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ABSTRACT 

 

North American bats face multiple threats, prompting an increase in bat research and 

conservation efforts in recent decades. Researchers often use acoustic monitoring, which entails 

recording bats’ echolocation calls and subsequently identifying them to species, typically using automated 

software. Chapter 1 describes an acoustic monitoring program at eight U.S. national parks that aims to 

assess changes in bat populations over time. Data collected in 2016-2017 showed that activity levels of 

the little brown bat (Myotis lucifigus) decreased significantly while other species remained stable. Little 

brown bats have undergone similar population declines elsewhere due to the disease white-nose 

syndrome. Chapter 2 investigates whether different versions of bat call identification software are 

comparable to each other and how accurate they are.  For the two software programs tested, agreement 

among versions was variable and species-dependent. Furthermore, newer versions were more 

conservative in assigning identifications, though not, on average, more accurate. 
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CHAPTER 1: BAT POPULATION MONITORING IN NATIONAL PARKS OF THE 

GREAT LAKES REGION  

Abstract 

Although widespread, common, and relatively diverse, North American bats are cryptic and 

difficult to study compared to other taxa. Baseline data regarding distributions, abundance, and use of the 

landscape are incomplete for many species. Over the past decade, a combination of threats including 

wind energy development, changing climatic conditions, and the fungal disease white-nose syndrome 

have prompted an increase in bat research and conservation efforts, including on public lands. At national 

parks in the Great Lakes region of the U.S., surveys targeting bats were relatively limited until a 

coordinated, comprehensive acoustic monitoring program was implemented in 2015. Acoustic monitoring 

is a widely-used method that entails recording echolocation calls of bats in their natural environment and 

subsequently identifying the calls to species, typically using automated software.  

This chapter describes the bat acoustic monitoring effort I led at eight National Park Service sites 

in the Great Lakes region during 2016 and 2017, with the goal of assessing temporal changes in species-

specific activity patterns.  Six bat species were documented at all eight parks, while an additional three 

species were documented at one to a few parks each. I found that activity levels for eight of the nine 

study species remained stable across the two years. For the ninth species, the little brown bat (Myotis 

lucifigus), I observed a significant decrease in activity. This provides evidence that the little brown bat, 

which has already demonstrated severe population declines in the northeastern U.S. related to white-

nose syndrome, is also declining in the Great Lakes region.   

 

Introduction  

Over the last few decades, North American bat populations have been increasingly threatened by 

a number of environmental pressures, prompting greater research, management, and conservation 

efforts.  The most substantive threats facing bat communities include the disease white-nose syndrome, 

wind energy-related mortality, and changes in land use and climatic conditions.   

White-nose syndrome is a disease caused by the fungal pathogen Pseudogymnoascus 

destructans. Both behavioral and physiological effects have been observed in infected bats, including 
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fungal growth on the muzzle, ears, and wing membranes; increased frequency of arousals during 

hibernation; depletion of fat reserves and emaciation; and high rates of mortality (Blehert et al. 2009, 

Warnecke et al. 2012). In the 13 years since the pathogen was first documented in North America, it has 

spread to 33 U.S. states and 7 Canadian provinces (United States Geological Survey 2019), with an 

estimated total mortality of at least 6 million bats (United States Fish and Wildlife Service 2018a). 

Previous work has documented steep declines in local bat populations after the arrival of white-nose 

syndrome to an area. A variety of methods including winter hibernacula counts (Turner et al. 2011, Frick 

et al. 2015, Powers et al. 2015), summer capture surveys (Pettit and O’Keefe 2017), and summer 

acoustic surveys (Brooks 2011, Dzal et al. 2011) have all corroborated the declines and the disease 

continues to threaten new areas.  

Wind energy development has grown substantially in the U.S. over the last two decades, 

reaching a current installed capacity of over 95,000 megawatts (American Wind Energy Association 

2019). Estimates based on data prior to 2012 suggest 1-11 bats are killed per megawatt per (Arnett et al. 

2015), or a total of 651,000-888,000 bat fatalities per year (Smallwood 2013), however current impacts 

are likely higher due to the continued increase in installed capacity.  Although not all species are equally 

impacted (Kunz et al. 2007, Arnett et al. 2015), projections for one of the most affected species (hoary 

bat, Lasiurus cinereus) suggest that mortality due to wind energy could cause significant population 

declines and increased risk of extinction over the next 50-100 years (Frick et al. 2017).  

Strong relationships have been observed between changing climatic conditions and some 

aspects of bat behavior (Frick et al. 2012) and physiology (Adams 2010). Modeling suggests climate 

change will lead to shifts in the geographic range of suitable conditions for both hibernacula (Humphries 

et al. 2002) and maternity colonies (Loeb and Winters 2013). Highly urbanized areas may have reduced 

species richness compared to nearby natural areas, though not necessarily a reduction in overall bat 

activity (Avila-Flores and Fenton 2005, Krauel and LeBuhn 2016). Specific factors associated with 

anthropogenic development, including impervious surfaces (Dixon 2012), roads (Kitzes and Merenlender 

2014, Pourshoushtari et al. 2018) and artificial lighting (Cravens and Boyles 2019) have been shown to 

negatively impact bat activity, though varying responses are observed depending on species.  
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Given these many threats, bat researchers have expanded efforts to obtain baseline data and 

conduct population monitoring, in order to better understand bat communities and assess changes over 

time and space.  Passive acoustic detection, in which ultrasonic recording devices are systematically 

deployed throughout a landscape to record the echolocation calls of nearby bats, is a commonly used 

method to monitor bats and gain information on species richness (Skalak et al. 2012), occupancy and 

detection probability (Gorresen et al. 2008), and relative activity levels (Ford et al. 2011).  This method is 

more efficient and less invasive than capturing and handling bats, considerations that may be particularly 

important when studying bat populations that are already rare or in decline. Following data collection, 

echolocation call sequences can be identified to species using advanced acoustic software, such as 

SonoBat (J. Szewczak, www.sonobat.com) or Kaleidoscope Pro (Wildlife Acoustics, Inc., 

www.wildlifeacoustics.com). Despite the fact that call variation within species, overlap among species, 

recording quality, and other factors place limitations on the accuracy of identification (Barclay 1999, Frick 

2013, Russo et al. 2018), this is still a widely accepted and useful method.  

Over the past decade, due to the increase in conservation concerns, many U.S. federal agencies 

have begun implementing or expanding bat research and monitoring programs so that up-to-date 

scientific data is available to inform their management decisions (Loeb et al. 2015, Rodhouse et al. 2016). 

The National Park Service (NPS) has been very active in this area, funding over 150 bat-focused 

research, conservation, and education projects at 78 parks since 2013 (National Park Service 2016). In 

the Great Lakes region, the NPS conducted several bat surveys prior to 2013, but there was no 

coordinated, consistent, or comprehensive region-wide bat survey effort. These older surveys, though 

limited in scope, provided important occurrence data and documented three to six species per park 

through a combination of acoustic and capture methods (Kruger and Peterson 2008, Miller 2010, 

Goodwin 2012, Route and Schaberl 2013). 

In 2015, a long-term bat monitoring project was established by the NPS Great Lakes Inventory 

and Monitoring Network (GLKN) and national parks around the Great Lakes region, with a particular focus 

on documenting the status of bat populations before and after the arrival of white-nose syndrome (Gruver 

and Rabie 2015). When the project was initiated, the Great Lakes region was at the leading edge of the 

white-nose syndrome spread, with occurrences of the disease within 50 miles of most parks (United 



4 

 

States Geological Survey 2019), making the fungal pathogen a very real and imminent threat. The 

monitoring project entailed passive acoustic surveys at multiple sampling locations in each participating 

park, resampled yearly. This allowed parks to document baseline data on their bat populations and 

assess their status and trends over time as white-nose syndrome continued to move west, potentially 

causing severe population declines.  Passive acoustic surveys were conducted at five parks in 2015, nine 

parks in 2016, and ten parks in 2017 and 2018. The current analysis assesses bat activity during the 

2016-2017 summer seasons at eight of the ten parks. Specifically, I address which species are present 

and where, whether bat activity levels are changing, and whether similar trends are observed for all 

species. My hypothesis is that declines in bat activity will be observed for the species that are most 

susceptible to white-nose syndrome, while other species activity levels will remain stable.   

 

Methods 

Acoustic surveys were conducted according to the protocols developed by GLKN in coordination 

with an outside consultant (Gruver and Rabie 2015, Gruver et al. 2016). Although the methods were 

revised after the initial season of monitoring, the majority of the sampling protocol was consistent across 

all years.  

Study Area 

Eight units managed by the NPS were included in this survey: Apostle Islands National 

Lakeshore (APIS), Grand Portage National Monument (GRPO), Indiana Dunes National Park (INDU), Isle 

Royale National Park (ISRO), Mississippi National River and Recreation Area (MISS), Saint Croix 

National Scenic Riverway (SACN), Sleeping Bear Dunes National Lakeshore (SLBE), and Voyageurs 

National Park (VOYA) (Figure 1). They are located in Minnesota, Wisconsin, Indiana, and Michigan; 

together, they cover a total land area of approximately one million acres (Great Lakes Inventory and 

Monitoring Network 2008). The parks encompass diverse habitat types including floodplain forest along 

major rivers, mixed coniferous/deciduous northern forest, dry pine forest, oak savanna, wetlands, lakes, 

ponds, and sand dunes (National Park Service 2018).  
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Figure 1. Location of eight national park units included in the study, within the upper Great Lakes region 

of the United States. 
 

Nine species of bats are found in the Upper Midwest/Great Lakes region (Kurta 2017). All are 

insectivores belonging to the Family Vespertilionidae, the largest and most common group of bats in 

North America.  Great Lakes bat species can be divided into two groups. The tree-roosting, migratory 

bats include the eastern red bat (Lasiurus borealis, LABO), hoary bat (Lasiurus cinereus, LACI), silver-

haired bat (Lasionycteris noctivagans, LANO), and evening bat (Nycticeius humeralis, NYHU).  The 

cavity-roosting, hibernating bats include the big brown bat (Eptesicus fuscus, EPFU), little brown bat 

(Myotis lucifugus, MYLU), northern long-eared bat (Myotis septentrionalis, MYSE), Indiana bat (Myotis 

sodalis, MYSO), and tri-colored bat (Perimyotis subflavus, PESU). All five hibernating species are 

confirmed to be susceptible to white-nose syndrome; additionally, red and silver-haired bats have been 

documented with P. destructans, though not showing signs of the disease itself (United States Fish and 
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Wildlife Service 2018a). The U.S. Fish and Wildlife Service (USFWS) lists the Indiana bat as federally 

endangered and the northern long-eared bat as federally threatened under the Endangered Species Act 

(United States Fish and Wildlife Service 1967, 2016). Furthermore, all nine species are listed by one or 

more states as endangered, threatened, or of special concern (Michigan Natural Features Inventory 

2009, Minnesota Department of Natural Ressources 2013, Wisconsin Department of Natural Resources 

2015, Indiana Division of Fish & Wildlife 2018).  

Field Methods 

Sampling locations were selected using generalized random-tessellation stratified sampling 

design, which is both randomized and spatially balanced (Stevens and Olsen 2004, Rodhouse et al. 

2011, Loeb et al. 2015). A 1 km grid was overlaid on each park, grid cells were randomly numbered, and 

cells to be sampled were then selected by starting with Cell 001 and working through the list in 

consecutive order. Some cells were eliminated based on poor access, safety concerns, or lack of suitable 

habitat (e.g. cell fell in a lake). Within each sampled 1 km
2
 cell, the specific sampling location was 

selected by identifying an area that was reasonably accessible and had appropriate habitat with relatively 

low clutter to optimize recording quality. This was typically done through a combination of examining 

aerial imagery and scouting potential sites on the ground.  

Acoustic surveys were conducted during the summer between approximately June 1 and August 

15 in 2016 and 2017. This is similar to the time period recommended by the USFWS for surveying for the 

two federally listed species (Indiana bat and northern long-eared bat) (United States Fish and Wildlife 

Service 2018b). Each site was sampled one time each year with a deployment period of 7-14 nights.  

At each sample site, one Wildlife Acoustics Song Meter 3 or Song Meter 4 device was deployed 

to passively record bat echolocation calls. An ultrasonic microphone was attached either directly to a port 

on the device or via a connecting cable. Acoustic recordings were stored as WAV files on SD cards 

mounted in the Song Meter device. Photographs, GPS coordinates, and basic habitat information were 

collected for each deployment. The Song Meter device automatically generates a summary text file 

providing information on the device’s status throughout the deployment (battery voltage, number of files 

recorded, etc.). These files were retained alongside the associated WAV files.   
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Data Management and Call File Classification 

Field data were reviewed for quality control and organized by park. All location and deployment 

information was stored in a Microsoft Access database developed by the NPS. An outside consultant 

hired by the NPS was provided with the database and the raw acoustic data in WAV file format. The 

consultant classified echolocation call files to species using the automated bat call identification software 

program Kaleidoscope Pro (version 4.0.0, classifier Bats of North America 3.1.0, “-1 More Sensitive” 

setting). Call files were excluded from species classification and all further analyses in the following 

situations:  Deployments were excluded if they did not have at least four valid nights of recording, with a 

valid night defined as having a minimum of six hours of recording. The duration of recording was 

determined by examining the summary file automatically generated by the Song Meter, which indicates 

the times at which the device turned on at night and off in the morning.  If the summary file was not 

available, duration was determined from the timestamps of the first and last audio files. Deployment 

length was cut off at a maximum of sixteen nights, with any call files recorded after the sixteenth night 

excluded from analysis. Deployments were also excluded if less than four nights fell within the protocol 

sampling period (June 1 – August 15). If at least four nights fell within these dates, and additional nights 

extended beyond, all nights in that deployment were included.  

Kaleidoscope Pro was programmed to only allow certain candidate species during call file 

classification. The list of candidate species varied by park (ranging from 6-9 species) and was determined 

in advance by NPS biologists based on known occurrences and ranges (Table 1).  Following automated 

classification, manual vetting was performed on 1% of call files (minimum of 10) for each park-species 

combination to verify identifications made by the software. Complete manual vetting of all call files was 

not feasible due to the large volume of data.  

Statistical Analyses 

Acoustic data do not provide a valid estimate of abundance, as there is no way to distinguish how 

many individual bats are producing the recorded echolocation call files (e.g. one bat calling ten times vs. 

ten bats calling one time each). Population trends were therefore analyzed using measures other than 

abundance, including species richness, occupancy, and activity levels. When conducting statistical 
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analyses, a site was excluded from the year-to-year comparisons when the sampling location changed or 

when a deployment failed in one year or the other.  

 

Table 1. Candidate bat species allowed for each park location during call file classification in 
Kaleidoscope Pro. An “X” indicates the species was allowed. Parks are located in Minnesota, Michigan, 
Wisconsin, and Indiana. Park and species abbreviations are provided on page vii.  

 Species 

Park EPFU LABO LACI LANO MYLU MYSE MYSO NYHU PESU 

APIS X X X X X X    

GRPO X X X X X X    

INDU X X X X X X X X X 

ISRO X X X X X X    

MISS X X X X X X   X 

SACN X X X X X X   X 

SLBE X X X X X X    

VOYA X X X X X X    

  

Species richness was defined as the total number of species observed (Gotelli and Chao 2013), 

calculated per park. Occupancy was assessed by calculating at what proportion of sample sites a given 

species was recorded, for each park. Changes in occupancy were evaluated using the z-test for two 

proportions, with Yates’ continuity correction applied when the expected number of sites with detections 

and/or sites without detections was less than five. 

Activity levels were measured using the metric of call files per deployment night. A “call file” here 

refers to an audio file that has been determined by the Kaleidoscope Pro software to contain bat 

echolocation sounds identifiable to species. A “call sequence” is defined as a series of vocalizations 

made by one individual bat as it passes the microphone (Loeb et al. 2015). Although it is possible for an 

audio file to contain multiple call sequences, for this study I am equating one call sequence to one call 

file.  A deployment night is defined as the period from the evening of one day to the morning of the 

following day, when one acoustic detector was deployed.  Bat activity levels were calculated for each 
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species/site combination in each year by taking the total number of call files (over the entire deployment) 

identified to that species divided by the number of deployment nights at that site.  

Statistical analyses were done in R (version 3.5.2) (R Core Team 2018). I used the lmer function 

in the lme4 package (Bates et al. 2015) to perform linear mixed effects modeling in order to examine the 

relationship between bat activity levels and species. Preliminary model selection evaluated five models 

using Park, Species, and their interaction as possible fixed effects (Table A1). The response variable for 

all models was Difference in Call Files per Deployment Night (calculated as the call files per deployment 

night in 2017 minus the call files per deployment night in 2016). Models were compared using Akaike’s 

Information Criterion corrected for small sample size (AICc), using the aictab function in the AICcmodavg 

package (Mazerolle 2017). I performed a Tukey pairwise comparison to contrast each pair of parks, using 

the glht function in the multcomp package (Hothorn et al. 2008). This resulted in only one significantly 

different pair (park locations INDU and GRPO, z = 3.4, p < 0.05). Based on the small difference between 

the top two models (Park + Species and Species Only, ΔAICc = 3.39) and the lack of explanatory power 

of the Park variable, the Species Only model was selected. The final version of the model utilized Species 

as the only fixed effect and Site nested within Park as the random effect, allowing for random intercepts 

but not random slopes (Table A1). After running the final model, I calculated 95% confidence intervals 

around the model coefficients for each species using the confint function in package lme4 (Bates et al. 

2015). In addition, two-sided multiple comparisons hypothesis testing was performed using the glht 

function in the multcomp package (Hothorn et al. 2008) in order to evaluate the null hypothesis that there 

was no difference in bat call files per deployment night between the two years, for each species.  

 

Results 

A total of 202 sites were sampled in 2016, while 206 sites were sampled in 2017, with a range of 

17 to 35 sites per park (Table A2).  For year-to-year comparisons, a total of 185 sites were retained that 

were surveyed in both years and met all protocol specifications. Mean number of recording nights per site 

was 9.4 (range 5 to 16) in 2016 and 8.8 (range 4 to 16) in 2017. After filtering out noise and bat 

recordings that were not identifiable to species, the total number of call files with species classifications 

was 384,032 in 2016 and 312,496 in 2017. Manual vetting was performed on 4,060 call files from 2016 
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and 3,354 call files from 2017 (Table A3). Automated call classification results showed that all expected 

species (Table 1) were documented for every park in both years. Species richness per park ranged from 

six to nine species, and did not differ from 2016 to 2017.  

Multiple comparisons testing showed little brown bat activity had a significant decline from 2016 

to 2017 (p < 0.0001). For the remaining species, p-values were not significant and confidence intervals 

overlapped zero (except eastern red bat), indicating a lack of difference in activity level between the two 

years (Figure 2, Table 2).  

 

Table 2. Model predictions for final model relating Difference in Call Files per Deployment Night to 
Species with Site/Park as nested random effects. Multiple comparisons results for each of the nine 
observed bat species and 95% confidence intervals are also shown. Significant p-value indicated in bold.  

Species Coefficient Lower CI Upper CI z-value p-value 

Big brown bat 8.29959 -1.26802 17.69105 1.746 0.5131 

Eastern red bat -12.3017 -21.8693 -2.91022 -2.588 0.0816 

Hoary bat 0.05076 -9.51685 9.442223 0.011 1.0000 

Silver-haired bat 3.32668 -6.24093 12.71814 0.7 0.9968 

Little brown bat -42.1184 -51.686 -32.7269 -8.86 <0.0001 

Northern long-eared bat -5.07552 -14.6431 4.315937 -1.068 0.9441 

Indiana bat -10.1236 -34.4017 13.90337 -0.847 0.9873 

Evening bat  -13.8098 -38.088 10.21714 -1.156 0.9124 

Tri-colored bat -4.7863 -19.9159 9.997615 -0.638 0.9984 

 

Considering only the group of parks where a given species was expected (Table 1), the overall 

percentage of sample sites at which that species was detected ranged from 84 to 100% in 2016 and from 

69 to 100% in 2017 (Tables A4, A5). The proportion of sites with detections in 2016 vs. 2017 was 

compared for each park/species combination.  Significant changes were observed for red bats at APIS 

(Chi-squared = 4.9, df = 1, p < 0.05) and northern long-eared bats at GRPO (Chi-squared = 6.5, df = 1, p 
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< 0.05). In both cases, the proportion of sites with detections was smaller in 2017. For the remaining 

park/species combinations there were no significant differences in the proportion of sites with detections 

across years.  In combination with the linear mixed effects model results above, this indicates that little 

brown bat activity was reduced overall, but the species was detected at a similar number of sample sites 

across the two study years. 

 

Discussion  

North American bat populations have been on the decline for over a decade, largely due to the 

rapid spread and high mortality rates of white-nose syndrome. In the Great Lakes region, the first 

occurrences of the disease were in eastern Ontario in the winter of 2010-2011. The following year, P. 

destructans was detected for the first time in Minnesota. By the spring of 2015, when this project was 

initiated, white-nose syndrome was confirmed or suspected in over 30 counties throughout the project 

area (Michigan, Indiana, Wisconsin, and Minnesota). Currently in 2019, that number has jumped to over 

60 counties and the disease has moved on to several western states (United States Geological Survey 

2019).  

The main goals of this project were to provide baseline data describing the bat populations of 

national parks around the Great Lakes region, and to track trends in these populations as white-nose 

syndrome began impacting the area. Prior NPS studies have been very limited in scope and basic 

knowledge about species presence/absence, distributions, and relative abundance was lacking or 

incomplete. Silver-haired, little brown, and northern long-eared bats were all previously documented at 

four of the parks (APIS, GRPO, ISRO, and VOYA) through mist-netting and acoustic survey efforts. 

Similarly, big brown, red, and hoary bats had all been previously documented at three of the parks (APIS, 

GRPO, and ISRO). However, bat data for the other parks in this project (MISS, SACN, SLBE, and INDU) 

has not been reported on.  

Results from two years of the monitoring program (2016-2017) suggest that all expected species 

(Table 1) are present and most are widely distributed throughout each park (Tables A2, A3). Manual 

vetting verified that over 60% of the call files were correctly identified for four species: red bat, hoary bat, 
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Figure 2. Difference in call files per deployment night by species and park. Difference was calculated by subtracting 2016 values from 2017 
values, such that a positive difference indicates increased activity in 2017 and negative difference indicates decreased activity in 2017. Data only 
shown for the species common to all parks. Park abbreviations are provided on page vii. 



 

13 

 

little brown bat, and tri-colored bat (Table A4). This high level of agreement increases the confidence that 

these species are in fact present. However, for the remaining species there is more uncertainty.  

Big brown and silver-haired bats can produce calls with many overlapping characteristics and are 

thus hard to distinguish (Betts 1998). During the manual vetting process, the reviewer was permitted to 

assign call files to species groups when a species-specific identification could not be made with 

confidence. Although there are lower percentages of exact agreement between the manual reviewer and 

the software (only 35% for big brown bat and 53% for silver-haired bat), this is a result of over 1,200 call 

files being assigned to the “EPFU/LANO” group (Table A4). It is not known which species produced these 

calls; however it can at least be narrowed down to these two species that have similar echolocation call 

structures.  

Similarly, species in the genus Myotis (little brown bat, northern long-eared bat, and Indiana bat) 

produce very similar calls and some recordings may not be identifiable to species due to the high degree 

of overlap (Ratcliffe and Dawson 2003, Broders et al. 2004). Manual vetting results showed high 

agreement for the little brown bat (82%), low agreement for the northern long-eared bat (23%), and no 

agreement for the Indiana bat (Table A4). My dataset had a relatively small number of calls assigned to 

the latter two species. For example, across the two years at INDU, only 48 call files were classified as 

northern long-eared bats and 157 call files were classified as Indiana bats. The infrequency of detection 

in combination with the uncertainty due to overlapping call characteristics suggests caution should be 

taken when interpreting the results for these species. To increase certainty of their presence, a manual 

review of all calls assigned to these species could be conducted in the future.    

I hypothesized that I would detect declines in bat activity for the five species that are most 

affected by white-nose syndrome: big brown bats, little brown bats, northern long-eared bats, Indiana 

bats, and tri-colored bats (United States Fish and Wildlife Service 2018a). Model results indicated a 

significant decline in little brown bat activity from 2016 to 2017, but no declines for the other species. For 

little brown bats, the raw number of call files (including only sites with valid deployments in both years at 

the same location) declined from 131,630 in 2016 to 59,621 in 2017, a drop of almost 55%. However, I 

did not observe any difference in the geographic distribution of the little brown bat, as it was detected at a 

similar number of sample sites in both years. 
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Other studies that used acoustic methods during the summer period have also documented 

significant, rapid declines following the arrival of white-nose syndrome. Surveys in New York found that 

little brown bats decreased by 78% over a one year period (Dzal et al. 2011) while in Massachusetts a 

decline of 72% was observed for all Myotis species combined (Brooks 2011). Researchers using non-

acoustic methods have obtained similar results.  A decline of 88% was observed over three years of 

emergence counts at a maternity colony in New York (Dobony and Johnson 2018). A long-term mist-

netting effort in Indiana documented a decline in captures per unit effort of almost 80% for the little brown 

bat when comparing pre- and post-white-nose syndrome periods (Pettit and O’Keefe 2017). The 

observed decline in the current analysis is therefore not surprising in the context of this species’ 

population trends in other white-nose affected areas, and is in fact less severe than comparable studies.  

In addition to the little brown bat, four other species in the Great Lakes region are also 

susceptible to white-nose syndrome (the big brown bat, northern long-eared bat, Indiana bat, and tri-

colored bat), yet I did not observe significant changes in their activity levels in this dataset. I did observe a 

reduction in the number of sample sites with detections for northern long-eared bats at one park (Grand 

Portage). With the exception of the big brown bat, surveys in other regions have often found major 

declines in these species due to white-nose syndrome, of a similar magnitude to declines in the little 

brown bat. For example, hibernacula surveys showed decreases in Indiana, tri-colored, and northern 

long-eared bats ranging from 16% - 99% (Langwig et al. 2015, Powers et al. 2015). Based on capture 

data, declines were documented in Indiana bats (59.6%) and tri-colored bats (12.5%), but not in northern 

long-eared bats (Pettit and O’Keefe 2017). Acoustic surveys also revealed declines in the Indiana bat and 

the northern long-eared bat, but no change for the tri-colored bat (Ford et al. 2011). The lack of observed 

declines in my own results for these species may be influenced by the relatively small sample size, as call 

files assigned to these species comprised less than five percent of the total call files each year. As 

additional years of data are included in the analysis, we may be better able to detect trends for these less 

common species. 

For big brown bats, past studies aimed at examining the effects of white-nose syndrome have 

either not included the species (Dzal et al. 2011, Langwig et al. 2015, Powers et al. 2015, Dobony and 

Johnson 2018), not found any significant change (Brooks 2011, Ford et al. 2011), or found a slight 
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increase (Pettit and O’Keefe 2017). A survey specifically focused on big brown bats suggests that this 

species, though susceptible, is less severely impacted by white-nose syndrome because it is able to 

maintain higher body fat content and normal torpor/arousal patterns through the hibernation period (Frank 

et al. 2014). My data did not show any significant decrease in big brown bat activity, supporting the idea 

that this species has greater resistance to the disease as compared to the three Myotis species and the 

tri-colored bat.  

My findings did not detect any significant changes in activity level for the remaining four species 

present in the study area (red, hoary, silver-haired, and evening bats). These species have not been 

documented with symptoms of white-nose syndrome and are not thought to be impacted by the disease 

because they are migratory rather than hibernators (United States Fish and Wildlife Service 2018a). I did, 

however, observe a reduction in the number of sample sites with detections for red bats at one park 

(Apostle Islands). Red bats, along with silver-haired and hoary bats, are highly susceptible to mortality 

from wind turbines (Kunz et al. 2007, Frick et al. 2017) and could experience declining populations as 

wind energy development increases.   

Although this project only assessed two years of data, it has already helped fill in information 

gaps by providing further evidence to verify species presence at the parks.  My results also show a 

serious decline in the little brown bat, which is likely related to the arrival of white-nose syndrome to the 

region, but no significant changes for any other species. Although much work has been done in eastern 

states where white-nose syndrome was originally detected, this study is among the first to document 

changing bat populations on a regional scale in the Midwest. Future work will expand on this analysis to 

include acoustic data from all years 2015-2019, allowing greater power to detect population trends, even 

for the rarer species. This information will be invaluable to park natural resource staff as they consider 

management decisions and implement bat conservation efforts.  

  



16 

 

Literature Cited 

Adams, R. A. 2010. Bat reproduction declines when conditions mimic climate change projections for 
western North America. Ecology 91:2437–2445. 

American Wind Energy Association. 2019. Wind Facts at a Glance. <https://www.awea.org/wind-
101/basics-of-wind-energy/wind-facts-at-a-glance>. Accessed 25 Feb 2019. 

Arnett, E. B., E. F. Baerwald, F. Mathews, L. Rodrigues, A. Rodriguez-Duran, J. Rydell, R. Villegas-
Patraca, and C. C. Voigt. 2015. Impacts of Wind Energy Development on Bats: A Global 
Perspective. Pages 295–323 in C. C. Voigt and T. Kingston, editors. Bats in the Anthropocene: 
Conservation of Bats in a Changing World. 

Avila-Flores, R., and M. B. Fenton. 2005. Use of spatial features by foraging insectivorous bats in a large 
urban landscape. Journal of Mammalogy 86:1193–1204. 

Barclay, R. M. R. 1999. Bats are not birds--A cautionary note on using echolocation calls to identify bats: 
A comment. Journal of Mammalogy 80:290–296. 

Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. Fitting Linear Mixed-Effects Models Using lme4. 
Journal of Statistical Software 67. 

Betts, B. J. 1998. Effects of interindividual variation in echolocation calls on identification of big brown and 
silver-haired bats. Journal of Wildlife Management 62:1003–1010. 

Blehert, D. S., A. C. Hicks, M. Behr, C. U. Meteyer, B. M. Berlowski-Zier, E. L. Buckles, J. T. H. Coleman, 
S. R. Darling, A. Gargas, R. Niver, J. C. Okoniewski, R. J. Rudd, and W. B. Stone. 2009. Bat white-
nose syndrome: An emerging fungal pathogen? Science 323:227. 

Broders, H. G., C. S. Findlay, and L. Zheng. 2004. Effects of clutter on echolocation call structure of 
Myotis septentrionalis and M. lucifugus. Journal of Mammalogy 85:273–281. 

Brooks, R. T. 2011. Declines in summer bat activity in central New England 4 years following the initial 
detection of white-nose syndrome. Biodiversity and Conservation 20:2537–2541. 

Cravens, Z. M., and J. G. Boyles. 2019. Illuminating the physiological implications of artificial light on an 
insectivorous bat community. Oecologia 189:69–77. Springer Berlin Heidelberg. 

Dixon, M. D. 2012. Relationship between land cover and insectivorous bat activity in an urban landscape. 
Urban Ecosystems 15:683–695. 

Dobony, C. A., and J. B. Johnson. 2018. Observed resiliency of little brown myotis to long-term white-
nose syndrome exposure. Journal of Fish and Wildlife Management 9:102017-JFWM-080. 

Dzal, Y., L. P. McGuire, N. Veselka, and M. B. Fenton. 2011. Going, going, gone: The impact of white-
nose syndrome on the summer activity of the little brown bat (Myotis lucifugus). Biology Letters 
7:392–394. 

Ford, W. M., E. R. Britzke, C. A. Dobony, J. L. Rodrigue, and J. B. Johnson. 2011. Patterns of acoustical 
activity of bats prior to and following white-nose syndrome occurrence. Journal of Fish and Wildlife 
Management 2:125–134. 

Frank, C. L., A. Michalski, A. A. McDonough, M. Rahimian, R. J. Rudd, and C. Herzog. 2014. The 
resistance of a North American bat species (Eptesicus fuscus) to white-nose syndrome (WNS). 
PLoS ONE 9:1–14. 

Frick, W. F. 2013. Acoustic monitoring of bats, considerations of options for long-term monitoring. 
THERYA 4:69–78. 



17 

 

Frick, W. F., E. F. Baerwald, J. F. Pollock, R. M. R. Barclay, J. A. Szymanski, T. J. Weller, A. L. Russell, 
S. C. Loeb, R. A. Medellin, and L. P. McGuire. 2017. Fatalities at wind turbines may threaten 
population viability of a migratory bat. Biological Conservation 209:172–177. 

Frick, W. F., S. J. Puechmaille, J. R. Hoyt, B. A. Nickel, K. E. Langwig, J. T. Foster, K. E. Barlow, T. 
Bartonička, D. Feller, A. J. Haarsma, C. Herzog, I. Horáček, J. van der Kooij, B. Mulkens, B. Petrov, 
R. Reynolds, L. Rodrigues, C. W. Stihler, G. G. Turner, and A. M. Kilpatrick. 2015. Disease alters 
macroecological patterns of North American bats. Global Ecology and Biogeography 24:741–749. 

Frick, W. F., P. M. Stepanian, J. F. Kelly, K. W. Howard, C. M. Kuster, T. H. Kunz, and P. B. Chilson. 
2012. Climate and weather impact timing of emergence of bats. PLoS ONE 7:e42737. 

Goodwin, K. R. 2012. Acoustic and Visual Surveys of Bats (Chiroptera) in Isle Royale National Park. 
Unpublished National Park Service report. 

Gorresen, P. M., A. C. Miles, C. M. Todd, F. J. Bonaccorso, and T. J. Weller. 2008. Assessing bat 
detectability and occupancy with multiple automated echolocation detectors. Journal of Mammalogy 
89:11–17. 

Gotelli, N. J., and A. Chao. 2013. Measuring and Estimating Species Richness, Species Diversity, and 
Biotic Similarity from Sampling Data. Encyclopedia of Biodiversity. Volume 5. Elsevier Ltd. 

Great Lakes Inventory and Monitoring Network. 2008. The Great Lakes Inventory and Monitoring 
Network. 

Gruver, J., and P. Rabie. 2015. Proposed Acoustic Monitoring Protocol for Bats in Five National Parks in 
the Great Lakes Monitoring Network. 

Gruver, J., P. Rabie, L. A. Starcevich, M. Romanski, and B. Route. 2016. Monitoring Protocol for Bats in 
the Great Lakes Inventory & Monitoring Network. 

Hothorn, T., F. Bretz, and P. Westfall. 2008. Simultaneous Inference in General Parametric Models. 
Biometrical Journal 50:346–363. 

Humphries, M. M., D. W. Thomas, and J. R. Speakman. 2002. Climate-mediated energetic constraints on 
the distribution of hibernating mammals. Nature 418:313–316. 

Indiana Division of Fish & Wildlife. 2018. Endangered and Special Concern Species List. 

Kitzes, J., and A. Merenlender. 2014. Large roads reduce bat activity across multiple species. PLoS ONE 
9:e96341. 

Krauel, J. J., and G. LeBuhn. 2016. Patterns of bat distribution and foraging activity in a highly urbanized 
temperate environment. PLoS ONE 11:e0168927. 

Kruger, L., and R. Peterson. 2008. Occurrence of Temperate Bat Species at Three National Parks in the 
Great Lakes Region. Natural Resource Technical Report NPS/GLKN/NRTR–2008/128. 

Kunz, T. H., E. B. Arnett, W. P. Erickson, A. R. Hoar, G. D. Johnson, R. P. Larkin, M. D. Strickland, R. W. 
Thresher, and M. D. Turtle. 2007. Ecological impacts of wind energy development on bats: 
Questions, research needs, and hypotheses. Frontiers in Ecology and the Environment 5:315–324. 

Kurta, A. 2017. Mammals of the Great Lakes Region. Third Edit. University of Michigan Press, Ann Arbor. 

Langwig, K. E., J. R. Hoyt, K. L. Parise, J. Kath, D. Kirk, W. F. Frick, J. T. Foster, and A. Marm Kilpatrick. 
2015. Invasion dynamics of white-nose syndrome fungus, Midwestern United States, 2012–2014. 
Emerging Infectious Diseases 21:1023–1026. 



18 

 

Loeb, S. C., T. J. Rodhouse, L. E. Ellison, C. L. Lausen, J. D. Reichard, K. M. Irvine, T. E. Ingersoll, J. T. 
H. Coleman, W. E. Thogmartin, J. R. Sauer, C. M. Francis, M. L. Bayless, T. R. Stanley, and D. H. 
Johnson. 2015. A Plan for the North American Bat Monitoring Program (NABat). Gen. Tech. Rep. 
SRS-208. Asheville, NC: U.S. Department of Agriculture Forest Service, Southern Research Station. 
Volume 208. 

Loeb, S. C., and E. A. Winters. 2013. Indiana bat summer maternity distribution: Effects of current and 
future climates. Ecology and Evolution 3:103–114. 

Mazerolle, M. J. 2017. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R 
package version 2.1-1. 

Michigan Natural Features Inventory. 2009. Michigan’s Special Animals: Endangered, Threatened, 
Special Concern, and Probably Extirpated. 

Miller, B. W. 2010. Revised Relative Abundance Estimates and Temporal Activity of Bats at Three Great 
Lakes National Parks Based on Acoustic Data. Natural Resource Report NPS/GLKN/NRR - 
2010/178. 

Minnesota Department of Natural Ressources. 2013. Minnesota’s List of Endangered, Threatened, and 
Special Concern Species. 

National Park Service. 2016. Protecting Bats in Parks. <https://www.nps.gov/subjects/bats/protecting-
bats-in-parks.htm>. Accessed 3 Mar 2019. 

National Park Service. 2018. Great Lakes Inventory & Monitoring Network: Parks & Partners. 
<https://www.nps.gov/im/glkn/parks-partners.htm>. Accessed 4 Mar 2019. 

Pettit, J. L., and J. M. O’Keefe. 2017. Impacts of white-nose syndrome observed during long-term 
monitoring of a Midwestern bat community. Journal of Fish and Wildlife Management 8:69–78. 

Pourshoushtari, R. D., B. P. Pauli, P. A. Zollner, and G. S. Haulton. 2018. Road and habitat interact to 
influence selection and avoidance behavior of bats in Indiana. Northeastern Naturalist 25:236–247. 

Powers, K. E., R. J. Reynolds, W. Orndorff, W. M. Ford, and C. S. Hobson. 2015. Post-White-nose 
syndrome trends in Virginia’s cave bats, 2008-2013. Journal of Ecology and The Natural 
Environment 7:113–123. 

R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical 
Computing, Vienna, Austria. 

Ratcliffe, J. M., and J. W. Dawson. 2003. Behavioural flexibility: The little brown bat, Myotis lucifugus, and 
the northern long-eared bat, M. septentrionalis, both glean and hawk prey. Animal Behaviour 
66:847–856. 

Rodhouse, T. J., T. E. Phillipi, W. B. Monahan, and K. T. Castle. 2016. A macroecological perspective on 
strategic bat conservation in the U.S. National Park Service. Ecosphere 7:1–17. 

Rodhouse, T. J., K. T. Vierling, and K. M. Irvine. 2011. A practical sampling design for acoustic surveys of 
bats. Journal of Wildlife Management 75:1094–1102. 

Route, B., and J. Schaberl. 2013. A Cursory Survey of Bats in Voyageurs National Park, Minnesota. 
Natural Resource Technical Report NPS/GLKN/NRTR—2013/701. 

Russo, D., L. Ancillotto, and G. Jones. 2018. Bats are still not birds in the digital era: Echolocation call 
variation and why it matters for bat species identification. Canadian Journal of Zoology 96:63–78. 

 



19 

 

Skalak, S. L., R. E. Sherwin, and R. M. Brigham. 2012. Sampling period, size and duration influence 
measures of bat species richness from acoustic surveys. Methods in Ecology and Evolution 3:490–
502. 

Smallwood, K. S. 2013. Comparing bird and bat fatality-rate estimates among North American wind-
energy projects. Wildlife Society Bulletin 37:19–33. 

Stevens, D. L., and A. R. Olsen. 2004. Spatially balanced sampling of natural resources. Journal of the 
American Statistical Association 99:262–278. 

Turner, G. G., D. M. Reeder, and J. T. H. Coleman. 2011. A five-year assessment of mortality and 
geographic spread of white-nose syndrome in North American bats, with a look to the future. Bat 
Research News 52:13–27. 

United States Fish and Wildlife Service. 1967. Endangered Species. Federal Register. Volume 32. 

United States Fish and Wildlife Service. 2016. Endangered and Threatened Wildlife and Plants; 4(d) Rule 
for the Northern Long-Eared Bat. Federal Register. Volume 81. 

United States Fish and Wildlife Service. 2018a. White-nose syndrome: The devestating disease of 
hibernating bats in North America. 

United States Fish and Wildlife Service. 2018b. Range-wide Indiana Bat Survey Guidelines. 

United States Geological Survey. 2019. White-nose Syndrome occurrence map - by year (2019). 
<https://www.whitenosesyndrome.org/resources/map>. Accessed 4 Mar 2019. 

Warnecke, L., J. M. Turner, T. K. Bollinger, J. M. Lorch, V. Misra, P. M. Cryan, G. Wibbelt, D. S. Blehert, 
and C. K. R. Willis. 2012. Inoculation of bats with European Geomyces destructans supports the 
novel pathogen hypothesis for the origin of white-nose syndrome. Proceedings of the National 
Academy of Sciences 109:6999–7003. 

Wisconsin Department of Natural Resources. 2015. Wisconsin Endangered and Threatened Species 
Laws and List. 



 

20 

 

CHAPTER 2: EVALUATION OF BAT ACOUSTIC ANALYSIS SOFTWARE 

Abstract 

Passive acoustic monitoring is a common method of studying bats which involves recording the 

echolocation calls of bats in their natural environment. Call sequences are then identified to species using 

specialized automated software. Particularly for long-term monitoring efforts, a limitation of these 

automated software programs is that newer versions use different algorithms and may therefore provide 

results that are not directly comparable to older versions.  However, there is little available information 

regarding how much or in what ways the versions differ, or which versions are most accurate.   

For this chapter, I evaluated two popular software programs used for automated bat call 

identification, Kaleidoscope Pro and SonoBat.  I tested a common set of echolocation call files across 

multiple versions of each program and compared their outputs. Results demonstrated that the level of 

agreement among versions varied widely by species, with higher rates of agreement on species with 

more distinctive call characteristics.  In addition, newer versions were more conservative, assigning fewer 

species-level identifications.  However, newer versions were not found to be substantially more accurate 

than older versions. This information will be useful to bat researchers as they plan and perform their data 

analyses.  

 

Introduction 

Bat researchers are often interested in examining population trends to better understand the 

conservation and management needs of different bat species.  However, because they are nocturnal, 

bats are difficult to observe directly, forcing researchers to use indirect monitoring methods.  One 

common technique is to deploy specialized acoustic equipment to record the ultrasonic echolocation calls 

produced by bats as they travel and forage. Such passive acoustic monitoring is an efficient method, as 

ultrasonic bat detectors can be deployed across the landscape to independently record echolocation calls 

of passing bats, without the researcher needing to be present. Passive acoustic monitoring can provide 

information on species richness (Skalak et al. 2012), occupancy and detection probability (Gorresen et al. 

2008), and relative activity levels (Ford et al. 2011).  This method is more cost-effective and less invasive 
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than capturing and handling bats, although it leaves greater uncertainty in species identification compared 

to having bats in the hand.  

Limitations on the accuracy of call identification include call variation within species, overlapping 

call characteristics among species, recording quality, environmental conditions, and other factors (Barclay 

1999, Frick 2013, Goerlitz 2018, Russo et al. 2018). Advanced acoustical analysis software programs, 

such as SonoBat (J. Szewczak, www.sonobat.com) or Kaleidoscope Pro (Wildlife Acoustics, Inc., 

www.wildlifeacoustics.com), have been developed to assist with this challenge of identifying echolocation 

call sequences to species. A typical workflow begins with running acoustic files through automated 

software that assigns each echolocation call sequence to the species that is most likely to have produced 

the sound.  To achieve this, the software measures a suite of quantitative call parameters (such as 

frequency, duration, and amplitude) and compares these to a reference set of known-species calls 

(Russo and Voigt 2016). Automated analysis is often followed by manual vetting on a portion of the 

dataset, which involves visual review of the spectrogram by a trained individual to verify that the 

identification made by the software appears to be correct. This is an important step in validating results, 

however there is no standardized method and the reviewer’s individual bias may impact results (Fritsch 

and Bruckner 2014). Because of the large size of many datasets (thousands or hundreds of thousands of 

files), and the time and expertise required, manual vetting is not always feasible, rendering a high degree 

of accuracy in the software even more important.  

Currently, there are four commercially available automated software programs to aid in identifying 

North American bat calls to the species level: BCID (R. Allen, Bat Call Identification, Inc., 

http://www.batcallid.com), EchoClass (E. Britzke, U.S. Army Engineer Research and Development 

Center, www.fws.gov/midwest/Endangered/mammals/inba/surveys/inbaAcousticSoftware.html), 

Kaleidoscope Pro, and SonoBat. While auto-classification provides a method of objectively and efficiently 

processing calls, it does have several drawbacks.  The software can be expensive to purchase (current 

prices up to approximately $1500) and data processing time can be significant (Froidevaux et al. 2014). 

Furthermore, each program is designed with different algorithms and is based on different underlying “call 

libraries”. A call library is a collection of known-species bat calls, typically obtained by recording bats that 

have been captured and released with light-tags as markers to enable following them, or by recording 
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bats at a known roost site (Clement et al. 2014). Previous studies have documented that the various 

automated software programs show only moderate agreement on species identifications when compared 

against a common test dataset (Janos 2013, Lemen et al. 2015, Rydell et al. 2017). Although a small 

number of cross-program comparisons have been done, there is a need for additional independent 

validation (Russo and Voigt 2016) and one unaddressed area is comparisons within programs.  

When working with large datasets collected over an extended timespan, the frequent release of 

software upgrades presents two quandaries for users. First, it is unclear how much difference there is 

between software versions, in terms of whether results from different versions can be legitimately 

compared to each other. Second, although users may assume each upgrade is an advancement over the 

last in terms of auto-classification accuracy, there is little available data to demonstrate whether there is 

an actual improvement. Without any information to address these issues, it is difficult for a software user 

to know whether investing in and employing the upgraded version will be advantageous or not. 

For researchers, it is not necessarily useful to change software versions within the time frame of a 

long-term study.  If successive versions are used as upgrades become available, it will be difficult to 

determine if temporal trends are due to the change in software or due to an actual change in bat 

populations. On the other hand, using only a single software version would necessitate either reanalyzing 

previously-analyzed data (requiring significant time investment) or continuing to use an older version of 

software that was available at the outset of the project (possibly sacrificing accuracy). More information is 

clearly needed to help users make appropriate choices between software versions.  

The objectives of this study are to compare multiple versions of two popular software programs to 

describe and quantify the differences between them, and to evaluate whether later versions provide 

improved classification accuracy, both overall and at a species-specific level.  

 

Methods 

Software Programs and Versions 

Two software programs were selected for this analysis: Kaleidoscope Pro and SonoBat. These 

were selected because they are both widely used by bat researchers and are being actively maintained 

and updated by the developers.  For Kaleidoscope Pro, three versions of the “Bats of North America 
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Classifier” were compared: Version 3.1.0, Version 4.3.0, and Version 5.1.0. For SonoBat, two versions of 

the program were compared: Version 3.2.2 and Version 4.3.1.  

Test Datasets 

The software programs were tested against three datasets. The first two contain data collected 

through passive acoustic monitoring at Apostle Islands National Lakeshore (Wisconsin) and Indiana 

Dunes National Park (Indiana). Sampling at both locations took place between June and August 2016 

using Wildlife Acoustics Song Meter detectors. Full-spectrum data was recorded in WAV file format. For 

details of sampling methodology, refer to Chapter 1. Due to the large number of files collected, I took a 

random subset of 20,000 files from each park to make data processing more manageable. The true 

identity of the bat species creating each call sequence is unknown for these two datasets. 

In contrast, the third dataset contains audio files recorded either at known roosts or at foraging 

sites where the species and individual bat were able to be identified unambiguously (Hooton and Adams, 

unpublished data; Adams 2013). This dataset contains 312 call files from free-flying bats of seven 

species. These recordings were made with Avisoft equipment and collected in Ontario, Saskatchewan, 

British Columbia, and New York. Because each call is identified to species, this dataset can be used to 

assess accuracy of the software programs. However, one limitation is that these files were included in the 

call library used to develop Kaleidoscope Pro and thus the program’s “familiarity” with the files may inflate 

accuracy. Since I am primarily interested in comparisons within programs rather than across programs, 

and since it can be assumed that accuracy would be inflated equally for all versions of Kaleidoscope Pro, 

this is not necessarily problematic for answering the primary research questions.  

Based on published range maps (Kurta 2017), there were up to nine Great Lakes region bat 

species that I considered to be possible within these test datasets. These include the big brown bat 

(Eptesicus fuscus, EPFU), eastern red bat (Lasiurus borealis, LABO), hoary bat (Lasiurus cinereus, 

LACI), silver-haired bat (Lasionycteris noctivagans, LANO), little brown bat (Myotis lucifugus, MYLU), 

northern long-eared bat (Myotis septentrionalis, MYSE), Indiana bat (Myotis sodalis, MYSO), evening bat 

(Nycticeius humeralis, NYHU), and tri-colored bat (Perimyotis subflavus, PESU). The list of species 

used for each test dataset is provided in Appendix B.  
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Data Analysis 

For Kaleidoscope Pro, files were converted to zero-crossing format prior to species classification. 

This step was performed to account for the fact that the software programs approved by the U.S. Fish 

and Wildlife Service for endangered/threatened species surveys can only be used with zero-crossing 

formatted files (United States Fish and Wildlife Service 2018b). For SonoBat, files were kept in the full-

spectrum format. For both Kaleidoscope Pro and SonoBat, software tests used the same or most 

equivalent settings for all versions of the program (Appendix B). Settings in Kaleidoscope Pro and 

SonoBat were not the same because the two programs do not provide all of the same options.  

Both programs automatically generate output files containing the file-by-file classification 

information that was used for this analysis. This includes both species-specific classifications and 

additional categories that are not associated with one particular species (e.g. “No ID”). Classification 

categories for each software program, plus modifications I made during analysis, are explained in 

Appendix C. All comparisons were made across different versions of the same program; I did not attempt 

to directly compare Kaleidoscope Pro versus SonoBat.   

To evaluate how sensitive or conservative each software version is, I first determined what 

proportion of files each version classified to the species level. The software programs assigned files to 

one of three groups: identified as a particular species, identified as an unknown bat species, or not 

identified. For each software program, I calculated the percent agreement between each possible pair of 

versions.  Percent agreement was calculated as the percent of files given a certain classification by the 

first (earlier) version that had the same classification in the second (later) version. I used the same type of 

calculation to further examine the subset of files that were identified to the species level by both software 

versions in a comparison pair.  

Using only the dataset of known-species calls, I evaluated the accuracy of the software programs. 

There are numerous ways to measure accuracy (Knight et al. 2017, Tharwat 2018) but I have chosen to 

use the two metrics “true positive rate” (true positive identifications/total number of files tested for that 

species) and “correct classification rate” (true positive identifications/number of files given a species-level 

identification) for ease of comparison with other published studies and with performance data provided by 

the software developers. Performance data for Kaleidoscope Pro was obtained from the website 
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(https://www.wildlifeacoustics.com/products/kaleidoscope-pro/classifiers) and by emailing customer 

support. Performance data for SonoBat was obtained from help menus within the program itself.  

 

Results  

Software Version Comparisons 

Kaleidoscope Pro results showed that the proportion of files classified to a specific bat species 

was highest in the earliest version of the program, Version 3.1.0 (Figure 3) and the two datasets (Apostle 

Islands and Indiana Dunes) had very similar patterns. The decrease in species-specific classifications in 

later versions was associated with an increase in unknown bat classifications. Meanwhile, the proportion 

of noise/not classified files remained constant across all three versions.  

SonoBat similarly had a higher proportion of species-specific classifications in the earlier version 

of the program, Version 3.2.2 (Figure 3).  For both datasets, there was a large increase in the proportion 

of noise/not classified files when using Version 4.3.1. For Indiana Dunes only, the proportion of files 

classified as unknown bats also decreased substantially for the later version.  

For Kaleidoscope Pro, overall percent agreement was highest between the latter two versions of 

the program and slightly higher for the Apostle Islands dataset than the Indiana Dunes dataset (Table 3). 

All three versions shared a very high level of agreement for files classified as hoary bat or noise. For 

SonoBat, overall percent agreement was relatively low for both datasets (Table 4).  At the species level, 

high rates of agreement were observed for big brown bat and hoary bat in the Apostle Islands dataset, 

and for big brown bat and noise/not classified files in the Indiana Dunes dataset. 

I further examined species-specific agreements and disagreements between software versions by 

looking at only the subset of files that were assigned a species-level classification by both versions. This 

resulted in different subsets of files for each pair of versions compared. For the Apostle Islands dataset 

analyzed in Kaleidoscope Pro, I found high levels of agreement  between Versions 3.1.0 and 4.3.0 (76-

100%), and between Versions 3.1.0 and 5.1.0 (79-100%) for five of the six species (Tables D1 and D3).  

The exception was the northern long-eared bat with only 30-40% agreement. When comparing Versions 

4.3.0 and 5.1.0 for the Apostle Islands data, I found even higher percent agreement for the same five 

species (97-100%), as well as much better agreement for northern long-eared bat (78%) (Table D5).  
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Figure 3. Percentage of files classified as a specific bat species (or species pair), as an unknown bat, or 
left unclassified by A) three versions of Kaleidoscope Pro and B) two versions of SonoBat. Test data 
consisted of audio files recorded in 2016 at two locations, Apostle Islands National Lakeshore (n=20,000) 
and Indiana Dunes National Park (n=20,000). 
 

A 

B 
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Table 3. Percent agreement among three versions of Kaleidoscope Pro, calculated as the percent of files 
given a certain classification by the first program that had the same classification in the second program. 
Test data consisted of audio files recorded in 2016 at Apostle Islands National Lakeshore (n=20,000) and 
Indiana Dunes National Park (n=20,000). MYSO, NYHU, and PESU were excluded because their ranges 
do not extend to Apostle Islands. No Indiana Dunes files were classified as MYSE by Version 4.3.0.  
 

Species 
Classification 

Percent Agreement 
3.1.0 and 4.3.0 

Percent Agreement 
3.1.0 and 5.1.0 

Percent Agreement 
4.3.0 and 5.1.0 

 
Apostle 
Islands 

Indiana 
Dunes 

Apostle 
Islands 

Indiana 
Dunes 

Apostle 
Islands 

Indiana 
Dunes 

EPFU 57.78 88.21 60.89 89.57 84.00 96.30 

LABO 54.75 44.02 62.23 38.88 89.94 56.57 

LACI 98.25 90.09 98.70 90.59 98.66 92.40 

LANO 68.37 37.07 64.81 37.66 84.70 84.93 

MYLU 75.76 17.39 72.24 18.63 85.42 68.92 

MYSE 18.86 0.00 13.59 14.29 29.55 n/a 

MYSO n/a 6.25 n/a 0.00 n/a 25.00 

NYHU n/a 39.16 n/a 59.61 n/a 69.30 

PESU n/a 33.69 n/a 34.22 n/a 57.02 

No ID 21.51 31.28 24.73 33.65 50.67 47.91 

Noise 96.22 98.01 96.30 98.03 100.00 100.00 

Total 74.12 68.16 73.48 68.27 82.39 79.80 

 

Kaleidoscope Pro results for the Indiana Dunes dataset were more mixed (Tables D2, D4, and 

D6). Very high agreement (96-99%) was observed between Versions 3.1.0 and 4.3.0, and between 

Versions 3.1.0 and 5.1.0 for big brown bat and hoary bat. Agreement for the four remaining non-Myotis 

species generally ranged from 50-65% for these two comparison pairs, while the three Myotis species 

mostly had even lower levels of agreement.  The Indiana Dunes dataset showed high levels of agreement 

(80-100%) for all nine species when comparing Versions 4.3.0 and 5.1.0.  

Frequently, there was consistency in the disagreements among certain pairs of species. For 

example, in both datasets, files identified as northern long-eared bat or Indiana bat by Kaleidoscope Pro 

Version 3.1.0 were very often identified as little brown bat by the later versions. Likewise, files identified 

by the earlier version as little brown bat, evening bat, or tri-colored bat were all commonly classified as 

red bat by the later versions. 
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Table 4. Percent agreement between two versions of SonoBat, calculated as the percent of files given a 
certain classification by the first program that had the same classification in the second program. Test 
data consisted of audio files recorded in 2016 at Apostle Islands National Lakeshore (n=20,000) and 
Indiana Dunes National Park (n=20,000). Although Apostle Islands is not within documented ranges for 
MYSO, NYHU, and PESU these species were included because the classifier’s species list is not 
customizable. No Indiana Dunes files were classified as MYSO by version 3.2.2.  
 

Species Classification Percent Agreement 

 Apostle Islands Indiana Dunes 

EPFU 68.64 80.26 

LABO 14.47 39.27 

LACI 87.20 27.33 

LANO 45.43 30.70 

LUSO 1.26 0.00 

MYLU 36.02 37.50 

MYSE 23.40 0.00 

MYSO 0.00 n/a 

NYHU 7.18 9.85 

PESU 21.21 44.12 

High Frequency Bat 25.40 27.20 

Low Frequency Bat 10.25 8.77 

Noise/Not Classified 33.78 93.21 

Total 28.04 52.07 

 

For SonoBat, I observed high levels of agreement (85-100%) between Versions 3.2.2 and 4.3.1 

for seven of nine species in the Apostle Islands dataset and six of nine species in the Indiana Dunes 

dataset (Tables D7 and D8). For both datasets, evening bat and the “LUSO” species pair (indicating the 

file was indistinguishable between little brown bat and Indiana bat) had much lower percent agreement. 

The majority of files classified as evening bats by Version 3.2.2 were instead identified as red bats by 

Version 4.3.1 and similarly, the majority of files classified as LUSO by Version 3.2.2 were attributed to 

little brown bats by Version 4.3.1.  
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Software Accuracy Test 

Results from the software accuracy test are presented both in terms of correct classification rates 

(Table 5) and true positive rates (Tables D9-D13). Correct classification rate includes only the subset of 

files that were given a species-level identification, while true positive rate accounts for the entire dataset. 

The test yielded higher average correct classification rates for Kaleidoscope Pro and lower average 

correct classification rates for SonoBat when compared to published performance data provided by the 

software companies.   

 

Table 5. Percent correct classification achieved by three versions of Kaleidoscope Pro and two versions 
of SonoBat.  Correct classification rate is equal to the number of true positive identifications divided by the 
number of files identified to the species level. Test data consisted of audio files recorded from bats of 
known species (n= 254 for Kaleidoscope Pro, n=312 for SonoBat). LANO was excluded for Kaleidoscope 
Pro due to incompatible file format. A classification of “LUSO” by SonoBat was considered correct for true 
MYLU files. No MYSE files were identified to the species level by SonoBat 4.3.1. For comparison, correct 
classification rates published by software companies are also shown.  

 
True 
Species 

 Kaleidoscope Pro 
3.1.0 

Kaleidoscope Pro 
4.3.0 

Kaleidoscope Pro 
5.1.0 

SonoBat 
3.2.2 

SonoBat 
 4.3.1 

EPFU Test 82 79 85 58 87 

 Publ 69 72 85 98 99 

LABO Test 85 98 92 80 78 

 Publ 60 38 62 98 100 

LACI Test 73 91 86 87 83 

 Publ 72 75 82 100 100 

LANO Test n/a n/a n/a 100 100 

 Publ 80 72 85 95 100 

MYLU Test 72 92 95 85 50 

 Publ 72 80 91 94 94 

MYSE Test 77 92 67 88 n/a 

 Publ 65 83 90 100 100 

PESU Test 89 100 88 93 95 

 Publ 77 91 96 100 100 

Average Test 80 92 85 84 83 

 Publ 71 73 84 98 99 
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Among the three Kaleidoscope Pro versions, Version 4.3.0 had the highest average correct 

classification rate, and the highest rate for four of the seven individual species (Table 5). More files were 

classified to the species level by Version 3.1.0 (88%) than by the other two versions (both about 73%), 

however the true positive rates were almost identical across all three versions, at 65-70% (Tables D9-

D11). Individual true positive rates were generally similar among the three versions, with one notable 

exception being that Version 5.1.0 had a much lower rate for the northern long-eared bat. 

For SonoBat, the two versions had similar average correct classification rates and at the species 

level, only two species were significantly different (Table 5). SonoBat Version 4.3.1 had a much higher 

correct classification rate than Version 3.2.2 for the big brown bat, but a much lower rate for the little 

brown bat. SonoBat Version 3.2.2 gave a species identification to 68% of files while Version 4.3.1 gave a 

species identification to only 37% of files, significantly reducing the overall true positive rate for the latter 

(Tables D12 and D13). Individual true positive rates for five of the seven species were also substantially 

lower in Version 4.3.1. 

 

Discussion 

Developers of bat call identification software are assumed to be modifying the underlying call 

classification algorithms for each successive version of their product, resulting in differences among 

different versions. For both SonoBat and Kaleidoscope Pro, I found that later versions were more 

conservative in their identifications, i.e. they classified a smaller number of audio files to a specific 

species while more files were labeled as unknown bats or noise. Both programs allow the user to adjust 

settings to increase or decrease the likelihood of a file being classified to the species level. In SonoBat, I 

set “Acceptable Call Quality” and “Decision Threshold” to the same values for both program versions and 

still observed the later version to be more conservative, indicating that this difference was not due simply 

to these settings. In contrast, my results for Kaleidoscope Pro are more uncertain due to the settings I 

selected. Kaleidoscope Pro offers three options:  “More Sensitive”, “Balanced”, and “More Accurate”; 

however, according to the manufacturer’s software release notes, the meanings of these options are not 

the same for all program versions (Wildlife Acoustics Inc. 2019). I used the “More Sensitive” setting for 

Version 3.1.0 and the “Balanced” setting for Versions 4.3.0 and 5.1.0 because these were thought to be 
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most similar based on the release notes. However it is possible that this choice of settings is at least 

partially responsible for the differences I saw between the earlier version and the two later versions. 

Previous work by Lemen et al. (2015) demonstrated that a smaller number of files were identified to the 

species level when Kaleidoscope settings were adjusted towards higher accuracy. Brabant et al. (2018) 

tested all three Kaleidoscope sensitivity settings and found differences in the number of species-level 

classifications and in classification accuracy. Testing all three settings would be a useful way to extend 

my study to help clarify what impact this user-defined option has on the results. 

Level of agreement on classifications varied widely depending on which software versions were 

being compared. When including only files classified to the species-level by both versions, average 

percent agreement between the two SonoBat versions was 75%, while between the three Kaleidoscope 

Pro versions it was 63-94%. Other researchers comparing different bat call identification programs have 

also used a common test dataset with recordings of unknown species (Janos 2013, Lemen et al. 2015). 

The two programs tested by Janos (BCID and EchoClass) agreed on only 50% of species classifications 

(only including files with species-level identifications by both programs). Likewise, Lemen et al. tested all 

four programs (BCID, EchoClass, Kaleidoscope Pro, SonoBat) and observed average species-level 

agreement rates of only 26-58%. Given that these two studies made comparisons among completely 

different programs, while my study compared among different versions of the same program, it is not 

surprising that I found higher average agreement.  

In testing for accuracy, my first aim was to determine how my results compared to published 

performance data from the software developers. I found higher average correct classification rates for 

Kaleidoscope Pro and lower average correct classification rates for SonoBat when compared to data 

provided by the software companies. In both cases, this may be related to the list of species included in 

the tests. For Kaleidoscope Pro Versions 3.1.0 and 4.3.0, the software tests performed by Wildlife 

Acoustics appear to include all possible North American species together (26 or 29 species, respectively) 

rather than smaller regional subsets. Because the settings I used eliminated many of these species from 

consideration, the software had fewer opportunities for misclassifications, resulting in higher average 

correct classification rates. Meanwhile, for Kaleidoscope Pro Version 5.1.0, Wildlife Acoustics tested a 

more limited set of only 12 species, and in this case their average correct classification rate agreed much 
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more closely with mine. For SonoBat, I ran my data with the “Midwest” classifier which includes two 

species that were not present in the test dataset (Indiana bat and evening bat). The addition of these 

extra species likely allowed for more misclassifications, resulting in somewhat lower correct classification 

rates than suggested by the software developers.  

Similar studies have evaluated software accuracy using known-species calls of European bats 

(Rydell et al. 2017, 2018, Brabant et al. 2018). Rydell et al. (2017, 2018) tested three programs and 

observed overall accuracies of 54-90%, while Brabant et al. (2018) tested four programs and observed 

overall accuracies of 31-77%. In both studies, accuracy was measured as true positive rate for species-

level classifications. The true positive rates I obtained were comparable, at 32-70%, and like mine, their 

results showed wide variation among species.  

My second goal with the accuracy test was to determine whether the software is actually 

improving, i.e. did more recent software versions have higher accuracy rates than older versions?  

Surprisingly, I did not find this to be true using either metric, correct classification rate or true positive rate. 

For both SonoBat and Kaleidoscope Pro, all versions demonstrated similar levels of accuracy. Yet, newer 

versions were more conservative, identifying fewer files to the species level. This may still be considered 

an advancement if poorer quality recordings (which are more likely to produce erroneous identifications) 

are appropriately left unclassified more frequently. Given that my test dataset included only seven 

species, this question warrants further research with larger, more diverse datasets to verify if my findings 

are broadly applicable.  

Overall, my findings suggest that users of automated bat call identification software should take 

care to understand how their choices of software programs, versions, and settings may impact their 

results. It has been well demonstrated that different programs and settings provide different classifications 

(Janos 2013, Lemen et al. 2015, Rydell et al. 2017, Brabant et al. 2018) and my work extends this idea to 

different versions of the same program, which are more similar but still not in perfect agreement. 

Therefore, when examining bat acoustic data from different locations or time periods, it is critical to 

analyze all datasets using exactly the same analysis software and settings, to ensure they are 

comparable. Furthermore, it is recommended that prior to processing data, software users take the time 

to locate and review performance data provided by the software companies, in order to have appropriate 
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expectations of how the selected program will perform for their species of interest. For their part, software 

developers could assist users by offering easily-accessible performance data with clear explanations of 

how testing was conducted and how metrics were calculated.     

Despite its limitations, automated bat call identification software can be an incredibly valuable tool 

when properly applied. The recommendations presented here will be relevant to many bat researchers 

using acoustic monitoring methods and are intended to help make informed decisions that will maximize 

the efficiency and accuracy of data analysis.  
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APPENDIX A: SUPPLEMENTARY TABLES FOR CHAPTER 1 

Table A1. Linear mixed effects models were used to explore the effects of species, park, and sample site 
on the difference in bat call files per deployment night in 2016 vs. 2017. The name of each candidate 
model is shown above the model components, with random effects listed within the parentheses, e.g. 
(1|Site); model selection results are also shown. A) We tested five candidate models using Park, Species, 
and their interactions as fixed effects, all with sample Site as a random effect. B) The final model included 
Species as a fixed effect and sample Site nested within Park as a random effect.  
 

(A) 
Model df AICc ΔAICc Weight Log Likelihood 

Park + Species 
Park + Species + (1|Site) 

18 13520.71 0.00 0.84 -6742.07 

Species Only 
Species + (1|Site) 

11 13524.11 3.39 0.15 -6750.94 

Park*Species 
Park*Species + (1|Site) 

55 13535.34 14.63 0.00 -6710.05 

Park Only 
Park + (1|Site) 

10 13593.94 73.23 0.00 -6786.88 

Null 
1 + (1|Site) 

3 13597.15 76.43 0.00 -6795.56 

(B) 
Model df AICc ΔAICc Weight Log Likelihood 

Species Only 
Species + (1|Park/Site) 

12 13522.96 0.00 1.00 -6749.35 

Null 
1 + (1|Park/Site) 

4 13595.71 72.75 0.00 -6793.84 

 

  



37 

 

Table A2. Survey effort by park, 2016-2017. Valid nights had a minimum of four hours of recording. Valid 
deployments had a minimum of four recording nights between June 1 and August 15. Long deployments 
(>16 nights) were truncated to exclude nights after the 16th night. If multiple valid deployments were 
completed for a single site in the same year, only the first deployment was included. Table includes all 
valid deployments, even those with no valid corresponding deployment in the other year. Park 
abbreviations are provided on page vii. 
 

Park 
Number of Sites 
Surveyed in 2016 

Number of Deployment 
Nights in 2016 

Number of Sites 
Surveyed in 2017 

Number of Deployment 
Nights in 2017 

APIS 28 273 24 247 

GRPO 17 152 18 177 

INDU 27 241 30 244 

ISRO 27 263 26 209 

MISS 28 262 27 194 

SACN 22 190 28 235 

SLBE 35 298 35 335 

VOYA 18 216 18 180 

Total 202 1895 206 1821 

Mean Nights Per Site 9.38  8.84 
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Table A3. Number of call files manually vetted, number of call files where reviewer agreed with the 
Kaleidoscope Pro species classification, and percent agreement. Manual reviewer was permitted to 
assign call files to a species group (e.g. EPFU/LANO or MYLU/MYSO) or unknown group (e.g. unknown 
high frequency). Here, “agreement” indicates manual reviewer identified the call file to the same exact 
species, not to a group. Kaleidoscope Pro classification used the Bats of North America Classifier Version 
3.1.0 with the “More Sensitive” setting. Data shown are from 2016 and 2017 combined. 
 

Species Number of Files Vetted Number of Agreements Percent Agreement 

EPFU 1543 543 35.19 

LABO 1214 795 65.49 

LACI 759 559 73.65 

LANO 1157 620 53.59 

MYLU 2266 1866 82.35 

MYSE 251 59 23.51 

MYSO 20 0 0.00 

NYHU 81 32 39.51 

PESU 123 74 60.16 

Total 7414 4548 61.34 
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Table A4. A) Number of sample sites with detections of each species in 2016, by park. B) Number of 
sample sites with detections of each species in 2017, by park. Tables include only valid deployments that 
had a corresponding valid deployment in the other year. Park and species abbreviations are provided on 
page vii. 
 

(A) 
Park 

Total 
Sites 

EPFU LABO LACI LANO MYLU MYSE MYSO NYHU PESU 

APIS 24 20 23 22 23 24 23 -- -- -- 

GRPO 17 16 16 16 17 17 17 -- -- -- 

INDU 26 26 26 26 26 26 13 23 26 26 

ISRO 24 21 22 21 22 23 24 -- -- -- 

MISS 24 24 24 23 24 24 22 -- -- 23 

SACN 18 18 17 18 18 18 18 -- -- 16 

SLBE 34 33 33 33 33 33 20 -- -- -- 

VOYA 18 17 18 18 18 18 18 -- -- -- 

All Parks* 185 175 179 177 181 183 155 23 26 65 

 

(B)  
Park 

Total 
Sites 

EPFU LABO LACI LANO MYLU MYSE MYSO NYHU PESU 

APIS 24 15 16 20 18 19 19 -- -- -- 

GRPO 17 15 11 17 17 17 10 -- -- -- 

INDU 26 26 26 26 26 26 12 18 26 26 

ISRO 24 16 20 21 24 21 21 -- -- -- 

MISS 24 24 24 24 24 24 21 -- -- 24 

SACN 18 18 18 18 18 18 15 -- -- 14 

SLBE 34 34 34 34 34 34 24 -- -- -- 

VOYA 18 13 14 17 17 17 13 -- -- -- 

All Parks* 185 161 163 177 178 176 135 18 26 64 

*All Parks includes all parks for which that species was given as an option for the classification software, e.g. for 
MYSO & NYHU it was only INDU. 
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Table A5. A) Percent of sample sites with detections of each species in 2016, by park. B) Percent of 
sample sites with detections of each species in 2017, by park. Tables include only valid deployments that 
had a corresponding valid deployment in the other year. Park and species abbreviations are provided on 
page vii. 

(A) 
Park 

EPFU LABO LACI LANO MYLU MYSE MYSO NYHU PESU 

APIS 83.33 95.83 91.67 95.83 100.00 95.83 -- -- -- 

GRPO 94.12 94.12 94.12 100.00 100.00 100.00 -- -- -- 

INDU 100.00 100.00 100.00 100.00 100.00 50.00 88.46 100.00 100.00 

ISRO 87.50 91.67 87.50 91.67 95.83 100.00 -- -- -- 

MISS 100.00 100.00 95.83 100.00 100.00 91.67 -- -- 95.83 

SACN 100.00 94.44 100.00 100.00 100.00 100.00 -- -- 88.89 

SLBE 97.06 97.06 97.06 97.06 97.06 58.82 -- -- -- 

VOYA 94.44 100.00 100.00 100.00 100.00 100.00 -- -- -- 

All Parks* 94.59 96.76 95.68 97.84 98.92 83.78 88.46 100.00 95.59 

 

(B) 
Park 

EPFU LABO LACI LANO MYLU MYSE MYSO NYHU PESU 

APIS 62.50 66.67 83.33 75.00 79.17 79.17 -- -- -- 

GRPO 88.24 64.71 100.00 100.00 100.00 58.82 -- -- -- 

INDU 100.00 100.00 100.00 100.00 100.00 46.15 69.23 100.00 100.00 

ISRO 66.67 83.33 87.50 100.00 87.50 87.50 -- -- -- 

MISS 100.00 100.00 100.00 100.00 100.00 87.50 -- -- 100.00 

SACN 100.00 100.00 100.00 100.00 100.00 83.33 -- -- 77.78 

SLBE 100.00 100.00 100.00 100.00 100.00 70.59 -- -- -- 

VOYA 72.22 77.78 94.44 94.44 94.44 72.22 -- -- -- 

All Parks* 87.03 88.11 95.68 96.22 95.14 72.97 69.23 100.00 94.12 

*All Parks includes all parks for which that species was given as an option for the classification software, e.g. for 
MYSO & NYHU it was only INDU. 
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APPENDIX B: SETTINGS FOR SOFTWARE TESTS 

Kaleidoscope Pro 

 Files processed in zero cross (.zc) format 

 Signal Parameters 

o 8-120 kHz 

o 2-500 ms 

o Maximum inter-syllable gap = 500 ms 

o Minimum number of pulse = 2 

o Advanced signal processing used 

 Used “-1 More Sensitive (Liberal)” option for Version 3.1.0 and “0 Balanced (Neutral)” option 

for Versions 4.3.0 and 5.1.0 based on software release notes.  

 Species group individually selected for each dataset. For Apostle Islands, this included: 

EPFU, LABO, LACI, LANO, MYLU, and MYSE. For Indiana Dunes, this included the Apostle 

Islands list plus MYSO, NYHU, and PESU. For Hooton & Adams dataset, this included the 

Apostle Islands list plus PESU.  

 

SonoBat 

 Files processed in full spectrum (.wav) format 

 Acceptable Call Quality = 0.80 

 Sequence Decision Threshold = 0.90 

 Maximum Number of Calls to Consider Per File = 16 

 Autofilter applied at 5 kHz 

 Default Detector Sample Frequency = 256 kHz 

 Used the same species group (“Midwest”) for all datasets. This group includes nine species: 

EPFU, LABO, LACI, LANO, MYLU, MYSE, MYSO, NYHU, and PESU.   
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APPENDIX C: FILE CLASSIFICATION CATEGORIES 

Kaleidoscope Pro 

 Species: The file contains bat calls and the overall consensus for the sequence is a single 

species.  

 No ID: The file contains bat calls but the overall consensus for the sequence cannot be 

narrowed down to a single species, therefore it is considered an unknown bat.  

 Noise: The file does not contain bat calls that can be detected by the classifier, therefore it 

is considered to be non-bat noise.  

 

SonoBat 

 Species: The file contains bat calls and the overall consensus for the sequence is a single 

species. 

 Species combination (LUSO): The file contains bat calls and the overall consensus for the 

sequence is the closely related species pair Myotis lucifugus/Myotis sodalis. 

 High frequency: The file contains high frequency bat calls but the overall consensus for the 

sequence cannot be narrowed down to a single species, therefore it is considered an 

unknown high frequency bat. 

 Low frequency: The file contains low frequency bat calls but the overall consensus for the 

sequence cannot be narrowed down to a single species, therefore it is considered an 

unknown low frequency bat. 

 High/Low frequency: The file contains both high and low frequency bat calls and the overall 

consensus for the sequence cannot be narrowed down to a single species, therefore it is 

considered an unknown bat. 

 No frequency: The file does not contain bat calls that can be detected by the classifier or 

does not contain enough call pulses to meet the minimum requirements. Therefore it is likely 

non-bat noise or a low quality recording.  

 Not classified: The program did not attempt to classify the file, therefore it is likely non-bat 

noise.  
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 For the purposes of this analysis, files assigned to the “LUSO” combination were considered 

to have a species-level classification.  

 For Figure 3, high frequency, low frequency, and high/low frequency files were combined 

into a single unknown bat category. Additionally, no frequency and unclassified files were 

combined into a single noise/not classified category.  
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APPENDIX D: SUPPLEMENTARY TABLES FOR CHAPTER 2 

Table D1. Percent agreement between Kaleidoscope Pro Versions 3.1.0 and 4.3.0, calculated as the 
percent of files given a certain classification by the first program that had the same classification in the 
second program. Audio files were recorded in 2016 at Apostle Islands National Lakeshore. Table includes 
only files that were assigned a species-level classification by both versions of the software (n=14,742).  
 

  Classification by Version 4.3.0 

  EPFU LABO LACI LANO MYLU MYSE 

C
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s
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y
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e
rs
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n

 3
.1

.0
 EPFU 76.02 1.75 10.53 11.11 0.58 0.00 

LABO 0.00 77.26 0.08 0.19 22.44 0.04 

LACI 0.00 0.00 100.00 0.00 0.00 0.00 

LANO 5.50 0.12 7.46 86.92 0.00 0.00 

MYLU 0.00 2.54 0.12 0.02 96.89 0.42 

MYSE 0.00 0.00 0.00 0.00 59.74 40.26 

 

Table D2. Percent agreement between Kaleidoscope Pro Versions 3.1.0 and 4.3.0, calculated as the 
percent of files given a certain classification by the first program that had the same classification in the 
second program. Audio files were recorded in 2016 at Indiana Dunes National Park. Table includes only 
files that were assigned a species-level classification by both versions of the software (n=11,827). 
Asterisk indicates only a single file for the species. 
  
  Classification by Version 4.3.0 

  
EPFU LABO LACI LANO MYLU MYSE MYSO NYHU PESU 

C
la

s
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n
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y
 V

e
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n

 3
.1

.0
 

EPFU 96.24 0.02 2.78 0.96 0.00 0.00 0.00 0.00 0.00 

LABO 0.05 64.86 0.36 0.05 4.29 0.00 0.03 26.57 3.79 

LACI 0.09 0.00 99.82 0.00 0.00 0.00 0.00 0.09 0.00 

LANO 19.71 0.49 26.88 52.72 0.00 0.00 0.00 0.21 0.00 

MYLU 1.29 48.07 0.00 0.86 36.05 0.00 0.86 6.01 6.87 

MYSE* 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 

MYSO 16.67 16.67 0.00 0.00 50.00 0.00 16.67 0.00 0.00 

NYHU 0.00 48.34 0.27 0.00 0.13 0.00 0.00 50.86 0.40 

PESU 0.00 27.88 0.96 0.96 1.92 0.00 0.00 7.69 60.58 



45 

 

Table D3. Percent agreement between Kaleidoscope Pro Versions 3.1.0 and 5.1.0, calculated as the 
percent of files given a certain classification by the first program that had the same classification in the 
second program. Audio files were recorded in 2016 at Apostle Islands National Lakeshore. Table includes 
only files that were assigned a species-level classification by both versions of the software (n=14,934).  
 

  Classification by Version 5.1.0 

  EPFU LABO LACI LANO MYLU MYSE 

C
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s
s
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y
 V

e
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n

 3
.1

.0
 EPFU 82.53 0.00 9.64 7.83 0.00 0.00 

LABO 0.03 79.23 0.10 0.21 20.42 0.00 

LACI 0.00 0.00 99.96 0.04 0.00 0.00 

LANO 6.84 0.00 9.33 83.83 0.00 0.00 

MYLU 0.02 5.88 0.12 0.06 93.32 0.59 

MYSE 0.00 0.44 0.00 0.00 69.91 29.65 

 

Table D4. Percent agreement between Kaleidoscope Pro Versions 3.1.0 and 5.1.0, calculated as the 
percent of files given a certain classification by the first program that had the same classification in the 
second program. Audio files were recorded in 2016 at Indiana Dunes National Park. Table includes only 
files that were assigned a species-level classification by both versions of the software (n=11,861). 
Asterisk indicates only a single file for the species.  
 
  Classification by Version 5.1.0 

  EPFU LABO LACI LANO MYLU MYSE MYSO NYHU PESU 

C
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s
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a
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y
 V

e
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n

 3
.1

.0
 

EPFU 96.21 0.00 2.89 0.90 0.00 0.00 0.00 0.00 0.00 

LABO 0.25 58.44 0.50 0.50 7.90 0.00 0.03 29.18 3.20 

LACI 0.27 0.00 99.36 0.18 0.00 0.00 0.00 0.18 0.00 

LANO 23.02 0.07 24.92 51.92 0.00 0.00 0.00 0.07 0.00 

MYLU 1.15 58.46 0.38 0.38 34.62 0.00 0.38 1.15 3.46 

MYSE* 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 

MYSO 14.29 14.29 0.00 0.00 71.43 0.00 0.00 0.00 0.00 

NYHU 0.00 16.05 0.14 0.00 0.29 0.00 0.00 83.52 0.00 

PESU 0.00 33.03 0.92 0.92 2.75 0.00 0.00 3.67 58.72 
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Table D5. Percent agreement between Kaleidoscope Pro Versions 4.3.0 and 5.1.0, calculated as the 
percent of files given a certain classification by the first program that had the same classification in the 
second program. Audio files were recorded in 2016 at Apostle Islands National Lakeshore. Table includes 
only files that were assigned a species-level classification by both versions of the software (n=13,215).  
 

  Classification by Version 5.1.0 

  EPFU LABO LACI LANO MYLU MYSE 

C
la

s
s
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y
 V

e
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n

 4
.3

.0
 EPFU 98.00 0.00 2.00 0.00 0.00 0.00 

LABO 0.10 98.11 0.00 0.10 1.70 0.00 

LACI 0.03 0.00 99.97 0.00 0.00 0.00 

LANO 1.39 0.00 1.23 97.38 0.00 0.00 

MYLU 0.00 1.14 0.00 0.00 98.67 0.19 

MYSE 0.00 2.00 0.00 0.00 20.00 78.00 

 

Table D6. Percent agreement between Kaleidoscope Pro Versions 4.3.0 and 5.1.0, calculated as the 
percent of files given a certain classification by the first program that had the same classification in the 
second program. Audio files were recorded in 2016 at Indiana Dunes National Park. Table includes only 
files that were assigned a species-level classification by both versions of the software (n=10,262). No 
Indiana Dunes files were classified as MYSE by Version 4.3.0. Asterisk indicates only a single file for the 
species. 
 

  Classification by Version 5.1.0 

 
 

EPFU LABO LACI LANO MYLU MYSE MYSO NYHU PESU 
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n
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EPFU 99.74 0.00 0.22 0.04 0.00 0.00 0.00 0.00 0.00 

LABO 0.20 80.51 0.05 0.05 1.47 0.00 0.00 17.24 0.49 

LACI 0.39 0.00 99.55 0.06 0.00 0.00 0.00 0.00 0.00 

LANO 3.48 0.00 0.00 96.52 0.00 0.00 0.00 0.00 0.00 

MYLU 0.00 8.95 0.00 0.00 91.05 0.00 0.00 0.00 0.00 

MYSE n/a n/a n/a n/a n/a n/a n/a n/a n/a 

MYSO* 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 

NYHU 0.00 9.64 0.00 0.00 0.00 0.00 0.00 90.36 0.00 

PESU 0.00 9.21 0.00 0.00 0.66 0.00 0.00 1.97 88.16 
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Table D7. Percent agreement between SonoBat Versions 3.2.2 and 4.3.1, calculated as the percent of 
files given a certain classification by the first program that had the same classification in the second 
program. Audio files were recorded in 2016 at Apostle Islands National Lakeshore. Table includes only 
files that were assigned a species-level classification by both versions of the software (n=4,267). No 
Apostle Islands files were classified as MYSO by Version 3.2.2.  
 

  Classification by Version 4.3.1 

 
 

EPFU LABO LACI LANO LUSO MYLU MYSE MYSO NYHU PESU 

C
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n
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EPFU 97.59 1.20 0.00 0.00 0.00 1.20 0.00 0.00 0.00 0.00 

LABO 0.00 85.47 0.00 0.56 2.79 0.56 0.00 6.70 3.91 0.00 

LACI 0.09 0.09 99.28 0.36 0.00 0.18 0.00 0.00 0.00 0.00 

LANO 3.09 0.77 5.93 89.69 0.00 0.26 0.00 0.00 0.26 0.00 

LUSO 0.00 0.73 0.00 0.15 9.45 85.32 0.00 2.91 1.45 0.00 

MYLU 0.00 0.36 0.18 0.00 0.72 97.67 0.00 0.00 1.08 0.00 

MYSE 0.00 0.00 0.00 0.00 0.00 7.69 84.62 7.69 0.00 0.00 

MYSO n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

NYHU 0.00 73.55 0.83 0.00 0.00 2.48 0.00 0.00 23.14 0.00 

PESU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 
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Table D8. Percent agreement between SonoBat Versions 3.2.2 and 4.3.1, calculated as the percent of 
files given a certain classification by the first program that had the same classification in the second 
program. Audio files were recorded in 2016 at Indiana Dunes National Park. Table includes only files that 
were assigned a species-level classification by both versions of the software (n=5,409). No Indiana 
Dunes files were classified as MYSE or MYSO by Version 3.2.2. 
 

  Classification by Version 4.3.1 

 
 

EPFU LABO LACI LANO LUSO MYLU MYSE MYSO NYHU PESU 

C
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e
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n

 3
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.2
 

EPFU 99.30 0.42 0.20 0.03 0.00 0.00 0.00 0.03 0.03 0.00 

LABO 1.21 93.86 0.11 0.00 0.44 0.22 0.00 2.30 1.86 0.00 

LACI 10.96 1.99 85.71 1.00 0.33 0.00 0.00 0.00 0.00 0.00 

LANO 20.67 2.51 3.07 73.74 0.00 0.00 0.00 0.00 0.00 0.00 

LUSO 33.33 0.00 0.00 0.00 0.00 66.67 0.00 0.00 0.00 0.00 

MYLU 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 

MYSE n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

MYSO n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 

NYHU 0.41 72.43 0.41 0.00 0.00 0.00 0.00 0.41 26.34 0.00 

PESU 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 
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Table D9. Classification accuracy results for Kaleidoscope Pro Version 3.1.0.  True positive rate (true 
positive identifications/total number of files tested for that species) is found in the “Percent Correct” 
column. Test data consisted of audio files recorded from bats of known species (n=254). LANO was 
excluded due to incompatible file format. 

 

True Species 

Total Percent Given 
a Species ID 

 
Percent 
Correct 

Percent 
Incorrect 

Percent Not Given 
a Species ID 

EPFU 100.00   0.00 

  82.00 18.00  

LABO 96.30   3.70 

  81.48 14.81  

LACI 91.11   8.89 

  66.67 24.44  

LANO n/a   n/a 

  n/a n/a  

MYLU 89.29   10.71 

  64.29 25.00  

MYSE 76.47   23.53 

  58.82 17.65  

PESU 56.25   43.75 

  50.00 6.25  

Overall 88.19   11.81 

  69.69 18.50  
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Table D10. Classification accuracy results for Kaleidoscope Pro Version 4.3.0.  True positive rate (true 
positive identifications/total number of files tested for that species) is found in the “Percent Correct” 
column. Test data consisted of audio files recorded from bats of known species (n=254). LANO was 
excluded due to incompatible file format. 

 

True Species 

Total Percent Given 
a Species ID 

 
Percent 
Correct 

Percent 
Incorrect 

Percent Not Given 
a Species ID 

EPFU 84.00   16.00 

  66.00 18.00  

LABO 77.78   22.22 

  75.93 1.85  

LACI 75.56   24.44 

  68.89 6.67  

LANO n/a   n/a 

  n/a n/a  

MYLU 67.86   32.14 

  62.50 5.36  

MYSE 70.59   29.41 

  64.71 5.88  

PESU 53.13   46.88 

  53.13 0.00  

Overall 72.83   27.17 

  66.14 6.69  
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Table D11. Classification accuracy results for Kaleidoscope Pro Version 5.1.0.  True positive rate (true 
positive identifications/total number of files tested for that species) is found in the “Percent Correct” 
column. Test data consisted of audio files recorded from bats of known species (n=254). LANO was 
excluded due to incompatible file format. 

 

True Species 

Total Percent Given 
a Species ID 

 
Percent 
Correct 

Percent 
Incorrect 

Percent Not Given 
a Species ID 

EPFU 92.00   8.00 

  78.00 14.00  

LABO 88.89   11.11 

  81.48 7.41  

LACI 80.00   20.00 

  68.89 11.11  

LANO n/a   n/a 

  n/a n/a  

MYLU 66.07   33.93 

  62.50 3.57  

MYSE 17.65   82.35 

  11.76 5.88  

PESU 53.13   46.88 

  46.88 6.25  

Overall 73.62   26.38 

  65.35 8.27  
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Table D12. Classification accuracy results for SonoBat Version 3.2.2.  True positive rate (true positive 
identifications/total number of files tested for that species) is found in the “Percent Correct” column. Test 
data consisted of audio files recorded from bats of known species (n=312). A classification of “LUSO” was 
considered correct for true MYLU files.  

 

True Species 

Total Percent Given 
a Species ID 

 
Percent 
Correct 

Percent 
Incorrect 

Percent Not Given 
a Species ID 

EPFU 76.00   24.00 

  44.00 32.00  

LABO 74.07   25.93 

  59.26 14.81  

LACI 68.89   31.11 

  60.00 8.89  

LANO 46.55   53.45 

  46.55 0.00  

MYLU 71.43   28.57 

  60.71 10.71  

MYSE 47.06   52.94 

  41.18 5.88  

PESU 90.63   9.38 

  84.38 6.25  

Overall 68.27   31.73 

  56.41 11.86  
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Table D13. Classification accuracy results for SonoBat Version 4.3.1.  True positive rate (true positive 
identifications/total number of files tested for that species) is found in the “Percent Correct” column. Test 
data consisted of audio files recorded from bats of known species (n=312). A classification of “LUSO” was 
considered correct for true MYLU files.  

 

True Species 

Total Percent Given 
a Species ID 

 
Percent 
Correct 

Percent 
Incorrect 

Percent Not Given 
a Species ID 

EPFU 60.00   40.00 

  52.00 8.00  

LABO 16.67   83.33 

  12.96 3.70  

LACI 80.00   20.00 

  66.67 13.33  

LANO 27.59   72.41 

  27.59 0.00  

MYLU 10.71   89.29 

  5.36 5.36  

MYSE 0.00   100.00 

  0.00 0.00  

PESU 59.38   40.63 

  56.25 3.13  

Overall 37.18   62.82 

  32.05 5.13  

 

 

 

 


