

c
y

Error Rate

0.9566

0.9576

0.9586

0.9596

0.9606

0.9616

0.9626

0.9636

0.9646

0.9656

0.9666

In
fe

re
n
c
e
 A

c
c
u
ra

c
y

Error Rate

1% of floating
point precision

1% of floating
point precision

Error Rate
ε = 5, σ = 4 ε = 6, σ = 2 ε = 6, σ = 3 ε = 6, σ = 4 ε = 7, σ = 2 ε = 7, σ = 3 ε = 8, σ = 2

ε = 8, σ = 3 ε = 8, σ = 4 ε = 9, σ = 3 ε = 9, σ = 4 ε = 10, σ = 3 ε = 10, σ = 4

(a) (b)

Figure 33. Impact of errors on privacy/accuracy. MSBs protected: (a) None (b) 2

The best ��, Æ� pair (i.e. the values of sigma and epsilon that provided the best test

classification accuracy) for the MNIST dataset was found to be � = 2, Æ = 8 as error rates were

increased. When training using these values for the parameters, the probability of violating the

privacy is recalculated after each step in the training process until the end delta value Ç = 10WJ

to stay within a modest privacy budget [92].

74

One method for increasing the PSNR of the test dataset when errors are present is to

protect the MSBs of the data from faults. By investigating the individual cases of protecting 1, 2,

or 3 MSBs and comparing against the case without protecting any bits, it is possible to measure

the influence of the MSBs on the test classification accuracy. Figure 34 displays the test

classification accuracy of the � = 2, Æ = 8 differentially private ConvNet with the varying

amount of MSBs protected. The protection of 2 or 3 bits has a significant influence on boosting

the accuracy of the system to acceptable levels.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Failure Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
e

st
 A

cc
u

ra
cy

No MSBs Protected

1 MSB Protected

2 MSBs Protected

3 MSBs Protected

Figure 34. Impact of memory failure rate on the accuracy of the learning system

Impact of Hardware on Privacy/Accuracy Trade-off

The impact of the memory failure on the privacy/accuracy trade-off is further examined

within this subsection. From Figure 33 (a), it can be seen that the parameter Æ represents the

general trade-off between privacy level and accuracy of the differentially private deep learning

75

system. A larger value can potentially enable higher accuracy. In most cases, as the value of �

(i.e. the amount of noise) increases, the accuracy decreases.

By comparing (a) and (b) from Figure 33, it can be seen that for an optimized memory

with MSBs protected, the accuracy/privacy tradeoff can be significantly improved. For example,

if considering the specific case where � = 2 and Æ = 8, if the failure rate is 0.23, without

protection the accuracy will be ~50%, an unacceptable amount. By introducing protection to 2

MSBs, at this same failure rate, the accuracy will be increased to >96%, which is within 1% of

the fault free differentially private model.

Optimization Model based Memory Design

Based on the above analysis, developing the memory hardware to optimize the dataset

quality will allow for the highest prediction accuracy. Accordingly, the problem has become an

energy-quality-cost tradeoff design problem. Recently, in [98] three optimization models were

presented to design the memory to provide the minimized MSE within a specific cost constraint.

Model 2 in particular is useful for optimizing the dataset memory design in this work due to the

quality of the dataset having a direct impact on the output accuracy. Model 2 specifically

includes a method for optimizing the sizing for hybrid 8T+6T SRAM without bit cell integration

cost, and is expressed in (22-25):

 minÉ ∑ ∑ ∑ ∑ 4ÊË-XÊÌZ-XÊÌ*ÌDFÍÊDE2XDF;-DF (22)

 s.t. ∑ Z-XÊÌ*ÌDF ≥ 1, � = 1, … , �; > = 1, … , �; C = 0, … ,7 (23)

 ∑ ∑ ∑ ∑ ^-XÊÌZ-XÊÌ*ÌDFÍÊDE2XDF;-DF ≤ ^3.3:Ì (24)

 Z-XÊÌ ∈ |0,1�, � = 1, … , �; > = 1, … , �; C = 0, … ,7 (25)

76

Here, m and n are the number of pixels in a row and column in the dataset, respectively,

and each pixel is composed of 8 bits. The objective function (22) is used to minimize the

expected MSE of the entire dataset. Constraint (23) guarantees that for each memory bit cell, the

memory designer can choose exactly one design option among the total r options. The total-area

constraint, (24), assures that the total area of the design cannot exceed the limit stotal, where sijkl is

a known parameter indicating the area cost of the ijkth bit cell if it is selected to apply the lth

design option. The total area cost is calculated by directly summing the area cost of each bit cell,

since different SRAM bit cells typically can be laid out in a mirrored fashion, and usually there is

no area overhead for bit cell integration in a hybrid SRAM design [98]. Finally, constraint (25)

states that all values of xijkl are binary variables.

 Embedded Memory Design for Deep Learning

To evaluate the effectiveness of the proposed technique, memory designs in different

conditions are designed considering efficiency, accuracy, and privacy. 0.5V is used as the target

voltage, considering the maximum energy efficiency enabled at near-threshold voltage. The

target accuracy is 96%, which is approximately 1% less than the privacy model with no errors

from voltage scaling.

For deep learning systems, memory accesses usually consume several orders of

magnitude higher energy than computation, making memory performance the bottleneck for

processing [94]. For example, in the deep learning IC named DianNao, the SRAM occupies 56%

of the silicon area and contributes to 60% of the power consumption for the entire deep learning

system [11]. Consequently, enhancing the energy efficiency of the memory is one of the key

design considerations for supporting deep learning edge inference on IoT devices.

77

Traditional low-power memories often utilize more than 6T bit cells or use bit cell sizing

to reduce memory failures induced by process variations, thereby achieving power savings at low

voltages. Figure 35 shows the 6T bit cell and 8T bit cell width in a 45nm technology. 6T bit cells

can achieve optimized area cost and 8T bit cells effectively reduce memory failures due to the

decoupled read and write paths using two extra transistors. However, the 8T bit cell has about

9.6% area overhead compared to the 6T bit cell.

1.5225µm

0
.4

5
µ

m

WWL

BL BLB

Q
QB

RWL

WWL
BL BLB

Q
QB

WWL

RBL

RWL

GND 0
.4

5
µ

m

(a)

(b)

Figure 35. SRAM bit cells. Minimum sized 45nm schematic and layout: (a) 6T (b) 8T

Upsizing can also reduce the memory failure at low voltages. This is due to process

variation induced threshold voltage (f3�), which can be effectively reduced, and is expressed as

follows:

 σf3� = σf3�EÐ¢ÑÒÓ∙mÑÒÓ¢∙m (26)

where σf3�E is the standard deviation of f3�, and � and B represent the width and length of the

transistor, respectively. σf3� for an NMOS and PMOS transistor with � equal to the minimum

BNÔÔ in the 45nm predictive technology is 46.9mV and 41.8mV, respectively. According to (26),

78

σf3� is inversely proportional to √�B, which means as the width and length increase, the

deviation of f3� is reduced.

 10,000 Monte-Carlo simulations were performed to estimate the read and write failure

rates at the worst process corners for 6T and 8T: “fs” (i.e. fast NMOS and slow PMOS) for 6T

and “sf” (i.e. slow NMOS and fast PMOS) for 8T bit cells, respectively. The memory bit cell

data used for analysis is shown in Table 16, with � = �F + �I = 4 + 3 = 7 bit cell design

options. It is assumed that all pixels within the memory will use the same set of design options.

Compared with the 6T options, the 8T cells require larger area, but have much lower failure rate.

Table 16. 6T and 8T bit cell design options for 45nm technology at 0.5V

Memory Type Height (μm) Width (μm) Area (μm2) Area Ratio sk Failure Rate

6T: C61 0.45 1.523 0.685 1 0.3436
6T: C62 0.45 1.563 0.703 1.026 0.3074
6T: C63 0.45 1.603 0.721 1.053 0.2771
6T: C64 0.45 1.643 0.739 1.079 0.2521
8T: C81 0.45 1.663 0.751 1.096 0.00082
8T: C82 0.45 1.700 0.765 1.117 0.00009
8T: C83 0.45 1.740 0.783 1.143 0.00002

 Optimized Memory Design

The optimal values for the bit cell options based on various area constraints are shown in

Table 17. The result of the proposed optimal design is compared against the traditional design.

The optimized design (i.e. 8.7) has an MSE improvement of approximately 99.95% compared to

the traditional 6T SRAM of an equal overall memory size (i.e. all C64 bit cells). It should be

noted that if the memory area constraint is larger than 8.7, 8T bit cells could be used for all bits

within each pixel.

79

Table 17. Optimal design results and comparison

¸3.3:Ì Optimal Design Traditional Scenario Improvement P�Q.)3. �Í �Õ �J �Ö �q �I �F �E P�Q×*Ø. U�^..)32.
8.0 7505.94 C61 C61 C61 C61 C61 C61 C61 C61 7505.94 C61 0.00%
8.1 1889.83 C81 C61 C61 C61 C61 C61 C61 C61 7505.94 C61 74.82%
8.3 134.80 C81 C81 C81 C61 C61 C61 C61 C61 6715.15 C62 97.99%
8.5 25.11 C81 C81 C81 C81 C81 C61 C61 C61 6053.25 C63 99.59%
8.7 2.50 C83 C83 C82 C81 C81 C81 C61 C61 5507.13 C64 99.95%

8.9 0.7814 C83 C83 C82 C81 C81 C81 C81 C81 17.91 C81 95.64%
9.1 0.4373 C83 C83 C83 C83 C83 C83 C82 C82 1.97 C82 77.76%

 Power Consumption

The power efficiency of the optimized memory design is listed in Table 18. Operating the

memory at 0.5V enables significant power savings as compared to the traditional supply voltage

of 1.0V. As the total area constraint Atotal increases, the power consumption increases as well,

due to more 8T bit cells being included in the optimized design solution.

Table 18. Power consumption of optimized 45nm memory design at 0.5V

¸3.3:Ì Optimal
Design

Traditional Scenario 7*+Ø/13-.2
0.5V

(opt.) vs.
1v (Trd.)

7.)3.(W)
at 0.5V

7×*Ø. (W)
at 0.5V

7×*Ø. (W)
at 1.0V

8.0 2.07E-06 2.07E-06 9.28E-06 77.69%
8.1 2.53E-06 2.07E-06 9.28E-06 72.74%
8.3 3.01E-06 2.15E-06 1E-05 69.9%
8.5 3.50E-06 2.29E-06 1.16E-05 69.83%
8.7 3.55E-06 2.42E-06 1.41E-05 74.82%
8.9 4.09E-06 4.22E-06 1.02E-04 95.99%
9.1 3.85E-06 3.87E-06 1.02E-04 96.23%

 Dataset Quality and Accuracy

The video quality and prediction accuracy based on the optimized memory is presented in

Table 19. The MNIST dataset [70], which was used as the original dataset for training the CNN

model, displays close to no accuracy loss (0.01%) as compared to the fault free test samples. In

80

order to verify this design works properly for other datasets as well, a new dataset, Fashion [99],

was introduced. The Fashion dataset serves as a drop-in replacement to MNIST as it shares the

same image sizes and number of classes. Training a CNN model with the same architecture on

the Fashion dataset, and later testing, results in a negligible accuracy loss (0.04%) when voltage

scaling to 0.5V using the optimized memory design.

Table 19. Dataset quality and accuracy for MNIST and Fashion

No Error
(1.1V)

1V
Traditional

0.5V
Traditional

This Work
@ 0.5V

MNIST
Dataset

Test Accuracy
(� = 2, Æ = 8)

96.7% 96.67% 42.3% 96.69%

Fashion
Dataset

Test Accuracy
(� = 2, Æ = 8)

87.1% 87.06% 31.75% 87.07%

81

The results in Table 19 are based on the specific privacy level case where maximum

accuracy is enabled for the MNIST dataset (i.e. � = 2, Æ = 8). This privacy level still works well

for the Fashion dataset, but also has potential for different tradeoff opportunities, which can be

seen in Figure 36. The Fashion dataset displays higher accuracy for lower levels of Æ, but still

performs well for varying levels of noise.

0.8662

0.8672

0.8682

0.8692

0.8702

0.8712

0.8722

0.8732

0.8742

0.8752

0.8762

In
fe

re
n
c
e

A

c
c
u
ra

c
y

Error Rate

0.8662

0.8672

0.8682

0.8692

0.8702

0.8712

0.8722

0.8732

0.8742

0.8752

0.8762

In
fe

re
n
c
e
 A

c
c
u
ra

c
y

Error RateError Rate

1% of floating
point precision

1% of floating
point precision

(a) (b)

Figure 36. Verification of errors on privacy/accuracy. MSBs protected: (a) None (b) 2

 Accuracy at Different Privacy Levels

Based on CNN model simulations at varying σ and ε values, the privacy level has a

noticeable impact on the inference accuracy of the model. The MNIST and Fashion datasets

were used to determine the impact of the privacy level on the inference accuracy. In general, the

higher the privacy level is, the lower the test accuracy becomes. This relationship can be seen in

Table 20, which includes both high and low levels of privacy for comparison of test accuracy

calculations. When the test accuracy is severely degraded by the voltage scaling process, (e.g.

0.5V traditional memory design) the system does not necessarily follow the trend of higher

accuracy with lower noise. However, those cases are irrelevant since they do not provide

adequate quality.

82

As displayed in Table 20, the proposed memory design at 0.5V performs similarly to the

1V traditional design, and is capable of achieving inference accuracy within 1% of the fault free

model at both low and high privacy levels.

Table 20. Impact of privacy level on test accuracy

Dataset
Privacy

Parameters

Privacy /

Noise Level

1V

Traditional

0.5V

Traditional

This Work

@ 0.5V

MNIST
� = 4, Æ = 5 High 95.89% 35.36% 95.91% � = 2, Æ = 10 Low 96.52% 48.49% 96.39%

Fashion
� = 4, Æ = 5 High 86.33% 27.53% 86.4% � = 2, Æ = 10 Low 87.54% 20.14% 87.64%

 Differential Private Edge Inference Memory Concluding Remarks

Previously, in [96], an SRAM design was presented in 28nm technology that allowed for

voltage scaling from the nominal voltage of 0.8V to 0.5V with 5.0× and 2.8× power reduction

for leakage and memory access power savings, respectively, while allowing for an estimated

(ε,δ)-differential privacy of (9, 10-5). In this chapter, a memory-based deep learning system with

efficiency/accuracy/privacy has been presented for IoT devices. The proposed technique can

enable near-threshold memory operation at 0.5V with 74.82% power savings as compared to the

traditional memory at 1.0V, and less than 1% degradation in classification accuracy with 8.75%

area overhead. The presented 45nm SRAM also allows for the best inference accuracy at the

(ε,δ)-differential privacy level of (8, 10-5).

83

 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

This chapter gives a brief summary of the research results presented within this

dissertation, the relevance of the presented works, and how they improve over the state of the art.

Potential future works for further improvements will also be discussed relating to both video and

machine learning memory design.

In Chapter 2, a data-pattern enabled SRAM with self-recovery ability for big video data

was presented. Based on the data patterns obtained using data-mining techniques, a simple

circuit-level design technique was applied to enable memory bit cell self-recovery at near

threshold voltage with a low area overhead of 7.94%. The proposed design provides 81.52%

dynamic power savings and 82.45% leakage power savings as compared to the conventional

nominal voltage memory. Comparing to the recently developed bit cell sizing [16], data-shifting

[23], ECC [53], and data-squeezing techniques [13], the presented SRAM is capable of

delivering the best video quality for the least area overhead.

In Chapter 3, a video context-aware memory technique for energy-quality tradeoff using

viewer perspectives was presented. Based on the influence of how video content characteristics

impact the viewer experience, two simple, but effective models to enable hardware adaptation

were developed. A new viewer-aware bit-truncation technique with minimized impact on viewer

experience was also implemented, which introduces optimized energy-quality adaption to the

video storage. As compared to recent efficient video memory designs completed in [28, 29, 30],

the newly introduced bit truncation technique provides better video quality with similar power

savings.

In Chapter 4, a data-driven self-correction technique was presented for neural network

synaptic storage. Using data-mining discovered data characteristics, as compared to the

84

traditional memory design of the same size, the proposed memory enables 45.6% and 83.2%

reduction in active power savings and leakage power savings, respectively. The design has a low

implementation cost of 3.17% and less than 1% degradation to the classification accuracy of the

neural network architecture. As compared to the recent existing low power synaptic memory

introduced in [31], the presented memory exhibits similar power efficiency with less area

overhead and better classification accuracy at 95.4%.

In Chapter 5, a memory based deep learning system with efficiency/accuracy/privacy

optimization was presented for IoT devices. The proposed technique can enable near-threshold

operation at 0.5V with 74.82% power savings as compared to the memory operating at the

nominal voltage. The design also provides less than 1% degradation to the classification

accuracy with 8.75% area overhead. As compared to the recent voltage scaling technique

presented in [96], the proposed memory allows for higher levels of privacy with similar power

savings.

Future investigations for video memories could include: incorporating motion within

videos into the viewer experience study, combining luminance with other viewing factors such as

distance or movement of viewer, and calculating macroblock percentages for each frame within

videos to adjust truncation levels in real-time. For machine learning memories, future work could

include an extension of the proposed data-driven memory design technique to alternative

representations of synaptic weights, such as fixed point or a single bit to represent each weight.

For privacy based machine learning memories, exploring alternative power saving techniques

(e.g. bit truncation or ECC) and their impact on the privacy/accuracy/efficiency tradeoff may

lead to significant improvements to the memory design process.

85

REFERENCES

[1] E. Terzioglu, S. S. Yoon, C. Jung, R. Chaba, V. Boynapalli, M. Abu-Rahma, J. Wang, G.
Nallapati, A. Thean, C. Chidambaram, M. Han, G. Yeap and M. Sani, "Low Power
Embedded Memory Design - Process to System Level Considerations," in IEEE

International Conference on IC Design & Technology (ICICDT), Kaohsiung, May 2011.

[2] A. Pathak, D. Sachan, H. Peta and M. Goswami, "A Modified SRAM Based Low Power
Memory Design," in 29th International Conference on VLSI Design and 15th International

Conference on Embedded Systems (VLSID), Kolkata, Jan. 2016.

[3] J. Gantz and D. Reinsel, "THE DIGITAL UNIVERSE IN 2020: Big Data, Bigger Digital
Shadows, and Biggest Growth in the Far East - United States," February 2013. [Online].
Available: https://www.emc.com/collateral/analyst-reports/idc-digital-universe-united-
states.pdf. [Accessed 1 May 2019].

[4] K. Kim, "Silicon Technologies and Solutions for the Data-Driven World," in Proceedings

of the IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, 2012.

[5] N. S. Rastogi, "You Charged Me All Night Long," Slate, 16 March 2012. [Online].
Available: https://slate.com/technology/2012/03/is-charging-your-cell-phone-overnight-a-
major-waste-of-energy.html. [Accessed 1 May 2019].

[6] M. A. Hoque, M. Siekkinen and J. K. Nurminen, "Energy Efficient Multimedia Streaming
to Mobile Devices — A Survey," IEEE Communications Surveys & Tutorials, vol. 16, no.
1, pp. 579-597, 2014.

[7] Y. Benmoussa, J. Boukhobza, E. Senn and D. Benazzouz, "Energy Consumption Modeling
of H.264/AVC Video Decoding for GPP and DSP," in 2013 Euromicro Conference on

Digital System Design, Los Alamitos, 2013.

[8] D. Zhou, S. Wang, H. Sun, J. Zhou, J. Zhu, Y. Zhao, Zhou Jinjia, S. Zhang, S. Kimura, T.
Yoshimura and S. Goto, "A 4Gpixel/s 8/10b H.265/HEVC Video Decoder Chip for 8K
Ultra HD Applications," in 2016 IEEE International Solid-State Circuits Conference

(ISSCC), San Francisco, 2016.

[9] M. E. Sinangil and A. P. Chandrakasan, "Application-Specific SRAM Design Using
Output Prediction to Reduce Bit-Line Switching Activity and Statistically Gated Sense
Amplifiers for Up to 1.9×Lower Energy/Access," IEEE Journal of Solid-State Circuits,

vol. 49, no. 1, pp. 107-117, 2014.

[10] T. Marukame, K. Ueyoshi, Asai Tetsuya, M. Motomura, A. Schmid, M. Suzuki, Y. Higashi
and Y. Mitani, "Error Tolerance Analysis of Deep Learning Hardware Using a Restricted
Boltzmann Machine Toward Low-Power Memory Implementation," IEEE Transactions on

Circuits and Systems II: Express Briefs, vol. 64, no. 4, pp. 462-466, 2017.

86

[11] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen and O. Temam, "DianNao: A Small-
Footprint High-Throughput Accelerator," in Proceedings of the 19th International

Conference on Architectural Support for Programming Languages and Operating Systems,
Salt Lake City, 2014.

[12] F. Frustaci, M. Khayatzadeh, D. Blaauw, D. Sylvester and M. Alioto, "SRAM for Error-
Tolerant Applications With Dynamic Energy-Quality Management in 28 nm CMOS,"
IEEE Journal of Solid-State Circuits, vol. 50, no. 5, pp. 1310-1323, May 2015.

[13] A. Ferrerón, D. Suárez-Gracia, J. Alastruey-Benedé, T. Monreal-Arnal and P. Ibáñez,
"Concertina: Squeezing in Cache Content to Operate at Near-Threshold Voltage," IEEE

Transactions on Computers, vol. 65, no. 3, pp. 755-769, Mar. 2016.

[14] K. Nii, M. Yabuuchi, Y. Tsukamoto, S. Ohbayashi, S. Imaoka, H. Makino, Y. Yamagami,
S. Ishikura, T. Terano, T. Oashi, K. Hashimoto, A. Sebe, G. Okazaki, K. Satomi, H.
Akamatsu and H. Shinohara, "A 45-nm Bulk CMOS Embedded SRAM With Improved
Immunity Against Process and Temperature Variations," IEEE Journal of Solid-State

Circuits, vol. 43, no. 1, pp. 180-191, 2008.

[15] O. Hirabayashi, A. Kawasumi, A. Suzuki, Y. Takeyama, K. Kushida, T. Sasaki, A.
Katayama, G. Fukano, Y. Fujimura, T. Nakazato, Y. Shizuki, N. Kushiyama and T. Yabe,
"A Process-Variation-Tolerant Dual-Power-Supply SRAM with 0.179 µm^2 Cell in 40nm
CMOS using Level-Programmable Wordline Driver," in IEEE International Solid-State

Circuits Conference - Digest of Technical Papers, San Francisco, 2009.

[16] J. Kwon, I. J. Chang, I. Lee, H. Park and J. Park, "Heterogeneous SRAM Cell Sizing for
Low-Power H.264 Applications," IEEE Transactions on Circuits and Systems I, vol. 59,
no. 10, pp. 2275-2284, Oct. 2012.

[17] K. Takeda, Y. Hagihara, Y. Aimoto, M. Nomura, Y. Nakazawa, T. Ishii and H. Kobatake,
"A Read-Static Noise-Margin-Free SRAM Cell for Low-VDD and High-Speed
Applications," IEEE Journal of Solid-State Circuits, vol. 41, no. 1, pp. 113-121, 2006.

[18] T.-H. Kim, J. Liu and C. H. Kim, "A Voltage Scalable 0.26 V, 64 kb 8T SRAM with Vmin
Lowering Techniques and Deep Sleep Mode," IEEE Journal of Solid-State Circuits, vol.
44, no. 6, pp. 1785-1795, 2009.

[19] M.-F. Chang, S.-W. Chang, P.-W. Chou and W.-C. Wu, "A 130 mV SRAM with Expanded
Write and Read Margins for Subthreshold Applications," IEEE Journal of Solid-State

Circuits, vol. 46, no. 2, pp. 520-529, 2011.

[20] Y.-W. Chiu, Y.-H. Hu, M.-H. Tu, J.-K. Zhao, Y.-H. Chu, S.-J. Jou and C.-T. Chuang, "40
nm Bit-Interleaving 12T Subthreshold SRAM with Data-Aware Write-Assist," IEEE

Transactions on Circuits and Systems I, vol. 61, no. 9, pp. 2578-2585, 2014.

87

[21] M. K. Qureshi and Z. Chishti, "Operating Seeded-based Caches at Ultralow Voltage with
Flair," in Proceedings of the 2013 43rd Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), Budapest, 2013.

[22] A. Ansari, S. Feng, S. Gupta and S. Mahlke, "Archipelago: A Polymorphic Cache Design
for Enabling Robust Near-Threshold Operation," in 2011 IEEE 17th International

Symposium on High Performance Computer Architecture, San Antonio, 2011.

[23] S. Ganapathy, G. Karakonstantis, A. Teman and A. Burg, "Mitigating the Impact of Faults
in Unreliable Memories for Error-Resilient Applications," in Proceedings of the 52nd

Annual Design Automation Conference (DAC), San Francisco, Jun. 2015.

[24] I. J. Chang, D. Mohapatra and K. Roy, "A Priority-Based 6T/8T Hybrid SRAM
Architecture for Aggressive Voltage Scaling in Video Applications," IEEE Transactions on

Circuits and Systems for Video Technology, vol. 21, no. 2, pp. 101-112, Feb. 2011.

[25] N. Gong, S. Jiang, A. Challapalli, S. Fernandes and R. Sridhar, "Ultra-Low Voltage Split-
Data-Aware Embedded SRAM for Mobile Video Applications," IEEE Transactions on

Circuits and Systems II, vol. 59, no. 12, pp. 883-887, Dec. 2012.

[26] S. Venkataramani, S. T. Chakradhar, K. Roy and A. Raghunathan, "Approximate
Computing and the Quest for Computing Efficiency," in 2015 52nd ACM/EDAC/IEEE

Design Automation Conference (DAC), San Francisco, 2015.

[27] N. Gong, J. Edstrom, D. Chen and J. Wang, "Data-Pattern Enabled Self-Recovery
Multimedia Storage System for Near-Threshold Computing," in 2016 IEEE 34th

International Conference on Computer Design (ICCD), Scottsdale, 2016.

[28] D. Chen, X. Wang, J. Wang and N. Gong, "VCAS: Viewing Context Aware Power-
Efficient Mobile Video Embedded Memory," in 2015 28th IEEE International System-on-

Chip Conference (SOCC), Beijing, 2015.

[29] J. Edstrom, D. Chen, J. Wang, H. Gu, E. A. Vazquez, M. E. McCourt and N. Gong,
"Luminance-Adaptive Smart Video Storage System," in 2016 IEEE International

Symposium on Circuits and Systems (ISCAS), Montreal, 2016.

[30] D. Chen, J. Edstrom, Y. Gong, P. Gao, L. Yang, M. E. McCourt, J. Wang and N. Gong,
"Viewer-Aware Intelligent Efficient Mobile Video Embedded Memory," IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 4, pp. 684-696,
2018.

[31] G. Srinivasan, P. Wijesinghe, S. S. Sarwar, A. Jaiswal and K. Roy, "Significance Driven
Hybrid 8T-6T SRAM for Energy-Efficient Synaptic Storage in Artificial Neural
Networks," in Design, Automation & Test in Europe Conference & Exhibition (DATE),
Dresden, 2016.

88

[32] J. Edstrom, D. Chen, Y. Gong, J. Wang and N. Gong, "Data-Pattern Enabled Self-
Recovery Low-Power Storage System for Big Video Data," IEEE Transactions on Big

Data, vol. 5, no. 1, pp. 95-105, 2017.

[33] J. Edstrom, Y. Gong, A. A. Haidous, B. Humphrey, M. McCourt, Y. Xu, J. Wang and N.
Gong, "Content-Adaptive Memory for Viewer-Aware Energy-Quality Scable Mobile
Video Systems," IEEE Access, 2019.

[34] J. Edstrom, Y. Gong, D. Chen, J. Wang and N. Gong, "Data-Driven Intelligent Efficient
Synaptic Storage for Deep Learning," IEEE Transactions on Circuits and Systems II:

Express Briefs, vol. 64, no. 12, pp. 1412-1416, 2017.

[35] J. Edstrom, H. Das and N. Gong, "Enabling Energy-Efficient Differentially Private Edge
Inference for Deep Learning," 2019.

[36] N. Gong, S. Jiang, A. Challapalli, M. Panesar and R. Sridhar, "Variation-and-Aging Aware
Low Power embedded SRAM for Multimedia Applications," in 2012 IEEE International

SOC Conference (SOCC), Niagara Falls, Sep. 2012.

[37] S.-T. Zhou, S. Katariya, H. Ghasemi, S. Draper and N. S. Kim, "Minimizing Total Area of
Low-Voltage SRAM Arrays through Joint Optimization of Cell Size, Redundancy, and
ECC," in 2010 IEEE International Conference on Computer Design (ICCD), Amsterdam,
Oct. 2010.

[38] S. A. Pourbakhsh, X. Chen, D. Chen, X. Wang, N. Gong and J. Wang, "Sizing-Priority
Based Low-Power Embedded Memory for Mobile Video Applications," in 2016 17th

International Symposium on Quality Electronic Design (ISQED), Santa Clara, Mar. 2016.

[39] F. Frustaci, D. Blaauw, D. Sylvester and M. Alioto, "Better-Than-Voltage Scaling Energy
Reduction in Approximate SRAMs via Bit Dropping and Bit Reuse," in 25th International

Workshop on Power and Timing Modeling Optimization and Simulation (PATMOS),
Salvador, 2015.

[40] R. Agrawal, T. Imieliński and S. Arun, "Mining Association Rules Between Sets of Items
in Large Databases," in Proceedings of the 1993 ACM SIGMOD International Conference

on Management of Data, Washington, D.C., May 1993.

[41] "YUV Video Sequences," [Online]. Available: http://trace.eas.asu.edu/yuv/. [Accessed 20
March 2017].

[42] "Xiph.org Video Test Media," [Online]. Available: http://media.xiph.org/video/derf/.
[Accessed 20 March 2017].

89

[43] "Weka," [Online]. Available: http://www.cs.waikato.ac.nz/ml/weka/. [Accessed 20 March
2017].

[44] "Youtube 8M," Google, [Online]. Available: https://research.google.com/youtube8m/.
[Accessed 4 February 2019].

[45] "FFmpeg," [Online]. Available: https://www.ffmpeg.org/. [Accessed 4 Feburary 2019].

[46] H. Noguchi, Y. Iguchi, H. Fujiwara, Y. Morita, K. Nii, H. Kawaguchi and M. Yoshimoto,
"A 10T Non-Precharge Two-Port SRAM for 74% Power Reduction in Video Processing,"
in IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Porto Alegre, Mar. 2007.

[47] A. R. Alameldeen, I. Wagner, Z. Chishti, W. Wu, C. Wilkerson and S.-L. Lu, "Energy-
Efficient Cache Design Using Variable-Strength Error-Correcting Codes," in 2011 38th

Annual International Symposium on Computer Architecture (ISCA), San Jose, Jun. 2011.

[48] J. Chang, M. Huang, J. Shoemaker, J. Benoit, S.-L. Chen, W. Chen, S. Chiu, R. Ganesan,
G. Leong, V. Lukka, S. Rusu and D. Srivastava, "The 65-nm 16-MB Shared On-Die L3
Cache for the Dual-Core Intel Xeon Processor 7100 Series," IEEE Journal of Solid-State

Circuits, vol. 42, no. 4, pp. 846-852, Apr. 2007.

[49] "FreePDK," [Online]. Available: https://www.eda.ncsu.edu/wiki/FreePDK. [Accessed 14
February 2017].

[50] D. Zhou, S. Wang, H. Sun, J. Zhou, J. Zhu, Y. Zhao, J. Zhou, S. Zhang, S. Kimura, T.
Yoshimura and S. Goto, "A 4Gpixel/s 8/10b H.265/HEVC Video Decoder Chip for 8K
Ultra HD Applications," in 2016 IEEE International Solid-State Circuits Conference

(ISSCC), San Francisco, Feb. 2016.

[51] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image Quality Assessment:
From Error Visibility to Structural Similarity," IEEE Transactions on Image Processing,

vol. 13, no. 4, pp. 600-612, 2004.

[52] N. Gong, J. Wang, S. Jiang and R. Sridhar, "TM-RF: Aging Aware Power Efficient
Register File Design for Modern Microprocessors," IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 23, no. 7, pp. 1196-1209, 2015.

[53] Z. Chishti, A. R. Alameldeen, C. Wilkerson, W. Wu and S.-L. Lu, "Improving Cache
Lifetime Reliability at Ultra-Low Voltages," in Proceedings of the 42nd IEEE/ACM

International Symposium of Microarchitecture (MICRO), New York, 2009.

[54] Q. Bin, "Osen Logic OSD10 h.264 decoder," [Online]. Available:
http://bbs.eetop.cn/viewthread.php?tid=628991. [Accessed 15 March 2018].

90

[55] D. Chen, J. Edstrom, L. Yang, M. E. McCourt, J. Wang and N. Gong, "Viewer-Aware
Intelligent Efficient Mobile Video Embedded Memory," IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, vol. 26, no. 4, pp. 684-696, 2018.

[56] F. Frustaci, D. Blaauw, D. Sylvester and M. Alioto, "Approximate SRAMs with Dynamic
Energy-Quality Management," IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 24, no. 6, pp. 2128-2141, 2016.

[57] L. Kerofsky, R. Vanam and Y. Reznik, "Adapting Objective Video Quality Metrics to
Ambient Lighting," in Proceedings of the 7th International Workshop on Quality of

Multimedia Experience (QoMEX), Pylos-Nestoras, 2015.

[58] T. Zhao, Q. Liu and C. W. Chen, "QoE in Video Transmission: A User Experience-Driven
Strategy," IEEE Communications Surveys & Tutorials, vol. 19, no. 1, pp. 285-302, 2017.

[59] M. Shafique, B. Mokenthin and J. Henkel, "Application-Guided Power-Efficient Fault
Tolerance for H.264 Context Adaptive Variable Length Coding," IEEE Transactions on

Computers, vol. 66, no. 4, pp. 560-574, 2017.

[60] M. Shafique, B. Molkenthin and J. Henkel, "An HVS-based Adaptive Computational
Complexity Reduction Scheme for H.264/AVC video encoder using Prognostic Early
Mode Exclusion," in Design, Automation & Test in Europe Conference & Exhibition

(DATE), Dresden, 2010.

[61] "Methodology for the Subjective Assessment of the Quality of Television Pictures,"
January 2012. [Online]. Available: https://www.itu.int/dms_pubrec/itu-r/rec/bt/R-REC-
BT.500-13-201201-I!!PDF-E.pdf. [Accessed 17 March 2019].

[62] "FreePDK45," [Online]. Available: https://www.eda.ncsu.edu/wiki/FreePDK45:Contents.
[Accessed 20 March 2019].

[63] J.-S. Wang, P.-Y. Chang, T.-S. Tang, J.-W. Chen and J.-I. Guo, "Design of Subthreshold
SRAMs for Energy-Efficient Quality-Scalable Video Applications," IEEE Journal on

Emerging and Selected Topics in Circuits and Systems, vol. 1, no. 2, pp. 183-192, 2011.

[64] M. H. Pinson and S. Wolf, "A New Standardized Method for Objectively Measuring Video
Quality," IEEE Transactions on Broadcasting, vol. 50, no. 3, pp. 312-322, 2004.

[65] "NTIA General Model (aka VQM) and Full Reference Calibration Standards," Institute for
Telecommunication Sciences, [Online]. Available:
https://www.its.bldrdoc.gov/resources/video-quality-research/standards/hidden-general-
model.aspx. [Accessed 20 March 2019].

91

[66] Y. Feng, G. Cheung, W.-t. Tan, P. L. Callet and Y. Ji, "Low-Cost Eye Gaze Prediction
System for Interactive Networked Video Streaming," IEEE Transactions on Multimedia,

vol. 15, no. 8, pp. 1865-1879, 2013.

[67] A. Blum, Neural Networks in C++, New York, NY: Wiley, 1992.

[68] M. M. Zhang, "Performance Comparison of SRAM Cells Implemented in 6, 7, and 8-
Transistor Cell Topologies," Davis, 2008.

[69] J. A. Croon, S. Decoutere, W. Sansen and H. E. Maes, "Physical Modeling and Prediction
of the Matching Properties of MOSFETs," in Proc. 30th ESSCC, Leuven, Belgium, 2004.

[70] Y. LeCun, C. Cortes and C. J. Burges, "THE MNIST DATABASE of handwritten digits,"
1998. [Online]. Available: http://yann.lecun.com/exdb/mnist/. [Accessed 21 January 2019].

[71] W. Zhao, H. Fu, W. Luk, T. Yu, S. Wang, B. Feng, Y. Ma and G. Yang, "F-CNN: An
FPGA-based framework for training Convolutional Neural Networks," in 2016 IEEE 27th

International Conference on Application-specific Systems, Architectures and Processors

(ASAP), London, 2016.

[72] Y. Karri and R. Misra, "Implementation of 32 Bit FLoating Point MAC Unit to Feed
Weighted Inputs to Neural Networks," Internation Journal of Reserach and Scientific

Innovation (IJRSI), vol. 2, no. 4, pp. 40-43, 2015.

[73] "Keras: The Python Deep Learning library," [Online]. Available: https://keras.io/.
[Accessed 16 February 2017].

[74] R. Agrawal, T. Imielinski and A. Swami, "Mining Association Rules between Sets of Items
in Large Databases," in Proceedings of the 1993 ACM SIGMOD international conference

on Management of data, Washington, DC, 1993.

[75] "Abalone Data Set," [Online]. Available: http://archive.ics.uci.edu/ml/datasets/Abalone.
[Accessed 3 March 2017].

[76] N. Gong, J. Edstrom, D. Chen and J. Wang, "Data-Pattern Enabled Self-Recovery
Multimedia Storage System for Near-Threshold Computing," in IEEE 34th International

Conference on Computer Design (ICCD), Phoenix, 2016.

[77] A. Chin and A. Klinefelter, "Differential Privacy as a Response to the Reidentification
Threat: The Facebook Advertiser Case Study," North Carolina Law Review, vol. 90, no. 5,
2012.

[78] J. Tang, A. Korolova, X. Bai, X. Wang and X. Wang, "Privacy Loss in Apple’s
Implementation of Differential Privacy on MacOS 10.12," ArXiv, 2017.

92

[79] Ú. Erlingsson, V. Pihur and A. Korolova, "RAPPOR: Randomized Aggregatable Privacy-
Preserving Ordinal Response," in Proceedings of the 2014 ACM SIGSAC Conference on

Computer and Communications Security, Scottsdale, 2014.

[80] M. Barbaro and T. Zeller, "A Face Is Exposed for AOL Searcher No. 4417749," The New
York Times, New York, 2006.

[81] D. Jackson, "The Netflix Prize: How a $1 Million Contest Changed Binge-Watching
Forever," Thrillist.com, 2017.

[82] A. Narayanan and V. Shmatikov, "Robust De-anonymization of Large Sparse Datasets," in
IEEE Symposium on Security and Privacy, Oakland, 2008.

[83] R. Wang, Y. F. Li, X. Wang, H. Tang and X. Zhou, "Learning Your Identity and Disease
from Research Papers: Information Leaks in Genome Wide Association Study," in
Proceedings of the 16th ACM Conference on Computer and Communications Security,
Chicago, 2009.

[84] W. M. Holt, "Security and Privacy Weaknesses of Neural Networks," Provo, 2017.

[85] C. Song, T. Ristenpart and V. Shmatikov, "Machine Learning Models that Remember Too
Much," in Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, Dallas, 2017.

[86] G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani, D. Vitali and G. Felici, "Hacking
Smart Machines with Smarter Ones: How to Extract Meaningful Data from Machine
Learning Classifiers," International Journal of Security and Networks, vol. 10, no. 3, pp.
137-150, 2015.

[87] R. Shokri, M. Stronati, C. Song and V. Shmatikov, "Membership Inference Attacks
Against Machine Learning Models," in IEEE Symposium on Security and Privacy, San
Jose, 2017.

[88] C. Dwork and A. Roth, "The Algorithmic Foundations of Differential Privacy,"
Foundations and Trends® in Theoretical Computer Science, vol. 9, no. 3-4, pp. 211-407,
2014.

[89] J. Hsu, M. Gaboardi, A. Haeberlen, S. Khanna, A. Narayan, B. C. Pierce and A. Roth,
"Differential Privacy: An Economic Method for Choosing Epsilon," in IEEE 27th

Computer Security Foundations Symposium, Vienna, 2014.

[90] N. Papernot, M. Abadi, Ú. Erlingsson, I. Goodfellow and K. Talwar, "Semi-Supervised
Knowledge Transfer for Deep Learning from Private Training Data," in 5th International

Conference on Learning Representations, Toulon, 2017.

93

[91] X. Zhang, S. Ji and T. Wang, "Differentially Private Releasing via Deep Generative
Model," ArXiv, 2018.

[92] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar and L. Zhang,
"Deep Learning with Differential Privacy," in Proceedings of the 2016 ACM SIGSAC

Conference on Computer and, Vienna, 2016.

[93] A. D. Sarwate and K. Chaudhuri, "Signal Processing and Machine Learning with
Differential Privacy," IEEE Signal Processing Magazine, pp. 86-94, September 2013.

[94] V. Sze, Y.-H. Chen, J. Emer, A. Suleiman and Z. Zhang, "Hardware for Machine Learning
Challenges and Opportunities," in IEEE Custom Integrated Circuits Conference, Austin,
2017.

[95] Google, "TensorFlow Lite," Google, 2018. [Online]. Available:
https://www.tensorflow.org/lite/. [Accessed 3 December 2018].

[96] L. Yang and B. Murmann, "Approximate SRAM for Energy-Efficient, Privacy-Preserving
Convolutional Neural Networks," in IEEE Computer Society Annual Symposium on VLSI,
Bochum, 2017.

[97] Google, "TensorFlow ™," Google, [Online]. Available: https://www.tensorflow.org/.
[Accessed 11 11 2018].

[98] Y. Xu, H. Das, Y. Gong and N. Gong, "On Mathematical Models of Optimal Video
Memory Design," IEEE Transactions on Circuits and Systems for Video Technology

(TCSVT), 2019.

[99] H. Xiao, K. Rasul and R. Vollgraf, "Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms," 28 August 2017. [Online]. Available:
https://arxiv.org/abs/1708.07747. [Accessed 3 April 2019].

94

APPENDIX A. YOUTUBE-8M VIDEO DOWNLOAD SCRIPT

Python script for downloading YouTube-8M videos for running evaluation on

Author: Jonathon Edstrom

Department: NDSU ECE Graduate Research

Project: Data-Pattern Enabled Self-Recovery Low-Power Storage System for Big Video Data

import random, os
from pytube import YouTube

from subprocess import call, check_output
import pandas as pd

import numpy as np

variables

video_count = 0

label_str = None

read the provided vocabulary.csv file from the YouTube-8M dataset

vocab_df = pd.read_csv('vocabulary.csv')

download 10,000 unique videos from the YouTube-8M dataset

while video_count < 10000:
 try:

 full_str = random.choice(list(open('train_labels.csv')))
 url_str = full_str.split(',')[0]

 label_val = full_str.split(',')[1]
 label_num = label_val.split(' ')[0]

 label_str = vocab_df.loc[int(label_num),'Name']

 youtube_str = 'https://www.youtube.com/watch?v=' + url_str
 print(youtube_str)

 yt = YouTube(youtube_str)
 video = yt.get('mp4', '360p')

 video.download('/home/jedstrom/data/tmp/video{}_{}.mp4'.format(video_count,label_str))
 total_frames = int(check_output(["ffprobe", "-v", "error", "-count_frames", "-

 select_streams", "v:0", "-show_entries", "stream=nb_read_frames", "-of",
 "default=nokey=1:noprint_wrappers=1",

 'tmp/video{}_{}.mp4'.format(video_count,label_str)]))
 print('no. of frames: {}'.format(total_frames))

 randomFrame = int(random.randrange(0,total_frames-51))
 print('starting frame: {}'.format(randomFrame))

 call(["ffmpeg", "-ss", '{}'.format(randomFrame/30), "-i",
 'tmp/video{}_{}.mp4'.format(video_count,label_str), "-vf", "scale=320:240", "-vframes",

 "50", "-vcodec", "rawvideo", "-pix_fmt", "yuv420p",
 'tmp/video{}_{}.yuv'.format(video_count,label_str)])

 os.remove('tmp/video{}_{}.mp4'.format(video_count,label_str))
 video_count += 1

 except:
 if os.path.isfile('tmp/video{}_{}.mp4'.format(video_count,label_str)):

 os.remove('tmp/video{}_{}.mp4'.format(video_count,label_str))
 if os.path.isfile('tmp/video{}_{}.yuv'.format(video_count,label_str)):

 os.remove('tmp/video{}_{}.yuv'.format(video_count,label_str))

 pass

95

APPENDIX B. YOUTUBE-8M VIDEO CLIPPED TIMING SCRIPT

Python script used to download videos

from https://research.google.com/youtube8m/

Author: Jonathon Edstrom (2018)

Project: Content-Adaptive Memory for Viewer-Aware

Energy-Quality Scalable Mobile Video Systems

import random, os

from pytube import YouTube # PyTube 6.2.2
rom subprocess import call, check_output

Prompt user for YouTube video tag

url_str = raw_input("Enter the url tag for the video to download: ")

Create video url string

youtube_str = 'https://www.youtube.com/watch?v=' + url_str

Get video using PyTube API

yt = YouTube(youtube_str)
yt.filename = 'url={}'.format(url_str)

video = yt.get('mp4', '360p')
print(youtube_str)

Create directory for videos to be stored and download

if not os.path.exists('videos'):
 os.makedirs('videos')

video.download('videos')

Calculate the total number of frames and display to user

total_frames = int(check_output(["ffprobe", "-v", "error", "-count_frames", "-select_streams",
"v:0", "-show_entries", "stream=nb_read_frames", "-of", "default=nokey=1:noprint_wrappers=1",

'videos/url={}.mp4'.format(url_str)]))
print('no. of frames: {}'.format(total_frames))

Prompt user for when they would like the clipped video to begin

skip = raw_input("How long to skip (i.e. 00:00:00): ")

Prompt user on how many frames they would like to be in the clipped video

frames_to_process = raw_input("Frames to process: ")

Convert the downloaded .mp4 to raw .yuv and remove the .mp4 file

call(["ffmpeg", "-ss", '{}'.format(skip), "-i", 'videos/url={}.mp4'.format(url_str), "-vf",
"scale=640:360", "-vframes", "{}".format(frames_to_process), "-vcodec", "rawvideo", "-pix_fmt",

"yuv420p", 'videos/url={}.yuv'.format(url_str)])
os.remove('videos/url={}.mp4'.format(url_str))

96

APPENDIX C. MACROBLOCK ANALYSIS AND TRUNCATION PROGRAM

/*

 YUV420p Macroblock Luminance Truncation Program

 Jonathon Edstrom - 2017-2019

 Truncates LSBs from luminance portion of YUV 4:2:0 frames with MB level analysis

 Department: NDSU ECE Graduate Research

 Project: Content-Adaptive Memory for Viewer-Aware Energy-Quality

 Scalable Mobile Video Systems

*/

// includes

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <stdint.h>

#include <math.h>

#include <stdbool.h>

// instantiate globals

FILE* fileptr; // pointer for YUV data input/output files
FILE* csvFilePtr; // CSV file pointer that will contain plain macroblock percentages per frame

uint8_t* buffer; // pointer for YUV data allocated memory
uint8_t* reset; // pointer value to reset the buffer to the beginning

uint8_t* compare; // pointer for YUV data to compare to (PSNR)
uint8_t* rstCompare; // pointer to beginning of comparison data (PSNR)

uint64_t filelen; // length of the input file (total bytes)

uint32_t xres; // width of the YUV video
uint32_t yres; // height of the YUV video

uint8_t plain; // # of bits to truncate in plain conditions
uint8_t textured; // # of bits to truncate in textured conditions

uint64_t lumsize; // luminance bytes per frame
uint64_t chromsize; // chrominance bytes per frame

uint64_t framecount; // total number of frames
double lowVarTh = 1.25; // low variance threshold used for determining if a MB is plain/textured

// (default value is 1.25 - from table on page 5 of "An HVS-based Adaptive Computational

// Complexity Reduction Scheme for H.264/AVC Video Encoder using Prognostic Early Mode Exclusion"

// (Shafique et. al))

double psnrValue = 0; // for later calculating the PSNR of the output video

uint8_t newTruncMethod = 1; // default to true
uint8_t outputTruncatedFile = 1; // default to true

uint8_t outputCSV = 1; // default to true
uint32_t plainMBCount = 0; // increments each time a MB is determined to be 'plain'

uint32_t totalMBCount = 0; // increments for each MB in the input video

uint8_t truncationAmount(double variance)
{

 // perform truncation based on luminance scenario and variance of MBs

 if(variance <= lowVarTh) // plain MB

 {

 return plain;
 }

 else // textured MB
 {

 return textured;
 }

}

// helper function to truncate bits on YUV frames

uint8_t truncateBits(uint8_t byte, uint8_t bitsToTruncate)

{
 uint8_t returnByte;

 switch(bitsToTruncate) {
 case 0:

 return byte; // don't truncate anything
 break;

 case 1:
 return (byte & 254);

 break;

97

 case 2:

 returnByte = byte & 252;
 if(newTruncMethod == 1)

 {
 returnByte |= 2;

 }
 return returnByte;

 break;
 case 3:

 returnByte = byte & 248;
 if(newTruncMethod == 1)

 {
 returnByte |= 4;

 }
 return returnByte;

 break;
 case 4:

 returnByte = byte & 240;
 if(newTruncMethod == 1)

 {
 returnByte |= 8;

 }
 return returnByte;

 break;

 case 5:
 returnByte = byte & 224;

 if(newTruncMethod == 1)
 {

 returnByte |= 16;
 }

 return returnByte;
 break;

 case 6:
 returnByte = byte & 192;

 if(newTruncMethod == 1)
 {

 returnByte |= 32;
 }

 return returnByte;
 break;

 case 7:
 returnByte = byte & 128;

 if(newTruncMethod == 1)
 {

 returnByte |= 64;
 }

 return returnByte;
 break;

 default:

 printf("Truncation bit value entered (%u) not valid. Exiting.\n", bitsToTruncate);
 exit(EXIT_FAILURE);

 }
}

// modified by J.E. using: https://fador.be/highlighter.php?file=psnr.c

double psnr(uint8_t *video1, uint8_t *video2)
{

 double MSE = 0.0;
 double MSEtemp = 0.0;

 unsigned int index;

 // Calculate MSE

 for(index = 0; index < (framecount * (3 * (xres * yres) / 2)); index++)

 {
 MSEtemp = abs(video1[index] - video2[index]);

 MSE += MSEtemp * MSEtemp;
 }

 MSE /= (framecount * (3 * (xres * yres) / 2));

 // Avoid division by zero

 if(MSE == 0)

98

 {

 return 99.0;
 }

 else
 {

 return (10 * log10((255.0 * 255.0) / MSE));
 }

}

// application entry point

int main(int argc, char * argv[])

{
 printf("\nYUV420p Luminance Byte Truncation Program Using MB Analysis (J.E. 2017-2019)\n");

 printf("---\n\n"
);

 if(argc != 10) // argc should be 9 for correct execution

 {

 // print argv[0] assuming it is the program name with the following usage hint to user

 printf("usage: %s filename xres yres plain textured lowVarTh newTruncMethod
 outputTruncatedFile outputCSV\n\n", argv[0]);

 printf("\tfilename: the path to the YUV file to process\n");
 printf("\txres: width of the YUV video in pixels\n");

 printf("\tyres: height of the YUV video in pixels\n");

 printf("\tplain: # of bits to truncate in plain Macroblocks\n");
 printf("\ttextured: # of bits to truncate in textured Macroblocks\n");

 printf("\tlowVarTh: threshold to determine if a MB is plain or textured (default:
 1.25)\n");

 printf("\tnewTruncMethod: (0 or 1) 0 = use old (all dropped bits to zero), 1 = use new
 truncation (median value)\n");

 printf("\toutputTruncatedFile: (0 or 1) Output the truncated version of the video\n");
 printf("\toutputCSV: (0 or 1) Output the calculated plain macroblock percentages for

 each frame to a .csv file\n\n");
 printf("Please correct your arguments and retry. Now Exiting...");

 exit(EXIT_FAILURE);
 }

 else // correct number of arguments
 {

 printf("Setting things up...\n");

 // initialize settings (global variables)

 xres = atoi(argv[2]);

 yres = atoi(argv[3]);
 plain = atoi(argv[4]);

 textured = atoi(argv[5]);
 lowVarTh = atof(argv[6]);

 // check threshold value is valid

 if(lowVarTh < 0.0f)

 {
 printf("Invalid value for low variance threshold (lowVarTh). Exiting program.\n");

 exit(EXIT_FAILURE);
 }

 // check to see if old truncation method should be used (all dropped bits to zero)

 newTruncMethod = atoi(argv[7]);

 // check threshold value is valid

 if(newTruncMethod != 0 && newTruncMethod != 1)

 {
 printf("Invalid value for using new truncation method. Exiting program.\n");

 exit(EXIT_FAILURE);
 }

 // see if the user wants the truncatd version of the YUV file to be output

 outputTruncatedFile = atoi(argv[8]);
 if(outputTruncatedFile != 0 && outputTruncatedFile != 1)

 {
 printf("Invalid outputTruncatedFile value (valid: 0 or 1). Exiting program.\n");

 exit(EXIT_FAILURE);
 }

 // see if the user wants a .csv file containing the plain macroblock percentage for each

 // frame in the video

99

 outputCSV = atoi(argv[9]);

 if(outputCSV != 0 && outputCSV != 1)
 {

 printf("Invalid value for outputCSV input, please input 0 or 1. Exiting program.\n");
 exit(EXIT_FAILURE);

 }

 // check resolution parameters are natural numbers

 if(!(xres > 0 && yres > 0))

 {
 printf("Invalid value entered for the resolution parameter(s) (i.e. xres/yres).

 Exiting program.\n");
 exit(EXIT_FAILURE);

 }

 // check that bit truncation values are valid

 if(!(plain >= 0 && plain <= 7 && textured >= 0 && textured <= 7))

 {
 printf("The value entered for one of the bit truncation parameter is not valid.

 Exiting program.\n");
 exit(EXIT_FAILURE);

 }

 // create output file name string

 int32_t len = strlen(argv[1]); // get length of input file name
 char filename[len];

 strcpy(filename, argv[1]); // get input file name
 filename[len-4] = '\0'; // chop off the ".yuv" extension

 len = len + 100; // add correct amount for output file naming
 char plain_data[len];

 strcpy(plain_data, filename); // store video filename for later
 strcat(plain_data, "_plainPercentagesPerFrame.csv"); // add description & file extension

 if(outputCSV == 1)
 {

 // overwrite file if it exists

 csvFilePtr = fopen(plain_data, "w");

 if (csvFilePtr != NULL)
 {

 fputs("", csvFilePtr);
 fclose(csvFilePtr);

 }
 else

 {
 printf("The CSV file could not be opened for writing. Make sure the file is not in

 use. Exiting program.\n");
 exit(EXIT_FAILURE);

 }
 }

 char outputstr[len];

 strcpy(outputstr, filename);
 strcat(outputstr, "_");

 char str[100];
 strcat(outputstr, "p=");

 sprintf(str, "%u", plain);
 strcat(outputstr, str);

 strcat(outputstr, "_t=");
 sprintf(str, "%u", textured);

 strcat(outputstr, str);
 strcat(outputstr, "_lvt=");

 sprintf(str, "%f", lowVarTh);
 strcat(outputstr, str);

 if(newTruncMethod == 1)
 {

 strcat(outputstr, "_t");
 sprintf(str, "%u", plain);

 strcat(outputstr, str);
 }

 else if(newTruncMethod == 0)
 {

 strcat(outputstr, "_d");
 sprintf(str, "%u", plain);

100

 strcat(outputstr, str);

 }
 strcat(outputstr, ".yuv");

 // calculate Y (luminance) and UV (chrominance) byte component sizes

 lumsize = xres * yres;
 chromsize = lumsize / 2;

 // assume argv[1] is the filename to open

 // open file using "rb" = read binary file access mode

 fileptr = fopen(argv[1], "rb");

 // if fopen returns a NULL pointer it failed to open the file

 if(fileptr == NULL)
 {

 printf("Could not open file. Exiting program.\n");
 exit(EXIT_FAILURE);

 }
 else // file opened successful -> allocate memory buffer space

 {
 printf("YUV input file opened successfully!\n");

 fseek(fileptr, 0, SEEK_END); // jump to end of file
 filelen = ftell(fileptr); // get current byte offset in file

 framecount = (2 * filelen) / (xres * yres * 3);

 printf("Size of YUV file: %lu\n# of frames in video: %lu\n", filelen, framecount);
 rewind(fileptr); // jump to beginning of file

 // calculate the total size of the input file in bytes

 uint64_t totalSizeOfInputFile = xres * yres * framecount * 3 / 2;

 buffer = (uint8_t *) malloc(filelen + 1); // enough memory for file + \0 (EOF)
 compare = (uint8_t *) malloc(filelen + 1); // enough memory for file + \0 (EOF)

 reset = buffer;
 rstCompare = compare;

 if(buffer == NULL || compare == NULL)
 {

 printf("Failed to allocate memory. Exiting program.\n");
 exit(EXIT_FAILURE);

 }
 else

 {
 printf("Memory allocated successfully!\n");

 }

 uint64_t bytesReadIntoBuffer = fread(buffer, 1, filelen, fileptr); // read file

 rewind(fileptr); // jump to beginning of file

 uint64_t bytesReadIntoCompare = fread(compare, 1, filelen, fileptr); // read file

 if(bytesReadIntoBuffer != bytesReadIntoCompare || bytesReadIntoBuffer !=

 totalSizeOfInputFile || bytesReadIntoCompare != totalSizeOfInputFile)
 {

 printf("Input file size error. Exiting program.\n");
 exit(EXIT_FAILURE);

 }

 printf("File read into memory!\n");

 buffer = reset; // reset buffer pointer address to beginning
 compare = rstCompare; // reset compare buffer pointer address to beginning

 uint64_t index = 0; // current array index (keeps track of traversing the video)
 uint64_t frameIndex = 0; // keeps track of current frame number

 double macroblock[256]; // all luminance bytes for current macroblock

 while(index < filelen) // loop until EOF
 {

 // report the progress of the program to the user

 if(index % (lumsize / 2) == 0)

 {
 frameIndex++;

101

 double percent = (double)frameIndex / (double)framecount * 100.0;

 printf("\rFrame: %lu/%lu (%.2f%%)", frameIndex, framecount, percent);
 }

 uint8_t *currentFrame = buffer; // remember start of frame for truncating data

 // will contain how many bits to truncate for each byte in the frame

 uint8_t frameTruncationValues[xres][yres];

 // move 1D array into a 2D array (frame) of luminance data

 uint8_t luminanceFrame[xres][yres];

 for(uint32_t yIdx = 0; yIdx < yres; yIdx++)
 {

 for(uint32_t xIdx = 0; xIdx < xres; xIdx++)
 {

 luminanceFrame[xIdx][yIdx] = *buffer;
 buffer++;

 index++;
 }

 }

 uint32_t xpos = 0; // x position of top left pixel of current MB on current frame
 uint32_t ypos = 0; // y position of top left pixel of current MB on current frame

 bool continueLoop = true;

 // count plain MBs for the current frame for reporting to user via .csv file
 uint32_t plainMacroblocksForCurrentFrame = 0;

 uint32_t totalMBForCurrentFrame = 0; // the total MB in the current frame
 while(continueLoop)

 {
 uint32_t totalElementsInMB = 0;

 // get all bytes from the current macroblock

 uint32_t mbIndex = 0;
 for(uint32_t j = ypos; j < ypos + 16; j++)

 {
 if(j < yres) // ensure we are within the vertical bounds of the frame

 {
 for(uint32_t i = xpos; i < xpos + 16; i++)

 {
 if(i < xres) // ensure we are within the horizontal bounds of the frame

 {
 macroblock[mbIndex] = (double) luminanceFrame[i][j];

 // use calculated power function to map to real world luminance value

 macroblock[mbIndex] = 0.0001560911143834408 * pow(macroblock[mbIndex],
 2.628389343175764);

 mbIndex++;

 totalElementsInMB++;

 }
 }

 }
 }

 // calculate average luminance for the current macroblock

 double luminanceSum = 0;
 for(uint16_t idx = 0; idx < totalElementsInMB; idx++)

 {
 luminanceSum += macroblock[idx];

 }
 double averageMBLuminance = luminanceSum / (double) totalElementsInMB;

 // calculate the variance of the luminance values for the current macroblock

 double variance = 0.0f;
 for(uint16_t idx = 0; idx < totalElementsInMB; idx++)

 {
 variance += (pow(macroblock[idx] - averageMBLuminance, 2) / (double)

 totalElementsInMB);
 }

 totalMBForCurrentFrame++;

102

 totalMBCount++;

 if(variance <= lowVarTh)
 {

 plainMacroblocksForCurrentFrame++;
 plainMBCount++;

 }

 // decide amount of bits to truncate based on luminance variance and scenario

 for(uint32_t j = ypos; j < ypos + 16; j++)

 {
 if(j < yres) // ensure we are within the vertical bounds of the frame

 {
 for(uint32_t i = xpos; i < xpos + 16; i++)

 {
 if(i < xres) // ensure we are within the horizontal bounds of the frame

 {
 frameTruncationValues[i][j] = truncationAmount(variance);

 }
 }

 }
 }

 // adjust xpos and ypos for next macroblock

 if(xpos + 16 < xres)

 {
 xpos += 16;

 }
 else

 {
 xpos = 0;

 if(ypos + 16 < yres)
 {

 ypos += 16;
 }

 else
 {

 continueLoop = false;
 }

 }
 }

 // output plain macroblock percentage to a .csv file if the user wants it output

 if(outputCSV)
 {

 // open file using "a" = append file access mode

 csvFilePtr = fopen(plain_data, "a");

 if (csvFilePtr != NULL)
 {

 fprintf(csvFilePtr, "%f%%\n", plainMacroblocksForCurrentFrame * 100.0f /

 totalMBForCurrentFrame);
 fclose(csvFilePtr);

 }
 else

 {
 printf("Error opening .csv file...");

 }
 }

 // truncate bits for each byte in the video based on truncation values calculated

 for(uint32_t yIdx = 0; yIdx < yres; yIdx++)
 {

 for(uint32_t xIdx = 0; xIdx < xres; xIdx++)
 {

 *currentFrame = truncateBits(luminanceFrame[xIdx][yIdx],
 frameTruncationValues[xIdx][yIdx]);

 currentFrame++;
 }

 }

 // skip the chrominance bytes (we are only using luma bytes currently)

 if(index < filelen)

103

 {

 buffer += chromsize; // adjust pointer address to next set of luminance bytes
 index += chromsize; // adjust index to next set of luminance bytes

 }
 }

 // completed!
 printf("\rProcessing frame: %lu/%lu (100.00%%)\n", framecount, framecount);

 buffer = reset;

 compare = rstCompare;
 psnrValue = psnr(buffer, compare);

 if(psnrValue == 99.0f)
 {

 printf("\nThe output video is exactly the same as the original video.\n\n");
 }

 else
 {

 printf("\nPSNR of output video: %f dB (p=%u, t=%u, lvt=%f)\n\n", psnrValue,
 plain, textured, lowVarTh);

 }

 if(outputTruncatedFile)
 {

 // open file using "w+b" = write/update binary file access mode

 fileptr = fopen(outputstr, "w+b");

 // if fopen returns NULL pointer it failed to open the file

 if(fileptr == NULL)

 {
 printf("Could not write output file. Exiting program.\n");

 exit(EXIT_FAILURE);
 }

 else // file opened successful -> write back YUV data
 {

 buffer = reset; // reset buffer pointer address to write data
 printf("Created file name: %s, now writing data...\n", outputstr);

 fwrite(buffer, 1, filelen, fileptr); // write the data to the file
 fclose(fileptr); // close the file

 }

 printf("Data was successfully output!\n");
 }

 printf("Freeing up allocated memory\n");

 buffer = reset; // reset buffer pointer address to free memory
 free(buffer); // deallocate memory block

 }
 }

 printf("\nLow Variance (Plain) MB Count: %u / %u (%f%%)\n", (uint32_t) plainMBCount,
 totalMBCount, plainMBCount * 100.0f / totalMBCount);

 printf("\nPSNR of truncated video: %f dB\n\n", psnrValue);

 if(outputCSV)

 {
 printf("Plain %% per frame was output to .csv file!\n\n");

 }

 return 0; // program success
}

104

APPENDIX D. SYNAPTIC STORAGE FOR DEEP LEARNING MODEL CODE

Synaptic Storage for Deep Learning Neural Network Model Code

Jonathon Edstrom - 2017

Allows for adjusting 6T and 8T cells, their failure rates,

ability to inject faults, and correct bits based on patterns

Department: NDSU ECE Graduate Research

Project: Data-Driven Intelligent Efficient Synaptic Storage for Deep Learning

import random
import sys, os, struct, datetime, time

import h5py
import numpy as np

from ctypes import *

#define parameters

batch_size = 128

num_epochs = 20
hidden_size = 20

failure_rate_6T = float(sys.argv[1])
failure_rate_8T = 0

seed_value = int(sys.argv[3])
correction = int(sys.argv[2])

weights_seed = seed_value + int(failure_rate_6T * 1000)
corr_bit_num = int(sys.argv[4])

np.random.seed(seed_value)

from keras.datasets import mnist # subroutines for fetching the MNIST dataset
from keras.models import Model # basic class for specifying and training a neural network

from keras.models import load_model
from keras.layers import Input, Dense # the two types of neural network layer we will be using

from keras.utils import np_utils # utilities for one-hot encoding of ground truth values
from keras.callbacks import Callback, EarlyStopping

from keras import initializers

Convert float32 to binary (IEEE 754 single precision floating point number)

def binary(num):
 return ''.join(bin(ord(c)).replace('0b', '').rjust(8, '0') for c in struct.pack('!f', num))

Inject Faults into a dataset of weights

def inject_faults_weights(dataset):
 if correction == 0:

 i = 0
 j = 0

 for rows in dataset:
 for cols in rows:

 for bit in range(0,30):
 randomNum = random.random()

 # inject failures based on failure rate

 if randomNum <= failure_rate_6T:
 bits = cast(pointer(c_float(dataset[i][j])), POINTER(c_int32)).contents.value

 bits ^= (1 << bit)
 dataset[i,j] = cast(pointer(c_int32(bits)), POINTER(c_float)).contents.value

 j += 1

 i += 1
 j = 0

 if correction == 1:

 i = 0
 j = 0

 for rows in dataset:
 for cols in rows:

 for bit in range(0,30):
 randomNum = random.random()

 # inject failures based on failure rate

 if randomNum <= failure_rate_6T:

 bits = cast(pointer(c_float(dataset[i][j])), POINTER(c_int32)).contents.value

105

 pre_fault_bits = bits

 post_fault_bits = 0
 if bit >= corr_bit_num:

 bits ^= (1 << bit)
 w1 = (bits >> 30) & 1

 if w1 == 0:
 bits |= (1 << bit)

 post_fault_bits = bits
 else:

 bits ^= (1 << bit)
 if post_fault_bits != 0 and post_fault_bits != pre_fault_bits:

 with open('ERRORS_failure={}_correction={}.txt'.format(failure_rate_6T,
 correction), 'a') as f:

 pre_float = cast(pointer(c_int32(pre_fault_bits)),
 POINTER(c_float)).contents.value

 post_float = cast(pointer(c_int32(post_fault_bits)),
 POINTER(c_float)).contents.value

 f.write("w{},{},{},{},{},{}\n".format(bit, pre_fault_bits, pre_float,
 post_fault_bits, post_float, post_float/pre_float))

 dataset[i,j] = cast(pointer(c_int32(bits)), POINTER(c_float)).contents.value
 j += 1

 i += 1
 j = 0

Inject Faults into a dataset of biases

def inject_faults_bias(dataset):

 if correction == 0:
 i = 0

 for rows in dataset:
 for bit in range(0,30):

 randomNum = random.random()

 # inject failures based on failure rate

 if randomNum <= failure_rate_6T:

 bits = cast(pointer(c_float(dataset[i])), POINTER(c_int32)).contents.value
 bits ^= (1 << bit)

 dataset[i] = cast(pointer(c_int32(bits)), POINTER(c_float)).contents.value
 i += 1

 if correction == 1:

 i = 0
 for rows in dataset:

 for bit in range(0,30):
 randomNum = random.random()

 # inject failures based on failure rate

 if randomNum <= failure_rate_6T:
 bits = cast(pointer(c_float(dataset[i])), POINTER(c_int32)).contents.value

 pre_fault_bits = bits

 post_fault_bits = 0
 if bit >= corr_bit_num:

 bits ^= (1 << bit)
 w1 = (bits >> 30) & 1

 if w1 == 0:
 bits |= (1 << bit)

 post_fault_bits = bits
 else:

 bits ^= (1 << bit)
 if post_fault_bits != 0 and post_fault_bits != pre_fault_bits:

 with open('ERRORS_failure={}_correction={}.txt'.format(failure_rate_6T,
 correction), 'a') as f:

 pre_float = cast(pointer(c_int32(pre_fault_bits)),
 POINTER(c_float)).contents.value

 post_float = cast(pointer(c_int32(post_fault_bits)),
 POINTER(c_float)).contents.value

 f.write("b{},{},{},{},{},{}\n".format(bit, pre_fault_bits, pre_float,
 post_fault_bits, post_float, post_float/pre_float))

 dataset[i] = cast(pointer(c_int32(bits)), POINTER(c_float)).contents.value
 i += 1

106

def main():

 if corr_bit_num != 26 and corr_bit_num != 28:

 print('bad corr_bit_num!!!')
 exit()

 print('Weights seed: {}\n\n'.format(weights_seed))

 class TrainingHistory(Callback):

 def on_train_begin(self, logs={}):

 self.i = 0
 with open('ERRORS_failure={}_correction={}.txt'.format(failure_rate_6T, correction), 'a')

 as f:
 f.write("bit,pre_fault_bits,pre_float,post_fault_bits,post_fault,error\n")

 def on_epoch_begin(self, epoch, logs={}):

 with open('ERRORS_failure={}_correction={}.txt'.format(failure_rate_6T, correction), 'a')
 as f:

 f.write("\nEPOCH {} of {}:\n\n".format(epoch+1, num_epochs))

 def on_batch_end(self, batch, logs={}):
 self.i += 1

 # save the weights into a file

 model.save_weights('new_model_weights.h5')

 # access weights memory locations

 wf = h5py.File('new_model_weights.h5', 'r+')
 data_w_1 = wf['dense_1/dense_1/kernel']

 data_b_1 = wf['dense_1/dense_1/bias']
 data_w_2 = wf['dense_2/dense_2/kernel']

 data_b_2 = wf['dense_2/dense_2/bias']
 data_w_3 = wf['dense_3/dense_3/kernel']

 data_b_3 = wf['dense_3/dense_3/bias']

 # seed random number generator to keep faults in same position

 random.seed(int(seed_value))

 # inject faults into weights/biases directly

 inject_faults_weights(data_w_1)
 inject_faults_bias(data_b_1)

 inject_faults_weights(data_w_2)
 inject_faults_bias(data_b_2)

 inject_faults_weights(data_w_3)
 inject_faults_bias(data_b_3)

 # close the file containing the editted weights

 wf.close()

 # load editted weights into the model

 model.load_weights('new_model_weights.h5')

 num_train = 60000 # there are 60000 training examples in MNIST
 num_test = 10000 # there are 10000 test examples in MNIST

 height, width, depth = 28, 28, 1 # MNIST images are 28x28 and greyscale

 num_classes = 10 # there are 10 classes (1 per digit)

 (X_train, y_train), (X_test, y_test) = mnist.load_data() # fetch MNIST data

 X_train = X_train.reshape(num_train, height * width) # Flatten data to 1D
 X_test = X_test.reshape(num_test, height * width) # Flatten data to 1D

 X_train = X_train.astype('float32')
 X_test = X_test.astype('float32')

 X_train /= 255 # Normalise data to [0, 1] range
 X_test /= 255 # Normalise data to [0, 1] range

 Y_train = np_utils.to_categorical(y_train, num_classes) # One-hot encode the labels

 Y_test = np_utils.to_categorical(y_test, num_classes) # One-hot encode the labels

107

 inp = Input(shape=(height * width,)) # Our input is a 1D vector of size 784

 hidden_1 = Dense(hidden_size, activation='relu', init=initializers.random_normal(mean=0.0,
 stddev=0.05, seed=weights_seed))(inp) # First hidden ReLU layer

 hidden_2 = Dense(hidden_size, activation='relu', init=initializers.random_normal(mean=0.0,
 stddev=0.05, seed=weights_seed))(hidden_1) # Second hidden ReLU layer

 out = Dense(num_classes, activation='softmax', init=initializers.random_normal(mean=0.0,
 stddev=0.05, seed=weights_seed))(hidden_2) # Output softmax layer

 model = Model(input=inp, output=out) # Define the model by specifying input and output layers

 model.compile(loss='categorical_crossentropy', # using the cross-entropy loss function

 optimizer='adagrad', # using the Adagrad optimiser
 metrics=['accuracy']) # reporting the accuracy

 history = TrainingHistory()

 hist = model.fit(X_train, Y_train, # Train the model using the training set...

 batch_size=batch_size, nb_epoch=num_epochs,
 verbose=1, validation_split=0.1, callbacks=[history])

 with open('output_failure={}_correction={}.txt'.format(failure_rate_6T, correction), 'a') as f:

 f.write("acc:\n")
 f.write('\n'.join(str(element) for element in hist.history["acc"]))

 f.write("\n\nval_acc:\n")

 f.write('\n'.join(str(element) for element in hist.history["val_acc"]))
 f.write("\n\nloss:\n")

 f.write('\n'.join(str(element) for element in hist.history["loss"]))
 f.write("\n\nval_loss:\n")

 f.write('\n'.join(str(element) for element in hist.history["val_loss"]))

 scores = model.evaluate(X_test, Y_test, verbose=0) # Evaluate trained model on the test set
 with open('output_failure={}_correction={}.txt'.format(failure_rate_6T, correction), 'a') as f:

 f.write("\n\nAccuracy: %.2f%%\n" % (scores[1]*100))
 print("\nAccuracy: %.2f%%" % (scores[1]*100))

if running directly from command line

if __name__ == "__main__":
 if(True):

 main()
 else:

 print('Incorrect number of arguments... Exiting.')

108

APPENDIX E. MNIST BIT FAULT INJECTION PROGRAM

/*

 MNIST Bit Fault Injection Program

 Jonathon Edstrom – 2018-2019

 Injects faults to MNIST Training/Test Dataset

 Department: NDSU ECE Graduate Research

*/

// includes

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <string.h>

#include <math.h>

// Mersenne Twister Random Number Generator

#include "twister.h" // https://www.mcs.anl.gov/~kazutomo/hugepage-old/twister.c

typedef enum { false, true } bool;

// instantiate globals

FILE *fileptr; // pointer for YUV data input/output files

unsigned char *buffer; // pointer for YUV data allocated memory
unsigned char *reset; // pointer value to reset the buffer to the beginning

unsigned char temp; // holds the byte value while faults are injected
unsigned long long int filelen; // length of the input file (total bytes)

// decimal that sets how often a bit has a fault

long double s7_error, s6_error, s5_error, s4_error, s3_error, s2_error, s1_error, s0_error;

// for counting the amount of errors we actually apply for each bit

long int s7_errorCount, s6_errorCount, s5_errorCount, s4_errorCount,
 s3_errorCount, s2_errorCount, s1_errorCount, s0_errorCount;

long double randomNumber; // used for storing random numbers for inputting faults
unsigned int seedValue; // seed value for random number generator

unsigned int sramWidth, sramHeight; // dimensions of the SRAM in terms of bit-cells
unsigned long long int errorCounter = 0, totalCounter = 0; // verify error rate works

double s7_errorPercentage, s6_errorPercentage, s5_errorPercentage, s4_errorPercentage,
 s3_errorPercentage, s2_errorPercentage, s1_errorPercentage, s0_errorPercentage;

// function definitions

unsigned char applyFaults(unsigned char);
unsigned char injectFault(unsigned char, long double);

// application entry point

int main(int argc, char * argv[])
{

 printf("\nMNIST Training Data Bit Fault Injection Program (J.E. 2018-2019)\n");

 // seed the Mersenne Twister PRNG

 seedMT((unsigned) time(NULL));

 if(argc != 14 && argc != 15) // argc should be 13 or 14 for correct execution
 {

 // print argv[0] assuming it is the program name with the following usage hint to user

 printf ("usage: %s filename sramWidth sramHeight outputFile? s7_error s6_error s5_error

 s4_error s3_error s2_error s1_error s0_error unique_id [optional]seedValue\n",
 argv[0]);

 }
 else // correct number of arguments

 {

 // initialize global variables

 sramWidth = atoi(argv[2]); // test chip from paper uses 256
 sramHeight = atoi(argv[3]); // test chip from paper uses 256

 s7_error = atof(argv[5]);
 s6_error = atof(argv[6]);

 s5_error = atof(argv[7]);
 s4_error = atof(argv[8]);

 s3_error = atof(argv[9]);
 s2_error = atof(argv[10]);

 s1_error = atof(argv[11]);

109

 s0_error = atof(argv[12]);

 unsigned int unique_id = atoi(argv[13]);

 printf("Unique ID: %u\n", unique_id);

 // set up random number generator

 if(argc == 15)

 {
 seedValue = atoi(argv[14]);

 srand(seedValue); // seed to user specified argument value
 }

 else
 {

 seedValue = (unsigned) time(NULL);
 srand(seedValue); // seed to random number using time

 }

 // assume argv[1] is the filename to open

 // open file using "rb" = read binary file access mode

 fileptr = fopen(argv[1], "rb");

 // if fopen returns a NULL pointer it failed to open the file

 if(fileptr == NULL)

 {

 printf("Could not open file: %s. Exiting program.\n", argv[1]);
 exit(EXIT_FAILURE);

 }
 else // files opened successfully -> allocate memory buffer space

 {
 printf("Input file opened successfully!\n");

 fseek(fileptr, 0, SEEK_END); // jump to end of file
 filelen = ftell(fileptr); // get current byte offset in file compare file

 //printf("Size of input file in bytes: %llu\n", filelen);

 // verify that the file is the correct size

 if(filelen != 47040016 && filelen != 7840016)
 {

 printf("Input file should be 47,040,016 bytes (training images) or 7,840,016 bytes (test
 images) in size. Please check the input file. Exiting program.\n");

 exit(EXIT_FAILURE);
 }

 rewind(fileptr); // jump to beginning of file

 buffer = (unsigned char *) malloc(filelen + 1); // enough memory for file + \0 (EOF)

 reset = buffer;
 if(buffer == NULL)

 {

 printf("Failed to allocate memory for file. Exiting program.\n");
 exit(EXIT_FAILURE);

 }
 else

 {
 printf("Memory allocated successfully!\n");

 }

 fread(buffer, 1, filelen, fileptr); // read file into memory

 fclose(fileptr); // close the file

 buffer = reset; // reset buffer pointer address to beginning
 buffer += 16; // skip first 16 bytes (header info = not part of the training/test dataset)

 unsigned long long int dataset_index = 16; // current array index (skip 16 byte header)

 unsigned long long int sram_index = 0; // keeps track of SRAM byte index
 while(dataset_index < filelen) // loop until EOF

 {
 srand(seedValue); // reset location of faults for each frame

 // loop until we hit the maximum size the 'SRAM prototype' can hold

 while(sram_index < (sramWidth * sramHeight / 8) && dataset_index < filelen)

110

 {

 temp = *buffer; // store current byte
 *buffer = applyFaults(temp); // truncate

 // increment buffer address, dataset_index and sram_index variables

 buffer++;
 dataset_index++;

 sram_index++;
 }

 sram_index = 0; // reset SRAM byte index

 // calculate progress and print

 //printf("\rProgress: %f%%", dataset_index * 100.0f / filelen);

 }

 //printf("\n");

 // calculate the actual error percentages

 s7_errorPercentage = (float)s7_errorCount / ((float)totalCounter / 8);
 s6_errorPercentage = (float)s6_errorCount / ((float)totalCounter / 8);

 s5_errorPercentage = (float)s5_errorCount / ((float)totalCounter / 8);
 s4_errorPercentage = (float)s4_errorCount / ((float)totalCounter / 8);

 s3_errorPercentage = (float)s3_errorCount / ((float)totalCounter / 8);

 s2_errorPercentage = (float)s2_errorCount / ((float)totalCounter / 8);
 s1_errorPercentage = (float)s1_errorCount / ((float)totalCounter / 8);

 s0_errorPercentage = (float)s0_errorCount / ((float)totalCounter / 8);

 // create output file name string

 int len = strlen(argv[1]); // get length of input file name

 char filename[len];
 strcpy(filename, argv[1]); // get input file name

 len = len + 100; // add correct amount for output file naming
 char outputstr[len];

 strcpy(outputstr, filename);
 strcat(outputstr, "_faults_");

 strcat(outputstr, argv[13]);

 //printf("Output filename: %s\n", outputstr);

 // output to file

 if(atoi(argv[4]) == 1)

 {

 // open file using "w+b" = write/update binary file access mode

 fileptr = fopen(outputstr, "w+b");

 // if fopen returns NULL pointer it failed to open the file

 if(fileptr == NULL)

 {

 printf("Could not write output file. Exiting program.\n");
 exit(EXIT_FAILURE);

 }
 else // file opened successful -> write back YUV data

 {
 buffer = reset; // reset buffer pointer address to write data

 //printf("Created file: %s, now writing data...\n", outputstr);

 fwrite(buffer, 1, filelen, fileptr); // write the data to the file

 fclose(fileptr); // close the file
 }

 }

 //printf("Freeing up allocated memory...\n");

 buffer = reset; // reset buffer pointer address to free memory

 free(buffer); // deallocate memory block

 if(atoi(argv[4]) == 1)
 {

 printf("Data was successfully output!\n");
 }

 printf("S7 Error Rate: %.10f\n", s7_errorPercentage);

111

 printf("S6 Error Rate: %.10f\n", s6_errorPercentage);

 printf("S5 Error Rate: %.10f\n", s5_errorPercentage);
 printf("S4 Error Rate: %.10f\n", s4_errorPercentage);

 printf("S3 Error Rate: %.10f\n", s3_errorPercentage);
 printf("S2 Error Rate: %.10f\n", s2_errorPercentage);

 printf("S1 Error Rate: %.10f\n", s1_errorPercentage);
 printf("S0 Error Rate: %.10f\n", s0_errorPercentage);

 }
 }

 return 0; // program success

}

// helper function to apply faults to MNIST data byte

unsigned char applyFaults(unsigned char byte)

{

 // instantiate local variables

 unsigned int bit_position;
 unsigned char value, bit1, bit2, bit3, bit4, bit5, bit6, bit7, bit8, newbit1, newbit2, newbit3,

 newbit4, newbit5, newbit6, newbit7, newbit8, output;

 // get individual bits from byte

 for(bit_position = 0; bit_position < 8; bit_position++)

 {

 switch(bit_position) {
 case 0:

 value = (byte & 128); // bitwise AND with 10000000
 if(value > 0)

 {
 bit1 = 1;

 }
 else

 {
 bit1 = 0;

 }
 newbit1 = injectFault(bit1, s7_error);

 if(bit1 != newbit1)
 {

 s7_errorCount++;
 }

 break;
 case 1:

 value = (byte & 64); // bitwise AND with 01000000
 if(value > 0)

 {
 bit2 = 1;

 }
 else

 {

 bit2 = 0;
 }

 newbit2 = injectFault(bit2, s6_error);
 if(bit2 != newbit2)

 {
 s6_errorCount++;

 }
 break;

 case 2:
 value = (byte & 32); // bitwise AND with 00100000

 if(value > 0)
 {

 bit3 = 1;
 }

 else
 {

 bit3 = 0;
 }

 newbit3 = injectFault(bit3, s5_error);
 if(bit3 != newbit3)

 {
 s5_errorCount++;

112

 }

 break;
 case 3:

 value = (byte & 16); // bitwise AND with 00010000
 if(value > 0)

 {
 bit4 = 1;

 }
 else

 {
 bit4 = 0;

 }
 newbit4 = injectFault(bit4, s4_error);

 if(bit4 != newbit4)
 {

 s4_errorCount++;
 }

 break;
 case 4:

 value = (byte & 8); // bitwise AND with 00001000
 if(value > 0)

 {
 bit5 = 1;

 }

 else
 {

 bit5 = 0;
 }

 newbit5 = injectFault(bit5, s3_error);
 if(bit5 != newbit5)

 {
 s3_errorCount++;

 }
 break;

 case 5:
 value = (byte & 4); // bitwise AND with 00000100

 if(value > 0)
 {

 bit6 = 1;
 }

 else
 {

 bit6 = 0;
 }

 newbit6 = injectFault(bit6, s2_error);
 if(bit6 != newbit6)

 {
 s2_errorCount++;

 }

 break;
 case 6:

 value = (byte & 2); // bitwise AND with 00000010
 if(value > 0)

 {
 bit7 = 1;

 }
 else

 {
 bit7 = 0;

 }
 newbit7 = injectFault(bit7, s1_error);

 if(bit7 != newbit7)
 {

 s1_errorCount++;
 }

 break;
 case 7:

 value = (byte & 1); // bitwise AND with 00000001
 if(value > 0)

 {
 bit8 = 1;

113

 }

 else
 {

 bit8 = 0;
 }

 newbit8 = injectFault(bit8, s0_error);
 if(bit8 != newbit8)

 {
 s0_errorCount++;

 }
 break;

 default:
 printf("Something went wrong. Exiting program.\n");

 exit(EXIT_FAILURE);
 }

 }

 // construct byte from bits after faults were applied

 output = ((newbit1 << 7) | (newbit2 << 6) | (newbit3 << 5) | (newbit4 << 4) |

 (newbit5 << 3) | (newbit6 << 2) | (newbit7 << 1) | newbit8);

 return output;
}

// function that will inject a fault to the input bit according to the error rate

unsigned char injectFault(unsigned char bit, long double errorRate)

{
 bool fault = false;

 // Don't divide by 0

 if(errorRate != 0.0)
 {

 // get a random number based on the Mersenne Twister Algorithm

 unsigned long twisterRandomNumber = randomMT();

 long double randomFloat = (double)twisterRandomNumber/4294967295;
 if(randomFloat <= errorRate)

 {
 fault = true;

 }
 }

 if(fault)

 {
 totalCounter++;

 // apply fault

 if(bit == 0)

 {
 return 1;

 }

 else
 {

 return 0;
 }

 }
 else

 {

 // no fault

 totalCounter++;
 return bit;

 }
}

