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ABSTRACT 

Sleep Convention Logic (SCL) is an emerging ultra-low power Quasi-Delay Insensitive 

(QDI) asynchronous design paradigm with enormous potential for industrial applications. Design 

validation is a critical concern before commercialization. Unlike other QDI paradigms, such as 

NULL Convention Logic (NCL) and Pre-Charge Half Buffers (PCHB), there exists no formal 

verification methods for SCL. In this thesis, a unified formal verification scheme for 

combinational as well as sequential SCL circuits is proposed based on equivalence checking, 

which verifies both safety and liveness. The method is demonstrated using several multipliers, 

MACs, and ISCAS benchmarks.  
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1. INTRODUCTION 

Over the past many decades, the semiconductor industry has been predominantly ruled by 

synchronous design paradigm. Majority of the electronic devices that we use today are 

synchronous in nature. Utilization of a global clock for synchronization and the assumption that 

all signals are binary have contributed significantly to the simplification of logic design. Clocked 

designs are deterministic in that all signals are sampled at a definite time interval, which makes 

testing and validation easier. However, today’s semiconductor industry is facing a huge 

challenge in synchronous domain coping up with the ever increasing consumer expectations of 

faster, robust, and more compact devices. There are three major limiting factors: clock 

management, increasing power consumption, and susceptibility to process variations. As the 

operating frequency hits Giga-Hertz (GHz) level for faster designs, clock management becomes 

considerably challenging, resulting in multidimensional clock related issues, such as, clock-

skew, clock jitter, clock distribution etc. Interconnect delay or wire delay, which was often 

ignored in previous low frequency designs, becomes a major contributor to the design 

complexity and timing analysis. Additional clock distribution networks are required to manage 

the clock to attain acceptable skew, which adds to the area overhead. Moreover, similar to the 

clock frequency, Moore’s Law that has been the foundation of IC chip design for the past so 

many decades, is finally reaching a saturation. Further integration and miniaturization results in 

excessive power consumption in devices, reducing the overall efficiency. In nanoscale designs, 

leakage power consumption during idle mode turns out to be an important factor. The clock 

hinders the power performance as well. The clock driver unit is a large component with 

numerous gates that undergoes continuous switching to manage the clock, even in idle mode, 

when the circuit is not performing useful tasks. Moreover, Process, Voltage, and Temperature 
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(PVT) variations become very critical in deep submicron level designs. Because of the 

limitations new avenues of research are being conducted to tackle these issues. 

Asynchronous design is a clockless approach that alleviates the major issues faced in the 

present synchronous domain. Like synchronous, asynchronous logic is based on the assumption 

that all signals are binary. However, it removes the synchronous assumption that time is discrete. 

Asynchronous designs do not use clock and eliminates all clock related issues. Synchronization 

between components are attained by a handshaking scheme. Transmission and reception of data 

is based on request and acknowledgement, which yields average-case performance, while 

synchronous design yields worse-case performance. In asynchronous design, transition or 

switching occurs in the components involved in computation only. This significantly improves 

power performance during active mode. Also, unlike synchronous design, there is no clock 

driver network that is always on, which further reduces power consumption. QDI designs are 

inherently robust against PVT variation that makes them an excellent design choice for extreme 

environmental applications.  

These advantages over the synchronous domain have made the asynchronous paradigm 

quite popular in industry, as well as academic research as evidenced by the International 

Technology Roadmap for Semiconductors (ITRS). ITRS predicts that asynchronous logic will 

account for over 50% of the of the billion dollar semiconductor industry by 2027 [1]. 

1.1. NCL and SCL: Benefits 

NULL Convention Logic [2] is the most widely used and popular Delay-Insensitive (DI) 

asynchronous paradigm. They have found numerous industrial applications in companies such as 

Theseus Logic, Ozark Integrated Circuits, Eta Compute etc. NCL circuits have much lower 

power consumption, glitch power, and Electro Magnetic Interference (EMI) as compared to 
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corresponding synchronous designs, by possessing an inherently idle behavior, which 

considerably reduces switching power consumption. They also require very less timing analysis; 

hence, design process is much faster as compared to synchronous system design. NCL designs 

are also correct by construction, and the framework is very similar to synchronous systems, due 

to which automation of these designs are similar to that of synchronous systems and presents a 

much flatter learning curve for designers.  

Multi-Threshold NCL (MTNCL) or most commonly known as Sleep Convention Logic 

(SCL), is a modification over NCL architecture. With reduced supply voltages and sub-micron 

size miniaturizations, sub-threshold leakage power constitutes a considerable portion of the total 

power dissipation in the circuit. MTNCL or SCL framework was developed to address this issue, 

which combined NCL with Multi-Threshold CMOS (MTCMOS) techniques to further reduce 

leakage power consumption during idle mode, resulting in an ultra-low power design paradigm. 

Various SCL frameworks are illustrated in [3], which demonstrates that the best SCL framework 

outperforms corresponding NCL designs in all aspects, and were significantly more power and 

area efficient as compared to synchronous MTCMOS designs. 

1.2. Motivation 

The key to widespread utilization and acceptance of any new design or framework in the 

semiconductor design industry lies in the availability of standard tools for synthesis and 

validation. Though several design methodologies exist for constructing asynchronous circuits 

from their corresponding synchronous designs [4, 5, 6, 7, 8], the area of validation and formal 

verification is still being ventured into only recently. Formal verification is of utmost importance 

in current ASIC design flow. As most modern ASIC designs become increasingly vast and 

complex, ensuring functional correctness becomes a critical task, which cannot be done through 
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simulation alone. Simulation based functional testing can be only as effective as the test cases 

designed, which often leads to rare case bugs going undetected during the design validation 

phase. Also due to the increasing vastness of designs, 100% functional coverage is becoming 

quite impossible to achieve, as it takes a huge amount of time and money, which in turn would 

lead to delays in time-to-market schedule. Formal verification techniques are used in conjunction 

with testing in the semiconductor industry to detect the rare case bugs, and ensure complete 

functional correctness. In order to increase the acceptance and incorporation of asynchronous 

designs in the existing synchronous dominated semi-conductor industry, developing formal 

verification schemes for the various QDI asynchronous paradigms have recently become a 

rapidly growing research field. Few formal verification schemes have been developed for 

different QDI paradigms, but these techniques are not directly applicable to SCL circuits. Design 

for Testability technique [9] with very high-test coverage exist for SCL circuits, but these are not 

formal verification techniques. Therefore, this thesis work illustrates a formal verification 

technique based on equivalence checking for SCL circuits that ensures both safety and liveness 

of the circuits. This is the first known formal verification work applicable to SCL circuits. 

1.3. Thesis Overview 

The thesis is organized as follows: Chapter 2 provides an overview of the NCL and SCL 

frameworks, background, and illustrates the differences between the two architectures. The 

proposed formal verification method is presented in Chapter 3. The method to verify the safety, 

liveness, and handshaking checks for combinational as well as sequential SCL circuits are 

illustrated, followed by demonstration of the method verifying numerous benchmark circuits. 

Finally, conclusions and future work are discussed in Chapter 4.  
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2. ASYNCHRONOUS BACKGROUND 

Asynchronous paradigm has a vast number of design methodologies that have been 

developed over the decades. Each of these design methodologies have their own advantages and 

disadvantages, which help to decide their utilization based on specific application requirements. 

All these models fall into two major categories based on delay assumptions – Bounded-Delay 

and Delay-Insensitive (DI).  

In bounded-delay model of asynchronous designs, it is assumed that the delay of the 

various circuit elements and the connecting paths is known, or bounded within certain limits. 

Bounded delay models require extensive timing analysis to determine the delay in the datapath, 

so that it can be matched to the control path delay, to achieve synchronization between datapath 

and control path in the absence of clock. There are various asynchronous circuits based on 

bounded-delay model, such as, Huffman circuits [10], burst-mode circuits [11], and 

micropipelines [12]. However, the bounded-delay model has some limitations, such as worst 

case performance.  

The Delay-Insensitive (DI) model is based on the primary assumption that the delays in 

both logic elements and wires are unbounded, which means that data at the inputs can arrive at 

any point in time. Hence, there is no bound on the delay of its arrival as well as on the delay of 

obtaining the correct output. Well-defined handshaking schemes are utilized along with specific 

completion detection mechanisms so that the receiver can notify its sender on the proper 

reception and computation of the received signals. The sender waits on an acknowledge signal 

from the receiver before sending the next set of data inputs. This allows a datapath element to 

start working on a new set of inputs early after finishing computation on the previous input data 

set, or stall the previous stage when more time is required to finish computation. This yields 
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average case performance instead of worst case performance as compared to the bounded-delay 

models. It also avoids hazards. While such a signaling protocol may somewhat complicate the 

circuit layout and implementations, it provides the advantage of separating circuit correctness 

from specific delay assumptions. However, despite the advantages in terms of not requiring 

complex timing analysis, practical circuits cannot be designed in DI paradigm due to lack of 

expressible conditionals [13]. Instead, Quasi-Delay Insensitive (QDI) methods are utilized for 

practical implementation, which allows a small relaxation on the unbounded delay assumption. 

The QDI model assumes that the component delays are much larger as compared to the 

interconnect delays within a component; i.e. wire forks within a component are isochronic in 

nature. In practice, circuits that are most commonly referred as Delay-Insensitive (DI) are 

actually QDI. 

2.1. Delay Insensitive Methods: Related Works 

Delay-Insensitive methods can be sub-divided into two main categories based on their 

synthesis levels: transistor-level delay-insensitive methods and gate-level delay insensitive 

methods. Martin’s method [14] provides an approach to transistor level DI synthesis from high-

level program description based on formal derivation using certain codes and theorems. But it 

does not target a previously pre-defined set of logic gates, hence not applicable directly to 

existing synchronous systems. Pre-Charge Half Buffer (PCHB) circuits are based on dynamic 

logic, and are synthesized at transistor level. PCHB utilizes a fine-grained pipelined architecture 

and provides design flexibility, which made this paradigm commercially successful. 

Some popular gate-level delay-insensitive methods are developed by Seitz [15], Singh 

[16], Anantharaman [17], David [18] and the Delay Insensitive Circuits using Multi-Ring 

Structures (DIMS) approach by Sparso [19]. All of these methods incorporate completion 
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detection units in order to ensure correct circuit operation. Muller C-elements are used [20] as 

the only state-holding element in these circuits. C-elements operate such that the output changes 

to the input value only when all the inputs assume the same value, either Boolean ‘0’ or ‘1’; 

otherwise the C-element output holds its previous value. This property of C-elements helps in 

achieving delay-insensitivity. All the above mentioned methods yield average-case performance 

compared to worst-case performance of bounded-delay models and synchronous circuits. Seitz’s, 

Anatharaman’s, and DIMS approach require the generation of full min-term expressions for all 

the output signals, which nullifies the scope of any optimizations. In comparison, David’s and 

Singh’s methods do not need full min-term generation. David designs DI circuits using four kind 

of subnets, namely n-input C-Element (CEN), n 2-input OR gates (ORN), DRN, which is 

extraction of individual rails of dual-rail outputs, and the 2-m dual input C-elements network 

(OUTN) producing the circuit output; n and m being the number of inputs and outputs of the DI 

circuit, respectively. Singh devices twelve modules, the various combinations of which can be 

used to design circuits in DI paradigm. The modules are of two main types: one ‘user’ module 

and the rest ‘control’ modules. User modules are designed by the designer and control modules 

are fixed functionality units (for routing data from input to output ports) with user defined data 

widths of inputs and outputs. 

The most popular gate-level QDI models are the NULL Convention Logic (NCL) [2] and 

Multi Threshold NULL Convention Logic (MTNCL), also known as Sleep Convention Logic 

(SCL) [3]. NCL has been widely accepted in today’s semiconductor industry due to the various 

advantages it offers over the previous mentioned gate-level and transistor level DI models. NCL 

does not require full minterm generation which leads to better optimization scopes. NCL circuits 

have automated synthesis tools [8], and much work has been carried out in developing 
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optimization techniques for such circuits, based on Threshold Combinational Reduction (TCR) 

[21], NULL Cycle Reduction [22], glitch power reduction [23], throughput optimization using 

gate-level Pipelining [24], and optimization of NCL self-timed rings [25]. NCL has numerous 

threshold gates for realizing delay-insensitivity, which are also capable of executing Boolean 

functions of maximum four variables. NCL is also easily incorporable into current 

semiconductor industry due to similarity in framework with synchronous designs. This thesis 

deals with verification of SCL modules, which is a modification over NCL module, achieving 

low power and transistor count optimizations. Hence, in order to better understand SCL 

framework an overview of NCL framework is first provided in Section 2.2, followed by a 

detailed description of SCL in the Section 2.3. 

2.2. NCL Overview 

NCL circuits are different from their synchronous counterparts in that they use multi-rail 

logic, such as dual-rail logic and quad-rail logic, compared to the single rail encoding in 

synchronous. Dual-rail encoding is the most popular design choice. In dual-rail logic, two rails 

are used to encode each signal or bit of data. If D0 and D1 are the two rails of a dual rail signal, 

D, then DATA0 is represented as D1 = ‘0’, D0 = ‘1’, which is equivalent to Boolean logic ‘0’, 

DATA1 is represented as D1 = ‘1’, D0 = ‘0’, which is equivalent to Boolean logic ‘1’, and D1 = D0 

= ‘0’ corresponds to a NULL state representing absence of DATA. Similarly, in quad-rail logic, 

four wires are used to encode two bits of Boolean variables. Let Q0, Q1, Q2, and Q3 represent the 

four rails of quad-rail signal, Q, encoding two Boolean variables, A and B. The encoding scheme 

is shown in Table 1. Both dual-rail and quad-rail logic are referred to as one hot encoding 

schemes, which means that only one wire can be asserted at a time, whereas all other wires will 

remain de-asserted. More than one wire asserted simultaneously is an illegal state. This sort of 
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data encoding approach leads to monotonic transition from DATA to NULL for inputs and 

outputs. Thus, helps to eliminate timing reference from the circuits and achieve delay-

insensitivity. 

Table 1. Quad-Rail Encoding Scheme. 

 Q3 Q2 Q1 Q0 Boolean Equivalent 

NULL 0 0 0 0  Data absent  

DATA0 0 0 0 1 A = 0, B = 0 

DATA1 0 0 1 0 A = 0, B = 1 

DATA2 0 1 0 0 A = 1, B = 0 

DATA3 1 0 0 0 A = 1, B = 1 

  

The operation of NCL model is discussed next. The main advantage of NCL architecture 

is its similarity with synchronous pipeline architecture, where each combinational unit is 

sandwiched between two registers. The basic M-stage NCL framework is shown in Fig. 1. For 

feed-forward NCL circuits, at least one set of input registers and output registers are necessary 

for correct flow of DATA/NULL. Multiple intermediate register stages can be added to improve 

throughput [26], as depicted in Fig. 1, where R2 – RM-1 are the intermediate registers. However, 

for sequential NCL circuits every feedback path requires at least 2N+1 registers in the feedback 

loop for N data tokens to avoid deadlock [40]. The NCL combinational unit, registration unit and 

the completion unit are described in the next sub-sections. 
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Figure 1. NCL Framework.  

Adapted from [2]. 

2.2.1. NCL Combinational Unit 

NCL combinational unit consists of 27 threshold logic gates [2] with hysteresis state 

holding capability. Individual threshold gates can be used to implement functions of four or 

fewer variables. Here, individual variable corresponds to each separate rail of a dual-rail signal. 

A simple NCL threshold gate is written as THmn gate is shown in Fig. 2(a), where n is the 

number of inputs (i1, i2... in) and the gate produces a single output (Z). m is the gate threshold, 

which is the minimum number of inputs that are required to be asserted to assert the output, Z. 

Similarly, the output will be de-asserted when all of the n inputs to the gate are de-asserted. 

Otherwise, the gate will hold its previous state. Threshold gates can also be of weighted type, 

where individual input can be assigned certain weights. Such a gate is represented symbolically 

as THmnWw1w2w3…wk, where ‘W’ stands for weighted gate and w1, w2 … wk are the weights 

associated with input1, input2 … inputk, respectively. A TH54W322 threshold gate is shown in 

Fig. 2(b). TH54W322 gate has 4 inputs with gate threshold value of 5. The weight of input A is 

3, B and C are 2, and D has a weight of 1. As the gate threshold is 5, any combination of inputs 

that sums up to a weight of 5 can assert the gate. For example, both A and B getting asserted can 
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assert the gate output, Z, as they have a combined weight of 5. Therefore, the gate function can 

be written as Z = AB + AC + BCD. 

m

i1
i2

in

Z

               

5

A

B
C

Z

D

 

          (a)                                                    (b)            

Figure 2. (a) THmn Gate (b) TH54W322 Gate. 

  

There are two widely utilized transistor level implementations of these threshold gates – 

static and semi-static [27]. All these implementations have set and reset, hold0 and hold1 

functions, arranged as shown in Fig. 3. set functions determine when the gate output will become 

asserted depending on when the threshold number of inputs become asserted. The reset function 

determines when the gate output will be de-asserted, which is when all gate inputs are de-

asserted. In static implementation, as shown in Fig. 3(a), hold0 and hold1 functions are utilized 

to attain hysteresis state-holding functionality, whereas in case of semi-static implementation, the 

hysteresis is achieved by adding a weak inverter in feedback loop to the output as depicted in 

Fig. 3(b). hold0 and hold1 functions enable the gate to remain asserted or de-asserted until either 

the reset or set function is met, respectively. reset and hold1 are generic in structure for an n-

input threshold gate, whereas set and hold0 functions vary depending on the NCL gate 

functionality. reset is derived by connecting all the complemented gate inputs in series. hold1 

function is complement of reset function, i.e. all the gate inputs connected in parallel. set 

functional block is simply the NMOS implementation of the Boolean function of the threshold 

gate obtained after further simplification. hold0 is obtained by complementing the set function 

and applying further simplifications [2]. 
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          (a)                                                                            (b)                                

Figure 3. (a) Static NCL Implementation (b) Semi-Static NCL Implementation [2]. 

 

For the TH54W322 gate the set function is AB + AC + BCD, as discussed earlier. The 

reset function is A’B’C’D’, the hold1 function is A+B+C+D, and the hold0 function is the 

complement of the set function. Based on the threshold gate implementation template on Fig. 3, 

the static and semi-static representation of the TH54W322 gate is shown in Fig. 4 and 5, 

respectively. 

B

A

B

C

D
C

A

B C D

A

A

B

C

D

Z

hold0

hold1

               

Figure 4. Static Implementation of TH54W322 Gate. 
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B
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D
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Figure 5. Semi-static Implementation of TH54W322 Gate. 

 

2.2.2. NCL Registration Unit 

In NCL framework, the registration units serve to maintain the proper flow of DATA and 

NULL in the system. NCL combinational circuit consists of at least two register stages, one at 

the input and the other at the output, with the combinational logic placed in-between these two 

stages. Each register stage comprises a set of cascading dual-rail or quad-rail registers. Each 

register is internally made of TH22 gates. The structure of a single bit reset-to-NULL dual-rail 

register is shown in Fig. 6. One input of each TH22n (reset-to-zero TH22) gate comes from the 

rail1 and rail0 of the input, whereas the other input is the request signal, Ki. The two rails of the 

output are input to an inverted TH12 gate, which is a NOR gate. The output of the inverted TH12 

gate produces the acknowledge signal, Ko. The register stages communicate between each other 

through a four-phase handshaking mechanism, using Ki and Ko. When Ki is request for data (rfd) 

i.e. logic ‘1’ and the dual-rail input is DATA, then the dual-rail output of the register becomes 

DATA. Similarly, the output will be NULL only when the input is NULL and Ki is requesting 
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for NULL (rfn) i.e. logic ‘0’. When the output is DATA/NULL, Ko becomes 0/1, requesting for 

NULL/DATA at the input of the register. The register can be reset to either DATA0 or DATA1 

by replacing one of the two TH22n gates with a TH22d gate, which is reset to logic 1. 

 

Figure 6. Single-bit Dual-rail Register Reset to NULL [2]. 

 

2.2.3. NCL Completion Unit 

NCL completion unit is a network of THnn gates arranged in a tree structure. THnn gates 

are an N-input C-element. The completion unit takes the N-bit Ko outputs from the next stage 

registers and combines them to form a single-bit Ko output, which is fed back as the Ki input of 

the registers in the previous stage, as shown in Fig. 1. As the maximum number of inputs to a 

threshold gate is four, the number of levels of THnn gates for N-bit inputs is given by log4N. 

Fig. 7 shows an N-bit completion unit structure. 
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Figure 7. N-bit Completion Tree Structure [2]. 

 

2.3. Sleep Convention Logic Overview 

Sleep Convention Logic (SCL) is an ultra-low power, high speed QDI asynchronous 

paradigm, which is a modified version of the popular NCL architecture [28]. SCL integrates the 

Multi-Threshold CMOS (MTCMOS) technique for leakage power reduction with NCL; hence, 

are often termed as Multi-Threshold NULL Convention Logic (MTNCL) [3].  

MTCMOS technique is typically implemented using two or more threshold voltages in 

the circuit. In one kind of MTCMOS application, low threshold voltage transistors (low-Vt) are 

used to achieve faster switching speeds during active-mode, and high threshold voltage 

transistors (high-Vt), controlled by Sleep signal, are used to gate the power supply from the 

circuit during idle-mode, thus reducing sub-threshold leakage current, as shown in Fig. 8(a). But 

sizing of the Sleep controlled high-Vt transistor poses a serious design challenge for larger 

circuits. An alternate method is developed to tackle this issue, where MTCMOS technique is 

applied to each gate, as shown in Fig. 8(b). In this case, the gate logic is implemented in CMOS 
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using Pull-up (PUN) and Pull-down (PDN) networks. The PUN and PDN are separated by a 

high-Vt Sleep transistor, marked by a dotted circle in Fig. 8. In idle mode, sleep is asserted (Sleep 

= ‘1’) and the Sleep transistor is turned OFF, which disconnects the PUN from the PDN. This 

arrangement thus reduces leakage power in the circuit during idle mode. The P0 PMOS and N0 

NMOS transistors remain ON when Sleep is asserted, thus the output node is pulled down to ‘0’. 

Although MTCMOS technique reduces power consumption, they still have serious limitations in 

synchronous domain; such as, area overhead, possibility of losing data during cut-off mode, and 

logic partitioning. However, by incorporating MTCMOS with NCL, these drawback are 

eliminated in SCL architecture. 

                           

       (a)                                                                    (b) 

Figure 8. (a) General MTCMOS Architecture (b) Boolean Gate Implementation [3]. 

 

A typical multi-stage SCL framework is shown in Fig. 9. Every pipeline stage in SCL 

framework comprises of a DI register block (Ri), a combinational block (C/L) and a completion 

detection unit (Ci). The self-timed phase alterations between DATA and NULL wave fronts and 

synchronization is achieved through the mutual handshaking between these three basic blocks of 

different pipeline stages, which will be explained in detail in the following sub-sections. There 
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are several architectures available for implementing handshaking in SCL circuits. The SECRII 

w/o nsleep architecture [3], as shown in Fig. 9, being the fastest one has been chosen for the 

circuit implementations in this thesis.  
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Figure 9. SCL SECRII Without nsleep Architecture Framework. 

Adapted from [3]. 

 

2.3.1. SCL Combinational Unit 

SCL circuits comprise of SCL threshold gates which are a variant of the 27 fundamental 

NCL gates, where hold1 block, reset block, and the corresponding NMOS and PMOS bypass 

transistors of static implementation of NCL gates (Fig. 3(a)) are removed, and an additional 

Sleep signal is incorporated in each gate [3]. A modified version of this implementation is called 

the Static MTNCL or SMTNCL implementation, shown in Fig. 10, where the  high-Vt transistor, 

separating the pull-up and pull-down networks (which was shown in Fig. 8(b)), is moved to the 

pull down network. All of the PMOS transistors are turned ON only when the inputs are logic ‘0’ 

and Sleep = ‘1’, i.e. in idle mode. They stay in this state until Sleep = ‘0’ and the gate’s set 

function evaluates to true. All of the PMOS transistors, except the one in the output inverter, are 

high-Vt in nature. In active mode (Sleep = ‘0’), the circuit performs the logic function 

implemented by the threshold gate. During idle mode, Sleep = ‘1’ and nSleep (complement of 
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Sleep signal) = ‘0’. Hence, the low-Vt transistor at the output pulls the output node to ground 

during idle mode. Whereas, the high-Vt transistor in the Pull-down network cuts off the logic 

circuit from ground resulting in reduced leakage power.  

   

Figure 10. SMTNCL Gate Level Implementation [3]. 

 

As the above STMNCL implementation required Sleep signal and generation of its 

complement signal i.e. nSleep, further improvements were suggested to this architecture, which 

did not require the nSleep generation, thus reducing area and energy. SMTNCL w/o nsleep 

implementation is shown in Fig. 11. Here the set function is implemented in Bit-Wise MTNCL 

fashion (BWMTNCL) [29], such that, it is gated from the ground by having at least one high-Vt 

NMOS transistor in each path through set function to the ground, in a way that there are a 

minimum number of such high-Vt transistors. A SMTNCL TH54W22 gate w/o nSleep is shown 

in Fig. 12. 
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Figure 11. SMTNCL w/o nsleep Gate Level Implementation. 

Adapted from [3]. 
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Figure 12. SMTNCL w/o nSleep Implementation of TH54W322 Gate. 

 

2.3.2. SCL Registration Unit 

SCL registration unit is an arrangement of multiple N-bit dual-rail Delay-Insensitive 

sleep registers in different stages. The transistor level diagram of a single bit dual-rail SCL 

register w/o nSleep is shown in Fig. 13. It consists of two TH22 gates in SMTNCL 
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implementation [3], with the nSleep signal removed and their sleep transistors combined. The 

two rails of the input I, I0 and I1, are fed into each TH22 gate and the register unit produces a 

dual-rail output O. An N-bit dual-rail SCL register stage is a combination of N single bit dual-rail 

SCL registers, each having the internal structure as shown in Fig. 13. In active mode, i.e. Sleep = 

‘0’, either I0/ I1 being asserted results in corresponding output rail, O0/ O1 to be asserted, 

respectively. The output remains latched at this value, irrespective of the input being asserted or 

de-asserted, until the Sleep mode is activated. When Sleep is asserted, the NMOS transistors at 

the output nodes are turned ON, resulting in output O0 and O1 being pulled down to ground. This 

condition is equivalent to the register unit passing a NULL input through to the output. 

Therefore, instead of waiting for the NULL wavefront to propagate through the stages, the 

register stage is slept to NULL by the Sleep signal, resulting in power saving during idle mode. 

Note that, unlike NCL, SCL registers do not possess request input (Ki) and acknowledge (Ko) 

output. 

 

Figure 13. Slept DI Register w/o nSleep [3]. 
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2.3.3. SCL Completion Unit and Handshaking Scheme 

SCL completion component is based on NCL completion unit, in combination with Early 

Completion [2] and an additional Sleep signal input. Each completion unit comprises of 

TH12/TH24comp and THnn SCL gates arranged in a tree structure, followed by a final inverted 

NCL TH22 gate (without sleep). This tree structure is similar to the NCL completion unit 

structure, but different in that 1) all the gates (except the final inverting TH22 gate) can be driven 

to NULL by the pervious stage completion unit output, which is used as the Sleep signal for 

these gates, 2) The inputs to the tree structure are the register unit inputs in a stage, along with 

the output from subsequent stage completion component; whereas in NCL, inputs to the tree 

structure were only the Ko outputs from the registers in subsequent stage, as shown in Fig. 1. For 

example, as shown in Fig. 9, the dual-rail inputs to the stage ith registers, Ri, are also input to the 

completion unit in stage (i), Ci. These dual-rail signals along with the output from the subsequent 

stage completion unit, Koi+1, produces the output, Koi, of the completion component Ci. Koi is 

used as the Sleep input of the stage (i) Registration unit (Ri), Combinational Logic (C/Li), and the 

stage (i+1) completion unit, Ci+1.  

When the Sleep signal is asserted in sleep/idle mode, the registers and C/L block are all 

forced to a NULL value, which is equivalent to the NULL wavefront propagating through the 

circuits. The Sleep signal gets de-asserted when a new DATA value appears at the inputs. A 16 

bit SCL completion unit structure is shown in Fig. 14. X0 –X15 are the sixteen dual-rail inputs to 

a particular ith stage register. Koi+1 and Koi-1 are the next and previous stage completion units’ 

outputs, respectively. Koi is the output of the ith stage completion unit. 
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Figure 14. 16 bit SCL Early Completion Component. 
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3. FORMAL VERIFICATION METHOD FOR SCL CIRCUITS 

Formal techniques are widely used in the industry to validate commercial designs before 

fabrication. Formal methods are based on proofs that can cover a large number of test cases that 

adds to its capability to detect corner case bugs. In industry, formal methods complement the 

traditional testing methods to guarantee complete functional correctness. At present, there are no 

formal verification schemes for SCL circuits. There exists few formal verification schemes for 

different QDI circuits, like, NCL and Pre-Charge Half Buffers (PCHB). However, those methods 

are not directly applicable to SCL circuits because of its unique structure. This chapter discusses 

some of the existing formal verification methods in asynchronous paradigms, their drawbacks, 

and the reasons behind not being directly applicable to QDI SCL circuits; followed by a detail 

illustration of the developed unified verification method for combinational and sequential SCL 

circuits. 

3.1. Related Verification Work in QDI Paradigm 

There have been some verification methodologies developed for asynchronous bounded 

delay model circuits based on trace theory, Signal Transition Graphs [30] etc. C. J. Meyers also 

developed a gate-level verification method for bounded delay models based on timed petri-nets 

[31]. However, bounded delay models consider the delays in both datapath and control path to 

ensure correctness of operation, hence are structurally very different from QDI paradigms. So 

these verification methodologies are not directly applicable to QDI circuits. There have been 

some formal verification schemes for QDI paradigms like NCL and PCHB paradigms, but none 

for QDI SCL circuits which can guarantee both safety and liveness of the circuits. [32] proposes 

an idea to verify NCL circuits based on the theory of WEB-Refinement [33]; where the 

specification and implementation are modeled as Transition Systems (TSs). However, due to the 
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extremely non-deterministic behavior of NCL circuits, the TSs become very complex with huge 

state-space. This results in a state space explosion, and infeasible verification time. [34] 

illustrates a model checking based approach for QDI PCHB circuits that also models the PCHB 

circuit as TSs; but this also suffers from state space explosion. Scalability is the major limiting 

factor for both the aforementioned methods. QDI SCL circuits are also non-deterministic, like 

NCL and PCHB; hence, we circumvent the idea of modelling the actual SCL circuit as TSs. A 

deadlock verification scheme for DI circuits, based on Click Library [35], is proposed in [36]. 

However, this method is not directly applicable, as SCL circuits are structurally very different 

from the circuits based on those primitive libraries. Also, it verifies only the liveness of the 

circuits and not the safety of the circuits. There exists several Design-For- Testability (DFT) 

based verification techniques for NCL [37] [38] and SCL circuits [9]. However, as discussed 

earlier, only testing is not sufficient to ensure complete functional correctness. Therefore, an 

alternate approach has been developed in this thesis that is scalable and tackles most of the 

limiting factors encountered in other methods for other QDI paradigms. It is the first ever formal 

verification method that is applicable to QDI SCL circuits. 

3.2. Equivalence Verification Methodology for Sleep Convention Logic Circuits 

In industry, QDI circuits are synthesized from their corresponding synchronous 

specifications. The specification goes through a series of transformation, which results in the 

synthesized circuit being structurally very different from the specification. For such scenario, 

equivalence checking is a widely used formal technique that checks for functional and logical 

equivalence between two structurally different systems. 

The proposed method requires two steps. The first step ensures the safety, i.e. the 

functional correctness of the circuit. The high level idea behind the safety check is to convert the 
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SCL combinational/sequential circuit into an equivalent Boolean/synchronous circuit with the 

help of a conversion algorithm. The reduced circuit is then checked for equivalence with the 

actual Boolean/synchronous specification.  

The second step checks for the handshaking connections between components that 

ensures the liveness (absence of deadlock) of the circuit. The safety and liveness check for 

combinational and sequential SCL circuits is described in detail in subsections 3.2.1 and 3.2.2, 

respectively. Section 3.3 tabulates our results in terms of verification times and capability to 

detect faults when our method was applied to various increasing order combinational and 

sequential SCL circuits. 

3.2.1. Equivalence Verification Method for Combinational SCL Circuits 

Fig. 15 shows an SCL 2x2 multiplier unit, implemented using SECRII w/o nsleep 

architecture explained in chapter 2. The circuit performs multiplication of two 2 bit dual-rail 

numbers, xi (1:0) and yi (1:0), where (xi1, xi0) and (yi1, yi0) are the two bits of xi and yi, 

respectively; and outputs a 4 bit dual-rail output, p (3:0), where p3, p2, p1, and p0 are the four 

bits of p. The combinational unit comprises of SCL AND gates and SCL Half Adder (HA) 

components. Internally these components are implemented using SCL threshold gates. The 

threshold gate level structure of SCL AND gate and SCL HA unit is shown in Figs. 16 and 17, 

respectively. Registers in STAGE 1 and 3 are the input and output registers, respectively; and the 

STAGE 2 register is an intermediate pipelining register used to increase throughput. All the 

registers in a combinational SCL circuit are initialized to NULL (i.e. reset-to-NULL) at the 

beginning of operation. Comp1, Comp2, and Comp3 are the completion units that generate the 

sleep signals for their respective stages’ registers, combinational logic, and next stage completion 

unit, in compliance with SECRII SCL framework. Ki is the external request input, and Ko = ko1 is 
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the external acknowledge output. SLP is an external sleep input that sleeps the STAGE 1 

completion unit.  
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Figure 15. SCL 2x2 Multiplier. 

 

slp

slp

 

Figure 16. SCL AND2 Structure. 
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Figure 17. SCL Half-Adder (HA) Structure. 

Adapted from [2]. 

3.2.1.1. Safety check for combinational SCL circuits 

The netlist of the SCL 2×2 multiplier is shown in Fig. 18. The line numbers are used for 

ease of reference only and do not appear in the actual netlist. The first two lines denote the set of 

primary inputs and primary outputs, respectively. For any dual-rail signal, a, a_0 and a_1 denote 

a0 and a1, respectively. Lines 3-18 denote the gate structure of the C/L, where the first column 

indicates the type of SCL gate, the second column refers to the level of the gate (i.e., the longest 

path to the gate from any primary input, not counting registers), and the third, fourth, and fifth 

columns correspond to the gate’s data inputs, sleep input, and output, respectively. Lines 19-30 

are the 1-bit dual-rail SCL registers, where the first column corresponds to the reset type i.e. 

Reg_NULL for reset-to-NULL registers, columns 2 and 3 are the data input0 and input1 rails, 

respectively, column 4 is the sleep input, and columns 5 and 6 are the data output0 and output1 

rails, respectively. Lines 31-33 are the three completion units, where Comp in the first column 

denotes an early completion component, the second column indicates the Ki input that comes 
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from the following stage completion, the third column includes all of the completion unit’s data 

inputs, the fourth column is the sleep input, and the last column is the output. 

1.  xi0_0,xi1_0,yi0_0,yi1_0,xi0_1,xi1_1,yi0_1,yi1_1

2.  p0_0,p1_0,p2_0,p3_0,p0_1,p1_1,p2_1,p3_1

3.  th22  1   x0_1,y0_1   ko1  t0_1 

4.  th12  1   x0_0,y0_0   ko1  t0_0

5.  th22  1   x1_1,y0_1   ko1  t1_1 

6.  th12  1   x1_0,y0_0   ko1  t1_0

7.  th22  1   x0_1,y1_1   ko1  t2_1 

8.  th12  1   x0_0,y1_0   ko1  t2_0 

9.  th22  1   x1_1,y1_1   ko1  t3_1 

10. th12 1   x1_0,y1_0   ko1  t3_0 

11. th24comp  2   t1_0,t2_0,t1_1,t2_1   ko1   m1_1 

12. th24comp  2   t1_0,t2_1,t2_0,t1_1   ko1   m1_0 

13. th22  2    t1_1,t2_1   ko1  c1_1 

14. th12  2    t1_0,t2_0   ko1  c1_0 

15. th24comp  3   m2_0,m3_0,m2_1,m3_1   ko2   z2_1 

16. th24comp  3   m2_0,m3_1,m3_0,m2_1   ko2   z2_0 

17. th22  3   m2_1,m3_1   ko2    z3_1 

18. th12  3   m2_0,m3_0   ko2    z3_0 

19.  Reg_NULL  xi0_0 xi0_1   ko1   x0_0 x0_1

20.  Reg_NULL  xi1_0 xi1_1   ko1   x1_0 x1_1

21.  Reg_NULL  yi0_0 yi0_1   ko1   y0_0 y0_1

22.  Reg_NULL  yi1_0 yi1_1   ko1   y1_0 y1_1

23.  Reg_NULL  t0_0 t0_1   ko2   z0_0 z0_1

24.  Reg_NULL  m1_0 m1_1   ko2   z1_0 z1_1

25.  Reg_NULL  c1_0 c1_1   ko2   m2_0 m2_1

26.  Reg_NULL  t3_0 t3_1    ko2   m3_0 m3_1

27.  Reg_NULL  z0_0 z0_1   ko3   p0_0 p0_1

28.  Reg_NULL  z1_0 z1_1   ko3   p1_0 p1_1

29.  Reg_NULL  z2_0 z2_1   ko3   p2_0 p2_1

30.  Reg_NULL  z3_0  z3_1   ko3    p3_0  p3_1

31.  Comp   ko2   xi0_0,xi0_1,xi1_0,xi1_1,yi0_0,yi0_1,yi1_0,yi1_1   SLP   ko1

32.  Comp   ko3   t0_0,t0_1,m1_0,m1_1,c1_0,c1_1,t3_0,t3_1   ko1   ko2

33.  Comp   Ki    z0_0,z0_1,z1_0,z1_1,z2_0,z2_1,z3_0,z3_1    ko2   ko3
 

Figure 18. 2x2 SCL Multiplier Netlist. 
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Note that this SCL netlist is generated by processing the original gate level SCL netlist to 

order the components and to combine all of the completion unit gates into the single completion 

component as shown in the netlist (Fig. 18). Each completion component, such as Comp2 in Fig. 

15, is comprised of TH12/TH24comp gates and THnn SCL gates arranged in a tree structure, 

followed by a final inverted NCL TH22 gate (without sleep), as shown in Fig. 14. The Comp 

units in Fig. 18 are abstracted from the gate level completion unit structures as shown in Fig. 19.  

th12   1   xi0_0,xi0_1  SLP   r0_1   

th12   1  xi1_0,xi1_1   SLP   r1_1 

th12   1  yi0_0,yi0_1   SLP   r2_1 

th12   1  yi1_0,yi1_1   SLP   r3_1 

th44   2  r0_1,r1_1,r2_1,r3_1   SLP   r4_1 

nclth22  3   ko2,r4_1  ko1 

th12  2   t0_0,t0_1  ko1  r5_1 

th12  3   m1_0,m1_1   ko1   r6_1 

th12  6  c1_0,c1_1   ko1   r7_1 

th12  9  t3_0,t3_1   ko1   r8_1 

th44  10  r5_1,r6_1,r7_1,r8_1  ko1   r9_1 

nclth22  11  ko3,r9_1   ko2 

th12  2  z0_0,z0_1   ko2    r10_1 

th12  3  z1_0,z1_1   ko2    r11_1 

th12  6  z2_0,z2_1   ko2    r12_1 

th12  9  z3_0,z3_1   ko2   r13_1  

th44 10 r10_1,r11_1,r12_1,r13_1 ko2  r14_ 1

nclth22  11 Ki,r14_1  ko3 
 

Figure 19. Netlist of Gates Comprising Comp Units before Abstraction. 

 

nclTH22 gate in Fig. 19 corresponds to the last inverting NCL threshold gate in each 

completion unit. Its representation in the netlist is similar to that of SCL gates. The first column 

corresponds to the type of gate i.e. always nclTH22 (for completion components), second and 

third columns represent the level and inputs of the gate, respectively; followed by the output in 
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the last column. Unlike SCL gate structure in the netlist, the nclTH22 gate has no sleep column 

since it is an NCL gate. When processing the original SCL netlist to obtain the abstracted 

completion component shown in the netlist Fig. 18, our developed tool ensures that the 

completion structures are internally correct i.e., all data inputs to a completion unit must go to 

TH12/TH24comp gates, and their outputs form a tree of SCL THnn type gates, whose output, 

along with the Ki input, is input to an inverted nclTH22 gate that produces the Ko output, and that 

all SCL gates have the same sleep input. The safety check method first reduces the SCL netlist, 

as shown in Fig. 18, into an equivalent Boolean netlist, as shown in Fig. 20, which correlates to 

the equivalent Boolean 2x2 multiplier block diagram shown in Fig. 21. Each SCL C/L gate is 

replaced with its corresponding Boolean function, omitting the sleep input. Each rail of a dual-

rail signal is treated as a distinct Boolean signal, which requires the addition of an inverter for 

each primary circuit input, to generate its complement to replace each input’s rail0, used in the 

C/L, as shown in lines 3-6.  

Similar to the SCL netlist structure, the first two lines in the converted netlist correspond 

to the set of primary inputs and primary outputs, respectively. Each subsequent line corresponds 

to a C/L gate, where the first column denotes the type of gate, the second column denotes the 

gate’s level, the third column denotes the gate’s inputs, and the fourth column denotes the gate’s 

output. Note that the C/L sleep input, SCL registers, and completion units are removed, since 

these are not utilized in the Boolean circuit; and their connections will be verified as part of the 

liveness check, explained in the following sub-section. 
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1.  xi0_1,xi1_1,yi0_1,yi1_1

2.  p0_0,p0_1,p1_0,p1_1,p2_0,p2_1,p3_0,p3_1

3.  not   1   xi0_1   xi0_0

4.  not   1   yi0_1   yi0_0

5.  not   1   xi1_1   xi1_0

6.  not   1   yi1_1   yi1_0 

7.  th12   2   xi0_0,yi0_0   p0_0

8.  th22   1   xi0_1,yi0_1   p0_1

9.  th12   2   xi1_0,yi0_0   t1_0

10. th22   1   xi1_1,yi0_1   t1_1

11. th12   2   xi0_0,yi1_0   t2_0

12. th22   1   xi0_1,yi1_1   t2_1

13. th12   2   xi1_0,yi1_0   t3_0

14 th22    1   xi1_1,yi1_1    t3_1

15. th24comp   3   t2_0,t1_1,t1_0,t2_1   p1_0

16. th24comp   3   t2_0,t1_0,t2_1,t1_1   p1_1

17. th12   3   t2_0,t1_0   c1_0

18. th22   2   t1_1,t2_1   c1_1

19. th24comp   4   c1_0,t3_1,t3_0,c1_1   p2_0

20. th24comp   4   c1_0,t3_0,c1_1,t3_1   p2_1

21. th12   4   c1_0,t3_0   p3_0

22. th22   3   t3_1,c1_1   p3_1
 

Figure 20. Converted Equivalent Boolean Netlist. 
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Figure 21. Equivalent Boolean 2x2 Multiplier Circuit. 
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The Boolean netlist obtained from the SCL netlist is then checked against the 

specification Boolean function. Z3 [39] SMT solver was used to perform this check. Our tool 

auto converts this Boolean equivalent netlist into SMT Lib language which is then fed into Z3. 

For the example 2×2 multiplier with two 2-bit dual-rail inputs, x(1:0) and y(1:0), the SMT solver 

checks the following property: FSCL_Bool_Equv (x0_1, x1_1, y0_1, y1_1) → MUL (x(1:0), y(1:0)), 

where FSCL_Bool_Equv is the function corresponding to the Boolean circuit obtained from 

converting the SCL circuit to be verified and MUL corresponds to the Boolean specification of 

the multiplier circuit. (x1, x0) and (y1, y0) are the (MSB, LSB) of x and y, respectively. It also 

checks that the rail0 and rail1 outputs in the converted netlist are complements of each other: 

i.e., Rail1(P) → ¬ Rail0(P). 

3.2.1.2. Handshaking check for combinational SCL circuits 

The 2×2 SCL multiplier in Fig. 15 implements the SECRII w/o nsleep architecture, 

where the registers, completion units, and C/L are all slept during the NULL cycle. In this 

architecture, the output of a completion unit in a particular stage is responsible to sleep the 

registers, combinational logic of that stage as well as the next-stage completion unit. The proper 

connection of handshaking signals between the various units in the framework ensures the 

correct functioning of the SCL circuit without any deadlock. In Fig. 15, the output of the STAGE 

1 completion unit, ko1, is the sleep input of the STAGE 1 registers (1-4), the STAGE 1 C/L, 

C/L1, and the STAGE 2 completion unit, Comp2. An algorithm was developed that takes an SCL 

netlist, like the one shown in Fig. 18, and converts it into a graph structure, where each register, 

threshold gate, and completion unit are modeled as nodes. The directed edges going into and out 

from a node correspond to the inputs and outputs of that particular node, respectively. The 

algorithm traverses the graph to gather the needed information in order to verify that the 
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handshaking exactly follows the SCL protocol. For registers, completion units, and threshold 

gates, the following information is stored: data inputs, sleep input, and data output(s). After 

gathering this information, the following handshaking checks are performed: 

• Register sleep and Completion data inputs: 

Each stage register’s data inputs must be exactly the same as for the stage’s completion 

unit; and the completion unit output must be the register’s sleep input. As an example, the inputs 

of registers (1-4) in STAGE1 are also the data inputs to completion unit, Comp1. Hence, the 

output of Comp1, ko1, is the sleep input for registers (1-4). 

• Sleep for C/L: 

Each completion unit sleeps its stage’s register and C/L, such that every SCL C/L gate’s 

sleep input should be the same as its preceding register’s sleep input. Hence, for each gate, i, a 

gate_fanin (i) list is created, that traces back all inputs of gatei to their originating registers. For 

example, the TH12 gate on line 14 of Fig. 18, corresponds to the TH12 gate that generates the 

c10 carry output of the HA1 in C/L1 in Fig 15. Tracing this gate’s inputs back to their generating 

registers yields x1_0, y0_0, x0_0, y1_0, resulting in a gate_fanin list of Reg1, Reg2, Reg3, 

Reg4, which all have the same sleep input as the TH12 gate. Once the gate_fanin list for all gates 

are computed, all registers in each gate_fanin(i) list are inspected to ensure that they all have the 

same sleep input, and that this sleep input is also the sleep input for gatei. If the gate_fanin list 

contains registers from multiple stages (i.e., different sleep inputs), or if the gate’s sleep input 

differs from its corresponding input register’s sleep input, then an error message is generated.  

• Completion output, and slp and Ki inputs: 

Compi’s Ki input must be the output of Compi+1, and its sleep input must be the output of 

Compi-1. In Fig. 15, Comp2’s Ki input is the output of Comp3, and its sleep input is the output of 

Comp1. The first and last stages are slightly different. Comp1’s (i.e., the completion unit whose 
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data inputs are the circuit’s external data inputs) sleep input must be the external SLP input, and 

its output must be the external Ko output; the last stage completion’s (i.e., the completion unit 

associated with the register that produces the external data outputs) Ki input must be the external 

Ki input. 

3.2.2. Equivalence Verification Method for Sequential SCL Circuits 

Verification of sequential SCL circuits are much more complex because of datapath 

feedback, which requires at least 2N+1 SCL registers in a feedback loop with N DATA tokens in 

order to avoid deadlock [40]. Hence, common practice when synthesizing an SCL circuit from its 

synchronous specification is to replace every synchronous register with three SCL registers, reset 

to NULL, DATA, NULL. A simple 4+2x2 SCL MAC (i.e. a 2-bit wide multiplier with 4-bit 

wide accumulator) is taken as example to elaborate this further, as well as to explain our 

verification method for sequential circuits. For the 4+2×2 MAC, the output register is replaced 

with registers numbered 5-8 and 15-22, as shown in the Fig. 22 SCL implementation of this 

circuit. In addition to the fed back accumulator output (acci(3:0)), the STAGE 1 registers 

(registers 1-8) also include the external data inputs, xi (1:0) and yi (1:0), while the STAGE 2 

register is an additional reset-to-NULL register included to increase performance. Note that 

STAGE 1 and 2 could be combined into a single stage, or STAGE 3 could be removed without 

causing deadlock. The C/L is comprised of SCL 2-input AND functions (AND2), Half Adders 

(HAs) and Full Adders (FAs), similar to the ones shown in Figs. 17 and 18, in the previous sub-

section. The FA SCL internal threshold gate structure is shown in Fig. 23, comprising of SCL 

TH23 and TH34w2 gates. 
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Figure 22. 4+2×2 SCL MAC. 
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3.2.2.1. Safety check for sequential SCL circuits 

The netlist structure for a sequential SCL circuit is similar to that for a combinational 

circuit, shown in Fig. 24. Here also the Comp units are obtained through abstraction form an 

original netlist of SCL threshold gates and nclTH22 gates. The only differences are the inclusion 

of C-elements in the feedback loop handshaking, and reset-to-DATA registers, REG_DATA0 in 

this case. The algorithm to convert the SCL netlist into its equivalent synchronous netlist is also 

similar to the combinational SCL conversion described in Section 3.2.1.1, with the following 

additions: each reset-to-DATA register is converted into an equivalent 2-bit Boolean register, 

one bit for the SCL register’s rail1 output and the other for its rail0 output. Same as for the 

combinational circuit conversion, the reset-to-NULL registers and all sleep signals are omitted 

from the converted synchronous netlist, as these will be verified in the subsequent handshaking 

check. For sequential circuits, the additional C-elements are also omitted from the converted 

synchronous netlist and will also be verified in the handshaking check.  

The converted Boolean netlist and the corresponding equivalent Boolean circuit for the 

4+2x2 MAC are shown in Figs. 25 and 26 respectively. The equivalence check of sequential is 

not as straightforward as that of the combinational SCL circuits. Sequential circuits have states 

and transitions. The theory of WEB-Refinement [33] is utilized to check for equivalence between 

the converted synchronous netlist and the original synchronous specification. 
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1. xi0_0,xi0_1,xi1_0,xi1_1,yi0_0,yi0_1,yi1_0,yi1_1

2. acci0_0,acci0_1,acci1_0,acci1_1,acci2_0,acci2_1,acci3_0,acci3_1

3. th12   1   xi0_0,yi0_0   ko1   t0_0

4. th22   1   xi0_1,yi0_1   ko1   t0_1

5. th12   1   xi1_0,yi0_0   ko1   t1_0

6. th22   1   xi1_1,yi0_1   ko1   t1_1

7. th12   1   xi0_0,yi1_0   ko1   t2_0

8. th22   1   xi0_1,yi1_1   ko1   t2_1

9. th12   1   xi1_0,yi1_0   ko1   t3_0

10. th22   1   xi1_1,yi1_1   ko1   t3_1

11. th24comp   2   t2_0,t1_1,t1_0,t2_1   ko1   t4_0

12. th24comp   2   t2_0,t1_0,t2_1,t1_1   ko1   t4_1

13. th12   2   t2_0,t1_0   ko1   c0_0

14. th22   2   t1_1,t2_1   ko1   c0_1

15. th24comp   2   acc0_0,t0_1,t0_0,acc0_1   ko1   t5_0

16. th24comp   2   acc0_0,t0_0,acc0_1,t0_1   ko1   t5_1

17. th12   2   acc0_0,t0_0   ko1   c1_0

18. th22   2   t0_1,acc0_1   ko1   c1_1

19. th24comp   3   acc1_0,t4_1,t4_0,acc1_1   ko1   t6_0

20. th24comp   3   acc1_0,t4_0,acc1_1,t4_1   ko1   t6_1

21. th12   3   acc1_0,t4_0   ko1   c2_0

22. th22   3   t4_1,acc1_1   ko1   c2_1

23. th23   3   t3_0,acc2_0,c0_0   ko1   c3_0

24. th23   3   t3_1,acc2_1,c0_1   ko1   c3_1

25. th34w2   4   c3_1,t3_0,acc2_0,c0_0   ko1   t7_0

26. th34w2   4   c3_0,t3_1,acc2_1,c0_1   ko1   t7_1

27. th24comp   4   r1_0,r2_1,r2_0,r1_1   ko2   t8_0

28. th24comp   4   r1_0,r2_0,r1_1,r2_1   ko2   t8_1

29. th12   4   r1_0,r2_0   ko2   c4_0

30. th22   4   r2_1,r1_1   ko2   c4_1

31. th23   5   r4_0,r3_0,c4_0   ko2   c5_0

32. th23   5   r4_1,r3_1,c4_1   ko2   c5_1

33. th34w2   6   c5_1,r4_0,r3_0,c4_0   ko2   t9_0

34. th34w2   6   c5_0,r4_1,r3_1,c4_1   ko2   t9_1

35. th23   6   acc3_0,r5_0,c5_0   ko2   c6_0

36. th23   6   acc3_1,r5_1,c5_1   ko2   c6_1

37. th34w2   7   c6_1,acc3_0,r5_0,c5_0   ko2   t10_0

38. th34w2   7   c6_0,acc3_1,r5_1,c5_1   ko2   t10_1

39. Reg_NULL   xi0_0   xi0_1   ko1   x0_0   x0_1

40. Reg_NULL   xi1_0   xi1_1   ko1   x1_0   x1_1

41. Reg_NULL   yi0_0   yi0_1   ko1   y0_0   y0_1

42. Reg_NULL   yi1_0   yi1_1   ko1   y1_0   y1_1

43. Reg_NULL   acci0_0   acci0_1   ko1   acc0_0   acc0_1

44. Reg_NULL   acci1_0   acci1_1   ko1   acc1_0   acc1_1

45. Reg_NULL   acci2_0   acci2_1   ko1   acc2_0   acc2_1

46. Reg_NULL   acci3_0   acci3_1   ko1   acc3_0   acc3_1

47. Reg_NULL   t5_0   t5_1   ko2   r0_0   r0_1

48. Reg_NULL   t6_0   t6_1   ko2   r2_0   r2_1

49. Reg_NULL   t7_0   t7_1   ko2   r4_0   r4_1

50. Reg_NULL   c1_0   c1_1   ko2   r1_0   r1_1

51. Reg_NULL   c2_0   c2_1   ko2   r3_0   r3_1

52. Reg_NULL   c3_0   c3_1   ko2   r5_0   r5_1

53. Reg_NULL   r0_0   r0_1   ko3   p0_0   p0_1

54. Reg_NULL   t8_0   t8_1   ko3   p1_0   p1_1

55. Reg_NULL   t9_0   t9_1   ko3   p2_0   p2_1

56. Reg_NULL   t10_0   t10_1   ko3   p3_0   p3_1

57. Reg_DATA   p0_0   p0_1   ko4   acci0_0   acci0_1

58. Reg_DATA   p1_0   p1_1   ko4   acci1_0   acci1_1

59. Reg_DATA   p2_0   p2_1   ko4   acci2_0   acci2_1

60. Reg_DATA   p3_0   p3_1   ko4   acci3_0   acci3_1

61. C2   SLP,ko4   KO4

62. C2   ko1,Ki   KO1

63. Comp ko2  xi0_0,xi0_1,xi1_0,xi1_1,yi0_0,yi0_1,yi1_0,yi1_1,acci0_0,    KO4   ko1

                   acci0_1,acci1_0,acci1_1,acci2_0,acci2_1,acci3_0,acci3_1 

64. Comp   ko3   t5_0,t5_1,t6_0,t6_1,t7_0,t7_1,c1_0,c1_1,c2_0,c2_1,c3_0,c3_1   ko1   ko2

65. Comp   ko4   r0_0,r0_1,t8_0,t8_1,t9_0,t9_1,t10_0,t10_1   ko2   ko3

66. Comp   KO1   p0_0,p0_1,p1_0,p1_1,p2_0,p2_1,p3_0,p3_1   ko3   ko4
 

Figure 24. 4+2x2 MAC SCL Netlist. 
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1. xi0_0, xi0_1, xi1_0, xi1_1, yi0_0, yi0_1, yi1_0, yi1_1

2. acci0_0, acci0_1, acci1_0, acci1_1, acci2_0, acci2_1, acci3_0, acci3_1

3. not   1   xi0_1   xi0_0

4. not   1   yi0_1   yi0_0

5. not   1   xi1_1   xi1_0

6. not   1   yi1_1   yi1_0

7. th12   2   xi0_0,yi0_0   t0_0

8. th22   1   xi0_1,yi0_1   t0_1

9. th12   2   xi1_0,yi0_0   t1_0

10. th22   1   xi1_1,yi0_1   t1_1

11. th12   2   xi0_0,yi1_0   t2_0

12. th22   1   xi0_1,yi1_1   t2_1

13. th12   2   xi1_0,yi1_0   t3_0

14. th22   1   xi1_1,yi1_1   t3_1

15. th24comp   3   t2_0,t1_1,t1_0,t2_1   t4_0

16. th24comp   3   t2_0,t1_0,t2_1,t1_1   t4_1

17. th12   3   t2_0,t1_0   c0_0

18. th22   2   t1_1,t2_1   c0_1

19. th24comp   3   acci0_0,t0_1,t0_0,acci0_1   p0_0

20. th24comp   3   acci0_0,t0_0,acci0_1,t0_1   p0_1

21. th12   3   acci0_0,t0_0   c1_0

22. th22   2   t0_1,acci0_1   c1_1

23. th24comp   4   acci1_0,t4_1,t4_0,acci1_1   t6_0

24. th24comp   4   acci1_0,t4_0,acci1_1,t4_1   t6_1

25. th12   4   acci1_0,t4_0   c2_0

26. th22   4   t4_1,acci1_1   c2_1

27. th23   4   t3_0,acci2_0,c0_0   c3_0

28. th23   3   t3_1,acci2_1,c0_1   c3_1

29. th34w2   4   c3_1,t3_0,acci2_0,c0_0   t7_0

30. th34w2   5   c3_0,t3_1,acci2_1,c0_1   t7_1

31. th24comp   5   c1_0,t6_1,t6_0,c1_1   p1_0

32. th24comp   5   c1_0,t6_0,c1_1,t6_1   p1_1

33. th12   5   c1_0,t6_0   c4_0

34. th22   5   t6_1,c1_1   c4_1

35. th23   6   t7_0,c2_0,c4_0   c5_0

36. th23   6   t7_1,c2_1,c4_1   c5_1

37. th34w2   7   c5_1,t7_0,c2_0,c4_0   p2_0

38. th34w2   7   c5_0,t7_1,c2_1,c4_1   p2_1

39. th23   7   acci3_0,c3_0,c5_0   c6_0

40. th23   7   acci3_1,c3_1,c5_1   c6_1

41. th34w2   8   c6_1,acci3_0,c3_0,c5_0   p3_0

42. th34w2   8   c6_0,acci3_1,c3_1,c5_1   p3_1

43. Reg_DATA   p0_0   p0_1   acci0_0   acci0_1

44. Reg_DATA   p1_0   p1_1   acci1_0   acci1_1

45. Reg_DATA   p2_0   p2_1   acci2_0   acci2_1

46. Reg_DATA   p3_0   p3_1   acci3_0   acci3_1
 

Figure 25. Converted Boolean 4+2x2 MAC SCL Netlist. 
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Figure 26. Converted Equivalent 4+2x2 MAC Boolean Circuit. 

 

WEB-refinement uses two functions: rank and refinement-map. Rank functions 

differentiate between finite transitions and infinite stuttering (deadlock). The implementation 

Transition System (TS) may look very different from specification TS, which is tackled by the 

refinement-map functions. These functions map the specification states with implementation 

states. However, in our case, rail1 registers have a one-to-one mapping with the synchronous 

register; hence, there is no stutter. It is assumed that the I\O mapping and the register mapping 

between the specification and implementation circuits are provided, resulting in a reduced proof 

obligation given below and demonstrated using Fig. 27.  
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Figure 27. Proof Obligation to Check Equivalence of Sequential SCL Circuits. 

 

In Fig. 27, s is an implementation state, i.e. a state in the reduced synchronous SCL 

circuit. u is a state in specification that is a projection of the values of the rail1 registers from 

state s. StepSYNC_SCL and StepSYNC_SPC are the single step functions of the SCL implementation and 

specification, respectively. The proof obligation states that if u is obtained by projecting the rail1 

values of s, w is the next state of the implementation state s, and v is the next state of u, then the 

corresponding projection of values from the rail1 registers of the w state must be equivalent to 

the values of the corresponding registers in the v state. 

Proof Obligation: 

PO :{∀ s:: s∈ SSYNC_SCL:: [u= Reg_Proj (s) ˄ w= StepSYNC_SCL (s) ˄ v= StepSYNC_SPEC (u)]  

    ⇒ Reg_Proj (w)= v}. 

 The converted netlist, synchronous specification, and equivalence check proof obligation 

are modeled in SMT-LIB, and the properties checked using the Z3 SMT solver. For the 4+2×2 

MAC, the following properties are checked: Considering symbolic state transitions for any 

current state values of 2-bit primary inputs, x_cs(1:0) and y_cs(1:0), and 4-bit accumulator 

values acc_cs(3:0), the next state of the converted synchronous netlist obtained from the SCL 

implementation should be equivalent to the next state of the synchronous specification; i.e., 

FSCL_Sync_Eq (x0_cs, x1_cs, y0_cs, y1_cs, acc0_cs, acc1_cs, acc2_cs, acc4_cs)→ FSync_Spec 
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(x_cs(1:0), y_cs(1:0), acc_cs(3:0)). For each register in the converted synchronous netlist, it is 

also checked that its output rail0 and rail1 are complements of each other. 

3.2.2.2. Handshaking check for sequential SCL circuits 

Handshaking verification is the same as for combinational SCL circuits, except that the 

first and last registers of a feedback loop include an extra C-element, as shown in Fig. 22, which 

requires the following two additional checks: The Ki input for a feedback loop’s output register’s 

completion (e.g., Comp4 in Fig. 22) must be the combination (via a C-element) of its 

downstream register’s completion’s Ko (external Ki input in Fig. 22) and its feedback loop input 

register’s completion’s Ko (ko1 in Fig. 22), instead of only its downstream register’s 

completion’s Ko, as in combinational SCL circuits. The sleep input (slp) for a feedback loop’s 

input register’s completion (e.g., Comp1 in Fig. 22) must be the combination (via a C-element) 

of its upstream register’s completion’s Ko (external SLP input in Fig. 22) and its feedback loop 

output register’s completion’s Ko (ko3 in Fig. 22), instead of only its upstream register’s 

completion’s Ko, as in combinational SCL circuits. The C-element are represented as shown in 

line 61 and 62 in Fig. 24, where the first column represents an n-input C element (Cn), followed 

by the inputs in ‘,’ separated format and output of the C element in second and third columns, 

respectively. 

3.2.3. Results 

To demonstrate the verification of combinational SCL circuits, several multipliers and 

ISCAS benchmarks were verified; whereas, MACs and an ISCAS benchmark (s27) were verified 

to demonstrate the verification of sequential SCL circuits, as shown in Table 2. The algorithms 

described in Section 3.2.2 were implemented using Python. Z3 SMT solver [39] was used on an 

Intel® Core™ i7- 4790 CPU with 32GB of RAM running at 3.60 GHz.to check for functional 
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equivalence. NxN MUL stands for an N-bit combinational multiplier, whereas 2N+NxN MAC 

stands for an N-bit multiplier unit with 2N-bit accumulator. Additionally, a number of buggy 

circuits were tested, including circuits with erroneous handshaking signals, such as an incorrect 

sleep signal connection to a C/L gate (i.e., 20+10×10 MAC B1), a C/L gate with one data input 

being a signal’s rail0 instead of the correct rail1 (i.e., 20+10×10 MAC B2) and the combinational 

logic having incorrect logic elements (20+10x10 MAC B3). For all buggy cases, the proposed 

approach was able to flag the errors, providing a descriptive message indicating the erroneous 

connection for handshaking errors, and producing counter examples to trace back the error path 

(via the SMT solver) for cases of functional in-equivalence. Since B2 was caught during the 

safety check, its verification time was much less than for B1, which was detected in the 

handshaking check. Time to convert an SCL netlist to its equivalent Boolean/synchronous netlist 

was negligible compared to safety and handshaking check times; therefore, was not included in 

Table 2. It is also to be observed from the table that while the safety check for higher order 

circuits took more time, this was only when the circuit was correct. Also, with increasing number 

of levels in a circuit the verification time increases. However, in case of any functional bugs in 

the circuit (like B2 and B3 in the table), the developed method was able to catch those bugs very 

fast (in less than a second for B2 and B3, as shown in the table). 

Comparing our verification times with that of [34], we found that our method was able to 

verify up to 12x12 QDI SCL multiplier without timing out, whereas the model-checking based 

verification method for QDI PCHB circuits [34] timed out for 4x4 PCHB multiplier. 

Furthermore, comparing the verification times for 8x8 MAC NCL circuit using WEB 

Refinement [32] with that of 16 + 8x8 MAC SCL circuit using our verification methodology, we 

found that our method was ~1000 times faster. Even considering this difference between QDI 
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NCL, PCHB, and SCL circuits, it can be concluded that our equivalence verification method is a 

definite improvement in terms of scalability and speed. 

Table 2. Verification Results for Various SCL Circuits. 

SCL Circuit 

# of 

Gates 

# of C/L 

levels 

Verification Times (in sec.) 

Safety 

Check 

Handshaking 

Check 
Total time 

6x6 MUL 260 22 0.32 0.0259 0.3459 

8x8 MUL 440 30 10.62 0.055 10.675 

10x10 MUL 670 38 683.49 0.1536 683.64 

12x12 MUL 946 46 49,963.05 0.316 49,963 

ISCAS c17 [41] 37 3 0.01 0.002 0.012 

ISCAS c432 [41] 445 23 1.03 0.0468 1.0768 

ISCAS s27 [42] 60 5 0.09 0.002 0.092 

12+6x6 MAC 373 25 1.69 0.031 1.721 

16+8x8 MAC 592 33 12.03 0.1007 12.131 

20+10x10 MAC 858 41 1,581.72 0.213 1581.93 

24+12x12 MAC 1173 50 1,40,780.13 0.4078 1,40,780.5 

20+10x10 MAC B1 858 41 1483.22 0.3403 1483.5603 

20+10x10 MAC B2 858 41 0.17 0.213 0.383 

20+10x10 MAC B3 858 41 0.27 0.213 0.483 
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4. CONCLUSIONS 

Sleep Convention Logic (SCL) is an emerging ultra-low power Quasi-Delay Insensitive 

(QDI) asynchronous design paradigm with enormous potential for industrial applications. Design 

validation is a critical concern before commercialization. Unlike other QDI paradigms, such as 

NULL Convention Logic (NCL) and Pre-Charge Half Buffers (PCHB), there exists no formal 

verification methods for SCL circuits. The goal of the research illustrated in this thesis was to 

develop a unified and scalable formal verification scheme for combinational as well as sequential 

SCL circuits, with the potential to meet commercial standards. 

4.1. Summary 

Power consumption and clock management are the two major design challenges faced by 

today’s semiconductor industry in the synchronous domain. At nanoscale level, design factors 

that were previously less significant, such as wire-delays and leakage power, have become more 

crucial. Also, synchronous design gets more vulnerable to process variation (power, voltage, 

temperature) in deep submicron region. On the other hand, the Delay Insensitive (DI) paradigm 

of asynchronous domain is known for its robust architecture against process variation. They have 

low-power applications and requires no complex timing analysis, which resulted in an increasing 

popularity of this domain over the last few decades. NULL Convention Logic (NCL) is one such 

commercially successful DI paradigm. Multi-Threshold NULL Convention Logic (MTNCL), 

also known as Sleep Convention Logic (SCL), is a modification over the NCL architecture 

incorporating Multi-Threshold CMOS (MTCMOS) logic to further improve power performance. 

A detailed description of NCL and MTNCL architecture is provided in chapter 2. 

Previous verification works related to different QDI paradigms and existing Design-for-

Testability method for QDI SCL circuits were discussed in chapter 3; followed by an illustration 
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of the developed formal modeling and verification methodology SCL circuits. The fundamental 

idea behind the verification methodology was to perform structural reduction on the complex 

SCL implementation to convert it to an equivalent Boolean/synchronous circuit. The reduced 

circuit was checked for equivalence with the Boolean/synchronous specification. Procedures to 

verify the functionality, liveness, and handshaking connections based on the developed method 

were discussed in details. The method was demonstrated using several increasing order 

multipliers as well as Multiply and Accumulate (MAC) units, and ISCAS benchmarks. 

4.2. Scopes for Future Work 

 The equivalence verification methodology demonstrated in this thesis is the first known 

formal verification work for SCL circuits. The method is applicable to both combinational and 

sequential SCL circuits. However, the method currently only works for sequential circuits 

without multiple interactive feedback loops, such as a MAC, since the handshaking is otherwise 

much more complicated, and requires the development of an algorithm to map each register in 

the converted synchronous circuit to its corresponding register in the original synchronous 

specification. These problems will be tackled in future work, such that the developed approach 

will be applicable to any arbitrary sequential circuit. Scalability of the approach can be improved 

further using abstraction techniques, and a commercial equivalence checker instead of an SMT 

solver.  
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