
FORMAL VERIFICATION METHODOLOGY FOR ASYNCHRONOUS SLEEP

CONVENTION LOGIC CIRCUITS BASED ON EQUIVALENCE VERIFICATION

A Thesis

Submitted to the Graduate Faculty

of the

North Dakota State University

of Agriculture and Applied Science

By

Mousam Hossain

In Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Major Department:

Electrical and Computer Engineering

July 2019

Fargo, North Dakota

North Dakota State University

Graduate School

Title
 FORMAL VERIFICATION METHODOLOGY FOR ASYNCHRONOUS

SLEEP CONVENTION LOGIC CIRCUITS BASED ON EQUIVALENCE

VERIFICATION

 By

Mousam Hossain

 The Supervisory Committee certifies that this disquisition complies with North Dakota

State University’s regulations and meets the accepted standards for the degree of

 MASTER OF SCIENCE

 SUPERVISORY COMMITTEE:

Dr. Sudarshan K. Srinivasan

 Chair

Dr. Scott C. Smith

 Co-Chair

Dr. Ying Huang

 Approved:

 07/22/2019 Dr. Benjamin Braaten

 Date Department Chair

iii

ABSTRACT

Sleep Convention Logic (SCL) is an emerging ultra-low power Quasi-Delay Insensitive

(QDI) asynchronous design paradigm with enormous potential for industrial applications. Design

validation is a critical concern before commercialization. Unlike other QDI paradigms, such as

NULL Convention Logic (NCL) and Pre-Charge Half Buffers (PCHB), there exists no formal

verification methods for SCL. In this thesis, a unified formal verification scheme for

combinational as well as sequential SCL circuits is proposed based on equivalence checking,

which verifies both safety and liveness. The method is demonstrated using several multipliers,

MACs, and ISCAS benchmarks.

iv

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Sudarshan Srinivasan, and my co-advisor, Dr. Scott

Smith, for giving me this opportunity to pursue Master of Science degree at NDSU under their

supervision. I am very grateful for their excellent academic guidance, support, motivations and

advising throughout my degree, which undoubtedly helped me find the true joy in research. I

would like to thank my committee member, Dr. Ying Huang, for her valuable suggestions and

feedback. I am also thankful to the department of Electrical and Computer Engineering at NDSU

for providing the financial assistance to support my education. Last but not the least, I would like

thank my parents and sister, for their relentless efforts and support, without which none of this

would be possible, and my dear husband for his emotional support during my difficult times.

v

DEDICATION

To my father Dr. Mossaraf Hossain, mother Dr. Basera Khatun, sister Dr. Shabnam Banu and my

loving husband Ashiq Sakib. You are my rock.

vi

TABLE OF CONTENTS

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

DEDICATION .. v

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

LIST OF ABBREVIATIONS .. xi

LIST OF SYMBOLS .. xii

1. INTRODUCTION .. 1

1.1. NCL and SCL: Benefits ... 2

1.2. Motivation .. 3

1.3. Thesis Overview ... 4

2. ASYNCHRONOUS BACKGROUND .. 5

2.1. Delay Insensitive Methods: Related Works ... 6

2.2. NCL Overview ... 8

2.2.1. NCL Combinational Unit .. 10

2.2.2. NCL Registration Unit .. 13

2.2.3. NCL Completion Unit ... 14

2.3. Sleep Convention Logic Overview .. 15

2.3.1. SCL Combinational Unit ... 17

2.3.2. SCL Registration Unit ... 19

2.3.3. SCL Completion Unit and Handshaking Scheme ... 21

3. FORMAL VERIFICATION METHOD FOR SCL CIRCUITS .. 23

3.1. Related Verification Work in QDI Paradigm ... 23

3.2. Equivalence Verification Methodology for Sleep Convention Logic Circuits 24

vii

3.2.1. Equivalence Verification Method for Combinational SCL Circuits 25

3.2.2. Equivalence Verification Method for Sequential SCL Circuits 34

3.2.3. Results ... 41

4. CONCLUSIONS... 44

4.1. Summary .. 44

4.2. Scopes for Future Work ... 45

REFERENCES ... 46

APPENDIX. PUBLICATION LIST ... 51

viii

LIST OF TABLES

Table Page

1. Quad-Rail Encoding Scheme. ... 9

2. Verification Results for Various SCL Circuits. .. 43

ix

LIST OF FIGURES

Figure Page

1. NCL Framework. .. 10

2. (a) THmn Gate (b) TH54W322 Gate. ... 11

3. (a) Static NCL Implementation (b) Semi-Static NCL Implementation [2]. 12

4. Static Implementation of TH54W322 Gate. ... 12

5. Semi-static Implementation of TH54W322 Gate. .. 13

6. Single-bit Dual-rail Register Reset to NULL [2]. ... 14

7. N-bit Completion Tree Structure [2]... 15

8. (a) General MTCMOS Architecture (b) Boolean Gate Implementation [3]. 16

9. SCL SECRII Without nsleep Architecture Framework. ... 17

10. SMTNCL Gate Level Implementation [3]. ... 18

11. SMTNCL w/o nsleep Gate Level Implementation. .. 19

12. SMTNCL w/o nSleep Implementation of TH54W322 Gate. ... 19

13. Slept DI Register w/o nSleep [3]. ... 20

14. 16 bit SCL Early Completion Component. ... 22

15. SCL 2x2 Multiplier. .. 26

16. SCL AND2 Structure. ... 26

17. SCL Half-Adder (HA) Structure. .. 27

18. 2x2 SCL Multiplier Netlist. .. 28

19. Netlist of Gates Comprising Comp Units before Abstraction. ... 29

20. Converted Equivalent Boolean Netlist.. 31

21. Equivalent Boolean 2x2 Multiplier Circuit... 31

22. 4+2×2 SCL MAC. ... 35

23. SCL Full Adder Block (FA). .. 35

x

24. 4+2x2 MAC SCL Netlist. ... 37

25. Converted Boolean 4+2x2 MAC SCL Netlist. ... 38

26. Converted Equivalent 4+2x2 MAC Boolean Circuit. ... 39

27. Proof Obligation to Check Equivalence of Sequential SCL Circuits. 40

xi

LIST OF ABBREVIATIONS

GHz ..Giga-Hertz.

PVT ..Process, Voltage, and Temperature.

ITRS ...International Technology Roadmap for

Semiconductors.

NCL..NULL Convention Logic.

DI ...Delay Insensitive.

EMI ..Electro Magnetic Interference.

MTNCL..Multi-Threshold NULL Convention Logic.

SCL ..Sleep Convention Logic.

MTCMOS ..Multi-Threshold Complementary Metal Oxide

Semiconductor.

QDI ..Quasi-Delay Insensitive.

PCHB ...Pre-Charge Half Buffers.

DIMS..Delay Insensitive Circuits using Multi-Ring

Structures.

Rfn..Request for Null.

Rfd..Request for Data.

PUN..Pull Up Network.

PDN..Pull Down Network.

DFT ..Design for Testability.

WEB ...Well-founded Equivalence Bisimulation.

HA ..Half Adder.

FA ..Full Adder.

SMT-Lib ..Satisfiability Modulo Theory Library.

MAC ..Multiply and Accumulate.

xii

LIST OF SYMBOLS

∀ ...For All.

˄ ...Logical AND Operation.

¬ ...Logical NOT Operation.

⇒ ..Implies.

∈ ...Belongs to.

1

1. INTRODUCTION

Over the past many decades, the semiconductor industry has been predominantly ruled by

synchronous design paradigm. Majority of the electronic devices that we use today are

synchronous in nature. Utilization of a global clock for synchronization and the assumption that

all signals are binary have contributed significantly to the simplification of logic design. Clocked

designs are deterministic in that all signals are sampled at a definite time interval, which makes

testing and validation easier. However, today’s semiconductor industry is facing a huge

challenge in synchronous domain coping up with the ever increasing consumer expectations of

faster, robust, and more compact devices. There are three major limiting factors: clock

management, increasing power consumption, and susceptibility to process variations. As the

operating frequency hits Giga-Hertz (GHz) level for faster designs, clock management becomes

considerably challenging, resulting in multidimensional clock related issues, such as, clock-

skew, clock jitter, clock distribution etc. Interconnect delay or wire delay, which was often

ignored in previous low frequency designs, becomes a major contributor to the design

complexity and timing analysis. Additional clock distribution networks are required to manage

the clock to attain acceptable skew, which adds to the area overhead. Moreover, similar to the

clock frequency, Moore’s Law that has been the foundation of IC chip design for the past so

many decades, is finally reaching a saturation. Further integration and miniaturization results in

excessive power consumption in devices, reducing the overall efficiency. In nanoscale designs,

leakage power consumption during idle mode turns out to be an important factor. The clock

hinders the power performance as well. The clock driver unit is a large component with

numerous gates that undergoes continuous switching to manage the clock, even in idle mode,

when the circuit is not performing useful tasks. Moreover, Process, Voltage, and Temperature

2

(PVT) variations become very critical in deep submicron level designs. Because of the

limitations new avenues of research are being conducted to tackle these issues.

Asynchronous design is a clockless approach that alleviates the major issues faced in the

present synchronous domain. Like synchronous, asynchronous logic is based on the assumption

that all signals are binary. However, it removes the synchronous assumption that time is discrete.

Asynchronous designs do not use clock and eliminates all clock related issues. Synchronization

between components are attained by a handshaking scheme. Transmission and reception of data

is based on request and acknowledgement, which yields average-case performance, while

synchronous design yields worse-case performance. In asynchronous design, transition or

switching occurs in the components involved in computation only. This significantly improves

power performance during active mode. Also, unlike synchronous design, there is no clock

driver network that is always on, which further reduces power consumption. QDI designs are

inherently robust against PVT variation that makes them an excellent design choice for extreme

environmental applications.

These advantages over the synchronous domain have made the asynchronous paradigm

quite popular in industry, as well as academic research as evidenced by the International

Technology Roadmap for Semiconductors (ITRS). ITRS predicts that asynchronous logic will

account for over 50% of the of the billion dollar semiconductor industry by 2027 [1].

1.1. NCL and SCL: Benefits

NULL Convention Logic [2] is the most widely used and popular Delay-Insensitive (DI)

asynchronous paradigm. They have found numerous industrial applications in companies such as

Theseus Logic, Ozark Integrated Circuits, Eta Compute etc. NCL circuits have much lower

power consumption, glitch power, and Electro Magnetic Interference (EMI) as compared to

3

corresponding synchronous designs, by possessing an inherently idle behavior, which

considerably reduces switching power consumption. They also require very less timing analysis;

hence, design process is much faster as compared to synchronous system design. NCL designs

are also correct by construction, and the framework is very similar to synchronous systems, due

to which automation of these designs are similar to that of synchronous systems and presents a

much flatter learning curve for designers.

Multi-Threshold NCL (MTNCL) or most commonly known as Sleep Convention Logic

(SCL), is a modification over NCL architecture. With reduced supply voltages and sub-micron

size miniaturizations, sub-threshold leakage power constitutes a considerable portion of the total

power dissipation in the circuit. MTNCL or SCL framework was developed to address this issue,

which combined NCL with Multi-Threshold CMOS (MTCMOS) techniques to further reduce

leakage power consumption during idle mode, resulting in an ultra-low power design paradigm.

Various SCL frameworks are illustrated in [3], which demonstrates that the best SCL framework

outperforms corresponding NCL designs in all aspects, and were significantly more power and

area efficient as compared to synchronous MTCMOS designs.

1.2. Motivation

The key to widespread utilization and acceptance of any new design or framework in the

semiconductor design industry lies in the availability of standard tools for synthesis and

validation. Though several design methodologies exist for constructing asynchronous circuits

from their corresponding synchronous designs [4, 5, 6, 7, 8], the area of validation and formal

verification is still being ventured into only recently. Formal verification is of utmost importance

in current ASIC design flow. As most modern ASIC designs become increasingly vast and

complex, ensuring functional correctness becomes a critical task, which cannot be done through

4

simulation alone. Simulation based functional testing can be only as effective as the test cases

designed, which often leads to rare case bugs going undetected during the design validation

phase. Also due to the increasing vastness of designs, 100% functional coverage is becoming

quite impossible to achieve, as it takes a huge amount of time and money, which in turn would

lead to delays in time-to-market schedule. Formal verification techniques are used in conjunction

with testing in the semiconductor industry to detect the rare case bugs, and ensure complete

functional correctness. In order to increase the acceptance and incorporation of asynchronous

designs in the existing synchronous dominated semi-conductor industry, developing formal

verification schemes for the various QDI asynchronous paradigms have recently become a

rapidly growing research field. Few formal verification schemes have been developed for

different QDI paradigms, but these techniques are not directly applicable to SCL circuits. Design

for Testability technique [9] with very high-test coverage exist for SCL circuits, but these are not

formal verification techniques. Therefore, this thesis work illustrates a formal verification

technique based on equivalence checking for SCL circuits that ensures both safety and liveness

of the circuits. This is the first known formal verification work applicable to SCL circuits.

1.3. Thesis Overview

The thesis is organized as follows: Chapter 2 provides an overview of the NCL and SCL

frameworks, background, and illustrates the differences between the two architectures. The

proposed formal verification method is presented in Chapter 3. The method to verify the safety,

liveness, and handshaking checks for combinational as well as sequential SCL circuits are

illustrated, followed by demonstration of the method verifying numerous benchmark circuits.

Finally, conclusions and future work are discussed in Chapter 4.

5

2. ASYNCHRONOUS BACKGROUND

Asynchronous paradigm has a vast number of design methodologies that have been

developed over the decades. Each of these design methodologies have their own advantages and

disadvantages, which help to decide their utilization based on specific application requirements.

All these models fall into two major categories based on delay assumptions – Bounded-Delay

and Delay-Insensitive (DI).

In bounded-delay model of asynchronous designs, it is assumed that the delay of the

various circuit elements and the connecting paths is known, or bounded within certain limits.

Bounded delay models require extensive timing analysis to determine the delay in the datapath,

so that it can be matched to the control path delay, to achieve synchronization between datapath

and control path in the absence of clock. There are various asynchronous circuits based on

bounded-delay model, such as, Huffman circuits [10], burst-mode circuits [11], and

micropipelines [12]. However, the bounded-delay model has some limitations, such as worst

case performance.

The Delay-Insensitive (DI) model is based on the primary assumption that the delays in

both logic elements and wires are unbounded, which means that data at the inputs can arrive at

any point in time. Hence, there is no bound on the delay of its arrival as well as on the delay of

obtaining the correct output. Well-defined handshaking schemes are utilized along with specific

completion detection mechanisms so that the receiver can notify its sender on the proper

reception and computation of the received signals. The sender waits on an acknowledge signal

from the receiver before sending the next set of data inputs. This allows a datapath element to

start working on a new set of inputs early after finishing computation on the previous input data

set, or stall the previous stage when more time is required to finish computation. This yields

6

average case performance instead of worst case performance as compared to the bounded-delay

models. It also avoids hazards. While such a signaling protocol may somewhat complicate the

circuit layout and implementations, it provides the advantage of separating circuit correctness

from specific delay assumptions. However, despite the advantages in terms of not requiring

complex timing analysis, practical circuits cannot be designed in DI paradigm due to lack of

expressible conditionals [13]. Instead, Quasi-Delay Insensitive (QDI) methods are utilized for

practical implementation, which allows a small relaxation on the unbounded delay assumption.

The QDI model assumes that the component delays are much larger as compared to the

interconnect delays within a component; i.e. wire forks within a component are isochronic in

nature. In practice, circuits that are most commonly referred as Delay-Insensitive (DI) are

actually QDI.

2.1. Delay Insensitive Methods: Related Works

Delay-Insensitive methods can be sub-divided into two main categories based on their

synthesis levels: transistor-level delay-insensitive methods and gate-level delay insensitive

methods. Martin’s method [14] provides an approach to transistor level DI synthesis from high-

level program description based on formal derivation using certain codes and theorems. But it

does not target a previously pre-defined set of logic gates, hence not applicable directly to

existing synchronous systems. Pre-Charge Half Buffer (PCHB) circuits are based on dynamic

logic, and are synthesized at transistor level. PCHB utilizes a fine-grained pipelined architecture

and provides design flexibility, which made this paradigm commercially successful.

Some popular gate-level delay-insensitive methods are developed by Seitz [15], Singh

[16], Anantharaman [17], David [18] and the Delay Insensitive Circuits using Multi-Ring

Structures (DIMS) approach by Sparso [19]. All of these methods incorporate completion

7

detection units in order to ensure correct circuit operation. Muller C-elements are used [20] as

the only state-holding element in these circuits. C-elements operate such that the output changes

to the input value only when all the inputs assume the same value, either Boolean ‘0’ or ‘1’;

otherwise the C-element output holds its previous value. This property of C-elements helps in

achieving delay-insensitivity. All the above mentioned methods yield average-case performance

compared to worst-case performance of bounded-delay models and synchronous circuits. Seitz’s,

Anatharaman’s, and DIMS approach require the generation of full min-term expressions for all

the output signals, which nullifies the scope of any optimizations. In comparison, David’s and

Singh’s methods do not need full min-term generation. David designs DI circuits using four kind

of subnets, namely n-input C-Element (CEN), n 2-input OR gates (ORN), DRN, which is

extraction of individual rails of dual-rail outputs, and the 2-m dual input C-elements network

(OUTN) producing the circuit output; n and m being the number of inputs and outputs of the DI

circuit, respectively. Singh devices twelve modules, the various combinations of which can be

used to design circuits in DI paradigm. The modules are of two main types: one ‘user’ module

and the rest ‘control’ modules. User modules are designed by the designer and control modules

are fixed functionality units (for routing data from input to output ports) with user defined data

widths of inputs and outputs.

The most popular gate-level QDI models are the NULL Convention Logic (NCL) [2] and

Multi Threshold NULL Convention Logic (MTNCL), also known as Sleep Convention Logic

(SCL) [3]. NCL has been widely accepted in today’s semiconductor industry due to the various

advantages it offers over the previous mentioned gate-level and transistor level DI models. NCL

does not require full minterm generation which leads to better optimization scopes. NCL circuits

have automated synthesis tools [8], and much work has been carried out in developing

8

optimization techniques for such circuits, based on Threshold Combinational Reduction (TCR)

[21], NULL Cycle Reduction [22], glitch power reduction [23], throughput optimization using

gate-level Pipelining [24], and optimization of NCL self-timed rings [25]. NCL has numerous

threshold gates for realizing delay-insensitivity, which are also capable of executing Boolean

functions of maximum four variables. NCL is also easily incorporable into current

semiconductor industry due to similarity in framework with synchronous designs. This thesis

deals with verification of SCL modules, which is a modification over NCL module, achieving

low power and transistor count optimizations. Hence, in order to better understand SCL

framework an overview of NCL framework is first provided in Section 2.2, followed by a

detailed description of SCL in the Section 2.3.

2.2. NCL Overview

NCL circuits are different from their synchronous counterparts in that they use multi-rail

logic, such as dual-rail logic and quad-rail logic, compared to the single rail encoding in

synchronous. Dual-rail encoding is the most popular design choice. In dual-rail logic, two rails

are used to encode each signal or bit of data. If D0 and D1 are the two rails of a dual rail signal,

D, then DATA0 is represented as D1 = ‘0’, D0 = ‘1’, which is equivalent to Boolean logic ‘0’,

DATA1 is represented as D1 = ‘1’, D0 = ‘0’, which is equivalent to Boolean logic ‘1’, and D1 = D0

= ‘0’ corresponds to a NULL state representing absence of DATA. Similarly, in quad-rail logic,

four wires are used to encode two bits of Boolean variables. Let Q0, Q1, Q2, and Q3 represent the

four rails of quad-rail signal, Q, encoding two Boolean variables, A and B. The encoding scheme

is shown in Table 1. Both dual-rail and quad-rail logic are referred to as one hot encoding

schemes, which means that only one wire can be asserted at a time, whereas all other wires will

remain de-asserted. More than one wire asserted simultaneously is an illegal state. This sort of

9

data encoding approach leads to monotonic transition from DATA to NULL for inputs and

outputs. Thus, helps to eliminate timing reference from the circuits and achieve delay-

insensitivity.

Table 1. Quad-Rail Encoding Scheme.

 Q3 Q2 Q1 Q0 Boolean Equivalent

NULL 0 0 0 0 Data absent

DATA0 0 0 0 1 A = 0, B = 0

DATA1 0 0 1 0 A = 0, B = 1

DATA2 0 1 0 0 A = 1, B = 0

DATA3 1 0 0 0 A = 1, B = 1

The operation of NCL model is discussed next. The main advantage of NCL architecture

is its similarity with synchronous pipeline architecture, where each combinational unit is

sandwiched between two registers. The basic M-stage NCL framework is shown in Fig. 1. For

feed-forward NCL circuits, at least one set of input registers and output registers are necessary

for correct flow of DATA/NULL. Multiple intermediate register stages can be added to improve

throughput [26], as depicted in Fig. 1, where R2 – RM-1 are the intermediate registers. However,

for sequential NCL circuits every feedback path requires at least 2N+1 registers in the feedback

loop for N data tokens to avoid deadlock [40]. The NCL combinational unit, registration unit and

the completion unit are described in the next sub-sections.

10

NCL Comb.

Unit

 C/L1

Completion

Detection

Unit

NCL Register NCL Register

N-BitsN-Bits

Ko Ki KiKo

Input Register

Stage, R1

Intermediate

Register, R2

Inputs

Intermediate

Registers,

R3, R4,…,

RM-1

NN
11

Completion

Detection

Unit1

KO

N 1

NCL Register

N-Bits

Ko Ki KI

Outputs

Output Register

Stage, RM

Figure 1. NCL Framework.

Adapted from [2].

2.2.1. NCL Combinational Unit

NCL combinational unit consists of 27 threshold logic gates [2] with hysteresis state

holding capability. Individual threshold gates can be used to implement functions of four or

fewer variables. Here, individual variable corresponds to each separate rail of a dual-rail signal.

A simple NCL threshold gate is written as THmn gate is shown in Fig. 2(a), where n is the

number of inputs (i1, i2... in) and the gate produces a single output (Z). m is the gate threshold,

which is the minimum number of inputs that are required to be asserted to assert the output, Z.

Similarly, the output will be de-asserted when all of the n inputs to the gate are de-asserted.

Otherwise, the gate will hold its previous state. Threshold gates can also be of weighted type,

where individual input can be assigned certain weights. Such a gate is represented symbolically

as THmnWw1w2w3…wk, where ‘W’ stands for weighted gate and w1, w2 … wk are the weights

associated with input1, input2 … inputk, respectively. A TH54W322 threshold gate is shown in

Fig. 2(b). TH54W322 gate has 4 inputs with gate threshold value of 5. The weight of input A is

3, B and C are 2, and D has a weight of 1. As the gate threshold is 5, any combination of inputs

that sums up to a weight of 5 can assert the gate. For example, both A and B getting asserted can

11

assert the gate output, Z, as they have a combined weight of 5. Therefore, the gate function can

be written as Z = AB + AC + BCD.

m

i1
i2

in

Z

5

A

B
C

Z

D

 (a) (b)

Figure 2. (a) THmn Gate (b) TH54W322 Gate.

There are two widely utilized transistor level implementations of these threshold gates –

static and semi-static [27]. All these implementations have set and reset, hold0 and hold1

functions, arranged as shown in Fig. 3. set functions determine when the gate output will become

asserted depending on when the threshold number of inputs become asserted. The reset function

determines when the gate output will be de-asserted, which is when all gate inputs are de-

asserted. In static implementation, as shown in Fig. 3(a), hold0 and hold1 functions are utilized

to attain hysteresis state-holding functionality, whereas in case of semi-static implementation, the

hysteresis is achieved by adding a weak inverter in feedback loop to the output as depicted in

Fig. 3(b). hold0 and hold1 functions enable the gate to remain asserted or de-asserted until either

the reset or set function is met, respectively. reset and hold1 are generic in structure for an n-

input threshold gate, whereas set and hold0 functions vary depending on the NCL gate

functionality. reset is derived by connecting all the complemented gate inputs in series. hold1

function is complement of reset function, i.e. all the gate inputs connected in parallel. set

functional block is simply the NMOS implementation of the Boolean function of the threshold

gate obtained after further simplification. hold0 is obtained by complementing the set function

and applying further simplifications [2].

12

 (a) (b)

Figure 3. (a) Static NCL Implementation (b) Semi-Static NCL Implementation [2].

For the TH54W322 gate the set function is AB + AC + BCD, as discussed earlier. The

reset function is A’B’C’D’, the hold1 function is A+B+C+D, and the hold0 function is the

complement of the set function. Based on the threshold gate implementation template on Fig. 3,

the static and semi-static representation of the TH54W322 gate is shown in Fig. 4 and 5,

respectively.

B

A

B

C

D
C

A

B C D

A

A

B

C

D

Z

hold0

hold1

Figure 4. Static Implementation of TH54W322 Gate.

13

B

A

B

C

DC

A

B

C

D

Z

SET

Reset

Figure 5. Semi-static Implementation of TH54W322 Gate.

2.2.2. NCL Registration Unit

In NCL framework, the registration units serve to maintain the proper flow of DATA and

NULL in the system. NCL combinational circuit consists of at least two register stages, one at

the input and the other at the output, with the combinational logic placed in-between these two

stages. Each register stage comprises a set of cascading dual-rail or quad-rail registers. Each

register is internally made of TH22 gates. The structure of a single bit reset-to-NULL dual-rail

register is shown in Fig. 6. One input of each TH22n (reset-to-zero TH22) gate comes from the

rail1 and rail0 of the input, whereas the other input is the request signal, Ki. The two rails of the

output are input to an inverted TH12 gate, which is a NOR gate. The output of the inverted TH12

gate produces the acknowledge signal, Ko. The register stages communicate between each other

through a four-phase handshaking mechanism, using Ki and Ko. When Ki is request for data (rfd)

i.e. logic ‘1’ and the dual-rail input is DATA, then the dual-rail output of the register becomes

DATA. Similarly, the output will be NULL only when the input is NULL and Ki is requesting

14

for NULL (rfn) i.e. logic ‘0’. When the output is DATA/NULL, Ko becomes 0/1, requesting for

NULL/DATA at the input of the register. The register can be reset to either DATA0 or DATA1

by replacing one of the two TH22n gates with a TH22d gate, which is reset to logic 1.

Figure 6. Single-bit Dual-rail Register Reset to NULL [2].

2.2.3. NCL Completion Unit

NCL completion unit is a network of THnn gates arranged in a tree structure. THnn gates

are an N-input C-element. The completion unit takes the N-bit Ko outputs from the next stage

registers and combines them to form a single-bit Ko output, which is fed back as the Ki input of

the registers in the previous stage, as shown in Fig. 1. As the maximum number of inputs to a

threshold gate is four, the number of levels of THnn gates for N-bit inputs is given by log4N.

Fig. 7 shows an N-bit completion unit structure.

15

Figure 7. N-bit Completion Tree Structure [2].

2.3. Sleep Convention Logic Overview

Sleep Convention Logic (SCL) is an ultra-low power, high speed QDI asynchronous

paradigm, which is a modified version of the popular NCL architecture [28]. SCL integrates the

Multi-Threshold CMOS (MTCMOS) technique for leakage power reduction with NCL; hence,

are often termed as Multi-Threshold NULL Convention Logic (MTNCL) [3].

MTCMOS technique is typically implemented using two or more threshold voltages in

the circuit. In one kind of MTCMOS application, low threshold voltage transistors (low-Vt) are

used to achieve faster switching speeds during active-mode, and high threshold voltage

transistors (high-Vt), controlled by Sleep signal, are used to gate the power supply from the

circuit during idle-mode, thus reducing sub-threshold leakage current, as shown in Fig. 8(a). But

sizing of the Sleep controlled high-Vt transistor poses a serious design challenge for larger

circuits. An alternate method is developed to tackle this issue, where MTCMOS technique is

applied to each gate, as shown in Fig. 8(b). In this case, the gate logic is implemented in CMOS

16

using Pull-up (PUN) and Pull-down (PDN) networks. The PUN and PDN are separated by a

high-Vt Sleep transistor, marked by a dotted circle in Fig. 8. In idle mode, sleep is asserted (Sleep

= ‘1’) and the Sleep transistor is turned OFF, which disconnects the PUN from the PDN. This

arrangement thus reduces leakage power in the circuit during idle mode. The P0 PMOS and N0

NMOS transistors remain ON when Sleep is asserted, thus the output node is pulled down to ‘0’.

Although MTCMOS technique reduces power consumption, they still have serious limitations in

synchronous domain; such as, area overhead, possibility of losing data during cut-off mode, and

logic partitioning. However, by incorporating MTCMOS with NCL, these drawback are

eliminated in SCL architecture.

 (a) (b)

Figure 8. (a) General MTCMOS Architecture (b) Boolean Gate Implementation [3].

A typical multi-stage SCL framework is shown in Fig. 9. Every pipeline stage in SCL

framework comprises of a DI register block (Ri), a combinational block (C/L) and a completion

detection unit (Ci). The self-timed phase alterations between DATA and NULL wave fronts and

synchronization is achieved through the mutual handshaking between these three basic blocks of

different pipeline stages, which will be explained in detail in the following sub-sections. There

17

are several architectures available for implementing handshaking in SCL circuits. The SECRII

w/o nsleep architecture [3], as shown in Fig. 9, being the fastest one has been chosen for the

circuit implementations in this thesis.

Ci

C/Li

Ci+1

Ri Ri+1

sleep
sleep

Koi Koi+1

sleep

C/Li+1

Koi+2

S
T

A
G

E
 (

i-
1

)

S
T

A
G

E
 (

i+
2

)

Figure 9. SCL SECRII Without nsleep Architecture Framework.

Adapted from [3].

2.3.1. SCL Combinational Unit

SCL circuits comprise of SCL threshold gates which are a variant of the 27 fundamental

NCL gates, where hold1 block, reset block, and the corresponding NMOS and PMOS bypass

transistors of static implementation of NCL gates (Fig. 3(a)) are removed, and an additional

Sleep signal is incorporated in each gate [3]. A modified version of this implementation is called

the Static MTNCL or SMTNCL implementation, shown in Fig. 10, where the high-Vt transistor,

separating the pull-up and pull-down networks (which was shown in Fig. 8(b)), is moved to the

pull down network. All of the PMOS transistors are turned ON only when the inputs are logic ‘0’

and Sleep = ‘1’, i.e. in idle mode. They stay in this state until Sleep = ‘0’ and the gate’s set

function evaluates to true. All of the PMOS transistors, except the one in the output inverter, are

high-Vt in nature. In active mode (Sleep = ‘0’), the circuit performs the logic function

implemented by the threshold gate. During idle mode, Sleep = ‘1’ and nSleep (complement of

18

Sleep signal) = ‘0’. Hence, the low-Vt transistor at the output pulls the output node to ground

during idle mode. Whereas, the high-Vt transistor in the Pull-down network cuts off the logic

circuit from ground resulting in reduced leakage power.

Figure 10. SMTNCL Gate Level Implementation [3].

As the above STMNCL implementation required Sleep signal and generation of its

complement signal i.e. nSleep, further improvements were suggested to this architecture, which

did not require the nSleep generation, thus reducing area and energy. SMTNCL w/o nsleep

implementation is shown in Fig. 11. Here the set function is implemented in Bit-Wise MTNCL

fashion (BWMTNCL) [29], such that, it is gated from the ground by having at least one high-Vt

NMOS transistor in each path through set function to the ground, in a way that there are a

minimum number of such high-Vt transistors. A SMTNCL TH54W22 gate w/o nSleep is shown

in Fig. 12.

19

hold0

(high-Vt)

set

Sleep

Output

Figure 11. SMTNCL w/o nsleep Gate Level Implementation.

Adapted from [3].

B

A

B

C

DC

B C D

A

hold0

C

B

Z

Sleep

set

Figure 12. SMTNCL w/o nSleep Implementation of TH54W322 Gate.

2.3.2. SCL Registration Unit

SCL registration unit is an arrangement of multiple N-bit dual-rail Delay-Insensitive

sleep registers in different stages. The transistor level diagram of a single bit dual-rail SCL

register w/o nSleep is shown in Fig. 13. It consists of two TH22 gates in SMTNCL

20

implementation [3], with the nSleep signal removed and their sleep transistors combined. The

two rails of the input I, I0 and I1, are fed into each TH22 gate and the register unit produces a

dual-rail output O. An N-bit dual-rail SCL register stage is a combination of N single bit dual-rail

SCL registers, each having the internal structure as shown in Fig. 13. In active mode, i.e. Sleep =

‘0’, either I0/ I1 being asserted results in corresponding output rail, O0/ O1 to be asserted,

respectively. The output remains latched at this value, irrespective of the input being asserted or

de-asserted, until the Sleep mode is activated. When Sleep is asserted, the NMOS transistors at

the output nodes are turned ON, resulting in output O0 and O1 being pulled down to ground. This

condition is equivalent to the register unit passing a NULL input through to the output.

Therefore, instead of waiting for the NULL wavefront to propagate through the stages, the

register stage is slept to NULL by the Sleep signal, resulting in power saving during idle mode.

Note that, unlike NCL, SCL registers do not possess request input (Ki) and acknowledge (Ko)

output.

Figure 13. Slept DI Register w/o nSleep [3].

21

2.3.3. SCL Completion Unit and Handshaking Scheme

SCL completion component is based on NCL completion unit, in combination with Early

Completion [2] and an additional Sleep signal input. Each completion unit comprises of

TH12/TH24comp and THnn SCL gates arranged in a tree structure, followed by a final inverted

NCL TH22 gate (without sleep). This tree structure is similar to the NCL completion unit

structure, but different in that 1) all the gates (except the final inverting TH22 gate) can be driven

to NULL by the pervious stage completion unit output, which is used as the Sleep signal for

these gates, 2) The inputs to the tree structure are the register unit inputs in a stage, along with

the output from subsequent stage completion component; whereas in NCL, inputs to the tree

structure were only the Ko outputs from the registers in subsequent stage, as shown in Fig. 1. For

example, as shown in Fig. 9, the dual-rail inputs to the stage ith registers, Ri, are also input to the

completion unit in stage (i), Ci. These dual-rail signals along with the output from the subsequent

stage completion unit, Koi+1, produces the output, Koi, of the completion component Ci. Koi is

used as the Sleep input of the stage (i) Registration unit (Ri), Combinational Logic (C/Li), and the

stage (i+1) completion unit, Ci+1.

When the Sleep signal is asserted in sleep/idle mode, the registers and C/L block are all

forced to a NULL value, which is equivalent to the NULL wavefront propagating through the

circuits. The Sleep signal gets de-asserted when a new DATA value appears at the inputs. A 16

bit SCL completion unit structure is shown in Fig. 14. X0 –X15 are the sixteen dual-rail inputs to

a particular ith stage register. Koi+1 and Koi-1 are the next and previous stage completion units’

outputs, respectively. Koi is the output of the ith stage completion unit.

22

X0
0

X0
1

X1
0

X1
1

X2
0

X2
1

X3
0

X3
1

X12
0

X12
1

X13
0

X13
1

X14
0

X14
1

X15
0

X15
1

2

4

4

2

Koi+1

Sleepi-1 = Koi-1

Koi

Figure 14. 16 bit SCL Early Completion Component.

23

3. FORMAL VERIFICATION METHOD FOR SCL CIRCUITS

Formal techniques are widely used in the industry to validate commercial designs before

fabrication. Formal methods are based on proofs that can cover a large number of test cases that

adds to its capability to detect corner case bugs. In industry, formal methods complement the

traditional testing methods to guarantee complete functional correctness. At present, there are no

formal verification schemes for SCL circuits. There exists few formal verification schemes for

different QDI circuits, like, NCL and Pre-Charge Half Buffers (PCHB). However, those methods

are not directly applicable to SCL circuits because of its unique structure. This chapter discusses

some of the existing formal verification methods in asynchronous paradigms, their drawbacks,

and the reasons behind not being directly applicable to QDI SCL circuits; followed by a detail

illustration of the developed unified verification method for combinational and sequential SCL

circuits.

3.1. Related Verification Work in QDI Paradigm

There have been some verification methodologies developed for asynchronous bounded

delay model circuits based on trace theory, Signal Transition Graphs [30] etc. C. J. Meyers also

developed a gate-level verification method for bounded delay models based on timed petri-nets

[31]. However, bounded delay models consider the delays in both datapath and control path to

ensure correctness of operation, hence are structurally very different from QDI paradigms. So

these verification methodologies are not directly applicable to QDI circuits. There have been

some formal verification schemes for QDI paradigms like NCL and PCHB paradigms, but none

for QDI SCL circuits which can guarantee both safety and liveness of the circuits. [32] proposes

an idea to verify NCL circuits based on the theory of WEB-Refinement [33]; where the

specification and implementation are modeled as Transition Systems (TSs). However, due to the

24

extremely non-deterministic behavior of NCL circuits, the TSs become very complex with huge

state-space. This results in a state space explosion, and infeasible verification time. [34]

illustrates a model checking based approach for QDI PCHB circuits that also models the PCHB

circuit as TSs; but this also suffers from state space explosion. Scalability is the major limiting

factor for both the aforementioned methods. QDI SCL circuits are also non-deterministic, like

NCL and PCHB; hence, we circumvent the idea of modelling the actual SCL circuit as TSs. A

deadlock verification scheme for DI circuits, based on Click Library [35], is proposed in [36].

However, this method is not directly applicable, as SCL circuits are structurally very different

from the circuits based on those primitive libraries. Also, it verifies only the liveness of the

circuits and not the safety of the circuits. There exists several Design-For- Testability (DFT)

based verification techniques for NCL [37] [38] and SCL circuits [9]. However, as discussed

earlier, only testing is not sufficient to ensure complete functional correctness. Therefore, an

alternate approach has been developed in this thesis that is scalable and tackles most of the

limiting factors encountered in other methods for other QDI paradigms. It is the first ever formal

verification method that is applicable to QDI SCL circuits.

3.2. Equivalence Verification Methodology for Sleep Convention Logic Circuits

In industry, QDI circuits are synthesized from their corresponding synchronous

specifications. The specification goes through a series of transformation, which results in the

synthesized circuit being structurally very different from the specification. For such scenario,

equivalence checking is a widely used formal technique that checks for functional and logical

equivalence between two structurally different systems.

The proposed method requires two steps. The first step ensures the safety, i.e. the

functional correctness of the circuit. The high level idea behind the safety check is to convert the

25

SCL combinational/sequential circuit into an equivalent Boolean/synchronous circuit with the

help of a conversion algorithm. The reduced circuit is then checked for equivalence with the

actual Boolean/synchronous specification.

The second step checks for the handshaking connections between components that

ensures the liveness (absence of deadlock) of the circuit. The safety and liveness check for

combinational and sequential SCL circuits is described in detail in subsections 3.2.1 and 3.2.2,

respectively. Section 3.3 tabulates our results in terms of verification times and capability to

detect faults when our method was applied to various increasing order combinational and

sequential SCL circuits.

3.2.1. Equivalence Verification Method for Combinational SCL Circuits

Fig. 15 shows an SCL 2x2 multiplier unit, implemented using SECRII w/o nsleep

architecture explained in chapter 2. The circuit performs multiplication of two 2 bit dual-rail

numbers, xi (1:0) and yi (1:0), where (xi1, xi0) and (yi1, yi0) are the two bits of xi and yi,

respectively; and outputs a 4 bit dual-rail output, p (3:0), where p3, p2, p1, and p0 are the four

bits of p. The combinational unit comprises of SCL AND gates and SCL Half Adder (HA)

components. Internally these components are implemented using SCL threshold gates. The

threshold gate level structure of SCL AND gate and SCL HA unit is shown in Figs. 16 and 17,

respectively. Registers in STAGE 1 and 3 are the input and output registers, respectively; and the

STAGE 2 register is an intermediate pipelining register used to increase throughput. All the

registers in a combinational SCL circuit are initialized to NULL (i.e. reset-to-NULL) at the

beginning of operation. Comp1, Comp2, and Comp3 are the completion units that generate the

sleep signals for their respective stages’ registers, combinational logic, and next stage completion

unit, in compliance with SECRII SCL framework. Ki is the external request input, and Ko = ko1 is

26

the external acknowledge output. SLP is an external sleep input that sleeps the STAGE 1

completion unit.

t2

t3

t1

x0

x1

y0

y1

p0

xi0

xi1

yi0

yi1

p1

p2

p3

z0

z1

z2

z3

t0

m1

c1

Comp 3

z0 z1 z2 z3

Comp 2

mo m1 c1 t3

Comp 1

xi0 xi1 yi0 yi1

ko1 ko2 ko3
Ki

SLP

slp slp slp

slp

slp

slp slp slp

C/L1

C/L2

STAGE 1 STAGE 2 STAGE 3

m
2

m
3

Figure 15. SCL 2x2 Multiplier.

slp

slp

Figure 16. SCL AND2 Structure.

27

slp

slp

slp

slp

Figure 17. SCL Half-Adder (HA) Structure.

Adapted from [2].

3.2.1.1. Safety check for combinational SCL circuits

The netlist of the SCL 2×2 multiplier is shown in Fig. 18. The line numbers are used for

ease of reference only and do not appear in the actual netlist. The first two lines denote the set of

primary inputs and primary outputs, respectively. For any dual-rail signal, a, a_0 and a_1 denote

a0 and a1, respectively. Lines 3-18 denote the gate structure of the C/L, where the first column

indicates the type of SCL gate, the second column refers to the level of the gate (i.e., the longest

path to the gate from any primary input, not counting registers), and the third, fourth, and fifth

columns correspond to the gate’s data inputs, sleep input, and output, respectively. Lines 19-30

are the 1-bit dual-rail SCL registers, where the first column corresponds to the reset type i.e.

Reg_NULL for reset-to-NULL registers, columns 2 and 3 are the data input0 and input1 rails,

respectively, column 4 is the sleep input, and columns 5 and 6 are the data output0 and output1

rails, respectively. Lines 31-33 are the three completion units, where Comp in the first column

denotes an early completion component, the second column indicates the Ki input that comes

28

from the following stage completion, the third column includes all of the completion unit’s data

inputs, the fourth column is the sleep input, and the last column is the output.

1. xi0_0,xi1_0,yi0_0,yi1_0,xi0_1,xi1_1,yi0_1,yi1_1

2. p0_0,p1_0,p2_0,p3_0,p0_1,p1_1,p2_1,p3_1

3. th22 1 x0_1,y0_1 ko1 t0_1

4. th12 1 x0_0,y0_0 ko1 t0_0

5. th22 1 x1_1,y0_1 ko1 t1_1

6. th12 1 x1_0,y0_0 ko1 t1_0

7. th22 1 x0_1,y1_1 ko1 t2_1

8. th12 1 x0_0,y1_0 ko1 t2_0

9. th22 1 x1_1,y1_1 ko1 t3_1

10. th12 1 x1_0,y1_0 ko1 t3_0

11. th24comp 2 t1_0,t2_0,t1_1,t2_1 ko1 m1_1

12. th24comp 2 t1_0,t2_1,t2_0,t1_1 ko1 m1_0

13. th22 2 t1_1,t2_1 ko1 c1_1

14. th12 2 t1_0,t2_0 ko1 c1_0

15. th24comp 3 m2_0,m3_0,m2_1,m3_1 ko2 z2_1

16. th24comp 3 m2_0,m3_1,m3_0,m2_1 ko2 z2_0

17. th22 3 m2_1,m3_1 ko2 z3_1

18. th12 3 m2_0,m3_0 ko2 z3_0

19. Reg_NULL xi0_0 xi0_1 ko1 x0_0 x0_1

20. Reg_NULL xi1_0 xi1_1 ko1 x1_0 x1_1

21. Reg_NULL yi0_0 yi0_1 ko1 y0_0 y0_1

22. Reg_NULL yi1_0 yi1_1 ko1 y1_0 y1_1

23. Reg_NULL t0_0 t0_1 ko2 z0_0 z0_1

24. Reg_NULL m1_0 m1_1 ko2 z1_0 z1_1

25. Reg_NULL c1_0 c1_1 ko2 m2_0 m2_1

26. Reg_NULL t3_0 t3_1 ko2 m3_0 m3_1

27. Reg_NULL z0_0 z0_1 ko3 p0_0 p0_1

28. Reg_NULL z1_0 z1_1 ko3 p1_0 p1_1

29. Reg_NULL z2_0 z2_1 ko3 p2_0 p2_1

30. Reg_NULL z3_0 z3_1 ko3 p3_0 p3_1

31. Comp ko2 xi0_0,xi0_1,xi1_0,xi1_1,yi0_0,yi0_1,yi1_0,yi1_1 SLP ko1

32. Comp ko3 t0_0,t0_1,m1_0,m1_1,c1_0,c1_1,t3_0,t3_1 ko1 ko2

33. Comp Ki z0_0,z0_1,z1_0,z1_1,z2_0,z2_1,z3_0,z3_1 ko2 ko3

Figure 18. 2x2 SCL Multiplier Netlist.

29

Note that this SCL netlist is generated by processing the original gate level SCL netlist to

order the components and to combine all of the completion unit gates into the single completion

component as shown in the netlist (Fig. 18). Each completion component, such as Comp2 in Fig.

15, is comprised of TH12/TH24comp gates and THnn SCL gates arranged in a tree structure,

followed by a final inverted NCL TH22 gate (without sleep), as shown in Fig. 14. The Comp

units in Fig. 18 are abstracted from the gate level completion unit structures as shown in Fig. 19.

th12 1 xi0_0,xi0_1 SLP r0_1

th12 1 xi1_0,xi1_1 SLP r1_1

th12 1 yi0_0,yi0_1 SLP r2_1

th12 1 yi1_0,yi1_1 SLP r3_1

th44 2 r0_1,r1_1,r2_1,r3_1 SLP r4_1

nclth22 3 ko2,r4_1 ko1

th12 2 t0_0,t0_1 ko1 r5_1

th12 3 m1_0,m1_1 ko1 r6_1

th12 6 c1_0,c1_1 ko1 r7_1

th12 9 t3_0,t3_1 ko1 r8_1

th44 10 r5_1,r6_1,r7_1,r8_1 ko1 r9_1

nclth22 11 ko3,r9_1 ko2

th12 2 z0_0,z0_1 ko2 r10_1

th12 3 z1_0,z1_1 ko2 r11_1

th12 6 z2_0,z2_1 ko2 r12_1

th12 9 z3_0,z3_1 ko2 r13_1

th44 10 r10_1,r11_1,r12_1,r13_1 ko2 r14_ 1

nclth22 11 Ki,r14_1 ko3

Figure 19. Netlist of Gates Comprising Comp Units before Abstraction.

nclTH22 gate in Fig. 19 corresponds to the last inverting NCL threshold gate in each

completion unit. Its representation in the netlist is similar to that of SCL gates. The first column

corresponds to the type of gate i.e. always nclTH22 (for completion components), second and

third columns represent the level and inputs of the gate, respectively; followed by the output in

30

the last column. Unlike SCL gate structure in the netlist, the nclTH22 gate has no sleep column

since it is an NCL gate. When processing the original SCL netlist to obtain the abstracted

completion component shown in the netlist Fig. 18, our developed tool ensures that the

completion structures are internally correct i.e., all data inputs to a completion unit must go to

TH12/TH24comp gates, and their outputs form a tree of SCL THnn type gates, whose output,

along with the Ki input, is input to an inverted nclTH22 gate that produces the Ko output, and that

all SCL gates have the same sleep input. The safety check method first reduces the SCL netlist,

as shown in Fig. 18, into an equivalent Boolean netlist, as shown in Fig. 20, which correlates to

the equivalent Boolean 2x2 multiplier block diagram shown in Fig. 21. Each SCL C/L gate is

replaced with its corresponding Boolean function, omitting the sleep input. Each rail of a dual-

rail signal is treated as a distinct Boolean signal, which requires the addition of an inverter for

each primary circuit input, to generate its complement to replace each input’s rail0, used in the

C/L, as shown in lines 3-6.

Similar to the SCL netlist structure, the first two lines in the converted netlist correspond

to the set of primary inputs and primary outputs, respectively. Each subsequent line corresponds

to a C/L gate, where the first column denotes the type of gate, the second column denotes the

gate’s level, the third column denotes the gate’s inputs, and the fourth column denotes the gate’s

output. Note that the C/L sleep input, SCL registers, and completion units are removed, since

these are not utilized in the Boolean circuit; and their connections will be verified as part of the

liveness check, explained in the following sub-section.

31

1. xi0_1,xi1_1,yi0_1,yi1_1

2. p0_0,p0_1,p1_0,p1_1,p2_0,p2_1,p3_0,p3_1

3. not 1 xi0_1 xi0_0

4. not 1 yi0_1 yi0_0

5. not 1 xi1_1 xi1_0

6. not 1 yi1_1 yi1_0

7. th12 2 xi0_0,yi0_0 p0_0

8. th22 1 xi0_1,yi0_1 p0_1

9. th12 2 xi1_0,yi0_0 t1_0

10. th22 1 xi1_1,yi0_1 t1_1

11. th12 2 xi0_0,yi1_0 t2_0

12. th22 1 xi0_1,yi1_1 t2_1

13. th12 2 xi1_0,yi1_0 t3_0

14 th22 1 xi1_1,yi1_1 t3_1

15. th24comp 3 t2_0,t1_1,t1_0,t2_1 p1_0

16. th24comp 3 t2_0,t1_0,t2_1,t1_1 p1_1

17. th12 3 t2_0,t1_0 c1_0

18. th22 2 t1_1,t2_1 c1_1

19. th24comp 4 c1_0,t3_1,t3_0,c1_1 p2_0

20. th24comp 4 c1_0,t3_0,c1_1,t3_1 p2_1

21. th12 4 c1_0,t3_0 p3_0

22. th22 3 t3_1,c1_1 p3_1

Figure 20. Converted Equivalent Boolean Netlist.

HA1

xi1

p0

t2

t3

c1

t1

AND4 AND3 AND2 AND1

yi1 yi1 xi1 yi0xi0 xi0 yi0

HA2

p1p2p3

Figure 21. Equivalent Boolean 2x2 Multiplier Circuit.

32

The Boolean netlist obtained from the SCL netlist is then checked against the

specification Boolean function. Z3 [39] SMT solver was used to perform this check. Our tool

auto converts this Boolean equivalent netlist into SMT Lib language which is then fed into Z3.

For the example 2×2 multiplier with two 2-bit dual-rail inputs, x(1:0) and y(1:0), the SMT solver

checks the following property: FSCL_Bool_Equv (x0_1, x1_1, y0_1, y1_1) → MUL (x(1:0), y(1:0)),

where FSCL_Bool_Equv is the function corresponding to the Boolean circuit obtained from

converting the SCL circuit to be verified and MUL corresponds to the Boolean specification of

the multiplier circuit. (x1, x0) and (y1, y0) are the (MSB, LSB) of x and y, respectively. It also

checks that the rail0 and rail1 outputs in the converted netlist are complements of each other:

i.e., Rail1(P) → ¬ Rail0(P).

3.2.1.2. Handshaking check for combinational SCL circuits

The 2×2 SCL multiplier in Fig. 15 implements the SECRII w/o nsleep architecture,

where the registers, completion units, and C/L are all slept during the NULL cycle. In this

architecture, the output of a completion unit in a particular stage is responsible to sleep the

registers, combinational logic of that stage as well as the next-stage completion unit. The proper

connection of handshaking signals between the various units in the framework ensures the

correct functioning of the SCL circuit without any deadlock. In Fig. 15, the output of the STAGE

1 completion unit, ko1, is the sleep input of the STAGE 1 registers (1-4), the STAGE 1 C/L,

C/L1, and the STAGE 2 completion unit, Comp2. An algorithm was developed that takes an SCL

netlist, like the one shown in Fig. 18, and converts it into a graph structure, where each register,

threshold gate, and completion unit are modeled as nodes. The directed edges going into and out

from a node correspond to the inputs and outputs of that particular node, respectively. The

algorithm traverses the graph to gather the needed information in order to verify that the

33

handshaking exactly follows the SCL protocol. For registers, completion units, and threshold

gates, the following information is stored: data inputs, sleep input, and data output(s). After

gathering this information, the following handshaking checks are performed:

• Register sleep and Completion data inputs:

Each stage register’s data inputs must be exactly the same as for the stage’s completion

unit; and the completion unit output must be the register’s sleep input. As an example, the inputs

of registers (1-4) in STAGE1 are also the data inputs to completion unit, Comp1. Hence, the

output of Comp1, ko1, is the sleep input for registers (1-4).

• Sleep for C/L:

Each completion unit sleeps its stage’s register and C/L, such that every SCL C/L gate’s

sleep input should be the same as its preceding register’s sleep input. Hence, for each gate, i, a

gate_fanin (i) list is created, that traces back all inputs of gatei to their originating registers. For

example, the TH12 gate on line 14 of Fig. 18, corresponds to the TH12 gate that generates the

c10 carry output of the HA1 in C/L1 in Fig 15. Tracing this gate’s inputs back to their generating

registers yields x1_0, y0_0, x0_0, y1_0, resulting in a gate_fanin list of Reg1, Reg2, Reg3,

Reg4, which all have the same sleep input as the TH12 gate. Once the gate_fanin list for all gates

are computed, all registers in each gate_fanin(i) list are inspected to ensure that they all have the

same sleep input, and that this sleep input is also the sleep input for gatei. If the gate_fanin list

contains registers from multiple stages (i.e., different sleep inputs), or if the gate’s sleep input

differs from its corresponding input register’s sleep input, then an error message is generated.

• Completion output, and slp and Ki inputs:

Compi’s Ki input must be the output of Compi+1, and its sleep input must be the output of

Compi-1. In Fig. 15, Comp2’s Ki input is the output of Comp3, and its sleep input is the output of

Comp1. The first and last stages are slightly different. Comp1’s (i.e., the completion unit whose

34

data inputs are the circuit’s external data inputs) sleep input must be the external SLP input, and

its output must be the external Ko output; the last stage completion’s (i.e., the completion unit

associated with the register that produces the external data outputs) Ki input must be the external

Ki input.

3.2.2. Equivalence Verification Method for Sequential SCL Circuits

Verification of sequential SCL circuits are much more complex because of datapath

feedback, which requires at least 2N+1 SCL registers in a feedback loop with N DATA tokens in

order to avoid deadlock [40]. Hence, common practice when synthesizing an SCL circuit from its

synchronous specification is to replace every synchronous register with three SCL registers, reset

to NULL, DATA, NULL. A simple 4+2x2 SCL MAC (i.e. a 2-bit wide multiplier with 4-bit

wide accumulator) is taken as example to elaborate this further, as well as to explain our

verification method for sequential circuits. For the 4+2×2 MAC, the output register is replaced

with registers numbered 5-8 and 15-22, as shown in the Fig. 22 SCL implementation of this

circuit. In addition to the fed back accumulator output (acci(3:0)), the STAGE 1 registers

(registers 1-8) also include the external data inputs, xi (1:0) and yi (1:0), while the STAGE 2

register is an additional reset-to-NULL register included to increase performance. Note that

STAGE 1 and 2 could be combined into a single stage, or STAGE 3 could be removed without

causing deadlock. The C/L is comprised of SCL 2-input AND functions (AND2), Half Adders

(HAs) and Full Adders (FAs), similar to the ones shown in Figs. 17 and 18, in the previous sub-

section. The FA SCL internal threshold gate structure is shown in Fig. 23, comprising of SCL

TH23 and TH34w2 gates.

35

H
A

H
A

FA
H

A

H
A

FA
FA

x1

ac
c0

t0

t2

t3

t5

c1

t4

t6

c2
t7

c3

t8

c5

t1

A
N

D
A

N
D

A
N

D
A

N
D

y1
x0

y1
x1

y0
y0

x0

ac
c1

ac
c2

t9

t10

c6

x0
x1

y0
y1

R
EG

_
N

U
LL

(4
)

R
E

G
_N

U
LL

(3
)

R
E

G
_

N
U

LL

(2
)

R
EG

_
N

U
LL

(1
)

ac
c0

ac
c1

ac
c2

ac
c3

R
E

G
_N

U
LL

(8
)

R
E

G
_

N
U

LL

(7
)

R
E

G
_

N
U

LL

(6
)

R
E

G
_N

U
LL

(5
)

R
EG

_
N

U
LL

(1
8)

R
EG

_
N

U
LL

(1
7

)

R
EG

_
N

U
LL

(1
6)

R
EG

_
N

U
LL

(1
5

)

R
EG

_
D

A
T

A
0

(2
2

)

R
EG

_
D

A
T

A
0

(2
1)

R
EG

_
D

A
T

A
0

(2
0

)
R

EG
_

D
A

T
A

0

(1
9

)

p0

acci3

acci0

acci1

acci2

acci3

xi0

xi1

yi0

yi1

R
E

G
_

N
U

LL

(1
2

)

R
E

G
_N

U
LL

(1
1

)

R
E

G
_

N
U

LL

(1
0

)
R

E
G

_
N

U
LL

(9
)

R
E

G
_

N
U

LL

(1
3

)

R
E

G
_

N
U

LL

(1
4

)

ac
c3

r0
r1

r2

r3
r4

r5C/L1

Comp1 Comp2 Comp3 Comp4

xi
2

yi

2

acci
4

slp

slp

slp

C/L2

slp

slp

p1

p2

p3

acci2

acci1

acci0

C

C
ko1

slp slp slp slp

ko2 ko3 ko4

SLP
Ki

slp

c3t7t6c1t5 c2 t10t9r0 t8 p3p2p0 p1

kiki ki ki
Ko

rst

rst rst rst

R
ES

E
T

STAGE 2 STAGE 3 STAGE 4

ko ko ko ko

STAGE 1

KO4

KO1

Figure 22. 4+2×2 SCL MAC.

slp

Cin0

Cin1

Cout0

Cout1

S0

S1

X0

Y0

X1

Y1

Figure 23. SCL Full Adder Block (FA).

36

3.2.2.1. Safety check for sequential SCL circuits

The netlist structure for a sequential SCL circuit is similar to that for a combinational

circuit, shown in Fig. 24. Here also the Comp units are obtained through abstraction form an

original netlist of SCL threshold gates and nclTH22 gates. The only differences are the inclusion

of C-elements in the feedback loop handshaking, and reset-to-DATA registers, REG_DATA0 in

this case. The algorithm to convert the SCL netlist into its equivalent synchronous netlist is also

similar to the combinational SCL conversion described in Section 3.2.1.1, with the following

additions: each reset-to-DATA register is converted into an equivalent 2-bit Boolean register,

one bit for the SCL register’s rail1 output and the other for its rail0 output. Same as for the

combinational circuit conversion, the reset-to-NULL registers and all sleep signals are omitted

from the converted synchronous netlist, as these will be verified in the subsequent handshaking

check. For sequential circuits, the additional C-elements are also omitted from the converted

synchronous netlist and will also be verified in the handshaking check.

The converted Boolean netlist and the corresponding equivalent Boolean circuit for the

4+2x2 MAC are shown in Figs. 25 and 26 respectively. The equivalence check of sequential is

not as straightforward as that of the combinational SCL circuits. Sequential circuits have states

and transitions. The theory of WEB-Refinement [33] is utilized to check for equivalence between

the converted synchronous netlist and the original synchronous specification.

37

1. xi0_0,xi0_1,xi1_0,xi1_1,yi0_0,yi0_1,yi1_0,yi1_1

2. acci0_0,acci0_1,acci1_0,acci1_1,acci2_0,acci2_1,acci3_0,acci3_1

3. th12 1 xi0_0,yi0_0 ko1 t0_0

4. th22 1 xi0_1,yi0_1 ko1 t0_1

5. th12 1 xi1_0,yi0_0 ko1 t1_0

6. th22 1 xi1_1,yi0_1 ko1 t1_1

7. th12 1 xi0_0,yi1_0 ko1 t2_0

8. th22 1 xi0_1,yi1_1 ko1 t2_1

9. th12 1 xi1_0,yi1_0 ko1 t3_0

10. th22 1 xi1_1,yi1_1 ko1 t3_1

11. th24comp 2 t2_0,t1_1,t1_0,t2_1 ko1 t4_0

12. th24comp 2 t2_0,t1_0,t2_1,t1_1 ko1 t4_1

13. th12 2 t2_0,t1_0 ko1 c0_0

14. th22 2 t1_1,t2_1 ko1 c0_1

15. th24comp 2 acc0_0,t0_1,t0_0,acc0_1 ko1 t5_0

16. th24comp 2 acc0_0,t0_0,acc0_1,t0_1 ko1 t5_1

17. th12 2 acc0_0,t0_0 ko1 c1_0

18. th22 2 t0_1,acc0_1 ko1 c1_1

19. th24comp 3 acc1_0,t4_1,t4_0,acc1_1 ko1 t6_0

20. th24comp 3 acc1_0,t4_0,acc1_1,t4_1 ko1 t6_1

21. th12 3 acc1_0,t4_0 ko1 c2_0

22. th22 3 t4_1,acc1_1 ko1 c2_1

23. th23 3 t3_0,acc2_0,c0_0 ko1 c3_0

24. th23 3 t3_1,acc2_1,c0_1 ko1 c3_1

25. th34w2 4 c3_1,t3_0,acc2_0,c0_0 ko1 t7_0

26. th34w2 4 c3_0,t3_1,acc2_1,c0_1 ko1 t7_1

27. th24comp 4 r1_0,r2_1,r2_0,r1_1 ko2 t8_0

28. th24comp 4 r1_0,r2_0,r1_1,r2_1 ko2 t8_1

29. th12 4 r1_0,r2_0 ko2 c4_0

30. th22 4 r2_1,r1_1 ko2 c4_1

31. th23 5 r4_0,r3_0,c4_0 ko2 c5_0

32. th23 5 r4_1,r3_1,c4_1 ko2 c5_1

33. th34w2 6 c5_1,r4_0,r3_0,c4_0 ko2 t9_0

34. th34w2 6 c5_0,r4_1,r3_1,c4_1 ko2 t9_1

35. th23 6 acc3_0,r5_0,c5_0 ko2 c6_0

36. th23 6 acc3_1,r5_1,c5_1 ko2 c6_1

37. th34w2 7 c6_1,acc3_0,r5_0,c5_0 ko2 t10_0

38. th34w2 7 c6_0,acc3_1,r5_1,c5_1 ko2 t10_1

39. Reg_NULL xi0_0 xi0_1 ko1 x0_0 x0_1

40. Reg_NULL xi1_0 xi1_1 ko1 x1_0 x1_1

41. Reg_NULL yi0_0 yi0_1 ko1 y0_0 y0_1

42. Reg_NULL yi1_0 yi1_1 ko1 y1_0 y1_1

43. Reg_NULL acci0_0 acci0_1 ko1 acc0_0 acc0_1

44. Reg_NULL acci1_0 acci1_1 ko1 acc1_0 acc1_1

45. Reg_NULL acci2_0 acci2_1 ko1 acc2_0 acc2_1

46. Reg_NULL acci3_0 acci3_1 ko1 acc3_0 acc3_1

47. Reg_NULL t5_0 t5_1 ko2 r0_0 r0_1

48. Reg_NULL t6_0 t6_1 ko2 r2_0 r2_1

49. Reg_NULL t7_0 t7_1 ko2 r4_0 r4_1

50. Reg_NULL c1_0 c1_1 ko2 r1_0 r1_1

51. Reg_NULL c2_0 c2_1 ko2 r3_0 r3_1

52. Reg_NULL c3_0 c3_1 ko2 r5_0 r5_1

53. Reg_NULL r0_0 r0_1 ko3 p0_0 p0_1

54. Reg_NULL t8_0 t8_1 ko3 p1_0 p1_1

55. Reg_NULL t9_0 t9_1 ko3 p2_0 p2_1

56. Reg_NULL t10_0 t10_1 ko3 p3_0 p3_1

57. Reg_DATA p0_0 p0_1 ko4 acci0_0 acci0_1

58. Reg_DATA p1_0 p1_1 ko4 acci1_0 acci1_1

59. Reg_DATA p2_0 p2_1 ko4 acci2_0 acci2_1

60. Reg_DATA p3_0 p3_1 ko4 acci3_0 acci3_1

61. C2 SLP,ko4 KO4

62. C2 ko1,Ki KO1

63. Comp ko2 xi0_0,xi0_1,xi1_0,xi1_1,yi0_0,yi0_1,yi1_0,yi1_1,acci0_0, KO4 ko1

 acci0_1,acci1_0,acci1_1,acci2_0,acci2_1,acci3_0,acci3_1

64. Comp ko3 t5_0,t5_1,t6_0,t6_1,t7_0,t7_1,c1_0,c1_1,c2_0,c2_1,c3_0,c3_1 ko1 ko2

65. Comp ko4 r0_0,r0_1,t8_0,t8_1,t9_0,t9_1,t10_0,t10_1 ko2 ko3

66. Comp KO1 p0_0,p0_1,p1_0,p1_1,p2_0,p2_1,p3_0,p3_1 ko3 ko4

Figure 24. 4+2x2 MAC SCL Netlist.

38

1. xi0_0, xi0_1, xi1_0, xi1_1, yi0_0, yi0_1, yi1_0, yi1_1

2. acci0_0, acci0_1, acci1_0, acci1_1, acci2_0, acci2_1, acci3_0, acci3_1

3. not 1 xi0_1 xi0_0

4. not 1 yi0_1 yi0_0

5. not 1 xi1_1 xi1_0

6. not 1 yi1_1 yi1_0

7. th12 2 xi0_0,yi0_0 t0_0

8. th22 1 xi0_1,yi0_1 t0_1

9. th12 2 xi1_0,yi0_0 t1_0

10. th22 1 xi1_1,yi0_1 t1_1

11. th12 2 xi0_0,yi1_0 t2_0

12. th22 1 xi0_1,yi1_1 t2_1

13. th12 2 xi1_0,yi1_0 t3_0

14. th22 1 xi1_1,yi1_1 t3_1

15. th24comp 3 t2_0,t1_1,t1_0,t2_1 t4_0

16. th24comp 3 t2_0,t1_0,t2_1,t1_1 t4_1

17. th12 3 t2_0,t1_0 c0_0

18. th22 2 t1_1,t2_1 c0_1

19. th24comp 3 acci0_0,t0_1,t0_0,acci0_1 p0_0

20. th24comp 3 acci0_0,t0_0,acci0_1,t0_1 p0_1

21. th12 3 acci0_0,t0_0 c1_0

22. th22 2 t0_1,acci0_1 c1_1

23. th24comp 4 acci1_0,t4_1,t4_0,acci1_1 t6_0

24. th24comp 4 acci1_0,t4_0,acci1_1,t4_1 t6_1

25. th12 4 acci1_0,t4_0 c2_0

26. th22 4 t4_1,acci1_1 c2_1

27. th23 4 t3_0,acci2_0,c0_0 c3_0

28. th23 3 t3_1,acci2_1,c0_1 c3_1

29. th34w2 4 c3_1,t3_0,acci2_0,c0_0 t7_0

30. th34w2 5 c3_0,t3_1,acci2_1,c0_1 t7_1

31. th24comp 5 c1_0,t6_1,t6_0,c1_1 p1_0

32. th24comp 5 c1_0,t6_0,c1_1,t6_1 p1_1

33. th12 5 c1_0,t6_0 c4_0

34. th22 5 t6_1,c1_1 c4_1

35. th23 6 t7_0,c2_0,c4_0 c5_0

36. th23 6 t7_1,c2_1,c4_1 c5_1

37. th34w2 7 c5_1,t7_0,c2_0,c4_0 p2_0

38. th34w2 7 c5_0,t7_1,c2_1,c4_1 p2_1

39. th23 7 acci3_0,c3_0,c5_0 c6_0

40. th23 7 acci3_1,c3_1,c5_1 c6_1

41. th34w2 8 c6_1,acci3_0,c3_0,c5_0 p3_0

42. th34w2 8 c6_0,acci3_1,c3_1,c5_1 p3_1

43. Reg_DATA p0_0 p0_1 acci0_0 acci0_1

44. Reg_DATA p1_0 p1_1 acci1_0 acci1_1

45. Reg_DATA p2_0 p2_1 acci2_0 acci2_1

46. Reg_DATA p3_0 p3_1 acci3_0 acci3_1

Figure 25. Converted Boolean 4+2x2 MAC SCL Netlist.

39

HA

HAFA HA

HA

FA

FA

xi1

acci3 acci0

t0

t2

t3

p0

t4
t6t7

p1
c5

t1

AND AND AND AND

yi1 yi1 xi1 yi0xi0

acci1
acci2

p2
p3

c6

REG_DATA0 REG_DATA0 REG_DATA0 REG_DATA0

acci0acci1acci2acci3

xi0 yi0

rs
t

RESET

Figure 26. Converted Equivalent 4+2x2 MAC Boolean Circuit.

WEB-refinement uses two functions: rank and refinement-map. Rank functions

differentiate between finite transitions and infinite stuttering (deadlock). The implementation

Transition System (TS) may look very different from specification TS, which is tackled by the

refinement-map functions. These functions map the specification states with implementation

states. However, in our case, rail1 registers have a one-to-one mapping with the synchronous

register; hence, there is no stutter. It is assumed that the I\O mapping and the register mapping

between the specification and implementation circuits are provided, resulting in a reduced proof

obligation given below and demonstrated using Fig. 27.

40

s

w

u

v

StepSYNC_SCL StepSYNC_SPEC

Implementation Specification

Figure 27. Proof Obligation to Check Equivalence of Sequential SCL Circuits.

In Fig. 27, s is an implementation state, i.e. a state in the reduced synchronous SCL

circuit. u is a state in specification that is a projection of the values of the rail1 registers from

state s. StepSYNC_SCL and StepSYNC_SPC are the single step functions of the SCL implementation and

specification, respectively. The proof obligation states that if u is obtained by projecting the rail1

values of s, w is the next state of the implementation state s, and v is the next state of u, then the

corresponding projection of values from the rail1 registers of the w state must be equivalent to

the values of the corresponding registers in the v state.

Proof Obligation:

PO :{∀ s:: s∈ SSYNC_SCL:: [u= Reg_Proj (s) ˄ w= StepSYNC_SCL (s) ˄ v= StepSYNC_SPEC (u)]

 ⇒ Reg_Proj (w)= v}.

 The converted netlist, synchronous specification, and equivalence check proof obligation

are modeled in SMT-LIB, and the properties checked using the Z3 SMT solver. For the 4+2×2

MAC, the following properties are checked: Considering symbolic state transitions for any

current state values of 2-bit primary inputs, x_cs(1:0) and y_cs(1:0), and 4-bit accumulator

values acc_cs(3:0), the next state of the converted synchronous netlist obtained from the SCL

implementation should be equivalent to the next state of the synchronous specification; i.e.,

FSCL_Sync_Eq (x0_cs, x1_cs, y0_cs, y1_cs, acc0_cs, acc1_cs, acc2_cs, acc4_cs)→ FSync_Spec

41

(x_cs(1:0), y_cs(1:0), acc_cs(3:0)). For each register in the converted synchronous netlist, it is

also checked that its output rail0 and rail1 are complements of each other.

3.2.2.2. Handshaking check for sequential SCL circuits

Handshaking verification is the same as for combinational SCL circuits, except that the

first and last registers of a feedback loop include an extra C-element, as shown in Fig. 22, which

requires the following two additional checks: The Ki input for a feedback loop’s output register’s

completion (e.g., Comp4 in Fig. 22) must be the combination (via a C-element) of its

downstream register’s completion’s Ko (external Ki input in Fig. 22) and its feedback loop input

register’s completion’s Ko (ko1 in Fig. 22), instead of only its downstream register’s

completion’s Ko, as in combinational SCL circuits. The sleep input (slp) for a feedback loop’s

input register’s completion (e.g., Comp1 in Fig. 22) must be the combination (via a C-element)

of its upstream register’s completion’s Ko (external SLP input in Fig. 22) and its feedback loop

output register’s completion’s Ko (ko3 in Fig. 22), instead of only its upstream register’s

completion’s Ko, as in combinational SCL circuits. The C-element are represented as shown in

line 61 and 62 in Fig. 24, where the first column represents an n-input C element (Cn), followed

by the inputs in ‘,’ separated format and output of the C element in second and third columns,

respectively.

3.2.3. Results

To demonstrate the verification of combinational SCL circuits, several multipliers and

ISCAS benchmarks were verified; whereas, MACs and an ISCAS benchmark (s27) were verified

to demonstrate the verification of sequential SCL circuits, as shown in Table 2. The algorithms

described in Section 3.2.2 were implemented using Python. Z3 SMT solver [39] was used on an

Intel® Core™ i7- 4790 CPU with 32GB of RAM running at 3.60 GHz.to check for functional

42

equivalence. NxN MUL stands for an N-bit combinational multiplier, whereas 2N+NxN MAC

stands for an N-bit multiplier unit with 2N-bit accumulator. Additionally, a number of buggy

circuits were tested, including circuits with erroneous handshaking signals, such as an incorrect

sleep signal connection to a C/L gate (i.e., 20+10×10 MAC B1), a C/L gate with one data input

being a signal’s rail0 instead of the correct rail1 (i.e., 20+10×10 MAC B2) and the combinational

logic having incorrect logic elements (20+10x10 MAC B3). For all buggy cases, the proposed

approach was able to flag the errors, providing a descriptive message indicating the erroneous

connection for handshaking errors, and producing counter examples to trace back the error path

(via the SMT solver) for cases of functional in-equivalence. Since B2 was caught during the

safety check, its verification time was much less than for B1, which was detected in the

handshaking check. Time to convert an SCL netlist to its equivalent Boolean/synchronous netlist

was negligible compared to safety and handshaking check times; therefore, was not included in

Table 2. It is also to be observed from the table that while the safety check for higher order

circuits took more time, this was only when the circuit was correct. Also, with increasing number

of levels in a circuit the verification time increases. However, in case of any functional bugs in

the circuit (like B2 and B3 in the table), the developed method was able to catch those bugs very

fast (in less than a second for B2 and B3, as shown in the table).

Comparing our verification times with that of [34], we found that our method was able to

verify up to 12x12 QDI SCL multiplier without timing out, whereas the model-checking based

verification method for QDI PCHB circuits [34] timed out for 4x4 PCHB multiplier.

Furthermore, comparing the verification times for 8x8 MAC NCL circuit using WEB

Refinement [32] with that of 16 + 8x8 MAC SCL circuit using our verification methodology, we

found that our method was ~1000 times faster. Even considering this difference between QDI

43

NCL, PCHB, and SCL circuits, it can be concluded that our equivalence verification method is a

definite improvement in terms of scalability and speed.

Table 2. Verification Results for Various SCL Circuits.

SCL Circuit

of

Gates

of C/L

levels

Verification Times (in sec.)

Safety

Check

Handshaking

Check
Total time

6x6 MUL 260 22 0.32 0.0259 0.3459

8x8 MUL 440 30 10.62 0.055 10.675

10x10 MUL 670 38 683.49 0.1536 683.64

12x12 MUL 946 46 49,963.05 0.316 49,963

ISCAS c17 [41] 37 3 0.01 0.002 0.012

ISCAS c432 [41] 445 23 1.03 0.0468 1.0768

ISCAS s27 [42] 60 5 0.09 0.002 0.092

12+6x6 MAC 373 25 1.69 0.031 1.721

16+8x8 MAC 592 33 12.03 0.1007 12.131

20+10x10 MAC 858 41 1,581.72 0.213 1581.93

24+12x12 MAC 1173 50 1,40,780.13 0.4078 1,40,780.5

20+10x10 MAC B1 858 41 1483.22 0.3403 1483.5603

20+10x10 MAC B2 858 41 0.17 0.213 0.383

20+10x10 MAC B3 858 41 0.27 0.213 0.483

44

4. CONCLUSIONS

Sleep Convention Logic (SCL) is an emerging ultra-low power Quasi-Delay Insensitive

(QDI) asynchronous design paradigm with enormous potential for industrial applications. Design

validation is a critical concern before commercialization. Unlike other QDI paradigms, such as

NULL Convention Logic (NCL) and Pre-Charge Half Buffers (PCHB), there exists no formal

verification methods for SCL circuits. The goal of the research illustrated in this thesis was to

develop a unified and scalable formal verification scheme for combinational as well as sequential

SCL circuits, with the potential to meet commercial standards.

4.1. Summary

Power consumption and clock management are the two major design challenges faced by

today’s semiconductor industry in the synchronous domain. At nanoscale level, design factors

that were previously less significant, such as wire-delays and leakage power, have become more

crucial. Also, synchronous design gets more vulnerable to process variation (power, voltage,

temperature) in deep submicron region. On the other hand, the Delay Insensitive (DI) paradigm

of asynchronous domain is known for its robust architecture against process variation. They have

low-power applications and requires no complex timing analysis, which resulted in an increasing

popularity of this domain over the last few decades. NULL Convention Logic (NCL) is one such

commercially successful DI paradigm. Multi-Threshold NULL Convention Logic (MTNCL),

also known as Sleep Convention Logic (SCL), is a modification over the NCL architecture

incorporating Multi-Threshold CMOS (MTCMOS) logic to further improve power performance.

A detailed description of NCL and MTNCL architecture is provided in chapter 2.

Previous verification works related to different QDI paradigms and existing Design-for-

Testability method for QDI SCL circuits were discussed in chapter 3; followed by an illustration

45

of the developed formal modeling and verification methodology SCL circuits. The fundamental

idea behind the verification methodology was to perform structural reduction on the complex

SCL implementation to convert it to an equivalent Boolean/synchronous circuit. The reduced

circuit was checked for equivalence with the Boolean/synchronous specification. Procedures to

verify the functionality, liveness, and handshaking connections based on the developed method

were discussed in details. The method was demonstrated using several increasing order

multipliers as well as Multiply and Accumulate (MAC) units, and ISCAS benchmarks.

4.2. Scopes for Future Work

 The equivalence verification methodology demonstrated in this thesis is the first known

formal verification work for SCL circuits. The method is applicable to both combinational and

sequential SCL circuits. However, the method currently only works for sequential circuits

without multiple interactive feedback loops, such as a MAC, since the handshaking is otherwise

much more complicated, and requires the development of an algorithm to map each register in

the converted synchronous circuit to its corresponding register in the original synchronous

specification. These problems will be tackled in future work, such that the developed approach

will be applicable to any arbitrary sequential circuit. Scalability of the approach can be improved

further using abstraction techniques, and a commercial equivalence checker instead of an SMT

solver.

46

REFERENCES

1. International Technology Roadmap for Semiconductors, 2013 Edition [Online],

http://www.itrs2.net/2013-itrs.html, Accessed on: Feb. 2, 2018.

2. S. C. Smith and J. Di, Designing Asynchronous Circuits using NULL Convention Logic

(NCL), ser. Synthesis Lectures on Digital Circuits and Systems. Morgan & Claypool

Publishers, 2009.

3. L. Zhou, R. Parameswaran, F. Parsan, S. Smith, and J. Di, “Multi-Threshold NULL

Convention Logic (MTNCL): An Ultra-Low Power Asynchronous Circuit Design

Methodology,” Journal of Low Power Electronics and Applications, vol. 5, no. 2, May, pp.

81–100, 2015.

4. M. Ligthart, K. Fant, R. Smith, A. Taubin, and A. Kondratyev, “Asynchronous design using

commercial hdl synthesis tools,” in Proceedings of the 6th International Symposium on

Advanced Research in Asynchronous Circuits and Systems, ser. ASYNC ’00. Washington,

DC, USA: IEEE Computer Society, 2000, pp. 114 [Online]. Available:

http://dl.acm.org/citation.cfm?id=785166.785308.

5. N. Andrikos, L. Lavagno, D. Pandini, and C. P. Sotiriou, “A fully-automated

desynchronization flow for synchronous circuits,” in 44th ACM/IEEE Design Automation

Conference, June 2007, pp. 982–985.

6. K. S. Stevens, Y. Xu, and V. Vij, “Characterization of asynchronous templates for integration

into clocked cad flows,” in 15th IEEE Symposium on Asynchronous Circuits and Systems

(ASYNC), May 2009, pp. 151–161.

7. E. Kilada and K. S. Stevens, “Control network generator for latency insensitive designs,” in

Proceedings of the Conference on Design, Automation and Test in Europe, ser. DATE ’10.

47

3001 Leuven, Belgium, Belgium: European Design and Automation Association, 2010, pp.

1773–1778. [Online]. Available: http://dl.acm.org/citation.cfm?id=1870926.1871354.

8. R. B. Reese, S. C. Smith, and M. A. Thornton, “Uncle - an rtl approach to asynchronous

design,” in ASYNC, J. Sparsø, M. Singh, and P. Vivet, Eds. IEEE Computer Society, 2012,

pp. 65–72.

9. F. Parsan, S. C. Smith, W. K. Al-Assadi, “Design for Testability of Sleep Convention

Logic”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, pp.

743-753, 2015.

10. S. H. Unger, “Asynchronous Sequential Switching Circuits”, Wiley, New York, 1969.

11. S. M. Nowick and D. L. Dill, “Synthesis of Asynchronous State Machines Using a Local

Clock”, Proceedings of ICCAD, pp.192-197, 1991.

12. Ivan E. Sutherland, “Micropipelines”, Communications of the ACM, Vol. 32, No. 6, pp. 720-

738, 1989.

13. A. Martin, “The Limitations to Delay-lnsensitivity in Asynchronous Circuits”, Advanced

Research in VLSI: Proceedings of the Sixth MIT Conference: pp. 263-278, 1990.

14. A. J. Martin, “Asynchronous Datapaths and the Design of an Asynchronous Adder”, Formal

Methods in System Design, Vol. 1, No. 1, pp. 117-137, 1992.

15. C. L. Seitz, “System Timing”, in Introduction to VLSI Systems, Addison-Wesley, pp. 218-

262, 1980.

16. N. P. Singh, A Design Methodology for Self-Timed Systems, Master’s Thesis,

MIT/LCS/TR-258, Laboratory for Computer Science, MIT, 1981.

17. T. S. Anantharaman, “A Delay Insensitive Regular Expression Recognizer”, IEEE VLSI

Technology Bulletin, Sept. 1986.

48

18. Ilana David, Ran Ginosar, and Michael Yoeli, “An Efficient Implementation of Boolean

Functions as Self-Timed Circuits”, IEEE Transactions on Computers, Vol. 41, No. 1, pp. 2-

10,1992.

19. J. Sparso, J. Staunstrup, M. Dantzer-Sorensen, Design of Delay Insensitive Circuits using

Multi-Ring Structures. Proceedings of the European Design Automation Conference, pp. 15-

20, 1992.

20. D. E. Muller, “Asynchronous Logics and Application to Information Processing”, in

Switching Theory in Space Technology, Stanford University Press, pp. 289-297, 1963.

21. Scott C. Smith, Ronald F. DeMara, Jiann S. Yuan, D. Ferguson, and D. Lamb. "Optimization

of NULL convention self-timed circuits." INTEGRATION, the VLSI journal 37, no. 3

(2004): 135-165.

22. S. C. Smith, R. F. DeMara, J. S. Yuan, M. Hagedorn, and D. Ferguson, "Speedup of Delay-

Insensitive Digital Systems Using NULL Cycle Reduction," in Proceedings of the 2001

International Workshop on Logic and Synthesis (IWLS-01), Granlibakken, California,

U.S.A., pp. 185-189, June 12-15, 2001.

23. N. Weng, J. S. Yuan, R. F. DeMara, D. Ferguson, and M. Hagedorn, "Glitch Power

Reduction for Low Power IC Design," in Proceedings of the Ninth Annual NASA

Symposium on VLSI Design, pp. 7.5.1-7.5.7, Albuquerque, New Mexico, U.S.A., November

8-9, 2000.

24. Scott C. Smith, Ronald F. DeMara, Jiann S. Yuan, M. Hagedorn, and D. Ferguson. "Delay-

insensitive gate-level pipelining." Integration, the VLSI journal 30, no. 2 (2001): 103-131.

25. W. Kuang, J. S. Yuan, R. F. DeMara, M. Hagedorn, and K. Fant, “Performance Analysis and

Optimization of NCL Self-timed Rings,” IEE Proceedings on Circuits, Devices, and Systems,

49

Vol. 150, No. 3, June, 2003, pp. 167–172. ISSN:1350-2409 Inspec Accession Number:

7665699.

26. P. Prakash, A. J. Martin, Slack matching quasi-delay-insensitive circuits”, in 12th IEEE

International Symposium on Asynchronous Circuits and Systems (ASYNC), 2006, pp. 10-

204.

27. Gerald E. Sobelman and Karl M. Fant, “CMOS Circuit Design of Threshold Gates with

Hysteresis”, IEEE International Symposium on Circuits and Systems (II), pp. 61-65, 1998.

28. K. M. Fant and S. A. Brandt, “NULL convention logic: a complete and consistent logic for

asynchronous digital circuit synthesis,” In Proc. IEEE International Conference on

Application Specific Systems, Architectures and Processors, August 1996, pp. 261–273.

29. Zhou, L.; Smith, S.C.; Di, J. Bit-Wise MTNCL: An Ultra-Low Power Bit-Wise Pipelined

Asynchronous Circuit Design Methodology. In Proceedings of the IEEE Midwest

Symposium on Circuits and Systems, Seattle, WA, USA, 1–4 August 2010; pp. 217–220.

30. Moon, C.W., Stephan, P.R. & Brayton, R.K. Journal of VLSI Signal Processing (1994) 7: 85.

31. C. J. Myers, Asynchronous Circuit Design. New York: Wiley, 2001.

32. Vidura M. Wijayasekara, S.K.Srinivasan and S. C. Smith, "Equivalence verification for

NULL Convention Logic (NCL) circuits," In Proc. IEEE 32nd International Conference on

Computer Design (ICCD), Oct 2014, pp. 195-201.

33. P. Manolios, “Correctness of pipelined machines,” In Proc. Formal Methods in Computer-

Aided Design–FMCAD 2000, ser. LNCS, Springer-Verlag, W. A. Hunt, Jr. and S. D.

Johnson, Eds., vol. 1954, 2000, pp. 161–178.

50

34. A. A. Sakib, S. C. Smith, and S. K. Srinivasan, “Formal modeling and verification for pre-

charge half buffer gates and circuits”, In Proc. IEEE International Midwest Symposium on

Circuits and Systems, August 2017, pp. 519-522.

35. A. Peeters, F. te Beest, M. de Wit & W. Mallon, “Click elements: An implementation style

for data-driven compilation,” In Proc. IEEE Symposium on Asynchronous Circuits and

Systems (ASYNC’10), 2010, pp. 3-14.

36. F. Verbeek and J. Schmaltz, “Verification of building blocks for asynchronous circuits”, In

Proc. ACL2, ser. EPTCS, R. Gamboa and J. Davis, Eds., vol. 114, 2013, pp. 70–84.

37. V. Satagopan, B. Bhaskaran, W. K. Al-Assadi, S. C. Smith, and S. Kakarla, “DFT techniques

and automation for asynchronous NULLconventional logic circuits,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 15, no. 10, pp. 1155–1159, October 2007.

38. W. Al-Assadi and S. Kakarla, “Design for test of asynchronous NULL Convention logic

(NCL) circuits”, Journal of Electronic Testing, vol. 25, no. 1, 2009, pp. 117–126.

39. L. M. de Moura and N. Bjørner, “Z3: An efficient smt solver”, in TACAS, ser. Lecture Notes

in Computer Science, C. R. Ramakrishnan and J. Rehof, Eds., vol. 4963, Springer, 2008, pp.

337–340.

40. T. E. Williams, “Self-Timed Rings and Their Application to Division”, Ph.D. Thesis, CSL-

TR-91-482, Department of Electrical Engineering and Computer Science, Stanford

University, 1991.

41. D. Bryan, The ISCAS ‘85 benchmark circuits and netlist format [online] Available:

https://ddd.fit.cvut.cz/prj/Benchmarks/iscas85.pdf. [Accessed Jul. 10, 2019].

42. F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of sequential benchmark

circuits,” In Proc. Int’l. Symp. Circuits and Systems, 1989, pp. 1929-1934.

51

APPENDIX. PUBLICATION LIST

• Refereed Technical Conference: M. Hossain, A. A. Sakib, S. C. Smith, and S. K.

Srinivasan, "An Equivalence Verification Methodology for Asynchronous Sleep

Convention Logic Circuits,” IEEE International Symposium on Circuits and Systems

(ISCAS), 2019, pp. 1-5.

